
On Relational Interfaces

Stavros Tripakis
Ben Lickly
Thomas A. Henzinger
Edward A. Lee

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-60

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-60.html

May 10, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

On Relational Interfaces∗

Stavros Tripakis
UC Berkeley

Ben Lickly
UC Berkeley

Thomas A. Henzinger
EPFL

Edward A. Lee
UC Berkeley

May 8, 2009

Abstract

In this paper we extend the work of De Alfaro, Henzinger et al, on interface theories for component-
based design. Existing interface theories fail to capture functional relations between the inputs and
outputs of an interface. For example, a simple interface that takes as input a number n ≥ 0 and returns
as output n + 1, cannot be expressed in existing theories. In this paper we provide a theory of relational
interfaces, where such input-output relations can be captured. Our theory supports both stateless and
stateful interfaces, includes explicit notions of environments and pluggability, and satisfies fundamental
properties such as preservation of refinement by composition, and characterization of pluggability by
refinement. We achieve these properties by making reasonable restrictions on feedback loops in interface
compositions.

1 Introduction

Component-based design has emerged as a significant challenge in building complex systems, such as embed-
ded, cyber-physical systems, in an efficient and reliable manner. The size and complexity of such systems
prohibits designing an entire system from scratch, or building it as a single unit. Instead, the system must
be designed as a set of components, some built from scratch, some inherited by legacy. Interfaces play a
key role in component-based design, as they provide the means to reason about components. An interface
can be seen as an abstraction of a component: on one hand, such an abstraction captures information that
is essential in order to use the component in a given context; on the other hand, the abstraction hides
unnecessary information, making reasoning simpler and more efficient.

Significant progress has been made in the past several years toward the development of a comprehensive
theory of interfaces for component-based design. Such a theory has been pioneered and developed in a series
of papers by De Alfaro, Henzinger et al (see [4, 3, 2, 5] for a sample). What has been elusive, however, is a
theory of relational interfaces, that is, interfaces that specify relations between inputs and outputs. Consider,
for example, a component that is supposed to take as input a number n ≥ 0 and return as output n+1. The
interface for such a component can be described as a binary relation between the input and the output: the
relation containing all pairs (n, n + 1), such that n ≥ 0. Such a relation can be seen as a contract between
the component and its environment: the contract specifies the legal inputs that the environment is allowed
to provide to the component (in this case n ≥ 0); and for every legal input, what are the legal outputs that
the component may produce when fed with that input.

Existing interface theories, in particular those proposed in the aforementioned works, only partially cap-
ture relational interfaces. [4] defines relational nets, which are networks of processes that non-deterministically

∗This work is supported by the Center for Hybrid and Embedded Software Systems (CHESS) at UC Berkeley, which receives
support from the National Science Foundation (NSF awards #0720882 (CSR-EHS: PRET) and #0720841 (CSR-CPS)), the
U.S. Army Research Office (ARO #W911NF-07-2-0019), the U.S. Air Force Office of Scientific Research (MURI #FA9550-
06-0312), the Air Force Research Lab (AFRL), the State of California Micro Program, and the following companies: Agilent,
Bosch, Lockheed-Martin, National Instruments, Thales and Toyota. Authors’ emails: {stavros,blickly,eal}@eecs.berkeley.edu,
tah@epfl.ch.

1

relate input values to output values (these form essentially the subclass of stateless relational interfaces). [4]
does not provide an interface theory for the complete class of relational nets. Instead they provide interface
theories for subclasses, in particular: rectangular nets which have no input-output dependencies; total nets
which can have input-output dependencies but make no restrictions on the inputs (in this paper we call such
interfaces input-complete); and total and rectangular nets which combine both restrictions above.

The interfaces provided in [4] for rectangular nets are called stateless A/G interfaces. These interfaces
separate the assumptions on the inputs from the guarantees on the outputs, and as such cannot capture
input-output relations.

The interface theory developed in [5] is also based on A/G interfaces (both stateless and stateful). In
a Discussion section, [5] briefly discuss extended interfaces which relate input and outputs (these are the
same as the relational interfaces that we study in this paper). [5] conclude that extended interfaces are not
appropriate, because “the basic properties of stepwise refinement and independent implementability do not
hold in the extended framework” [5].

[2] consider Moore interfaces, defined by a formula φi that specifies the legal values of the input variables
at the next state, given the current state, and a formula φo that specifies the legal values of the output
variables at the next state, given the current state. This formulation does not allow to describe relations
between inputs and outputs at the same state, thus fails to capture general relational interfaces.

Both [4] and [5] can handle very general compositions of interfaces, that can be obtained via two operators,
namely, parallel composition and connection (this is similar to the denotational framework of [6]). This allows,
in particular, arbitrary feedback loops to be created.

Feedback loops are a major source of problems when studying relational interfaces. To illustrate some of
the problems that arise, consider the following example, borrowed from [5]. Suppose Itrue is an interface on
input x and output y, with trivial contract true, making no assumptions on the inputs and no guarantees on
the outputs. Suppose Iy 6=x is another interface on x and y, with contract y 6= x, meaning that it guarantees
the value of the output will be different from the value of the input. According to standard definitions of
refinement, Iy 6=x refines Itrue: this is because Iy 6=x is “more deterministic” than Itrue (the output guarantees
of Iy 6=x are stronger). Now, consider the feedback connection x = y. This could be considered an allowed
connection for Itrue, since it does not contradict its contract. But the same connection contradicts the
contract of Iy 6=x. As a result, even though Iy 6=x refines Itrue, the feedback composition of Iy 6=x does not
refine the feedback composition of Itrue. This means that one of the fundamental properties that an interface
theory should provide, namely, that composition preserves refinement, would not hold in this case.

In this paper we propose a theory of relational interfaces. Our theory relies on a notion of refinement
which is input-contravariant like the relations proposed in [1, 4, 5], but not strictly output-covariant. We
avoid problems created by feedback loops by restricting the cases in which feedback loops are allowed. In
particular, we allow an output of an interface I to be connected to one of its inputs x only if I is Moore with
respect to x, meaning that the contract of I does not depend on x(note that this definition is less restrictive
than the one of [2]).

Arguably, this is a reasonable restriction in practice. After all, feedback loops generally create causality
cycles that result in ambiguous semantics. In many languages and tools these problems are avoided by
making restrictions similar to (in fact, stricter than) ours. For example, tools such as Simulink from The
MathWorks 1 or SCADE from Esterel Technologies 2 often require a unit-delay block to be placed in every
feedback loop.3 This restriction does not appear to result in a significant loss of expressiveness in practice.

Using the above assumption, we are able to derive a comprehensive theory of relational interfaces that sup-
ports stepwise refinement (if I ′ refines I then I ′ can replace I in any context), independent implementability
(if components I ′i refine components Ii then the composition of I ′i refines the composition of Ii) and compo-
nent reuse (via shared refinement, see below) [5]. Other properties of our theory and contributions of this
paper include the following:

1 www.mathworks.com/products/simulink/
2 www.esterel-technologies.com/products/scade-suite/
3 Simulink provides the user with the option to ignore so-called algebraic loops but this results in ambiguous (non-

deterministic) semantics.

2

We explicitly introduce the notions of environments and pluggability of interfaces to environments. We
also introduce two notions of equivalence between interfaces: equivalence of their contracts, and equivalence
with respect to environments (two interfaces are equivalent iff they can be plugged to the same set of
environments). We show that these two equivalences coincide. We also prove that our notion of refinement
characterizes pluggability in the following fundamental way: interface I ′ refines I iff I ′ can replace I in
every context (i.e., environment). (Note that this is a stronger property than stepwise refinement: it is an
iff instead of an only if.) We show by example that alternative definitions of refinement do not have this
property.

We seamlessly handle stateless and stateful interfaces. Stateful interfaces associate a potentially different
contract at every state. We model a state very simply and generally, as a history of input/output values.
This allows us to handle finite as well as infinite-state interfaces. Stateless interfaces can be viewed as a
special case of stateful interfaces where the contract is the same at all states.

In the stateful case, we distinguish between well-formed and well-formable interfaces (the two notions
coincide for stateless interfaces). Well-formed interfaces are such that their contract can always be satisfied at
every reachable state. Well-formable interfaces are not necessarily well-formed, but can be made well-formed
by appropriately restricting their inputs. Refinement preserves well-formability always, but it only preserves
well-formedness under certain conditions. As observed in [4], controller-synthesis type of procedures can be
used to transform finite-state well-formable interfaces into well-formed ones.

We propose a hiding operator that allows removal of a subset of the output variables in a contract by
projecting them out. This is useful when composing interfaces, where often many variables end up being
equal. Hiding is always possible for stateless interfaces, and corresponds to existentially quantifying outputs
in the contract. The situation is more subtle in the stateful case, where we need to ensure that the “hidden”
variables do not influence the evolution of the contract.

Our theory supports shared refinement of two interfaces I and I ′, which is important for component
reuse, as argued in [5]. A shared refinement operator I u I ′ is proposed in the Discussion section of [5] for
extended (i.e., relational) interfaces, and it is conjectured that this operator represents the greatest lower
bound with respect to refinement. We show that this holds only if a shared refinability condition is imposed.
This condition states that for every inputs that is legal in both I and I ′, the corresponding sets of outputs
of I and I ′ must have a non-empty intersection.

2 Preliminaries, notation

In this paper we use first-order logic (FOL) as a language to describe contracts.4 For an introduction to
FOL, see, for instance, [8]. We use true and false for logical constants true and false, ¬,∧,∨,→,≡ for logical
negation, conjunction, disjunction, implication, and equivalence, and ∃ and ∀ for existential and universal
quantification, respectively. We will use := when defining concepts or introducing new notation, for instance,
x0 := max{1, 2, 3} defines x0 to be the maximum of the set {1, 2, 3}.

Let V be a finite set of variables. A property over V is a FOL formula φ such that any free variable of
φ is in V . The set of all properties over V is denoted F(V). Let φ be a property over V and V ′ be a finite
subset of V , V ′ = {v1, v2, ..., vn}. Then, ∃V ′ : φ is shorthand for ∃v1 : ∃v2 : ... : ∃vn : φ. Similarly, ∀V ′ : φ is
shorthand for ∀v1 : ∀v2 : ... : ∀vn : φ.

We will implicitly assume that all variables are typed, meaning that every variable is associated with a
certain domain. An assignment over a set of variables V is a (total) function mapping every variable in V
to a certain value in the domain of that variable. The set of all assignments over V is denoted A(V). If
a is an assignment over V1 and b is an assignment over V2, and V1, V2 are disjoint, we use (a, b) to denote
the combined assignment over V1 ∪ V2. A formula φ is satisfiable iff there exists an assignment a over the
free variables of φ such that a satisfies φ, denoted a |= φ. A formula φ is valid iff it is satisfied by every
assignment.

4 As mentioned in the introduction, contracts are essentially relations between inputs and outputs. Our theory holds for
such relations, independently from how the relations are specified. FOL formulae is one possible language, but other languages
could be used as well.

3

If S is a set, S∗ denotes the set of all finite sequences made up of elements in S. S∗ includes the empty
sequence, denoted ε. If s, s′ ∈ S∗, then s ·s′ is the concatenation of s and s′. |s| denotes the length of s ∈ S∗,
with |ε| = 0 and |s · a| = |s| + 1, for a ∈ S. If s = a1a2 · · · an, then the i-th element of the sequence, ai, is
denoted si, for i = 1, ..., n.

3 Relational Interfaces

Definition 1 (Relational interface) A relational interface (or simply interface) is a tuple I = (X,Y, ξ)
where X and Y are two finite and disjoint sets of input and output variables, respectively, and ξ is a total
function

ξ : A(X ∪ Y)∗ → F(X ∪ Y)

Recall that A(V) is the set of all assignments over set of variables V . Therefore, A(X ∪ Y)∗ is the set of
all finite sequences of assignments over X ∪ Y . Note that we allow X or Y to be empty: if X is empty then
I is a source interface; if Y is empty then I is a sink. An element of A(X ∪ Y)∗ is called a state. The initial
state is the empty sequence ε. Recall that F(X ∪ Y) is the set of all properties over X ∪ Y . Therefore, ξ
associates with every state s a formula ξ(s) over X ∪ Y . This formula acts as the contract between I and
its environment at that state. The contract changes dynamically, as the state of I changes.

Suppose the current state of I is s and the environment presents I with an assignment aX over the
input variables X, which satisfies the input assumptions in(ξ(s)). I then chooses an assignment aY over the
output variables Y , such that together the two assignments satisfy ξ(s). The combined assignments yield an
assignment over X ∪ Y , a := (aX , aY). The new state of I is s · a.

A stateless interface is one where the contract is independent of the state:

Definition 2 (Stateless interface) An interface I = (X,Y, ξ) is stateless if for all s, s′ ∈ A(X ∪ Y)∗,
ξ(s) = ξ(s′).

For a stateless interface, we can treat ξ as a property, instead of as a function that maps states to
properties. For clarify, we will write I = (X,Y, φ) for a stateless interface, where φ is a property over X ∪Y .

Example 1 Consider a component which is supposed to take as input a positive number n and return n or
n+ 1 as output. We can capture such a component in different ways. One way is by the following stateless
interface:

I1 := ({x}, {y}, x > 0 ∧ (y = x ∨ y = x+ 1)}).

Here, x is the input variable and y is the output variable. The contract of I1 explicitly forbids zero or negative
values for x. Another possible stateless interface for this component is:

I2 := ({x}, {y}, x > 0 → (y = x ∨ y = x+ 1)}).

The contract of I2 is different from that of I1: it allows x ≤ 0, but makes no guarantees about the output y in
that case. I2 is an input-complete interface, in the sense that it accepts all inputs. Input-complete interfaces
are discussed in detail in Section 9.

In general, the state space of an interface is infinite. In some cases, however, only a finite set of states is
needed to specify ξ. For example ξ may be specified by a finite-state automaton, as in [5]. Every state of
the automaton is labeled with a contract. Every transition of the automaton is labeled with a guard, i.e., a
condition on the input and output variables. Outgoing transitions from a state must have disjoint guards
(for determinism) and the union of such guards must be true (for absence of deadlocks). An interface that
can be specified as a finite-state automaton is called a finite-state interface.

Definition 3 (Assumptions, guarantees) Given a contract φ ∈ F(X ∪ Y), the input assumption of φ is
the formula in(φ) := ∃Y : φ. The output guarantee of φ is the formula out(φ) := ∃X : φ.

4

Note that in(φ) is a property over X and out(φ) is a property over Y . When φ is the contract of a stateless
interface I, we write in(I), out(I) instead of in(φ), out(φ). For example, for the interfaces I1 and I2 of
Example 1, we have in(I1) ≡ x > 0 and in(I2) ≡ true. Note that φ → in(φ) and φ → out(φ) are valid
formulae for any φ.

The A/G interfaces considered in [3, 5] are a special case of the relational interfaces that we consider in
this paper. A stateless A/G interface is a tuple (X,Y, φX , φY), where φX is a property on X representing
the input assumptions and φY is a property on Y representing the output guarantees. This interface can
simply be represented as the relational interface (X,Y, φX ∧ φY).

Definition 1 allows for the contract ξ(s) at a certain state s to be an unsatisfiable property. On the other
hand, not all such states may generally be reachable, because not all inputs or outputs are legal. We only
care about states with unsatisfiable contracts when these states are reachable. Let us define reachable states
formally.

A run of I is a state s = a1 · · · ak, with k ≥ 0 (if k = 0 then s = ε), such that ∀i ∈ {1, ..., k} : ai |=
ξ(a1 · · · ai−1). A state is reachable iff it is a run. The set of reachable states of I is denoted R(I). By
definition, ε ∈ R(I), for any I.

Definition 4 (Well-formed interface) An interface I = (X,Y, ξ) is well-formed iff for all s ∈ R(I), ξ(s)
is satisfiable.

Some interfaces, even though they are not well-formed, can be turned into well-formed interfaces by
appropriately restricting their inputs, as the following example shows.

Example 2 Let I := ({x}, {y}, ξ) where x, y are implicitly considered to be Booleans, and ξ(ε) := true,
ξ((x,) · s) := false, ξ((¬x,) · s) := true, for all s. (x,) denotes any assignment where x is true and (¬x,)
denotes any assignment where x is false. I is not well-formed, because it has reachable states with contract
false (all states starting with x being true). I can be transformed into a well-formed interface by restricting
ξ(ε) so that all reachable states with unsatisfiable contracts are avoided. In particular, setting ξ(ε) := ¬x,
achieves this goal.

Motivated by the above example, we introduce a weaker notion of well-formedness:

Definition 5 (Well-formable interface) An interface I = (X,Y, ξ) is well-formable if there exists a well-
formed interface I ′ = (X,Y, ξ′) (called a witness) such that: for all s ∈ R(I ′), ξ′(s) ≡ ξ(s)∧ φs, where φs is
some property over X.

Clearly, every well-formed interface is well-formable, but the opposite is not true as Example 2 shows.
For stateless interfaces, the two notions coincide, however.

Theorem 1 A stateless interface I is well-formed iff it is well-formable.

Proof: Suppose I = (X,Y, ξ) is a stateless interface. Well-formed implies well-formable for all interfaces.
Suppose I = (X,Y, ξ) is well-formable. Then there exists I ′ = (X,Y, ξ′) such that I ′ is well-formed and
ξ′(ε) = ξ(ε) ∧ φε, for some φε. Since I ′ is well-formed, ξ′(ε) is satisfiable. Therefore, ξ(ε) is also satisfiable.
Since I is stateless, ξ(s) = ξ(ε) for any s, thus, ξ(s) is satisfiable for any s. Therefore, I is well-formed.

For a finite-state interface, there exists a procedure to check whether it is well-formable, and if this is
the case, transform it into a well-formed interface. Such a procedure essentially attempts to find a winning
strategy in a game, as pointed out in [3]. Roughly speaking, the procedure consists in recursively marking
states as illegal, until no more states can be marked. Initially, all states s such that ξ(s) is unsatisfiable are
marked as illegal. Then, repeatedly, a state s is marked illegal if there exists no legal input assignment at
s. A legal input assignment at s is an assignment a to input variables, such that for any assignment b to
output variables, if (a, b) |= ξ(s) then the successor state s · (a, b) is legal. If at the end of this operation the
initial state is marked illegal, then the interface is not well-formable, otherwise it is. During the procedure,
the contract ξ(s) of a legal state s can be restricted to allow only legal input assignments.

5

Definition 6 (Equivalence) Interfaces I = (X,Y, ξ) and I ′ = (X ′, Y ′, ξ′) are equivalent, denoted I ≡ I ′,
if X = X ′, Y = Y ′, and for all s ∈ R(I) ∩R(I ′), the formula ξ(s) ≡ ξ′(s) is valid.

Lemma 1 If I ≡ I ′ then R(I) = R(I ′).

Proof: By induction on the length of states. The result holds for the state of length zero, i.e., the empty
state ε, because ε is reachable in any interface. Suppose the result holds for a given state s. We prove it
for s · a. Let s · a ∈ R(I). This means that the assignment a satisfies the contract of I at state s, that is,
a |= ξ(s). s ·a ∈ R(I) implies s ∈ R(I). By the induction hypothesis, s ∈ R(I ′), therefore, s ∈ R(I)∩R(I ′).
This and the hypothesis I ≡ I ′ imply ξ(s) ≡ ξ′(s). Therefore, a |= ξ′(s), thus, s · a ∈ R(I ′).

4 Environments, pluggability

Definition 7 (Environment) An environment is a tuple E = (X,Y, hX , hY), where X and Y are as in
Definition 1, and hX , hY are total functions

hX : A(X ∪ Y)∗ → F(X), hY : A(X ∪ Y)∗ → F(Y)

hX represents the guarantees on the inputs X that the environment provides at a given state. hY

represents the guarantees that the environment expects on the outputs Y . See Definition 8 that follows.
States are defined for environments in the same way as for interfaces. A stateless environment is one

where hX(s) and hY (s) are constant for all states s.

Definition 8 (Pluggability) Interface I = (X ′, Y ′, ξ) is pluggable to environment E = (X,Y, hX , hY),
denoted I |= E, iff X ′ = X, Y ′ = Y , and for all s ∈ R(IE), the following formula is valid:

hX(s) →
(
in(ξ(s)) ∧ (ξ(s) → hY (s))

)
(1)

where IE is the interface defined as follows:

IE := (X,Y, ξE) (2)
ξE(s) := ξ(s) ∧ hX(s), for any s ∈ A(X ∪ Y)∗ (3)

Pluggability can be intuitively seen as a game between the interface and the environment [4]. Suppose s
is the current state of I and E (initially, s = ε). If hX(s) is unsatisfiable, then E decides to stop the game.
Otherwise, E chooses some input assignment aX satisfying hX(s). If aX violates in(ξ(s)), then Condition (1)
is violated, and I is not pluggable to E: the “blame” here is on E, which provides too weak guarantees on the
inputs. Otherwise, I chooses an output assignment aY such that the input-output assignment a := (aX , aY)
satisfies ξ(s). If aY violates hY (s)), then Condition (1) is violated, which again means I is not pluggable to
E: in this case the “blame” is on I, which provides too weak guarantees on the outputs. Otherwise, a round
is complete, and the new state (for both I and E) is s · a. The game continues in the same manner.

Example 3 Consider stateless interfaces I1 and I2 from Example 1 and stateless environment E1 :=
({x}, {y}, x > 0, y > 0). It can be seen that both I1 and I2 are pluggable to E1. On the other hand,
none of I1, I2 are pluggable to E2 := ({x}, {y}, x ≥ 0, y > 0): the constraint x ≥ 0 is not strong enough to
meet the input assumption x > 0. Notice that I2 does not explicitly impose this input assumption, however,
it implicitly does, because it makes no guarantees on the outputs when x > 0 is violated. Finally, consider
E3 := ({x}, {y}, true, true). I2 is pluggable to E3: E3 provides no guarantees on the inputs, but expects no
guarantees on the outputs either. I1 is not pluggable to E3 because true 6→ x > 0.

The interface IE defined by (2) and (3) is intended to capture the reachable states of the “closed-loop”
composition of E and I. These reachable states are a subset of the reachable states of I, because the
environment E may in general provide only a restricted set of inputs, among all possible legal inputs for I.
The contract function ξE of IE captures exactly that. The following lemma states that the reachable states
of IE are indeed a subset of those of I.

6

Lemma 2 Let I be an interface, E be an environment, and IE be defined as in Definition 8. Then, R(IE) ⊆
R(I).

Proof: Follows from the fact that ξE strengthens ξ.

Lemma 3 Let I, I ′ be interfaces, E be an environment, and IE , I ′E be defined as in Definition 8. If I ≡ I ′

then R(IE) = R(I ′E).

Proof: By induction on the length of states. The result holds for the state of length zero, i.e., the empty
state ε, because ε is reachable in any interface. Suppose the result holds for a given state s. We prove it for
s ·a. Let s ·a ∈ R(IE). This means that s ∈ R(IE) and the assignment a satisfies the contract of IE at state
s, that is, a |= ξ(s)∧ hX(s). By Lemma 2, R(IE) ⊆ R(I), therefore, s ∈ R(I). By Lemma 1, R(I) = R(I ′),
therefore, s ∈ R(I ′). This and I ≡ I ′ imply ξ(s) ≡ ξ′(s). Therefore, a |= ξ′(s) ∧ hX(s). By the induction
hypothesis, s ∈ R(I ′E). The latter two facts imply s · a ∈ R(I ′E).

Theorem 2 If an interface I is well-formable then there exists an environment E such that I |= E.

Proof: Let I = (X,Y, ξ) and suppose I is well-formable. Then there exists I ′ = (X,Y, ξ′) such that I ′ is
well-formed, and for all s ∈ R(I ′), ξ′(s) ≡ ξ(s)∧φs, where φs is some property over X. Define ψs := ξ(s)∧φs.
and E := (X,Y, hX , hY) such that hX(s) := in(ξ(s))∧ φs and hY (s) := ψs, for all s ∈ A(X ∪ Y)∗. We claim
that I |= E.

To prove the claim, we need to show that for all s ∈ R(IE), Formula (1) is valid. Clearly, hX(s) → in(ξ(s)).
We need to prove hX(s) → (ξ(s) → ψs), i.e., (hX(s)∧ξ(s)) → (ξ(s)∧φs), which holds by definition of hX(s).

Note that since well-formed implies well-formable, a corollary of Theorem 2 is that every well-formed
interface can be plugged to some environment. The converse does not generally hold. That is, there exist
non-well-formed interfaces that can be plugged to environments: these environments restrict the inputs,
so states with unsatisfiable contracts are never reached. In fact, there exist non-well-formable interfaces
that can be plugged to environments as well: these environments “stop” after some point, i.e., are such
that hX(s) ≡ false for some state s. This holds even for non-well-formed stateless interfaces, which can be
plugged into the trivial environment that stops immediately (i.e., such that hX(ε) ≡ false).

Definition 9 (Equivalence w.r.t. environments) Two interfaces I and I ′ are equivalent w.r.t. envi-
ronments, denoted I ≡e I

′, if for any environment E, I is pluggable to E iff I ′ is pluggable to E.

Theorem 3 For any interfaces I, I ′, I ≡ I ′ iff I ≡e I
′.

Proof: Let I = (X,Y, ξ) and suppose I ≡ I ′. Then I ′ = (X,Y, ξ′). Consider an environment E such that
I |= E. Then E = (X,Y, hX , hY). Suppose s ∈ R(IE). Since I |= E, the formula hX(s) → (in(ξ(s))∧(ξ(s) →
hY (s))) is valid. By Lemma 3, s ∈ R(I ′E). By Lemma 2, s ∈ R(I)∩R(I ′). This and I ≡ I ′ imply ξ(s) ≡ ξ′(s).
Therefore, the formula hX(s) → (in(ξ′(s)) ∧ (ξ′(s) → hY (s))) is also valid, which means I ′ |= E.

In the opposite direction, we suppose I ≡e I
′ and we need to show that for all s ∈ R(I) ∩ R(I ′), the

formula ξ(s) ≡ ξ′(s) is valid. Suppose not, that is, suppose that there exists an assignment a such that
a |= ξ(s) but a 6|= ξ′(s). Let aX and aY be the restrictions of a to X and Y , respectively. Let φaX

and φaY

be properties on X and Y , respectively, such that the only assignment satisfying φaX
is aX and the only

assignment satisfying φaY
is aY . Since there are a finite number of input and output variables, we can build

such properties using the equality symbol =.
We use induction on the length of s.
Basis: ε ∈ R(I)∩R(I ′), therefore we need to show that ξ(ε) ≡ ξ′(ε). Suppose not, that is, suppose that

there exists an assignment a such that a |= ξ(ε) but a 6|= ξ′(ε). Let aX and aY be the restrictions of a to X

7

and Y , respectively. Let φaX
and φaY

be properties on X and Y , respectively, such that the only assignment
satisfying φaX

is aX and the only assignment satisfying φaY
is aY . Since there is a finite number of input

and output variables, we can build such properties using the equality symbol =. We reason by cases:
Case 1: aX 6|= in(ξ′(ε)). In this case we define environment E := (X,Y, hX , hY) such that hY (s) := true

for all s, and hX is defined as follows: hX(ε) := φaX
and hX(s) := false for all s 6= ε. In other words, E

issues input aX initially, and then stops. We claim that I |= E but I ′ 6|= E, which contradicts the hypothesis
I ≡e I

′.
To show that I |= E, we need to show that for all s ∈ R(IE), Formula (1) is valid. Observe that, by

definition of E, R(IE) = {ε}, that is, only the empty state is reachable in the closed loop system of I and
E: this is because hX(s) ≡ false for all s 6= ε. Therefore, we need to show that Formula (1) is valid for s = ε.
This means that every assignment on X ∪ Y that satisfies φaX

also satisfies in(ξ(ε)) ∧ (ξ(ε) → true), i.e.,
in(ξ(ε)). Let (a, b) be an assignment on X ∪ Y such that (a, b) |= φaX

, and suppose a is an assignment on
X and b an assignment on Y . Then (a, b) |= φaX

is equivalent to a |= φaX
. By definition, there is only one

assignment that satisfies φaX
, namely, aX , therefore, a = aX . aX satisfies in(ξ(ε)), since (aX , aY) satisfies

ξ(ε). Since in(ξ(ε)) does not contain variables in Y , (a, b) |= in(ξ(ε)). This proves that I |= E. By hypothesis
of Case 1, aX 6|= in(ξ′(ε)). Therefore, (a, b) = (aX , b) does not satisfy in(ξ′(ε)) ∧ (ξ′(ε) → true) even though
it satisfies φaX

. This proves that I ′ 6|= E. Contradiction. This completes Case 1.
Case 2: aX |= in(ξ′(ε)). Let ψ := out(φaX

∧ ξ(ε)) and ψ′ := out(φaX
∧ ξ′(ε)). Notice that ψ and ψ′ are

properties on Y . From (aX , aY) |= ξ(ε), we get aY |= ψ. Also, from (aX , aY) 6|= ξ′(ε), we get aY 6|= ψ′.
We define environment E := (X,Y, hX , hY) such that hY (s) := ψ′ for all s, and hX is defined as follows:
hX(ε) := φaX

and hX(s) := false for all s 6= ε. We claim that I ′ |= E but I 6|= E, which contradicts the
hypothesis I ≡e I

′.
To show that I ′ |= E we need to show that for all s ∈ R(I ′E), Formula (1) is valid. As in Case 1, we

observe that R(I ′E) = {ε}. Therefore, we need to show that Formula (1) is valid for s = ε. Let (aX , b) be an
assignment on X ∪ Y such that (aX , b) |= φaX

, where aX is the single assignment on X that satisfies φaX

and b is some assignment on Y . We must show (aX , b) |= in(ξ′(ε)) ∧ (ξ′(ε) → ψ′). aX satisfies in(ξ′(ε)) by
hypothesis of Case 2. Suppose (aX , b) |= ξ′(ε). Then b |= out(φaX

∧ ξ′(ε)) ≡ ψ′, i.e., (aX , b) |= ψ′. This
proves I ′ |= E.

We next show that I 6|= E by showing that Formula (1) is invalid for the initial state ε. In particular, we
show that (aX , aY) 6|= ξ(ε) → ψ′, even though aX |= φaX

. By definition, (aX , aY) = a |= ξ(ε). But aY 6|= ψ′,
therefore, (aX , aY) 6|= ψ′ (ψ′ is a property on Y). This completes Case 2 and the Basis.

Induction step: Consider s · a ∈ R(I) ∩R(I ′). We must prove that ξ(s · a) ≡ ξ′(s · a) is valid. The proof
follows the same lines as in the Basis. We suppose that the result does not hold and reach a contradiction.
The difference is how we construct the environments in Cases 1 and 2.

In Case 1, we define E so that hX(s′) := ξ(s′) for all states s′ ≤ s, that is, states that are prefixes of s.
We define hX(s · a) := φaX

and hX(s′′) := false for all other s′′. As in the Basis, we define hY (s) := true
for all s′. From the induction hypothesis we have ξ(s′) ≡ ξ′(s′) for all s′ ≤ s. Using this, we can show that
for all s ∈ R(IE), Formula (1) is valid. Similarly to the Basis, we can show that I ′ is not pluggable to E
because aX 6|= in(ξ′(s · a)).

In Case 2, again, we define hX(s′) := ξ(s′) for all s′ ≤ s. The rest is again similar as in the Basis.

5 Composition

We define two types of composition. First, we can compose two interfaces I1 and I2 by connecting some
of the output variables of I1 to some of the input variables of I2. One output can be connected to many
inputs, but an input can be connected to at most one output. Parallel composition is a special case of
composition by connection, where the connection is empty. The connections define a new stateless interface.
Thus, the composition process can be repeated to yield arbitrary (acyclic) interface diagrams. Composition
by connection is associative (Theorem 5), so the order in which interfaces are composed does not matter.

8

Two interfaces I = (X,Y, ξ) and I ′ = (X ′, Y ′, ξ′) are disjoint if they have disjoint sets of input and
output variables: (X ∪ Y) ∩ (X ′ ∪ Y ′) = ∅.

Definition 10 (Composition by connection) Let Ii = (Xi, Yi, ξi), for i = 1, 2, be two disjoint inter-
faces. A connection θ between I1, I2, is a finite set of pairs of variables, θ = {(yi, xi) | i = 1, ...,m}, such
that: (1) ∀(y, x) ∈ θ : y ∈ Y1 ∧ x ∈ X2, and (2) ∀(y, x), (y′, x′) ∈ θ : x = x′ → y = y′. The external input
and output variables are the sets of variables Xθ(I1,I2) and Yθ(I1,I2), respectively, defined as follows (where
Xθ := {x | ∃(y, x) ∈ θ}):

Xθ(I1,I2) := (X1 ∪X2) \Xθ

Yθ(I1,I2) := Y1 ∪ Y2 ∪Xθ

The connection θ defines the composite interface θ(I1, I2) := (Xθ(I1,I2), Yθ(I1,I2), ξ), where, for every s ∈
A(Xθ(I1,I2) ∪ Yθ(I1,I2))

∗:

ξ(s) := ξ1(s1) ∧ ξ2(s2) ∧ ρθ ∧ ∀Yθ(I1,I2) : Φ
Φ := (ξ1(s1) ∧ ρθ) → in(ξ2(s2)) (4)

ρθ :=
∧

(y,x)∈θ

y = x

and, for i = 1, 2, si is defined to be the projection of s to variables in Xi ∪ Yi.

Definition 10 may seem unnecessarily complex at first sight. In particular, the reader may doubt the
necessity of the term ∀Yθ(I1,I2) : Φ in the definition of ξ(s). Informally speaking, this term states that,
no matter which outputs I1 chooses to produce for a given input, all such outputs are legal inputs for I2
(when connected). This condition is essential for the validity of our interface theory. Omitting this condition
would result in a fundamental property of the theory (Theorem 12) not being true, as will be explained in
Example 11.

Notice that, by definition of θ, Xθ ⊆ X2. This implies X1 ⊆ Xθ(I1,I2), that is, every input variable of I1
is also an input variable of θ(I1, I2).

A connection θ is allowed to be empty. In that case, ρθ ≡ true, and the composition can be viewed as the
parallel composition of two interfaces. If θ is empty, we write I1‖I2 instead of θ(I1, I2). As may be expected,
the contract of the parallel composition at a given global state is the conjunction of the original contracts
at the corresponding local states, which implies that parallel composition is commutative:

Lemma 4 Consider two disjoint interfaces, Ii = (Xi, Yi, ξi), i = 1, 2. Then I1‖I2 = (X1 ∪X2, Y1 ∪ Y2, ξ),
where ξ is such that for all s ∈ A(X1 ∪X2 ∪ Y1 ∪ Y2)∗, ξ(s) ≡ ξ1(s1) ∧ ξ2(s2), where, for i = 1, 2, si is the
projection of s to Xi ∪ Yi.

Proof: Following Definition 10, we have:

I1‖I2 = (X1 ∪X2, Y1 ∪ Y2, ξ)

where for all s ∈ A(X1 ∪X2 ∪ Y1 ∪ Y2)∗

ξ(s) = ξ1(s1) ∧ ξ2(s2) ∧
(
∀Y1 ∪ Y2 : ξ1(s1) → in(ξ2(s2))

)
Observe that in(ξ2(s2)) is a formula over X2, that is, does not depend on Y1 ∪ Y2. Therefore,(

∀Y1 ∪ Y2 : ξ1(s1) → in(ξ2(s2))
)
≡ ¬(∃Y1 ∪ Y2 : ξ1(s1) ∧ ¬in(ξ2(s2))) ≡

¬(¬in(ξ2(s2)) ∧ ∃Y1 ∪ Y2 : ξ1(s1)) ≡
(
in(ξ2(s2)) ∨ ¬∃Y1 ∪ Y2 : ξ1(s1)

)
Now, observe that φ → in(φ) is a valid formula for any φ. Therefore, ξ2(s2) → in(ξ2(s2)) → in(ξ2(s2)) ∨
¬∃Y1 ∪ Y2 : ξ1(s1), which gives(

ξ1(s1) ∧ ξ2(s2) ∧ ∀Y1 ∪ Y2 : ξ1(s1) → in(ξ2(s2))
)
≡ (ξ1(s1) ∧ ξ2(s2))

9

Theorem 4 (Commutativity of parallel composition) For two disjoint interfaces, I1 and I2, I1‖I2 ≡
I2‖I1.

Proof: Follows from Lemma 4.

Theorem 5 (Associativity of connection) Let I1, I2, I3 be interfaces. Let θ12 be a connection between
I1, I2, θ13 a connection between I1, I3, and θ23 a connection between I2, I3. Then:

(θ12 ∪ θ13) (I1, θ23(I2, I3)) ≡ (θ13 ∪ θ23) (θ12(I1, I2), I3)

Proof: For simplicity of notation, we conduct the proof assuming the interfaces are stateless. The proof is
almost identical for general interfaces, except that ξ(s) replaces φ, ξ′(s) replaces φ′, and so on.

Suppose the setting is as illustrated in Figure 1. That is, I1 = (X1, Y1 ∪ Y12 ∪ Y13, φ1); I2 = (X2 ∪
X12, Y2 ∪ Y23, φ2); I3 = (X3 ∪X13 ∪X23, Y3, φ3); and θ12 connects X11 and Y12; θ13 connects X13 and Y13;
θ23 connects X23 and Y23.

Our first step is to clearly express what the definitions tell us about I := (θ12 ∪ θ13) (I1, θ23(I2, I3)) and
I ′ := (θ13 ∪ θ23) (θ12(I1, I2), I3).

For simplicity, we will use the notation ρθ to refer to
∧

(y,x)∈θ y = x. We also refer to the outputs of
θ12(I1, I2) as P = Y1 ∪ Y12 ∪ Y13 ∪X12 ∪ Y2 ∪ Y23 and the outputs of θ23(I2, I3) as Q = Y2 ∪ Y23 ∪X23 ∪ Y3

and the overall outputs as O = Y1 ∪ Y2 ∪ Y3 ∪ Y12 ∪ Y13 ∪ Y23 ∪X12 ∪X13 ∪X23.
The definitions are as follows:

θ12(I1, I2) = (X1 ∪X2, P, φ1 ∧ φ2 ∧ ρθ12 ∧ ∀P : φ1 ∧ ρθ12 → in(φ2))
θ23(I2, I3) = (X2 ∪X12 ∪X3 ∪X13, Q, φ2 ∧ φ3 ∧ ρθ23 ∧ ∀Q : φ2 ∧ ρθ23 → in(φ3))

Let φ12 and φ23 be the contracts of θ12(I1, I2) and θ23(I2, I3), respectively. Then:

I = (X1 ∪X2 ∪X3, O, φ12 ∧ φ3 ∧ ρθ13 ∧ ρθ23 ∧ ∀O : φ12 ∧ ρθ13 ∧ ρθ23 → in(φ3))
I ′ = (X1 ∪X2 ∪X3, O, φ1 ∧ φ23 ∧ ρθ12 ∧ ρθ13 ∧ ∀O : φ1 ∧ ρθ12 ∧ ρθ13 → in(φ23))

Let φ and φ′ be the contracts of I and I ′, respectively. Simplifying, we get:

φ ≡ φ1 ∧ φ2 ∧ φ3 ∧ ρθ ∧ (∀P : φ1 ∧ ρθ12 → in(φ2)) ∧ (∀O : φ12 ∧ ρθ13 ∧ ρθ23 → in(φ3))
φ′ ≡ φ1 ∧ φ2 ∧ φ3 ∧ ρθ ∧ (∀Q : φ2 ∧ ρθ23 → in(φ3)) ∧ (∀O : φ1 ∧ ρθ12 ∧ ρθ13 → in(φ23))

In order to simplify discussion, we will name the subformulae as follows:

C := ∀P : φ1 ∧ ρθ12 → in(φ2)
D := ∀O : φ12 ∧ ρθ13 ∧ ρθ23 → in(φ3)
E := ∀Q : φ2 ∧ ρθ23 → in(φ3)
F := ∀O : φ1 ∧ ρθ12 ∧ ρθ13 → in(φ23)

In order to prove equivalence of I and I ′, we need to prove that the following four formulae are valid:

φ→ E, φ→ F, φ′ → C, and φ′ → D

Proof of φ→ E: Let (x, q, o) be an arbitrary assignment such that (x, q, o) |= φ, where x ∈ X1∪X2∪X3,
q ∈ Q, and o ∈ O \Q. We want to show that (x, q, o) |= E (i.e. (x, o) |= E).

10

Let q′ be an arbitrary assignment over Q such that (x, q′, o) |= φ2 ∧ ρθ23 . We want to show

(x, q′, o) |= φ1 ∧ φ2 ∧ ρθ ∧ (∀P : φ1 ∧ ρθ12 → in(φ2)).

Clearly, we have (x, q′, o) |= φ2 ∧ ρθ23 by construction of q′. We also have (x, o) |= φ1 ∧ ρθ13 ∧ ρθ23 ∧ C since
no free variables are in Q are and (x, q, o) |= A. Thus by D, we have (x, q′, o) |= in(φ3). Thus we have
(x, o) |= E. End of proof of φ→ E.

Proof of φ → F : Suppose we are given an assignment (x, q, o) |= φ where x is over X1 ∪X2 ∪X3, q is
over Q, and o is over O \Q. We want to show that (x, q, o) |= F (i.e. x |= F).

Let (q′, o′) be an arbitrary assignment over O such that (x, q′, o′) |= φ1 ∧ ρθ12 ∧ ρθ23 . We want to now
show that (x, q′, o′) |= in(φ23). To do so, we first expand in(φ23):

in(φ23) ≡ ∃Q(φ2 ∧ φ3 ∧ ρθ23) ∧ ∀Q(φ2 ∧ ρθ23 → in(φ3))

Thus we can reduce the proof to two parts:

(a) (x, o′) |= ∃Q(φ2 ∧ φ3 ∧ ρθ23), and

(b) (x, o′) |= ∀Q(φ2 ∧ ρθ23 → in(φ3))

For part (a), we want to show that for any assignment qa over Q: (x, qa, o′) |= φ2∧ρθ23 ⇒ (x, qa, o′) |= in(φ3).
We start with such an assignment qa. Combining this with the fact that (x, o′) |= φ1 ∧ ρθ12 ∧ ρθ23 , we get
(x, qa, o′) |= φ1 ∧ φ2 ∧ ρθ. Combined with the fact that x |= C, we get (x, qa, o′) |= φ1 ∧ φ2 ∧ ρθ ∧ C. This is
exactly the premise of D. Since x |= D, this gives us (x, qa, o′) |= in(φ3), which is exactly what we wanted
to prove.

For part (b), we want to show that there exists an assignment over Q that models φ2 ∧φ3 ∧ ρθ23 . For our
purposes, we will divide this assignment into qY 2 over Y2 ∪ Y23, qX3 over X23, and qY 3 over Y3. First, since
x |= C and (x, o′) |= φ1 ∧ρθ12 ∧ρθ23 we have that (x, o′) |= in(φ2). Expanding the definition of in, this means
that ∃Y2φ2. Using this as our assignment of qY 2, we have that (x, qY 2, o

′) |= φ2. We can set the values of
X23 to those of Y23 in order to get an assignment of qX3 that satisfies ρθ23 . Combining the definition of o′

with the assignments to qY 2, qX3 with the fact that x |= C, gives us:

(x, qY 2, qX3, o
′) |= (φ1 ∧ ρθ12 ∧ ρθ23) ∧ (φ2 ∧ ρθ23) ∧ C

Since this is exactly the premise of D, we get (x, qY 2, qX3, o
′) |= in(φ3). But this means that ∃Y3φ3. Using

this as our assignment to qY 3, we get (x, qY 2, qX3, qY 3, o
′) |= φ3. Combining the terms that we have satisfied

over the course of our assignment, we get (x, qY 2, qX3, qY 3, o
′) |= φ2 ∧ φ3 ∧ ρθ23 , which is what we wanted to

prove.
Combining our results from part (a) and part (b) we get (x, o′) |= in(φ23). Thus (x, q, o) |= F . End of

proof of φ→ F .
Proof of φ′ → C: Suppose (x, p, o) |= B where x ∈ X1 ∪ X2 ∪ X3, p ∈ P , and o ∈ O \ P . We want to

show that (x, p, o) |= C (i.e. (x, o) |= C).
Let p′ be an assignment over P such that (x, p′, o) |= φ1 ∧ ρθ12 . Now take o′ over O \ P such that

(x, p′, o′) |= φ1 ∧ ρθ12 ∧ ρθ13 . This can be done by setting the variables of Y13 to those of X13. By F , we have
that (x, p′, o′) |= in(φ23), so in particular, (x, p′, o′) |= in(φ2). Since in(φ2) does not contain free variables in
O \ P , this means (x, p′, o) |= in(φ2). Thus we have (x, o) |= C. End of proof of φ′ → C.

Proof of φ′ → D: Suppose (x, o) |= φ′, where x is over X1 ∪X2 ∪X3, and o is over O.
Let o′ be an arbitrary assignment over O with (x, o′) |= φ12∧ρθ13 ∧ρθ23 . Clearly (x, o′) |= φ1∧ρθ12 ∧ρθ13 .

By F , we have (x, o′) |= in(φ23). But this also means that (x, o′) |= in(φ3) Thus we have (x, o) |= D. End of
proof of φ′ → D.

11

Y3

-

-

-

- -

-

- -

-

- -

X1,2 Y2,3

I2

I1

X3

X1

X2

Y1

Y2

X2,3θ2,3

I3
Y1,3

Y1,2 θ1,2

θ1,3 X1,3

-

Figure 1: Setting used in the proof of associativity.

Example 4 Consider the diagram of stateless interfaces shown in Figure 2, where:

Iid := ({x1}, {y1}, y1 = x1)
I+1 := ({x2}, {y2}, y2 = x2 + 1)
Ieq := ({z1, z2}, {}, z1 = z2)

This diagram can be viewed as the equivalent compositions

θ2
(
I+1, θ1(Iid, Ieq)

)
≡ (θ1 ∪ θ2)

(
(Iid‖I+1), Ieq

)
where θ1 := {(y1, z1)} and θ2 := {(y2, z2)}. We proceed to compute the contract of the interface defined by
the diagram. It is easier to consider the composition (θ1 ∪ θ2)((Iid‖I+1), Ieq). Define θ3 := θ1 ∪ θ2. From
Lemma 4 we get:

Iid‖I+1 = ({x1, x2}, {y1, y2}, y1 = x1 ∧ y2 = x2 + 1)

Then, for θ3((Iid‖I+1), Ieq), Formula (4) gives:

Φ := (y1 = x1 ∧ y2 = x2 + 1 ∧ y1 = z1 ∧ y2 = z2) → z1 = z2

By quantifier elimination, we get

∀y1, y2, z1, z2 : Φ ≡ x1 = x2 + 1

therefore

θ3((Iid‖I+1), Ieq) = ({x1, x2}, {y1, y2, z1, z2},
y1 = x1 ∧ y2 = x2 + 1 ∧ z1 = z2 ∧ y1 = z1 ∧ y2 = z2 ∧ z1 = z2 ∧ x1 = x2 + 1)

Notice that in(θ3((Iid‖I+1), Ieq)) ≡ x1 = x2 + 1. That is, because of the connection θ, new assumptions have
been generated for the external inputs x1, x2.

A composite interface is not guaranteed to be well-formed, even if its components are well-formed, as
shown by Example 5 that follows. This is because we do not impose a compatibility condition on connections,
contrary to [5]. We could easily add well-formedness as a compatibility condition. But we prefer not to do
so, because this allows us to state more general results. In particular, Theorem 12 holds independently of
whether the connection yields a well-formed interface or not. And together with Theorems 9 and 10, it
guarantees that if the refined composite interface is well-formed/formable, then so is the refining one.

Example 5 Consider the composition θ3((Iid‖I+1), Ieq) introduced in Example 4, and let

Iy := ({}, {y}, true)

12

Iid
- -x1 y1

I+1
- -x2 y2

Ieq

-
-

z1

z2

Figure 2: The interface diagram of Example 4.

Let θ4 := {(y, x1), (y, x2)}. That is, the output y of Iy is connected to both external inputs x1 and x2 of
θ3((Iid‖I+1), Ieq). The composite interface I4 := θ4(Iy, θ3((Iid‖I+1), Ieq) is not well-formed, even though both
Iy and θ3((Iid‖I+1), Ieq) are well-formed. This is because, for I4, Formula (4) gives

Φ := (true ∧ y = x1 ∧ y = x2) → x1 = x2 + 1

therefore,

∀x1, x2, y1, y2, z1, z2 : Φ ≡ y = y + 1

Since the above formula is unsatisfiable, I4 is not well-formed.

We also define a feedback composition where an output variable of an interface I is connected to one of
its input variables x. For feedback, I is required to be Moore with respect to x. The term “Moore interfaces”
has been introduced in [2]. Our definition is similar in spirit, but less restrictive than the one in [2]. Both
definitions are inspired by Moore machines, where the outputs are determined by the current state alone
and do not depend directly on the input. In our version, an interface is Moore with respect to a given input
variable x, meaning that the contract may depend on the current state as well as on input variables other
than x. This allows to connect an output to x to form a feedback loop without creating causality cycles.

Definition 11 (Moore interfaces) An interface I = (X,Y, ξ) is Moore with respect to x ∈ X iff for all
s ∈ R(I), ξ(s) is a property over (X ∪ Y) \ {x}. I is Moore when it is Moore with respect to every x ∈ X.

Example 6 A unit delay is a basic building block in many modeling languages (including Simulink and
SCADE). Its specification is roughly: “output at time k the value of the input at time k − 1; at time k = 0
(initial time), output some initial value v0”. We can capture this specification as a Moore interface (with
respect to its unique input variable) Iud := ({x}, {y}, ξud), where ξud is defined as follows:

ξud(ε) := (y = v0)
ξud(s · a) := (y = a(x))

That is, initially the contract guarantees y = v0. Then, when the state is some sequence s · a, the contract
guarantees y = a(x), where a(x) is the last value assigned to input x.

Definition 12 (Composition by feedback) Let I = (X,Y, ξ) be Moore with respect to some x ∈ X. A
feedback connection κ on I is a pair (y, x) such that y ∈ Y . Define ρκ := (x = y). The feedback connection
κ defines the interface:

κ(I) := (X \ {x}, Y ∪ {x}, ξκ) (5)
ξκ(s) := ξ(s) ∧ ρκ, for all s ∈ A(X ∪ Y)∗ (6)

Theorem 6 Let I = (X,Y, ξ) be Moore with respect to both x1, x2 ∈ X, where x1 6= x2. Let κ1 = (y1, x1)
and κ2 = (y2, x2) be feedback connections. Then κ1(κ2(I)) ≡ κ2(κ1(I)).

13

w-
z1

I2-
-

-

- -
-

x1
I1

y1

y2

x2 y3
IM

u

-

Figure 3: An interface diagram with feedback.

Proof: Following Definition 12, we derive

κ1(κ2(I)) = (X \ {x1, x2}, Y ∪ {x1, x2}, ξ1)
κ2(κ1(I)) = (X \ {x1, x2}, Y ∪ {x1, x2}, ξ2)

where for all s ∈ A(X ∪ Y)∗

ξ1(s) ≡ ξ(s) ∧ y1 = x1 ∧ y2 = x2 ≡ ξ2(s)

Example 7 Consider the diagram of interfaces shown in Figure 3. Suppose that IM is a Moore interface
with respect to u. This diagram can be expressed as the composition

κ
(
θ
(
I1, (I2‖IM)

))
where θ := {(y1, z1), (y2, x2)} and κ := (w, u).

Lemma 5 Let I be a Moore interface with respect to some of its input variables, and let κ be a feedback
connection on I. Then R(κ(I)) ⊆ R(I).

Proof: Let I = (X,Y, ξ) be Moore w.r.t. x ∈ X. Let κ = (y, x). We prove the result by induction on the
length of states. The result holds for the state of length zero, i.e., the empty state ε, because ε is reachable
in any interface. Suppose the result holds for a given state s. We prove it for s · a. Let s · a ∈ R(κ(I)). This
means that the assignment a satisfies the contract of κ(I) at state s, that is, a |= ξ(s)∧x = y, which implies
a |= ξ(s). s · a ∈ R(κ(I)) implies s ∈ R(κ(I)). By the induction hypothesis, s ∈ R(I). This and a |= ξ(s)
imply s · a ∈ R(I).

Lemma 6 Let I = (X,Y, ξ) be a Moore interface with respect to x ∈ X, and let κ = (y, x) be a feedback
connection on I. Let κ(I) = (X\{x}, Y ∪{y}, ξκ). Then for any s ∈ R(κ(I)), the formula in(ξκ(s)) ≡ in(ξ(s))
is valid.

Proof: Let s ∈ R(κ(I)). Notice that in(ξκ(s)) ≡ in(ξ(s)) is a formula over X. Indeed, in(ξκ(s)) is a formula
over X \ {x}, but in(ξ(s)) is a formula over X.

To show that in(ξκ(s)) → in(ξ(s)) is valid, we need to show that every assignment over X that satisfies
in(ξκ(s)) also satisfies in(ξ(s)). Consider such an assignment (a, p), where a is an assignment over X \ {x}
and p is an assignment over {x}. (a, p) |= in(ξκ(s)) means (a, p) |= ∃Y ∪ {x} : ξ(s)∧ x = y. Therefore, there
exists assignment b over Y ∪{x} such that (a, b) |= ξ(s)∧x = y. Let b′ be the restriction of b to Y . We claim
that (a, p, b′) |= ξ(s). Indeed, since I is Moore w.r.t. x, ξ(s) does not depend on x, therefore, we can assign
any value to x, in particular, the value assigned by p. (a, p, b′) |= ξ(s) implies (a, p) |= ∃Y : ξ(s) ≡ in(ξ(s)).

14

To show that in(ξ(s)) → in(ξκ(s)) is valid, we need to show that every assignment over X that satisfies
in(ξ(s)) also satisfies in(ξκ(s)). Consider such an assignment (a, p), where a is an assignment over X \{x} and
p is an assignment over {x}. (a, p) |= in(ξ(s)) means (a, p) |= ∃Y : ξ(s). Therefore, there exists assignment
b over Y such that (a, p, b) |= ξ(s). Let p′ be the assignment over {x} such that p′(x) := b(y). Since I is
Moore w.r.t. x, ξ(s) does not depend on x, therefore, (a, p′, b) |= ξ(s). Moreover, (a, p′, b) |= x = y, therefore
(a, p′, b) |= ξ(s) ∧ x = y ≡ ξκ(s). This implies a |= ∃X \ {x} : ξκ(s) ≡ in(ξκ(s)). Therefore (a, p) |= in(ξκ(s)).

Theorem 7 (Feedback preserves well-formedness) Let I be a Moore interface with respect to some of
its input variables, and let κ be a feedback connection on I. If I is well-formed then κ(I) is well-formed.

Proof: Let I = (X,Y, ξ) and κ = (y, x). Let s ∈ R(κ(I)). We must show that ξ(s)∧x = y is satisfiable. By
Lemma 5, s ∈ R(I). Since I is well-formed, ξ(s) is satisfiable. Let a be an assignment such that a |= ξ(s).
Consider the assignment a′ which is identical to a, except that a′(x) := a(y). Since I is Moore w.r.t. x,
the satisfaction of ξ(s) does not depend on the value x. Therefore, a′ |= ξ(s). Moreover, by definition,
a′ |= x = y, and the proof is complete.

6 Hiding

As can been seen in Example 4, composition often creates redundant output variables, in the sense that
some of these variables are equal to each other. This happens because input variables that get connected
become output variables.

To remove redundant (or other) output variables, we propose a hiding operator. For a stateless interface
I = (X,Y, φ), the (stateless) interface resulting from hiding a subset of output variables Y ′ ⊆ Y can simply
be defined as:

hide(Y ′, I) := (X,Y \ Y ′,∃Y ′ : φ)

This definition does not directly extend to the general case of stateful interfaces, however. The reason is
that the contract of a stateful interface I may depend on the history of an output y. Then, hiding y is
problematic because it is unclear how the contracts of different histories should be combined. To avoid this
problem, we allow hiding only those outputs which do not influence the evolution of the contract.

Given s, s′ ∈ A(X ∪ Y)∗ such that |s| = |s′| (i.e., s, s′ have same length), and given Z ⊆ X ∪ Y , we say
that s and s′ agree on Z, denoted s =Z s′, when for all i ∈ {1, ..., |s|}, and all z ∈ Z, si(z) = s′i(z). Given
interface I = (X,Y, ξ), we say that ξ is independent from Z if for every s, s′ ∈ A(X ∪ Y)∗, s =(X∪Y)\Z s′

implies ξ(s) = ξ(s′). That is, the evolution of the variables in Z does not affect the evolution of the contract
of I.

Notice that ξ being independent from Z does not imply that the contracts of I cannot refer to variables in
Z. Indeed, all stateless interfaces trivially satisfy the independence condition: their contracts are invariant
in time, i.e., they do not depend on the evolution of variables. Clearly, the contract of a stateless interface
can refer to any of its variables.

When ξ is independent from Z, variables in Z can be hidden. In particular, ξ can be viewed as a function
from A((X ∪ Y) \ Z)∗ to F(X ∪ Y) instead of a function from A(X ∪ Y)∗ to F(X ∪ Y). We use this when
we write ξ(s) for s ∈ A((X ∪ Y) \ Z)∗ in the definition the follows:

Definition 13 (Hiding) Let I = (X,Y, ξ) be an interface and let Y ′ ⊆ Y , such that ξ is independent from
Y ′. Then, hide(Y ′, I) is defined to be the interface

hide(Y ′, I) := (X,Y \ Y ′, ξ′) (7)

such that for any s ∈ A(X ∪ Y \ Y ′)∗, ξ′(s) := ∃Y ′ : ξ(s).

15

7 Refinement

Definition 14 (Refinement) Consider interfaces I = (X,Y, ξ) and I ′ = (X ′, Y ′, ξ′). We say that I ′

refines I, written I ′ v I, iff X = X ′, Y = Y ′, and for any s ∈ R(I) ∩ R(I ′), the following formulae are
valid:

in(ξ(s)) → in(ξ′(s)) (8)(
in(ξ(s)) ∧ ξ′(s)

)
→ ξ(s) (9)

This definition is similar in spirit to other input-contravariant refinement relations, such as alternating
refinement [1] or refinement of A/G interfaces [4, 5], which, roughly speaking, state that I ′ refines I iff I ′

accepts more inputs and produces less outputs than I. In the case of A/G interfaces, where input assumptions
are separated from output guarantees, this can be simply stated as in → in′ and out′ → out. Our refinement
is not strictly output-covariant, however: it requires ξ′(s) → ξ(s) only for those inputs that are legal in I.

The reader may wonder why Condition (9) could not be replaced with a simpler condition, namely:

ξ′(s) → ξ(s) (10)

Indeed, for input-complete interfaces, Conditions (8) and (9) are equivalent to Condition (10), (see Theo-
rem 21). In general, however, the two definitions are different in a profound way. Our definition characterizes
pluggability in the sense of Theorem 11: I ′ refines I iff I ′ can replace I in any context. If we used Con-
dition (10) instead of (9), then this characterization would not hold. We demonstrate this by an example.

Example 8 Consider interface I1 from Example 1 and interface Iid := ({x}, {y}, x = y). It can be checked
that Iid v I1. If we used Condition (10) instead of Condition (9), however, then Iid would not refine I1: this
is because x = y 6→ x > 0. Yet there is no environment E such that I1 |= E but Iid 6|= E: this follows from
Theorem 11.

Perhaps surprisingly, among all interfaces with same sets of input and output variables, the interface with
contract false is the “top” element with respect to the v order, that is, it is refined by every other interface.
This is in accordance with Theorem 11. The false interface is pluggable only in the trivial environment that
stops immediately. Clearly, any other interface can be plugged into this environment as well.

We proceed to state our main results about refinement.

Lemma 7 Let I, I ′, I ′′ be interfaces and suppose I ′′ v I ′ and I ′ v I. Then R(I) ∩R(I ′′) ⊆ R(I ′).

Proof: Let I = (X,Y, ξ), I ′ = (X,Y, ξ′), I ′′ = (X,Y, ξ′′). By induction on the length of states. Basis: the
result holds for the state of length zero, that is, the empty state ε, because ε is reachable in any interface.
Induction step: suppose s · a ∈ R(I) ∩ R(I ′′). Then s ∈ R(I) ∩ R(I ′′). From the induction hypothesis,
s ∈ R(I ′). s · a ∈ R(I) ∩ R(I ′′) implies a |= ξ(s) ∧ ξ′′(s). a |= ξ(s) implies a |= in(ξ(s)). The latter and
I ′ v I imply a |= in(ξ′(s)). The latter, together with I ′′ v I ′ and a |= ξ′′(s), imply a |= ξ′(s). This and
s ∈ R(I ′) imply s · a ∈ R(I ′).

Theorem 8 v is a reflexive and transitive relation on interfaces.

Proof: v is reflexive because in(ξ(s)) → in(ξ(s)) and in(ξ(s))∧ ξ(s) → ξ(s), for any s ∈ R(I). To show that
v is transitive, let I = (X,Y, ξ), I ′ = (X,Y, ξ′), I ′′ = (X,Y, ξ′′), and suppose I ′′ v I ′ and I ′ v I. We must
prove I ′′ v I. Suppose s ∈ R(I)∩R(I ′′). By Lemma 7, s ∈ R(I)∩R(I ′) and s ∈ R(I ′)∩R(I ′′). These facts
together with I ′′ v I ′ and I ′ v I imply in(ξ(s)) → in(ξ′(s)), in(ξ(s)) ∧ ξ′(s) → ξ(s), in(ξ′(s)) → in(ξ′′(s)),
and in(ξ′(s)) ∧ ξ′′(s) → ξ′(s). These imply in(ξ(s)) → in(ξ′′(s)) and in(ξ(s)) ∧ ξ′′(s) → ξ(s).

16

Theorem 9 (Refinement preserves well-formedness for stateless interfaces) Let I, I ′ be stateless
interfaces such that I ′ v I. If I is well-formed then I ′ is well-formed.

Proof: Let I ′ = (X,Y, φ′) and I = (X,Y, φ). I is well-formed, thus φ is satisfiable. Let a be an assignment
satisfying φ and let aX and aY be the restrictions of a to X and Y , respectively. By definition of in(φ),
aX |= in(φ). By Condition (8), aX |= in(φ′) ≡ ∃Y : φ′. Therefore, there exists a′Y such that (aX , a

′
Y) |= φ′.

Thus, φ′ is satisfiable. Thus, I ′ is well-formed.

Theorem 9 does not generally hold for stateful interfaces: the reason is that, because I ′ may accept more
inputs than I, there may be states that are reachable in I ′ but not in I, and the contract of I ′ in these states
may be unsatisfiable. When this situation does not occur, refinement preserves well-formedness also in the
stateful case. Moreover, refinement always preserves well-formability:

Theorem 10 (Refinement preserves well-formability) Let I, I ′ be interfaces such that I ′ v I. If I is
well-formed and R(I ′) ⊆ R(I) then I ′ is well-formed. Moreover, if I is well-formable then I ′ is well-formable.

Proof: Let I = (X,Y, ξ). Since I ′ v I, I ′ = (X,Y, ξ′), for some ξ′.
Suppose I is well-formed and R(I ′) ⊆ R(I). We need to show that for any s ∈ R(I ′), ξ′(s) is satisfiable.

By hypothesis, s ∈ R(I) and I is well-formed, therefore, ξ(s) is satisfiable. Reasoning as in the proof of
Theorem 9, we can show that ξ′(s) is also satisfiable.

Suppose I is well-formable. Then there exists I1 = (X,Y, ξ1) such that I1 is well-formed, and for all
s ∈ R(I1), ξ1(s) ≡ ξ(s) ∧ φs, for some property φs over X. Since ξ1 strengthens ξ, R(I1) ⊆ R(I). Since
ξ(s) ∧ φs ≡ ξ(s) ∧ in(ξ(s)) ∧ φs, we can assume without loss of generality that φs → in(ξ(s)). We define
I2 := (X,Y, ξ2) such that ξ2(s) := ξ′(s) ∧ φs, if s ∈ R(I1), and ξ2(s) := ξ′(s), if s 6∈ R(I1).

Claim 1: R(I2) ⊆ R(I1). By induction on the length of a state s. The result holds for s = ε. Suppose
s · a ∈ R(I2). Then s ∈ R(I2) and from the induction hypothesis, s ∈ R(I1). Also, a |= ξ2(s) ≡ ξ′(s) ∧ φs

(because s ∈ R(I1)). Since φs → in(ξ(s)), a |= in(ξ(s)) ∧ ξ′(s). This and I ′ v I imply a |= ξ(s), thus,
a |= ξ(s) ∧ φs ≡ ξ1(s). Thus, s · a ∈ R(I1).

Claim 2: R(I2) ⊆ R(I ′). Trivial because ξ2 is a strengthening of ξ′.
Claim 3: I2 v I1. Suppose s ∈ R(I1) ∩ R(I2). By Claim 2 and the fact R(I1) ⊆ R(I), we have

s ∈ R(I) ∩ R(I ′). Then: in(ξ1(s)) ≡ in(ξ(s)) ∧ φs. Since I ′ v I and s ∈ R(I) ∩ R(I ′), in(ξ(s)) → in(ξ′(s)).
Therefore in(ξ(s)) ∧ φs → in(ξ′(s)) ∧ φs. The latter formula is equivalent to in(ξ2(s)) because s ∈ R(I1).
Also, in(ξ1(s)) ∧ ξ2(s) ≡ in(ξ(s)) ∧ ξ′(s) ∧ φs → ξ(s) ∧ φs ≡ ξ1(s). This completes Claim 3.

Claim 4: for all s ∈ R(I2), ξ2(s) ≡ ξ′(s) ∧ φs. Follows by definition of ξ2 and Claim 3.
Claim 1 and Claim 3, together with the fact that I1 is well-formed, and by the first part of this theorem,

imply that I2 is well-formed. This, together with Claims 2 and 4 imply that I2 is a well-formed witness for
I ′, thus, I ′ is well-formable.

Lemma 8 Consider properties φ, φ′ over X ∪ Y such that(
in(φ) → in(φ′)

)
∧

((
in(φ) ∧ φ′

)
→ φ

)
is valid. Then for any property ψ over Y , the following formula is also valid:(

in(φ) ∧ (φ→ ψ)
)
→

(
in(φ′) ∧ (φ′ → ψ)

)
Proof: We already have in(φ) → in(φ′), so it remains to prove

(
in(φ) ∧ (φ → ψ)

)
→ (φ′ → ψ). Consider

an assignment (a, b) on X ∪ Y such that (a, b) |= in(φ) ∧ (φ → ψ). This means: (1) a |= in(φ); and (2) if
(a, b) |= φ then b |= ψ. We must show that if (a, b) |= φ′ then b |= ψ. Suppose (a, b) |= φ′. This, together
with (1) and our hypothesis, gives (a, b) |= φ, which together with (2) gives b |= ψ.

17

Lemma 9 Let I, I ′ be interfaces and E be a environment. If I is pluggable to E and I ′ v I then R(I ′E) ⊆
R(IE).

Proof: By induction on the length of states. It holds for the state of length zero, i.e., the empty state
ε, because ε is reachable in any interface. Suppose the result holds for a given state s. We prove it for
s · a. Let s · a ∈ R(I ′E). This means that the assignment a satisfies the contract of I ′E at state s, that is,
a |= ξ′(s) ∧ hX(s). Also, s ∈ R(I ′E), therefore, by the induction hypothesis, s ∈ R(IE). This and the hy-
pothesis that I is pluggable to E imply that hX(s) → in(ξ(s)) is valid. Therefore, a |= ξ′(s)∧ in(ξ(s)). Now,
by Lemma 2 and the facts s ∈ R(I ′E) and s ∈ R(I ′E), we derive s ∈ R(I) ∩ R(I ′). This and the hypothesis
I ′ v I imply that (in(ξ(s)) ∧ ξ′(s)) → ξ(s) is valid, therefore, a |= ξ(s) ∧ in(ξ(s)). Thus, s · a ∈ R(IE), and
the proof of Lemma 9 is complete.

Theorem 11 (Refinement characterizes pluggability) I v I ′ iff for all environments E, I |= E im-
plies I ′ |= E.

Proof: Suppose I v I ′ and let E be an environment such that I |= E. We prove that I ′ |= E. Let
I = (X,Y, ξ). Since I ′ v I, I ′ = (X,Y, ξ′), for some ξ′. Since I is pluggable to E, E = (X,Y, hX , hY), for
some hX , hY . Let IE and I ′E be the interfaces defined by (2) and (3) for I and I ′, respectively. Consider
some s ∈ R(I ′E). To show I ′ |= E, we need to show that the following formula is valid:

hX(s) →
(
in(ξ′(s)) ∧ (ξ′(s) → hY (s))

)
By Lemma 9, s ∈ R(IE). This and the hypothesis I |= E imply that the following formula is valid:

hX(s) →
(
in(ξ(s)) ∧ (ξ(s) → hY (s))

)
Lemma 2 and s ∈ R(IE)∩R(I ′E) imply s ∈ R(I)∩R(I ′). This and I ′ v I imply that Formulae (8) and (9)
are valid. This and Lemma 8, imply that the following formula is valid:(

in(ξ(s)) ∧ (ξ(s) → hY (s))
)
→

(
in(ξ′(s)) ∧ (ξ′(s) → hY (s))

)
This proves the first part of the theorem.

For the converse, suppose I ′ 6v I. We build an environment E such that I |= E but I ′ 6|= E. The
construction is trivial when I and I ′ have different sets of input or output variables, so we will assume
that I = (X,Y, ξ) and I ′ = (X,Y, ξ′). Since I ′ 6v I, there exists s ∈ R(I) ∩ R(I ′) such that: either
in(ξ(s)) ∧ ¬in(ξ′(s)) is satisfiable (Case 1); or in(ξ(s)) → in(ξ′(s)) is valid, but in(ξ(s)) ∧ ξ′(s) ∧ ¬ξ(s)
is satisfiable (Case 2). Suppose s = (a1, b1)(a2, b2) · · · (an, bn), for some integer n ≥ 0, where ai is an
assignment over X and bi is an assignment on Y , for i = 1, ..., n.

Case 1: Let an+1 be an assignment over X such that an+1 |= in(ξ(s)) but an+1 6|= in(ξ′(s)). Similarly to
the proof of Theorem 3, we define formula φi

X on X such that the only assignment satisfying φi
X is ai, for

i = 1, ..., n, n+ 1. We then define environment E := (X,Y, hX , hY) such that hY (r) := true for all states r,
and hX is defined as follows:

hX(s′) :=
{
φi+1

X , if s′ = (a1, b1) · · · (ai, bi), 0 ≤ i ≤ n
false, otherwise

In other words, E issues inputs a1, a2, ..., an+1 in the first n+ 1 steps, provided the outputs match those of
state s. As soon as an output does not match or step n+ 1 is reached, E stops (i.e., issues false).

Claim: I |= E but I ′ 6|= E. By construction, s ∈ R(IE) and s ∈ R(I ′E). Thus, from the definition of
pluggability, we know that I and I ′ are pluggable if the following two formulae are valid, respectively:

φn+1
X →

(
in(ξ(s)) ∧ (ξ(s) → true)

)
φn+1

X →
(
in(ξ′(s)) ∧ (ξ′(s) → true)

)
18

Z
- -

-
-

-
-θX

I1

Y
I2

W
U

Y ′

Figure 4: Composing two interfaces.

Since an+1 |= in(ξ(s)) but an+1 6|= in(ξ′(s)), this implies that I |= E but I ′ 6|= E. This completes Case 1.
Case 2: Note that in(ξ(s)) ∧ (in(ξ(s)) → in(ξ′(s))) is equivalent to in(ξ(s)) ∧ in(ξ′(s)). Let (an+1, bn+1)

be an assignment over X ∪ Y , with an+1 an assignment on X and bn+1 an assignment on Y , such that
an+1 |= in(ξ(s))∧ in(ξ′(s)) and (an+1, bn+1) |= ξ′(s), but (an+1, bn+1) 6|= ξ(s). We define E almost identically
to Case 1, except that hY (s) := out(ξ(s)∧ φn+1

X). Note that, from (an+1, bn+1) 6|= ξ(s) an+1 |= φn+1
X , we get

bn+1 6|= hY (s).
Claim: I |= E but I ′ 6|= E. By construction, s ∈ R(IE) and s ∈ R(I ′E). Thus, from the definition of

pluggability, we know that I and I ′ are pluggable if the following two formulae are valid, respectively:

φn+1
X →

(
in(ξ(s)) ∧ (ξ(s) → hY (s))

)
φn+1

X →
(
in(ξ′(s)) ∧ (ξ′(s) → hY (s))

)
The crux of this case hinges on whether ξ(s) → hY (s) and ξ′(s) → hY (s) are satisfied under (an+1, bn+1).
Since (an+1, bn+1) |= ξ′(s) but (an+1, bn+1) 6|= ξ(s) the first formula is satisfied, but the second is not. Thus
I |= E but I ′ 6|= E. This completes Case 2 and the proof of the theorem.

Lemma 10 Consider two disjoint interfaces I1 and I2, and a connection θ between I1, I2. Let R1 and R2

be the projections of R(θ(I1, I2)) to states over the variables of I1 and I2, respectively. Then R1 ⊆ R(I1)
and R2 ⊆ R(I2).

Proof: Let I1 = (X1, Y1, ξ1) and I2 = (X2, Y2, ξ2). Let ξ be the contract function of θ(I1, I2). We prove the
result by induction on the length of states. It clearly holds for the empty state ε.

Let s1 · a1 ∈ R1. This means that there exists state s · a ∈ R(θ(I1, I2)) such that s1 · a1 is the projection
of s · a to the variables of I1. From s · a ∈ R(θ(I1, I2)), we get

a |= ξ(s) i.e. a |= ξ1(s1) ∧ ξ2(s2) ∧ · · ·

Therefore, a |= ξ1(s1), which means a1 |= ξ1(s1). By the induction hypothesis, s1 ∈ R(I1). These two facts
imply s1 · a ∈ R(I1). This proves R1 ⊆ R(I1). The proof of R2 ⊆ R(I2) is similar.

Theorem 12 (Connection preserves refinement) Consider two disjoint interfaces I1 and I2, and a
connection θ between I1, I2. Let I ′1, I

′
2 be interfaces such that I ′1 v I1 and I ′2 v I2. Then, θ(I ′1, I

′
2) v θ(I1, I2).

Proof: Let I1 = (X,Y ∪ Y ′, ξ1) and I2 = (Z ∪W,U, ξ2). Let θ be a connection between I1, I2, such that
Y = {y | (y, z) ∈ θ for some z} and Z = {z | (y, z) ∈ θ for some y}. In other words, Y represents the set
of output variables of I1 that are connected to input variables of I2. Y ′ is the set of the rest of the output
variables of I1. Z represents those input variables of I2 that are connected (to outputs of I1) and W those
that are not connected. Any of the sets X,Y, Y ′, Z,W,U may be empty. Since I ′i v Ii, for i = 1, 2, we have
I ′1 = (X,Y ∪ Y ′, ξ′1) and I ′2 = (Z ∪W,U, ξ′2). The composition setting is illustrated in Figure 4.

19

Given the above, and Definition 10, we have, for s ∈ A(X ∪W ∪ Y ∪ Y ′ ∪ Z ∪ U)∗, s1 the projection of
s to X ∪ Y ∪ Y ′, and s2 the projection of s to W ∪ Z ∪ U :

θ(I1, I2) := (X ∪W,Y ∪ Y ′ ∪ Z ∪ U, ξ) (11)
ξ(s) := ξ1(s1) ∧ ξ2(s2) ∧ ρθ ∧Ψ (12)

Ψ := ∀Y ∪ Y ′ ∪ Z ∪ U : (ξ1(s1) ∧ ρθ) → in(ξ2(s2)) (13)
θ(I ′1, I

′
2) := (X ∪W,Y ∪ Y ′ ∪ Z ∪ U, ξ′) (14)

ξ′(s) := ξ′1(s1) ∧ ξ′2(s2) ∧ ρθ ∧Ψ′ (15)
Ψ′ := ∀Y ∪ Y ′ ∪ Z ∪ U : (ξ′1(s1) ∧ ρθ) → in(ξ′2(s2)) (16)

Let s ∈ R(θ(I1, I2)) ∩ R(θ(I ′1, I
′
2)). To prove θ(I ′1, I

′
2) v θ(I1, I2) we need to prove that: (A) in(ξ(s)) →

in(ξ′(s)) is valid; and (B) (in(ξ(s))∧ ξ′(s)) → ξ(s) is valid. Note that, by Lemma 10, s1 ∈ R(I1)∩R(I ′1) and
s2 ∈ R(I2)∩R(I ′2). We use these two facts without mention in the rest of the proof. We proceed in proving
claims (A) and (B).

(A): in(ξ(s)) → in(ξ′(s)) is valid: Suppose the result does not hold. This means that in(ξ(s))∧¬in(ξ′(s))
is satisfiable, i.e.,

ψ1 := (∃Y ∪ Y ′ ∪ Z ∪ U : ξ1(s1) ∧ ξ2(s2) ∧ ρθ ∧Ψ) ∧ (∀Y ∪ Y ′ ∪ Z ∪ U : ¬ξ′1(s1) ∨ ¬ξ′2(s2) ∨ ¬ρθ ∨ ¬Ψ′)

is satisfiable. Note that ψ1, Ψ and Ψ′ are all formulae over X ∪W , therefore, ψ1 is equivalent to:

ψ2 := Ψ ∧ (∃Y ∪ Y ′ ∪ Z ∪ U : ξ1(s1) ∧ ξ2(s2) ∧ ρθ) ∧
(
¬Ψ′ ∨ (∀Y ∪ Y ′ ∪ Z ∪ U : ¬ξ′1(s1) ∨ ¬ξ′2(s2) ∨ ¬ρθ)

)
Let a be an assignment over X ∪W satisfying ψ2. We claim that a |= ¬Ψ′. Suppose not, i.e., a |= Ψ′.

Then, from a |= ψ2, we derive a |= ∀Y ∪ Y ′ ∪ Z ∪ U : ¬ξ′1(s1) ∨ ¬ξ′2(s2) ∨ ¬ρθ. Also, a |= in(ξ1(s1)). Since
I ′1 v I1, a |= in(ξ′1(s1)). This means that there exists an assignment c over Y ∪ Y ′ such that (a, c) |= ξ′1(s1).
Let d be an assignment over Z such that (c, d) |= ρθ: that is, we set an input variable z of I2 to the value
c(y) of the output variable y of I1 that z is connected to. Combining, we have (a, c, d) |= ξ′1(s1) ∧ ρθ.
This and a |= Ψ′ imply that (a, c, d) |= in(ξ′2(s2)). Therefore, there exists an assignment e over U such
that (a, c, d, e) |= ξ′2(s2). Combining, we have (a, c, d, e) |= ξ′1(s1) ∧ ξ′2(s2) ∧ ρθ, which contradicts a |=
∀Y ∪ Y ′ ∪ Z ∪ U : ¬ξ′1(s1) ∨ ¬ξ′2(s2) ∨ ¬ρθ. Thus, the claim a |= ¬Ψ′ is proven and we have that a satisfies:

ψ3 := Ψ ∧ ¬Ψ′ ∧ (∃Y ∪ Y ′ ∪ Z ∪ U : ξ1(s1) ∧ ξ2(s2) ∧ ρθ)

Since a does not satisfy Ψ′, there exists an assignment b over Y ∪ Y ′ ∪ Z ∪ U , such that (a, b) |=
ξ′1(s1) ∧ ρθ ∧ ¬in(ξ′2(s2)). Since I ′2 v I2, in(ξ2(s2)) → in(ξ′2(s2)), or ¬in(ξ′2(s2)) → ¬in(ξ2(s2)). Therefore,
(a, b) |= ¬in(ξ2(s2)). Now, from a |= ψ3, we get (a, b) |= in(ξ1(s1)). From I ′1 v I1 we have in(ξ1(s1))∧ξ′1(s1) →
ξ1(s1). Therefore, (a, b) |= ξ1(s1). This, together with a |= Ψ and (a, b) |= ρθ, imply (a, b) |= in(ξ2(s2)).
Contradiction. This completes the proof of Part (A).

(B): (in(ξ(s))∧ξ′(s)) → ξ(s) is valid: Suppose the result does not hold. This means that in(ξ(s))∧ξ′(s)∧
¬ξ(s) is satisfiable, i.e.,

ψ4 := (∃Y ∪Y ′∪Z ∪U : ξ1(s1)∧ ξ2(s2)∧ρθ ∧Ψ)∧ (ξ′1(s1)∧ ξ′2(s2)∧ρθ ∧Ψ′)∧ (¬ξ1(s1)∨¬ξ2(s2)∨¬ρθ ∨¬Ψ)

is satisfiable. Because Ψ and Ψ′ are formulae over X ∪W , ψ4 simplifies to:

ψ5 := Ψ ∧Ψ′ ∧ (∃Y ∪ Y ′ ∪ Z ∪ U : ξ1(s1) ∧ ξ2(s2) ∧ ρθ) ∧ (ξ′1(s1) ∧ ξ′2(s2) ∧ ρθ) ∧ (¬ξ1(s1) ∨ ¬ξ2(s2))

Let a be an assignment over X∪W such that a |= ψ5. Then a |= in(ξ1(s1))∧ in(ξ2(s2))∧ξ′1(s1)∧ξ′2(s2). From
the hypotheses I ′1 v I1 and I ′2 v I2, we get in(ξ1(s1)) ∧ ξ′1(s1) → ξ1(s1) and in(ξ2(s1)) ∧ ξ′2(s2) → ξ2(s2).
Therefore a |= ξ1(s1) ∧ ξ2(s2), which contradicts a |= ψ5. This completes the proof of Part (B) and of the
theorem.

20

Theorem 13 (Feedback preserves refinement) Let I, I ′ be interfaces such that I ′ v I. Suppose both
I and I ′ are Moore interfaces with respect to one of their input variables, x. Let κ = (y, x) be a feedback
connection. Then κ(I ′) v κ(I).

Proof: Let I = (X,Y, ξ). Because I ′ v I, I ′ = (X,Y, ξ′). Then: κ(I) = (X \ {x}, Y ∪ {x}, ξκ) and
κ(I ′) = (X \ {x}, Y ∪{x}, ξ′κ), where ξκ(s) := ξ(s)∧ x = y and ξ′κ(s) := ξ′(s)∧ x = y, for all s ∈ A(X ∪ Y)∗.
To show that κ(I ′) v κ(I), we need to prove that for any s ∈ R(κ(I))∩R(κ(I ′)), the following formulae are
valid:

in(ξκ(s)) → in(ξ′κ(s))(
in(ξκ(s)) ∧ ξ′κ(s)

)
→ ξκ(s)

By Lemma 5, s ∈ R(κ(I)) ∩R(κ(I ′)) implies s ∈ R(I) ∩R(I ′). Then:
By Lemma 6 and the fact I ′ v I:

in(ξκ(s)) ≡ in(ξ(s)) → in(ξ′(s)) ≡ in(ξ′κ(s))

By Lemma 6, in(ξκ(s)) → in(ξ(s)). By the fact I ′ v I, (in(ξ(s)) ∧ ξ′(s)) → ξ(s). Therefore,(
in(ξκ(s)) ∧ ξ′κ(s)

)
→

(
in(ξ(s)) ∧ ξ′(s) ∧ x = y

)
→ (ξ(s) ∧ x = y) ≡ ξκ(s)

Note that the assumption that I ′ be Moore w.r.t. x in Theorem 13 is essential. Indeed, Mooreness is not
generally preserved by refinement, as Example 9 shows.

Example 9 Consider the stateless interfaces Ieven := ({x}, {y}, y mod 2 = 0), where mod denotes the
modulo operator, and I×2 := ({x}, {y}, y = 2x). Ieven is Moore. I×2 is not Moore. Yet I×2 v Ieven.

Thanks to Theorems 9 and 10, a corollary of Theorem 12 is that composition by connection preserves
well-formability for general interfaces, and well-formedness for stateless interfaces. Similarly, a corollary
of Theorem 13 is that feedback composition preserves well-formability for general Moore interfaces, and
well-formedness for stateless Moore interfaces.

8 Shared refinement

Shared refinement is introduced in [5] as a mechanism to combine two interfaces I and I ′ into a single
interface I u I ′ that refines both I and I ′: I u I ′ is able to accept inputs that are legal in either I or I ′, and
provide outputs that are legal in both I and I ′. Because of this, I u I ′ can replace both I and I ′, which, as
argued in [5], is important for component reuse.

A shared refinement operator for extended (i.e., relational) interfaces is proposed in the Discussion section
of [5], and it is conjectured that this operator represents the greatest lower bound with respect to refinement.
We show that this holds only if a shared refinability condition is imposed. This condition states that for every
inputs that is legal in both I and I ′, the corresponding sets of outputs of I and I ′ must have a non-empty
intersection. Otherwise, it is impossible to provide an output that is legal in both I and I ′.

Definition 15 (Shared refinement) Two interfaces I = (X,Y, ξ) and I ′ = (X ′, Y ′, ξ′) are shared-refinable
if X = X ′, Y = Y ′ and the following formula is true for all s ∈ R(I) ∩R(I ′):

∀X :
(
in(ξ(s)) ∧ in(ξ′(s))

)
→ ∃Y : (ξ(s) ∧ ξ′(s)) (17)

In that case, the shared refinement of I and I ′, denoted I u I ′, is the interface:

I u I ′ := (X,Y, ξu)

ξu(s) :=


(
in(ξ(s)) ∨ in(ξ′(s))

)
∧

(
in(ξ(s)) → ξ(s)

)
∧

(
in(ξ′(s)) → ξ′(s)

)
, if s ∈ R(I) ∩R(I ′)

ξ(s), if s ∈ R(I) \ R(I ′)
ξ′(s), if s ∈ R(I ′) \ R(I)

21

Example 10 Consider interfaces I00 := ({x}, {y}, x = 0 → y = 0) and I01 := ({x}, {y}, x = 0 → y = 1).
I00 and I01 are not shared-refinable because there is no way to satisfy y = 0 ∧ y = 1 when x = 0.

Lemma 11 If I and I ′ are shared-refinable interfaces then

R(I) ∩R(I ′) ⊆ R(I u I ′) ⊆ R(I) ∪R(I ′)

Proof: Let I = (X,Y, ξ) and I ′ = (X ′, Y ′, ξ′).
R(I)∩R(I ′) ⊆ R(IuI ′): By induction on the length of states. It holds for the state of length zero, i.e., the

empty state ε, because ε is reachable in any interface. Suppose s · a ∈ R(I)∩R(I ′). Then s ∈ R(I)∩R(I ′),
and from the induction hypothesis, s ∈ R(I u I ′). Since s ·a ∈ R(I), a |= ξ(s). Since s ·a ∈ R(I ′), a |= ξ′(s).
Thus a |= ξ(s) ∧ ξ′(s). Thus a |= (in(ξ(s)) ∨ in(ξ′(s))) ∧ (in(ξ(s)) → ξ(s)) ∧ (in(ξ′(s)) → ξ′(s)) ≡ ξu(s).

R(I u I ′) ⊆ R(I)∪R(I ′): By induction on the length of states. It holds for the state of length zero, i.e.,
the empty state ε, because ε is reachable in any interface. Suppose s · a ∈ R(I u I ′). Then a |= ξu(s). Also,
s ∈ R(I u I ′), and from the induction hypothesis, s ∈ R(I) ∪ R(I ′). Suppose s ∈ R(I) (the other case is
symmetric). There are two sub-cases:

Case 1: s ∈ R(I ′): Then ξu(s) ≡ (in(ξ(s)) ∨ in(ξ′(s))) ∧ (in(ξ(s)) → ξ(s)) ∧ (in(ξ′(s)) → ξ′(s)). Since
a |= ξu(s), a |= (in(ξ(s)) ∨ in(ξ′(s))). Suppose a |= in(ξ(s)) (the other case is symmetric). Then, since
a |= in(ξ(s)) → ξ(s), we have a |= ξ(s), thus, s · a ∈ R(I).

Case 2: s 6∈ R(I ′): Then ξu(s) ≡ ξ(s), therefore, a |= ξ(s), thus, s · a ∈ R(I).

Lemma 12 Let I and I ′ be shared-refinable interfaces such that I = (X,Y, ξ), I ′ = (X,Y, ξ′) and I u I ′ =
(X,Y, ξu). Then, for all s ∈ R(I) ∩R(I ′)

in(ξu(s)) ≡ in(ξ(s)) ∨ in(ξ′(s))

Proof: Using the fact that in(ξ(s)) and in(ξ′(s)) are properties over X, and the fact that the existential
quantifier distributes over disjunctions, we can show the following equivalences:

in(ξu(s)) ≡ ∃Y :
(
in(ξ(s)) ∨ in(ξ′(s))

)
∧

(
in(ξ(s)) → ξ(s)

)
∧

(
in(ξ′(s)) → ξ′(s)

)
≡(

in(ξ(s)) ∨ in(ξ′(s))
)
∧ ∃Y :

(
¬in(ξ(s)) ∨ ξ(s)

)
∧

(
¬in(ξ′(s)) ∨ ξ′(s)

)
≡(

in(ξ(s)) ∨ in(ξ′(s))
)
∧ ∃Y :

(
¬in(ξ(s)) ∧ ¬in(ξ′(s)) ∨ ¬in(ξ(s)) ∧ ξ′(s) ∨ ξ(s) ∧ ¬in(ξ′(s)) ∨ ξ(s) ∧ ξ′(s)

)
≡(

in(ξ(s)) ∨ in(ξ′(s))
)
∧

(
¬in(ξ(s)) ∧ in(ξ′(s)) ∨ in(ξ(s)) ∧ ¬in(ξ′(s)) ∨

(
∃Y : ξ(s) ∧ ξ′(s)

))
≡

¬in(ξ(s)) ∧ in(ξ′(s)) ∨ in(ξ(s)) ∧ ¬in(ξ′(s)) ∨
(
in(ξ(s)) ∨ in(ξ′(s))

)
∧

(
∃Y : ξ(s) ∧ ξ′(s)

)
Clearly, in(ξu(s)) implies in(ξ(s)) ∨ in(ξ′(s)). To show that in(ξ(s)) ∨ in(ξ′(s)) implies in(ξu(s)), it suffices
to show that in(ξ(s)) ∨ in(ξ′(s)) implies the last formula derived above, which is equivalent to showing that
in(ξ(s)) ∧ in(ξ′(s)) implies ∃Y : ξ(s) ∧ ξ′(s). This follows from the fact that I and I ′ are shared-refinable,
i.e., from Condition (18).

Theorem 14 (Greatest lower bound) If I and I ′ are shared-refinable interfaces then (I u I ′) v I, (I u
I ′) v I ′, and for any interface I ′′ such that I ′′ v I and I ′′ v I ′, we have I ′′ v (I u I ′).

Proof: Since I and I ′ are shared-refinable, they have the same sets of input and output variables. Let
I = (X,Y, ξ) and I ′ = (X,Y, ξ′). Let I u I ′ = (X,Y, ξu). We prove (I u I ′) v I. We need to show that
∀s ∈ R(I u I ′) ∩ R(I), the formulae in(ξ(s)) → in(ξu(s)) and in(ξ(s)) ∧ ξu(s) → ξ(s) are valid. To see why
the latter formula is valid, observe that in(ξ(s)) ∧ ξu(s) implies in(ξ(s)) ∧ (in(ξ(s)) → ξ(s)), which in turn
implies ξ(s). We now prove in(ξ(s)) → in(ξu(s)). Observe that s ∈ R(I u I ′) ∩ R(I) implies s ∈ R(I). We
reason by cases: Case 1: s ∈ R(I)∩R(I ′): Then the result follows by Lemma 12. Case 2: s ∈ R(I) \R(I ′):

22

Then ξu(s) ≡ ξ(s) and the result follows trivially. This completes the proof for (I u I ′) v I. The proof for
(I u I ′) v I ′ is symmetric. Thus, I u I ′ is a lower bound of I and I ′.

To show that I u I ′ is the greatest lower bound, consider stateless interface I ′′ such that I ′′ v I and
I ′′ v I ′. Let I ′′ = (X,Y, ξ′′). To prove I ′′ v (I u I ′) we must show that for all s ∈ R(I ′′) ∩ R(I u I ′), the
formulae in(ξu(s)) → in(ξ′′(s)) and in(ξu(s))∧ ξ′′(s) → ξu(s) are valid. By Lemma 11, s ∈ R(I u I ′) implies
s ∈ R(I) ∪R(I ′). We reason by cases:

Case 1: s ∈ R(I)∩R(I ′): By Lemma 12, in(ξu(s)) ≡ in(ξ(s))∨ in(ξ′(s)). By I ′′ v I and I ′′ v I ′, we have
in(ξ(s)) → in(ξ′′(s)) and in(ξ′(s)) → in(ξ′′(s)), and in(ξu(s)) → in(ξ′′(s)) follows. To show in(ξu(s))∧ξ′′(s) →
ξu(s) we derive:

in(ξu(s)) ∧ ξ′′(s) ≡
(
in(ξ(s)) ∨ in(ξ′(s))

)
∧ ξ′′(s)

We reason by sub-cases, using the facts in(ξ(s)) ∧ ξ′′(s) → ξ(s) and in(ξ′(s)) ∧ ξ′′(s) → ξ′(s), which come
from I ′′ v I and I ′′ v I ′.

Case 1.1: (
in(ξ(s)) ∧ in(ξ′(s))

)
∧ ξ′′(s) → ξ(s) ∧ ξ′(s) → ξu(s)

Case 1.2: (
in(ξ(s)) ∧ ¬in(ξ′(s))

)
∧ ξ′′(s) → ξ(s) ∧ ¬in(ξ′(s)) → ξu(s)

Case 1.3: (
¬in(ξ(s)) ∧ in(ξ′(s))

)
∧ ξ′′(s) → ¬in(ξ(s)) ∧ ξ′(s) → ξu(s)

In all three sub-cases we derived ξu(s), therefore Case 1 is proven.
Case 2: s ∈ R(I) \ R(I ′): Then ξu(s) ≡ ξ(s) and the result follows by I ′′ v I.
Case 3: s ∈ R(I ′) \ R(I): Symmetric to Case 2.

Theorem 15 (Shared-refinement preserves well-formedness) If I and I ′ are shared-refinable inter-
faces and both are well-formed, then I u I ′ is well-formed.

9 The input-complete case

Input-complete interfaces do not restrict the set of input values, although they may provide no guarantees
when the input values are illegal. Although input-complete interfaces are a special case of general interfaces, it
is instructive to study them separately for two reasons: first, input-completeness makes things much simpler,
thus easier to understand and implement; second, some interesting results can be derived for input-complete
interfaces but not in general.

Definition 16 (Input-complete interface) An interface I = (X,Y, ξ) is input-complete if for all s ∈
A(X ∪ Y)∗, in(ξ(s)) is valid.

Theorem 16 Every input-complete interface is well-formed.

Proof: Let I = (X,Y, ξ) be an input-complete interface. Then in(ξ(s)) is valid for all s ∈ A(X ∪ Y)∗, i.e.,
∃Y : ξ(s) ≡ true for any assignment over X. Let aX be an assignment over X (note that aX is defined even
when X is empty). Then there exists an assignment aY on Y such that the combined assignment (aX , aY)
on X ∪ Y satisfies ξ(s). Thus, ξ(s) is satisfiable, which means I is well-formed.

Definition 17 and Theorem 17 that follow show that every interface I can be turned into an input-complete
interface IC(I) that refines I.

23

Definition 17 (Input-completion) Consider an interface I = (X,Y, ξ). The input-complete version of
I, denoted IC(I), is the interface IC(I) := (X,Y, ξic), where ξic(s) := ξ(s)∨¬in(ξ(s)), for all s ∈ A(X ∪Y)∗.

Theorem 17 If I is an interface then: (1) IC(I) is an input-complete interface, and (2) IC(I) v I.

Proof: Let I = (X,Y, ξ) and IC(I) = (X,Y, ξic). Let s ∈ A(X ∪ Y)∗.
(1) in(ξic(s)) ≡ ∃Y : (ξ(s) ∨ ¬in(ξ(s))) ≡ (∃Y : ξ(s)) ∨ ¬in(ξ(s)) ≡ in(ξ(s)) ∨ ¬in(ξ(s)) ≡ true, thus, IC(I)

is input-complete.
(2) Obviously, in(ξ(s)) → in(ξic(s)). We need to show that (in(ξ(s)) ∧ (ξ(s) ∨ ¬in(ξ(s)))) → ξ(s). The

premise can be rewritten as (in(ξ(s)) ∧ ξ(s)) ∨ (in(ξ(s)) ∧ ¬in(ξ(s))) ≡ in(ξ(s)) ∧ ξ(s), which clearly implies
ξ(s).

Theorems 17 and 11 imply that for any environment E, if I |= E then IC(I) |= E. The converse does not
hold in general (see Examples 1 and 3, and observe that I2 is the input-complete version of I1).

Composition by connection reduces to conjunction of contracts for input-complete interfaces, and pre-
serves input-completeness:

Theorem 18 (Connection preserves input-completeness) Let Ii = (Xi, Yi, ξi), i = 1, 2, be disjoint
input-complete interfaces, and let θ be a connection between I1, I2. Then the contract function ξ of the
composite interface θ(I1, I2) is such that for all s ∈ A(Xθ(I1,I2) ∪ Yθ(I1,I2))

∗

ξ(s) ≡ ξ1(s) ∧ ξ2(s) ∧ ρθ

Moreover, θ(I1, I2) is input-complete.

Proof: Formula (4) is equivalent to true because in(ξ2(s2)) ≡ true. To see that θ(I1, I2) is input-complete,
consider a state s ∈ A(Xθ(I1,I2)∪Yθ(I1,I2))

∗ and let a be an assignment over Xθ(I1,I2). Since in(ξ1(s1)) ≡ true,
and X1 ⊆ Xθ(I1,I2), there exists an assignment b over Y1 such that (a, b) |= ξ1(s1). Let c be an assignment
over Xθ such that (b, c) |= ρθ: such an assignment can always be found by setting c(x) to the value that
b assigns to y, where (y, x) ∈ θ. Since in(ξ2(s2)) ≡ true, there exists an assignment d over Y2 such that
(a, c, d) |= ξ2(s2). Combining the assignments we get (a, b, c, d) |= ξ1(s1) ∧ ξ2(s2) ∧ ρθ ≡ ξ(s), therefore,
θ(I1, I2) is input-complete.

It is important to note that taking ξ1(s) ∧ ξ2(s) ∧ ρθ as the contract of a composite interface does not
work for general interfaces, even though it works for input-complete interfaces. This is illustrated in the
following example.

Example 11 Let

I10 :=
(
{x}, {y}, x = 0 ∧ (y = 0 ∨ y = 1)

)
I12 := ({z}, {w}, z = 0 ∧ w = 0)

Let θ := {(y, z)}. The conjunction of the contracts of I10 and I12, together with the equality y = z imposed
by the connection θ, gives the contract x = 0 ∧ (y = 0 ∨ y = 1) ∧ z = 0 ∧ w = 0 ∧ y = z, which is equivalent
to x = y = z = w = 0, which is clearly satisfiable. Therefore, we could interpret the composite interface
θ(I10, I12) as the interface

({x}, {y, z, w}, x = y = z = w = 0)

Now, consider the interface:

I11 := ({x}, {y}, x = 0 ∧ y = 1)

It can be checked that I11 v I10. But if we connect I11 to I12, we find that the conjunction of their contracts
(with the connection y = z) is unsatisfiable. Therefore, if we used conjunction for composition by connec-
tion, then the composite interface θ(I11, I12) would not refine θ(I10, I12), even though I11 refines I10, i.e.,
Theorem 12 would not hold.

24

Input-complete interfaces alone do not help in avoiding problems with arbitrary feedback compositions:
indeed, in the example given in the introduction both interfaces Itrue and Iy 6=x are input-complete.5 This
means that in order to add a feedback connection (y, x) in an input-complete interface, we must still ensure
that this interface is Moore w.r.t. input x. In that case, feedback preserves input-completeness.

Theorem 19 (Feedback preserves input-completeness) Let I = (X,Y, ξ) be an input-complete inter-
face which is also Moore with respect to some x ∈ X. Let κ = (y, x) be a feedback connection on I. Then
κ(I) is input-complete.

Proof: By definition, κ(I) = (X \ {x}, Y ∪ {x}, ξκ), where ξκ(s) ≡ ξ(s) ∧ (x = y), for all s ∈ A(X ∪ Y)∗.
Let s ∈ A(X ∪ Y)∗. We must show that in(ξκ(s)) ≡ ∃Y ∪ {x} : ξ(s) ∧ (x = y) is valid. Because ξ(s) does
not refer to x, we have ∃Y ∪ {x} : ξ(s) ∧ (x = y) ≡ ∃Y : ∃x : ξ(s) ∧ (x = y) ≡ ∃Y : (ξ(s) ∧ (∃x : x = y)) ≡
∃Y : ξ(s) ≡ in(ξ(s)) ≡ true.

Theorem 20 (Hiding preserves input-completeness) Let I = (X,Y, ξ) be an input-complete interface
and let Y ′ ⊆ Y , such that ξ is independent from Y ′. Then, hide(Y ′, I) is input-complete.

Proof: I is input-complete means in(ξ(s)) is valid for all s ∈ A(X ∪ Y)∗. We must show that ∃Y \ Y ′ :
(∃Y ′ : ξ(s)) is valid: the latter formula is equivalent to ∃Y : ξ(s), i.e., in(ξ(s)).

Theorem 21 (Refinement for input-complete interfaces) Let I = (X,Y, ξ) and I ′ = (X ′, Y ′, ξ′) be
input-complete interfaces. Then I ′ v I iff for all s ∈ A(X ∪ Y)∗, ξ′(s) → ξ(s) is valid.

Proof: Follows directly from Definition 14 and the fact that in(ξ(s)) ≡ in(ξ′(s)) ≡ true for any s ∈
A(X ∪ Y)∗.

For input-complete interfaces, the shared-refinability condition, i.e., Condition (17), simplifies to

∀X : ∃Y : ξ(s) ∧ ξ′(s)

Clearly, this condition does not always hold. Indeed, the interfaces of Example 10 are not shared-refinable,
even though they are input-complete. For shared-refinable input-complete interfaces, shared refinement
reduces to conjunction of contracts for states that are reachable in both interfaces.

Theorem 22 (Shared refinement for input-complete interfaces) Let I = (X,Y, ξ) and I ′ = (X,Y, ξ′)
be input-complete shared-refinable interfaces. Then I ′ u I = (X,Y, ξu), where for all s ∈ R(I) ∩ R(I ′),
ξu(s) ≡ ξ(s) ∧ ξ′(s).

Proof: Follows directly from Definition 15 and the fact that in(ξ(s)) ≡ in(ξ′(s)) ≡ true for any s ∈
A(X ∪ Y)∗.

As the above presentation shows, input-complete interfaces are much simpler than general interfaces:
refinement is implication of contracts, composition is conjunction, and so on. Then, a legitimate question is,
why consider non-input-complete interfaces at all? There are mainly two reasons.

First, non-input-complete interfaces can be used to model situations that cannot be modeled by input-
complete interfaces. For example, consider modeling a component implementing some procedure that re-
quires certain conditions on its inputs to be satisfied, otherwise it may not terminate. We can capture the
specification of this component as an interface, by imposing these conditions in the contract of the interface.
But we cannot capture the same specification as an input-complete interface: for what would the output be

5 It is not surprising that input-complete interfaces alone cannot solve the problems with arbitrary feedback compositions,
since these are general problems of causality, not particular to interfaces.

25

when the input conditions are violated? We cannot simply add an extra output taking values in {T,NT},
for “terminates” and “does not terminate”, since non-termination is not an observable property.

Second, even in the case where we could use input-complete interfaces to capture a specification, we
may decide not to do so, in order to allow for local compatibility checks. In particular, when connecting two
interfaces I and I ′, we may want to check that their composition is well-formed before proceeding to form
an entire interface diagram. Input-complete interfaces are always well-formed and so are their compositions
(Theorems 16, 18 and 19), therefore, local compatibility checks provide useful information only in the non-
input-complete case.

10 Conclusions

The main message of this paper is that a theory of relational interfaces that has the desired properties can
be developed, provided feedback compositions are restricted appropriately.

In the future, we plan to further extend this theory. One useful extension would be to refine the definition
of Moore interfaces to speak about dependencies between specific pairs of input and output variables. This
would allow to express, for example, the fact that in the parallel composition of ({x1}, {y1}, x1 = y1)
and ({x2}, {y2}, x2 = y2), y1 does not depend on x2 and y2 does not depend on x1 (and therefore one of
the feedbacks (y1, x2) or (y2, x1) can be allowed). Such an extension could be achieved by combining our
relational interfaces with the causality interfaces of [9], or the coarser profiles of [7].

References

[1] R. Alur, T. Henzinger, O. Kupferman, and M. Vardi. Alternating refinement relations. In CONCUR’98,
volume 1466 of LNCS. Springer, 1998.

[2] A. Chakrabarti, L. de Alfaro, T. Henzinger, and F. Mang. Synchronous and bidirectional component
interfaces. In CAV, LNCS 2404, pages 414–427. Springer, 2002.

[3] L. de Alfaro and T. Henzinger. Interface automata. In Foundations of Software Engineering (FSE).
ACM Press, 2001.

[4] L. de Alfaro and T. Henzinger. Interface theories for component-based design. In EMSOFT’01. Springer,
LNCS 2211, 2001.

[5] L. Doyen, T. Henzinger, B. Jobstmann, and T. Petrov. Interface theories with component reuse. In 8th
ACM & IEEE International conference on Embedded software, EMSOFT, pages 79–88, 2008.

[6] E. Lee and A. Sangiovanni-Vincentelli. A unified framework for comparing models of computation. IEEE
Trans. on Computer Aided Design of Integrated Circuits and Systems, 17(12):1217–1229, Dec. 1998.

[7] R. Lublinerman and S. Tripakis. Modularity vs. Reusability: Code Generation from Synchronous Block
Diagrams. In Design, Automation, and Test in Europe (DATE’08). ACM, Mar. 2008.

[8] G. Tourlakis. Mathematical Logic. Wiley, 2008.

[9] Y. Zhou and E. Lee. Causality interfaces for actor networks. ACM Trans. Embed. Comput. Syst.,
7(3):1–35, 2008.

26

	Introduction
	Preliminaries, notation
	Relational Interfaces
	Environments, pluggability
	Composition
	Hiding
	Refinement
	Shared refinement
	The input-complete case
	Conclusions

