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A bound for block codes with delayed feedback
related to sphere-packing bound

Hari Palaiyanur, Anant Sahai

This note gives an upper bound to the error exponent for block codes used over discrete memoryless channels
(DMCs) with perfect feedback, where the feedback is delayedby some fixed numberT of symbols. The result of
this note is that the error exponent for rateR codes used with perfect feedback delayed byT symbols is upper
bounded by (forT large enough)

Esp(R−O(log T/T )) +O(log T/T ), (1)

whereEsp is the sphere-packing exponent and the constants depend on the channel transition matrix.
There are two reasons to consider this problem. The first is that in modern, high-rate communication systems,

the number of symbols that must be encoded before the encoderreceives a previous channel output (or more likely,
a function of the channel output) can be potentially large. Two reasons for this gap between sending a channel
input and receiving information about the channel output immediately come to mind: large propagation delays
in wireless systems and inherent processing time for demodulation and other processing at the decoder. Consider
communicating20 symbols per microsecond on a20 MHz channel over a distance of1.5 km (round trip3km).
Even without accounting for processing time, the delay for a wave to travel to and fro would be 10 microseconds,
meaning200 symbols should have been transmitted in the meantime. Additionally, many communications systems
have a half-duplex constraint, meaning they cannot listen and transmit at the same time and require some time
to switch the context from talking to listening. Thus, feedback information may not return until the transmitter is
finished transmitting some appropriate ‘block’ of symbols.

The second reason for examining delayed-feedback is strategic. It allows us to approach understanding the
longstanding open problem of the feedback error-exponent for asymmetric DMCs.1 principle (or trunking-principle
in networks) holds that having access to parallel channels should scale up the capacity and error-exponents together.
In other words, by encoding togetherT equal and independent flows together acrossT parallel channels, the error
exponent should improve by a factor ofT . However,T parallel channels with unit-delay feedback are clearly
superior to1 faster channel withT -step delayed feedback. Thus, if the parallel channel principle is true, then
delaying the feedback should have no effect on the error exponent in the limit of large block-lengths that are much
longer than the delay. So the result in this note establishes an interesting dichotomy: either the error-exponent for
asymmetric DMCs is bounded by the classic sphere-packing bound (as everyone believes, but nobody can prove)
or something about feedback interferes with the parallel channel principle. Feedback must be able to help a single
channel alone in a way that it cannot help a group of channels working together. If this were true, it would be
interesting indeed.

1In case this note finds its way into the hands of someone who has not already spent a great deal of time thinking about this problem, here’s
a brief recap of the story so far. For symmetric channels, we know thatthe error-exponent with feedback is limited by the sphere-packing
bound. This was established by Berlekamp in his thesis, shows up as an exercise in Gallager’s book for the BSC case, and was also proved
by Dobrushin. Since the sphere-packing bound can be attained at high-rate without feedback, this established that for fixed block-lengths,
even perfect feedback could only help at low rates, where indeed it was shown to help.

Haroutunian showed a bound that held with feedback for all channels, but while it equals the sphere-packing bound for symmetric channels,
it is strictly greater for asymmetric channels. Haroutunian himself expressed mild frustration at not being able to close this gap. The form
of Haroutunian’s bound clearly suggests that it is loose, but it attempts to account for the fact that the encoder could change the input
distribution in response to the channel feedback. Sheverdyaev had claimed a proof in PPI that finessed this problem, but it suffers from a
“then a miracle occurs” type of step at a critical juncture.

This note grows out of an ongoing dialog between us at Berkeley and Baris Nakiboglu and Giacomo Como at MIT as we have attempted
to resolve the issue.
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Fig. 1. Block coding for a DMCW with delayed feedback.

I. PROBLEM SETUP

The channel has finite input alphabetX , finite output alphabetY and known probability transition matrixW (y|x).
Fix a block lengthn ≥ 1 and a feedback delayT ≥ 2. The channel input at timei ≥ 1 is xi ∈ X and the channel
output at timei is yi ∈ Y. A rateR, block lengthn coding system is an encoder-decoder pair(E ,D).

Definition 1.1 (Type 1 Encoder - DelayT feedback): A rateR, block lengthn encoderE used with feedback
delayed byT symbols is a sequence of maps{φi}ni=1, with for 1 ≤ i ≤ T ,

φi : {1, 2, . . . , 2nR} → X , (2)

and for i > T ,
φi : {1, 2, . . . , 2nR} × Y i−T → X . (3)

Note thatT = 1 is the usual perfect feedback setting where the encoder is aware of the channel output immediately
before the next channel input must be selected.

Definition 1.2 (Type 2 Encoder -T symbol block feedback): This encoder is a more powerful class of en-
coding systems than the ‘DelayT feedback’ encoders. Here feedback is provided to encoder inblocks of T
symbols at a time. That is,(Y1, . . . , YT ) is given to the encoder before the encoder choosesXT+1 and in general
(YiT+1, . . . , Y(i+1)T ) is provided to the encoder at time(i+1)T before the encoder must chooseX(i+1)T+1. Hence
a block lengthn type 2 encoder with rateR is a sequence of maps{φi}ni=1

φi : {1, . . . , 2nR} × Y⌊(i−1)/T ⌋T → X (4)

Note that a type 1 encoder is also a type 2 encoder for a givenT ≥ 1.
A block lengthn decoderD is a map

ψ : Yn → {1, 2, . . . , 2nR} (5)

The decoding regions for each message are thenψ−1(m) = {yn : ψ(yn) = m} for m ∈ {1, . . . , 2nR}, where
yn = (y1, . . . , yn) represents a vector lengthn in Yn.

The random messageM is selected from{1, 2, . . . , 2nR} uniformly and we wish to calculate bounds on the
average probability of error over all messages. The probability of error for a rateR, block lengthn, T -symbol
feedback type2 coding system(E ,D) is defined as

Pe(n, E ,D) =
1

2nR

2nR∑

m=1

Pr(ψ(Y n) 6= m|M = m) (6)

=
1

2nR

2nR∑

m=1

∑

yn /∈ψ−1(m)

n∏

i=1

W

(
yi

∣∣∣∣φi
(
m, y⌊(i−1)/T ⌋T

))
(7)

If we let C(n,R, T ) be the set of block lengthn coding systems with rate at least equal toR used with delay
T feedback type 2 encoders, we define the error exponent at rateR to be

E(R, T ) = lim sup
n→∞

−
1

n
log min

(E,D)∈C(n,R,T )
Pe(n, E ,D) (8)
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Haroutunian showed the following result for channels with perfect feedback (for anyT ≥ 1),

E(R, T ) ≤ Eh(R) , min
V :C(V )≤R

max
p
D(V ||W |p) (9)

In the above, the minimization is over channel transition matrices whose capacity is at mostR, the maximization
is over all probability mass functionsp on the input alphabetX , andD(V ||W |p) is the average divergence,

D(V ||W |p) =
∑

x∈X

p(x)
∑

y∈Y

V (y|x) log
V (y|x)

W (y|x)
(10)

To ensure that continuity holds, we define0 log 0 , 0 and1/0 , ∞. Note that because the divergence is linear in
p, the optimization in theEh(R) over p is attained at a corner point, which has no connection to the proportion
with which an actual code uses that symbol over the channel.

The sphere packing bound,Esp(R) is defined as

Esp(R) , max
p

min
V :I(p,V )≤R

D(V ||W |p) (11)

whereI(p, V ) is the mutual information of input distributionp across a channelV ,

I(p, V ) =
∑

x∈X ,y∈Y

p(x)V (y|x) log
V (y|x)∑

x′∈X p(x
′)V (y|x′)

(12)

The sphere-packing bound serves as an upper bound to the errorexponent for coding systems used with no feedback
(i.e. T = ∞).

For suitably ‘output symmetric’ channels as defined by Haroutunian [1] and Gallager [2],Esp(R) = Eh(R) for
all R ≥ 0, however, in general, for asymmetric channels such as the binary ‘Z-channel’,Eh(R) > Esp(R). It
is believed that the Haroutunian bound is loose and the sphere-packing bound should hold for block codes with
perfect feedback (for anyT ≥ 1).

II. RESULT

Without loss of generality, we restrict attention ton that are multiples ofT , that isn = NT for someN ≥ 1
(i.e. there areN total blocks of sizeT symbols each). Furthermore, we prove a bound on type 2 encoding systems,
which immediately becomes a bound on type 1 encoders as well.

First, letPT denote the set of types forX T (as discussed in the book of Csiszar and Korner [3]). Second, for
any givenp ∈ PT , let VT (p) be the set ofV -shells associated with typep, i.e. the set of transition matrices for
which V (·|x) is a type forYTp(x) for eachx ∈ X .

Lemma 2.1: Define the channel independent constant

α(T ) ,
|X |(2 + |Y|) log(T + 1)

T
(13)

Fix an ǫ > α(T ). Then, for any block lengthn = NT (with N ≥ 1) rateR coding system with a type 2 encoder,

−
1

NT
logPe(NT, E ,D) ≤ max

p∈PT

min
V ∈VT (p):I(p,V )≤R−ǫ

D(V ||W |p) + α(T ) +
1

NT
log

1

1 − exp(−NT (ǫ− α(T )))
(14)

Proof: The argument begins, as with the sphere packing proof for codes without feedback, by showing that
there is a roughly rateR code for which most codewords have the same input types. This is normally done by
whittling down the messages to those whose codewords belongto the largest common type, by message population.
We now have feedback everyT symbols, so we need to carefully show in what way messages have the same input
types. We do this by induction onN , the total number ofT -length blocks.

First, for N = 1, there has been no feedback. Letp1(m) denote the type ofxT (m) , (φ1(m), . . . , φT (m)).
Now, group messages according to their typep1(m). Since|PT | is at most(T +1)|X |, there exists ap1 ∈ PT such
that

|{m : p1(m) = p1}| ≥
2nR

(T + 1)|X |
(15)
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This is the usual argument for fixing the composition of a high rate subcode in the proof of the sphere packing
bound for codes used without feedback. After this, we choosea V1 ∈ VT (p1) such thatI(p1, V1) ≤ R − ǫ. The
choice ofV1 is made so as to minimizeD(V1||W |p1) amongst thoseV1 ∈ VT (p1) that haveI(p1, V1) ≤ R− ǫ. The
existence of aV1 such thatI(p1, V1) ≤ R − ǫ is not immediately obvious for channels in whichEsp(R) can be
infinite, even ifEsp(R) is not infinite for the givenR. If no suchV1 exists, the result of the lemma is meaningless
if we take the convention thatmin over the null set is∞. Hence, if the optimization in the right hand side of (14)
evaluates to something finite, we can safely assume the existence, for eachp1 of a V1 with I(p1, V1) ≤ R− ǫ. For
the rest of the proof, we assume we are in this case.

Without feedback, the selection at this point would be enough to show that for a high rate subcode with the
same type, a substantial portion of the selectedV1-shells around the codewords for these messages overlap to cause
a significant error. However, we now have feedback everyT symbols, so we will iterate this selection processN
times. We will prove a claim showing that the messages are notthinned too much and there are manyyn sequences
which must ‘overlap’. We will do this by selectingN input typesp1, . . . , pN andN channel shellsV1, . . . , VN
sequentially and use induction. Let, for1 ≤ k ≤ N ,

B(k)(m) ,
{
ykT : y(k−1)T ∈ B(k−1)(m), pk(m, y

(k−1)T ) = pk, y
kT
(k−1)T+1 ∈ TVk

(
xkT(k−1)T+1(m, y

(k−1)T )
)}

(16)
where pk(m, y(k−1)T ) is the type ofxkT(k−1)T+1(m, y

(k−1)T ) ,
(
φ(k−1)T+1(m, y

(k−1)T ), . . . , φkT (m, y(k−1)T )
)
.

Now, let for 1 ≤ k ≤ N ,

A(k) ,

{
m : |B(k)(m)| ≥

1

(T + 1)k(|X |+|X ||Y|)
2T

P

k

i=1H(Vi|pi)

}
(17)

Note the dependence of both theA(k) andB(k)(m) sets onpi andVi. We drop the dependence in the notation for
convenience.

Claim 2.1: For a block lengthn = NT , rateR type 2 encoder, there existsp1, . . . , pN ∈ PT andV1, . . . , VN ,
with Vi ∈ arg minV ∈VT (pi):I(pi,V )≤R−ǫD(V ||W |pi) such that

|A(N)| ≥
2nR

(T + 1)N |X |
(18)

Proof: We proceed by induction with the base case ofN = k = 1. As we have seen there is ap1 ∈ PT such
that at least2nR/(T +1)|X | messages havep1(m) = p1. We then chooseV1 ∈ VT (p1) such thatI(p1, V1) ≤ R− ǫ.
It is clear that for thosem with p1(m) = p1,

|B(1)(m)| = |TV1
(p1)| ≥

1

(T + 1)|X ||Y|
exp2(TH(V1|p1)) (19)

where|TV (p)| denotes the number of vectors in aV -shell around a vector of typep (i.e. |TV (xT )| if xT is of type
p). Hence, the claim is true forN = 1.

Now forN = k > 1, assume the claim is proved fork−1. For eachm ∈ A(k−1), group they(k−1)T ∈ B(k−1)(m)
according topk(m, y(k−1)T ). At least |B(k−1)(m)|/(T + 1)|X | of the y(k−1)T ∈ B(k−1)(m) have a common type
pk(m, y

(k−1)T ) = pk(m). Now, group the messages inA(k−1) according topk(m). At least |A(k−1)|/(T + 1)|X |

have a common typepk(m) = pk. Now select aVk ∈ VT (pk) such thatI(pk, Vk) ≤ R − ǫ. It is now readily seen
that for them ∈ A(k−1) with pk(m) = pk,

|B(k)(m)| ≥
|B(k−1)(m)|

(T + 1)|X |
|TVk

(pk)| ≥
1

(T + 1)k(|X |+|X ||Y|)
exp2

(
T

k∑

i=1

H(Vi|pi)

)
(20)

This holds for at least|A(k−1)|/(T + 1)|X | ≥ 2nR/(T + 1)k|X | messages, hence the claim is true.
Now, note that for allyn ∈ B(N)(m) with m ∈ A(N), we also haveyiT(i−1)T+1 ∈ TpiVi

for all 1 ≤ i ≤ N . Hence,

∀ m, B(N)(m) ⊂ Tp1V1
× · · · × TpNVN

(21)

∴ | ∪m∈A(N) B(N)(m)| ≤ |Tp1V1
| × · · · × |TpNVN

| (22)

≤ exp2

(
T

N∑

i=1

H(piVi)

)
(23)
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Finally, putting it all together,

Pe(n, E ,D) =
1

2nR

2nR∑

m=1

∑

yn /∈ψ−1(m)

n∏

i=1

W

(
yi

∣∣∣∣φi
(
m, y⌊i/T ⌋T

))
(24)

≥
1

2nR

∑

m∈A(N)

∑

yn∈ψ−1(m)∩B(N)(m)

n∏

i=1

W

(
yi

∣∣∣∣φi
(
m, y⌊i/T ⌋T

))
(25)

=
1

2nR

∑

m∈A(N)

∑

yn∈ψ−1(m)∩B(N)(m)

exp2

(
−T

N∑

i=1

(D(Vi||W |pi) +H(Vi|pi))

)
(26)

=
1

2nR

∑

m∈A(N)

|ψ−1(m) ∩B(N)(m)| exp2

(
−T

N∑

i=1

(D(Vi||W |pi) +H(Vi|pi))

)
(27)

=
exp2

(
−T

∑N
i=1(D(Vi||W |pi) +H(Vi|pi))

)

2nR

∑

m∈A(N)

(|B(N)(m)| − |B(N)(m) ∩ ψ−1(m)|) (28)

≥
exp2

(
−T

∑N
i=1(D(Vi||W |pi) +H(Vi|pi))

)

2nR

[(
∑

m∈A(N)

|B(N)(m)|

)
− | ∪m∈A(N) B(N)(m)|

]

≥
exp2

(
−T

∑N
i=1(D(Vi||W |pi) +H(Vi|pi))

)

2nR
×

(
|A(N)|

1

(T + 1)N(|X |+|X ||Y|)
2T

P

N

i=1H(Vi|pi) − | ∪m∈A(N) B(N)(m)|

)
(29)

(a)

≥ exp2

(
−T

N∑

i=1

D(Vi||W |pi)

)
×

[
1

(T + 1)N(2+|Y|)|X |
− exp2

(
T

N∑

i=1

(H(piVi) −H(Vi|pi) −R)

)]
(30)

≥ exp2

(
−T

N∑

i=1

D(Vi||W |pi)

)[
1

(T + 1)N(2+|Y|)|X |
− exp2 (−NTǫ)

]
(31)

=
exp2

(
−T

∑N
i=1D(Vi||W |pi)

)

exp2(NTα(T ))
[1 − exp2 (−NT (ǫ− α(T )))] (32)

In inequality(a), we have used Claim 2.1 and the inequality of equation (23). In the selection process of the claim,
for eachpi ∈ PT , we choose aVi ∈ VT (p) with I(pi, Vi) ≤ R − ǫ that minimizes the average divergence. Then,
since we can’t say anything about thepi, we bound by the worst casep to take a max over allp ∈ PT . Taking
logs and dividing byNT gives the result of the lemma.

We now give an inequality relating the ‘sphere packing boundfor length-T ’ with the sphere packing bound.
Lemma 2.2: For anyT ≥ 2|X ||Y|, for all p ∈ PT ,

min
U∈VT (p):I(p,U)≤R

D(U ||W |p) ≤ Esp

(
p,R−

2|X ||Y| log T

T

)
+
κ|X ||Y|

T
+

|X ||Y| log(T/|X |)

T
(33)

where

Esp(p,R) , min
V :I(p,V )≤R

D(V ||W |p), (34)

κ , max
x,y:W (y|x)>0

log
1

W (y|x)
. (35)

Proof: First, write p ∈ PT asp(x) = kx/T wherekx are nonnegative integers that sum toT .
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Claim 2.2: Let U be an arbitrary channel for which|U(y|x) − V (y|x)| ≤ 1/kx for all x, y, andU(y|x) =
V (y|x) = 0 whenW (y|x) = 0. Then,

|D(U ||W |p) −D(V ||W |p)| ≤
κ|X ||Y|

T
+

|X ||Y| log(T/|X |)

T
(36)

Proof:
First, note that|r log r − s log s| ≤ −|r − s| log |r − s| wheneverr, s ∈ [0, 1]. This can be seen by noting that

the functionf(r) = −r log r, r ∈ [0, 1] is concave and maximal absolute slope atr = 0, where the derivative is
unbounded above. Hence,|f(r) − f(0)| = −r log r, r ∈ [0, 1] is a bound to the difference between two points on
the curve at distancer. Now, keeping in mind thatU(y|x) = V (y|x) = 0 wheneverW (y|x) = 0,

|D(U ||W |p) −D(V ||W |p)| ≤
∑

x

p(x)
∑

y

∣∣∣∣U(y|x) log
U(y|x)

W (y|x)
− V (y|x) log

V (y|x)

W (y|x)

∣∣∣∣ (37)

≤
∑

x

kx
T

∑

y

|U(y|x) logU(y|x) − V (y|x) log V (y|x)| +

∑

x

kx
T

∑

y:W (y|x)>0

|U(y|x) − V (y|x)| log
1

W (y|x)
(38)

≤
∑

x

kx
T

∑

y

[
1

kx
log kx +

1

kx
κ

]
(39)

≤
|X ||Y|κ

T
+

|Y|

T

∑

x

log kx (40)

(a)

≤
|X ||Y|κ

T
+

|X ||Y| log T/|X |

T
(41)

In (a), we are using the fact that sincelog is a concave function,

max
kx∈N:

P

x
kx=T

∑

x

log kx ≤ max
kx∈R≥0:

P

x
kx=T

∑

x

log kx = |X | log
T

|X |
(42)

Now, for an ǫ > 0, pick V to be in arg minV ′:I(p,V ′)≤R−ǫD(V ′||W |p). We will find a U ∈ VT (p) such that
I(p, U) ≤ I(p, V ) + ǫ ≤ R. First, we show that there exists aU ∈ VT (p) such that|U(y|x)−V (y|x)| ≤ 1

kx

for all
x, y.

For eachx, y, let Ũ(y|x) = ⌊kxV (y|x)⌋/kx. Note thatŨ is missing some mass to be a transition matrix if the
entries ofV (·|x) are not multiples of1/kx. The missing mass can be bounded, for a fixedx,

1 −
∑

y

Ũ(y|x) =
∑

y

V (y|x) − Ũ(y|x) =
∑

y

kxV (y|x)
1

kx
− ⌊kxV (y|x)⌋

1

kx
(43)

≤
∑

y:kxV (y|x)/∈Z

1/kx = |{y : kxV (y|x) /∈ Z}|/kx (44)

Now, the missing mass must be a multiple of1/kx for eachx becausẽU(·|x) has terms that are multiples of1/kx.
Therefore, the missing mass can be distributed amongst they that havekxV (y|x) /∈ Z in multiples of1/kx in such
a way so that noy has more than1/kx mass added to it. We letU(y|x) be the resulting transition matrix. Since
Ũ(y|x) = ⌊kxV (y|x)⌋/kx and either0 or 1/kx is added to get toU(y|x), it follows that |V (y|x)−U(y|x)| ≤ 1/kx.
Also, U(y|x) = 0 whenV (y|x) = 0.

Note that ∑

x

p(x)
∑

y

|U(y|x) − V (y|x)| ≤
∑

x

kx
T

∑

y

1

kx
≤

|X ||Y|

T
. (45)
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If T ≥ 2|X ||Y|, we can use the continuity lemma for entropy in Cover and Thomas [[4], Lemma 16.3.2], that is
|H(p)−H(q)| ≤ −‖p− q‖1 log(‖p− q‖1/|X |) if ‖p− q‖1 ≤ 1/2. By using this lemma twice after expanding the
mutual information, we get

|I(p, U) − I(p, V )| ≤ |H(pU) −H(pV )| + |H(p, U) −H(p, V )| ≤
2|X ||Y|

T
log T. (46)

Hence,

I(p, U) ≤ R− ǫ+
2|X ||Y|

T
log T ≤ R (47)

provided
2|X ||Y|

T
log T ≤ ǫ. (48)

Therefore, there exists aU ∈ VT (p), with I(p, U) ≤ R such that

D(U ||W |p) = Esp(p,R− ǫ) +D(U ||W |p) −D(V ||W |p) (49)

≤ Esp

(
p,R−

2|X ||Y|

T
log T

)
+
κ|X ||Y|

T
+

|X ||Y|

T
log

T

|X |
(50)

Putting the two lemmas together, we get
Theorem 2.1: Fix a T ≥ 2|X ||Y|, and consider a sequence of block lengthNT , rateRN ≥ R type 2 coding

systems(EN ,DN )∞N=1 with feedback update timeT .

lim
N→∞

−
1

NT
logPe(NT, EN ,DN ) ≤ Esp

(
R− α(T ) −

2|X ||Y|

T
log T

)
+

κ|X ||Y|

T
+

|X ||Y|

T
log

T

|X |
+ α(T ) (51)

In other words, for type1 and type2 coding systems with feedback delayT and rateR,

E(R, T ) ≤ Esp(R−O(log T/T )) +O(log T/T ) (52)

Proof: The result of lemma 2.1 is monotonic in the rate, so we need onlythatRN ≥ R and bound usingR.
We have just combined the results of the two lemmas together and taken the limit asN tends to∞. The only thing
that needs to be checked is that the term

1

NT
log

1

1 − exp2(−NT (ǫ− α(T )))
(53)

converges to0 as N → ∞ for any ǫ > α(T ). First, note that 1
NT converges to0 as N tends to∞ and

1
1−exp2(−NT (ǫ−α(T ))) tends to1 from above asN tends to∞. Therefore,log 1

1−exp2(−NT (ǫ−α(T ))) is tending to
0 as well and the product in (53) is going to0 with N . Therefore, can takeǫ arbitrarily close toα(T ) and since
Esp is continuous for allR except possibly theR at whichEsp becomes infinite, we substituteα(T ) for ǫ.
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