
Occlusions in Camera Networks and Vision: The
Bridge between Topological Recovery and Metric

Reconstruction

Edgar J. Lobaton

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-67

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-67.html

May 18, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I want to thank Prof. Shankar Sastry, Prof. Ruzena Bajcsy and Prof. Robion
Kirby for all of their valuable feedback and excellent guidance, and Ram
Vasudevan and Parvez Ahammad for their contributions to this work. This
research work was partially funded by the ARO MURI grant W911NF-06-1-
0076, and AFOSR grant FA9550-06-1-0267.

Occlusions in Camera Networks and Vision:

The Bridge between Topological Recovery and Metric Reconstruction

by

Edgar J. Lobaton

B.S. (Seattle University) 2004

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering-Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor S. Shankar Sastry, Chair

Professor Ruzena Bajcsy
Professor Robion Kirby

Spring 2009

The dissertation of Edgar J. Lobaton is approved:

Chair Date

Date

Date

University of California, Berkeley

Occlusions in Camera Networks and Vision:

The Bridge between Topological Recovery and Metric Reconstruction

Copyright 2009

by

Edgar J. Lobaton

1

Abstract

Occlusions in Camera Networks and Vision:

The Bridge between Topological Recovery and Metric Reconstruction

by

Edgar J. Lobaton

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor S. Shankar Sastry, Chair

Camera networks are widely used for security and tracking. Knowledge of camera locations

and geometric constraints in the environment are usually assumed in order to accomplish

these tasks. However, many of these tasks do not require actual localization. Topological

information about the network coverage is many times sufficient. In this work, a simplicial

representation called the CN -Complex is presented which captures accurate topological

information about the coverage of the network. The construction process of this repre-

sentation relies on the detection of occlusion events. Occlusions are shown to occur when

certain generalized topological invariants are violated. The use of these sparse events leads

to algorithms which require the extraction of information from continuous observations.

The CN -Complex is shown to be useful for navigation and path identification purposes.

Augmenting this representation leads to the discovery of relations between camera pairs

2

providing relative positions at different degrees of accuracy. These relations create a bridge

between a purely topological model and a fully localized network. Several theoretical re-

sults are shown for occlusion detection and topology recovery, which are then validated by

simulations and experiments.

Professor S. Shankar Sastry
Dissertation Committee Chair

i

To my family,

Everyone that supported me through this journey, and

The Maple that kept me alive

through those moments of dispair.

ii

Contents

List of Figures iv

List of Tables viii

1 Introduction 1

2 Mathematical Background 8
2.1 Simplicial Homology . 8
2.2 Example . 10
2.3 Čech Theorem . 12
2.4 Persistent Homology . 13

3 The CN-Complex 16
3.1 Related Work . 17
3.2 The Environment Model . 19

3.2.1 The Problem in 2.5D . 19
3.2.2 Mapping from 2.5D to 2D . 21
3.2.3 The Problem in 2D . 22

3.3 The CN -Complex . 23
3.3.1 The Decomposition Theorem . 24
3.3.2 From 2D to 2.5D . 27

3.4 Simulations in 2D for Single Target . 29
3.5 Experimentation . 31
3.6 Extensions . 35

3.6.1 Challenges in 3D . 35
3.6.2 Extensions to Mobile Agents . 36

3.7 Discussion . 37

4 Robust Complex Building 39
4.1 Finding Bisecting Lines . 41
4.2 Finding Intersect Points . 41

4.2.1 The Algorithm . 45

iii

4.2.2 Simulations for Multiple Targets . 48
4.3 Experimentation . 51
4.4 Discussion . 54

5 Navigation and Path Identification 55
5.1 Finding a Path in a Complex . 57
5.2 Mapping from Complex to Physical Layout 58

5.2.1 2D Navigation . 59
5.2.2 2.5D Navigation . 60

5.3 Identifying Homotopic Paths . 62
5.4 Finding Homotopically Distinct Paths . 63
5.5 Discussion . 65

6 Camera Relations 66
6.1 Defining Relations . 67
6.2 Finding Relations . 69
6.3 Examples . 70
6.4 Discussion . 72

7 Occlusion Detection in Non-Static Scenes 73
7.1 Related Work . 76
7.2 Notation and Image Model . 78
7.3 Histogram Flows . 81

7.3.1 Defining Flows . 82
7.3.2 Determining Histogram Flows . 84

7.4 Occlusion Indicators . 85
7.5 Analysis . 87
7.6 Discussion . 91

Bibliography 92

Bibliography 93

A Proof of Decomposition Theorem 2 98

B Proof of Proposition 1 109

C Proof of Theorems 5 and 6 110
C.1 Proof of Theorem 5 . 110
C.2 Proof of Theorem 6 . 113

iv

List of Figures

1.1 A physical layout (left) and an abstract layout (right) for an building floor are
shown. Note that the abstract layout contains enough information about the
topological structure of the environment and characterizes the space up to a
certain degree. This abstraction is sufficient to perform general surveillance
and navigation tasks. A dashed path in the physical layout is easily mapped
to a path in the abstract layout. 4

1.2 A simple layout where four cameras are placed in a configuration that re-
sembles a circular hallway (left). A path for a target and the line of sight
(dashed line) in which an occlusion is detected for camera 1 (right). 5

1.3 Detections over time for the path shown in figure 1.2 (right). The dashed
line in the observations of camera 1 correspond to the line of sight in the
previous figure. 5

1.4 A longer trajectory in the environment (left) and corresponding observations
over time (right). 7

2.1 A collection of sets (left) and corresponding nerve complex (right). The
complex is formed by simplices: [1], [2], [3], [4], [5], [1 2], [2 3], [2 4], [2 5],
[3 5], [4 5] and [2 4 5]. Pictorially, 1-simplices can be represented by edges
and 2-simplices by triangles. 10

2.2 Snapshots of a family of images Sτ for τ ∈ [0, 1]. The collection starts
with two connected components which merge at τ = 0.4 as shown in the β0

diagram. A hole is present until τ = 0.15 as depicted in the β1 diagram. . . 14
2.3 A binary image S0 resulting from color segmentation (left) and the corre-

sponding β0 diagram (right). The collection of segmentations Sτ correspond
to dilating the image S0 over a chosen range. Given the persistence dia-
gram, we could conclude an average of 1.6 connected components or a single
persistent connected component. 15

3.1 Mapping from 2.5D to 2D : A camera and its FOV are shown from multiple
perspectives (left and middle), and its corresponding mapping to 2D (right).
For the 2.5D configuration, the planes displayed bound the space that can
be occupied by the target. 21

v

3.2 Nerve complexes obtained from the collection {Cα}. One complex captures
the correct topological information (left) but the other does not (right). . . 24

3.3 Three examples of camera domains Dα. Cameras can be inside or outside
their domains. Our camera model spans projection models from perspective
cameras to omni-directional cameras. Decompositions are shown for each set. 26

3.4 Examples of CN -Complexes. In both cases, camera 1 is decomposed into
three regions, each of which becomes a vertex in the complex. 26

3.5 A layout with two objects where C3 is shown (left). A circular hallway con-
figuration where C1 is shown (right). Dashed lines represent corresponding
bisecting lines. Dotted curves represent the paths followed by the target
during the simulation. 30

3.6 Layout used for our experiment. A diagram showing the location of the
different cameras (left). A picture of our experimental maze (bottom-right).
The CITRIC camera motes used for our experiments (top-right). 32

3.7 View of camera 5 from the layout in figure 3.6 before (left) and after (right)
a bisecting line is found. 33

3.8 Paths traveled by the robot in the maze (shown in dashed lines): In the
physical layout (left), and in the CN -Complex (right). These paths can be
compared by using the algebraic topological tools covered in chapter 2. . . . 34

3.9 3D layout in which a hole in the set of feasible locations for the target is not
captured by the CN -Complex: A side view (left) and top view (right) of the
configuration showing a target in the scene. Note that it is not possible to
detect bisecting lines in this configuration. 36

4.1 The CN -Complex for a network of three cameras constructed using the
methodology presented in this chapter. The views from different cameras
(left). Bisected views due to occluding objects (middle). The simplicial com-
plex built by finding the overlap in the coverage of the cameras (right). The
simplicial complex, correctly, contains a single hole (i.e. the loop with ver-
tices 1a, 1b, 3b, 3c and 3d) that corresponds to the column which acts as an
occluding object in the physical coverage. 40

4.2 Steps for finding bisecting lines: For the original view (top-left), the bound-
aries of the foreground masks are accumulated whenever occlusion events are
detected (top-right). Vertical bisecting lines are estimated by aggregating ob-
servations over all rows and obtaining the indices of the column in which the
highest detections were obtained (bottom-left). Bisecting lines are further
refined through a linear fit procedure using the accumulated observations
(bottom-right). 42

4.3 Geometric depiction illustrating different overlapping configurations and cor-
responding detection probabilities for 3 targets. Intuitively, whenever R1 and
R2 are disjoint we expect a low value of P (Dt

2|D
t
1) (left). If |R1| ≈ |R2| ≈

0.005 then P (Dt
2|D

t
1) ≈ 0.01 by using equation 4.3. For a partial overlap,

we expect a larger probability value (middle). If |R1| ≈ |R2| ≈ 0.01 and
|R1 ∪ R2| ≈ 0.015 then P (Dt

2|D
t
1) ≈ 0.5. For a perfect overlap, we observe

that P (Dt
2|D

t
1) = 1. 44

vi

4.4 Layout of a circular corridor setup with two targets moving through the
environment (left). Intersect points found, plotted as squares, for a threshold
value τ = 0.5 with corresponding bisecting lines, plotted as dashed lines (right). 49

4.5 CN -Complexes for several values of τ (top) and persistence diagrams (bot-
tom) are shown for the circular corridor setup in figure 4.4. We observe that
the diagram shows a persistent single connected component and a persistent
loop. 50

4.6 Layout of an environment with two objects and three targets (left). Corre-
sponding persistence diagrams showing a single persistent connected compo-
nent and two holes (right). 50

4.7 Experimental setup: Physical layout for cameras in the experiment (top).
Views for cameras 1 (middle-left) through 3 (middle-right), and correspond-
ing detected bisecting lines (bottom). 52

4.8 CN -Complex found for our experiment using a threshold value of τ = 0.5
(left). Persistence diagrams for the filtration obtained from the experiment
(right). Note, a single connected component and hole are the correct persis-
tent features. The hole is due to the column in the middle of the room. . . 53

4.9 Plots of the number of block detections per occlusion event over time. Note
that the events are relatively sparse (over an 8.5 minutes period), and the
number of blocks detected at each time step is under 15 in most cases. . . . 53

5.1 A simple circular hallway layout (left) and corresponding CN -Complex (right).
Note that each camera node has been split into vertices a and b. 55

5.2 Navigation in the layout of figure 5.1: Diagram showing representative in-
tersect points found in the layout (left) and two navigation paths obtained
using the CN -Complex (right). 61

5.3 Plots (a)-(c) show several paths joining vertices 1a and 4a. Plots (d) and (e)
show the corresponding loops formed using these paths. 63

5.4 Homotopically distinct paths found connecting point p to point q in the envi-
ronment. Paths are graphically depicted as piecewise linear paths connecting
intersect points. 64

6.1 Sample configuration for one line of sight for each camera (left). Note that
if we assume that these lines intersect and fix the line of sight of camera α,
camera β can be virtually anywhere. Sample configuration for two lines of
sight for camera α and one for camera β (middle). Sample configuration for
two lines of sight for both cameras (right). 67

6.2 Configuration space for camera β given a fixed camera α with line of sights
Ll

α and Lr
α (left). We note there are essentially four regions in which camera

β can be (i.e. to the left in RL, to the right in RR, in the front in RF , or
behind in RB). A configuration in which Ll

α ∩ Lβ 6= ∅ and Lr
α ∩ Lβ = ∅

(middle) is shown. A configuration in which Ll
α ∩ Lβ 6= ∅ and Lr

α ∩ Lβ 6= ∅
(right) is shown. 68

vii

6.3 Finding relations between two cameras: Initial setup of the cameras (left).
Cameras after adding some bisecting lines to their field of view (right). Note
that by considering the lines L1

α, L2
α, L1

β and L2
β we conclude that camera β

is in front of camera α between L1
α and L2

α. By considering L3
α, L4

α, L1
β and

L2
β we can further conclude that β is in front of α between L3

α and L4
α. . . . 71

6.4 Original configuration of two cameras (left). Camera β is bisected in order to
have a field of view without bisecting lines (middle). Note that the relation
discovered from lines L1

α, L2
α, L1

β and L2
β tells us that camera β is either

to the right or the left of camera α. Utilizing lines L3
α, L2

α, L1
β and L3

β we
conclude that camera β is to the left of camera α. 71

7.1 Three consecutive frames from a walking sequence are shown. The detection
of occlusions using local topological invariants is made with respect to the
middle frame (top-left). Appearances between the middle and bottom frames
(bottom-left) are marked as red in the middle frame, and disappearances
between the middle and top frames (top right) are marked as blue in the
middle frame. All of the occlusions are compiled in the bottom right plot. . 75

7.2 Diagram illustrating flows fR and fL between adjacent bins for a histogram
vector v where Np = 5. 83

7.3 Illustration of how to count connected components for neighborhood Kr (left)
and Kr+C (right). There are 5 connected components in Kr+C . There are
6 connected components in Kr and 3 connected components after boundary
identification. Without boundary identification we could erroneously con-
clude that a set disappeared. 86

7.4 Three consecutive frames from synthetic sequence are shown. The color
used for the sets are: 0, 75, 150 and 250. The detection of occlusions using
local topological invariants is made with respect to the middle frame (top-
left). Appearances between the middle and bottom frames (bottom-left) are
marked as red in the middle frame, and disappearances between the middle
and top frames (top right) are marked as blue in the middle frame. All of
the occlusions are compiled in the bottom right plot. 89

7.5 Three consecutive frames from a sequence of a hand in front of a moving
Macbeth board are shown. The detection of occlusions using local topological
invariants is made with respect to the middle frame (top-left). Appearances
between the middle and bottom frames (bottom-left) are marked as red in the
middle frame, and disappearances between the middle and top frames (top
right) are marked as blue in the middle frame. The accumulated occlusions
over the entire sequence are compiled in the bottom right plot. 90

A.1 Cases for lemma 5: Two monotone paths forming the boundary of the set
(left). A line segment joining p to q (right) 102

A.2 Construction steps of a monotone convex path for lemma 6. 103
A.3 Illustration for the construction of Γ. 106
A.4 Illustrations for Case 1. 107
A.5 Illustrations for Case 2. 108

viii

List of Tables

1.1 Labels for different occlusion events . 6

4.1 Summary of Detections for the Whole Sequence 53

ix

Acknowledgments

I want to thank Prof. Shankar Sastry, Prof. Ruzena Bajcsy and Prof. Robion Kirby

for all of their valuable feedback and excellent guidance, and Ram Vasudevan and Parvez

Ahammad for their contributions to this work. This research work was partially funded by

the ARO MURI grant W911NF-06-1-0076, and AFOSR grant FA9550-06-1-0267.

1

Chapter 1

Introduction

Sensor networks are widely used for tasks such as surveillance, monitoring, and

tracking. In order to accomplish these tasks, knowledge of localization information such as

camera locations and other geometric constraints about the environment (e.g. walls, rooms,

and building layout) are typically considered to be essential. However, there are situations

in which the localization of the sensors is unknown (e.g. unavailability of GPS or an ad-hoc

network setup). A common approach to overcoming this challenge has been to determine

the exact localization of the sensors and reconstruction of the surrounding environment.

Nevertheless, there is evidence supporting the hypothesis that many of the tasks at hand

may not require exact localization information. In particular, this information is not re-

quired for tasks such as estimating the topology of the network coverage, or coordinate-free

object tracking and navigation.

In this manuscript, we consider a sensor network with camera sensors where each

camera node can perform local computations, and they can extract symbolic/discrete obser-

2

vations to be transmitted for further processing. This conversion to symbolic representation

alleviates the communication overhead for a wireless network. This is a significant benefit

as self-localization algorithms can be computationally expensive and require the exchange of

large volumes of data. These discrete observations are used to build a model of the environ-

ment without any prior localization information of objects or the cameras themselves. Once

such non-metric reconstruction of the camera network is accomplished, this representation

is used for tasks such as coordinate-free navigation, target-tracking, and path identification.

One of the fundamental questions in the context of camera networks is whether a

network is limited to perform only tasks that a single camera can perform, but at a larger

scale, or if the total network is “greater” than the sum of the parts. Imagine a camera

network where no inter-relationship between the cameras is known. It is natural to ask

what the spatial relationship between cameras is. For surveillance applications in which

multiple views are certainly useful, it is investigated how object tracking information from

multiple cameras can be aggregated and analyzed. A related and important question here

involves how to manage the processing and flow of data between the cameras. Note that

all of these questions can be approached using knowledge of the topology of the coverage

of the network. In particular, topology awareness makes it possible to design more efficient

routing and broadcasting schemes as it is discussed by M. Li et al [28]. This knowledge in

turn can also aid the control mechanism for more energy-efficient usage.

Let us describe two scenarios in which some weak geometric information can aid

in tracking and navigation for a large non-localized camera network:

1. Consider tracking of a target through an urban environment. In this scenario, it may

3

be of interest to classify the path followed by the target. For example, it would be

desirable for the network to specify whether the target went around a specific landmark

instead of returning a list of cameras in which the target was visible. This can be

accomplished by identifying paths that are homotopic to each other (i.e. that can be

deformed continuously from one to another). This allows distinguishing between paths

that go around a building clockwise or counter-clockwise without worrying about

specific cameras visited. Note that this cannot be done by knowledge of pairwise

connectivity between cameras alone (as in the case of so called connectivity/vision

graphs).

2. A second scenario where topological information is useful is navigation through an

urban environment. This task can be accomplished by making use of local target

tracking and a set of directions such as where to turn right, and when to keep going

straight. In this case, a general description of the surroundings and the target location

is sufficient to guide the target around obstacles.

Figure 1.1 serves as a didactic tool to understand the information required for the

approach to coordinate free tracking and navigation problems. Observe that the complete

floor plan (left) and corresponding abstract representation (right) serve an equivalent pur-

pose. The abstract representation allows us to track a target and navigate through the

environment. The goal in this context is to use the continuous observations from camera

nodes to extract the necessary symbols to create this representation.

It turns out that the most useful symbolic information that is extracted comes

from occlusions. In the field of computer vision, occlusions are typically considered to be a

4

Figure 1.1: A physical layout (left) and an abstract layout (right) for an building floor are
shown. Note that the abstract layout contains enough information about the topological
structure of the environment and characterizes the space up to a certain degree. This
abstraction is sufficient to perform general surveillance and navigation tasks. A dashed
path in the physical layout is easily mapped to a path in the abstract layout.

nuisance and are either ignored or overcome. However, in this context, occlusions will be

the source of information for the model.

In order to illustrate how symbols can be extracted from occlusions, let us consider

a 2D configuration like the one shown in figure 1.2 where cameras and objects are fixed,

cameras are capable of detecting targets in their field of views, and the coverage of each

camera is a cone. Also, consider a target moving through the environment (as shown in the

right plot). Again, the goal is to extract symbols that capture geometric information about

this setup.

A prominent geometric feature of the coverage of camera 1 in figure 1.2 is the

dashed line drawn in the right plot. This line corresponds to the line of sight in which

the target that was once visible by this camera disappears. In figure 1.3, which shows

5

Figure 1.2: A simple layout where four cameras are placed in a configuration that resembles
a circular hallway (left). A path for a target and the line of sight (dashed line) in which an
occlusion is detected for camera 1 (right).

the detections from each camera over time, it is observed that the target is visible by

camera 1 until it crosses this line and moves behind the occluding object in the scene. This

corresponds to an occlusion event at this time.

20 40 60 80 100 120 140
−40

−20

0

20

40
Camera 1

20 40 60 80 100 120 140
−40

−20

0

20

40
Camera 2

20 40 60 80 100 120 140
−40

−20

0

20

40
Camera 3

Frame Number

D
et

ec
tio

n
A

ng
le

20 40 60 80 100 120 140
−40

−20

0

20

40
Camera 4

Figure 1.3: Detections over time for the path shown in figure 1.2 (right). The dashed line
in the observations of camera 1 correspond to the line of sight in the previous figure.

Assuming that each camera can perfectly track a target, an occlusion event is the

event in which a target is “lost” or a new target is “found” by a camera. Hence, there can

6

be occlusions due to a target leaving the camera’s field of view through the boundary of

the image domain or due to an occlusion by an object inside the camera’s field of view.

Of course, the occlusions also have an orientation since the occluding object can be to the

left or the right of the location at which the occlusion event was detected. Also, we can

distinguish between “appear” or “disappear” events. The following table summarizes the

different labels that can be assigned to an occlusion event:

‘|’ – Occlusion due to boundary
‘[’ – Occlusion due to object to the right of occlusion angle
‘]’ – Occlusion due to object to the left of occlusion angle
‘A’ – Appearance event
‘D’ – Disappearance event

Table 1.1: Labels for different occlusion events

Hence, D1[denotes a disappearance event in camera 1 where the object is inferred

to be to the right of the occlusion angle (with respect to the camera coordinate frame),

which is consistent with the detections in figure 1.3 for camera 1. Another example is

A2| which is observed for camera 2 and corresponds to an appearance event through the

boundary.

Occlusions for the trajectory shown in figure 1.4 are shown next:

Detection: D4[A2[D1[A3| D2[A4| D4| A4| D3[A3[

Angle: −13o −45o −11o −45o −15o −45o −45o −45o −6o −6o

Time: 15.3 60.1 97.2 130.3 166.5 203.5 249.3 279.7 312.8 362.6

These symbols and their timing information will be utilized for the construction of

a simplicial representation called the CN -Complex which captures appropriate topological

information about the camera network coverage.

The rest of this manuscript is organized as follows: Chapter 2 will review the

7

100 200 300 400

−40

−20

0

20

40 Camera 1

100 200 300 400

−40

−20

0

20

40 Camera 2

100 200 300 400

−40

−20

0

20

40 Camera 3

Frame Number

D
et

ec
tio

n
A

ng
le

100 200 300 400

−40

−20

0

20

40 Camera 4

Figure 1.4: A longer trajectory in the environment (left) and corresponding observations
over time (right).

mathematical tools necessary to make our discussion formal; chapter 3 will present the

construction of a simplicial representation called the CN -Complex under a single target

assumption which will address the problem of topology recovery of a camera network cov-

erage; chapter 4 will deal with the robust construction of the CN -Complex in the presence

of multiple targets and noise in the observations; chapter 5 will discuss some applications

of the CN -Complex to tracking, navigation, and path identification; chapter 6 will discuss

how extracting more information from the network can help in the discovery of spatial

relations between the cameras leading toward weak localization of the network; finally,

chapter 7 will present a mathematical framework for occlusion detection which allows for

the generalization of this approach for non-static backgrounds and mobile cameras.

8

Chapter 2

Mathematical Background

In this section the concepts from algebraic topology that will be used throughout

this manuscript are covered. This section contains material adapted from [19, 12] and it is

not intended as a formal introduction to the topic. For a proper introduction to the topic,

the reader is encouraged to read [36, 25, 19].

2.1 Simplicial Homology

Definition 1. Given a collection of vertices V , a k-simplex is a set [v1 v2 v3 . . . vk+1]

where vi ∈ V and vi 6= vj for all i 6= j. Also, if A and B are simplices and the vertices of

B form a subset of the vertices of A, then we say that B is a face of A.

Definition 2. A finite collection of simplices is called a simplicial complex if whenever

a simplex lies in the collection then so does each of its faces.

Definition 3. The nerve complex of a collection of sets S = {Si}
N
i=1, for some N >

0, is the simplicial complex where vertex vi corresponds to the set Si and its k-simplices

9

correspond to non-empty intersections of k + 1 distinct elements of S.

The following statements define some algebraic structures using these simplices.

Definition 4. Let {si}
N
i=1 (for some N > 0) be the k-simplices of a given complex. Then,

the group of k-chains Ck is the free abelian group generated by {si}. That is,

σ ∈ Ck iff σ = α1s1 + α2s2 + · · ·αNsN

for some αi ∈ Z. If there are no k-simplices, then Ck := 0. Similarly, C−1 := 0.

Definition 5. Let the boundary operator ∂k applied to a k-simplex s = [v1 v2 · · · vk+1],

be defined by:

∂ks =
k+1
∑

i=1

(−1)i+1[v1 v2 · · · vi−1 vi+1 · · · vk vk+1],

and extended to any σ ∈ Ck by linearity.

A k-chain σ ∈ Ck is called a cycle if ∂kσ = 0. The set of k-cycles, denoted by

Zk, is the ker ∂k and forms a subgroup of Ck. That is,

Zk := ker ∂k.

A k-chain σ ∈ Ck is called a boundary if there exists ρ ∈ Ck+1 such that ∂k+1ρ =

σ. The set of k-boundaries, denoted by Bk, is the image of ∂k+1 and it is also a subgroup

of Ck. That is,

Bk := im ∂k+1.

Even further, we can check that ∂k(∂k+1σ) = 0 for any σ ∈ Ck+1, which implies that Bk is

a subgroup of Zk.

10

Observe that the boundary operator ∂k maps a k-simplex to its (k − 1)-simplicial

faces. Further, the set of edges that form a closed loop are exactly what we denote by the

group of 1-cycles. We will be interested in finding out holes in our domains; that is, cycles

that cannot be obtained from boundaries of simplices in a given complex. This observation

motivates the definition of the homology groups.

Definition 6. The k-th homology group is the quotient group

Hk := Zk/Bk.

The homology of a complex is the collection of all homology groups. The rank of Hk,

denoted the k-th betti number βk, gives us a coarse measure of the number of holes. In

particular, β0 is the number of connected components and β1 is the number of loops that

enclose different “holes” in the complex.

2.2 Example

Figure 2.1: A collection of sets (left) and corresponding nerve complex (right). The complex
is formed by simplices: [1], [2], [3], [4], [5], [1 2], [2 3], [2 4], [2 5], [3 5], [4 5] and [2 4 5].
Pictorially, 1-simplices can be represented by edges and 2-simplices by triangles.

In figure 2.1 we observe a collection of triangular shaped sets labeled from 1 to 5.

The nerve complex is obtained by labeling the 0-simplices (i.e., the vertices) in the same

11

way as the sets. The 1-simplices (i.e., the edges in the pictorial representation) correspond

to pairwise intersection between the regions. The 2-simplex correspond to the intersection

between triangles 2, 4 and 5.

For the group of 0-chains C0, we can identify the simplices {[1], [2], [3], [4], [5]} with

the column vectors {v1, v2, v3, v4, v5}, where v1 = [1, 0, 0, 0, 0]T and so on.

For C1, we identify {[1 2], [2 3], [2 4], [2 5], [3 5], [4 5]} with the column vectors {e1,

e2, e3, e4, e5, e6}, where we define e1 = [1, 0, 0, 0, 0, 0]T and so on.

Similarly for C2, [2 4 5] is identified with f1 = 1.

As mentioned before, ∂k is the operator that maps a simplex σ ∈ Ck to its boundary

faces. For example, we have:

∂2[2 4 5] = [4 5] − [2 5] + [2 4] iff ∂2f1 = e6 − e4 + e3,

∂1[2 4] = [4] − [2] iff ∂1e3 = v4 − v2.

That is, ∂k can be expressed in matrix form as:

∂1 =

−1 0 0 0 0 0

1 −1 −1 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

0 0 0 1 1 1

, ∂2 =

0

0

1

−1

0

1

.

Since C−1 = 0,

H0 = Z0/B0 = ker ∂0/im ∂1 = C0/im ∂1.

12

It can be verified that

β0 = dim(H0) = 1.

Hence, we recover the fact that there is only one connected component in the diagram of

figure 2.1. Similarly, it can be verified that

β1 = dim(H1) = dim(Z1/B1) = dim(ker ∂1/im ∂2) = 1,

which tells us that the number of holes in our complex is 1. Also, Hk = 0 for k > 1 (since

Ck = 0).

2.3 Čech Theorem

Now we introduce the Čech Theorem which has been used in the context of sensor

networks with unit-disk coverage [12] and has been proved in [9]. Before proceeding any

further, the following definitions are required:

Definition 7. Given two spaces X and Y , a homotopy between two continuous functions

f0 : X → Y and f1 : X → Y is a continuous 1-parameter family of functions ft : X → Y

for t ∈ [0, 1] connecting f0 to f1.

Definition 8. Two spaces X and Y are said to be of the same homotopy type if there

exist functions f : X → Y and g : Y → X with g ◦ f homotopic to the identity map on X

and f ◦ g homotopic to the identity map on Y .

Definition 9. A set X is contractible if the identity map on X is homotopic to a constant

map.

13

In other words, two functions are homotopic if it is possible to continuously deform

one into the other. Also, a space is contractible if it is possible to continuously deform it

to a single point. It is known that homologies are an invariant of homotopy type; that is,

two spaces with the same homotopy type will have the same homology groups.

Theorem 1. (Čech Theorem) If the sets {Si}
N
i=1 (for some N > 0) and all nonempty

finite intersections are contractible, then the union
⋃N

i=1 Si has the homotopy type of the

nerve complex.

That is, given that the required conditions are satisfied, the topological structure

of the union of the sets is captured by the nerve. It is observed that in figure 2.1 all of the

intersections are contractible. Therefore, we can conclude that the extracted nerve complex

has the same homology as the space formed by the union of the triangular regions.

2.4 Persistent Homology

In this section, we informally develop the notion of persistent homology and bar-

codes which were introduced by Carlsson and Zomorodian [10, 56]. Consider a collection

of complexes Στ for τ ∈ [0, 1] such that Σp ⊂ Σq for p < q. Note that simplicial complexes

can be built from a collection of pixels Sτ by defining simplices between pixels that are

neighbors of each other. Throughout this section binary images will be used to illustrate

these concepts. An example of such a collection is shown in figure 2.2. A collection of

images Sτ is introduced such that the simplicial complexes Στ built from these images have

the desired inclusion property.

It is possible to track topological features as a function of the parameter τ . Most

14

0 0.2 0.4 0.6 0.8 1
τ

β
0
 Diagram

0 0.2 0.4 0.6 0.8 1
τ

β
1
 Diagram

τ = 0 τ = 0.1 τ = 0.2 τ = 0.5 τ = 1

Figure 2.2: Snapshots of a family of images Sτ for τ ∈ [0, 1]. The collection starts with
two connected components which merge at τ = 0.4 as shown in the β0 diagram. A hole is
present until τ = 0.15 as depicted in the β1 diagram.

importantly, these features have a “life span” corresponding to the time at which the feature

appears and the time at which it disappears. For example, figure 2.2 shows the collection

of pixels start with two connected components which eventually merge at τ = 0.4, and it

also shows the collection start with a hole that disappears at τ = 0.15. This information

is depicted as a persistence diagram / barcode at the bottom of figure 2.2. Carlsson and

Zomorodian prove that the computation of these life spans is equivalent to calculating the

roots of a polynomial.

The persistence of topological features will be used to make computations robust

to the choice of parameter τ . Consider the example in figure 2.3 resulting from a color

segmentation scheme and for which it is our goal to determine the number of connected

components. The left image in the figure corresponds to the output of a segmentation

algorithm. By using eight-neighbor connectivity, 4 connected components are computed.

By comparing this result to the persistence diagram (the right image in figure 2.3), this result

is identified with an oversensitivity to a particular choice of segmentation. By exploiting the

15

0 0.2 0.4 0.6 0.8 1
τ

β
0
 Diagram

Figure 2.3: A binary image S0 resulting from color segmentation (left) and the corresponding
β0 diagram (right). The collection of segmentations Sτ correspond to dilating the image S0

over a chosen range. Given the persistence diagram, we could conclude an average of 1.6
connected components or a single persistent connected component.

persistence diagram, it is possible to arrive at two more reasonable answers to the question

at hand: either 1.6 connected components by computing the average number of components

over the specified range, or a single component since it is the most persistent number of

components.

16

Chapter 3

The CN-Complex

This chapter deals with the recovery of topological information from the coverage

of a camera network. The goal of this chapter is to formalize the mathematical framework

in which a simplicial complex (called the CN -Complex) is built and proof that it captures

the appropriate topological information. In later chapters it will be shown how to construct

this complex robustly, how to refine this model, and how to utilize it for navigation, tracking

and path identification. The work presented in this chapter is adapted from the work by

Lobaton et al[29].

The rest of the discussion is as follows: Section 3.1 gives a brief discussion about

different approaches to capturing topological information in sensor networks and the re-

lated work in this domain; sections 3.2 and 3.3 contain the main theoretical contributions

defining the problems and the assumptions made for topological recovery of the camera

network coverage; simulations and an experiment are discussed in sections 3.4 and 3.5. The

contributions of this chapter include the introduction of formalized topology recovery prob-

17

lems by making explicit assumption about the environment model, and the utilization of

topological information for tracking and navigation.

3.1 Related Work

The recovery of topological information of a camera network coverage has been

usually pursued through the computation of activity topology and vision graphs. Activity

topology refers to the set of possible paths that moving targets can take through the fields

of view of cameras. Vision graphs are graphs where every node represents a camera view

and edges specify the overlap between them. Usually, overlap is determined though the use

of the correlation of temporal detections, appearance models, or both.

A. van den Hengel et al [50] introduce an exclusion approach to the solution

of the activity topology recovery problem by starting with all possible combinations of

topological connections and removing links that are not consistent with their observations.

An evaluation of the method and datasets are made in [20]. Their method only relies on

detections of the target and it resembles one of the algorithms proposed in this chapter.

Marinakis et al [31] work on finding connectivity between non-overlapping coverage

of cameras by using only reports of detection and no description of the target. They use

a Markov model for modeling the transition probabilities and minimize a functional using

Markov Chain Monte Carlo Sampling. They also present a different formulation of the

same problem with “time-stamp free” observation with only ordering available (still no

target description) [32].

Cheng et al [11] build a vision graph in a distributed manner by exchanging feature

18

descriptors from each camera view. In their work, each camera encodes a spatially well-

distributed set of distinctive, approximately viewpoint-invariant feature points into a fixed-

length “feature digest” that is broadcast throughout the network to establish correspondence

between cameras. Yeo et al [53] utilize a random projection based framework to exchange

compact feature descriptors in a rate-efficient manner to establish correspondence between

various camera views.

Connectivity between overlapping camera views by determining the correspon-

dence models between cameras and extracting homography models has been approached by

Stauffer and Tieu [47]. L. Lo Presti and M. La Cascia [43] also compute homographies by

approximating tracks using piecewise linear segments and apparence models. M. Meingast

et al [34] utilizes tracks and radio interferometry to fully localize the cameras.

Other approaches to solving the same problem with target identification have

been explored by Zou et al [57]. Camera network with overlaps have been studied using the

statistical consistency of the observation data by Makris et al[30]. Rahimi et al [44] describe

a simultaneous calibration and tracking algorithm (with a networks of non-overlapping

sensors) by using velocity extrapolation for a single target. Funiak et al [17] introduce a

distributed algorithm for simultaneous localization and tracking with a set of overlapping

cameras.

Finding the topology of a domain embedded in R
2 is closely related to detecting

holes. There has been much work on the detection and recovery of holes using topological

methods in sensor networks, most of which considers symmetric coverage (explicitly or

implicitly) or high enough density of sensors in the field. In particular, Vin de Silva and

19

Ghrist [12] obtain the Rips complex based on the communication graph of the network and

compute homologies using this representation. These methods assume some symmetry in

the coverage of each sensor node (such as circular coverage), however, such assumptions are

not valid for camera networks.

3.2 The Environment Model

In this section the assumptions made about the environment are made explicit.

Even though they may seem very restrictive, they are introduced in order to simplify the

problem and facilitate the analysis.

3.2.1 The Problem in 2.5D

The problem will be defined in terms of the detection of a target moving through

an environment. For the sake of mathematical clarity, we first focus on the case of a single

target moving through the environment. Let us start by describing our setup:

The Environment in 2.5D : We consider a domain in 3D with the following constraints:

• All objects and cameras in the environment will be within the space defined by the

planes z = 0 (the “floor”) and z = hmax (the “ceiling”).

• Objects in the environment consists of static “walls” erected perpendicular to our

plane from z = 0 to z = hmax. The perpendicular projection of the objects to the

plane z = 0 must have a piecewise linear boundary. Objects must enclose a non-zero

volume.

Cameras in 2.5D : A camera α has the following properties:

20

• It is located at position o3D
α with an arbitrary 3D orientation and a local coordinate

frame Ψ3D
α .

• Its camera projection in 3D , Π3D
α : Fα → R

2, is given by

Π3D
α (p) = (px/pz, py/pz),

where p is given in coordinate frame Ψ3D
α , and Fα ⊂ ({(x, y, z) | z > 0}), referred to as

the field of view (FOV) of the camera, is an open convex set such that its closure is

a convex cone based at o3D
α . The image of this mapping, i.e. Π3D

α (Fα), will be called

the image domain Ω3D
α .

The Target in 2.5D : A target will have the following properties:

• The target will be a line segment perpendicular to the bounding planes of our domain

which connects the points (x, y, 0) to (x, y, ht), where x and y are arbitrary and

ht ≤ hmax is the height of the target. The target is free to move along the domain as

long as it does not intersect any of the objects in the environment.

• A target is said to be detected by camera α if there exists a point p := (x, y, z) in

the target such that p ∈ Fα and o3D
α p, where o3D

α p is the line segment between o3D
α

and p, does not intersect any of the objects in the environment.

Note that these assumptions may seem very restrictive, but they are satisfied by

most camera networks in indoor and outdoor environments. Also, some of these choices

in our model (such as the vertical line target and polygonal objects) are made in order to

simplify our analysis. We will see that the approach works in real-life scenarios through the

experiments.

21

The example in figure 3.1 shows a target and a camera with its corresponding

FOV.

Figure 3.1: Mapping from 2.5D to 2D : A camera and its FOV are shown from multiple
perspectives (left and middle), and its corresponding mapping to 2D (right). For the 2.5D
configuration, the planes displayed bound the space that can be occupied by the target.

Problem 1. (2.5D Case): Given the camera and environment models in 2.5D , our goal

is to develop a representation that has the same homotopy type as the detectable set for

a camera network (i.e., the union of the sets in which a target is detectable by a camera).

The construction of this representation should not rely on camera or object localization.

The formulation of the problem is very generic. We are choosing a simplicial

representation because we are after a combinatorial representation that does not contain

metric information. We are also after a distributed solution, i.e. processing information at

local nodes.

3.2.2 Mapping from 2.5D to 2D

The structure of the detectable set for a camera network becomes clear through an

identification of our 2.5D problem to a 2D problem. Since the target is constrained to move

along the floor plane, it is possible to map our problem to a 2D problem. In particular:

22

• Cameras located at locations (x, y, z) are mapped to location (x, y) in the plane.

• Objects in our 2.5D domain are mapped to objects with piecewise linear boundaries

in the plane.

• We can also do a simple identification between the FOV of a camera to a domain

Dα of a camera in 2D . A point (x, y) in the plane is in Dα if the target located at

that point intersects the FOV Fα. The set Dα is the orthogonal projection (onto the

xy-plane) of the intersection between Fα and the space between z ≥ 0 and z ≤ htarget.

Since the latter is an intersection of convex sets, and orthogonal projections preserve

convexity, then Dα is convex. We can also check that Dα will be open.

• Also, we can give a 2D description of the coverage of a camera. A point (x, y) is in

the coverage Cα of camera α if the target located at (x, y) is detectable by the camera.

3.2.3 The Problem in 2D

We now proceed by characterizing our problem after mapping the original config-

uration from a 2.5D space to 2D . The following definitions are presented to formalize our

discussion.

The Environment: The space under consideration is a 2D layout where cameras are

located in the plane, and only sets with piecewise-linear boundaries are allowed (including

object and paths). We assume a finite number of objects in our environment.

Cameras: A camera object α is specified by: its position oα in the plane; and an open

convex domain Dα, referred to as the camera domain.

The camera domain Dα can be interpreted as the set of points visible from camera

23

α when no objects occluding the field of view are present. The convexity of this set will be

essential for some of the proofs. Some examples of camera domains are shown in figure 3.3.

Definition 10. The subset of the plane occupied by the i-th object, which is denoted

by Oi, is a closed connected subset of the plane with non-empty interior and piecewise

linear boundary. The collection {Oi}
No

i=1, where No < ∞ is the number of objects in the

environment, will be referred to as the objects in the environment.

Definition 11. Given a camera α, a point p ∈ R
2 is said to be visible from camera α

if p ∈ Dα and oα p ∩
(

⋃No

i=1 Oi

)

= ∅, where oα p is the line segment between the camera

location oα and p. The set of visible points is called the coverage Cα of camera α.

We consider the following problem:

Problem 2. (2D Case): Given the camera and environment models in 2D , our goal is

to develop a simplicial representation that has the same homotopy type as the coverage of

the camera network (i.e., the union of the coverage of the cameras). The construction

of this representation should not rely on camera or object localization.

Observation 1. Note that the camera network coverage has the same homology (i.e. topo-

logical information) as the domain (R2−
⋃

Oi) if these two sets are homotopic (i.e., we can

continuously deform one into the other).

3.3 The CN-Complex

The goal of this section is the construction of a simplicial complex that will capture

the homology of the union of camera coverages
⋃

Cα. One possible approach for accom-

24

plishing this task is to obtain the nerve complex (see chapter 2) using the set of camera

coverage {Cα}. However, this approach will only work for simple configurations without

objects in the domain. An example illustrating our claim is shown in figure 3.2.

Figure 3.2: Nerve complexes obtained from the collection {Cα}. One complex captures the
correct topological information (left) but the other does not (right).

The reason figure 3.2 (right) does not capture the topological structure of the

union of camera coverage is because the hypothesis of the Čech Theorem (see chapter 2)

is not satisfied (in particular, C1 ∩ C2 is not contractible). From the physical layout of the

cameras and the objects in the environment, it is clear how we can divide C1 in order to

obtain contractible intersections. We are after a decomposition of the coverage that can be

achieved without knowing the exact location of objects in the environment.

3.3.1 The Decomposition Theorem

Before proceeding let us consider the following useful definitions:

Definition 12. Given the objects {Oi}
No

i=1, a piecewise linear path Γ : [0, 1] → R
2 is said to

25

be feasible if Γ([0, 1]) ∩ (
⋃

Oi) = ∅.

Definition 13. Given camera α with camera domain Dα and corresponding boundary ∂Dα,

a line Lα is a bisecting line for the camera if:

• Lα goes through the camera location oα.

• There exists a feasible path Γ : [0, 1] → R
2 such that for any ǫ > 0 there exists a δ

such that 0 < δ < ǫ, Γ(0.5− δ) ∈ Cn, Γ(0.5+ δ) /∈ Cα, Γ(0.5) ∈ Lα, and Γ(0.5) /∈ ∂Dα.

If we imagine a target traveling through the path Γ, the last condition in the

definition of a bisecting line identifies when an occlusion event is detected (i.e., the target

transitions from visible to not visible, or vice versa). However, occlusion events due to the

target leaving through the boundary of the camera domain Dα are ignored.

Definition 14. Let {Lα,i}
NL

i=1 be a finite collection of bisecting lines for camera α. Consider

the set of adjacent cones in the plane {Kα,j}
NC

j=1 bounded by these lines, where NC = 2 ·NL,

then the decomposition of Cα by lines {Lα,i} is the collection of sets

Cα,j := Kα,j ∩ Cα.

Note that the decomposition of Cα is not a partition since the sets Cα,j are not

necessarily disjoint.

The construction of the camera network complex (CN -Complex) is based on

the identification of bisecting lines for the coverage of each individual camera. This construct

will capture the correct topological structure of the union of coverage of the network.

Figure 3.4 displays examples of CN -Complexes obtained after decomposing the

coverage of each camera using their corresponding bisecting lines. The CN -Complex cap-

26

Figure 3.3: Three examples of camera domains Dα. Cameras can be inside or outside
their domains. Our camera model spans projection models from perspective cameras to
omni-directional cameras. Decompositions are shown for each set.

tures the correct topological information, given that the assumptions made for the model

described in section 3.2 are satisfied. The following theorem (see appendix A for proof),

states this fact.

Figure 3.4: Examples of CN -Complexes. In both cases, camera 1 is decomposed into three
regions, each of which becomes a vertex in the complex.

Theorem 2. (Decomposition Theorem)

Let {Cα}
N
α=1 be a collection of camera coverage where each Cα is connected and N

is the number of cameras in the domain. Let {Cα,k}(α,k)∈AD
be the collection of decomposed

27

sets by all possible bisecting lines, where AD is the set of indices in the decomposition. Then,

any finite intersection
⋂

(α′,k′)∈A Cα′,k′, where A ⊂ AD, is contractible.

By the previous theorem, the hypothesis of the Čech Theorem is satisfied if we

have connected coverage which are decomposed by all of their bisecting lines. This im-

plies that computing the homology of the CN -Complex returns the appropriate topological

information about the network coverage as a whole.

Observation 2. Note that there are many ways to decompose a set in order to obtain

subsets with contractible intersections. However, by using the bisecting lines, we ensure

that the decomposition can be done locally (at each camera node) without knowledge of the

physical structure of the environment.

We note that the steps required to build the CN -Complex are two-fold:

1. Identify all bisecting lines and decompose each camera coverage.

2. Determine which of the resulting sets intersect.

The first step makes sure that any intersection will be contractible. The second step allows

us to find the simplices for our representation. These two steps can be completed in dif-

ferent ways which depend on the scenario under consideration. In sections 3.4 and 3.5, the

construction of the CN -Complex for a scenario with a single target is demonstrated.

3.3.2 From 2D to 2.5D

The CN -Complex can be built by decomposing each camera coverage using its

bisecting lines and determining which of the resulting sets intersect. However, a physical

28

camera only has access to observations available in its image domain Ω3D. Therefore, it is

essential to determine how to find bisecting lines using information in the image domain.

We note that occlusion events occur when the target leaves the coverage Cα of

camera α along the boundary of the camera domain Dα or along a bisecting line. We can

verify that a target leaving through the boundary of Dα will be detected in the image domain

Ω3D
α as having the target disappearing/appearing through the boundary of Ω3D

α . If the target

leaves Cα through one of the bisecting lines, an occlusion event in the interior of Ω3D
α will be

observed. Note that bisecting lines in the 2D domain correspond to vertical planes in the

2.5D configuration, whose intersection with the FOV of the camera map to lines in Ω3D
α .

Hence, all that is required is to find the line segment in which an occlusion event takes place

in the image domain. From an engineering point of view, this can be done by performing

some simple image processing to find the edge along which target disappears/appears in an

image. The result will be a decomposition of the image domain Ω3D
α which will correspond

to a decomposition of the camera coverage Cα. These computations can be done locally at

a camera node without any need to transmit information.

The problem of finding intersections of the sets for the 2D problem corresponds

to having concurrent detections at corresponding cameras for the case of a single target

in the environment. Finding overlap between these regions can be solved for the multiple-

target case by using approaches such as the ones outlined in [31, 32, 57, 53, 11] in which

correspondence and time correlation are exploited.

29

3.4 Simulations in 2D for Single Target

In this section, a 2D scenario is simulated in which a wireless camera network

is deployed and no localization information is available. Camera nodes will be assumed

to have certain computational capabilities and they can communicate wirelessly with each

other.

The assumptions for this particular simulation are:

The Environment in Simulation: The objects in the environment will have piecewise

linear boundaries as described earlier. The location of the objects will be unknown. The

location and orientation of the cameras is also unknown.

Cameras in Simulation: A camera α has the following properties:

• The domain Dα of a camera in 2D will be the interior of a convex cone with field of

view θα < 180o. This model is used for simplicity in the simulations.

• A local camera frame Ψ2D
α is chosen such that the range of the field of view is

[−θα/2, θα/2] when measured from the y-axis.

• Its camera projection Π2D
α : Dα → R, is given by

Π2D
α (p) = px/py,

where p is given in coordinate frame Ψ2D
α . The image of this mapping, i.e. Π2D

α (Dα),

will be called the image domain Ω2D
α .

The Target in Simulation: A single point target is considered in order to focus on the

construction of the complex without worrying about correspondence/identification of our

target.

30

Throughout our simulations the target will move continuously through the envi-

ronment. At each time step the cameras compute their detections of the target and use

their observations to detect bisecting lines. Observations at the regions obtained after de-

composition using the bisecting lines are stored. These observations are then combined to

determine intersections between the regions which become simplices in the CN -Complex.

As mentioned before, the topology of the environment can be characterized in

terms of its homology. In particular we will use Betti numbers β0 and β1 (see section 2.1).

The β0 number tells us the number of connected components in the coverage while β1 gives

the number of holes. The PLEX software package [1] is used for homology computations

and corresponding Betti numbers.

Figure 3.5: A layout with two objects where C3 is shown (left). A circular hallway con-
figuration where C1 is shown (right). Dashed lines represent corresponding bisecting lines.
Dotted curves represent the paths followed by the target during the simulation.

Figure 3.5 (left) shows a three-camera layout with two objects in their field of

view. In this case, we observe three bisecting lines for camera 1, two for camera 2, and

four for camera 3. Note that cameras 1 and 2 have different number of bisecting lines since

31

there are not placed symmetrically in the diagram. The coverage C3 is decomposed into

5 regions, namely {C3,a, C3,b, C3,c, C3,d and C3,e}. The list of maximal simplices obtained

by our algorithm is: [1a 1b 1c 1d], [2a 2b 2c], [3a 3b 3c 3d 3e], [1a 1b 2c 3c], [1d 2a 3c],

[2a 2b 3a], [1a 2b 2c 3a], [1a 2c 3a 3b], [1a 2c 3b 3c], [1a 2c 3c 3d], [1a 1b 1c 2c 3d 3e],

[1c 1d 3e] and [1d 2a 3e]. The homology computations returned Betti numbers: β0 = 1 and

β1 = 2. This agrees with having a single connected component for the network coverage

and two objects inside the coverage of the cameras.

In figure 3.5 (right) we observe similar results for a configuration that can be

interpreted as a hallway in a building floor. There is a single bisecting line for all cameras.

The algebraic analysis returns β0 = 1 and β1 = 1. The latter identifies a single hole

corresponding to the loop formed by the hallway structure. The list of maximal simplices

recovered by the algorithm is: [3b 4a 4b], [2b 3a 3b], [1b 2a 2b], [1a 1b 4b].

3.5 Experimentation

In order to demonstrate how the mathematical tools described in the previous

sections can be applied to a real wireless sensor network, an experiment tracking a robot in

a simple maze is presented. Figure 3.6 shows the layout to be used. A sensor network con-

sisting of CITRIC camera motes [13] is setup in the maze. The CN -Complex is constructed

for this particular configuration and used for tracking in this representation. Homology

computations are performed using the PLEX software package [1].

Time synchronization is required in order to determine overlaps between the dif-

ferent camera regions. The Flooding Time Synchronization Protocol (FTSP) [33] was used

32

Figure 3.6: Layout used for our experiment. A diagram showing the location of the different
cameras (left). A picture of our experimental maze (bottom-right). The CITRIC camera
motes used for our experiments (top-right).

for this purpose.

At each camera node, background subtraction is performed at each frame. Once

a target is detected, further processing to detect bisecting lines (as shown in figure 3.7) is

performed. However, note that the bisecting line processing occurs sparsely and hence power

consumption is mostly due to background subtraction. Statistics on the power consumption

for the CITRIC platform can be found in [13]. Note that the information extracted from

each camera node is just a decomposition of the image domain with a list of times at which

detections were made.

For the experiments the camera motes were capable of processing grayscale images

33

at 4 frames per second at a resolution of 320 × 240 pixels. Symbolic information was then

extracted and transmitted at a rate of 1 packet of 100 bytes every 10 seconds. Transmissions

were performed regularly even when there were no observations to transmit. If raw image

data (without any compression) was to be streamed over the network, this would corre-

spond to about 300 kBytes/s of data from a single mote. Instead, transmitting symbolic

information in our experiment only accounts for 10 Bytes/s.

Figure 3.7: View of camera 5 from the layout in figure 3.6 before (left) and after (right) a
bisecting line is found.

The complex is built by combining all local information from the camera motes.

Each camera mote transmits the history of its detections wirelessly to a central computer

that creates the CN -Complex. The resulting complex contains the maximal simplices:

[1a 1b 4b], [1b 2a 2b], [2b 3a 3b], [3b 4a 4b 5b], [3b 5b 6], and [5a 5b 6]. A pictorial

representation of the complex is shown in figure 3.8 (right plots).

As mentioned earlier, this representation can then be used for tracking and navi-

gation without actual metric reconstruction of the environment. Figure 3.8 shows a set of

recorded paths for the robot. By determining which simplices are visited by the robot’s

path we can extract a path in the complex as shown by the dashed path in the complexes

34

of figure 3.8. The main advantage of this representation is that the path in the complex

gives a global view of the trajectory of the robot, while local information can be extracted

from single camera views.

Figure 3.8: Paths traveled by the robot in the maze (shown in dashed lines): In the physical
layout (left), and in the CN -Complex (right). These paths can be compared by using the
algebraic topological tools covered in chapter 2.

35

It is possible to identify paths in the simplicial representation that are homotopic

(i.e., that can be continuously deformed into one another). The tools required for these

computations are already available to us from chapter 2. In particular, by taking two

paths that start and end at the same locations forming a loop, we can verify that they are

homotopic if they form the boundary of some combination of simplices. Equivalently, since

a closed loop σ is just a collection of edges in C1, we need to check whether the loop σ is in

B1 (i.e., in the range of ∂2). This is just a simple algebraic computation. By putting the

top and middle paths from figure 3.8 together we note that the resulting loop is not in the

range of ∂2 (i.e., they are not homotopic). On the other hand, the top and bottom paths

can be easily checked to be homotopic.

3.6 Extensions

In this section extensions of the CN -Complex to several scenarios are discussed.

First, more general 3D configurations are considered and the limitations of this approach

are explored. Finally, extensions to mobile agents and the role of occlusion detection in

these scenarios are discussed.

3.6.1 Challenges in 3D

Let us discuss a scenario for which the construction of the CN -Complex would

fail to capture topological information about the environment. Consider the case in which

walls are short, i.e. the target is taller than the walls. A very basic example is illustrated in

figure 3.9. For this configuration, we would like to recover the fact that the set of feasible

36

Figure 3.9: 3D layout in which a hole in the set of feasible locations for the target is not
captured by the CN -Complex: A side view (left) and top view (right) of the configuration
showing a target in the scene. Note that it is not possible to detect bisecting lines in this
configuration.

locations for the target contains a hole due to the object present in the scene. However, no

bisecting line for the configuration can be found if we consider a vertical target moving in

the environment. On the other hand, even if bisecting lines were found along the boundary

of the object, enough connections between the regions would be discovered to identify the

coverage as simply connected. Note that even after partitioning the image domain as much

as possible we still run into this problem. Nevertheless, one may argue that if the target is

taller than the obstacle then it can probably get over it. However, there are other situation

when considering hills (not just a flat ground) in which such a naive argument will not be

valid.

3.6.2 Extensions to Mobile Agents

A dual formulation of the 2D problem under consideration is the 2D scenario

in which all observations are made from a mobile agent with omnidirectional vision, the

cameras are replaced by oriented and uniquely identifiable markers, and the agent is capable

of detecting markers and their orientation with respect to its reference frame. Every time a

37

marker disappears / appears from the field of view of the agent, the angle of the location of

the agent with respect to the reference frame of the marker is recorded. This angle plays the

same role as the bisecting lines in the CN -Complex. Overlap between the resulting regions

is found by concurrent detections of markers. Hence, it is possible to build a simplicial

complex as before.

A natural restriction of the setup for the CN -Complex is the assumption of static

cameras. However, it is also possible to exploit occlusion information in a scenario where

cameras move in the plane under known trajectories and occlusions are detected as they

move around the environment. By assuming that a mobile agent is capable of detecting

occlusions between different objects in the environment, the agent can then move through

the layout finding bisecting lines which are used to decompose the 2D environment. Con-

nectivity and possible occupancy between the resulting regions can then be validated to

obtain an actual map of the layout.

3.7 Discussion

In this chapter, an algebraic representation of a camera network coverage is ob-

tained through the use of discrete observations from each camera node. The mathematical

tools used for this purpose are those of algebraic topology. In particular, it is shown that

given enough observations the model does capture the correct topological information.

The experiment using wireless camera motes illustrates how the representation can

be used to track and compare paths in a wireless camera network without any metric infor-

mation. For coordinate-free navigation, the representation can give an overall view of how

38

to arrive at a specific location, and the transitions between simplices can be accomplished in

the physical space by local visual feedback from single camera views. Using this proposed

model allows for local processing at each node and minimal wireless communication. A

list of times at which occlusion events were observed is all that needs to be transmitted.

Also, all algebraic computations can be performed using integer operations as described in

[25], which opens the doors to implementation on platforms with low-computational power.

The homology computations in the experiment are done in a centralized fashion, however,

distributed algorithms such as the ones introduced by A. Muhammad and A. Jadbabaie

[35] can be used.

The next chapter will show how to obtain the CN -Complex robustly. Chapter 5

will discuss tracking, navigation, and path identification applications using this representa-

tion. Finally, chapter 6 will demonstrate how to generalize this representation to incorporate

more information about the environment extracting relative position between cameras in

the form of relations.

39

Chapter 4

Robust Complex Building

The CN -Complex was proven to have the same homotopy type as the coverage of

a camera network in a 2.5D environment in chapter 3, simulations and a simple experiment

were shown using a single target and perfect foreground detection assumptions. However, no

algorithm was presented for handling multiple targets and noisy observations. This chapter

will present an approach to building the CN -Complex in a robust way to be able to handle

multiple targets and detection errors. This approach will only utilize temporal correlation

between observations, i.e. neither actual matching is performed nor an appearance model

is constructed in order to extract connectivity information between cameras. A distributed

version of the algorithm will be outlined for which data is processed and stored in a dis-

tributed fashion. The end result will be a collection of simplices with assigned probabilities

of occurrence. It is possible to choose a threshold in order to select the most likely sim-

plices; however, diagrams depicting the persistence of topological features over all possible

threshold values will be analyzed instead.

40

An example of the construction of the CN -Complex is illustrated in figure 4.1

in which three overlapping views are considered (left plot). The steps of the construction

of the complex involve first bisecting the fields of view (middle plot) and then finding all

possible overlap (right plot). In this example, the simplicial complex contains a single hole

which corresponds to the column that acts as an occluding object in the physical coverage.

1
2

3

Figure 4.1: The CN -Complex for a network of three cameras constructed using the method-
ology presented in this chapter. The views from different cameras (left). Bisected views due
to occluding objects (middle). The simplicial complex built by finding the overlap in the
coverage of the cameras (right). The simplicial complex, correctly, contains a single hole
(i.e. the loop with vertices 1a, 1b, 3b, 3c and 3d) that corresponds to the column which acts
as an occluding object in the physical coverage.

The rest of the discussion is as follows: Section 4.1 shows how to find bisecting

lines in a robust way; section 4.2 describes how to compute points in the intersection

between different cameras and outlines a distributed implementation of the process; finally,

the validity of this approach is verified in section 4.3 through a real life experiment with

multiple targets.

41

4.1 Finding Bisecting Lines

In this section, the problem of detecting the bisecting lines that decompose the

image domain of a camera is addressed. To this end, a simple background subtraction

algorithm (e.g. thresholding with respect to a background image) is assumed. We then

utilize the algorithm presented by B. Jackson et al. [24], which consists of accumulating the

boundary of foreground objects wherever partial occlusions are detected. In our case, only

the detections at times when full occlusion events occur are stored. We are uninterested

in the exact boundary of the objects, but only the bisecting lines. Hence, we will take

the simpler approach of first approximating any occluding boundary with vertical lines and

then refining the line fit.

In figure 4.2 (top-left), a camera view with several occluding boundaries due to

walls and a column is observed. The accumulated boundaries of the foreground detections

are shown on the top-right plot. Initial estimates for the bisecting lines are chosen at

the peaks of the distributions of detections along each column (bottom-left). Finally, the

estimates are refined by performing a least-squares fit on the data with respect to all the

points on the boundary that are close to the vertical line estimates. The final result is

shown in the bottom-right plot.

4.2 Finding Intersect Points

In this section, it is assumed that the bisections within each camera view have

been calculated. The emphasis is only on determining the connectivity between camera

pairs. More specifically, we look for intersect points (i.e. points in the intersection of the

42

0 50 100 150
0

0.5

1

1.5

2

Column Number

L
o

g
 o

f
A

cc
u

m
u

la
te

d
 D

et
ec

ti
o

n
s

Figure 4.2: Steps for finding bisecting lines: For the original view (top-left), the boundaries
of the foreground masks are accumulated whenever occlusion events are detected (top-
right). Vertical bisecting lines are estimated by aggregating observations over all rows and
obtaining the indices of the column in which the highest detections were obtained (bottom-
left). Bisecting lines are further refined through a linear fit procedure using the accumulated
observations (bottom-right).

43

field of views of the cameras).

In the following discussion, it is also assumed for simplicity that each sensor will

be able to uniquely identify any point in its coverage. In other words, a homeomorphism

between the image domain from each camera and its coverage exists. No target identification

will be necessary, but localization and recurrence over time will be exploited.

The approach is illustrated by first considering the example in figure 4.3. Assume

two cameras in a room of area 1 with region R1 in the coverage of camera 1 and R2 in

the coverage of camera 2, and N targets, where the probability of a target’s location is

uniformly distributed over the room. We define Dt
i as the event that there is a detection

in Ri at time t, and Dt
i is its complement. For simplicity, assume that a target in Ri is

detected if and only if it is actually present (i.e. there are no errors in the detections).

Hence,

P (Dt
1) = 1 − P (Dt

1) = 1 − |Rc
1|

N , (4.1)

and

P (Dt
1 ∧ Dt

2) = 1 − P (Dt
1 ∧ Dt

2)

= 1 − P (Dt
1 ∨ Dt

2)

= 1 −
(

P (Dt
1) + P (Dt

2) − P (Dt
1 ∧ Dt

2)
)

= 1 − |Rc
1|

N − |Rc
2|

N + |(R1 ∪ R2)
c|N

(4.2)

where Ac is the set complement for a set A, and |A| is its area. Therefore, the probability

of detecting a target in R2 given a detection in R1 is given by

P (Dt
2|D

t
1) =

P (Dt
1
∧Dt

2
)

P (Dt
1
)

= 1 −
(

|Rc
2
|N−|(R1∪R2)c|N

1−|Rc
1
|N

)

.

(4.3)

44

Figure 4.3: Geometric depiction illustrating different overlapping configurations and corre-
sponding detection probabilities for 3 targets. Intuitively, whenever R1 and R2 are disjoint
we expect a low value of P (Dt

2|D
t
1) (left). If |R1| ≈ |R2| ≈ 0.005 then P (Dt

2|D
t
1) ≈ 0.01 by

using equation 4.3. For a partial overlap, we expect a larger probability value (middle). If
|R1| ≈ |R2| ≈ 0.01 and |R1 ∪ R2| ≈ 0.015 then P (Dt

2|D
t
1) ≈ 0.5. For a perfect overlap, we

observe that P (Dt
2|D

t
1) = 1.

Intuitively, whenever R1 and R2 are disjoint we expect P (Dt
2|D

t
1) << 1. For a

partial overlap, a larger probability is expected. For a perfect overlap, P (Dt
2|D

t
1) = 1. These

observations are illustrated in figure 4.3. Note that P (Dt
2|D

t
1) can be utilized as a direct

measure of the confidence of the overlap between cameras 1 and 2. A similar argument

can be made for detection probabilities between three cameras, i.e. P (Dt
2 ∧ Dt

3|D
t
1). Also,

P (Dt
2|D

t
1) can be approximated by counting the number of times that a target is detected

in R1 and R2 whenever there are detections in R1.

It is possible to bound these conditional probabilities such that values above a

given threshold are guaranteed to correspond to a sufficient overlap between two regions.

However, such a bound would require knowledge about the distribution of a target’s location,

the number of targets and the geometry of the environment, but this information maybe

unavailable and calculating an arbitrary cut-off maybe impossible. Therefore, the filtration

process is employed to robustly analyze the observed data in order to avoid making undue

45

assumptions.

4.2.1 The Algorithm

In this section, an algorithm to estimate distributedly the probabilities P (Dt
2|D

t
1)

and P (Dt
2 ∧ Dt

3|D
t
1) is described. Locally, each camera will make observations and store

detections after every occlusion event. These detections will be transmitted to all other

cameras, and every time a camera receives a detection message from another camera, the

appropriate pairwise counts will be updated. Detections only occur at bisecting lines, which

are a subset of the image domain. In the simulations, it is shown that this subset will be

sufficient to determine whether there is an overlap in coverage between cameras.

Algorithm 1. Obs = TransmitPts(Obs,imSeq,t,camID)
Obs = UpdateObservations(Obs,imSeq,t)
if OcclusionDetected(Obs,t)

Pts = ComputePts(Obs)
TransmitPts(Pts,t,camID)

end

Algorithm 1, which is executed every time a new frame is captured, describes how

intersect points can be computed and transmitted to all other cameras. The input is a

local buffer of observations (Obs) containing detections from previous frames, a sequence

of images (imSeq) around the current frame at time t, the current time (t), and the iden-

tification number (camID) of the camera transmitting the points. The function returns

updated observations (Obs) and transmits a collection of points whenever an occlusion is

detected.

Several functions are used within the previous algorithm. UpdateObservations

updates a local buffer storing target detections over time using the current images and

46

the corresponding times. OcclusionDetected determines if an occlusion event has occurred

based on the observations. ComputePts compiles a list of coordinates for the points where a

detection occurred before (if it was a disappearance event) or after (if it was an appearance

event) an occlusion. TransmitPts periodically sends a list of detection points, a time t, and

camID to all other camera nodes.

Algorithm 2 describes what happens at each camera once a packet is received

Algorithm 2. IPts = UpdatingIPts(IPts,Obs,Pts,t,camID)
PPts = getPPts(Pts,Obs,t,camID)
foundPt = zeros(length(PPts),1)
for j = length(IPts) to 1

if PointIsNotIPt(IPts(j))
IPts = RemoveIPt(IPts,j)
continue

end
idx = FindCamIDMatch(IPts(i),camID,PPts)
if isempty(idx)

continue
end
foundIPt = 0
for i = 1 to length(idx)

if PointMatch(IPts(j),PPts(idx(i)))
foundPt(idx(i)) = 1
foundIPt = 1

end
end
if foundIPt

IPts(j) = MatchFound(IPts(j),t)
else

IPts(j) = MisMatchFound(IPts(j),t)
end

end
for i = 1 to length(PPts)

if foundPt(i)==0
IPts = AddIPt(IPts,PPts(i))

end
end

47

from another camera. The inputs are a list of current intersect points (IP ts) between

the current camera and all other cameras, a list of local observations (Obs) and a list of

possible intersect point (Pts) at time t from camera camID. The output is an updated

list of intersect points. Each entry in IP ts corresponds to a potential match between the

current camera and another camera, and will contain the camID of the other camera, the

coordinates of the intersect point in both camera frames, and detection times. In order

to compute the frequency of detections, each entry of IP ts will maintain a count of the

number of times there were detections in camID and the current camera (we refer to this

as a match), and how many times there were detections in camID but not the current

camera (we refer to this as a mismatch).

In the algorithm, getPPts returns a list of potential intersect points PPts between

cameras by calculating all pairwise combinations between the received detections and the

observations at time t. Each entry of PPts will contain both coordinates for the intersect

point (the one for the camera in question and the other for the transmitting camera), and

also the camID from which the detection points were received. PointIsNotIPt estimates

the desired conditional probabilities using the formula

P (Dt
local|D

t
moteID) ≈

#Match

#Match + #Mismatch
,

and returns 1 if the frequency is too low, in which case we eliminate the intersect point

using the function RemoveIPt. This is done to ensure the list does not grow too large.

FindCamIDMatch is a function that returns the matches between the non-local coordinates

in the provided intersect point and the list of PPts, if camID matches the ID in the provided

intersect point, otherwise, it returns an empty list. Coordinate matching is done by allowing

48

for small variations in the coordinate values. PointMatch determines if the points match

in local and non-local coordinates. MismatchFound updates the count of matches in the

provided intersect point and stores the detection times. MatchFound updates the count of

matches in the provided intersect point and detection times. AddIPt adds a new intersect

point to the list. New points are added when no matches have been found in the original

list IP ts.

An overlap between two cameras (i.e. a 1-simplex) can be concluded if there is

an entry in IPTS between these cameras with a high detection probability. Intersections

between three cameras (i.e. 2-simplices) can be found similarly. Note, only 2-simplices are

required for the construction of the CN -Complex since only planar information about the

coverage is recovered.

Data storage and processing occurs distributedly. However, in order to analyze

the CN -Complex, it is necessary to send the list of intersect points to a central node. Of

course, this only happens at the end of the observation period and the amount of data

transmitted is small.

4.2.2 Simulations for Multiple Targets

In this section, the previous algorithms are used to build the CN -Complex in

a simulated environment made up of objects with piecewise linear boundaries and point

targets moving around it. Each camera has a conic field of view, is able to detect the

targets, and records positions in its local reference frame. All cameras will be assumed to

be perfectly synchronized.

As a first example, consider a setup similar to a corridor structure with four

49

cameras located at each corner as shown in figure 4.4. In this simulation, two targets moving

around independently are considered. A short path from each target is displayed in the plot

on the left. The cameras bisect every time an occlusion is detected. The resulting bisecting

lines are shown in figure 4.4 (right). After intersect points with corresponding frequencies

have been calculated, we threshold on the frequencies of detections. Any frequency value

greater than a threshold 1 − τ is considered a valid intersect point. We use 1 − τ since we

want the number of valid intersect points to increase with τ (which guarantees inclusion of

complexes as required for the persistence analysis). The right plot in figure 4.4 show some

intersect points found by selecting a threshold of τ = 0.5.

Figure 4.4: Layout of a circular corridor setup with two targets moving through the en-
vironment (left). Intersect points found, plotted as squares, for a threshold value τ = 0.5
with corresponding bisecting lines, plotted as dashed lines (right).

As described in section 2.4, it is possible to analyze the topological structure of

the data over all values of τ by employing the persistence of topological features. Figure 4.5

illustrates the persistence diagrams and several simplices recovered at different thresholds.

The diagrams clearly show the persistence of a single connected component and a hole in

50

0 0.2 0.4 0.6 0.8 1

β
0
 Diagram

τ 0 0.2 0.4 0.6 0.8 1

β
1
 Diagram

τ

Figure 4.5: CN -Complexes for several values of τ (top) and persistence diagrams (bottom)
are shown for the circular corridor setup in figure 4.4. We observe that the diagram shows
a persistent single connected component and a persistent loop.

the layout. In fact, choosing a value of τ ∈ [0, 0.65] gives the correct simplices.

0 0.2 0.4 0.6 0.8 1

β
0
 Diagram

τ

0 0.2 0.4 0.6 0.8 1

β
1
 Diagram

Figure 4.6: Layout of an environment with two objects and three targets (left). Corre-
sponding persistence diagrams showing a single persistent connected component and two
holes (right).

Figure 4.6 (left) illustrates another example in which two objects are placed in an

environment with six cameras and three targets. The persistence diagram in the right plot

shows the persistence of a single connected component and two holes in the environment,

as desired.

51

4.3 Experimentation

In this section, an experimental setup with three cameras placed in indoors is

considere. Three computers that are synchronized using the Network Time Protocol (NTP)

are utilized for data acquisition and employ no prior knowledge about the camera locations,

no appearance or tracking models, or no knowledge about the number of targets. Though

the processing is done off-line, the amount of computation and data transmission required

are small enough to occur distributedly on a sensor network platform such as CITRIC [13].

The sequence utilized for our analysis corresponds to about 8.5 minutes of recording with

the first 3.2 minutes corresponding to a single target, the next 3.3 minutes corresponding

to a different single target, and the last 2 minutes corresponding to two targets moving in

the environment. Images were captured at about 10 frames per second at a resolution of

320 × 240.

The physical setup of the experiment is shown in figure 4.7. Views from the three

cameras are shown in the middle row. Importantly, note that though there is overlap

between the three cameras, it is nearly impossible to find common features between these

views due to the large change in perspective. The decomposed camera views (after finding

bisecting lines) are shown at the bottom of the figure. Note that there are three regions in

camera 1, one region in camera 2, and five regions in camera 3.

Intersect points and corresponding frequencies are computed as described in the

previous section. However, instead of considering every possible pixel as an intersect point,

the image domain is split into blocks of size 10 × 10 and treat these regions as possible

intersect points. In the experiment, only points that have been observed more than 10

52

Figure 4.7: Experimental setup: Physical layout for cameras in the experiment (top). Views
for cameras 1 (middle-left) through 3 (middle-right), and corresponding detected bisecting
lines (bottom).

53

0 0.2 0.4 0.6 0.8 1

β
0
 Diagram

τ

0 0.2 0.4 0.6 0.8 1

β
1
 Diagram

Figure 4.8: CN -Complex found for our experiment using a threshold value of τ = 0.5 (left).
Persistence diagrams for the filtration obtained from the experiment (right). Note, a single
connected component and hole are the correct persistent features. The hole is due to the
column in the middle of the room.

times are considered. Figure 4.8 (left) shows the corresponding simplex when thresholding

with a value of τ = 0.5. From the right plot, we observe that a single connected component

and a single hole in the domain are the persistent topological features in the coverage, as

desired.

0 100 200 300 400 500
0

5

10

15

20

25

time (sec)

N
um

be
r

of
 D

et
ec

tio
ns Camera (1)

0 100 200 300 400 500
0

5

10

15

20

25

time (sec)

Camera (2)

0 100 200 300 400 500
0

5

10

15

20

25

time (sec)

Camera (3)

Figure 4.9: Plots of the number of block detections per occlusion event over time. Note
that the events are relatively sparse (over an 8.5 minutes period), and the number of blocks
detected at each time step is under 15 in most cases.

Table 4.1: Summary of Detections for the Whole Sequence

Camera Total Blocks Total Frames Data to be Transmitted

1 609 172 1.9 kBytes / 8.5 min
2 261 37 0.7 kBytes / 8.5 min
3 880 260 2.7 kBytes / 8.5 min

Since detections are only transmitted after an occlusion event, the transmission

54

rate is low. Figure 4.9 shows a summary of the number of blocks in which a detection

was made for each camera over time. Table 4.1 shows the total number of blocks detected,

number of frames where there was a detection, and the estimated data size for transmission

from each camera to the other cameras. The latter quantity is estimated by assigning two

bytes to encode each block coordinate and four bytes to encode the time stamp. Note, no

additional compression is performed.

4.4 Discussion

In this chapter, a method to construct the CN -Complex for a camera network

was presented. The approach presented in this chapter takes advantage of the temporal

correlation between detections from different synchronized camera views. The method is

designed to work with multiple targets and noisy observations by exploiting the persistence

of topological features. Simulations and an experiment are used to validate the approach

and demonstrate its efficiency in terms of low communications costs.

Now that the construction process for the CN -Complex has been established, the

following chapters will overview applications and extensions of this representation.

55

Chapter 5

Navigation and Path Identification

In this chapter, applications to navigation and path identification using the CN -

Complex are presented. Paths in the coverage of a network will be characterized in terms of

their homotopy class. The analysis will require to map trajectories from the physical space

to the CN -Complex (which is trivially done by determining the visibility of the target by

the cameras), and from the complex to the physical space. The latter will be accomplished

through the use of intersect points (as discussed in the previous chapter).

Figure 5.1: A simple circular hallway layout (left) and corresponding CN -Complex (right).
Note that each camera node has been split into vertices a and b.

56

The layout in figure 5.1 will be used as an illustrative example throughout this

chapter. Throughout this chapter, the 0-simplices {[1a], [1b], [2a], · · · , [4b]} will be identified

to the standard basis {v1, v2, v3, · · · , v8} ⊂ R
8. Similarly, the 1-simplices {[1a 1b], [1a 2a],

[1a 4b], [1b 2a], [1b 2b], [1b 4b], [2a 2b], [2b 3a], [2b 3b], [3a 3b], [3a 4a], [3b 4a], [3b 4b],

[4a 4b]} are identified to the standard basis {e1, e2, e3, · · · e14} ⊂ R
14. Finally, {[1a 1b 2a],

[1a 1b 4b], [1b 2a 2b], [2b 3a 3b], [3a 3b 4a], [3b 4a 4b]} are identified to the standard basis

{f1, f2, f3, · · · , f6} ⊂ R
6. Then, the boundary operators can be represented as:

∂2 =

1 1 0 0 0 0

−1 0 0 0 0 0

0 −1 0 0 0 0

1 0 1 0 0 0

0 0 −1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 −1 0 0

0 0 0 1 1 0

0 0 0 0 −1 0

0 0 0 0 1 1

0 0 0 0 0 −1

0 0 0 0 0 1

,

and

57

∂1 =

−1 −1 −1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 −1 −1 −1 0 0 0 0 0 0 0 0

0 1 0 1 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 1 0 1 −1 −1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 −1 −1 0 0 0

0 0 0 0 0 0 0 0 1 1 0 −1 −1 0

0 0 0 0 0 0 0 0 0 0 1 1 0 −1

0 0 1 0 0 1 0 0 0 0 0 0 1 1

.

Chapter 2 offers a review of the algebraic topological concepts used here.

The rest of the discussion is as follows: section 5.1 shows how to find a path

between any two vertices in a simplicial complex; section 5.2 describes how to navigate

in the physical layout given a path in the complex; section 5.3 gives a way to identify

homotopic paths in the complex; finally, an algorithm for recovering homotopically distinct

paths is outlined in section 5.4.

5.1 Finding a Path in a Complex

In this section we discuss how to find sets of edges which form paths joining two

vertices of a complex. Note that a path σ ∈ C1 joining vertices p to q must satisfy

∂1σ + [p] − [q] = 0.

Using the example above, it may be of interest to find a path going from vertices

1a to 4a, in which case the equation above can be expressed as a linear system of equations

58

A x − b = 0, where A = ∂1 (represented as a matrix), b = [−1, 0, 0, 0, 0, 0, 1, 0]T , and x is

the vector representation of σ. Solving for the minimal norm solution of the system gives

x = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1]T , which corresponds to σ = [1a 4b] + [4b 4a]. Hence,

we have found a path from 1a to 4a using the algebraic information in the CN -Complex

(see figure 5.3(a)).

This approach is contrasted with the graph based approach given by applying

Dijkstra’s algorithm to the connectivity graph obtained from the edges of the complex.

Clearly, this will give a valid path (i.e. the shortest in terms of the number of edges

visited), which turns out to be the same path as the one described above.

Note that neither the algebraic nor the graph based approach use higher order

information contained within the constructed CN -Complex. A hybrid approach that utilizes

aspects from previous approaches will lead to an algorithm that characterizes homotopic

paths between two points. First, we specify how to identify homotopic paths.

5.2 Mapping from Complex to Physical Layout

The previous section gives a way of computing a path in the complex between any

two vertices that are connected. However, this does not specify how to navigate through

the physical environment in order to create a physical path. This is the goal of this section.

In the following, when referring to cameras we mean the virtual cameras resulting

from our decomposition when construction the CN -Complex. Navigation in 2D and 2.5D

scenarios are discussed next.

59

5.2.1 2D Navigation

Let us consider the environment assumptions made for the simulation environment

described in section 3.4. That is, assume that cameras are in the 2D plane and can only

provide bearing angular information of the target with respect to their local environment

and the field of views are conic. Note that in this case targets can be localized through the

use of two cameras.

Assume that the target at location p is visible by cameras α and β, then we can

easily move the target to a final location q still in the intersection of both cameras. First,

let the target move along the line of sight of α until the target’s projection in β is aligned

to the projection of q. Then, move the target along the line of sight of β until its projection

in α is aligned to the projection of q, at this point the target has arrived to position q.

If the target gets to the position of camera α before having its projection aligned to the

projection of q in camera β, then move the target in the direction from α to q. If the target

is about to leave the coverage of one of the cameras before it arrives to its destination, let

the roles of α and β to be exchanged. This gives a general way to move in the intersection

of the coverage of two cameras.

Given cameras α, β and γ, where p ∈ Cα ∩ Cβ , q ∈ Cβ ∩ Cγ and Cα ∩ Cβ ∩ Cγ 6= ∅,

then it is possible to move from p to q by first moving from p to a point in the intersection

of all three camera coverage and then to q.

The set of transitions between simplices that are allowed by the previous algorithm

can be represented by a graph in which nodes represent 1-simplices and edges represent 2-

simplices. Note that navigation is only possible through regions that are covered by at least

60

two cameras.

5.2.2 2.5D Navigation

Let us consider the environment assumption made in section 3.2.1 (i.e., cameras

in 3D where there are only walls to worry about) and assume that cameras are located high

enough so a single camera is sufficient to localize a target. That is, there is a one-to-one

mapping between the detection in the image plane and the location of the target. Of course,

since there is no calibration information, it is not possible to absolutely determine where

the target is except in the local coordinate frame of the camera.

Consider a target with current location p and final destination q. Local navigation

between two points p and q in a single camera α can be accomplished by having the target

move in the direction q−p given in the coordinates of camera α. If the target hits an obstacle

the target is to continue moving along the boundary of the obstacle in the direction that

has a positive component when projected to q − p. It is easy to proof that by following

this strategy the target will arrive to q without leaving the coverage of camera α. This is

due to camera α having no bisecting lines in its coverage. Throughout the simulation it is

observed that a straight linear path is sufficient in most cases.

In order to have the target travel from location p ∈ Cα to q ∈ Cβ where Cα∩Cβ 6= ∅,

camera α can guide the target to a point in the intersection with camera β, and then

camera β can aid in the navigate to q. We can find general path from p and q in a

connected component of the coverage of the network by following pairwise intersections.

This corresponds to traveling through a graph which is the 1-skeleton of the CN -Complex.

Representative points in the intersection of the coverage of two cameras can be found by

61

picking an arbitrary intersect point (see section 4.2).

Figure 5.2: Navigation in the layout of figure 5.1: Diagram showing representative intersect
points found in the layout (left) and two navigation paths obtained using the CN -Complex
(right).

Since the 2.5D navigation is of most interest for real applications where the view

from a single camera is sufficient for navigation, we will focus on the analysis of this ap-

proach. The following algorithm specifies how to navigate between two points in a connected

coverage:

Algorithm 3 (Target Navigation in 2.5D). Given that the target’s initial location p ∈ Cα,

and its destination q ∈ Cβ, then:

1. Find a path between α and β using Dijkstra’s algorithm as described in section 5.1. If

the path does not exist then there is no way to move from p to q without leaving the

coverage of the network.

2. Move from p to an intersect point in the first edge of the result path by local navigation

through camera α. Repeat this step as necessary until the target arrives to q.

62

Figure 5.2 illustrates the outcome of the algorithm described above. The left plot

shows intersect points found between camera pairs. Two navigation paths are shown in the

right plot. The local navigation between intersect points is represented as straight lines.

The path p1 to q1 corresponds to the example discussed in section 5.1.

5.3 Identifying Homotopic Paths

Let σ1 and σ2 be two paths joining vertices p and q which are expressed as 1-chains.

Then

σ := σ1 − σ2

forms a loop. If the previous paths are homotopic, then σ ∈ B1 := im∂2 (see section 2.1).

Hence, we can easily verify that these paths are homotopic.

Algorithm 4. Given the paths σ1 and σ2, these paths are homotopic if and only if

rank(im∂2) = rank([im∂2 | σ]).

Let us demonstrate this process by using the paths depicted in figure 5.3. Call σa

the path in plot (a), and so on for plots (b) and (c). Then, we can define

σab := σa − σb = [−1, 0, 1, 0,−1, 0, 0, 0,−1, 0, 0,−1, 0,−1]T

which is depicted in plot (d), and

σbc := σb − σc = [1,−1, 0, 0, 1, 0,−1,−1, 1, 0,−1, 1, 0, 0]T

depicted in plot (e).

63

Figure 5.3: Plots (a)-(c) show several paths joining vertices 1a and 4a. Plots (d) and (e)
show the corresponding loops formed using these paths.

Note that rank(im∂2) = 6 and rank([im∂2 | σab]) = 7, which leads us to conclude

that σa and σb are not homotopic. This fact is clear from figure 5.3(d) which shows this

loop enclosing a hole. However, rank([im∂2 | σbc]) = 6, which tells us that σb and σc are

homotopic as we can see from figure 5.3(e).

5.4 Finding Homotopically Distinct Paths

In this section an algorithm is presented for computing homotopically distinct

paths between two points. As usual, assume that all cameras have been decomposed and

the CN -Complex has been built. In the algorithm each node keeps track of homotopically

distinct paths that arrive to this location and broadcasts to its neighbors (as defined by the

complex) all new homotopically distinct paths that arrive at a given time.

64

Algorithm 5. The goal is to find homotopically distinct paths between nodes α and β. Let

Pk be the set of paths found at k-th node.

1. We initialize all sets to be empty except for Pα = {α} and broadcast this path to all

neighbors.

2. Let σ be a path received by the k-th node. If σ does not contain k and is not homotopic

to any of the paths in Pk, then k is added to the path σ and it is stored in Pk and

transmitted to its neighbors (except the neighbor that it came from).

3. Repeat step 2 as many times as necessary.

The set of paths Pβ contains homotopically distinct simple paths.

Figure 5.4: Homotopically distinct paths found connecting point p to point q in the en-
vironment. Paths are graphically depicted as piecewise linear paths connecting intersect
points.

An example showing the resulting paths found by algorithm 5 is shown in figure

65

5.4. In the figure, four homotopically distinct paths between p and q were found and

depicted graphically using line segments between intersect points.

5.5 Discussion

Several application in navigation and path identification using the CN -Complex

have been demonstrated in this chapter. The complex is utilized to find trajectories between

two points while remaining in a connected coverage. The representation can also be used

to identify homotopic paths in the complex. It is possible to extend this work by learning

distances between intersect points to solve for minimal length problems between two points.

As seen in section 3.6.2, it is possible to switch the roles of the target and the

cameras for navigation purposes. The setup described in this manuscript corresponds to

cameras guiding a blind target. If instead we consider an omnidirectional camera in a mobile

agent and cameras replaced by unique markers, then it is possible to build a simplicial

representation by making local observations from the agent’s point of view. This simplicial

representation can then be utilized to navigate through the environment.

The navigation procedure described in this chapter can be identified with a hybrid

system in which having a mobile agent visible by camera α corresponds to being in discrete

state α. Navigation is accomplished by switching between different states and utilizing very

simple control laws locally. Utilizing the simplicial complex gives a way to characterize and

identify paths in the hybrid system. This is useful for analysis of hybrid systems independent

of their particular state structure by extracting global topological features.

66

Chapter 6

Camera Relations

In this chapter, geometric relations between cameras in an unlocalized network

are discovered which provides information about the layout of the network which is com-

plementary to the topological structure recovered by the CN -Complex. For simplicity,

cameras that satisfies the assumption for a 2D configuration as specified in section 3.4, i.e.

cameras in the plane with only bearing angle information and conic views, are considered.

The relations will specify the relative positioning between cameras at different degrees of

accuracy. Throughout this discussion, the fact that intersections between cameras can be

found robustly will be exploited.

Consider points in the image domain of cameras α and β which can be identified

with lines of sight in the physical environment. By determining the pattern of intersection

between these lines it is possible to determine something about the relative position between

the cameras. Throughout this work it is assumed that the cameras do not have bisecting

lines in their fields of view, i.e. the coverage decomposition necessary for obtaining the

67

CN -Complex has already taken place.

The rest of the discussion is as follows: section 6.1 presents the types of relation

that can be obtained between camera pairs; section 6.2 outlines an algorithms for discovering

these relations; and section 6.3 illustrates the discovery of relations through some examples.

6.1 Defining Relations

In figure 6.1, several configurations with corresponding lines of sight are considered.

Note that if only one line of sight is considered for both cameras (see left plot), we can

virtually position both cameras in any location and we will be able to intersect or not

intersect these lines of sight, i.e. it is not possible to determine any relation between the

cameras.

Figure 6.1: Sample configuration for one line of sight for each camera (left). Note that if
we assume that these lines intersect and fix the line of sight of camera α, camera β can be
virtually anywhere. Sample configuration for two lines of sight for camera α and one for
camera β (middle). Sample configuration for two lines of sight for both cameras (right).

In order to analyze the case when there are two lines of sight for camera α and one

for camera β, assume that the lines are labeled Ll
α and Lr

α for the left and right lines from

camera α, and Lβ for the one from β. Also, assume a canonical configuration for camera

68

α and consider different configuration for β as seen in figure 6.2 (left). Note that there are

essentially four regions where camera β can be located with respect to the lines of sight of

camera α.

Figure 6.2: Configuration space for camera β given a fixed camera α with line of sights Ll
α

and Lr
α (left). We note there are essentially four regions in which camera β can be (i.e. to

the left in RL, to the right in RR, in the front in RF , or behind in RB). A configuration in
which Ll

α∩Lβ 6= ∅ and Lr
α∩Lβ = ∅ (middle) is shown. A configuration in which Ll

α∩Lβ 6= ∅
and Lr

α ∩ Lβ 6= ∅ (right) is shown.

From the point of view of the unlocalized network, it is only possible to determine

if Ll
α ∩ Lβ and Lr

α ∩ Lβ are empty or not. Hence, relations between cameras can only be

extracted in terms of these quantities. The following theorem summarizes relations that

can be found for this scenario.

Theorem 3. Given camera α with lines of sight Lr
α to the right of Ll

α, and camera β with

line of sight Lβ, then we have the following relations for β with respect to α:

(00) → β ∈ RL ∪ RR ∪ RF ∪ RB (01) → β ∈ RL ∪ RF ∪ RB

(10) → β ∈ RR ∪ RF ∪ RB (11) → β ∈ RL ∪ RR

(6.1)

where RL, RR, RF , and RB are given as in figure 6.2 (left). For simplicity (00) is used to

represent Lr
α ∩ Lβ = ∅ ∧ Ll

α ∩ Lβ = ∅, (01) represents Lr
α ∩ Lβ = ∅ ∧ Ll

α ∩ Lβ 6= ∅, so on.

A similar result can be shown by considering lines of sight Ll
α and Lr

α for camera

α and Ll
β and Lr

β for camera β:

69

Theorem 4. Given camera α with lines of sight Lr
α to the right of Ll

α, and camera β with

lines of sight Lr
β to the right of Ll

β, then we have the relations shown below for β with respect

to α:

(0000) → β ∈ RL ∪ RR ∪ RF ∪ RB (0001) → β ∈ RL ∪ RF ∪ RB

(0010) → β ∈ RL ∪ RF ∪ RB (0011) → β ∈ RL ∪ RF ∪ RB

(0100) → β ∈ RR ∪ RF ∪ RB (0101) → β ∈ RL ∪ RR

(0110) → β ∈ RF (0111) → β ∈ ∅

(1000) → β ∈ RR ∪ RF ∪ RB (1001) → β ∈ RF ∪ RB

(1010) → β ∈ RL ∪ RR (1011) → β ∈ RL

(1100) → β ∈ RR ∪ RF ∪ RB (1101) → β ∈ RR

(1110) → β ∈ ∅ (1111) → β ∈ RL ∪ RR

(6.2)

where RL, RR, RF , and RB are given as in figure 6.2 (left). For simplicity we use (0000)

to represent Lr
α ∩ Lr

β = ∅ ∧ Lr
α ∩ Ll

β = ∅ ∧ Ll
α ∩ Lr

β = ∅ ∧ Ll
α ∩ Ll

β = ∅, (0001) to represent

Lr
α ∩ Lr

β = ∅ ∧ Lr
α ∩ Ll

β = ∅ ∧ Ll
α ∩ Lr

β = ∅ ∧ Ll
α ∩ Ll

β 6= ∅, and so on.

The relations in both of the previous theorems can be easily proved by combina-

torially considering all possibilities.

6.2 Finding Relations

By relaxing the assumption of lines of sight to using small conic regions in the field

of view, it is possible to use the same algorithm used for finding intersection points (see

section 4.2) to find intersections between lines of sight. The following is a simple algorithm

to discover relations between camera pairs:

70

Algorithm 6. Given two cameras α and β (with no bisecting lines; otherwise, their coverage

is decomposed), the process is initialized by choosing two points from each field of view, then:
for i = 1 to N

FindIntersections
UpdateRelations
AddLinesOfSight

end
where N is a fixed number of iterations / refinements.

The algorithm starts by choosing two lines of sight from each camera, it finds all

intersections between the resulting lines, updates any relations that are discovered between

the two cameras, and then adds more lines of sight to further refine the relations. More

relations will be discovered as more lines are added, which gives better localization estimates

between cameras.

6.3 Examples

In order to illustrate the results from this chapter we consider some basic examples.

In figure 6.3, two cameras with overlapping field of view are shown. The fact that

both of these cameras are located within their fields of view can be easily discovered by

considering the relations between the lines of sight displayed in the figure.

Next, we consider a more complex example (see figure 6.4) in which there is an

object occluding the field of view of one of the camera.

For the configuration in figure 6.4, it is observed that the field of view of camera

α needs to be bisected as seen in plot (b). Utilizing the relations between the lines of sight

shown in the diagram it is possible to conclude that camera β is to the left of camera α.

71

Figure 6.3: Finding relations between two cameras: Initial setup of the cameras (left).
Cameras after adding some bisecting lines to their field of view (right). Note that by
considering the lines L1

α, L2
α, L1

β and L2
β we conclude that camera β is in front of camera α

between L1
α and L2

α. By considering L3
α, L4

α, L1
β and L2

β we can further conclude that β is

in front of α between L3
α and L4

α.

Figure 6.4: Original configuration of two cameras (left). Camera β is bisected in order to
have a field of view without bisecting lines (middle). Note that the relation discovered from
lines L1

α, L2
α, L1

β and L2
β tells us that camera β is either to the right or the left of camera

α. Utilizing lines L3
α, L2

α, L1
β and L3

β we conclude that camera β is to the left of camera α.

72

6.4 Discussion

In this chapter relations between cameras were discovered by analyzing the in-

tersection between lines of sight. The analysis becomes very simple when assuming that

the coverage does not have any bisecting lines, hence constructing the CN -Complex is a

prerequisite for this analysis. The more relations that are discovered, the more precise the

relative position between cameras becomes. By utilizing the methods described above, it

is possible to start from the CN -Complex and further refine the model to the point that

relations (and hence localization) is available between all cameras pairs.

It is possible to extend this work to cluster cameras that satisfy certain geometric

relations such as covering the same room in an office space. In this scenario, a camera can

be used to identify the location of an entrance (perhaps by looking at the types of occlusions

in its field of view), and then other cameras that are in appropriate relative positions can

be identified as located on the same side of the entrance (and hence in the same room).

Also, this local information could be integrated in order to build more sophisticated models

of the environment such as a Voronoi diagram of the environment.

73

Chapter 7

Occlusion Detection in Non-Static

Scenes

The CN -Complex of a camera network is built from detecting occlusions from each

camera view. Its construction (as presented in chapter 4) utilizes detections of occlusions

of targets given a static background model. However, background images can change due

to small perturbations of a camera’s position. Also, as described in section 3.6, it is useful

to detect occlusions in non-static scenes when considering mobile extensions. In this chap-

ter, occlusion detection in non-static scenes will be studied through the use of persistent

topological features in order to deal with these scenarios.

Occluding contours are a commonplace in synthetic and natural scenes. Since

occlusions correspond to locations in an image where one surface is closer to the camera

than another, they provide critical cues about the 3D structure of a scene. Given this

utility, it is unsurprising that their detection has numerous applications in shape extraction,

74

figure-ground separation, and motion segmentation, e.g. [3, 4, 14, 23, 39, 49, 51]. Occlusion

boundaries also result in the appearance or disappearance of regions which make occlusions

the source of notorious difficulty for many patch-based computer vision algorithms, e.g.

[18, 21, 26, 55]. The goal of this chapter is to present a completely local, bottom-up approach

to detect and localize occlusions in order to provide this powerful low-level information to

higher-level reasoning methods (see figure 7.1 for an example).

Occlusions are undetectable from a single image and instead must be found by

comparing several images. Traditional occlusion detectors rely almost entirely upon spatio-

temporal derivatives or matching to detect the artifacts of occlusions. Generally, these

artifacts fall into two categories: motion inconsistency or the classical T-junction. Unfortu-

nately, both of these methods have shortcomings that render them unreliable as occlusion

detectors. Motion inconsistencies are found by relying almost entirely on noise sensitive

derivatives. Though there are numerous ways to find T-junctions, each method makes

assumptions about the orientations of the occluding contour. Moreover, even after a T-

junction has been detected, an occlusion may not be present. In contrast to these methods,

we model the cause of occlusions and show that the proper measurement of certain robust

topological invariants is a definitive indicator to the presence of an occlusion. Detections

occur in regions where new color information becomes available, exactly the region at which

motion estimates are the most unreliable. Therefore, the framework presented in this chap-

ter can be viewed as complimentary to most motion estimation approaches. The strength

of our framework is that it is able to operate at different scales providing information that

may otherwise be unavailable while not relying on noisy derivatives, making rigid assump-

75

tions about the orientation of occluding contours, building complex appearance models, or

performing any matching.

t = 1 t = 2

t = 0

50

100

150

200

250

300

Detections

Figure 7.1: Three consecutive frames from a walking sequence are shown. The detection
of occlusions using local topological invariants is made with respect to the middle frame
(top-left). Appearances between the middle and bottom frames (bottom-left) are marked
as red in the middle frame, and disappearances between the middle and top frames (top
right) are marked as blue in the middle frame. All of the occlusions are compiled in the
bottom right plot.

The main contributions of this work are four-fold. First, in section 7.2, an image

model is introduced and it is shown that, under Lipschitz continuous camera or object

movement, occlusions occur if topological invariants are not preserved. Second, in section

7.3, a robust measure to determine these topological invariants is developed for a given

segmentation of the image. Third, in section 7.4, the topological invariants are rigorously

defined to guarantee localization of occlusions within an image. Finally, in section 7.5, the

76

performance of the occlusion detector is demonstrated on synthetic and natural data.

7.1 Related Work

As described earlier, traditional approaches to occlusion detection can generally be

divided into two categories: those that attempt to detect motion inconsistencies and those

that detect T-junctions. Inspired by the classic work of Horn and Schunck [22] and the

observation that the motion between two sides of an edge at an occlusion will be dissimilar,

the motion inconsistency domain makes few assumptions about the camera path and instead

relies on accurate estimates of local motion. These methods are completely local and employ

derivatives that carry little information. As a result, they are often inaccurate and noisy.

The algorithms in this domain can be classified by the varying rigidity of assumptions used

in order to make the motion estimate robust. T-junctions as an indicator for occlusions

traces its roots to an observation made by Irving Biederman [6]. Unfortunately, not all

T-junctions are occlusions. Most algorithms in the T-junction detection domain can be

classified according to the methodology they employ to detect and classify them.

At one extreme of motion estimation is the class of layered motion segmentation

algorithms which segment regions based on the consistency of motion [40, 46, 52, 54]. These

techniques use a parametric motion model that is restricted to near-planar, rigidly-moving

regions for each layer and employ a variety of techniques for estimating these models.

They estimate motion accurately by assuming a known, fixed number of layers in the scene

and do not scale well as the number of layers increases. We argue that attempting to

explain the scene in terms of a fixed number of motion-consistent connected regions is

77

too demanding a requirement. We propose that the low-level reasoning provided by the

occlusion detector presented in this chapter can provide more appropriate cues to high-level

reasoning algorithms like those performing layered motion segmentation.

At the other extreme of motion estimators are those that make the estimate robust

by smoothing the velocity field spatially [2] or temporally [7]. Regrettably, this has the

unintended consequence of making the motion estimate inaccurate at boundaries, which is

where occlusions occur. An alternative to this smoothing approach is the use of an implicit

model, either learned from local motion cues estimated from training data or based on some

fixed model of the distribution of motion cues in the vicinity of occluding boundaries [8,

15, 38, 49, 48]. Though these approaches are appealing because they rely on well-defined

statistical models, they are still sensitive to deviations of the actual data from the trained

model. Even though they improve the robustness of the calculation of the motion estimate,

they still rely entirely upon it.

T-junction detection has a rich history. Until recently, there have been two pre-

dominant approaches to T-junction detection: gradient or filter-based approaches [5, 16, 27,

42, 45] and model-based template matching [41]. These approaches work singularly to de-

tect the T-junctions rather than distinguish an occluding T-junction from a non-occluding

T-junction. More recently, Favaro et al. define what they call a proper T-junction as a

T-junction at which an occlusion takes place [14]. They detect these proper T-junctions

by exploiting a rank constraint on a data matrix of feature tracks that would normally

be classified as outliers in a multiple-view geometry problem. Although mathematically

correct, the method has the deficiency of being overly sensitive to even slight deviations

78

from the given rank condition. Inspired by this work, other alternatives have exploited a

discriminative framework to classify these proper T-junctions [3, 4]. Unfortunately, these

methods utilize 2D spatio-temporal slices instead of volumes which mean that detections

can only be made in fixed orientations.

In contrast to prior work, we show that under a well-defined imaging model, oc-

clusions occur when images are not related by a deformation. Given this powerful result,

any properly defined topological invariant could detect the existence of an occlusion. In this

chapter, we will construct several such robust invariants that are able to operate at different

scales providing information that may otherwise be unavailable, while not relying on the

calculation of motion models or hinge upon the detection and classification of T-junctions.

7.2 Notation and Image Model

This section is meant to introduce the mathematical framework to be used through-

out the rest of the chapter. We begin this section by introducing our imaging model and

reviewing some simple topological concepts. We conclude this section by describing a näıve

occlusion detector. For a more formal discussion of the topological concepts presented here,

we refer the interested reader to Hatcher [19] or Munkres [37].

Definition 15. An image is a collection of disjoint open sets and colors denoted by I :=

{(Ei, ci)}
Ns
i=1, where Ei ⊂ R

2, ci ∈ R
d, each Ei consists of a finite number of open connected

components, and Ns < ∞. Similarly we denote an image sequence by It := {(Et
i , c

t
i)}

Ns
i=1

for t ∈ Z.

Observe the sets Ei do not need to form a partition of R
2. For simplicity, we

79

assume d = 1.

Definition 16. An image deformation is a continuous function G : R
2 × [0, 1] → R

2 for

which G(x, 0) is the identity map and G(·, s) is a homeomorphism for each t. An image

deformation G is Lipschitz if there exists a constant C > 0 such that for all s1, s2 ∈ Z and

x ∈ R
2

||G(x, s2) − G(x, s1)|| ≤ C |s2 − s1|. (7.1)

Definition 17. A topological invariant is a property of a topological space which is in-

variant under homeomorphisms. Two examples of such invariants are of particular interest:

Betti Zero, denoted by β0(E), which counts the number of connected components in a set

E ⊂ R
2; and Betti One, denoted by β1(E), which counts the number of holes or loops in

a set E ⊂ R
2.

Topological invariants are extremely useful properties of topological spaces since

they allow for the comparison of spaces without explicit matching. In addition, if the

definition of these invariants is made carefully they can allow us to locally compare spaces.

Definition 18. Given an image I = {(Ei, ci)} and a partition B = {Bk}
Np
k=1 of R, the β0

histogram at a closed set K, denoted by α(I|K), is a vector with entries given by

αk(I|K) :=
∑

c∈Ak

β0

⋃

cj=c

Ej ∩ K

 , (7.2)

where Ak = {ci | ci ∈ Bk}. The β0 histogram with boundary identification, denoted

by αk(I|K), is defined in the same way except that β0 is calculated after identifying the

boundary of K to a single point. That is, sets that intersect the boundary of K are considered

connected.

80

The importance of the identification concept will be made clear in section 7.4.

Definition 19. Under the same assumptions as the previous definition, the β1 histogram

at a set K for an image I, denoted by γ(I|K), is a vector with entries given by

γk(I|K) :=
∑

c∈Ak

β1

⋃

cj=c

Ej ∩ K

 . (7.3)

Given these definitions, we make several observations. If an image is thought of as

a collection of sets Ei ⊂ R
2, coming from a single object, then small changes of perspective

would be equivalent to Lipschitz image deformations. Making this more explicit, consider

a Lipschitz image deformation G with Lipschitz constant C. If Ei ⊂ D(y, r) for all i, where

D(y, r) is the disk centered at y ∈ R
2 of radius r > 0, then G(Ei, s) ⊂ D(y, r + C · s).

Since the collection of sets Ei and G(Ei, s) are related via a homeomorphism, they must

have the same number of connected components and holes. If, instead, these invariants

were not preserved one of the sets must have disappeared which would be evidence of an

occlusion. The preservation of topological invariants, like Betti Zero or One, would then

serve as indicators of occlusions.

At this point, we have seemingly constructed a näıve occlusion detector, but three

nontrivial problems remain to be addressed. First, Betti Zero and One as defined do not

take advantage of the color of images. We introduce a procedure to exploit the color of

images to improve the robustness of the calculations of these topological invariants by using

definitions 18 and 19. Second, the procedure as described provides no localization of an

occlusion within a given image. We show that via a careful redefinition of Betti Zero and

One, we can localize an occlusion. Finally, there exists innumerable ways of dividing the

image domain into a collection of sets Ei ⊂ R
2, each producing a different number of

81

connected components and holes. Calculations of these invariants can be made robust to

this choice of segmentation by exploiting the persistence of topological features.

7.3 Histogram Flows

This section, as presented, may seem a sort of digression. This is done purposefully

as the material discussed here has greater utility than the one suggested herein. The goal

of this section is to define a relation between feature vectors based on a partition and the

allowed variations of the color space (R in our case). The work in this section will allow us

to extend the concepts of Betti Zero and One to exploit the color of images.

Definition 20. Let It = {(Et
i , c

t
i)}

Ns
i=1 be an image sequence. A partition B = {Bk}

Np
k=1 of

R for this image sequence, where the Bk are an ordered sequence of intervals of the form

[ak, bk) each with length |Bk|, is said to be a simple partition if the following conditions

are satisfied for all t ∈ Z and all 1 ≤ i ≤ Ns

• −|Bk−1| < ct+1
i − ct

i < |Bk+1| whenever ct
i ∈ Bk and 1 < k < Np,

• ct+1
i − ct

i < |B2| whenever ct
i ∈ B1, and

• −|BNp−1| < ct+1
i − ct

i whenever ct
i ∈ BNp.

The sets Bk are referred to as bins.

The conditions above guarantee that over one unit of time the color can only move

from one bin to its neighbor.

82

Proposition 1. Given a simple partition B = {Bk}
Np
k=1 for an image sequence It =

{(Et
i , c

t
i)}

Ns
i=1. Whenever ct

i ∈ Bk we have that ct+1
i ∈ B1 ∪ B2 if k = 1, ct+1

i ∈ Bk−1 ∪

Bk ∪ Bk+1 if 1 < k < Np, and ct+1
i ∈ BNp−1 ∪ BNp1 if k = Np.

The proof of this proposition can be found in appendix B. In section 7.4, we will

show how a simple partition B can generate histogram vectors, which count features in

different bins. It is possible to treat these vectors as feature vectors in R
Np, and compare

them by using Chi-Squared or Euclidean distance; however, small variations in the color of

an image can generate large changes with respect to these norms. Therefore, it is critical

to determine the allowable variations between histograms.

7.3.1 Defining Flows

Although between times t and t + 1 the histogram vectors given in definitions 18

and 19 may change, the types of transitions are limited by the simple partition B. A set

with color ct
i ∈ Bk can only change color to bins Bk−1 or Bk+1. We define a right flow fR

k

from Bk to Bk+1 corresponding to the number of sets that migrated from Bk to Bk+1 and

a corresponding left flow fL
k from Bk to Bk−1. Figure 7.2 illustrates this idea for a given

histogram vector v.

First, by our definition of simple partition the flows must satisfy the following

83

v
1
t v

2
t v

3
t v

4
t v

5
t

v
1
t+1

fL
2

fL
5

fR
4fL

4
fR
3

fL
3

fR
2

fR
1

v
2
t+1 v

3
t+1 v

4
t+1

v
5
t+1

Figure 7.2: Diagram illustrating flows fR and fL between adjacent bins for a histogram
vector v where Np = 5.

constraints:

fR
k ≥ 0, 1 ≤ k ≤ Np

fL
k ≥ 0, 1 ≤ k ≤ Np

fR
1 ≤ vt

1

fL
1 = 0

fR
k + fL

k ≤ vt
k, 1 < k < Np

fR
Np = 0

fL
Np ≤ vt

Np

(7.4)

Given flows from frame t to frame t + 1, we observe:

vt+1 = vt + ARfR + ALfL, (7.5)

where the matrices AL ∈ R
Np×Np and AR ∈ R

Np×Np have entries:

AL
ij =

−1 if i = j

1 if i = j − 1

0 otherwise

(7.6)

84

and

AR
ij =

−1 if i = j

1 if i = j + 1

0 otherwise

(7.7)

When the flow conditions go unsatisfied, an anomaly between a pair of images is

detected.

Definition 21. A histogram vector w is said to be explained based on histogram vector v,

denoted as w ≺ v, if there exist flow vector fR and fL that satisfy equation 7.4 and

w ≤ v + ARfR + ALfL,

where the inequality is satisfied at every entry of the vector.

If the histogram vector of an image at time t+1 cannot be explained by the vector

at time t, then we know something significant has changed. This will be made more precise

in section 7.4.

7.3.2 Determining Histogram Flows

In this section, a greedy algorithm to calculate flows to explain a desired histogram

is described. Given a base histogram v, a desired histogram w that we want to explain, and

vector flows fR and fL, we will want to know by how much the vector v′ := v+ARfR+ALfL

fails to satisfy the condition w ≤ v′. We introduce the score:

ρ(fR, fL | v, w) =
∑

k

(wk − v′k) · {wk − v′k > 0}. (7.8)

We employ the following greedy algorithm to calculate the flows:

85

Algorithm 7. The inputs are the histogram to be explained w and the base histogram v.

The outputs are the flows fR and fL and the resulting histogram v′ (i.e. v after applying

the flows).

v′ = v; fR = 0; fL = 0

for k = 2 to (Np − 1)

d = wk − v′k

if d ≤ 0

continue

end

uL = max(min(d, vk−1 − fL
k−1 − fR

k−1), 0)

uR = max(min(d + uL, vk+1 − fL
k+1 − fR

k+1), 0)

fR
k−1 = fR

k−1 + uL

fL
k+1 = fL

k+1 + uR

v′k−1 = v′k−1 − uL

v′k = v′k + uL + uR

v′k+1 = v′k+1 − uR

end

The algorithm proceeds by updating the current flows and histogram entries based

on the values of the neighboring entries only if it will improve the score ρ.

7.4 Occlusion Indicators

The purpose of this section will be the construction of a localized occlusion detector

by combining the construction presented in the previous section with the definition of Betti

86

Zero and One. In order to illustrate the difficulty of simply näıvely comparing the count of

connected components to detect occlusions, we consider the sets in figure 7.3.

Figure 7.3: Illustration of how to count connected components for neighborhood Kr (left)
and Kr+C (right). There are 5 connected components in Kr+C . There are 6 connected
components in Kr and 3 connected components after boundary identification. Without
boundary identification we could erroneously conclude that a set disappeared.

In this case, the two images are related by an image deformation with Lipschitz

constant C. A simple comparison of the number of connected components in the drawn

neighborhoods, Kr and Kr+C , suggests that an occlusion has occurred (the left image has

6 connected components and the right image has 5 connected components); however, this

is clearly not the case. The problem arises because we count the same set twice. We

can remedy this problem by identifying every point on the boundary of the left image as

belonging to the same set. This is the inspiration for the definition of the β0 histogram

with boundary identification. Making this small change in how we perform the calculation

of connected components guarantees that under Lipschitz image deformations, the number

of connected components in Kr is always less than the number of connected components in

Kr+C .

If we employ this procedure in the example and compare the number of connected

87

components, we find that it has increased, which means no occlusion has taken place (the

left image under identification has 3 connected components and the right image still has 5

connected components). This result is easily combined with the histogram flow procedure

presented in the previous section to produce a robust measure of topological invariants:

Theorem 5. Given a collection of Lipschitz image deformations Gt with constant C, images

It and a simple partition B = {Bk}, such that Gt(Et
i , 1) = Et+1

i for every i and t, then

α(It|Kr) ≺ α(It+1|Kr+C) (7.9)

where Kr := {(x1, x2) | max(|x1|, |x2|) ≤ r}.

Theorem 6. Under the same assumptions as the previous theorem, we have

γ(It|Kr) ≺ γ(It+1|Kr+C). (7.10)

If the criteria presented in these theorems goes unsatisfied, then an occlusion must

have taken place between times t and t + 1. The roles of It and It+1 can be interchanged

and the corresponding condition will remain true as long as no object has appeared between

times t and t + 1. The proof of these theorems can be found in the appendix C.

7.5 Analysis

In this section, we will analyze the performance of the occlusions detectors pre-

sented in this chapter on a dataset that includes both natural and synthetic image sequences.

In order to simplify our analysis, we focus our attention on the β0 histogram in tandem

with equation 7.9. Though a few datasets exist with labeled occlusions, particularly the

88

one built by Stein et al. [48], they all capture images at an inadequate frame rate, which

makes applying the framework presented in this chapter difficult.

Our analysis is performed by first decomposing the image domain into squares of

length r1, which we identify as the sets Kr from our previous discussion. We also consider

squares of length r2 > r1, which we identify as the sets Kr+C , with coincident centers

with the previous squares. We take an image I1 and try to explain the observations in the

squares of length r1 by using the observations in I0 and I2 specifically within the squares

of length r2. In order to do this, we construct a segmentation of each square by utilizing

the results of section 2.4, then compute the histograms and their flows by using algorithm

7. Whenever the conditions in equation 7.9 go unsatisfied, we mark this as a detection.

In the formulation of theorem 5, the radius of the window and the type of partition

of the color space are free parameters to be set. The Lipschitz constant, on the other hand,

is something that must be well approximated. In order to better understand the role of

the partition B and the radius r of the window, we consider the performance of our model

under extreme choices of these parameters.

First, consider the extreme cases for the partition of the color space: either a

single interval for all R or a simple partition whose length goes to zero. When the partition

is equal to R, it is only possible to detect whether a set is present or not. If instead a

simple partition whose length goes to zero is considered, then the colors in the image can

never change. Since real images are quantized, this is equivalent to assuming the images

are piecewise constant.

Second, consider the extreme cases for the radius of the window: either the window

89

t = 1 t = 2

t = 0

20

40

60

80

100

120

Detections

Figure 7.4: Three consecutive frames from synthetic sequence are shown. The color used for
the sets are: 0, 75, 150 and 250. The detection of occlusions using local topological invariants
is made with respect to the middle frame (top-left). Appearances between the middle and
bottom frames (bottom-left) are marked as red in the middle frame, and disappearances
between the middle and top frames (top right) are marked as blue in the middle frame. All
of the occlusions are compiled in the bottom right plot.

is the size of the whole image or the window is the size of a single pixel. Although using a

whole image window size allow for a more robust segmentation, it allows for no localization

of the occlusion. For a window the size of a single pixel, due to interpolation during sampling

and image noise, we may have to choose larger partitions of the color space which has the

unintended consequence of making our detections sparser.

The detection process is illustrated on a sequence of synthetic images. Each image

in the sequence consists of three layers of circles moving in the plane as illustrated in figure

7.4. We perform detections by dividing the image into windows of length 2 and larger

90

t = 1 t = 2

t = 0

50

100

150

200

Accumulated
Detections

Figure 7.5: Three consecutive frames from a sequence of a hand in front of a moving
Macbeth board are shown. The detection of occlusions using local topological invariants
is made with respect to the middle frame (top-left). Appearances between the middle and
bottom frames (bottom-left) are marked as red in the middle frame, and disappearances
between the middle and top frames (top right) are marked as blue in the middle frame. The
accumulated occlusions over the entire sequence are compiled in the bottom right plot.

windows of length 8. Our simple partition of the color space corresponds to bins of length

32 from 0 to 256. At this scale, we are able to detect the appearance of the larger circle

from behind the smaller one. We can also perform the computation at the scale of the

whole image. In this case, we observe that α(I1|Kr) = α(I0|Kr+C) = α(I2|Kr+C) =

(1, 0, 1, 0, 1, 0, 0, 1)T . Hence, no occlusion is detected at the scale of the whole image. This

simple example illustrates the importance of selecting the correct window size. A similar

analysis is performed on several natural image sequences and depict a few of the results in

figures 7.1 and 7.5.

91

7.6 Discussion

In this chapter, a mathematical framework for performing occlusion detection by

employing local topological invariants was presented. Under an imaging model that allows

for deformation and color variation, occlusions are detected without employing matching

or spatio-temporal derivatives. The framework quickly generalizes to higher dimensional

datasets and other higher dimensional topological invariants.

Occlusion detection has numerous applications in shape extraction, figure-ground

separation, and motion segmentation. The work presented here can be easily extended to

perform robust figure-ground separation when the background model undergoes Lipschitz

deformations. Anomalies in the observations can be identified as foreground. Most current

such algorithms employ a fixed statistical model for the variation allowed in the background,

but the framework presented here is more general and can work in tandem with a statistical

model attached to the histogram flows.

The framework described in this chapter is general enough to create topological

histograms which carry more information than just color. The histograms can be interpreted

as descriptors of an image and can be compared via theorems 5 and 6. For example, they can

include gradient information which would allow us to track model deformation in addition to

color changes. This work can be extended by incorporating prior estimates of displacement

which can be utilized to choose smaller windows. Statistical learning methods, in particular,

can be used to select appropriate parameters.

Note that the idea of the histogram bins can also be extended to bins in the

plain (rather than just in the color space). This leads to solving for flows of pixels between

92

different regions which in turn generalizes to solving for motion flow in the image plane. This

is how refinement of our model and assumptions connects simple topological constraints to

more general ones.

Also, having new sets introduced in an image can be thought of as new information

in which new objects have been discovered. Utilizing this insight, it is possible to guide

changes of perspective such that unseen regions become visible. This can lead to developing

algorithm for “topological exploration” of a scene, looking for views that maximize the

discovery of new topological features. This idea can also be coupled with the construction

of the CN -Complex.

93

Bibliography

[1] “PLEX: A sytem for computational homology,” Mar 2009,
http://comptop.stanford.edu/.

[2] P. Anandan, “A computational framework and an algorithm for the measurement of
visual motion,” International Journal of Computer Vision, vol. 2, no. 3, pp. 283–310,
1989.

[3] N. Apostoloff and A. Fitzgibbon, “Learning Spatiotemporal T-Junctions for Occlusion
Detection,” in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2005.

[4] ——, “Automatic video segmentation using spatiotemporal T-junctions,” in British
Machine Vision Conference, vol. 3, 2006, p. 1089.

[5] D. Beymer, M. I. of Technology, and A. I. Laboratory, Finding Junctions Using the
Image Gradient. Massachusetts Institute of Technology, Artificial Intelligence Labo-
ratory, 1991.

[6] I. Biederman, “Recognition-by-components: A theory of human image understanding,”
Psychological Review, vol. 94, no. 2, pp. 115–147, 1987.

[7] M. Black and P. Anandan, “Robust dynamic motion estimation over time,” in Com-
puter Vision and Pattern Recognition, 1991. Proceedings CVPR’91., IEEE Computer
Society Conference on, 1991, pp. 296–302.

[8] M. Black and D. Fleet, “Probabilistic detection and tracking of motion discontinuities,”
International Journal of Computer Vision, vol. 38, no. 3, pp. 231–245, 2000.

[9] R. Bott and L. Tu, Differential Forms in Algebraic Topology. Springer, 1995.

[10] G. Carlsson, A. Zomorodian, A. Collins, and L. Guibas, “Persistence barcodes for
shapes,” in Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on
Geometry processing. ACM New York, NY, USA, 2004, pp. 124–135.

[11] Z. Cheng, D. Devarajan, and R. Radke, “Determining vision graphs for distributed
camera networks using feature digests,” EURASIP Journal on Applied Signal Process-
ing, vol. 2007(1), 2007.

94

[12] V. de Silva and R. Ghrist, “Coordinate-free coverage in sensor networks with controlled
boundaries via homology,” The International Journal of Robotics Research, vol. 25, pp.
1205 – 1221, 2006.

[13] P. C. et al., “CITRIC: A low-bandwidth wireless camera network platform,” in Third
ACM/IEEE International Conference on Distributed Smart Cameras, 2008.

[14] P. Favaro, A. Duci, Y. Ma, and S. Soatto, “On exploiting occlusions in multiple-
view geometry,” in Computer Vision, 2003. Proceedings. Ninth IEEE International
Conference on, 2003, pp. 479–486.

[15] D. Fleet, M. Black, and O. Nestares, “Bayesian inference of visual motion boundaries,”
2003.

[16] W. Freeman and E. Adelson, “The design and use of steerable filters,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 13, no. 9, pp. 891–906,
1991.

[17] S. Funiak, C. Guestrin, M. Paskin, and R. Sukthankar, “Distributed localization of
networked cameras,” in Proceedings of the fifth international conference on Information
processing in sensor networks, 2006.

[18] A. Fusiello, V. Roberto, and E. Trucco, “Efficient stereo with multiple windowing,” in
1997 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, 1997. Proceedings., 1997, pp. 858–863.

[19] A. Hatcher, Algebraic Topology. Cambridge University Press, 2002.

[20] R. Hill, A. van den Hengel, A. Dick, A. Cichowski, and H. Detmold, “Empirical eval-
uation of the exclusion approach to estimating camera overlap,” in Proceedings of the
2nd ACM/IEEE International Conference on Distributed Smart Cameras, 2008.

[21] H. Hirschmüller, P. Innocent, and J. Garibaldi, “Real-time correlation-based stereo
vision with reduced border errors,” International Journal of Computer Vision, vol. 47,
no. 1, pp. 229–246, 2002.

[22] B. Horn and B. Schunck, “Determining Optical Flow,” Artificial Intelligence, vol. 17,
no. 1-3, pp. 185–203, 1981.

[23] M. Irani, B. Rousso, and S. Peleg, “Computing occluding and transparent motions,”
International Journal of Computer Vision, vol. 12, no. 1, pp. 5–16, 1994.

[24] B. Jackson, R. Bodor, and N. Papanikolopoulos, “Learning static occlusions from inter-
actions with moving figures,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2004.

[25] T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational Homology. Springer,
2003.

95

[26] T. Kanade and M. Okutomi, “A stereo matching algorithm with an adaptive win-
dow: Theory andexperiment,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 16, no. 9, pp. 920–932, 1994.

[27] D. Li, G. Sullivan, and K. Baker, “Edge detection at junctions,” in Proceedings Alvey
Vision Conference, vol. 2, 1989.

[28] M. Li and B. Yang, “A survey on topology issues in wireless sensor network,” in
Proceedings of the International Conference on Wireless Networks, 2006.

[29] E. Lobaton, A. Parvez, and S. Sastry, “Algebraic approach to recovering topological
information in distributed camera networks,” in Proceedings of the 8th international
Conference on Information Processing in Sensor Networks, 2009.

[30] D. Makris, T. Ellis, and J. Black, “Bridging the gaps between cameras,” in Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, 2004.

[31] D. Marinakis and G. Dudek, “Topology inference for a vision-based sensor network,” in
Proceedings of the Second Canadian Conference on Computer and Robot Vision, 2005.

[32] D. Marinakis, P. Giguere, and G. Dudek, “Learning network topology from simple
sensor data,” in Proceedings of the twentieth Canadian Conference on Artificial Intel-
ligence, 2007.

[33] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi, “The flooding time synchronization pro-
tocol,” in Proceedings of the Second international conference on Embedded networked
sensor systems, 2004.

[34] M. Meingast, M. Kushwaha, S. Oh, X. Koutsoukos, A. Ledeczi, and S. Sastry, “Fusion-
based localization for a heterogeneous camera network,” in Proceedings of the 2nd
ACM/IEEE International Conference on Distributed Smart Cameras, 2008.

[35] A. Muhammad and A. Jadbabaie, “Decentralized computation of homology groups in
networks by gossip,” in Proceedings of the American Control Conference, 2007.

[36] J. Munkres, Topology, 2nd ed. Prentice Hall, 2000.

[37] ——, Elements of algebraic topology. Addison Wesley Publishing Company, 1993.

[38] O. Nestares and D. Fleet, “Probabilistic tracking of motion boundaries with spatiotem-
poral predictions,” in IEEE Conference on Computer Vision and and Pattern Recog-
nition, vol. 2, 2001, pp. 358–365.

[39] S. Niyogi and E. Adelson, “Analyzing and recognizing walking figures in XYT,” in
IEEE Conference on Computer Vision and Pattern Recognition., 1994, pp. 469–474.

[40] A. Ogale, C. Fermuller, and Y. Aloimonos, “Motion segmentation using occlusions,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 27, no. 6, pp.
988–992, 2005.

96

[41] L. Parida, D. Geiger, and R. Hummel, “Junctions: detection, classification, and recon-
struction,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 20,
no. 7, pp. 687–698, 1998.

[42] P. Perona, “Steerable-Scalable Kernels for Edge Detection and Junction Analysis,” in
Proceedings of the Second European Conference on Computer Vision. Springer-Verlag
London, UK, 1992, pp. 3–18.

[43] L. L. Presti and M. L. Cascia, “Real-time estimation of geometrical transforma-
tion between views in distributed smart-cameras systems,” in Proceedings of the 2nd
ACM/IEEE International Conference on Distributed Smart Cameras, 2008.

[44] A. Rahimi, B. Dunagan, and T. Darrell, “Simultaneous calibration and tracking with
a network of non-overlapping sensors,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 1, 2004, pp. I–187–I–194.

[45] E. Simoncelli and H. Farid, “Steerable wedge filters for local orientation analysis,”
IEEE Transactions on Image Processing, vol. 5, no. 9, pp. 1377–1382, 1996.

[46] P. Smith, T. Drummond, and R. Cipolla, “Layered motion segmentation and depth
ordering by tracking edges,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 26, no. 4, pp. 479–494, 2004.

[47] C. Stauffer and K. Tieu, “Automated multi-camera planar tracking correspondence
modeling,” in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2003.

[48] A. Stein, D. Hoiem, and M. Hebert, “Learning to Find Object Boundaries Using Motion
Cues,” in IEEE 11th International Conference on Computer Vision, 2007, pp. 1–8.

[49] A. Stein and M. Hebert, “Local detection of occlusion boundaries in video,” Image and
Vision Computing, 2008.

[50] A. van den Hengel, A. Dick, and R. Hill, “Activity topology estimation for large net-
works of cameras,” in Proceedings of the IEEE International Conference on Video and
Signal Based Surveillance, 2006.

[51] B. Wu and R. Nevatia, “Detection and segmentation of multiple, partially occluded ob-
jects by grouping, merging, assigning part detection responses,” International Journal
of Computer Vision, vol. 82, pp. 185–204, 2009.

[52] J. Xiao and M. Shah, “Accurate motion layer segmentation and matting,” in IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, 2005.
CVPR 2005, vol. 2, 2005.

[53] C. Yeo, P. Ahammad, and K. Ramchandran, “Rate-efficient visual correspondences
using random projections,” in Proceedings of IEEE International Conference on Image
Processing, October 2008.

97

[54] P. Yin, A. Criminisi, J. Winn, and I. Essa, “Tree-based classifiers for bilayer video
segmentation,” in Proc. CVPR, 2007.

[55] C. Zitnick and T. Kanade, “A cooperative algorithm for stereo matching and occlusion
detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 7, pp. 675–684, 2000.

[56] A. Zomorodian and G. Carlsson, “Computing persistent homology,” Discrete and Com-
putational Geometry, vol. 33, no. 2, pp. 249–274, 2005.

[57] X. Zou, B. Bhanu, B. Song, and A. Roy-Chowdhury, “Determining topology in a
distributed camera network,” in IEEE International Conference on Image Processing,
2007.

98

Appendix A

Proof of Decomposition Theorem 2

In this appendix, a detailed proof of the result stated in theorem 2 for the 2D

configuration described in section 3.2.3 is provided.

Throughout this appendix we consider a finite set of cameras indexed by α ∈

{1, 2, 3 · · ·Nc} with corresponding domains Dα and coverages Cα. Each camera coverage

is decomposed by all possible bisecting lines {Lα,i}. The collection {Cα,j} is the result of

this decomposition, where Cα,j := Cα ∩ Kα,j and Kα,j is the convex cone resulting from

decomposing the plane using the lines {Lα,i} (see definition 13).

Observation 3. It may be useful for the reader to think of the set Cn (the visible set after

object occlusions have been removed) as the intersection of a convex set (i.e., the camera

domain) with a star convex set (due to visibility from oα).

Observation 4. The number of bisecting lines for a given camera in our environment is

finite since we are considering finite number of objects in the coverage with piecewise linear

boundaries.

99

Definition 22. The line segment joining points p and q is denoted by p q. The line

passing through points p and q is denoted by L(p, q).

Definition 23. The triangle formed by points a, b and c ∈ R
2 is the convex hull of

these three points and it is denoted ∆a,b,c.

Lemma 1. Given that oα, p ∈ Cα then oα p ∈ Cα.

Proof. Since, oα and p ∈ Cα ⊂ Dα, then oα p ⊂ Dα due to convexity of Dα. Let r ∈ oα p.

If r is not visible then oα r ∩
⋃

Oi 6= ∅ (where {Oi} is the collection of objects in the

environment). However, this implies that oα p∩
⋃

Oi 6= ∅. Hence, we conclude that p is not

visible, which is a contradiction. Therefore, r must be visible. Since r was arbitrary then

oα p is visible.

Lemma 2. Given that p, q ∈ Cα with

L(p, oα) = L(q, oα),

then p q ∈ Cα. That is, if p and q are visible and are in the same line of sight, then the line

joining them is visible too.

Proof. This follows from the definition of Cα and the domain of a camera Dα. We know

that Dα is convex, so p q ⊂ Dα since p, q ∈ Cα ⊂ Dα.

From our assumption L(p, oα) = L(q, oα), it is possible to conclude that for r ∈ p q

then r ∈ Dα, and r ∈ oα p or r ∈ oα q. Basically, there are only two cases, both p and q on

the same side of oα or on opposites sides. Either way, r must be in oα p or oα q.

Without loss of generality, assume r ∈ oα p. If r was not visible, the

oα r ∩
⋃

Oi 6= ∅

100

(where {Oi} is the collection of sets representing the objects in the space). This implies

that

oα p ∩
⋃

Oi 6= ∅,

since oα r ⊂ oα p. This implies that p /∈ Cα which is a contradiction. Therefore, r must be

visible too.

Lemma 3. Given a closed path Γ([0, 1]) ⊂ Cα, then the space enclosed by Γ is also in Cα.

Proof. Let R be the enclosed area by the path Γ. Since Γ : [0, 1] → R
2 is bounded, then

∃M > 0 such that ||Γ(t) − oα|| < M,

where oα is the location of camera α. Hence,

r /∈ R if ||r − oα|| > M.

Also, if a point r′ is connected to r /∈ R through a path γ that does not cross Γ, then r′ /∈ R.

Let p ∈ R and define

L := L(p, oα) ∩ Γ([0, 1])

(i.e., points in Γ and in the line passing through p and oα), then there must be points

q1, q2 ∈ L such that and p ∈ q1 q2. Otherwise, there would exist a point r ∈ L with

||r − oα|| > M (i.e., r /∈ R) such that r p does not intersect Γ([0, 1]). This implies p /∈ R

which is a contradiction. Therefore, p ∈ q1 q2.

Next, we consider three cases:

• Assume q1 6= oα and q2 6= on. Since q1, q2 ∈ Γ([0, 1]) ⊂ Cn with L(q1, oα) = L(q2, oα),

then p ∈ q1 q2 ⊂ Cn by lemma 2 (which makes p visible).

101

• Assume q1 6= oα and q2 = oα. Then p ∈ oαq2 ⊂ Cα by lemma 1.

• Assume q1 = q1 = oα. Then, p = oα ∈ Cα.

In all cases p is visible, and since p was arbitrary we conclude that R is visible.

The previous lemmas are also true if we replace Cα by the set Cα,j resulting from

a decomposition of the coverage. The reason why it works is because we can think of Cα,j

as being the coverage of a camera with a domain

Dα,j := Dα ∩ Kα,j ,

where Kα,j is the corresponding convex cone that generates the region Cα,j . This new

domain is still convex which is the property used in the previous lemmas. However, note

that this Dα,j is not open.

Lemma 4. Every connected component of
⋂

(α,j)∈A Cα,j, where A is a finite set of indices,

is simply connected.

Proof. Let Γ be a closed loop in
⋂

(α,j)∈A Cα,j . By the previous lemma, the space enclosed

by Γ is inside Cα,j for all (α, j) ∈ A.

Definition 24. Let Γ : [0, 1] → R
2 be a path connecting points p to q (i.e. Γ(0) = p and

Γ(1) = q). We define the region enclosed by Γ, denoted by R(Γ), to be the region enclosed

by the set Γ([0, 1]) ∪ p q.

Definition 25. A path Γ : [0, 1] → R
2 connecting points p and q is said to be a convex

path if R(Γ) is convex.

102

Definition 26. A non-intersecting path Γ : [0, 1] → R
2 is monotone with respect to

camera α if for any p ∈ S1
α, where S1

α is the unit circle centered at oα, we have that

Γ([0, 1]) ∩ L(p, oα) has a single connected component.

Lemma 5. Let R be a bounded convex set contained between the lines L(p, oα) and L(q, oα),

where p and q ∈ R. Then, either p q is the only path in R joining p to q, or there are exactly

two distinct images of monotone paths connecting p to q (only intersecting at the end points),

which form the boundary of R.

Figure A.1: Cases for lemma 5: Two monotone paths forming the boundary of the set (left).
A line segment joining p to q (right)

Figure A.1 illustrates the cases described in the previous lemma.

Lemma 6. Given that Cα is connected with p and q ∈ Cα, then there exists a path Γ

connecting these points that is convex and monotone with respect to camera α with Γ([0, 1]) ⊂

Cα ∩ ∆p,q,oα.

Proof. We present an outline of the proof of this result.

Let p and q ∈ Cα, where Cα is connected.

The reader may be tempted to try the path p oα ∪ oαq. However, we are not

assuming oα ∈ Cα. Our proof takes care of this case too.

103

Figure A.2: Construction steps of a monotone convex path for lemma 6.

Since Cα is connected then there exists a path Γ0 that connects p to q with

Γ0([0, 1]) ⊂ Cα. We illustrate this in the diagram in figure A.2 (a) in which the gray

region corresponds to the coverage under consideration.

Our first objective will be to construct a path that is contained within ∆p,q,oα .

We start with path Γ0 and consider the line L(p, oα) (see figure A.2 (a)). This line

will intersect the Γ0 at points {rk}. By lemma 2, we know that the line segments between

them are visible, so we can construct path Γ1 (as shown in figure A.2 (b)) which does not

cross L(p, oα).

Next, we consider the intersections between L(q, oα) and Γ1 (see figure A.2 (b)).

As in the previous case, we can construct a path Γ2 which does not cross L(q, oα).

If we consider the line L(p, q), then it will intersect the line Γ2 at points {rk} (see

104

figure A.2 (c)). Consider a segment of Γ2 that is outside of the triangle ∆p,q,oα , which

intersects L(p, q) at r1 and r2. For any r ∈ r1 r2, we see that r ∈ Dα since rk ∈ Dα and

Dα is convex. Also, there exists a point r′ ∈ L(r, oα)∩Γ2([0, 1]) which is further away from

oα than r. Otherwise, the line segment in Γ between r1 and r2 would not be outside the

∆p,q,oα . Therefore, if r was not visible then r′ would not be visible which is a contradiction.

Hence, r must be visible.

This implies that we can connect r1 to r2 by the line segment r1 r2 and construct

path Γ3 which is inside ∆p,q,oα .

In order to make Γ3 into a convex path, we take the convex hull of Γ3 and by

lemma 5 we know that there are at most two monotone paths to choose from (see figure

A.2 (d)). We choose the path Γ that is closest to oα. Clearly Γ is convex. We can see that

Γ is visible since for any line L(r, oα) for r ∈ Γ3([0, 1]), the line will have to intersect Γ at

some location s closer to oα than r.

This process yields the desired monotone and convex path Γ (see figure A.2 (e))

which images is in Cα ∩ ∆p,oα,q.

Lemma 7. Given that Cα is connected with p and q ∈ Cα,j for some j, then there exists a

path Γ connecting these points that is convex and monotone with respect to camera α with

Γ([0, 1]) ⊂ Cα,j ∩ ∆p,q,oα.

Proof. Since p and q ∈ Cα,j , then p and q ∈ Cα∩Kα,j . By the previous lemma, we know that

there exists a path Γ such that Γ([0, 1]) ⊂ Cα. Note that Γ([0, 1]) is inside the cone formed

by the lines L(p, oα) and L(q, oα) by construction. This cone must be contained within

Kα,j , otherwise p and q could not be in Kα,j . Therefore, Γ([0, 1]) ⊂ Kα,j ∩ Cα = Cα,j .

105

Lemma 8. Let Γ : [0, 1] → R
2 be a feasible monotone path connecting p and q ∈ Cα

with Γ([0, 1]) ⊂ Dα for some camera α. If an object O is within the region enclosed by

oα p ∪ Γ([0, 1]) ∪ q oα then there exists a bisecting line L passing through a point in Γ that

does not intersect L(p, oα) and L(q, oα) (not including these lines).

Proof. For simplicity we just give an outline of this proof.

Since Γ([0, 1]) ⊂ Dα, we know that no point in Γ will be in the boundary of Dα

since Dα is open.

Since oα p ∪ Γ([0, 1]) ∪ q oα encloses an object, there exists a transition between

having a visible and a not-visible point in the path (i.e. an occlusion event). This is

guaranteed since at least a point in the path is visible, and not all the points can be visible

due to the object O.

Assume that the transition event occurs in L(p, oα) or L(q, oα) at some point

r ∈ Γ([0, 1]) and nowhere else. Without loss of generality assume that r p ⊂ Γ([0, 1]) (due

to monotonicity of path). The object would have to occlude r too (since objects are closed).

Then either the path is not feasible or p is not visible which contradicts our assumption.

Therefore, a transition must occur at some other point along Γ and not in these lines.

Theorem 7. (Decomposition Theorem) Let {Cα}
N
α=1 be a collection of camera cov-

erages where each Cα is connected and N is the number of cameras in the domain. Let

{Cα,k}(α,k)∈AD
be the collection of decomposed sets by all possible bisecting lines, where AD

is the set of indices in the decomposition. Then, any finite intersection
⋂

(α′,k′)∈A Cα′,k′ ,

where A is a finite set of indices, is contractible.

Proof. For simplicity we just give an outline of this proof for two cameras. The proof for

106

multiple cameras can be completed by induction.

Let p and q ∈ Cα1,k1
∩ Cα2,k2

for some indices (αi, ki).

Part I:

First, consider cameras α1 and α2 on the same side of the line L(p, q). We know

that there exist convex monotone paths Γi connecting p to q such that Γi([0, 1]) ⊂ Cαi,ki
∩

∆p,oαi
,q for i = 1, 2 (see left plot in figure A.3).

Figure A.3: Illustration for the construction of Γ.

By lemma 5, we can choose a path Γ corresponding to a segment of the boundary

of R := R(Γ1) ∩ R(Γ2) (see right plot in figure A.3). We choose the path that consists of

segments from Γ1 and Γ2 so Γ will be feasible. We note that lemma 5 also tells us that Γ

is monotone with respect to camera αi (since R is between L(p, oαi
) and L(q, oαi

)). Also,

Γ ⊂ R = R(Γ1) ∩R(Γ2) ⊂ Dα1
∩ Dα2

due to convexity of Dαi
.

By lemma 8, we know that there are no objects inside the regions enclosed by

p oαi
∪Γ([0, 1])∪q oαi

(since otherwise there would be a bisecting line and we assumed that we

already decomposed using all bisecting lines). Hence, s oαi
does not intersect any object for

s ∈ Γ([0, 1]), which implies that Γ is visible by both cameras (i.e. Γ([0, 1]) ⊂ Cα1,k1
∩Cα2,k2

).

107

Part II:

Now we consider cameras α1 and α2 at opposite sides of the line L(p, q). There

are two main cases to consider.

Case 1:

For the first case we consider a configuration as seen in figure A.4 (left).

Figure A.4: Illustrations for Case 1.

We would like to conclude that the path p q is visible by both cameras. Assume

that it is only visible up to a point r (not including this point since objects are closed).

Then, an object must intersect r oα1
or r oα2

. By lemma 8, we notice that the interior of

∆r,oαi
,q must be empty; otherwise, there would be a bisecting line.

Also, since Dα2
is open, we can find a ball B around q that is contained in Dα2

(see right plot in figure A.4(right)). We choose a point s ∈ B ∩ q oα1
.

Then, ∆p,s,q ⊂ Dα1
∩ Dα2

. From there, we can choose a point s′ as shown in

the diagram such that s′ q ⊂ Dα2
is feasible. This is possible since there are no objects

in ∆r,oα1
,q. However, if there was an object intersecting r oα2

, then L(r, oα2
) would be a

bisecting line. But, it is not. So, there are no objects intersecting r oα2
.

108

Similarly, there are no objects intersecting r oα1
. This means that r is visible by

both cameras, which contradicts our initial assumption. This shows that p q is visible to

both cameras, i.e. p q ⊂ Cα1,k1
∩ Cα2,k2

.

Case 2:

Figure A.5: Illustrations for Case 2.

For the second case, we consider a configuration as shown in figure A.5.

By following the same analysis as before, we can show that p r−{r} and r q−{r}

must be visible by both cameras. However, we could have an object in oα1
oα2

. Nevertheless,

objects must enclose some area which does not allow an object to be contained in this line.

Therefore, p q ⊂ Cα1,k1
∩ Cα2,k2

.

109

Appendix B

Proof of Proposition 1

Letting ct
i ∈ Bk = [ak, bk) for 1 < k < Np, we verify the previous claim by noting

that the first condition in the definition tells us:

ct+1
i > ct

i − |Bk−1| = ct
i − bk−1 + ak−1

> ct
i − bk + ak−1

≥ ak−1.

(B.1)

The second line in the inequality follows from the fact that bk−1 < bk, and the last inequality

follows from the fact that ct
i ≥ bk since ct

i ∈ Bk. Similarly, we can conclude that:

ct+1
i < ct

i + |Bk+1| = ct
i − ak+1 + bk+1

< bk+1.

(B.2)

Combining the two previous results, we have ak−1 ≤ ct+1
i < bk+1 which implies that ct+1

i ∈

Bk−1 ∪ Bk ∪ Bk+1.

Similarly, if ct
i ∈ B1 then ct+1

i ∈ B1∪B2, and if ct
i ∈ BNp then ct+1

i ∈ BNp−1∪BNp.

110

Appendix C

Proof of Theorems 5 and 6

C.1 Proof of Theorem 5

In order to simplify the notation, we make the following definition: α(I) :=

α(I|R2), α(I|r) := α(I|Kr), and corresponding definitions for α and γ.

Throughout this proof we make use of the following property.

Property 1. Given vectors v, v′, w and w′, where v ≤ v′, w′ ≤ w, and v′ ≺ w′, then

v ≺ w. We note that the flow that explains v′ based on w′ also explains v based on w.

Property 2. Given vectors v, v′, w and w′ where v ≺ w and v′ ≺ w′, then v +v′ ≺ w +w′.

The flow that explains v + v′ based on w + w′ is the sum of the other flows.

This theorem is proven by induction. Assume that all images are resulting from

Lipschitz image deformation, and B is a simple partition for all the images. In particular,

consider images that are the collection of single connected components sets.

111

First Step of Induction

Let the collection It = {(Et
1, c

t
1)} be an image sequence, where ct

1 ∈ Bp, ct+1
1 ∈ Bq,

and Et
1 is a single connected component.

Case 1: Et
1 ∩ Kr = ∅

Then, α(It|r) = 0 and 0 ≤ α(It+1|r + C). Hence, zero flow gives

α(It|r) ≺ α(It+1|r + C).

Case 2: Et
1 ∩ Kr 6= ∅

Then, α(It|r) = ep, where ep is the standard basis vector with p-th entry equal

to 1 and all other entries equal to 0. This is true by the following reasoning: If Et
1 ∩ Kr

consists of multiple components, they will have to intersect the boundary since Et
1 is a single

connected component.

Since Et
1∩Kr 6= ∅ then Et+1

1 ∩Kr+C 6= ∅ due to Lipschitz condition of image defor-

mation. That is, the intersection with Et+1
1 will contain one or more connected components.

So, eq ≤ α(It+1|r + C).

Finally, there is a flow that explains α(It) = ep based on α(It+1) = eq since B is

a simple partition which implies that p and q are adjacent bins. Then

α(It|r) = ep ≺ eq ≤ α(It+1|r + C)

which, by property 1, implies

α(It|r) ≺ α(It+1|r + C).

112

k + 1-th Step of Induction

Let the collection It = {(Et
i , c

t
i)}

k+1
i=1 be an image sequence, where ct

k+1 ∈ Bp,

ct+1
k+1 ∈ Bq, and all Et

i consist of single connected components. Also, define the images

J t = {(Et
i , c

t
i)}

k
i=1. We assume that the desired condition is satisfied by J t.

Case 1: Et
k+1 ∩ Kr = ∅

Then, α(It|r) = α(J t|r). Since adding new sets to an image can only increase

the number of connected components, we have α(It+1|r + C) ≥ α(J t+1|r + C). Then, by

assumption, we have

α(It|r) = α(J t|r) ≺ α(J t+1|r + C) ≤ α(It+1|r + C)

which implies

α(It|r) ≺ α(It+1|r + C).

Case 2: Et
k+1 ∩ Kr 6= ∅

Then, α(It|r) ≤ α(J t|r)+ep. This is true by the following reasoning: If Et
k+1∩Kr

does not intersect the boundary then α(It|r) = α(J t|r)+ep; also, if Et
k+1∩Kr does intersect

the boundary but it does not have the same color as any other sets Et
i ∩ Kr that intersect

the boundary then α(It|r) = α(J t|r) + ep; othewise, we have α(It|r) = α(J t|r).

It can be also verified that

α(J t+1|r + C) + eq ≤ α(It+1|r + C),

since Et+1
i ∩Kr+C will add at least one more connected component to the histogram count.

113

As before, ep ≺ eq since we have a simple partition. It is also known that α(J t|r) ≺

α(J t+1|r + c) which, by property 2, implies

α(J t|r) + ep ≺ α(J t+1|r + c) + eq.

Finally, since α(It|r) ≤ α(J t|r) + ep and α(J t+1|r + C) + eq ≤ α(It+1|r + C) we have, by

property 1,

α(It|r) ≺ α(It+1|r + C).

This concludes the proof of equation 7.9.

C.2 Proof of Theorem 6

In order to show that

γ(It|Kr) ≺ γ(It+1|Kr+C),

we first consider It = {Et
1, c

t
1}. It is clear that any hole in Et

1 ∩ Kr will have to be in

Et+1
1 ∩ Kr+C . Hence, γ(It|Kr) = nhep and γ(It+1|Kr+C) ≥ nheq for some p and q, nh is

the number of holes in Et
1 ∩ Kr, and ep ≺ eq. The general proof follows by induction as

before.

