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A bound for block codes with delayed feedback
related to sphere-packing bound

Hari Palaiyanur, Anant Sahai

This note gives an upper bound to the error exponent for blodeg used over discrete memoryless channels
(DMCs) with perfect feedback, where the feedback is deldyyedome fixed number’ of symbols. The result of
this note is that the error exponent for raRecodes used with perfect feedback delayed7bgymbols is upper
bounded by (forT" large enough)

Ey(R — O(log T/T)) + O(log T/T), (1)

where E, is the sphere-packing exponent and the constants deperftearh&nnel transition matrix.

There are two reasons to consider this problem. The first is thatddern, high-rate communication systems,
the number of symbols that must be encoded before the enoedsves a previous channel output (or more likely,
a function of the channel output) can be potentially largeo Teasons for this gap between sending a channel
input and receiving information about the channel outpumédiately come to mind: large propagation delays
in wireless systems and inherent processing time for detatidn and other processing at the decoder. Consider
communicating20 symbols per microsecond on28 MHz channel over a distance @f5 km (round trip 3km).
Even without accounting for processing time, the delay forazento travel to and fro would be 10 microseconds,
meaning200 symbols should have been transmitted in the meantime. idddity, many communications systems
have a half-duplex constraint, meaning they cannot listash ttansmit at the same time and require some time
to switch the context from talking to listening. Thus, feedb#nformation may not return until the transmitter is
finished transmitting some appropriate ‘block’ of symbols.

The second reason for examining delayed-feedback is statigallows us to approach understanding the
longstanding open problem of the feedback error-expor@mmasymmetric DMCS. principle (or trunking-principle
in networks) holds that having access to parallel chantelsld scale up the capacity and error-exponents together.
In other words, by encoding togeth&requal and independent flows together acrBgzarallel channels, the error
exponent should improve by a factor @. However,T' parallel channels with unit-delay feedback are clearly
superior tol faster channel withl'-step delayed feedback. Thus, if the parallel channel mpiadis true, then
delaying the feedback should have no effect on the errorrexain the limit of large block-lengths that are much
longer than the delay. So the result in this note establishaataresting dichotomy: either the error-exponent for
asymmetric DMCs is bounded by the classic sphere-packingddas everyone believes, but nobody can prove)
or something about feedback interferes with the parallahaokl principle. Feedback must be able to help a single
channel alone in a way that it cannot help a group of channelking together. If this were true, it would be
interesting indeed.

1In case this note finds its way into the hands of someone who has notyasieewt a great deal of time thinking about this problem, here’s
a brief recap of the story so far. For symmetric channels, we knowtlieaerror-exponent with feedback is limited by the sphere-packing
bound. This was established by Berlekamp in his thesis, shows up ag®isexin Gallager’'s book for the BSC case, and was also proved
by Dobrushin. Since the sphere-packing bound can be attained atateghvithout feedback, this established that for fixed block-lengths,
even perfect feedback could only help at low rates, where indeedsitsivawn to help.

Haroutunian showed a bound that held with feedback for all channelsytile it equals the sphere-packing bound for symmetric channels,
it is strictly greater for asymmetric channels. Haroutunian himself egpresild frustration at not being able to close this gap. The form
of Haroutunian’s bound clearly suggests that it is loose, but it attemptedouat for the fact that the encoder could change the input
distribution in response to the channel feedback. Sheverdyaev hatkdla proof in PPI that finessed this problem, but it suffers from a
“then a miracle occurs” type of step at a critical juncture.

This note grows out of an ongoing dialog between us at Berkeley arid Bakiboglu and Giacomo Como at MIT as we have attempted
to resolve the issue.
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Fig. 1. Block coding for a DMCV with delayed feedback.

|. PROBLEM SETUP

The channel has finite input alphalsgt finite output alphabel and known probability transition matri (y|z).
Fix a block lengthn > 1 and a feedback deld§y > 2. The channel input at timé> 1 is x; € X and the channel
output at timei is y; € ). A rate R, block lengthn coding system is an encoder-decoder pairD).

Definition 1.1 (Type 1 Encoder - DelayT feedback): A rate R, block lengthn encodef€ used with feedback
delayed byI" symbols is a sequence of mafps;}7 ,, with for 1 <i < T,

bi s {1,2,...,2" — x| 2)

and fori > T, ‘
di: {1,2,..., 2"y x YT L x. (3)

Note thatT' = 1 is the usual perfect feedback setting where the encoderdseanf the channel output immediately
before the next channel input must be selected.

Definition 1.2 (Type 2 Encoder -7 symbol block feedback): This encoder is a more powerful class of en-
coding systems than the ‘Deldlj feedback’ encoders. Here feedback is provided to encoddraoks of T’
symbols at a time. That igY1,...,Yr) is given to the encoder before the encoder chodégs; and in general
(Yir41,-- -, Y41)r) is provided to the encoder at tinfe+ 1)7" before the encoder must chooXe; , 1)7,. Hence
a block lengthn type 2 encoder with rat& is a sequence of mags; };" ;

i {1,..., 2"} x YLEDTIT (4)

Note that a type 1 encoder is also a type 2 encoder for a dgivenl.
A block lengthn decoderD is a map

YVt —{1,2,...,2"%) (5)
The decoding regions for each message are theh(m) = {y" : ¥(y") = m} for m € {1,...,2"F} where
y" = (y1,-...,yn) represents a vector lengthin ).
The random messagk/ is selected from{1,2,...,2"%} uniformly and we wish to calculate bounds on the

average probability of error over all messages. The prolalf error for a rateR, block lengthn, T-symbol
feedback type coding system(&, D) is defined as

2nR
Pn€D) = sim S Prw(v™) #m|M = m) ©)
m=1
A T ko) o
m=1yngy=1

If we let C(n, R,T') be the set of block length codlng systems with rate at least equalRaused with delay
T feedback type 2 encoders, we define the error exponent aRrédebe

1
E(R.T) = li —Z1 i P.(n,E,D 8
(R,T) msup—_log min (n ) (8)



Haroutunian showed the following result for channels widrfect feedback (for any” > 1),
< £ '
E(R,T) < Ep(R) V:Crr(lg)lngng(VHW!p) (9)

In the above, the minimization is over channel transitioririro@s whose capacity is at mo&t the maximization
is over all probability mass functions on the input alphabet’, and D(V||W|p) is the average divergence,

DVIIWlp) =Y pa) > V(ylz)log Viylz) (10)

TEX yey ( ’ )

To ensure that continuity holds, we defibég0 = 0 and1/0 = co. Note that because the divergence is linear in
p, the optimization in theF, (R) over p is attained at a corner point, which has no connection to tbeggtion
with which an actual code uses that symbol over the channel.

The sphere packing bound;,,(R) is defined as

E, £ i D 11
p(R) max i (VI[Wp) (11)

whereI(p, V) is the mutual information of input distributiom across a channéf,

V(y|z)
I(p,V) = p(x)V (y|z) log (12)
wV)= 2wVl les

The sphere-packing bound serves as an upper bound to theeepament for coding systems used with no feedback
(i.e. T = ).

For suitably ‘output symmetric’ channels as defined by Hamoiain [1] and Gallager [2]F;,(R) = Ep(R) for
all R > 0, however, in general, for asymmetric channels such as thanbi'Z-channel’, E,(R) > Eg,(R). It
is believed that the Haroutunian bound is loose and the spbecking bound should hold for block codes with
perfect feedback (for any’ > 1).

Il. RESULT

Without loss of generality, we restrict attention#iothat are multiples off’, that isn = NT for someN > 1
(i.e. there areV total blocks of sizel’ symbols each). Furthermore, we prove a bound on type 2 ergggiems,
which immediately becomes a bound on type 1 encoders as well.

First, let P denote the set of types fotr” (as discussed in the book of Csiszar and Korner [3]). Secand, f
any givenp € Pr, let Vp(p) be the set ofi’-shells associated with type i.e. the set of transition matrices for
which V (-|z) is a type for)TP(®) for eachz € X.

Lemma 2.1: Define the channel independent constant

s | X2+ V] log(T +1)

T) = 1
a(T) T (13)
Fix ane > «(T). Then, for any block lengtlhh = NT' (with N > 1) rate R coding system with a type 2 encoder,
1
——1 P.(NT,E,D) < T 1
N7 08P INT, & D) smaxc | min | DWVIWIP) +a(T) + G log 7 —exp(—NT(e—a(T))() |
14

Proof: The argument begins, as with the sphere packing proof forscadout feedback, by showing that
there is a roughly ratd? code for which most codewords have the same input types. $hiwimally done by
whittling down the messages to those whose codewords béboting largest common type, by message population.
We now have feedback evefly symbols, so we need to carefully show in what way messages thavsame input
types. We do this by induction ofY, the total number of -length blocks.

First, for N = 1, there has been no feedback. g{(m) denote the type of”(m) = (¢1(m),..., ¢r(m)).
Now, group messages according to their typém). Since|Pr| is at most(T + 1)!*!, there exists @, € Pr such
that

2nR

T+ D (15)

{m :pr(m) = p1}| =



This is the usual argument for fixing the composition of a higie subcode in the proof of the sphere packing
bound for codes used without feedback. After this, we cha@o$g € Vr(p;) such that/(p;, Vi) < R —e. The
choice ofV; is made so as to minimizB(V;||W|p1) amongst thos&; € Vr(p1) that havel (p;, V1) < R—e. The
existence of &/ such that/(p;, V1) < R — € is not immediately obvious for channels in whidh,(R) can be
infinite, even if E,(R) is not infinite for the givenR. If no suchV; exists, the result of the lemma is meaningless
if we take the convention thahin over the null set iso. Hence, if the optimization in the right hand side of (14)
evaluates to something finite, we can safely assume the eeéstéor eactp, of a V; with I(p;, V1) < R —e. For
the rest of the proof, we assume we are in this case.

Without feedback, the selection at this point would be ehotgyshow that for a high rate subcode with the
same type, a substantial portion of the seledtedhells around the codewords for these messages overlaguse c
a significant error. However, we now have feedback eversymbols, so we will iterate this selection proceé€s
times. We will prove a claim showing that the messages ar¢hirated too much and there are mayiysequences
which must ‘overlap’. We will do this by selectingy input typesp,...,py and N channel shelld/, ..., Vy
sequentially and use induction. Let, for< &k < N,

B®) (m) & {ykT DT ¢ BE=D () pr(m, y*=DT) = py., yéﬂnTﬂ €Ty, (xl(ﬂ]zll)T+1(m’y(k71)T))}

(16)
where pk(m,y(k_l)T) is the type Ofx?g_l)T+1(m,y(k_1)T) £ (qb(k,l)TJrl(m, y(k_l)T), e ¢kT(m7y(k_1)T)).
Now, let for1 < k < N,

1 *
(k) & =10 T35 H(Vilpi)
AT = {m B )l 2 Gy 2 } n

Note the dependence of both thé*) and B*)(m) sets onp; andV;. We drop the dependence in the notation for
convenience.

Claim 2.1: For a block lengthh = NT, rate R type 2 encoder, there exists,...,py € Pr andVy,..., Vy,
with V:L S arg minVEVT(pi)ZI(pi,V)SR—ED(VHW‘pi) SUCh that

2nR
(T + 1)NI]
Proof: We proceed by induction with the base caseNof= &k = 1. As we have seen there ispa € Pr such

that at lease”/*/(T +1)1*| messages havg (m) = p;. We then choos&, € Vr(p;) such thatl (p;, V1) < R—e.
It is clear that for thosen with p;(m) = py,

AN > (18)

B (m)] = [Ty, ()] = s expa(TH (Vilpy)) (19)

(T'+1)
where|Ty (p)| denotes the number of vectors irfashell around a vector of type (i.e. | Ty (z7)| if 27 is of type
p). Hence, the claim is true falv = 1.

Now for N = k > 1, assume the claim is proved fbr-1. For eachn € A*~1), group they*~DT ¢ B¢=1) ()
according topy,(m, y*=DT). At least| B*—1) (m)|/(T + 1)I*! of the y*=DT ¢ B¢=1(m) have a common type
pr(m, y®*=DT) = p;(m). Now, group the messages ii*~1) according top,(m). At least|A*=D|/(T + 1)I%]
have a common typgx(m) = px. Now select @V, € Vr(py) such thatl (pg, Vi) < R — €. It is now readily seen
that for them e A=Y with p,(m) = py,

B0 > BEVI > ! IS HW, (20)

B )| = "oy T )| 2 e P2 Zl (Vilp:)
This holds for at leastA*=1|/(T + 1)I¥l > 27E /(T 4 1)*I1*| messages, hence the claim is true. |
Now, note that for ally” € B(N) (m) with m € AN, we also have;/E;{l)TH € T,,v, for all 1 <i < N. Hence,
Vom, BM(m) C T x-xThevy (21)
’ UmEA“\” B(N)(m)| < |TP1V1| X X |TpNVN| (22)

N

< exp, (TZH(pM)> (23)

=1



Finally, putting it all together,

2nR

P.(n,E,D) = Q%RZ > HW(yz

m=1yn gy (m) i=1

61 (m 117 ) (24

> Qn% > > HW<?JZ b <m,yWTJT>> (25)
mEAR e m)N B (m) =1
- o 2 > p< TZ (VillW Ipi) +H(V|Pz))> (26)
mMEAM) yncyp=1(m)NBN) (m)
= w2 B m) exp2< TZ (ViIIW Ipi) +H<V|pl>>> (27)
meAWN)
xpy (=T N [ (D(V;]|W |p;) + H (Vilp;
o (TR <2n! po) + H(Vilp.)) S (B o) B ) o)) (28
meAWN)
TN (D(Vi||Wps) + H(Vilpi
Lo (TR (VlWip) + B ) [( > ‘B(N)(m”)_wmew B(N)(m)’]
2 meAW)
expy (—T I (DWW i) + H(Vilpi))
> X

2nR
AW !
(T + D)V

N
exp (—TZD(%HWW) x

i=1

o D HWAP) |y, gy BV (m)|> @9

,\
Ve

N
(T + 1)N1<2+y>|X| — XDy (T;W(PM) — H(Vilpi) — R>> (30)
N
1
= exXpy <_T;D(VZHW’1%>> [(T-l— 1>N(2+|y|)‘;(‘ — €XPo (—NTG)] (31)
o (TS DVWR) e .
a expo(NTa(T)) [1 — expy (=NT(e — a(T)))] (32)

In inequality (a), we have used Claim 2.1 and the inequality of equation (28)hé selection process of the claim,

for eachp; € Pr, we choose & € Vr(p) with I(p;,V;) < R — € that minimizes the average divergence. Then,

since we can't say anything about thg we bound by the worst cageto take a max over alp € Pr. Taking

logs and dividing byNT' gives the result of the lemma. ]
We now give an inequality relating the ‘sphere packing bofordength4™ with the sphere packing bound.
Lemma 2.2: For anyT > 2|X||Y|, for all p € Pp,

. 21X||V|log T | w|X|[Y| | |X||Y|log(T/| X))
D(U||W < FE, R— s
UEVT(;])[}}?JD,U)SR Wiiwlp) < p<p T + T + T (33)
where
p(p,R) V;[&%SR (VHMI’p), ( )
1
K = max loo ———. (35)

z,y: W (y|x)>0 & W(y‘.ﬁ(})

Proof: First, write p € Pr asp(x) = k,/T wherek, are nonnegative integers that sumTto



Claim 2.2: Let U be an arbitrary channel for whiclv (y|z) — V(y|z)| < 1/k, for all z,y, and U (y|z) =
V(y|z) = 0 whenW (y|z) = 0. Then,

KXY X1V log(T/]X])
T

[D(U[[W]p) = D(V[[WIp)| < T

(36)

Proof:

First, note thatrlogr — slogs| < —|r — s|log|r — s| wheneverr, s € [0, 1]. This can be seen by noting that
the function f(r) = —rlogr,r € [0,1] is concave and maximal absolute sloperat 0, where the derivative is
unbounded above. Hencg/,(r) — f(0)| = —rlogr,r € [0,1] is a bound to the difference between two points on
the curve at distance. Now, keeping in mind that/(y|z) = V (y|x) = 0 wheneverlV (y|z) = 0,

Uole) tog g A%~ Vil os g A5 (@)

[DU[W]p) = DV[Wlp)| < Zp(w) >

Y

< Z ZIU ylz)log U(y|z) — V(yl|z)log V (y|z)| +
Z S UGle) - Vigl)log——  (38)
W (ylz)
y:W(ylz)>0
- 1
< - _
< ZTZ[ gy + 1] (39)
< X y D}’Zlogk (40)
(@) X[ Y|k IXIIyllogT/IX\
<
< T+ T (41)
In (a), we are using the fact that sindéeg is a concave function,
T
log k, < log k, = | X]|1 42
sl oy LR S g D sk = |X]lo 7 2
[ |

Now, for ane > 0, pick V' to be inargminy..;¢, v<p— D(V'||[W]p). We will find aU € Vr(p) such that
I(p,U) < I(p,V)+e€ < R. First, we show that there existslac Vr(p) such thaiU (y|z) — V(y|z)| < ki for all
T, Y. - -

For eachz,y, let U(y|x) = |k V (y|z)|/k.. Note thatU is missing some mass to be a transition matrix if the
entries ofV(-|x) are not multiples ofl /k,. The missing mass can be bounded, for a fixed

1= Ol = Y Vigle) - Uyl) = Zkvmm*—tk Viylo)) t (43)
i Yy
< l/kxzw{y:kxwwm)w}\/kx (44)
y:kV(ylz)¢Z

Now, the missing mass must be a multiplelgk, for eachz becausd’(-|z) has terms that are multiples of k.
Therefore, the missing mass can be distributed amongst that havek,V (y|z) ¢ Z in multiples of1/k, in such

a way so that ng; has more thar /k, mass added to it. We Idf(y|x) be the resulting transition matrix. Since
U(ylz) = |kzV (y|z)]/k, and eithel0 or 1/k, is added to get t&/ (y|x), it follows that|V (y|x) — U (y|z)| < 1/k,.
Also, U(y|z) = 0 whenV (y|x) = 0.

Note that " . X[V
> () Z Utla) = Vi)l <37 Z mS (45)




If T > 2|X||)|, we can use the continuity lemma for entropy in Cover and Thoff#, Lemma 16.3.2], that is

|H(p) — H(q)| < —|lp—qllilog(llp —qll1/|X]) if |lp—qll1 <1/2. By using this lemma twice after expanding the
mutual information, we get

21Xy
10.0) ~ 1. V)| < [HGU) ~ HGV)| +|H(p.U) - Hp. V)| < 202 107, (46)
Hence, oLy
I(p,U)SR—e—FWIOngR 47)
provided
21211 logT <. (48)
T
Therefore, there exists @ € Vr(p), with I(p, U) < R such that
D(U|Wlp) = Eu(p, R—e€)+ DU[W|p) — D(V||W|p) (49)
21XV sIXIYL XYL, T
< S 1 L | i
< E, (p,R T logT ) + T + T log x| (50)

[ ]
Putting the two lemmas together, we get
Theorem 2.1: Fix aT > 2|X||)|, and consider a sequence of block lengffi’, rate Ry > R type 2 coding
systems(En, Dy )F_; With feedback update timé'.

1 2|X
lim ——=log P.(NT,En,Dn) < E <R— a(T) — |1Uy|10gT> +

N—oo NT
sl XY XY, T
1
T + T log x| + a(T) (51)
In other words, for typd and type2 coding systems with feedback deld@yand rateR,
E(R,T) < E¢,(R—0(logT/T)) + O(logT/T) (52)

Proof: The result of lemma 2.1 is monotonic in the rate, so we need talyRy > R and bound using?.
We have just combined the results of the two lemmas togetietaken the limit asV tends toco. The only thing
that needs to be checked is that the term

1 lo !
NT % 1T expy(—NT(c — o(T)))

converges to0 as N — oo for any e > «(T). First, note thatﬁ converges to) as N tends tooco and
1fexp2(7]\}T(67a(T))) tends t.ol from abqve asN tends tooco. Therefore,log 1fe.xp2(?N1T(€7a(T))) is tending to
0 as well and the product in (53) is going towith N. Therefore, can take arbitrarily close toa(7') and since

E,, is continuous for allR except possibly the? at which E,, becomes infinite, we substitutgT") for e. ]

(53)
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