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Abstract 

 

The energy efficiency of network elements is becoming more prominent, with 

growing concern for Internet power consumption and heat dissipation in datacenters 

and communications closets. Previous work has looked at energy efficient wireless 

topologies, network nodes, routers, and protocols. In considering a fresh redesign of 

the Internet datacenter for energy efficiency, we believe that energy efficient 

encodings are worthy of study. In this work, we re-examine the choice of Ethernet 

encoding, develop an associated energy model, evaluate current encodings, propose 

new encodings, and identify the desirable features of future encodings. We found that 

simpler encodings are more energy efficient, with power savings of around 20% for 

the best encoding. Our work represents a first step in re-examining the established 

assumptions and practices of the PHY level of the network stack with respect to 

energy. 
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1. Introduction 
 
 

The energy efficiency of communication networks is receiving increasing attention. 

Global warming, energy costs, and heat dissipation in datacenters and communication 

closets makes power management an essential part of network research. Studies in 

2001 found that 2% of U.S. electricity consumption can be attributed to powering our 

information infrastructure. This amounts to 74TWhr and $6 billion spent in 2001 [1, 

2]. In contrast to the continuously increasing energy demand of the Internet, U.S. 

national electricity generation capacity has remained constant since 2005 [3]. 

Improving Internet energy efficiency will not only reduce the operating costs of 

Internet equipment, it will also bring tangible reductions to Internet’s carbon 

footprint. There is considerable work on Internet energy efficiency. The network stack 

has already been thoroughly examined [4, 5, 6], except for link layer encodings. The 

dominant Internet link layer technology is Ethernet. Its encodings were traditionally 

considered difficult to change, and consequently, there is no systematic understanding 

of the problem space for energy efficiency in this area. Recent interest in “Greenfield” 

datacenter design opens up the question of how to design link layer encodings for 

energy efficiency. 

 

We suspected that there would be opportunities to save energy, since the widely 

implemented encodings were developed before energy concerns became important. It 

is now critical to quantify the possible energy savings through energy conscious 

encodings, compared with savings attributed to other techniques. As a first step, any 
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new encodings we propose must be compatible with existing technology, in that we 

should require no changes to higher layers of the network stack. We focus on three 

encodings: 4B5B and MLT-3 for 100Mbps over UTP Ethernet cables, 8B10B for 

1Gbps over optical fiber, and 4D-PAM5 for 1Gbps over UTP. Section 2 gives a brief 

overview of these encodings, which are the most widely deployed. Internet 

datacenters and high end networks are predominantly 1Gbps, and most residential 

networks remain 100Mbps. We do not consider 10Gbps because while it may present 

an even greater opportunity for energy savings, it is significantly less widely deployed 

in 2009 due to cost reasons. Nevertheless, we will show that the methodology and 

insights gained from a study at 100Mbps and 1Gbps become even more relevant for 

higher speed links. 

 

To the best of our knowledge, our work is the first detailed study to re-consider the 

choice of Ethernet encoding with respect to energy efficiency. Our contribution is 

three-fold. First, we offer a new view of how to consider the impact of energy 

consumption on communications encodings. Second, we examine the energy 

consumption of Ethernet encodings for 100Mbps and 1Gbps technologies, and 

suggest an improved encoding for 100Mbps. Third, we offer a power model of 

Ethernet encodings to help guide further work in the area. 

 

The report is structured as follows. Section 2 quickly reviews existing Ethernet 

encodings and the large body of prior work in Internet power management and energy 

efficiency. Section 3 explains our view of the encoded communication problem and 

outlines our power model for Ethernet encodings. Section 4 describes our proposed 
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encoding. Section 5 evaluates various encoding through Matlab and Verilog 

simulation, at the same time verifying our power model. Section 6 distills key insights 

from our work, and makes recommendations for future work in energy efficient 

Ethernet encodings and Internet energy efficiency in general. Our key result is that 

simpler encodings are more energy efficient, with savings of around 20% for the 

encoding. 

 
 

2. Background and Related Work 
 
 

2.1. Existing Ethernet Encodings 
 
 

We look at 4B5B and MLT-3 for 100Mbps over UTP cables, 8B10B for 1Gbps over 

optical fiber, and 4D-PAM5 for 1Gbps over UTP. Full descriptions of the Ethernet 

encodings are found in the IEEE and ANSI standards [7, 8]. We will give a brief 

overview below, and relevant excerpts from the IEEE standards [7] are found in 

Appendix 1.  

 

4B5B and MLT-3 encodings are used in 100BASE-TX for 100Mbps over UTP. Four-

bit blocks of the input bit stream are mapped to five-bit output blocks to facilitate 

synchronization and other functions. The outgoing bit rate is 125Mbps, above the 

natural frequencies of the copper UTP cable. The MLT-3 encoding allows 125Mbps 

to be delivered at 31.25 MHz. MLT-3 output signals have three analog levels, with a 

peak-to-peak voltage of 2V. It delivers 125Mbps at 31.25 MHz because it cycles 
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through +1, 0, and -1 logic levels, with a “1” bit in the input causing a logic level 

transition. There are no direct transitions between the +1 and -1 logic levels, allowing 

a low frequency signal to be used. 

 

8B10B encoding is used in 1000BASE-LX/SX for 1Gbps over single/multi-mode 

optical fiber. Eight-bit blocks of the input bit stream are mapped to ten-bit blocks to 

facilitate clock synchronization. A running parity check ensures the output is DC 

balanced. The output bit stream gets sent over optical fiber using either on-off-keying 

or phase modulation.  

 

The 4D-PAM5 (4-dimensions, 5 levels pulse amplitude modulation) encoding 

delivers 1Gbps over UTP. Eight-bit blocks of the incoming bit stream are converted 

to four PAM5 signals, with a peak-to-peak voltage of 2V and sent over four twisted 

pairs of the UTP cable. A complex scrambling scheme ensures output DC balance and 

facilitates full duplex on all four twisted pairs, with each pair being 250Mbps full 

duplex. 

 

The original rationale for selection of these encodings was data rate and convenience 

over efficiency. The problem facing the designers of 4B5B and MLT-3 encodings was 

how to enable 100 Mbps over an analog UTP channel that has a bandwidth of 31.25 

MHz. The pre-existing UTP encoding for 10 Mbps, the Manchester Encoding, would 

require 200 MHz to deliver 100 Mbps. 4B5B/MLT-3 allowed the required data rate to 

be achieved within the bandwidth constraints. The encoding uses only one of four 

twisted-pair wires in the UTP cable for simplex communication, a significant strength 
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since signaling on all four twisted-pair wires in the UTP cable would readily permit 

duplex communications at 200Mbps. 

 

Similarly, the 4D-PAM5 encoding was devised to achieve 1Gbps over UTP channel 

with limited analog bandwidth. The encoding has more bits per symbol (PAM5 vs. 

something resembling PAM3 for MLT-3), which leads to a higher bit rate when the 

signaling rate is a fixed number of symbols per second. It also facilitates a scrambling 

scheme to permit duplex communications on a single twisted-pair, thus reducing the 

data rate needed from each of the four twisted-pair wires.  

 

The choice of 8B10B for single and multi-mode fiber was one of convenience. 8B10B 

has been an established technology before its adoption as standard for 1Gbps over 

fiber. It was not adopted as standard earlier because it was formerly covered by a 

patent from IBM. When the patent expired, 8B10B proliferated to a variety of uses, 

including 1Gbps over fiber, SATA 1.5Gbps and 3Gbps, InfiniBand, USB 3.0, and 

others. A significant strength of the encoding is bounded bit disparity in a given run 

of symbols, which will reduce demand for the lower bandwidths of the channel.  

 

2.2. Network Energy Efficiency 
 

 

One of the earliest works in Internet energy efficiency is [9]. Many studies have 

followed. There is well established research in wireless energy efficiency, motivated 

by the limited power budgets for wireless devices, such as those in sensor nets and ad 
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hoc networks [10, 11]. Studies have also looked at how channel conditions and 

wireless protocols affect power consumption [12]. In comparison, our work focuses 

on higher speed wired topologies. 

 

Prior work has looked at power management at network nodes, such as network 

switches [4, 13], networked storage and disk drives [14], servers [15], and PCs [16]. 

Our work focuses on communication between network nodes.  

 

Other power saving strategies focus on protocols at both the transport and network 

layers. There have been studies on the power consumptions of different flavors of 

TCP [5], TCP in wireless [17], sleep option for TCP [18], and using proxies to 

facilitate extensive sleep time [19]. Our work is focused on PHY and link encodings 

rather than new protocols. 

 

Possible ways to save energy in the link layer includes reducing the link layer speed to 

facilitate energy savings during times of low traffic [6]. Current work in the IEEE 

802.3 Energy Efficient Ethernet (EEE) Task Force includes diverse ideas on how to 

save energy in the link layer [20]. We complement the work there by offering energy 

efficient encodings that can be deployed in conjunction with other link layer power 

management techniques. 

 

Past work in ADSL2+ power management hints at the idea of using line encodings to 

save energy [21]. There, it was suggested that different modulation schemes would 
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deliver different transmission energy. We are not aware if the idea was pursued 

further.  

 

Our work on energy efficient Ethernet encodings (EEEE) is an alternative approach to 

saving energy for the Internet. Our focus on Ethernet is driven both by a vacuum in 

our understanding in the area, and that the biggest energy savings are to be had at the 

edge of the network than at the highly concentrated network core. We differ from 

previous work in our focus to investigate and quantify the energy benefits of 

alternative PHY encodings. Our work complements existing research. One can 

envision a power efficient Internet in the future, with energy efficient protocols and 

energy efficient nodes, energy efficient wireless for wireless nodes, and optimized 

wired links with EEEE for encoding the data sent. 

 

3. Energy Conscious Encodings 
 
 

3.1. A Framework for Energy Conscious Communications 
 
 

The canonical digital communication problem is: given a certain bandwidth of the 

communication channel, an energy budget at the communication endpoints, and a 

target error rate, we try to maximize the data rate of communication. The bandwidth 

and energy budget are the resources available, the error rate is a performance bound, 

and the maximized data rate is the performance goal. Encoding is a tool to maximize 

performance using the resources available. 
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Traditionally, bandwidth and channel conditions have been the bottlenecks, affecting 

the data rate and the error rate respectively. Thus, the focus of encoding schemes has 

been to efficiently use the available bandwidth, and correct errors introduced by 

channel noise. Only in applications with limited power supply, such as mobile devices 

or sensor networks, has the energy budget been a concern. Now, with a rising focus 

on power consumption, we need an alternate view that highlights energy issues. 

 

We formulate an alternative digital communication problem. Given a certain 

bandwidth, an error rate, and a data rate prescribed by Internet standards, we 

minimize the energy budget required. In this view, the bandwidth is the resource 

available, the data rate and error rate are bounds, and the minimized energy 

consumption is the goal. 

 

A performance metric common to both views is the bandwidth-energy product, 

helpful for comparing different encodings, given the same data rate, error rate, and 

“all else equal”. For an “efficient” encoding, the value of this product should be low. 

We could also look at the data rate to bandwidth-energy ratio, i.e., (data rate) / 

(bandwidth × energy), a re-cast of the “energy-per-bit” concept. This metric is not as 

helpful since the data rate is often prescribed, and different communications channels 

may preclude certain data rates.  

 

For comparing the energy efficiency of two encodings, the only metric we need is the 

energy budget. The encodings need to have the same bandwidth, data rate, error rate, 
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and other performance criteria. Otherwise, we cannot compare two encodings using 

energy efficiency alone. 

 

3.2. An Energy Model for Ethernet Encodings 
 
 

The goal of an energy model is to understand how different parts of the 

communication system contribute to the energy consumed. For Ethernet encodings, 

we find it helpful to include only two sources of energy consumption – the encoding 

circuits, and the transmission energy put on the communication channel. The 

encoding circuits include digital encoding circuits, D/A converters, and pulse-shaping 

circuits. The transmission energy of the communication channel is either dissipated 

into the channel, or received at the destination. 

 

There are, of course, other energy consumers in a communication system, including 

send/receive buffers, memory, and possibly the operating system. These sources are 

independent of the encodings used, and are left out of our energy model. A more fine-

grained model should account for these energy consumers and quantify their 

contribution. 

 

We propose that in wired Ethernet, the energy spent in encoding circuits is much 

larger than the transmission energy. This is a significant departure from wireless 

energy models, where the encoding circuit energy is routinely assumed to be 

negligible compared to the transmission energy, e.g., in [22, 23, 24]. The difference is 
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due to two reasons. First, the wireless channel is noisy and three-dimensional. 

Therefore, large transmission energy is required for a useful signal to noise ratio 

(SNR). In contrast, wired Ethernet is less noisy, and the signal is concentrated along a 

one-dimensional cable. Therefore, the transmission energy need not be large. Second, 

the data rates prescribed for 100Mbps and 1Gbps greatly exceeds the natural 

frequencies for UTP cables, requiring non-trivial and sometimes very complex 

encodings to deliver the prescribed data rate. Complex encodings means circuits with 

larger areas, and higher signaling speeds means greater circuit energy consumption. 

Therefore, we believe the encoding energy to be larger than transmission energy in 

wired Ethernet, and the ratio would become even more acute as data rates increase to 

10Gbps and beyond.  

 

Verifying this energy model requires getting a quantitative measure of the encoding 

energy and transmission energy. The transmission energy is relatively easy to 

estimate. For 100Mbps and 1Gbps over UTP, we can estimate the transmission 

energy by the line voltage and the cable insertion loss. For 1Gbps over optical fiber, 

we can estimate the transmission energy by the optical output of laser diodes. This 

estimate would exclude the power consumed in the DC bias circuits necessary for 

operating the laser diode; the power for these circuits should also be excluded from 

the encoding energy. Estimating the encoding energy is more difficult. The most 

direct verification would require probing the encoding circuits. We are not aware of 

commercial chip-sets that allow such probing. This approach may also run into 

difficulties in identifying and isolating the encoding circuits in a highly optimized 

chip-set layout. Another approach would be to design and layout a communication 
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chip-set from scratch, then simulate the power consumption using a CAD suite. This 

approach has the side benefit of generating a fine-grained power model for the chipset 

in a NIC card, but is probably best left to experts in circuit design. We use a third 

approach, which gives only a first-order estimate. We take the power consumption of 

typical NICs, and subtract from it the transmission power. The remainder would 

include the power consumption of encoding circuits and other circuits, such as 

buffers, or DC bias circuits in optical fiber NICs. In the absence of a more fine-

grained method, this calculation gives a ball-park estimate of the encoding circuit 

power consumption. As will be evident later in the report, such estimates are 

sufficient to distinguish the relative energy efficiency of different encodings.  

 

In addition, we can compare the relative encoding circuit energy for different 

encodings by looking at the size of the different encoding circuits. Larger circuits 

generally mean greater energy consumption. In particular, we can build circuit 

simulations of different encodings using a uniform technology, and compare the size 

of the resulting circuits. Such simulations would not give us absolute values for 

energy consumption. They would, however, give us an idea on the relative energy 

consumptions for the circuits used in different encodings.  

 

4. An Alternative Encoding for MLT-3 
 

We propose an alternative encoding to MLT-3 that has lower power consumption. 

Like MLT-3, it takes as input the result of 4B5B encoding, and outputs the voltages to 

be sent. It also delivers 125 Mbps at 31.25 MHz. Our encoding is a fully backwards 
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compatible alternative to MLT-3, in that we require no changes to 4B5B and the Mac 

layer above, nor the physical medium below. In Section 5, we show that our encoding 

can save 18% of transmission energy, and 60% of encoding circuit energy. 

 

Our encoding is inspired by the observation that while the 4B5B output bit stream is 

not DC-balanced, the output of 4B5B in conjunction with MLT-3 is. If we assign 

voltage levels based on sequences in the 4B5B output stream, we can get a larger 

fraction of symbols in a low energy state, at the cost of slight DC-imbalance. If we 

ensure our encoding conforms to the output level transition constraints of MLT-3 and 

signals at the same baud rate, then we can deliver 125 Mbps at 31.25 MHz for lower 

transmission energy. 

 

The new encoding uses a state machine involving the past two bits in the 4B5B output 

stream. The state transition diagram is shown in Fig. 1. An incoming data bit causes a 

state transition. For example, if the past two bits are 01, the machine is in State 01. An 

incoming bit with value 0 will cause a transition to State 10. In State 10, the previous 

two bits are the 1 bit carried over from State 01, and the new 0 bit. Given a 

predetermined initial state, the output is uniquely decodable. 
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The states are mapped to three logical output levels, the same as the three logical 

levels in MLT-3. The mapping is shown in Fig. 1. Like MLT-3, our encoding has no 

direct transitions between +1 and -1 output levels. This allows 125Mbps at 

31.25MHz. If we signal at the same baud rate and use the same peak-to-peak voltage, 

our encoding would be fully compatible with 4B5B and existing technology. We 

would require both endpoints on the link use either MLT-3 or our alternative, and 

endpoints could potentially support both kind of ports. 

 

As we will detail later, our alternative is significantly simpler to implement compared 

with MLT-3, leading to lower encoding circuit energy. 

 

A potential limitation is that our encoding is not DC balanced. This was formerly a 

significant issue. When encodings were first developed for the telephone network, the 
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AC signal component would carry the voice, while the DC component would be used 

to power the telephone sets and the line repeaters. Any DC imbalance in the encoding 

would be treated as another DC power component, and would be unrecoverable at the 

receiver. Also, the DC component would not pass through any transformers used for 

impedance matching for the transmission line. Such concerns may still persist for 

DSL, but not for the vast majority of Ethernet links. Also, a DC balanced signal 

would allow hardware implementations to use AC coupled communication circuits, 

which are easier to design than their DC counterpart. DC balance may be restored 

through scrambling, but applying the technique may significantly add to the 

complexity of the circuit.  

 

Another possible limitation is that our encoding is essentially amplitude modulation, 

where data is encoded in the voltage levels, in contrast to differential signaling in 

MLT-3, where data is encoded in the presence or absence of transitions. Differential 

signaling is preferred in noisy environments, because detecting a transition is easier 

than comparing against a threshold voltage. We believe this is not a critical issue, 

since wired Ethernet is a relatively non-noisy medium. Also, our encoding divides 2V 

peak-to-peak into three levels, with the difference between the voltage amplitude 

thresholds being smaller than that for 1000BASE-TX, with PAM5 dividing 2V peak-

to-peak into five levels. 

 



18 
 

5. Evaluation 
 

We built simulations of the encodings in Matlab and Verilog to evaluate their 

performance. The former allow us to analyze the statistical distribution of output 

voltage levels, and identify any obvious opportunities to save on transmission energy. 

The later give us an FPGA implementation of the encoding circuits, allowing us to 

compare the encoding circuit size and encoding circuit energy. The simulations take 

in a random bit stream supplied by the MAC layer and output a symbol stream sent to 

the media D/A converter. 

 

For our Matlab simulations, we simulate for 100Mbps over UTP (100BASE-TX) the 

Physical Coding Sublayer (PCS) and the Physical Medium Dependent (PMD) 

sublayer, containing the 4B5B and MLT-3 encodings. For 1Gbps over fiber 

(1000BASE-LX/SX) and 1Gbps over UTP (1000BASE-T), our Matlab simulations 

include the PCS only, with the 8B10B encoding for 1Gbps over fiber, and the 4D-

PAM5 encoding for 1Gbps over UTP. The output voltages from our simulation 

correspond to the inputs to the Media Dependent Interface (MDI), which is 

immediately converted to an analog signal and sent on the physical medium. 

 

For our Verilog simulations, we also include the Physical Medium Attachment 

sublayer (PMA), which serializes the output bit blocks from the PCS. The PMA also 

performs some other functions that were not simulated, such as generating control 

signals and performing synchronization. We do not count the PMA towards our 

encoding circuit size, since it is not a part of the encoding per se. 
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Fig. 2 shows the relationship between different sublayers included in our simulations. 

 

 

 

For transmission energy, encodings with a greater fraction of symbols in lower 

voltage levels would consume less transmission energy. For encoding circuit energy, 

encodings with smaller circuits, indicated by fewer logical units required, would 

consume less circuit energy. Encodings with lower energy are more preferable. 

 

5.1. Simulation Results – Transmission Energy 
 
 

We used Matlab simulations to obtain the output characteristics of the encodings and 

analyze the output transmission energy. The full Matlab simulation code is in 

Appendix 2. Table 1 shows the Matlab simulation results. For each encoding, we 
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compute the fraction of output symbols at each logic voltage level. To simplify 

analysis, we have lumped together logic levels of the same magnitude, e.g. for 4B5B 

and MLT-3 encoding, the +1 and -1 logic levels together account for 50% of the 

output symbols. The peak-to-peak analog voltage is 2V for all encodings on UTP. 

 

 

 

For 100Mbps, logic levels ±1 correspond to analog levels ±1V. For 1Gbps, logic 

levels ±1 are ±0.5V in analog, and logic levels ±2 are ±1V in analog. For 8B10B on 

optical fiber, the logic level is translated to either on-off-keying of the laser diode, or 

a phase modulated optical signal. 

 

For 4D-PAM5, we see from Table 1 that it has a large fraction of symbols in logic 

level 1. This means the 4D-PAM5 is somewhat optimized, in that more symbols are 

in logic level 1 than in logic level 2. However, there is likely to be opportunities to 

further optimize the code, since there are more symbols in logic level 1 than in logic 

level 0. Given the complexity and functional requirements of 4D-PAM5, it is not 
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immediately obvious what the possible optimizations are. Any efforts must consider 

that we are optimizing the transmission energy. Since this is small compared with 

encoding circuit energy, "optimizations" that result in a more complex code is likely 

to lead to larger circuits and an undesired increase in energy consumption. 

 

For 8B10B encoding, the output logic levels are mapped to on-off-keying or phase 

modulation optical signals. The transmission energy in optical fiber is given by the 

optical power used to drive the fiber, and not the logic levels sent. Hence 8B10B has 

no need to be further optimized for transmission on optical fiber. We will mention 

that for phase modulation, the optical signal is always "on", with logical high and low 

distinguished by a different optical phase. This means that for the same peak optical 

power, phase modulation spends two times the transmission energy of on-off-keying. 

However, the energy is not wasted, since phase modulation will result in a 3dB gain 

in the optical signal to noise ratio. From a circuit energy perspective, phase 

modulation circuitry is more complex than circuits for on-off-keying. Hence it is 

preferential to send 8B10B using on-off-keying, but at twice the transmitted optical 

power to achieve the same signal to optical noise ratio as phase modulation. 

 

For 4B5B and MLT-3 encoding, we see that half the symbols are not energized. 

However, our improved alternative to MLT-3 allows over half of the symbols to be in 

a non-energized state. It is inspired by DC-imbalance in the 4B5B output. Our 

improved encoding takes advantage of this fact to assign over half of the symbols to 

the non-energized state. However 9% of the output symbols are assigned to logic level 

1, while 32% of the symbols are assigned to logic level -1, leading to a slight DC-
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imbalance. On the other hand, based on simulation results, our improved encoding 

spends 9% less time in logic levels ±1 compared with MLT-3, leading to an 18% 

saving in transmission energy. 

 

To repeat our transmission energy saving calculations, we use the results in Table 2. 

This shows the statistical characteristics of the 4B5B output bit stream, when a 

random bit stream is used as the input. The 4B5B output is then fed into either MLT-3 

or our improved encoding. As shown in the table, when we encode a random bit 

stream into 4B5B, 61% of the output bits are “1”. Also, 9% of the output two-bit 

sequences are “00” and 32% of the output two-bit sequences are “11”. Thus, for our 

encoding, the state machine would spend 9% of the time in State “00” and 32% of the 

time in State “11”. Fig. 1 shows that these two states respectively correspond to 

analog voltage levels +1 and -1. Thus, our improved encoding spends 9% + 32% = 

41% of the time in an energized state, compared with 50% for MLT-3, leading to a 

(41% – 50%) / 50% = 18% saving in transmission energy. 

 

As we will show below, our improved encoding is also significantly easier to 

implement, leading to a reduction in the circuit encoding energy also. 
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5.2. Simulation Complexity – Encoding Circuit Energy 
 
 

We used Verilog simulations to quantify the circuit implementation complexity of the 

encodings. This would give us an indication of the relative encoding circuit energy 

consumption. Larger circuits and more complex code would lead to greater encoding 

circuit energy consumption. We built our Verilog simulations with the Xilinx FPGA 

design suite. Our block designs follow the general block layout found in [25]. We 

used ModelSim to verify the correctness of our simulations. We ran the Xilinx 

synthesis tool to synthesize the design for FPGA implementation, and we looked at 

the synthesis report to extract the circuit size in terms registers and logical look-up 

tables (LUTs) used. Table 3 shows a summary of our simulated encoding circuit size. 

We can break down each encoding circuit into two parts – an asynchronous 



24 
 

translation table for mapping input symbols to output symbols, and a synchronous 

state machine for cycling through voltages or ensuring output DC balance. 

 

 

 

Compared with the state machine for MLT-3, the state machine for our improved 

alternative encoding uses only a third of the registers and LUTs, due to the reduced 

state space for our improved encoding. Fig. 3 shows the optimized state machines. 

Our alternative to MLT-3 is the equivalent of the state machine in Fig. 1, with the 

state transitions given by input / output. The MLT-3 state machine has transitions 

driven by input and states marked with state / output. Using a good first-order 
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approximation that circuit power is proportional to circuit area, we find that our 

encoding uses only a third of the encoding circuit power of MLT-3. 

 

 

 

Also, the 8B10B state machine is as simple as that for our improved alternative to 

MLT-3, while the 4D-PAM5 state machine is an order of magnitude more complex. 

The 8B10B uses one memory variable of one bit to keep track of the running disparity 

in the output. In comparison, the state machine for 4D-PAM5 has a 32 bit scrambler, 

with an exponentially larger state space. 

 

Consequently, the complexity of encoding state machines is determined by the size of 

the state space, given by the number of memory variables required and the bits for 

each variable. The translation table sizes offer another insight. For 8B10B, the 

translation table has 256 rows of 10 bits each compared with 16 rows of 5 bits for 

4B5B. By counting bits, we would expect the 8B10B translation table to be 32 times 

larger than that for 4B5B, instead of 2.5 times as large. 8B10B breaks down its input-
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output translation into a 5B6B translation table and a 3B4B translation table. There 

are two translations for each input, with the state machine keeping track of a running 

disparity that determines which of the two translations would be used. Thus the 

8B10B translation tables would have 32 lines of 12 bits, and 8 lines of 8 bits, for 5.5 

times the number of bits. Automatic optimization in Xilinx tools reduces the 

translation table even further, and it is 2.5 times as large as that for 4B5B. 

 

For 4D-PAM5, the translation table has 256 rows of 12 bits each, where each row is a 

4-tuple of 3-bit PAM5 symbols. Counting bits give a translation table 38.4 times 

larger than that for 4B5B. Instead, the table is 46 times as large, even with automatic 

optimization. We believe this is the overhead of 

having large tables, where additional circuitry is required to facilitate lookup under 

the same timing constraints. Thus, we believe that encodings should avoid large 

translation tables whenever possible. One way to reduce the complexity of input-to-

output bit translations is to adopt the strategy used by 8B10B, dividing the input bits 

into groups, and translating each group separately. 

 

In short, our Verilog simulations show that to reduce encoding circuit complexity, we 

need to keep the state space small and avoid large translation tables — an 

unsurprising result. 

 

Generally speaking, reducing circuit size and complexity have been traditional circuit 

design goals. Reducing state space and translation tables size are natural ways to 

achieve this goal, and have been routinely employed in the circuit design field. We 
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offer a new perspective here that the same techniques can reduce not just the cost of 

producing circuits, but also the circuits’ operating energy costs. These traditional 

circuit design goals remain relevant in the context of green computing. 

 

 

5.3. Verifying the Energy Model 
 
 

We seek to verify our proposed energy model for Ethernet encodings, i.e., that 

encoding circuit energy is much larger than transmission energy. We calculate the 

transmission power from line voltage and insertion loss, and compare it against the 

total power of NIC cards to get a estimate of encoding circuit power. 

 

We calculate the total transmission power in several steps. We take the RMS 

transmission voltage and DC resistance to find the RMS current, assuming sinusoidal 

waveforms. The power loss is given by I2
RMSRDC. The insertion loss for the cable tells 

us what fraction of the total transmission power is lost. We divide the power loss by 

this fraction to get the total transmission power. Fig. 4 illustrates our calculations. 

 

The peak voltage for 100Mbps and 1Gbps over UTP is 1V. We take from technical 

specs for off-the-shelf Cat5e UTP Ethernet cables typical values for DC resistance 

and insertion loss. Substituting typical DC resistance of 9 Ohms at 100 meters and 

insertion loss of 10dB at 31.25 MHz for 100Mbps, and larger for 1Gbps, we find the 

transmission power to be approximately 0.062 W. 
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For encoding circuit power, we estimate by subtracting the transmission power from 

the total power for NICs. We obtain the power consumption of NICs from the 

technical specs for some off-the-shelf 1Gbps Ethernet NICs [26, 27, 28]. NIC power 

consumption ranges from 3.3W to 5W. 

 

Average NIC power is typically lower than stated peak power rating. Even if we make 

a conservative assumption that average power is 10% of peak power, we find the 

transmission power is 0.062W / (10% × 3.3W) = 19% of the total power 

consumption, and encoding circuit power is the remaining 81%. This calculation 

confirms our encoding energy model, that most of the energy is consumed in the 

encoding circuits rather than in data transmission. 
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Our energy model is indirectly verified by an independent study [29]. Recall the 

results from Section 5.B. indicate that 4D-PAM5 is almost an order of magnitude 

more complex than 4B5B and MLT-3. If circuit power is directly related to circuit 

size, our observations suggest that 4D-PAM5 consumes almost an order of magnitude 

more energy. In [29], using a completely different method, the NIC power is shown to 

indeed grow exponentially as link speed increases from 100Mbps to 1Gbps and 

10Gbps. Hence, we believe in our assumption that encoding circuit power is 

correlated with NIC power. At the same time, we are acutely aware that NIC power is 

more than encoding power, since it also contains contributions from buffers, OS 

interfaces, Wake-on-LAN, and other functions. 

 

We should also mention that even though the available NIC specs offer the same data 

rate, their power consumption is considerably different. The NIC from 2001 

consumed 5 W [27]. A 2004 model consumed 4.5 W [28]. A product from 2006 

consumes only 3.3 W [26]. We believe that these numbers indicate either a growing 

energy consciousness in the circuit design community, or improving technology that 

leads to decreased transistor features and reduced circuit area, thus lowering energy 

consumption as a side effect. Circuits for the same encodings can consume 

considerably less power. We are encouraged by these results, because our energy 

model suggests that there is room for energy savings both in simpler encoding for 

simpler circuits, and more energy efficient circuits for a given encoding. 
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For Ethernet over optical fiber, the calculations are more straight-forward. The 

transmission power is simply the optical output power of the laser diode, typically 20-

40mW, the same order of magnitude as the transmission power for Ethernet over 

UTP. The power consumption for optical fiber NICs is near identical to counterpart 

UTP NICs in the same product family, as suggested by [28]. Hence we can extend the 

above discussion to say that for optical fiber, the encoding circuit energy is also much 

larger than the transmission energy. 

 

6. Future Work and Conclusion 
 
 

6.1. Key Insights 
 
 

We developed several key insights regarding energy efficient Ethernet encodings. 

 

We can look at the canonical encoded communication problem from a perspective 

that prioritizes energy. The goal of encoding is to deliver the prescribed data rate with 

the least energy, rather than to deliver the maximum data rate using a given energy 

budget. We believe this energy conscious perspective is helpful in designing future 

encodings. For wired Ethernet, the encoding circuit energy is much larger than the 

transmission energy. This reverses the energy model for wireless encodings, where 

the encoding circuit energy is negligible, and the transmission energy dominates. 
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In the near future, the encoding circuit energy is likely to take an even larger share of 

the total energy for encodings, with lower transmission voltage over UTP and more 

complex encodings for 10Gbps and beyond. 

 

Our proposed alternative to MLT-3 and our simulations shows that existing Ethernet 

encodings may not be energy efficient. In particular, we can reduce transmission 

energy by devising encodings for which a large fraction of encoded symbols have low 

energy. 

 

Also, given that encoding circuit energy is much larger than transmission energy, we 

can get more energy savings by using simpler code. Simpler code means small 

translation tables, and state machines with a smaller state space. Our recommendation 

for simpler code is mirrored in suggestions for energy conscious wireless applications, 

where on-off-keying is also championed as the preferred encoding scheme [30]. 
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Summarizing our insights, we believe that the ideal energy efficient Ethernet 

encoding for 1Gbps and beyond should have the following characteristics: 

• Meets the prescribed data rate, bandwidth, and error rate constraints 

• Has small state space – smaller circuits, reduced circuit power 

• Has high bits per symbol – slower circuits, reduced circuit power density 

• Uses low transmission voltage – reduced transmission power 

 

6.2. Future Work 
 
 

We make several recommendations for future work in energy efficient Ethernet 

encodings, in energy conscious encoding in general, and in energy efficient Internet. 

 

For energy efficient Ethernet encodings, a more rigorous method is required for 

verifying or measuring encoding circuit energy. Our approximations, although 

reasonable, is not sufficiently fine grained. Also, the evaluations here should be 

extended to emerging encodings for 10Gbps Ethernet and even higher speeds. 

Furthermore, we should extend the simulations in Section 5.B to include the decoder; 

for some encodings, the encoder and decoder may be highly asymmetric in 

complexity. 

 

Last but not least, any new encodings should ideally be backwards compatible, 

although Greenfield datacenters give opportunities for the entire network stack to be 

redesigned. For work on energy conscious communications in general, we believe our 
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alternative view on the encoded communication problem would be helpful. Our 

approach to understand the relative energy consumptions between encoding circuit 

power and transmission power should also be helpful. 

 

Energy efficient Ethernet encodings is one of many ways to improve Internet energy 

efficiency. We hope our work invites a re-examination of the established assumptions 

and practices of the network stack with respect to energy. 

 

6.3. Closing 
 
 

The energy efficient Ethernet is a new study to reduce Internet energy consumption. 

Power considerations make it worthwhile to reconsider the choice of link layer 

encodings. 

 

We evaluated existing encodings and proposed a new energy efficient encoding. Our 

study showed that simpler encoding is better, and encodings can be made more power 

efficient by being energy conscious. 

 

Our work is a first step in this area. There are likely to be encodings even better than 

the alternative to MLT-3 we proposed. One colleague suggested another alternative to 

MLT-3 that has a slight advantage in transmission energy (22.5% saving vs. 18% 

saving for us) at the cost of a disadvantage in circuit complexity (same complexity as 

MLT-3 vs. considerable savings for us). The suggested alternative is DC balanced. 



34 
 

 

We hope our work would catalyze a thorough reexamination of Ethernet encodings, 

leading to potentially a flurry of proposals for energy efficient alternatives. The 

tradeoffs for all these encodings are worthy of further analysis and implementation. 
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Appendix 1 – Excerpts from IEEE Ethernet Specifications 
 
 
The following are excerpts from IEEE 802.3 specifications for Ethernet encodings, 
the authoritative source for the subject. The specifications are very lengthy, so we 
quote only the sections most relevant to the encodings that we examined for 100Mbps 
and 1Gbps.  
 
Each section describes the Physical Coding Sublayer (PCS) for the encoding, which is 
responsible for converting the bit stream from the MAC layer and the Media 
Independent Interface (MII) to a format required by the Physical Media Attachment 
sublayer (PMA).  
 
The relationship between the sublayers is shown in Figure 2.  
 
 
 
Appendix 1.a. – Excerpts for 4B5B encoding 
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24.2 Physical Coding Sublayer (PCS)
24.2.1 Service Interface (MII)
The PCS Service Interface allows the 100BASE-X PCS to transfer information to and from the MAC (via
the Reconciliation sublayer) or other PCS client, such as a repeater. The PCS Service Interface is precisely
defined as the Media Independent Interface (MII) in Clause 22.

In this clause, the setting of MII variables to TRUE or FALSE is equivalent, respectively, to “asserting” or
“de-asserting” them as specified in Clause 22.

24.2.2 Functional requirements
The PCS comprises the Transmit, Receive, and Carrier Sense functions for 100BASE-T. In addition, the col-
lisionDetect signal required by the MAC (COL on the MII) is derived from the PMA code-bit stream. The
PCS shields the Reconciliation sublayer (and MAC) from the specific nature of the underlying channel. Spe-
cifically for receiving, the 100BASE-X PCS passes to the MII a sequence of data nibbles derived from
incoming code-groups, each comprised of five code-bits, received from the medium. Code-group alignment
and MAC packet delimiting is performed by embedding special non-data code-groups. The MII uses a nib-
ble-wide, synchronous data path, with packet delimiting being provided by separate TX_EN and RX_DV
signals. The PCS provides the functions necessary to map these two views of the exchanged data. The pro-
cess is reversed for transmit. 

The following provides a detailed specification of the functions performed by the PCS, which comprise five
parallel processes (Transmit, Transmit Bits, Receive, Receive Bits, and Carrier Sense). Figure 24–4 includes
a functional block diagram of the PCS.

The Receive Bits process accepts continuous code-bits via the PMA_UNITDATA.indicate primitive.
Receive monitors these bits and generates RXD <3:0>, RX_DV and RX_ER on the MII, and the internal
flag, receiving, used by the Carrier Sense and Transmit processes. 

The Transmit process generates continuous code-groups based upon the TXD <3:0>, TX_EN, and TX_ER
signals on the MII. These code-groups are transmitted by Transmit Bits via the PMA_UNITDATA.request
primitive. The Transmit process generates the MII signal COL based on whether a reception is occurring
simultaneously with transmission. Additionally, it generates the internal flag, transmitting, for use by the
Carrier Sense process.

The Carrier Sense process asserts the MII signal CRS when either transmitting or receiving is TRUE. Both
the Transmit and Receive processes monitor link_status via the PMA_LINK.indicate primitive, to account
for potential link failure conditions.

24.2.2.1 Code-groups
The PCS maps four-bit nibbles from the MII into five-bit code-groups, and vice versa, using a 4B/5B block
coding scheme. A code-group is a consecutive sequence of five code-bits interpreted and mapped by the
PCS. Implicit in the definition of a code-group is an establishment of code-group boundaries by an align-
ment function within the PCS Receive process. It is important to note that, with the sole exception of the
SSD, which is used to achieve alignment, code-groups are undetectable and have no meaning outside the
100BASE-X physical protocol data unit, called a “stream.”

The coding method used, derived from ISO/IEC 9314-1, provides

a) Adequate codes (32) to provide for all Data code-groups (16) plus necessary control code-groups;
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b) Appropriate coding efficiency (4 data bits per 5 code-bits; 80%) to effect a 100 Mb/s Physical Layer
interface on a 125 Mb/s physical channel as provided by FDDI PMDs; and

c) Sufficient transition density to facilitate clock recovery (when not scrambled).

Table 24–1 specifies the interpretation assigned to each five bit code-group, including the mapping to the
nibble-wide (TXD or RXD) Data signals on the MII. The 32 code-groups are divided into four categories, as
shown.

For clarity in the remainder of this clause, code-group names are shown between /slashes/. Code-group
sequences are shown in succession, e.g., /1/2/....

The indicated code-group mapping is identical to ISO/IEC 9314-1: 1989, with four exceptions:

a) The FDDI term symbol is avoided in order to prevent confusion with other 100BASE-T terminol-
ogy. In general, the term code-group is used in its place.

b) The /S/ and /Q/ code-groups are not used by 100BASE-X and are interpreted as INVALID.
c) The /R/ code-group is used in 100BASE-X as the second code-group of the End-of-Stream delimiter
rather than to indicate a Reset condition.

d) The /H/ code-group is used to propagate receive errors rather than to indicate the Halt Line State. 

24.2.2.1.1 Data code-groups
A Data code-group conveys one nibble of arbitrary data between the MII and the PCS. The sequence of Data
code-groups is arbitrary, where any Data code-group can be followed by any other Data code-group. Data
code-groups are coded and decoded but not interpreted by the PCS. Successful decoding of Data
code-groups depends on proper receipt of the Start-of-Stream delimiter sequence, as defined in Table 24–1.

24.2.2.1.2 Idle code-groups
The Idle code-group (/I/) is transferred between streams. It provides a continuous fill pattern to establish and
maintain clock synchronization. Idle code-groups are emitted from, and interpreted by, the PCS.

24.2.2.1.3 Control code-groups
The Control code-groups are used in pairs (/J/K/, /T/R/) to delimit MAC packets. Control code-groups are
emitted from, and interpreted by, the PCS.

24.2.2.1.4 Start-of-Stream delimiter (/J/K/)
A Start-of-Stream delimiter (SSD) is used to delineate the boundary of a data transmission sequence and to
authenticate carrier events. The SSD is unique in that it may be recognized independently of previously
established code-group boundaries. The Receive function within the PCS uses the SSD to establish
code-group boundaries. A SSD consists of the sequence /J/K/.

On transmission, the first 8 bits of the MAC preamble are replaced by the SSD, a replacement that is
reversed on reception.

24.2.2.1.5 End-of-Stream delimiter (/T/R/)
An End-of-Stream delimiter (ESD) terminates all normal data transmissions. Unlike the SSD, an ESD can-
not be recognized independent of previously established code-group boundaries. An ESD consists of the
sequence /T/R/.
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Table 24–1—4B/5B code-groups 

PCS code-group 
[4:0]
4 3 2 1 0

Name
MII (TXD/RXD) 
<3:0>
3 2 1 0

Interpretation

D
A
T
A

1 1 1 1 0 0 0  0  0  0 Data 0
0 1 0 0 1 1 0  0  0  1 Data 1
1 0 1 0 0 2 0  0  1  0 Data 2
1 0 1 0 1 3 0  0  1  1 Data 3
0 1 0 1 0 4 0  1  0  0 Data 4
0 1 0 1 1 5 0  1  0  1 Data 5
0 1 1 1 0 6 0  1  1  0 Data 6
0 1 1 1 1 7 0  1  1  1 Data 7
1 0 0 1 0 8 1  0  0  0 Data 8
1 0 0 1 1 9 1  0  0  1 Data 9
1 0 1 1 0 A 1  0  1  0 Data A
1 0 1 1 1 B 1  0  1  1 Data B
1 1 0 1 0 C 1  1  0  0 Data C
1 1 0 1 1 D 1  1  0  1 Data D
1 1 1 0 0 E 1  1  1  0 Data E
1 1 1 0 1 F 1  1  1  1 Data F

1 1 1 1 1 I undefined IDLE;
used as inter-stream fill code

C
O
N
T
R
O
L

1 1 0 0 0 J 0  1  0  1 Start-of-Stream Delimiter, Part 1 of 2;
always used in pairs with K

1 0 0 0 1 K 0  1  0  1 Start-of-Stream Delimiter, Part 2 of 2;
always used in pairs with J

0 1 1 0 1 T undefined End-of-Stream Delimiter, Part 1 of 2;
always used in pairs with R

0 0 1 1 1 R undefined End-of-Stream Delimiter, Part 2 of 2;
always used in pairs with T

I
N
V
A
L
I
D

0 0 1 0 0 H Undefined Transmit Error;
used to force signaling errors

0 0 0 0 0 V Undefined Invalid code
0 0 0 0 1 V Undefined Invalid code
0 0 0 1 0 V Undefined Invalid code
0 0 0 1 1 V Undefined Invalid code
0 0 1 0 1 V Undefined Invalid code
0 0 1 1 0 V Undefined Invalid code
0 1 0 0 0 V Undefined Invalid code
0 1 1 0 0 V Undefined Invalid code
1 0 0 0 0 V Undefined Invalid code
1 1 0 0 1 V Undefined Invalid code



 
 
 
Appendix 1.b. – Excerpts for 8B10B encoding 
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36.2 Physical Coding Sublayer (PCS)
36.2.1 PCS Interface (GMII)
The PCS Service Interface allows the 1000BASE-X PCS to transfer information to and from a PCS client.
PCS clients include the MAC (via the Reconciliation sublayer) and repeater. The PCS Interface is precisely
defined as the Gigabit Media Independent Interface (GMII) in Clause 35.

In this clause, the setting of GMII variables to TRUE or FALSE is equivalent, respectively, to “asserting” or
“de-asserting” them as specified in Clause 35.

M D I

Transmit

PMD 

Receive

PCS

PMA

TXD<7:0>
TX_EN
TX_ER COL

RXD<7:0>
RX_DV
RX_ER
RX_CLK

CRS

G M I I

CARRIER
SENSE

TRANSMIT

Figure 36–2—Functional block diagram
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tx_code-group<9:0> rx_code-group<9:0>
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36.2.2 Functions within the PCS
The PCS comprises the PCS Transmit, Carrier Sense, Synchronization, PCS Receive, and Auto-Negotiation
processes for 1000BASE-X. The PCS shields the Reconciliation sublayer (and MAC) from the specific
nature of the underlying channel. When communicating with the GMII, the PCS uses an octet-wide, syn-
chronous data path, with packet delimiting being provided by separate transmit control signals (TX_EN and
TX_ER) and receive control signals (RX_DV and RX_ER). When communicating with the PMA, the PCS
uses a ten-bit wide, synchronous data path, which conveys ten-bit code-groups. At the PMA Service Inter-
face, code-group alignment and MAC packet delimiting are made possible by embedding special non-data
code-groups in the transmitted code-group stream. The PCS provides the functions necessary to map packets
between the GMII format and the PMA Service Interface format.

The PCS Transmit process continuously generates code-groups based upon the TXD <7:0>, TX_EN, and
TX_ER signals on the GMII, sending them immediately to the PMA Service Interface via the
PMA_UNITDATA.request primitive. The PCS Transmit process generates the GMII signal COL based on
whether a reception is occurring simultaneously with transmission. Additionally, it generates the internal
flag, transmitting, for use by the Carrier Sense process. The PCS Transmit process monitors the Auto-
Negotiation process xmit flag to determine whether to transmit data or reconfigure the link.

The Carrier Sense process controls the GMII signal CRS (see Figure 36–8).

The PCS Synchronization process continuously accepts code-groups via the PMA_UNITDATA.indication
primitive and conveys received code-groups to the PCS Receive process via the SYNC_UNITDATA.indi-
cate primitive. The PCS Synchronization process sets the sync_status flag to indicate whether the PMA is
functioning dependably (as well as can be determined without exhaustive error-rate analysis).

The PCS Receive process continuously accepts code-groups via the SYNC_UNITDATA.indicate primitive.
The PCS Receive process monitors these code-groups and generates RXD <7:0>, RX_DV, and RX_ER on
the GMII, and the internal flag, receiving, used by the Carrier Sense and Transmit processes.

The PCS Auto-Negotiation process sets the xmit flag to inform the PCS Transmit process to either transmit
normal idles interspersed with packets as requested by the GMII or to reconfigure the link. The PCS Auto-
Negotiation process is specified in Clause 37.

36.2.3 Use of code-groups
The PCS maps GMII signals into ten-bit code groups, and vice versa, using an 8B/10B block coding
scheme. Implicit in the definition of a code-group is an establishment of code-group boundaries by a PMA
code-group alignment function as specified in 36.3.2.4. Code-groups are unobservable and have no meaning
outside the PCS. The PCS functions ENCODE and DECODE generate, manipulate, and interpret code-
groups as provided by the rules in 36.2.4.

36.2.4 8B/10B transmission code
The PCS uses a transmission code to improve the transmission characteristics of information to be trans-
ferred across the link. The encodings defined by the transmission code ensure that sufficient transitions are
present in the PHY bit stream to make clock recovery possible at the receiver. Such encoding also greatly
increases the likelihood of detecting any single or multiple bit errors that may occur during transmission and
reception of information. In addition, some of the special code-groups of the transmission code contain a
distinct and easily recognizable bit pattern that assists a receiver in achieving code-group alignment on the
incoming PHY bit stream. The 8B/10B transmission code specified for use in this standard has a high transi-
tion density, is a run-length-limited code, and is dc-balanced. The transition density of the 8B/10B symbols
ranges from 3 to 8 transitions per symbol.
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The definition of the 8B/10B transmission code in this standard is identical to that specified in ANSI
X3.230-1994 (FC-PH), Clause 11. The relationship of code-group bit positions to PMA and other PCS con-
structs is illustrated in Figure 36–3.

36.2.4.1 Notation conventions
8B/10B transmission code uses letter notation for describing the bits of an unencoded information octet and
a single control variable. Each bit of the unencoded information octet contains either a binary zero or a
binary one. A control variable, Z, has either the value D or the value K. When the control variable associated
with an unencoded information octet contains the value D, the associated encoded code-group is referred to
as a data code-group. When the control variable associated with an unencoded information octet contains the
value K, the associated encoded code-group is referred to as a special code-group.

The bit notation of A,B,C,D,E,F,G,H for an unencoded information octet is used in the description of the 8B/
10B transmission code. The bits A,B,C,D,E,F,G,H are translated to bits a,b,c,d,e,i,f,g,h,j of 10-bit transmis-
sion code-groups. 8B/10B code-group bit assignments are illustrated in Figure 36–3. Each valid code-group
has been given a name using the following convention: /Dx.y/ for the 256 valid data code-groups, and /Kx.y/
for special control code-groups, where x is the decimal value of bits EDCBA, and y is the decimal value of
bits HGF.

36.2.4.2 Transmission order
Code-group bit transmission order is illustrated in Figure 36–3.

Code-groups within multi-code-group ordered_sets (as specified in Table 36–3) are transmitted sequentially
beginning with the special code-group used to distinguish the ordered_set (e.g., /K28.5/) and proceeding
code-group by code-group from left to right within the definition of the ordered_set until all code-groups of
the ordered_set are transmitted.

8B/10B 
Encoder

TXD<7:0>

(125 million octets/s)

PMA Service Interface
(125 million code-groups/s)

8B/10B 
Decoder

PMA Service Interface
(125 million code-groups/s)

0 1 2 3 4 5 6 7 8 9

Figure 36–3—PCS reference diagram
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GMIIManagement Registers

bit 0 is transmitted first
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The first code-group of every multi-code-group ordered_set is transmitted in an even-numbered code-group
position counting from the first code-group after a reset or power-on. Subsequent code-groups continuously
alternate as odd and even-numbered code-groups.

The contents of a packet are transmitted sequentially beginning with the ordered_set used to denote the
Start_of_Packet (the SPD delimiter) and proceeding code-group by code-group from left to right within the
definition of the packet until the ordered_set used to denote the End_of_Packet (the EPD delimiter) is
transmitted.

36.2.4.3 Valid and invalid code-groups
Table 36–1a defines the valid data code-groups (D code-groups) of the 8B/10B transmission code. Table
36–2 defines the valid special code-groups (K code-groups) of the code. The tables are used for both gener-
ating valid code-groups (encoding) and checking the validity of received code-groups (decoding). In the
tables, each octet entry has two columns that represent two (not necessarily different) code-groups. The two
columns correspond to the valid code-group based on the current value of the running disparity (Current
RD – or Current RD +). Running disparity is a binary parameter with either the value negative (–) or the
value positive (+). Annex 36B provides several 8B/10B transmission code running disparity calculation
examples.

36.2.4.4 Running disparity rules
After powering on or exiting a test mode, the transmitter shall assume the negative value for its initial
running disparity. Upon transmission of any code-group, the transmitter shall calculate a new value for its
running disparity based on the contents of the transmitted code-group.

After powering on or exiting a test mode, the receiver should assume either the positive or negative value for
its initial running disparity. Upon the reception of any code-group, the receiver determines whether the code-
group is valid or invalid and calculates a new value for its running disparity based on the contents of the
received code-group.

The following rules for running disparity shall be used to calculate the new running disparity value for code-
groups that have been transmitted (transmitter's running disparity) and that have been received (receiver’s
running disparity).

Running disparity for a code-group is calculated on the basis of sub-blocks, where the first six bits (abcdei)
form one sub-block (six-bit sub-block) and the second four bits (fghj) form the other sub-block (four-bit sub-
block). Running disparity at the beginning of the six-bit sub-block is the running disparity at the end of the
last code-group. Running disparity at the beginning of the four-bit sub-block is the running disparity at the
end of the six-bit sub-block. Running disparity at the end of the code-group is the running disparity at the
end of the four-bit sub-block.

Running disparity for the sub-blocks is calculated as follows:

a) Running disparity at the end of any sub-block is positive if the sub-block contains more ones than
zeros. It is also positive at the end of the six-bit sub-block if the six-bit sub-block is 000111, and it is
positive at the end of the four-bit sub-block if the four-bit sub-block is 0011;

b) Running disparity at the end of any sub-block is negative if the sub-block contains more zeros than
ones. It is also negative at the end of the six-bit sub-block if the six-bit sub-block is 111000, and it is
negative at the end of the four-bit sub-block if the four-bit sub-block is 1100;

c) Otherwise, running disparity at the end of the sub-block is the same as at the beginning of the sub-
block.
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NOTE—All sub-blocks with equal numbers of zeros and ones are disparity neutral. In order to limit the run length of 0’s
or 1’s between sub-blocks, the 8B/10B transmission code rules specify that sub-blocks encoded as 000111 or 0011 are
generated only when the running disparity at the beginning of the sub-block is positive; thus, running disparity at the end
of these sub-blocks is also positive. Likewise, sub-blocks containing 111000 or 1100 are generated only when the run-
ning disparity at the beginning of the sub-block is negative; thus, running disparity at the end of these sub-blocks is also
negative.

36.2.4.5 Generating code-groups
The appropriate entry in either Table 36–1a or Table 36–2 is found for each octet for which a code-group is
to be generated (encoded). The current value of the transmitter’s running disparity shall be used to select the
code-group from its corresponding column. For each code-group transmitted, a new value of the running
disparity is calculated. This new value is used as the transmitter’s current running disparity for the next octet
to be encoded and transmitted.

36.2.4.6 Checking the validity of received code-groups
The following rules shall be used to determine the validity of received code groups:

a) The column in Tables 36–1a and 36–2 corresponding to the current value of the receiver’s running
disparity is searched for the received code-group;

b) If the received code-group is found in the proper column, according to the current running disparity,
then the code-group is considered valid and, for data code-groups, the associated data octet deter-
mined (decoded);

c) If the received code-group is not found in that column, then the code-group is considered invalid;
d) Independent of the code-group’s validity, the received code-group is used to calculate a new value of
running disparity. The new value is used as the receiver’s current running disparity for the next
received code-group.

Detection of an invalid code-group does not necessarily indicate that the code-group in which the invalid
code-group was detected is in error. Invalid code-groups may result from a prior error which altered the run-
ning disparity of the PHY bit stream but which did not result in a detectable error at the code-group in which
the error occurred.

The number of invalid code-groups detected is proportional to the bit error ratio (BER) of the link. Link
error monitoring may be performed by counting invalid code-groups.

36.2.4.7 Ordered_sets
Eight ordered_sets, consisting of a single special code-group or combinations of special and data code-
groups are specifically defined. Ordered_sets which include /K28.5/ provide the ability to obtain bit and
code-group synchronization and establish ordered_set alignment (see 36.2.4.9 and 36.3.2.4). Ordered_sets
provide for the delineation of a packet and synchronization between the transmitter and receiver circuits at
opposite ends of a link. Table 36–3 lists the defined ordered_sets.

36.2.4.7.1 Ordered_set rules
Ordered_sets are specified according to the following rules:

a) Ordered_sets consist of either one, two, or four code-groups;
b) The first code-group of all ordered_sets is always a special code-group;
c) The second code-group of all multi-code-group ordered_sets is always a data code-group. The
second code-group is used to distinguish the ordered set from all other ordered sets. The second
code-group provides a high bit transition density.
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Table 36–1a—Valid data code-groups

Code
Group
Name

Octet
Value

Octet Bits
HGF EDCBA

Current RD – Current RD +
abcdei fghj abcdei fghj

D0.0
D1.0
D2.0
D3.0
D4.0
D5.0
D6.0
D7.0
D8.0
D9.0
D10.0
D11.0
D12.0
D13.0
D14.0
D15.0
D16.0
D17.0
D18.0
D19.0
D20.0
D21.0
D22.0
D23.0
D24.0
D25.0
D26.0
D27.0
D28.0
D29.0
D30.0
D31.0
D0.1
D1.1
D2.1
D3.1
D4.1
D5.1
D6.1
D7.1
D8.1
D9.1
D10.1
D11.1
D12.1
D13.1
D14.1
D15.1
D16.1
D17.1
D18.1
D19.1
D20.1
D21.1
D22.1
D23.1
D24.1
D25.1
D26.1
D27.1

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B

000  0 0 0 0 0
0 0 0  0 0 0 0 1
0 0 0  0 0 0 1 0
0 0 0  0 0 0 1 1
0 0 0  0 0 1 0 0
0 0 0  0 0 1 0 1
0 0 0  0 0 1 1 0
0 0 0  0 0 1 1 1
0 0 0  0 1 0 0 0
0 0 0  0 1 0 0 1
0 0 0  0 1 0 1 0
0 0 0  0 1 0 1 1
0 0 0  0 1 1 0 0
0 0 0  0 1 1 0 1
0 0 0  0 1 1 1 0
0 0 0  0 1 1 1 1
0 0 0  1 0 0 0 0
0 0 0  1 0 0 0 1
0 0 0  1 0 0 1 0
0 0 0  1 0 0 1 1
0 0 0  1 0 1 0 0
0 0 0  1 0 1 0 1
0 0 0  1 0 1 1 0
0 0 0  1 0 1 1 1
0 0 0  1 1 0 0 0
0 0 0  1 1 0 0 1
0 0 0  1 1 0 1 0
0 0 0  1 1 0 1 1
0 0 0  1 1 1 0 0
0 0 0  1 1 1 0 1
0 0 0  1 1 1 1 0
0 0 0  1 1 1 1 1
0 0 1  0 0 0 0 0
0 0 1  0 0 0 0 1
0 0 1  0 0 0 1 0
0 0 1  0 0 0 1 1
0 0 1  0 0 1 0 0
0 0 1  0 0 1 0 1
0 0 1  0 0 1 1 0
0 0 1  0 0 1 1 1
0 0 1  0 1 0 0 0
0 0 1  0 1 0 0 1
0 0 1  0 1 0 1 0
0 0 1  0 1 0 1 1
0 0 1  0 1 1 0 0
0 0 1  0 1 1 0 1
0 0 1  0 1 1 1 0
0 0 1  0 1 1 1 1
0 0 1  1 0 0 0 0
0 0 1  1 0 0 0 1
0 0 1  1 0 0 1 0
0 0 1  1 0 0 1 1
0 0 1  1 0 1 0 0
0 0 1  1 0 1 0 1
0 0 1  1 0 1 1 0
0 0 1  1 0 1 1 1
0 0 1  1 1 0 0 0
0 0 1  1 1 0 0 1
0 0 1  1 1 0 1 0
0 0 1  1 1 0 1 1

100111 0100
011101 0100
101101 0100
110001 1011
110101 0100
101001 1011
011001 1011
111000 1011
111001 0100
100101 1011
010101 1011
110100 1011
001101 1011
101100 1011
011100 1011
010111 0100
011011 0100
100011 1011
010011 1011
110010 1011
001011 1011
101010 1011
011010 1011
111010 0100
110011 0100
100110 1011
010110 1011
110110 0100
001110 1011
101110 0100
011110 0100
101011 0100
100111 1001
011101 1001
101101 1001
110001 1001
110101 1001
101001 1001
011001 1001
111000 1001
111001 1001
100101 1001
010101 1001
110100 1001
001101 1001
101100 1001
011100 1001
010111 1001
011011 1001
100011 1001
010011 1001
110010 1001
001011 1001
101010 1001
011010 1001
111010 1001
110011 1001
100110 1001
010110 1001
110110 1001

011000 1011
100010 1011
010010 1011
110001 0100
001010 1011
101001 0100
011001 0100
000111 0100
000110 1011
100101 0100
010101 0100
110100 0100
001101 0100
101100 0100
011100 0100
101000 1011
100100 1011
100011 0100
010011 0100
110010 0100
001011 0100
101010 0100
011010 0100
000101 1011
001100 1011
100110 0100
010110 0100
001001 1011
001110 0100
010001 1011
100001 1011
010100 1011
011000 1001
100010 1001
010010 1001
110001 1001
001010 1001
101001 1001
011001 1001
000111 1001
000110 1001
100101 1001
010101 1001
110100 1001
001101 1001
101100 1001
011100 1001
101000 1001
100100 1001
100011 1001
010011 1001
110010 1001
001011 1001
101010 1001
011010 1001
000101 1001
001100 1001
100110 1001
010110 1001
001001 1001

(continued)
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Table 36–1b—Valid data code-groups

Code
Group
Name

Octet
Value

Octet Bits
HGF EDCBA

Current RD – Current RD +
abcdei fghj abcdei fghj

D28.1
D29.1
D30.1
D31.1
D0.2
D1.2
D2.2
D3.2
D4.2
D5.2
D6.2
D7.2
D8.2
D9.2
D10.2
D11.2
D12.2
D13.2
D14.2
D15.2
D16.2
D17.2
D18.2
D19.2
D20.2
D21.2
D22.2
D23.2
D24.2
D25.2
D26.2
D27.2
D28.2
D29.2
D30.2
D31.2
D0.3
D1.3
D2.3
D3.3
D4.3
D5.3
D6.3
D7.3
D8.3
D9.3
D10.3
D11.3
D12.3
D13.3
D14.3
D15.3
D16.3
D17.3
D18.3
D19.3
D20.3
D21.3
D22.3
D23.3

3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77

001  1 1 1 0 0
0 0 1  1 1 1 0 1
0 0 1  1 1 1 1 0
0 0 1  1 1 1 1 1
0 1 0  0 0 0 0 0
0 1 0  0 0 0 0 1
0 1 0  0 0 0 1 0
0 1 0  0 0 0 1 1
0 1 0  0 0 1 0 0
0 1 0  0 0 1 0 1
0 1 0  0 0 1 1 0
0 1 0  0 0 1 1 1
0 1 0  0 1 0 0 0
0 1 0  0 1 0 0 1
0 1 0  0 1 0 1 0
0 1 0  0 1 0 1 1
0 1 0  0 1 1 0 0
0 1 0  0 1 1 0 1
0 1 0  0 1 1 1 0
0 1 0  0 1 1 1 1
0 1 0  1 0 0 0 0
0 1 0  1 0 0 0 1
0 1 0  1 0 0 1 0
0 1 0  1 0 0 1 1
0 1 0  1 0 1 0 0
0 1 0  1 0 1 0 1
0 1 0  1 0 1 1 0
0 1 0  1 0 1 1 1
0 1 0  1 1 0 0 0
0 1 0  1 1 0 0 1
0 1 0  1 1 0 1 0
0 1 0  1 1 0 1 1
0 1 0  1 1 1 0 0
0 1 0  1 1 1 0 1
0 1 0  1 1 1 1 0
0 1 0  1 1 1 1 1
0 1 1  0 0 0 0 0
0 1 1  0 0 0 0 1
0 1 1  0 0 0 1 0
0 1 1  0 0 0 1 1
0 1 1  0 0 1 0 0
0 1 1  0 0 1 0 1
0 1 1  0 0 1 1 0
0 1 1  0 0 1 1 1
0 1 1  0 1 0 0 0
0 1 1  0 1 0 0 1
0 1 1  0 1 0 1 0
0 1 1  0 1 0 1 1
0 1 1  0 1 1 0 0
0 1 1  0 1 1 0 1
0 1 1  0 1 1 1 0
0 1 1  0 1 1 1 1
0 1 1  1 0 0 0 0
0 1 1  1 0 0 0 1
0 1 1  1 0 0 1 0
0 1 1  1 0 0 1 1
0 1 1  1 0 1 0 0
0 1 1  1 0 1 0 1
0 1 1  1 0 1 1 0
0 1 1  1 0 1 1 1

001110 1001
101110 1001
011110 1001
101011 1001
100111 0101
011101 0101
101101 0101
110001 0101
110101 0101
101001 0101
011001 0101
111000 0101
111001 0101
100101 0101
010101 0101
110100 0101
001101 0101
101100 0101
011100 0101
010111 0101
011011 0101
100011 0101
010011 0101
110010 0101
001011 0101
101010 0101
011010 0101
111010 0101
110011 0101
100110 0101
010110 0101
110110 0101
001110 0101
101110 0101
011110 0101
101011 0101
100111 0011
011101 0011
101101 0011
110001 1100
110101 0011
101001 1100
011001 1100
111000 1100
111001 0011
100101 1100
010101 1100
110100 1100
001101 1100
101100 1100
011100 1100
010111 0011
011011 0011
100011 1100
010011 1100
110010 1100
001011 1100
101010 1100
011010 1100
111010 0011

001110 1001
010001 1001
100001 1001
010100 1001
011000 0101
100010 0101
010010 0101
110001 0101
001010 0101
101001 0101
011001 0101
000111 0101
000110 0101
100101 0101
010101 0101
110100 0101
001101 0101
101100 0101
011100 0101
101000 0101
100100 0101
100011 0101
010011 0101
110010 0101
001011 0101
101010 0101
011010 0101
000101 0101
001100 0101
100110 0101
010110 0101
001001 0101
001110 0101
010001 0101
100001 0101
010100 0101
011000 1100
100010 1100
010010 1100
110001 0011
001010 1100
101001 0011
011001 0011
000111 0011
000110 1100
100101 0011
010101 0011
110100 0011
001101 0011
101100 0011
011100 0011
101000 1100
100100 1100
100011 0011
010011 0011
110010 0011
001011 0011
101010 0011
011010 0011
000101 1100

(continued)



IEEE 
CSMA/CD Std 802.3-2005

Copyright © 2005 IEEE. All rights reserved. 43

Table 36–1c—Valid data code-groups

Code
Group
Name

Octet
Value

Octet Bits
HGF EDCBA

Current RD – Current RD +
abcdei fghj abcdei fghj

D24.3
D25.3
D26.3
D27.3
D28.3
D29.3
D30.3
D31.3
D0.4
D1.4
D2.4
D3.4
D4.4
D5.4
D6.4
D7.4
D8.4
D9.4
D10.4
D11.4
D12.4
D13.4
D14.4
D15.4
D16.4
D17.4
D18.4
D19.4
D20.4
D21.4
D22.4
D23.4
D24.4
D25.4
D26.4
D27.4
D28.4
D29.4
D30.4
D31.4
D0.5
D1.5
D2.5
D3.5
D4.5
D5.5
D6.5
D7.5
D8.5
D9.5
D10.5
D11.5
D12.5
D13.5
D14.5
D15.5
D16.5
D17.5
D18.5
D19.5

78
79
7A
7B
7C
7D
7E
7F
80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
B0
B1
B2
B3

011  1 1 0 0 0
0 1 1  1 1 0 0 1
0 1 1  1 1 0 1 0
0 1 1  1 1 0 1 1
0 1 1  1 1 1 0 0
0 1 1  1 1 1 0 1
0 1 1  1 1 1 1 0
0 1 1  1 1 1 1 1
1 0 0  0 0 0 0 0
1 0 0  0 0 0 0 1
1 0 0  0 0 0 1 0
1 0 0  0 0 0 1 1
1 0 0  0 0 1 0 0
1 0 0  0 0 1 0 1
1 0 0  0 0 1 1 0
1 0 0  0 0 1 1 1
1 0 0  0 1 0 0 0
1 0 0  0 1 0 0 1
1 0 0  0 1 0 1 0
1 0 0  0 1 0 1 1
1 0 0  0 1 1 0 0
1 0 0  0 1 1 0 1
1 0 0  0 1 1 1 0
1 0 0  0 1 1 1 1
1 0 0  1 0 0 0 0
1 0 0  1 0 0 0 1
1 0 0  1 0 0 1 0
1 0 0  1 0 0 1 1
1 0 0  1 0 1 0 0
1 0 0  1 0 1 0 1
1 0 0  1 0 1 1 0
1 0 0  1 0 1 1 1
1 0 0  1 1 0 0 0
1 0 0  1 1 0 0 1
1 0 0  1 1 0 1 0
1 0 0  1 1 0 1 1
1 0 0  1 1 1 0 0
1 0 0  1 1 1 0 1
1 0 0  1 1 1 1 0
1 0 0  1 1 1 1 1
1 0 1  0 0 0 0 0
1 0 1  0 0 0 0 1
1 0 1  0 0 0 1 0
1 0 1  0 0 0 1 1
1 0 1  0 0 1 0 0
1 0 1  0 0 1 0 1
1 0 1  0 0 1 1 0
1 0 1  0 0 1 1 1
1 0 1  0 1 0 0 0
1 0 1  0 1 0 0 1
1 0 1  0 1 0 1 0
1 0 1  0 1 0 1 1
1 0 1  0 1 1 0 0
1 0 1  0 1 1 0 1
1 0 1  0 1 1 1 0
1 0 1  0 1 1 1 1
1 0 1  1 0 0 0 0
1 0 1  1 0 0 0 1
1 0 1  1 0 0 1 0
1 0 1  1 0 0 1 1

110011 0011
100110 1100
010110 1100
110110 0011
001110 1100
101110 0011
011110 0011
101011 0011
100111 0010
011101 0010
101101 0010
110001 1101
110101 0010
101001 1101
011001 1101
111000 1101
111001 0010
100101 1101
010101 1101
110100 1101
001101 1101
101100 1101
011100 1101
010111 0010
011011 0010
100011 1101
010011 1101
110010 1101
001011 1101
101010 1101
011010 1101
111010 0010
110011 0010
100110 1101
010110 1101
110110 0010
001110 1101
101110 0010
011110 0010
101011 0010
100111 1010
011101 1010
101101 1010
110001 1010
110101 1010
101001 1010
011001 1010
111000 1010
111001 1010
100101 1010
010101 1010
110100 1010
001101 1010
101100 1010
011100 1010
010111 1010
011011 1010
100011 1010
010011 1010
110010 1010

001100 1100
100110 0011
010110 0011
001001 1100
001110 0011
010001 1100
100001 1100
010100 1100
011000 1101
100010 1101
010010 1101
110001 0010
001010 1101
101001 0010
011001 0010
000111 0010
000110 1101
100101 0010
010101 0010
110100 0010
001101 0010
101100 0010
011100 0010
101000 1101
100100 1101
100011 0010
010011 0010
110010 0010
001011 0010
101010 0010
011010 0010
000101 1101
001100 1101
100110 0010
010110 0010
001001 1101
001110 0010
010001 1101
100001 1101
010100 1101
011000 1010
100010 1010
010010 1010
110001 1010
001010 1010
101001 1010
011001 1010
000111 1010
000110 1010
100101 1010
010101 1010
110100 1010
001101 1010
101100 1010
011100 1010
101000 1010
100100 1010
100011 1010
010011 1010
110010 1010

(continued)
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Table 36–1d—Valid data code-groups

Code
Group
Name

Octet
Value

Octet Bits
HGF EDCBA

Current RD – Current RD +
abcdei fghj abcdei fghj

D20.5
D21.5
D22.5
D23.5
D24.5
D25.5
D26.5
D27.5
D28.5
D29.5
D30.5
D31.5
D0.6
D1.6
D2.6
D3.6
D4.6
D5.6
D6.6
D7.6
D8.6
D9.6
D10.6
D11.6
D12.6
D13.6
D14.6
D15.6
D16.6
D17.6
D18.6
D19.6
D20.6
D21.6
D22.6
D23.6
D24.6
D25.6
D26.6
D27.6
D28.6
D29.6
D30.6
D31.6
D0.7
D1.7
D2.7
D3.7
D4.7
D5.7
D6.7
D7.7
D8.7
D9.7
D10.7
D11.7
D12.7
D13.7
D14.7
D15.7

B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF

101  1 0 1 0 0
1 0 1  1 0 1 0 1
1 0 1  1 0 1 1 0
1 0 1  1 0 1 1 1
1 0 1  1 1 0 0 0
1 0 1  1 1 0 0 1
1 0 1  1 1 0 1 0
1 0 1  1 1 0 1 1
1 0 1  1 1 1 0 0
1 0 1  1 1 1 0 1
1 0 1  1 1 1 1 0
1 0 1  1 1 1 1 1
1 1 0  0 0 0 0 0
1 1 0  0 0 0 0 1
1 1 0  0 0 0 1 0
1 1 0  0 0 0 1 1
1 1 0  0 0 1 0 0
1 1 0  0 0 1 0 1
1 1 0  0 0 1 1 0
1 1 0  0 0 1 1 1
1 1 0  0 1 0 0 0
1 1 0  0 1 0 0 1
1 1 0  0 1 0 1 0
1 1 0  0 1 0 1 1
1 1 0  0 1 1 0 0
1 1 0  0 1 1 0 1
1 1 0  0 1 1 1 0
1 1 0  0 1 1 1 1
1 1 0  1 0 0 0 0
1 1 0  1 0 0 0 1
1 1 0  1 0 0 1 0
1 1 0  1 0 0 1 1
1 1 0  1 0 1 0 0
1 1 0  1 0 1 0 1
1 1 0  1 0 1 1 0
1 1 0  1 0 1 1 1
1 1 0  1 1 0 0 0
1 1 0  1 1 0 0 1
1 1 0  1 1 0 1 0
1 1 0  1 1 0 1 1
1 1 0  1 1 1 0 0
1 1 0  1 1 1 0 1
1 1 0  1 1 1 1 0
1 1 0  1 1 1 1 1
1 1 1  0 0 0 0 0
1 1 1  0 0 0 0 1
1 1 1  0 0 0 1 0
1 1 1  0 0 0 1 1
1 1 1  0 0 1 0 0
1 1 1  0 0 1 0 1
1 1 1  0 0 1 1 0
1 1 1  0 0 1 1 1
1 1 1  0 1 0 0 0
1 1 1  0 1 0 0 1
1 1 1  0 1 0 1 0
1 1 1  0 1 0 1 1
1 1 1  0 1 1 0 0
1 1 1  0 1 1 0 1
1 1 1  0 1 1 1 0
1 1 1  0 1 1 1 1

001011 1010
101010 1010
011010 1010
111010 1010
110011 1010
100110 1010
010110 1010
110110 1010
001110 1010
101110 1010
011110 1010
101011 1010
100111 0110
011101 0110
101101 0110
110001 0110
110101 0110
101001 0110
011001 0110
111000 0110
111001 0110
100101 0110
010101 0110
110100 0110
001101 0110
101100 0110
011100 0110
010111 0110
011011 0110
100011 0110
010011 0110
110010 0110
001011 0110
101010 0110
011010 0110
111010 0110
110011 0110
100110 0110
010110 0110
110110 0110
001110 0110
101110 0110
011110 0110
101011 0110
100111 0001
011101 0001
101101 0001
110001 1110
110101 0001
101001 1110
011001 1110
111000 1110
111001 0001
100101 1110
010101 1110
110100 1110
001101 1110
101100 1110
011100 1110
010111 0001

001011 1010
101010 1010
011010 1010
000101 1010
001100 1010
100110 1010
010110 1010
001001 1010
001110 1010
010001 1010
100001 1010
010100 1010
011000 0110
100010 0110
010010 0110
110001 0110
001010 0110
101001 0110
011001 0110
000111 0110
000110 0110
100101 0110
010101 0110
110100 0110
001101 0110
101100 0110
011100 0110
101000 0110
100100 0110
100011 0110
010011 0110
110010 0110
001011 0110
101010 0110
011010 0110
000101 0110
001100 0110
100110 0110
010110 0110
001001 0110
001110 0110
010001 0110
100001 0110
010100 0110
011000 1110
100010 1110
010010 1110
110001 0001
001010 1110
101001 0001
011001 0001
000111 0001
000110 1110
100101 0001
010101 0001
110100 1000
001101 0001
101100 1000
011100 1000
101000 1110

(continued)
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Table 36–3 lists the defined ordered_sets.

36.2.4.8 /K28.5/ code-group considerations
The /K28.5/ special code-group is chosen as the first code-group of all ordered_sets that are signaled repeat-
edly and for the purpose of allowing a receiver to synchronize to the incoming bit stream (i.e., /C/ and /I/),
for the following reasons:

a) Bits abcdeif make up a comma. The comma can be used to easily find and verify code-group and
ordered_set boundaries of the rx_bit stream.

b) Bits ghj of the encoded code-group present the maximum number of transitions, simplifying
receiver acquisition of bit synchronization.

Table 36–1e—Valid data code-groups

Code
Group
Name

Octet
Value

Octet Bits
HGF EDCBA

Current RD – Current RD +
abcdei fghj abcdei fghj

D16.7
D17.7
D18.7
D19.7
D20.7
D21.7
D22.7
D23.7
D24.7
D25.7
D26.7
D27.7
D28.7
D29.7
D30.7
D31.7

F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FD
FE
FF

111  1 0 0 0 0
1 1 1  1 0 0 0 1
1 1 1  1 0 0 1 0
1 1 1  1 0 0 1 1
1 1 1  1 0 1 0 0
1 1 1  1 0 1 0 1
1 1 1  1 0 1 1 0
1 1 1  1 0 1 1 1
1 1 1  1 1 0 0 0
1 1 1  1 1 0 0 1
1 1 1  1 1 0 1 0
1 1 1  1 1 0 1 1
1 1 1  1 1 1 0 0
1 1 1  1 1 1 0 1
1 1 1  1 1 1 1 0
1 1 1  1 1 1 1 1

011011 0001
100011 0111
010011 0111
110010 1110
001011 0111
101010 1110
011010 1110
111010 0001
110011 0001
100110 1110
010110 1110
110110 0001
001110 1110
101110 0001
011110 0001
101011 0001

100100 1110
100011 0001
010011 0001
110010 0001
001011 0001
101010 0001
011010 0001
000101 1110
001100 1110
100110 0001
010110 0001
001001 1110
001110 0001
010001 1110
100001 1110
010100 1110

(concluded)

Table 36–2—Valid special code-groups

Code
Group
Name

Octet
Value

Octet Bits
HGF EDCBA

Current RD – Current RD +
Notesabcdei fghj abcdei fghj

 K28.0
 K28.1
 K28.2
 K28.3
 K28.4
 K28.5
 K28.6
 K28.7
 K23.7
 K27.7
 K29.7
 K30.7

1C
3C
5C
7C
9C
BC
DC
FC
F7
FB
FD
FE

000  1 1 1 0 0
0 0 1  1 1 1 0 0
0 1 0  1 1 1 0 0
0 1 1  1 1 1 0 0
1 0 0  1 1 1 0 0
1 0 1  1 1 1 0 0
1 1 0  1 1 1 0 0
1 1 1  1 1 1 0 0
1 1 1  1 0 1 1 1
1 1 1  1 1 0 1 1
1 1 1  1 1 1 0 1
1 1 1  1 1 1 1 0

001111 0100
001111 1001
001111 0101
001111 0011
001111 0010
001111 1010
001111 0110
001111 1000
111010 1000
110110 1000
101110 1000
011110 1000

110000 1011
110000 0110
110000 1010
110000 1100
110000 1101
110000 0101
110000 1001
110000 0111
000101 0111
001001 0111
010001 0111
100001 0111

1
1,2
1
1
1
2
1
1,2

NOTE 1—Reserved.
NOTE 2—Contains a comma.



IEEE 
Std 802.3-2005 REVISION OF IEEE Std 802.3:

46 Copyright © 2005 IEEE. All rights reserved.

36.2.4.9 Comma considerations
The seven bit comma string is defined as either b’0011111’ (comma+) or b’1100000’ (comma-). The /I/ and
/C/ ordered_sets and their associated protocols are specified to ensure that comma+ is transmitted with
either equivalent or greater frequency than comma- for the duration of their transmission. This is done to
ensure compatibility with common components.

The comma contained within the /K28.1/, /K28.5/, and /K28.7/ special code-groups is a singular bit pattern,
which, in the absence of transmission errors, cannot appear in any other location of a code-group and cannot
be generated across the boundaries of any two adjacent code-groups with the following exception:

The /K28.7/ special code-group is used by 1000BASE-X for diagnostic purposes only (see Annex 36A).
This code-group, if followed by any of the following special or data code-groups: /K28.x/, /D3.x/, /D11.x/, /
D12.x/, /D19.x/, /D20.x/, or /D28.x/, where x is a value in the range 0 to 7, inclusive, causes a comma to be
generated across the boundaries of the two adjacent code-groups. A comma across the boundaries of any two
adjacent code-groups may cause code-group realignment (see 36.3.2.4).

36.2.4.10 Configuration (/C/)
Configuration, defined as the continuous repetition of the ordered sets /C1/ and /C2/, is used to convey the
16-bit Configuration Register (Config_Reg) to the link partner. See Clause 37 for a description of the
Config_Reg contents.

The ordered_sets, /C1/ and /C2/, are defined in Table 36–3. The /C1/ ordered_set is defined such that the
running disparity at the end of the first two code-groups is opposite that of the beginning running disparity.
The /C2/ ordered_set is defined such that the running disparity at the end of the first two code-groups is the
same as the beginning running disparity. For a constant Config_Reg value, the running disparity after trans-
mitting the sequence /C1/C2/ will be the opposite of what it was at the start of the sequence. This ensures
that K28.5s containing comma+ will be sent during configuration.

Table 36–3—Defined ordered_sets

Code Ordered_Set Number of
Code-Groups Encoding

/C/ Configuration Alternating /C1/ and /C2/
/C1/      Configuration 1 4 /K28.5/D21.5/Config_Rega

/C2/      Configuration 2 4 /K28.5/D2.2/Config_Rega

/I/ IDLE Correcting /I1/, Preserving /I2/
/I1/      IDLE 1 2 /K28.5/D5.6/
/I2/      IDLE 2 2 /K28.5/D16.2/

Encapsulation
/R/      Carrier_Extend 1 /K23.7/
/S/      Start_of_Packet 1 /K27.7/
/T/      End_of_Packet 1 /K29.7/
/V/      Error_Propagation 1 /K30.7/
aTwo data code-groups representing the Config_Reg value.
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36.2.4.11 Data (/D/)
A data code-group, when not used to distinguish or convey information for a defined ordered_set, conveys
one octet of arbitrary data between the GMII and the PCS. The sequence of data code-groups is arbitrary,
where any data code-group can be followed by any other data code-group. Data code-groups are coded and
decoded but not interpreted by the PCS. Successful decoding of the data code-groups depends on proper
receipt of the Start_of_Packet delimiter, as defined in 36.2.4.13 and the checking of validity, as defined in
36.2.4.6.

36.2.4.12 IDLE (/I/)
IDLE ordered_sets (/I/) are transmitted continuously and repetitively whenever the GMII is idle (TX_EN
and TX_ER are both inactive). /I/ provides a continuous fill pattern to establish and maintain clock
synchronization. /I/ is emitted from, and interpreted by, the PCS. /I/ consists of one or more consecutively
transmitted /I1/ or /I2/ ordered_sets, as defined in Table 36–3.

The /I1/ ordered_set is defined such that the running disparity at the end of the transmitted /I1/ is opposite
that of the beginning running disparity. The /I2/ ordered_set is defined such that the running disparity at the
end of the transmitted /I2/ is the same as the beginning running disparity. The first /I/ following a packet or
Configuration ordered_set restores the current positive or negative running disparity to a negative value. All
subsequent /I/s are /I2/ to ensure negative ending running disparity.

Distinct carrier events are separated by /I/s.

Implementations of this standard may benefit from the ability to add or remove /I2/ from the code-group
stream one /I2/ at a time without altering the beginning running disparity associated with the code-group
subsequent to the removed /I2/.

A received ordered set which consists of two code-groups, the first of which is /K28.5/ and the second of
which is a data code-group other than /D21.5/ or /D2.2/ is treated as an /I/ ordered_set.

36.2.4.13 Start_of_Packet (SPD) delimiter
A Start_of_Packet delimiter (SPD) is used to delineate the starting boundary of a data transmission sequence
and to authenticate carrier events. Upon each fresh assertion of TX_EN by the GMII, and subsequent to the
completion of PCS transmission of the current ordered_set, the PCS replaces the current octet of the MAC
preamble with SPD. Upon initiation of packet reception, the PCS replaces the received SPD delimiter with
the data octet value associated with the first preamble octet. A SPD delimiter consists of the code-group /S/,
as defined in Table 36–3.

SPD follows /I/ for a single packet or the first packet in a burst.

SPD follows /R/ for the second and subsequent packets of a burst.

36.2.4.14 End_of_Packet delimiter (EPD)
An End_of_Packet delimiter (EPD) is used to delineate the ending boundary of a packet. The EPD is trans-
mitted by the PCS following each de-assertion of TX_EN on the GMII, which follows the last data octet
comprising the FCS of the MAC packet. On reception, EPD is interpreted by the PCS as terminating a
packet. A EPD delimiter consists of the code-groups /T/R/R/ or /T/R/K28.5/. The code-group /T/ is defined
in Table 36–3. See 36.2.4.15 for the definition of code-groups used for /R/. /K28.5/ normally occurs as the
first code-group of the /I/ ordered_set. See 36.2.4.12 for the definition of code-groups used for /I/.
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The receiver considers the MAC interpacket gap (IPG) to have begun two octets prior to the transmission of
/I/. For example, when a packet is terminated by EPD, the /T/R/ portion of the EPD occupies part of the
region considered by the MAC to be the IPG.

36.2.4.14.1 EPD rules
a) The PCS transmits a /T/R/ following the last data octet from the MAC;
b) If the MAC indicates carrier extension to the PCS, Carrier_Extend rules are in effect. See

36.2.4.15.1;
c) If the MAC does not indicate carrier extension to the PCS, perform the following:
1) If /R/ is transmitted in an even-numbered code-group position, the PCS appends a single
additional /R/ to the code-group stream to ensure that the subsequent /I/ is aligned on an even-
numbered code-group boundary and EPD transmission is complete;

2) The PCS transmits /I/.

36.2.4.15 Carrier_Extend (/R/)
Carrier_Extend (/R/) is used for the following purposes:

a) Carrier extension: Used by the MAC to extend the duration of the carrier event. When used for this
purpose, carrier extension is emitted from and interpreted by the MAC and coded to and decoded
from the corresponding code-group by the PCS. In order to extend carrier, the GMII must deassert
TX_EN. The deassertion of TX_EN and simultaneous assertion of TX_ER causes the PCS to emit
an /R/ with a two-octet delay, which gives the PCS time to complete its EPD before commencing
transmissions. The number of /R/ code-groups emitted from the PCS equals the number of GMII
GTX_CLK periods during which it extends carrier;

b) Packet separation: Carrier extension is used by the MAC to separate packets within a burst of pack-
ets. When used for this purpose, carrier extension is emitted from and interpreted by the MAC and
coded to and decoded from the corresponding code-group by the PCS;

c) EPD2: The first /R/ following the /T/ in the End_of_Packet delimiters /T/R/I/ or /T/R/R/I/;
d) EPD3: The second /R/ following the /T/ in the End_of_Packet delimiter /T/R/R/I/. This /R/ is used,
if necessary, to pad the only or last packet of a burst of packets so that the subsequent /I/ is aligned
on an even-numbered code-group boundary. When used for this purpose, Carrier_Extend is emitted
from, and interpreted by, the PCS. An EPD of /T/R/R/ results in one /R/ being delivered to the PCS
client (see 36.2.4.14.1).

Carrier_Extend consists of one or more consecutively transmitted /R/ ordered_sets, as defined in Table
36–3.

36.2.4.15.1 Carrier_Extend rules
a) If the MAC indicates carrier extension to the PCS, the initial /T/R/ is followed by one /R/ for each
octet of carrier extension received from the MAC;

b) If the last /R/ is transmitted in an even-numbered code-group position, the PCS appends a single
additional /R/ to the code-group stream to ensure that the subsequent /I/ is aligned on an even-
numbered code-group boundary.

36.2.4.16 Error_Propagation (/V/)
Error_Propagation (/V/) indicates that the PCS client wishes to indicate a transmission error to its peer
entity. The normal use of Error_Propagation is for repeaters to propagate received errors. /V/ is emitted from
the PCS, at the request of the PCS client through the use of the TX_ER signal, as described in Clause 35.
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Error_Propagation is emitted from, and interpreted by, the PCS. Error_Propagation consists of the
ordered_set /V/, as defined in Table 36–3.

The presence of Error_Propagation or any invalid code-group on the medium denotes a collision artifact or
an error condition. Invalid code-groups are not intentionally transmitted onto the medium by DTEs. The
PCS processes and conditionally indicates the reception of /V/ or an invalid code-group on the GMII as false
carrier, data errors, or carrier extend errors, depending on its current context.

36.2.4.17 Encapsulation
The 1000BASE-X PCS accepts packets from the MAC through the Reconciliation sublayer and GMII. Due
to the continuously signaled nature of the underlying PMA, and the encoding performed by the PCS, the
1000BASE-X PCS encapsulates MAC frames into a code-group stream. The PCS decodes the code-group
stream received from the PMA, extracts packets from it, and passes the packets to the MAC via the Recon-
ciliation sublayer and GMII.

Figure 36–4 depicts the PCS encapsulation of a MAC packet based on GMII signals.

36.2.4.18 Mapping between GMII, PCS and PMA
Figure 36–3 depicts the mapping of the octet-wide data path of the GMII to the ten-bit-wide code-groups of
the PCS, and the one-bit paths of the PMA/PMD interface.

The PCS encodes an octet received from the GMII into a ten-bit code-group, according to Figure 36–3.
Code-groups are serialized into a tx_bit stream by the PMA and passed to the PMD for transmission on the
underlying medium, according to Figure 36–3. The first transmitted tx_bit is tx_code-group<0>, and the last
tx_bit transmitted is tx_code-group<9>. There is no numerical significance ascribed to the bits within a
code-group; that is, the code-group is simply a ten-bit pattern that has some predefined interpretation.

Figure 36–4—PCS encapsulation
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40.2.9 PMA_REMRXSTATUS.request
This primitive is generated by PCS Receive to indicate the status of the receive link at the remote PHY as
communicated by the remote PHY via its encoding of its loc_rcvr_status parameter. The parameter
rem_rcvr_status conveys to the PMA PHY Control function the information on whether reliable operation of
the remote PHY is detected or not. The criterion for setting the parameter rem_rcvr_status is left to the
implementor. It can be based, for example, on asserting rem_rcvr_status is NOT_OK until loc_rcvr_status is
OK and then asserting the detected value of rem_rcvr_status after proper PCS receive decoding is achieved.

40.2.9.1 Semantics of the primitive
PMA_REMRXSTATUS.request (rem_rcvr_status)

The rem_rcvr_status parameter can take on one of two values of the form:

OK The receive link for the remote PHY is operating reliably.
NOT_OK Reliable operation of the receive link for the remote PHY is not detected.

40.2.9.2 When generated
The PCS generates PMA_REMRXSTATUS.request messages continuously on the basis on signals received
at the MDI.

40.2.9.3 Effect of receipt
The effect of receipt of this primitive is specified in Figure 40–15.

40.2.10 PMA_RESET.indication
This primitive is used to pass the PMA Reset function to the PCS (pcs_reset=ON) when reset is enabled. 

The PMA_RESET.indication primitive can take on one of two values:

TRUE Reset is enabled.
FALSE Reset is not enabled.

40.2.10.1 When generated
The PMA Reset function is executed as described in 40.4.2.1.

40.2.10.2 Effect of receipt
The effect of receipt of this primitive is specified in 40.4.2.1.

40.3 Physical Coding Sublayer (PCS)
The PCS comprises one PCS Reset function and four simultaneous and asynchronous operating functions.
The PCS operating functions are: PCS Transmit Enable, PCS Transmit, PCS Receive, and PCS Carrier
Sense. All operating functions start immediately after the successful completion of the PCS Reset function. 

The PCS reference diagram, Figure 40–5, shows how the four operating functions relate to the messages of
the PCS-PMA interface. Connections from the management interface (signals MDC and MDIO) to other
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layers are pervasive, and are not shown in Figure 40–5. Management is specified in Clause 30. See also
Figure 40–7, which defines the structure of frames passed from PCS to PMA.

40.3.1 PCS functions
40.3.1.1 PCS Reset function
PCS Reset initializes all PCS functions. The PCS Reset function shall be executed whenever one of the fol-
lowing conditions occur:

a) Power on (see 36.2.5.1.3).
b) The receipt of a request for reset from the management entity. 

PCS Reset sets pcs_reset=ON while any of the above reset conditions hold true. All state diagrams take the
open-ended pcs_reset branch upon execution of PCS Reset. The reference diagrams do not explicitly show
the PCS Reset function.

INDEPENDENT
INTERFACE

PMA SERVICE
INTERFACE

PCS
(GMII)

link_status

PCS
RECEIVE

RX_CLK
RXD<7:0>
RX_DV
RX_ER

PCS CARRIER
SENSE

PCS

PRESENCE
COLLISION

loc_rcvr_status
rem_rcvr_status

GIGABIT MEDIA

PCS
TRANSMIT

PCSTRANSMIT
ENABLE

GTX_CLK
TXD<7:0>

tx_mode

tx_error

PMA_UNITDATA.indication (rx_symb_vector)

TX_EN
TX_ER

COL

CRS

PMA_UNITDATA.request (tx_symb_vector)

config

Figure 40–5—PCS reference diagram
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40.3.1.2 PCS Data Transmission Enable
The PCS Data Transmission Enabling process generates the signals tx_enable and tx_error, which PCS
Transmit uses for data and carrier extension encoding. The process uses logical operations on tx_mode,
TX_ER, TX_EN, and TXD<7:0>. The PCS shall implement the Data Transmission Enabling process as
depicted in Figure 40–8 including compliance with the associated state variables as specified in 40.3.3.

40.3.1.3 PCS Transmit function
The PCS Transmit function shall conform to the PCS Transmit state diagram in Figure 40–9. 

The PCS Transmit function generates the GMII signal COL based on whether a reception is occurring
simultaneously with transmission. The PCS Transmit function is not required to generate the GMII signal
COL in a 1000BASE-T PHY that does not support half duplex operation.

In each symbol period, PCS Transmit generates a code-group (An, Bn, Cn, Dn) that is transferred to the PMA
via the PMA_UNITDATA.request primitive. The PMA transmits symbols An, Bn, Cn, Dn over wire-pairs
BI_DA, BI_DB, BI_DC, and BI_DD respectively. The integer, n, is a time index that is introduced to estab-
lish a temporal relationship between different symbol periods. A symbol period, T, is nominally equal to 8
ns. In normal mode of operation, between streams of data indicated by the parameter tx_enable, PCS Trans-
mit generates sequences of vectors using the encoding rules defined for the idle mode. Upon assertion of
tx_enable, PCS Transmit passes a SSD of two consecutive vectors of four quinary symbols to the PMA,
replacing the first two preamble octets. Following the SSD, each TXD<7:0> octet is encoded using an 4D-
PAM5 technique into a vector of four quinary symbols until tx_enable is de-asserted. If TX_ER is asserted
while tx_enable is also asserted, then PCS Transmit passes to the PMA vectors indicating a transmit error.
Note that if the signal TX_ER is asserted while SSD is being sent, the transmission of the error condition is
delayed until transmission of SSD has been completed. Following the de-assertion of tx_enable, a Convolu-
tional State Reset (CSReset) of two consecutive code-groups, followed by an ESD of two consecutive code-
groups, is generated, after which the transmission of idle or control mode is resumed. 

If a PMA_TXMODE.indication message has the value SEND_Z, PCS Transmit passes a vector of zeros at
each symbol period to the PMA via the PMA_UNITDATA.request primitive.

If a PMA_TXMODE.indication message has the value SEND_I, PCS Transmit generates sequences of
code-groups according to the encoding rule in training mode. Special code-groups that use only the values
{+2, 0, –2} are transmitted in this case. Training mode encoding also takes into account the value of the
parameter loc_rcvr_status. By this mechanism, a PHY indicates the status of its own receiver to the link
partner during idle transmission.

In the normal mode of operation, the PMA_TXMODE.indication message has the value SEND_N, and the
PCS Transmit function uses an 8B1Q4 coding technique to generate at each symbol period code-groups that
represent data, control or idle based on the code-groups defined in Table 40–1 and Table 40–2. During trans-
mission of data, the TXD<7:0> bits are scrambled by the PCS using a side-stream scrambler, then encoded
into a code-group of quinary symbols and transferred to the PMA. During data encoding, PCS Transmit uti-
lizes a three-state convolutional encoder. 

The transition from idle or carrier extension to data is signalled by inserting a SSD, and the end of transmis-
sion of data is signalled by an ESD. Further code-groups are reserved for signaling the assertion of TX_ER
within a stream of data, carrier extension, CSReset, and other control functions. During idle and carrier
extension encoding, special code-groups with symbol values restricted to the set {2, 0, –2} are used. These
code-groups are also generated using the transmit side-stream scrambler. However, the encoding rules for
the idle, SSD, and carrier extend code-groups are different from the encoding rules for data, CSReset, CSEx-
tend, and ESD code-groups. During idle, SSD, and carrier extension, the PCS Transmit function reverses the
sign of the transmitted symbols. This allows, at the receiver, sequences of code-groups that represent data,
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CSReset, CSExtend, and ESD to be easily distinguished from sequences of code-groups that represent SSD,
carrier extension, and idle.

PCS encoding involves the generation of the four-bit words Sxn[3:0], Syn[3:0], and Sgn[3:0] from which the
quinary symbols (An, Bn, Cn, Dn) are obtained. The four-bit words Sxn[3:0], Syn[3:0], and Sgn[3:0] are
determined (as explained in 40.3.1.3.2) from sequences of pseudorandom binary symbols derived from the
transmit side-stream scrambler. 

40.3.1.3.1 Side-stream scrambler polynomials
The PCS Transmit function employs side-stream scrambling. If the parameter config provided to the PCS by
the PMA PHY Control function via the PMA_CONFIG.indication message assumes the value MASTER,
PCS Transmit shall employ

as transmitter side-stream scrambler generator polynomial. If the PMA_CONFIG.indication message
assumes the value of SLAVE, PCS Transmit shall employ

as transmitter side-stream scrambler generator polynomial. An implementation of master and slave PHY
side-stream scramblers by linear-feedback shift registers is shown in Figure 40–6. The bits stored in the shift
register delay line at time n are denoted by Scrn[32:0]. At each symbol period, the shift register is advanced
by one bit, and one new bit represented by Scrn[0] is generated. The transmitter side-stream scrambler is
reset upon execution of the PCS Reset function. If PCS Reset is executed, all bits of the 33-bit vector repre-
senting the side-stream scrambler state are arbitrarily set. The initialization of the scrambler state is left to
the implementor. In no case shall the scrambler state be initialized to all zeros.

40.3.1.3.2 Generation of bits Sxn[3:0], Syn[3:0], and Sgn[3:0]
PCS Transmit encoding rules are based on the generation, at time n, of the twelve bits Sxn[3:0], Syn[3:0],
and Sgn[3:0]. The eight bits, Sxn[3:0] and Syn[3:0], are used to generate the scrambler octet Scn[7:0] for
decorrelating the GMII data word TXD<7:0> during data transmission and for generating the idle and train-
ing symbols. The four bits, Sgn[3:0], are used to randomize the signs of the quinary symbols (An, Bn, Cn,

gM x( ) 1 x13 x33+ +=

gS x( ) 1 x20 x33+ +=

Scrn[0]
T

Scrn[1] Scrn[12] Scrn[13] Scrn[31] Scrn[32]
T T T T T

Side-stream scrambler employed by the MASTER PHY

Side-stream scrambler employed by the SLAVE PHY

Figure 40–6—A realization of side-stream scramblers by linear feedback shift registers

Scrn[0]
T
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Dn) so that each symbol stream has no dc bias. These twelve bits are generated in a systematic fashion using
three bits, Xn, Yn, and Scrn[0], and an auxiliary generating polynomial, g(x). The two bits, Xn and Yn, are
mutually uncorrelated and also uncorrelated with the bit Scrn[0]. For both master and slave PHYs, they are
obtained by the same linear combinations of bits stored in the transmit scrambler shift register delay line.
These two bits are derived from elements of the same maximum-length shift register sequence of length
 as Scrn[0], but shifted in time. The associated delays are all large and different so that there is no

short-term correlation among the bits Scrn[0], Xn, and Yn. The bits Xn and Yn are generated as follows:

Xn = Scrn[4] ^ Scrn[6]

Yn = Scrn[1] ^ Scrn[5]

where ^ denotes the XOR logic operator. From the three bits Xn, Yn, and Scrn[0], further mutually uncorre-
lated bit streams are obtained systematically using the generating polynomial 

g(x) = x3 ^ x8

The four bits Syn[3:0] are generated using the bit Scrn[0] and g(x) as in the following equations:

Syn[0] = Scrn[0]

Syn[1] = g(Scrn[0]) = Scrn[3] ^ Scrn[8]

Syn[2] = g2(Scrn[0]) = Scrn[6] ^ Scrn[16]

Syn[3] = g3(Scrn[0]) = Scrn[9] ^ Scrn[14] ^ Scrn[19] ^ Scrn[24]

The four bits Sxn[3:0] are generated using the bit Xn and g(x) as in the following equations:

Sxn[0] = Xn = Scrn[4] ^ Scrn[6]

Sxn[1] = g(Xn) = Scrn[7] ^ Scrn[9] ^ Scrn[12] ^ Scrn[14]

Sxn[2] = g2(Xn) = Scrn[10] ^ Scrn[12] ^ Scrn[20] ^ Scrn[22]

Sxn[3] = g3(Xn) = Scrn[13] ^ Scrn[15] ^ Scrn[18] ^ Scrn[20] ^
 Scrn[23] ^ Scrn[25] ^ Scrn[28] ^ Scrn[30]

The four bits Sgn[3:0] are generated using the bit Yn and g(x) as in the following equations: 

Sgn[0] = Yn = Scrn[1] ^ Scrn[5]

Sgn[1] = g(Yn) = Scrn[4] ^ Scrn[8] ^ Scrn[9] ^ Scrn[13]

Sgn[2] = g2(Yn) = Scrn[7] ^ Scrn[11] ^ Scrn[17] ^ Scrn[21]

Sgn[3] = g3(Yn) = Scrn[10] ^ Scrn[14] ^ Scrn[15] ^ Scrn[19] ^
 Scrn[20] ^ Scrn[24] ^ Scrn[25] ^ Scrn[29]

By construction, the twelve bits Sxn[3:0], Syn[3:0], and Sgn[3:0] are derived from elements of the same
maximum-length shift register sequence of length 233–1 as Scrn[0], but shifted in time by varying delays.
The associated delays are all large and different so that there is no apparent correlation among the bits.

233 1–
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40.3.1.3.3 Generation of bits Scn[7:0]
The bits Scn[7:0] are used to scramble the GMII data octet TXD[7:0] and for control, idle, and training mode
quartet generation. The definition of these bits is dependent upon the bits Sxn[3:0] and Syn[3:0] that are
specified in 40.3.1.3.2, the variable tx_mode that is obtained through the PMA Service Interface, the vari-
able tx_enablen that is defined in Figure 40–8, and the time index n.

The four bits Scn[7:4] are defined as

The bits Scn[3:1] are defined as

where n0 denotes the time index of the last transmitter side-stream scrambler reset.

The bit Scn[0] is defined as

40.3.1.3.4 Generation of bits Sdn[8:0]
The PCS Transmit function generates a nine-bit word Sdn[8:0] from Scn that represents either a convolution-
ally encoded stream of data, control, or idle mode code-groups. The convolutional encoder uses a three-bit
word csn[2:0], which is defined as 

csn[0] = csn-1[2]
from which Sdn[8] is obtained as

Sdn[8] = csn[0]

 
 Scn[7:4] = 

Sxn[3:0] if (tx_enablen-2 = 1) 
[0 0 0 0] else

(Syn-1[3:1] ^ [1 1 1]) else

 
 

[0 0 0] if (tx_mode = SEND_Z) 
Scn[3:1] =  Syn[3:1] else if (n-n0) = 0 (mod 2)

 
 Scn[0] = 

0 if (tx_mode = SEND_Z) 
Syn[0] else

 
  Sdn[6] ^ csn-1[0] if (tx_enablen-2 = 1)

0 else
csn[1] =

 
  Sdn[7] ^ csn-1[1] if (tx_enablen-2 = 1)

0 else
csn[2] =
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The convolutional encoder bits are non-zero only during the transmission of data. Upon the completion of a
data frame, the convolutional encoder bits are reset using the bit csresetn. The bit csresetn is defined as 

csresetn = (tx_enablen-2) and (not tx_enablen)
The bits Sdn[7:6] are derived from the bits Scn[7:6], the GMII data bits TXDn[7:6], and from the convolu-
tional encoder bits as

The bits Sdn[5:3] are derived from the bits Scn[5:3] and the GMII data bits TXDn[5:3] as

The bit Sdn[2] is used to scramble the GMII data bit TXDn[2] during data mode and to encode
loc_rcvr_status otherwise. It is defined as

The bits Sdn[1:0] are used to transmit carrier extension information during tx_mode=SEND_N and are thus
dependent upon the bits cextn and cext_errn. These bits are dependent on the variable tx_errorn, which is
defined in Figure 40–8. These bits are defined as

Scn[7] else

 
 Sdn[7] = 

 
 
Scn[7]  ^ TXDn[7] if (csresetn = 0 and tx_enablen-2 = 1) 
csn-1[1] else if (csresetn=1) 

Scn[6] else

 
 Sdn[6] = 

 
 
Scn[6]  ^ TXDn[6] if (csresetn = 0 and tx_enablen-2 = 1) 
csn-1[0] else if (csresetn=1)

Scn[5:3] ^ TXDn[5:3] if (tx_enablen-2 = 1)  
 Sdn[5:3] = Scn[5:3] else 

Scn[2] ^ TXDn[2] if (tx_enablen-2 = 1) 
  Scn[2]  ^ 1 else if (loc_rcvr_status = OK)

Scn[2] else
Sdn[2] =

tx_errorn if ((tx_enablen = 0) and (TXDn[7:0] = 0x0F)) 
 cextn = 0 else

 
 cext_errn = 

tx_errorn if ((tx_enablen = 0) and (TXDn[7:0] ≠ 0x0F))
0 else

 
 Sdn[1] = 

Scn[1] ^ TXDn[1] if (tx_enablen-2 = 1)
Scn[1] ^ cext_errn else
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40.3.1.3.5 Generation of quinary symbols TAn, TBn, TCn, TDn
The nine-bit word Sdn[8:0] is mapped to a quartet of quinary symbols (TAn, TBn, TCn, TDn) according to
Table 40–1 and Table 40–2 shown as Sdn[6:8] + Sdn[5:0]. 

Encoding of error indication:

If tx_errorn=1 when the condition (tx_enablen * tx_enablen-2) = 1, error indication is signaled by means of
symbol substitution. In this condition, the values of Sdn[5:0] are ignored during mapping and the symbols
corresponding to the row denoted as “xmt_err” in Table 40–1 and Table 40–2 shall be used. 

Encoding of Convolutional Encoder Reset:

If tx_errorn=0 when the variable csresetn = 1, the convolutional encoder reset condition is normal. This
condition is indicated by means of symbol substitution, where the values of Sdn[5:0] are ignored during
mapping and the symbols corresponding to the row denoted as “CSReset” in Table 40–1 and Table 40–2
shall be used.

Encoding of Carrier Extension during Convolutional Encoder Reset:

If tx_errorn=1 when the variable csresetn = 1, the convolutional encoder reset condition indicates carrier
extension. In this condition, the values of Sdn[5:0] are ignored during mapping and the symbols correspond-
ing to the row denoted as “CSExtend” in Table 40–1 and Table 40–2 shall be used when TXDn = 0x’0F, and
the row denoted as “CSExtend_Err” in Table 40–1 and Table 40–2 shall be used when TXDn ≠ 0x’0F. The
latter condition denotes carrier extension with error. In case carrier extension with error is indicated during
the first octet of CSReset, the error condition shall be encoded during the second octet of CSReset, and dur-
ing the subsequent two octets of the End-of-Stream delimiter as well. Thus, the error condition is assumed to
persist during the symbol substitutions at the End-of-Stream.

Encoding of Start-of-Stream delimiter:

The Start-of-Stream delimiter (SSD) is related to the condition SSDn, which is defined as (tx_enablen) *
(!tx_enablen-2) = 1, where “*” and “!” denote the logic AND and NOT operators, respectively. For the
generation of SSD, the first two octets of the preamble in a data stream are mapped to the symbols corre-
sponding to the rows denoted as SSD1 and SSD2 respectively in Table 40–1. The symbols corresponding to
the SSD1 row shall be used when the condition (tx_enablen) * (!tx_enablen-1) = 1. The symbols correspond-
ing to the SSD2 row shall be used when the condition (tx_enablen-1) * (!tx_enablen-2) = 1.

Encoding of End-of-Stream delimiter:

The definition of an End-of-Stream delimiter (ESD) is related to the condition ESDn, which is defined as
(!tx_enablen-2) * (tn_enablen-4) = 1. This occurs during the third and fourth symbol periods after transmis-
sion of the last octet of a data stream.

If carrier extend error is indicated during ESD, the symbols corresponding to the ESD_Ext_Err row shall be
used. The two conditions upon which this may occur are

(tx_errorn) * (tx_errorn-1) * (tx_errorn-2) * (TXDn≠ 0x0F) = 1, and 

 
 Sdn[0] = 

Scn[0] ^ TXDn[0] if (tx_enablen-2 = 1)
Scn[0] ^ cextn else
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(tx_errorn) * (tx_errorn-1) * (tx_errorn-2) * (tx_errorn-3) * (TXDn≠ 0x0F) = 1.
The symbols corresponding to the ESD1 row in Table 40–1 shall be used when the condition (!tx_enablen-2)
* (tx_enablen-3) = 1, in the absence of carrier extend error indication at time n. 
The symbols corresponding to the ESD2_Ext_0 row in Table 40–1 shall be used when the condition
(!tx_enablen-3) * (tx_enablen-4) * (!tx_errorn) * (!tx_errorn-1) = 1.
The symbols corresponding to the ESD2_Ext_1 row in Table 40–1 shall be used when the condition
(!tx_enablen-3) * (tx_enablen-4) * (!tx_errorn) * (tx_errorn-1) * (tx_errorn-2) * (tx_errorn-3) = 1.
The symbols corresponding to the ESD2_Ext_2 row in Table 40–1 shall be used when the condition
(!tx_enablen-3) * (tx_enablen-4) * (tx_errorn) * (tx_errorn-1) * (tx_errorn-2) * (tx_errorn-3) * (TXDn= 0x0F) =
1, in the absence of carrier extend error indication.
NOTE—The ASCII for Table 40–1 and Table 40–2 is available at http://www.ieee802.org/3/publication/index.html.1

1Copyright release for symbol codes: Users of this standard may freely reproduce the symbol codes in this subclause so it can be used
for its intended purpose. Copies of the symbol codes can be obtained at http://standards.ieee.org/reading/ieee/std/downloads/
index.html.

Table 40–1—Bit-to-symbol mapping (even subsets) 
Sdn[6:8] = [000] Sdn[6:8] = [010] Sdn[6:8] = [100] Sdn[6:8] = [110]

Condition Sdn[5:0] TAn,TBn,TCn,TDn TAn,TBn,TCn,TDn TAn,TBn,TCn,TDn TAn,TBn,TCn,TDn
Normal 000000  0, 0, 0, 0  0, 0,+1,+1  0,+1,+1, 0  0,+1, 0,+1
Normal 000001 –2, 0, 0, 0 –2, 0,+1,+1 –2,+1,+1, 0 –2,+1, 0,+1
Normal 000010  0,–2, 0, 0  0,–2,+1,+1  0,–1,+1, 0  0,–1, 0,+1
Normal 000011 –2,–2, 0, 0 –2,–2,+1,+1 –2,–1,+1, 0 –2,–1, 0,+1
Normal 000100  0, 0,–2, 0  0, 0,–1,+1  0,+1,–1, 0  0,+1,–2,+1
Normal 000101 –2, 0,–2, 0 –2, 0,–1,+1 –2,+1,–1, 0 –2,+1,–2,+1
Normal 000110  0,–2,–2, 0  0,–2,–1,+1  0,–1,–1, 0  0,–1,–2,+1
Normal 000111 –2,–2,–2, 0 –2,–2,–1,+1 –2,–1,–1, 0 –2,–1,–2,+1
Normal 001000  0, 0, 0,–2  0, 0,+1,–1  0,+1,+1,–2  0,+1, 0,–1
Normal 001001 –2, 0, 0,–2 –2, 0,+1,–1 –2,+1,+1,–2 –2,+1, 0,–1
Normal 001010  0,–2, 0,–2  0,–2,+1,–1  0,–1,+1,–2  0,–1, 0,–1
Normal 001011 –2,–2, 0,–2 –2,–2,+1,–1 –2,–1,+1,–2 –2,–1, 0,–1
Normal 001100  0, 0,–2,–2  0, 0,–1,–1  0,+1,–1,–2  0,+1,–2,–1
Normal 001101 –2, 0,–2,–2 –2, 0,–1,–1 –2,+1,–1,–2 –2,+1,–2,–1
Normal 001110  0,–2,–2,–2  0,–2,–1,–1  0,–1,–1,–2  0,–1,–2,–1
Normal 001111 –2,–2,–2,–2 –2,–2,–1,–1 –2,–1,–1,–2 –2,–1,–2,–1
Normal 010000 +1,+1,+1,+1 +1,+1, 0, 0 +1, 0, 0,+1 +1, 0,+1, 0
Normal 010001 –1,+1,+1,+1 –1,+1, 0, 0 –1, 0, 0,+1 –1, 0,+1, 0
Normal 010010 +1,–1,+1,+1 +1,–1, 0, 0 +1,–2, 0,+1 +1,–2,+1, 0
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Normal 010011 –1,–1,+1,+1 –1,–1, 0, 0 –1,–2, 0,+1 –1,–2,+1, 0
Normal 010100 +1,+1,–1,+1 +1,+1,–2, 0 +1, 0,–2,+1 +1, 0,–1, 0
Normal 010101 –1,+1,–1,+1 –1,+1,–2, 0 –1, 0,–2,+1 –1, 0,–1, 0
Normal 010110 +1,–1,–1,+1 +1,–1,–2, 0 +1,–2,–2,+1 +1,–2,–1, 0
Normal 010111 –1,–1,–1,+1 –1,–1,–2, 0 –1,–2,–2,+1 –1,–2,–1, 0
Normal 011000 +1,+1,+1,–1 +1,+1, 0,–2 +1, 0, 0,–1 +1, 0,+1,–2
Normal 011001 –1,+1,+1,–1 –1,+1, 0,–2 –1, 0, 0,–1 –1, 0,+1,–2
Normal 011010 +1,–1,+1,–1 +1,–1, 0,–2 +1,–2, 0,–1 +1,–2,+1,–2
Normal 011011 –1,–1,+1,–1 –1,–1, 0,–2 –1,–2, 0,–1 –1,–2,+1,–2
Normal 011100 +1,+1,–1,–1 +1,+1,–2,–2 +1, 0,–2,–1 +1, 0,–1,–2
Normal 011101 –1,+1,–1,–1 –1,+1,–2,–2 –1, 0,–2,–1 –1, 0,–1,–2
Normal 011110 +1,–1,–1,–1 +1,–1,–2,–2 +1,–2,–2,–1 +1,–2,–1,–2
Normal 011111 –1,–1,–1,–1 –1,–1,–2,–2 –1,–2,–2,–1 –1,–2,–1,–2
Normal 100000 +2, 0, 0, 0 +2, 0,+1,+1 +2,+1,+1, 0 +2,+1, 0,+1
Normal 100001 +2,–2, 0, 0 +2,–2,+1,+1 +2,–1,+1, 0 +2,–1, 0,+1
Normal 100010 +2, 0,–2, 0 +2, 0,–1,+1 +2,+1,–1, 0 +2,+1,–2,+1
Normal 100011 +2,–2,–2, 0 +2,–2,–1,+1 +2,–1,–1, 0 +2,–1,–2,+1
Normal 100100 +2, 0, 0,–2 +2, 0,+1,–1 +2,+1,+1,–2 +2,+1, 0,–1
Normal 100101 +2,–2, 0,–2 +2,–2,+1,–1 +2,–1,+1,–2 +2,–1, 0,–1
Normal 100110 +2, 0,–2,–2 +2, 0,–1,–1 +2,+1,–1,–2 +2,+1,–2,–1
Normal 100111 +2,–2,–2,–2 +2,–2,–1,–1 +2,–1,–1,–2 +2,–1,–2,–1
Normal 101000  0, 0,+2, 0 +1,+1,+2, 0 +1, 0,+2,+1  0,+1,+2,+1
Normal 101001 –2, 0,+2, 0 –1,+1,+2, 0 –1, 0,+2,+1 –2,+1,+2,+1
Normal 101010  0,–2,+2, 0 +1,–1,+2, 0 +1,–2,+2,+1  0,–1,+2,+1
Normal 101011 –2,–2,+2, 0 –1,–1,+2, 0 –1,–2,+2,+1 –2,–1,+2,+1
Normal 101100  0, 0,+2,–2 +1,+1,+2,–2 +1, 0,+2,–1  0,+1,+2,–1
Normal 101101 –2, 0,+2,–2 –1,+1,+2,–2 –1, 0,+2,–1 –2,+1,+2,–1
Normal 101110  0,–2,+2,–2 +1,–1,+2,–2 +1,–2,+2,–1  0,–1,+2,–1
Normal 101111 –2,–2,+2,–2 –1,–1,+2,–2 –1,–2,+2,–1 –2,–1,+2,–1
Normal 110000  0,+2, 0, 0  0,+2,+1,+1 +1,+2, 0,+1 +1,+2,+1, 0
Normal 110001 –2,+2, 0, 0 –2,+2,+1,+1 –1,+2, 0,+1 –1,+2,+1, 0
Normal 110010  0,+2,–2, 0  0,+2,–1,+1 +1,+2,–2,+1 +1,+2,–1, 0

Table 40–1—Bit-to-symbol mapping (even subsets)  (continued)
Sdn[6:8] = [000] Sdn[6:8] = [010] Sdn[6:8] = [100] Sdn[6:8] = [110]

Condition Sdn[5:0] TAn,TBn,TCn,TDn TAn,TBn,TCn,TDn TAn,TBn,TCn,TDn TAn,TBn,TCn,TDn
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Normal 110011 –2,+2,–2, 0 –2,+2,–1,+1 –1,+2,–2,+1 –1,+2,–1, 0
Normal 110100  0,+2, 0,–2  0,+2,+1,–1 +1,+2, 0,–1 +1,+2,+1,–2
Normal 110101 –2,+2, 0,–2 –2,+2,+1,–1 –1,+2, 0,–1 –1,+2,+1,–2
Normal 110110  0,+2,–2,–2  0,+2,–1,–1 +1,+2,–2,–1 +1,+2,–1,–2
Normal 110111 –2,+2,–2,–2 –2,+2,–1,–1 –1,+2,–2,–1 –1,+2,–1,–2
Normal 111000  0, 0, 0,+2 +1,+1, 0,+2  0,+1,+1,+2 +1, 0,+1,+2
Normal 111001 –2, 0, 0,+2 –1,+1, 0,+2 –2,+1,+1,+2 –1, 0,+1,+2
Normal 111010  0,–2, 0,+2 +1,–1, 0,+2  0,–1,+1,+2 +1,–2,+1,+2
Normal 111011 –2,–2, 0,+2 –1,–1, 0,+2 –2,–1,+1,+2 –1,–2,+1,+2
Normal 111100  0, 0,–2,+2 +1,+1,–2,+2  0,+1,–1,+2 +1, 0,–1,+2
Normal 111101 –2, 0,–2,+2 –1,+1,–2,+2 –2,+1,–1,+2 –1, 0,–1,+2
Normal 111110  0,–2,–2,+2 +1,–1,–2,+2  0,–1,–1,+2 +1,–2,–1,+2
Normal 111111 –2,–2,–2,+2 –1,–1,–2,+2 –2,–1,–1,+2 –1,–2,–1,+2
xmt_err XXXXXX 0,+2,+2,0 +1,+1,+2,+2 +2,+1,+1,+2 +2,+1,+2,+1
CSExtend_Err XXXXXX –2,+2,+2,–2 –1,–1,+2,+2 +2,–1,–1,+2 +2,–1,+2,–1
CSExtend XXXXXX +2, 0, 0,+2 +2,+2,+1,+1 +1,+2,+2,+1 +1,+2,+1,+2
CSReset XXXXXX +2,–2,–2,+2 +2,+2,–1,–1 –1,+2,+2,–1 –1,+2,–1,+2
SSD1 XXXXXX +2,+2,+2,+2 — — —
SSD2 XXXXXX +2,+2,+2,–2 — — —
ESD1 XXXXXX +2,+2,+2,+2 — — —
ESD2_Ext_0 XXXXXX +2,+2,+2,–2 — — —
ESD2_Ext_1 XXXXXX +2,+2, –2,+2 — — —
ESD2_Ext_2 XXXXXX +2,–2,+2,+2 — — —
ESD_Ext_Err XXXXXX –2,+2,+2,+2 — — —
Idle/Carrier 
Extension

000000  0, 0, 0, 0 — — —

Idle/Carrier 
Extension

000001 –2, 0, 0, 0 — — —

Idle/Carrier 
Extension

000010  0,–2, 0, 0 — — —

Idle/Carrier 
Extension

000011 –2,–2, 0, 0 — — —

Idle/Carrier 
Extension

000100  0, 0,–2, 0 — — —

Table 40–1—Bit-to-symbol mapping (even subsets)  (continued)
Sdn[6:8] = [000] Sdn[6:8] = [010] Sdn[6:8] = [100] Sdn[6:8] = [110]

Condition Sdn[5:0] TAn,TBn,TCn,TDn TAn,TBn,TCn,TDn TAn,TBn,TCn,TDn TAn,TBn,TCn,TDn
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Idle/Carrier 
Extension

000101 –2, 0,–2, 0 — — —

Idle/Carrier 
Extension

000110  0,–2,–2, 0 — — —

Idle/Carrier 
Extension

000111 –2,–2,–2, 0 — — —

Idle/Carrier 
Extension

001000  0, 0, 0,–2 — — —

Idle/Carrier 
Extension

001001 –2, 0, 0,–2 — — —

Idle/Carrier 
Extension

001010  0,–2, 0,–2 — — —

Idle/Carrier 
Extension

001011 –2,–2, 0,–2 — — —

Idle/Carrier 
Extension

001100  0, 0,–2,–2 — — —

Idle/Carrier 
Extension

001101 –2, 0,–2,–2 — — —

Idle/Carrier 
Extension

001110  0,–2,–2,–2 — — —

Idle/Carrier 
Extension

001111 –2,–2,–2,–2 — — —

Table 40–2—Bit-to-symbol mapping (odd subsets) 
Sdn[6:8] = [001] Sdn[6:8] = [011] Sdn[6:8] = [101] Sdn[6:8] = [111]

Condition Sdn[5:0] TAn,TBn,TCn, TDn TAn,TBn,TCn,TDn TAn,TBn,TCn,TDn TAn,TBn,TCn,TDn 
Normal 000000  0, 0, 0,+1  0, 0,+1, 0  0,+1,+1,+1  0,+1, 0, 0
Normal 000001 –2, 0, 0,+1 –2, 0,+1, 0 –2,+1,+1,+1 –2,+1, 0, 0
Normal 000010  0,–2, 0,+1  0,–2,+1, 0  0,–1,+1,+1  0,–1, 0, 0
Normal 000011 –2,–2, 0,+1 –2,–2,+1, 0 –2,–1,+1,+1 –2,–1, 0, 0
Normal 000100  0, 0,–2,+1  0, 0,–1, 0  0,+1,–1,+1  0,+1,–2, 0
Normal 000101 –2, 0,–2,+1 –2, 0,–1, 0 –2,+1,–1,+1 –2,+1,–2, 0
Normal 000110  0,–2,–2,+1  0,–2,–1, 0  0,–1,–1,+1  0,–1,–2, 0
Normal 000111 –2,–2,–2,+1 –2,–2,–1, 0 –2,–1,–1,+1 –2,–1,–2, 0
Normal 001000  0, 0, 0,–1  0, 0,+1,–2  0,+1,+1,–1  0,+1, 0,–2
Normal 001001 –2, 0, 0,–1 –2, 0,+1,–2 –2,+1,+1,–1 –2,+1, 0,–2

Table 40–1—Bit-to-symbol mapping (even subsets)  (continued)
Sdn[6:8] = [000] Sdn[6:8] = [010] Sdn[6:8] = [100] Sdn[6:8] = [110]

Condition Sdn[5:0] TAn,TBn,TCn,TDn TAn,TBn,TCn,TDn TAn,TBn,TCn,TDn TAn,TBn,TCn,TDn
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Normal 001010  0,–2, 0,–1  0,–2,+1,–2  0,–1,+1,–1  0,–1, 0,–2
Normal 001011 –2,–2, 0,–1 –2,–2,+1,–2 –2,–1,+1,–1 –2,–1, 0,–2
Normal 001100  0, 0,–2,–1  0, 0,–1,–2  0,+1,–1,–1  0,+1,–2,–2
Normal 001101 –2, 0,–2,–1 –2, 0,–1,–2 –2,+1,–1,–1 –2,+1,–2,–2
Normal 001110  0,–2,–2,–1  0,–2,–1,–2  0,–1,–1,–1  0,–1,–2,–2
Normal 001111 –2,–2,–2,–1 –2,–2,–1,–2 –2,–1,–1,–1 –2,–1,–2,–2
Normal 010000 +1,+1,+1, 0 +1,+1, 0,+1 +1, 0, 0, 0 +1, 0,+1,+1
Normal 010001 –1,+1,+1, 0 –1,+1, 0,+1 –1, 0, 0, 0 –1, 0,+1,+1
Normal 010010 +1,–1,+1, 0 +1,–1, 0,+1 +1,–2, 0, 0 +1,–2,+1,+1
Normal 010011 –1,–1,+1, 0 –1,–1, 0,+1 –1,–2, 0, 0 –1,–2,+1,+1
Normal 010100 +1,+1,–1, 0 +1,+1,–2,+1 +1, 0,–2, 0 +1, 0,–1,+1
Normal 010101 –1,+1,–1, 0 –1,+1,–2,+1 –1, 0,–2, 0 –1, 0,–1,+1
Normal 010110 +1,–1,–1, 0 +1,–1,–2,+1 +1,–2,–2, 0 +1,–2,–1,+1
Normal 010111 –1,–1,–1, 0 –1,–1,–2,+1 –1,–2,–2, 0 –1,–2,–1,+1
Normal 011000 +1,+1,+1,–2 +1,+1, 0,–1 +1, 0, 0,–2 +1, 0,+1,–1
Normal 011001 –1,+1,+1,–2 –1,+1, 0,–1 –1, 0, 0,–2 –1, 0,+1,–1
Normal 011010 +1,–1,+1,–2 +1,–1, 0,–1 +1,–2, 0,–2 +1,–2,+1,–1
Normal 011011 –1,–1,+1,–2 –1,–1, 0,–1 –1,–2, 0,–2 –1,–2,+1,–1
Normal 011100 +1,+1,–1,–2 +1,+1,–2,–1 +1, 0,–2,–2 +1, 0,–1,–1
Normal 011101 –1,+1,–1,–2 –1,+1,–2,–1 –1, 0,–2,–2 –1, 0,–1,–1
Normal 011110 +1,–1,–1,–2 +1,–1,–2,–1 +1,–2,–2,–2 +1,–2,–1,–1
Normal 011111 –1,–1,–1,–2 –1,–1,–2,–1 –1,–2,–2,–2 –1,–2,–1,–1
Normal 100000 +2, 0, 0,+1 +2, 0,+1, 0 +2,+1,+1,+1 +2,+1, 0, 0
Normal 100001 +2,–2, 0,+1 +2,–2,+1, 0 +2,–1,+1,+1 +2,–1, 0, 0
Normal 100010 +2, 0,–2,+1 +2, 0,–1, 0 +2,+1,–1,+1 +2,+1,–2, 0
Normal 100011 +2,–2,–2,+1 +2,–2,–1, 0 +2,–1,–1,+1 +2,–1,–2, 0
Normal 100100 +2, 0, 0,–1 +2, 0,+1,–2 +2,+1,+1,–1 +2,+1, 0,–2
Normal 100101 +2,–2, 0,–1 +2,–2,+1,–2 +2,–1,+1,–1 +2,–1, 0,–2
Normal 100110 +2, 0,–2,–1 +2, 0,–1,–2 +2,+1,–1,–1 +2,+1,–2,–2
Normal 100111 +2,–2,–2,–1 +2,–2,–1,–2 +2,–1,–1,–1 +2,–1,–2,–2
Normal 101000  0, 0,+2,+1 +1,+1,+2,+1 +1, 0,+2, 0  0,+1,+2, 0

Table 40–2—Bit-to-symbol mapping (odd subsets)  (continued)
Sdn[6:8] = [001] Sdn[6:8] = [011] Sdn[6:8] = [101] Sdn[6:8] = [111]

Condition Sdn[5:0] TAn,TBn,TCn, TDn TAn,TBn,TCn,TDn TAn,TBn,TCn,TDn TAn,TBn,TCn,TDn 
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40.3.1.3.6 Generation of An, Bn, Cn, Dn
The four bits Sgn[3:0] are used to randomize the signs of the quinary symbols (An, Bn, Cn, Dn) so that each
symbol stream has no dc bias. The bits are used to generate binary symbols (SnAn, SnBn, SnCn, SnDn) that,
when multiplied by the quinary symbols (TAn, TBn, TCn, TDn), result in (An, Bn, Cn, Dn).

Normal 101001 –2, 0,+2,+1 –1,+1,+2,+1 –1, 0,+2, 0 –2,+1,+2, 0
Normal 101010  0,–2,+2,+1 +1,–1,+2,+1 +1,–2,+2, 0  0,–1,+2, 0
Normal 101011 –2,–2,+2,+1 –1,–1,+2,+1 –1,–2,+2, 0 –2,–1,+2, 0
Normal 101100  0, 0,+2,–1 +1,+1,+2,–1 +1, 0,+2,–2  0,+1,+2,–2
Normal 101101 –2, 0,+2,–1 –1,+1,+2,–1 –1, 0,+2,–2 –2,+1,+2,–2
Normal 101110  0,–2,+2,–1 +1,–1,+2,–1 +1,–2,+2,–2  0,–1,+2,–2
Normal 101111 –2,–2,+2,–1 –1,–1,+2,–1 –1,–2,+2,–2 –2,–1,+2,–2
Normal 110000  0,+2, 0,+1  0,+2,+1, 0 +1,+2, 0, 0 +1,+2,+1,+1
Normal 110001 –2,+2, 0,+1 –2,+2,+1, 0 –1,+2, 0, 0 –1,+2,+1,+1
Normal 110010  0,+2,–2,+1  0,+2,–1, 0 +1,+2,–2, 0 +1,+2,–1,+1
Normal 110011 –2,+2,–2,+1 –2,+2,–1, 0 –1,+2,–2, 0 –1,+2,–1,+1
Normal 110100  0,+2, 0,–1  0,+2,+1,–2 +1,+2, 0,–2 +1,+2,+1,–1
Normal 110101 –2,+2, 0,–1 –2,+2,+1,–2 –1,+2, 0,–2 –1,+2,+1,–1
Normal 110110  0,+2,–2,–1  0,+2,–1,–2 +1,+2,–2,–2 +1,+2,–1,–1
Normal 110111 –2,+2,–2,–1 –2,+2,–1,–2 –1,+2,–2,–2 –1,+2,–1,–1
Normal 111000 +1,+1,+1,+2  0, 0,+1,+2 +1, 0, 0,+2  0,+1, 0,+2
Normal 111001 –1,+1,+1,+2 –2, 0,+1,+2 –1, 0, 0,+2 –2,+1, 0,+2
Normal 111010 +1,–1,+1,+2  0,–2,+1,+2 +1,–2, 0,+2  0,–1, 0,+2
Normal 111011 –1,–1,+1,+2 –2,–2,+1,+2 –1,–2, 0,+2 –2,–1, 0,+2
Normal 111100 +1,+1,–1,+2  0, 0,–1,+2 +1, 0,–2,+2  0,+1,–2,+2
Normal 111101 –1,+1,–1,+2 –2, 0,–1,+2 –1, 0,–2,+2 –2,+1,–2,+2
Normal 111110 +1,–1,–1,+2  0,–2,–1,+2 +1,–2,–2,+2  0,–1,–2,+2
Normal 111111 –1,–1,–1,+2 –2,–2,–1,+2 –1,–2,–2,+2 –2,–1,–2,+2
xmt_err XXXXXX +2,+2, 0,+1 0,+2,+1,+2 +1,+2,+2, 0 +2,+1,+2, 0
CSExtend_Err XXXXXX +2,+2, –2,–1 –2,+2,–1,+2 –1,+2,+2,–2 +2,–1,+2,–2
CSExtend XXXXXX +2, 0,+2,+1 +2, 0,+1,+2 +1, 0,+2,+2 +2,+1, 0,+2
CSReset XXXXXX +2,–2,+2,–1 +2,–2,–1,+2 –1,–2,+2,+2 +2,–1,–2,+2

Table 40–2—Bit-to-symbol mapping (odd subsets)  (continued)
Sdn[6:8] = [001] Sdn[6:8] = [011] Sdn[6:8] = [101] Sdn[6:8] = [111]

Condition Sdn[5:0] TAn,TBn,TCn, TDn TAn,TBn,TCn,TDn TAn,TBn,TCn,TDn TAn,TBn,TCn,TDn 
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PCS Transmit ensures a distinction between code-groups transmitted during idle mode plus SSD and those
transmitted during other symbol periods. This distinction is accomplished by reversing the mapping of the
sign bits when the condition (tx_enablen-2 + tx_enablen-4) = 1. This sign reversal is controlled by the vari-
able Srevn defined as

Srevn = tx_enablen-2 + tx_enablen-4
The binary symbols SnAn, SnBn, SnCn, and SnDn are defined using Sgn[3:0] as

The quinary symbols (An, Bn, Cn, Dn) are generated as the product of (SnAn, SnBn, SnCn, SnDn) and (TAn,
TBn, TCn, TDn) respectively.

An = TAn × SnAn
Bn = TBn × SnBn
Cn = TCn × SnCn
Dn = TDn × SnDn
40.3.1.4 PCS Receive function
The PCS Receive function shall conform to the PCS Receive state diagram in Figure 40–10a including com-
pliance with the associated state variables as specified in 40.3.3.

The PCS Receive function accepts received code-groups provided by the PMA Receive function via the
parameter rx_symb_vector. To achieve correct operation, PCS Receive uses the knowledge of the encoding
rules that are employed in the idle mode. PCS Receive generates the sequence of vectors of four quinary
symbols (RAn, RBn, RCn, RDn) and indicates the reliable acquisition of the descrambler state by setting the
parameter scr_status to OK. The sequence (RAn, RBn, RCn, RDn) is processed to generate the signals
RXD<7:0>, RX_DV, and RX_ER, which are presented to the GMII. PCS Receive detects the transmission

 
 SnAn= -1 else

+1 if [(Sgn [0] ^ Srevn) = 0] 

 
 SnBn= -1 else

+1 if [(Sgn [1] ^ Srevn) = 0] 

 
 SnCn= -1 else

+1 if [(Sgn [2] ^ Srevn) = 0] 

 
 SnDn= -1 else

+1 if [(Sgn [3] ^ Srevn) = 0] 
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of a stream of data from the remote station and conveys this information to the PCS Carrier Sense and PCS
Transmit functions via the parameter 1000BTreceive.

40.3.1.4.1 Decoding of code-groups
When the PMA indicates that correct receiver operation has been achieved by setting the loc_rcvr_status
parameter to the value OK, the PCS Receive continuously checks that the received sequence satisfies the
encoding rule used in idle mode. When a violation is detected, PCS Receive assigns the value TRUE to the
parameter 1000BTreceive and, by examining the last two received vectors (RAn-1, RBn-1, RCn-1, RDn-1) and
(RAn, RBn, RCn, RDn), determines whether the violation is due to reception of SSD or to a receiver error. 

Upon detection of SSD, PCS Receive also assigns the value TRUE to the parameter 1000BTreceive that is
provided to the PCS Carrier Sense and Collision Presence functions. During the two symbol periods corre-
sponding to SSD, PCS Receive replaces SSD by preamble bits. Upon the detection of SSD, the signal
RX_DV is asserted and each received vector is decoded into a data octet RXD<7:0> until ESD is detected. 

Upon detection of a receiver error, the signal RX_ER is asserted and the parameter rxerror_status assumes
the value ERROR. De-assertion of RX_ER and transition to the IDLE state (rxerror_status=NO_ERROR)
takes place upon detection of four consecutive vectors satisfying the encoding rule used in idle mode.

During reception of a stream of data, PCS Receive checks that the symbols RAn, RBn, RCn, RDn follow the
encoding rule defined in 40.3.1.3.5 for ESD whenever they assume values ± 2. PCS Receive processes two
consecutive vectors at each time n to detect ESD. Upon detection of ESD, PCS Receive de-asserts the signal
RX_DV on the GMII. If the last symbol period of ESD indicates that a carrier extension is present, PCS
Receive will assert the RX_ER signal on the GMII. If no extension is indicated in the ESD2 quartet, PCS
Receive assigns the value FALSE to the parameter receiving. If an extension is present, the transition to the
IDLE state occurs after detection of a valid idle symbol period and the parameter receiving remains TRUE
until check_idle is TRUE. If a violation of the encoding rules is detected, PCS Receive asserts the signal
RX_ER for at least one symbol period.

A premature stream termination is caused by the detection of invalid symbols during the reception of a data
stream. Then, PCS Receive waits for the reception of four consecutive vectors satisfying the encoding rule
used in idle mode prior to de-asserting the error indication. Note that RX_DV remains asserted during the
symbol periods corresponding to the first three idle vectors, while RX_ER=TRUE is signaled on the GMII.
The signal RX_ER is also asserted in the LINK FAILED state, which ensures that RX_ER remains asserted
for at least one symbol period. 

40.3.1.4.2 Receiver descrambler polynomials
The PHY shall descramble the data stream and return the proper sequence of code-groups to the decoding
process for generation of RXD<7:0> to the GMII. For side-stream descrambling, the MASTER PHY shall
employ the receiver descrambler generator polynomial  and the SLAVE PHY shall
employ the receiver descrambler generator polynomial .

40.3.1.5 PCS Carrier Sense function
The PCS Carrier Sense function generates the GMII signal CRS, which the MAC uses for deferral in half
duplex mode. The PCS shall conform to the Carrier Sense state diagram as depicted in Figure 40–11 includ-
ing compliance with the associated state variables as specified in 40.3.3. The PCS Carrier Sense function is
not required in a 1000BASE-T PHY that does not support half duplex operation.

g'M x( ) 1 x20 x33+ +=
g'S x( ) 1 x13 x33+ +=



Appendix 2 – Source code for Matlab simulations 

 

The following is our full simulation code for the Matlab simulations. We include them for 
completing the description of our simulations.  

 

Appendix 2.a. – Matlab simulation for 4B5B/MLT-3 

 

%%%%% MAIN SIMULATION 
 
%SYMBOLS 
n = 40000; 
symbols = floor(rand(1,n)*16); 
%CONVERT to 4b5b 
bits = [1,1,1,1,0]; 
for i = 1:n 
    if symbols(i) == 0 
        bits = [bits, 1 1 1 1 0]; 
    elseif symbols(i) == 1 
        bits = [bits, 0 1 0 0 1]; 
    elseif symbols(i) == 2   
        bits = [bits, 1 0 1 0 0]; 
    elseif symbols(i) == 3   
        bits = [bits, 1 0 1 0 1]; 
    elseif symbols(i) == 4   
        bits = [bits, 0 1 0 1 0]; 
    elseif symbols(i) == 5   
        bits = [bits, 0 1 0 1 1]; 
    elseif symbols(i) == 6   
        bits = [bits, 0 1 1 1 0]; 
    elseif symbols(i) == 7   
        bits = [bits, 0 1 1 1 1]; 
    elseif symbols(i) == 8   
        bits = [bits, 1 0 0 1 0]; 
    elseif symbols(i) == 9   
        bits = [bits, 1 0 0 1 1]; 
    elseif symbols(i) == 10  
        bits = [bits, 1 0 1 1 0]; 
    elseif symbols(i) == 11  
        bits = [bits, 1 0 1 1 1]; 
    elseif symbols(i) == 12  
        bits = [bits, 1 1 0 1 0]; 
    elseif symbols(i) == 13  
        bits = [bits, 1 1 0 1 1]; 
    elseif symbols(i) == 14  
        bits = [bits, 1 1 1 0 0]; 
    elseif symbols(i) == 15  
        bits = [bits, 1 1 1 0 1]; 
    else i/0; 
    end 
end 
%CONVERT to MLT 
output = zeros(1,length(bits)); 
state = 0; 
prevState = -1; 
for i = 1:length(bits) 
    if bits(i)==1 
        if state==0 && prevState==-1 
            output(i) = 1; 



        elseif state==0 && prevState==1 
            output(i) = -1;     
        end 
        if state==1 || state==-1 
            output(i) = 0; 
        end 
        prevState = state;   
    elseif bits(i)==0 
        output(i) = state; 
    else  
        i/0; 
    end 
    state = output(i); 
end 
%ANALYSIS 
bitsCount00 = 0; 
bitsCount01 = 0; 
bitsCount11 = 0; 
bitsCount10 = 0; 
for i = 2:length(bits) 
    if bits(i-1)==0 && bits(i)==0 
        bitsCount00 = bitsCount00 + 1; 
    elseif bits(i-1)==0 && bits(i)==1 
        bitsCount01 = bitsCount01 + 1; 
    elseif bits(i-1)==1 && bits(i)==1 
        bitsCount11 = bitsCount11 + 1; 
    elseif bits(i-1)==1 && bits(i)==0 
        bitsCount10 = bitsCount10 + 1; 
    else  
        i/0; 
    end 
end 
%ENERGY 
energy = output.^2; 
%OUTPUT     
n 
%lengthCheck = length(bits)/(length(symbols) + 1) 
avgSymbols = mean([0, symbols]) 
avgBits = mean(bits) 
%avgDCOutput = mean(output) 
avgEnergy = mean(sqrt(energy)) 
bitsFraction00 = bitsCount00 / (length(bits)-1) 
bitsFraction01 = bitsCount01 / (length(bits)-1) 
bitsFraction11 = bitsCount11 / (length(bits)-1) 
bitsFraction10 = bitsCount10 / (length(bits)-1) 
 

 

 

Appendix 2.b. – Matlab simulation for 8B10B 

 

%%%% MAIN SIMULATION 
 
 
%SYMBOLS 
n = 20000; 
symbols = [1 0 1 0 0 0 1 0]; 
 
code5 = [ 1 0 0 1 1 1   0 1 1 0 0 0; ... 
  0 1 1 1 0 1   1 0 0 0 1 0; ... 
  1 0 1 1 0 1   0 1 0 0 1 0; ...  
  1 1 0 0 0 1   1 1 0 0 0 1; ... 
  1 1 0 1 0 1   0 0 1 0 1 0; ... 
                            ... 
  1 0 1 0 0 1   1 0 1 0 0 1;  ... 



  0 1 1 0 0 1   0 1 1 0 0 1; 
  1 1 1 0 0 0   0 0 0 1 1 1; 
  1 1 1 0 0 1   0 0 0 1 1 0; 
  1 0 0 1 0 1   1 0 0 1 0 1; 
   
  0 1 0 1 0 1   0 1 0 1 0 1; 
  1 1 0 1 0 0   1 1 0 1 0 0; 
  0 0 1 1 0 1   0 0 1 1 0 1; 
  1 0 1 1 0 0   1 0 1 1 0 0; 
  0 1 1 1 0 0   0 1 1 1 0 0; 
   
  0 1 0 1 1 1   1 0 1 0 0 0; 
  0 1 1 0 1 1   1 0 0 1 0 0; 
  1 0 0 0 1 1   1 0 0 0 1 1; 
  0 1 0 0 1 1   0 1 0 0 1 1; 
  1 1 0 0 1 0   1 1 0 0 1 0; 
   
  0 0 1 0 1 1   0 0 1 0 1 1; 
  1 0 1 0 1 0   1 0 1 0 1 0; 
  0 1 1 0 1 0   0 1 1 0 1 0; 
  1 1 1 0 1 0   0 0 0 1 0 1; 
  1 1 0 0 1 1   0 0 1 1 0 0; 
   
  1 0 0 1 1 0   1 0 0 1 1 0; 
  0 1 0 1 1 0   0 1 0 1 1 0; 
  1 1 0 1 1 0   0 0 1 0 0 1; 
  0 0 1 1 1 0   0 0 1 1 1 0; 
  1 0 1 1 1 0   0 1 0 0 0 1; 
   
  0 1 1 1 1 0   1 0 0 0 0 1; 
  1 0 1 0 1 1   0 1 0 1 0 0 
  ]; 
 
code3 = [ 1 0 1 1   0 1 0 0; 
        1 0 0 1     1 0 0 1; 
        0 1 0 1     0 1 0 1; 
        1 1 0 0     0 0 1 1; 
        1 1 0 1     0 0 1 0; 
        1 0 1 0     1 0 1 0; 
        0 1 1 0     0 1 1 0; 
        1 1 1 0     0 0 0 1; 
       ]; 
    
%CONVERT to 8b10b 
bits = []; 
i = 1; 
currentRD = 0; 
while i<length(symbols) 
    if (i+7 > length(symbols)) 
        foo = length(symbols) - i; 
        current8 = symbols(i:length(symbols)); 
        current8 = [current10, zeros(foo)]; 
    else 
        current8 = symbols(i:i+7); 
    end 
     
    x = code5(getBitValues5(rot90(rot90(current8(4: 8)))+1); 
    if currentRD == 1 
        code = x(7:12); 
    else 
        code = x(1:6); 
    disparity = ones(code) - zeros(code); 
    currentRD = compute_RD(currentRD, disparity); 
    bits = [bits, code]; 
     
    y = code3(getBitValues3(rot90(rot90(current8(1: 3)))+1); 
    if (currentRD == 1 
        code = y(5:8); 
    else 
        code = y(1:4); 
    disparity = ones(code) - zeros(code); 



    currentRD = compute_RD(currentRD, disparity); 
    bits = [bits, code]; 
    
    i+=8; 
end 
 

 

%%%% SUPPORT FUNCTIONS 

function [ number ] = getBitValues5( bits ) 
 
if bits == [0 0 0 0 0] 
        number = 0; 
elseif bits == [0 0 0 0 1] 
        number = 1; 
elseif bits == [ 0 0 0 1 0] 
        number = 2; 
elseif bits == [ 0 0 0 1 1] 
        number = 3; 
elseif bits == [ 0 0 1 0 0] 
        number = 4; 
elseif bits == [ 0 0 1 0 1] 
        number = 5; 
elseif bits == [ 0 0 1 1 0] 
        number = 6; 
elseif bits == [ 0 0 1 1 1] 
        number = 7; 
elseif bits == [ 0 1 0 0 0] 
        number = 8; 
elseif bits == [ 0 1 0 0 1] 
        number = 9; 
elseif bits == [ 0 1 0 1 0] 
        number = 10; 
elseif bits == [ 0 1 0 1 1] 
        number = 11; 
elseif bits == [ 0 1 1 0 0] 
        number = 12; 
elseif bits == [ 0 1 1 0 1] 
        number = 13; 
elseif bits == [ 0 1 1 1 0] 
        number = 14; 
elseif bits == [ 0 1 1 1 1] 
        number = 15; 
elseif bits == [ 1 0 0 0 0] 
        number = 16; 
elseif bits == [ 1 0 0 0 1] 
        number = 17; 
elseif bits == [ 1 0 0 1 0] 
        number = 18; 
elseif bits == [ 1 0 0 1 1] 
        number = 19; 
elseif bits == [ 1 0 1 0 0] 
        number = 20; 
elseif bits == [ 1 0 1 0 1] 
        number = 21; 
elseif bits == [ 1 0 1 1 0] 
        number = 22; 
elseif bits == [ 1 0 1 1 1] 
        number = 23; 
elseif bits == [ 1 1 0 0 0] 
        number = 24; 
elseif bits == [ 1 1 0 0 1] 
        number = 25; 
elseif bits == [ 1 1 0 1 0] 
        number = 26; 
elseif bits == [ 1 1 0 1 1] 
        number = 27; 
elseif bits == [ 1 1 1 0 0] 



        number = 28; 
elseif bits == [ 1 1 1 0 1] 
        number = 29; 
elseif bits == [ 1 1 1 1 0] 
        number = 30; 
elseif bits == [ 1 1 1 1 1] 
        number = 31; 
else    
        number = 1/0; 
end 
 

 

 

function [ RD ] = compute_RD( currentRD, disparity ) 
%UNTITLED1 Summary of this function goes here 
%  Detailed explanation goes here 
 
if currentRD==-1 && disparity == -2 
    RD = 0; 
elseif currentRD==-1 && disparity == 0 
    RD = -1; 
elseif currentRD == -1 && disparity == 2 
    RD = 1; 
elseif currentRD ==1 && disparity == -2 
    RD = -1; 
elseif currentRD == 1 && disparity == 0 
    RD = 1; 
elseif currentRD == 1 && disparity == 2 
    RD = 0; 
else 
    RD = 0; 
end 
 

 

 

function [ number ] = getBitValues3( bits ) 
 
if bits == [0 0 0 ] 
        number = 0; 
elseif bits == [ 0 0 1] 
        number = 1; 
elseif bits == [ 0 1 0] 
        number = 2; 
elseif bits == [ 0 1 1] 
        number = 3; 
elseif bits == [ 1 0 0] 
        number = 4; 
elseif bits == [ 1 0 1] 
        number = 5; 
elseif bits == [ 1 1 0] 
        number = 6; 
elseif bits == [ 1 1 1] 
        number = 7; 
else    
        number = 1/0; 
end 
 



 

Appendix 2.c. – Matlab simulation for 4D-PAM5 

 

%%%% MAIN SIMULATION 
 
 
TXD=[1,1,1,1,1,1,1,1, 0,0,0,0,0,0, 0, 0]; 
Scr = []; 
Syn=[]; 
Sxn=[]; 
Sgn=[]; 
Csn=[]; 
 
Sy=zeros(1,4); 
Sx=zeros(1,4); 
Sg=zeros(1,4); 
Cs=zeros(1,3); 
 
even = 1; 
i = 1; 
 
[Table1, Table2] = initializeLookupTables; 
bits = []; 
 
while(i<= length(TXD)) 
     
    %save state 
    Syn = Sy; 
    Sxn = Sx; 
    Sgn = Sg; 
    Csn = Cs; 
 
    Scr = getMasterScrambler(Scr); 
    Sy = [Scr(1), bitxor(Scr(4), Scr(9)), ... 
            bitxor(Scr(7), Scr(17)), ... 
            bitxor(bitxor(bitxor(Scr(10), Scr(15)),  Scr(20)), Scr(25))]; 
    Sx = [bitxor(Scr(5), Scr(7)), bitxor(bitxor(bit xor(Scr(8), Scr(10)), Scr(13)), Scr(15)),... 
            bitxor(bitxor(bitxor(Scr(11), Scr(13)),  Scr(21)), Scr(23)),... 
            bitxor(bitxor(bitxor(bitxor(bitxor(bitx or(bitxor(Scr(14), Scr(16)), Scr(19)), 
Scr(21)), Scr(24)), Scr(26)), Scr(29)), Scr(31))]; 
    Sg = [bitxor(Scr(2), Scr(6)), bitxor(bitxor(bit xor(Scr(5), Scr(9)), Scr(10)), Scr(14)),... 
            bitxor(bitxor(bitxor(Scr(8), Scr(12)), Scr(18)), Scr(22)),... 
            bitxor(bitxor(bitxor(bitxor(bitxor(bitx or(bitxor(Scr(11), Scr(15)), Scr(16)), 
Scr(20)), Scr(21)), Scr(25)), Scr(26)), Scr(30))]; 
 
    Sc = zeros(1, 8); 
    Sc(5:8) = Sx(1:4); 
    if(even) 
        Sc(2:4) = Sy(2:4); 
    else 
        Sc(2:4) = xor(Syn(2:4), [1,1,1]); 
    end 
     
    Sc(1) = Sy(1); 
 
    Sd = zeros(1,9); 
    Cs(1) = Csn(3); 
    Sd(9) = Cs(1); 
    Sd(1:8) = xor(Sc(1:8), TXD(i:i+7)); 
    display(TXD(i:i+7)); 
 
    Cs(1) = bitxor(Sd(7), Csn(1)); 
    Cs(2) = bitxor(Sd(8), Csn(2)); 
 
    Tx = lookupSymbol(Table1, Table2, Sd); 



    Ta = Tx(1); 
    Tb = Tx(2); 
    Tc = Tx(3); 
    Td = Tx(4); 
    
    if (bitxor(Sg(1), 0) == 0) SnA = 1; else SnA = -1; end 
    if (bitxor(Sg(2), 0) == 0) SnB = 1; else SnB = -1; end 
    if (bitxor(Sg(3), 0) == 0) SnC = 1; else SnC = -1; end 
    if (bitxor(Sg(4), 0) == 0) SnD = 1; else SnD = -1; end 
     
     
    bits = [bits, Ta*SnA, Tb*SnB, Tc*SnC, Td*SnD]; 
     
    display(Scr); 
    display(Sy); 
    display(Sx); 
    display(Sg); 
    display(Cs); display(Csn); display(Sc); 
    display(Sd); 
    even = ~even; 
    i= i+8; 
end 
 
bits 
 

%%%% SUPPORT FUNCTIONS 

function [Table1, Table2] = initializeLookupTables( ); 
 
Table1 = [ ... 
          0,0,0,0    0,0,1,1    0,1,1, 0    0,1, 0, 1; 
        -2, 0, 0, 0   -2, 0,1,1   -2,1,1, 0   -2,1,  0,1; 
         0,-2, 0, 0    0,-2,1,1    0,-1,1, 0    0,- 1, 0,1; 
        -2,-2, 0, 0   -2,-2,1,1   -2,-1,1, 0   -2,- 1, 0,1; 
         0, 0,-2, 0    0, 0,-1,1    0,1,-1, 0    0, 1,-2,1; 
        -2, 0,-2, 0   -2, 0,-1,1   -2,1,-1, 0   -2, 1,-2,1; 
         0,-2,-2, 0    0,-2,-1,1    0,-1,-1, 0    0 ,-1,-2,1; 
        -2,-2,-2, 0   -2,-2,-1,1   -2,-1,-1, 0   -2 ,-1,-2,1; 
         0, 0, 0,-2    0, 0,1,-1    0,1,1,-2    0,1 , 0,-1; 
        -2, 0, 0,-2   -2, 0,1,-1   -2,1,1,-2   -2,1 , 0,-1; 
         0,-2, 0,-2    0,-2,1,-1    0,-1,1,-2    0, -1, 0,-1; 
        -2,-2, 0,-2   -2,-2,1,-1   -2,-1,1,-2   -2, -1, 0,-1; 
         0, 0,-2,-2    0, 0,-1,-1    0,1,-1,-2    0 ,1,-2,-1; 
        -2, 0,-2,-2   -2, 0,-1,-1   -2,1,-1,-2   -2 ,1,-2,-1; 
           0,-2,-2,-2    0,-2,-1,-1    0,-1,-1,-2    0,-1,-2,-1; 
          -2,-2,-2,-2   -2,-2,-1,-1   -2,-1,-1,-2   -2,-1,-2,-1; 
          1,1,1,1   1,1, 0, 0   1, 0, 0,1   1, 0,1,  0; 
          -1,1,1,1   -1,1, 0, 0   -1, 0, 0,1   -1, 0,1, 0; 
          1,-1,1,1   1,-1, 0, 0   1,-2, 0,1   1,-2, 1, 0; 
          -1,-1,1,1   -1,-1, 0, 0   -1,-2, 0,1   -1 ,-2,1, 0; 
          1,1,-1,1   1,1,-2, 0   1, 0,-2,1   1, 0,- 1, 0; 
          -1,1,-1,1   -1,1,-2, 0   -1, 0,-2,1   -1,  0,-1, 0; 
          1,-1,-1,1   1,-1,-2, 0   1,-2,-2,1   1,-2 ,-1, 0; 
          -1,-1,-1,1   -1,-1,-2, 0   -1,-2,-2,1   - 1,-2,-1, 0; 
          1,1,1,-1   1,1, 0,-2   1, 0, 0,-1   1, 0, 1,-2; 
          -1,1,1,-1   -1,1, 0,-2   -1, 0, 0,-1   -1 , 0,1,-2; 
          1,-1,1,-1   1,-1, 0,-2   1,-2, 0,-1   1,- 2,1,-2; 
          -1,-1,1,-1   -1,-1, 0,-2   -1,-2, 0,-1   -1,-2,1,-2; 
          1,1,-1,-1   1,1,-2,-2   1, 0,-2,-1   1, 0 ,-1,-2; 
          -1,1,-1,-1   -1,1,-2,-2   -1, 0,-2,-1   - 1, 0,-1,-2; 
          1,-1,-1,-1   1,-1,-2,-2   1,-2,-2,-1   1, -2,-1,-2; 
          -1,-1,-1,-1   -1,-1,-2,-2   -1,-2,-2,-1   -1,-2,-1,-2; 
          2, 0, 0, 0   2, 0,1,1   2,1,1, 0   2,1, 0 ,1; 
          2,-2, 0, 0   2,-2,1,1   2,-1,1, 0   2,-1,  0,1; 
          2, 0,-2, 0   2, 0,-1,1   2,1,-1, 0   2,1, -2,1; 
          2,-2,-2, 0   2,-2,-1,1   2,-1,-1, 0   2,- 1,-2,1; 
          2, 0, 0,-2   2, 0,1,-1   2,1,1,-2   2,1, 0,-1; 
          2,-2, 0,-2   2,-2,1,-1   2,-1,1,-2   2,-1 , 0,-1; 
          2, 0,-2,-2   2, 0,-1,-1   2,1,-1,-2   2,1 ,-2,-1; 



          2,-2,-2,-2   2,-2,-1,-1   2,-1,-1,-2   2, -1,-2,-1; 
           0, 0,2, 0   1,1,2, 0   1, 0,2,1    0,1,2 ,1; 
          -2, 0,2, 0   -1,1,2, 0   -1, 0,2,1   -2,1 ,2,1; 
           0,-2,2, 0   1,-1,2, 0   1,-2,2,1    0,-1 ,2,1; 
          -2,-2,2, 0   -1,-1,2, 0   -1,-2,2,1   -2, -1,2,1; 
           0, 0,2,-2   1,1,2,-2   1, 0,2,-1    0,1, 2,-1; 
          -2, 0,2,-2   -1,1,2,-2   -1, 0,2,-1   -2, 1,2,-1; 
           0,-2,2,-2   1,-1,2,-2   1,-2,2,-1    0,- 1,2,-1; 
          -2,-2,2,-2   -1,-1,2,-2   -1,-2,2,-1   -2 ,-1,2,-1; 
           0,2, 0, 0    0,2,1,1   1,2, 0,1   1,2,1,  0; 
          -2,2, 0, 0   -2,2,1,1   -1,2, 0,1   -1,2, 1, 0; 
           0,2,-2, 0    0,2,-1,1   1,2,-2,1   1,2,- 1, 0; 
          -2,2,-2, 0   -2,2,-1,1   -1,2,-2,1   -1,2 ,-1, 0; 
           0,2, 0,-2    0,2,1,-1   1,2, 0,-1   1,2, 1,-2; 
          -2,2, 0,-2   -2,2,1,-1   -1,2, 0,-1   -1, 2,1,-2; 
           0,2,-2,-2    0,2,-1,-1   1,2,-2,-1   1,2 ,-1,-2; 
          -2,2,-2,-2   -2,2,-1,-1   -1,2,-2,-1   -1 ,2,-1,-2; 
           0, 0, 0,2   1,1, 0,2    0,1,1,2   1, 0,1 ,2; 
          -2, 0, 0,2   -1,1, 0,2   -2,1,1,2   -1, 0 ,1,2; 
           0,-2, 0,2   1,-1, 0,2    0,-1,1,2   1,-2 ,1,2; 
          -2,-2, 0,2   -1,-1, 0,2   -2,-1,1,2   -1, -2,1,2; 
           0, 0,-2,2   1,1,-2,2    0,1,-1,2   1, 0, -1,2; 
          -2, 0,-2,2   -1,1,-2,2   -2,1,-1,2   -1, 0,-1,2; 
           0,-2,-2,2   1,-1,-2,2    0,-1,-1,2   1,- 2,-1,2; 
          -2,-2,-2,2   -1,-1,-2,2   -2,-1,-1,2   -1 ,-2,-1,2; 
          ]; 
       
Table2=[... 
              0, 0, 0,1    0, 0,1, 0    0,1,1,1    0,1, 0, 0; 
          -2, 0, 0,1   -2, 0,1, 0   -2,1,1,1   -2,1 , 0, 0; 
           0,-2, 0,1    0,-2,1, 0    0,-1,1,1    0, -1, 0, 0; 
          -2,-2, 0,1   -2,-2,1, 0   -2,-1,1,1   -2, -1, 0, 0; 
           0, 0,-2,1    0, 0,-1, 0    0,1,-1,1    0 ,1,-2, 0; 
          -2, 0,-2,1   -2, 0,-1, 0   -2,1,-1,1   -2 ,1,-2, 0; 
           0,-2,-2,1    0,-2,-1, 0    0,-1,-1,1    0,-1,-2, 0; 
          -2,-2,-2,1   -2,-2,-1, 0   -2,-1,-1,1   - 2,-1,-2, 0; 
           0, 0, 0,-1    0, 0,1,-2    0,1,1,-1    0 ,1, 0,-2; 
          -2, 0, 0,-1   -2, 0,1,-2   -2,1,1,-1   -2 ,1, 0,-2; 
           0,-2, 0,-1    0,-2,1,-2    0,-1,1,-1    0,-1, 0,-2; 
          -2,-2, 0,-1   -2,-2,1,-2   -2,-1,1,-1   - 2,-1, 0,-2; 
           0, 0,-2,-1    0, 0,-1,-2    0,1,-1,-1    0,1,-2,-2; 
          -2, 0,-2,-1   -2, 0,-1,-2   -2,1,-1,-1   -2,1,-2,-2; 
           0,-2,-2,-1    0,-2,-1,-2    0,-1,-1,-1    0,-1,-2,-2; 
          -2,-2,-2,-1   -2,-2,-1,-2   -2,-1,-1,-1   -2,-1,-2,-2; 
          1,1,1, 0   1,1, 0,1   1, 0, 0, 0   1, 0,1 ,1; 
          -1,1,1, 0   -1,1, 0,1   -1, 0, 0, 0   -1,  0,1,1; 
          1,-1,1, 0   1,-1, 0,1   1,-2, 0, 0   1,-2 ,1,1; 
          -1,-1,1, 0   -1,-1, 0,1   -1,-2, 0, 0   - 1,-2,1,1; 
          1,1,-1, 0   1,1,-2,1   1, 0,-2, 0   1, 0, -1,1; 
          -1,1,-1, 0   -1,1,-2,1   -1, 0,-2, 0   -1 , 0,-1,1; 
          1,-1,-1, 0   1,-1,-2,1   1,-2,-2, 0   1,- 2,-1,1; 
          -1,-1,-1, 0   -1,-1,-2,1   -1,-2,-2, 0   -1,-2,-1,1; 
          1,1,1,-2   1,1, 0,-1   1, 0, 0,-2   1, 0, 1,-1; 
          -1,1,1,-2   -1,1, 0,-1   -1, 0, 0,-2   -1 , 0,1,-1; 
          1,-1,1,-2   1,-1, 0,-1   1,-2, 0,-2   1,- 2,1,-1; 
          -1,-1,1,-2   -1,-1, 0,-1   -1,-2, 0,-2   -1,-2,1,-1; 
          1,1,-1,-2   1,1,-2,-1   1, 0,-2,-2   1, 0 ,-1,-1; 
          -1,1,-1,-2   -1,1,-2,-1   -1, 0,-2,-2   - 1, 0,-1,-1; 
          1,-1,-1,-2   1,-1,-2,-1   1,-2,-2,-2   1, -2,-1,-1; 
          -1,-1,-1,-2   -1,-1,-2,-1   -1,-2,-2,-2   -1,-2,-1,-1; 
          2, 0, 0,1   2, 0,1, 0   2,1,1,1   2,1, 0,  0; 
          2,-2, 0,1   2,-2,1, 0   2,-1,1,1   2,-1, 0, 0; 
          2, 0,-2,1   2, 0,-1, 0   2,1,-1,1   2,1,- 2, 0; 
          2,-2,-2,1   2,-2,-1, 0   2,-1,-1,1   2,-1 ,-2, 0; 
          2, 0, 0,-1   2, 0,1,-2   2,1,1,-1   2,1, 0,-2; 
          2,-2, 0,-1   2,-2,1,-2   2,-1,1,-1   2,-1 , 0,-2; 
          2, 0,-2,-1   2, 0,-1,-2   2,1,-1,-1   2,1 ,-2,-2; 
          2,-2,-2,-1   2,-2,-1,-2   2,-1,-1,-1   2, -1,-2,-2; 
           0, 0,2,1   1,1,2,1   1, 0,2, 0    0,1,2,  0; 
          -2, 0,2,1   -1,1,2,1   -1, 0,2, 0   -2,1, 2, 0; 
           0,-2,2,1   1,-1,2,1   1,-2,2, 0    0,-1, 2, 0; 



          -2,-2,2,1   -1,-1,2,1   -1,-2,2, 0   -2,- 1,2, 0; 
           0, 0,2,-1   1,1,2,-1   1, 0,2,-2    0,1, 2,-2; 
          -2, 0,2,-1   -1,1,2,-1   -1, 0,2,-2   -2, 1,2,-2; 
           0,-2,2,-1   1,-1,2,-1   1,-2,2,-2    0,- 1,2,-2; 
          -2,-2,2,-1   -1,-1,2,-1   -1,-2,2,-2   -2 ,-1,2,-2; 
           0,2, 0,1    0,2,1, 0   1,2, 0, 0   1,2,1 ,1; 
          -2,2, 0,1   -2,2,1, 0   -1,2, 0, 0   -1,2 ,1,1; 
           0,2,-2,1    0,2,-1, 0   1,2,-2, 0   1,2, -1,1; 
          -2,2,-2,1   -2,2,-1, 0   -1,2,-2, 0   -1, 2,-1,1; 
           0,2, 0,-1    0,2,1,-2   1,2, 0,-2   1,2, 1,-1; 
          -2,2, 0,-1   -2,2,1,-2   -1,2, 0,-2   -1, 2,1,-1; 
           0,2,-2,-1    0,2,-1,-2   1,2,-2,-2   1,2 ,-1,-1; 
          -2,2,-2,-1   -2,2,-1,-2   -1,2,-2,-2   -1 ,2,-1,-1; 
          1,1,1,2    0, 0,1,2   1, 0, 0,2    0,1, 0 ,2; 
          -1,1,1,2   -2, 0,1,2   -1, 0, 0,2   -2,1,  0,2; 
          1,-1,1,2    0,-2,1,2   1,-2, 0,2    0,-1,  0,2; 
          -1,-1,1,2   -2,-2,1,2   -1,-2, 0,2   -2,- 1, 0,2; 
          1,1,-1,2    0, 0,-1,2   1, 0,-2,2    0,1, -2,2; 
          -1,1,-1,2   -2, 0,-1,2   -1, 0,-2,2   -2, 1,-2,2; 
          1,-1,-1,2    0,-2,-1,2   1,-2,-2,2    0,- 1,-2,2; 
          -1,-1,-1,2   -2,-2,-1,2   -1,-2,-2,2   -2 ,-1,-2,2; 
    ]; 
 
 
 
 
function scrambler = getMasterScrambler( currentScr ambler ) 
 
 
if(length(currentScrambler) ==0) 
    scrambler = round(random('uniform', zeros(1,33) ,ones(1,33))); 
else 
    scrambler = [xor(currentScrambler(13), currentS crambler(33)), currentScrambler(1:32)]; 
end 
 

 
function scrambler = getSlaveScrambler( currentScra mbler ) 
 
 
if(length(currentScrambler) ==0) 
    scrambler = round(random('uniform', zeros(1,33) ,ones(1,33))); 
else 
    scrambler = [xor(currentScrambler(13), currentS crambler(33)), currentScrambler(1:32)]; 
end 
 

function T = lookupSymbol( Table1, Table2, Sd ) 
 
row = getBitValues6(rot90(rot90(Sd(1:6))))+1; 
 
if(Sd(7:9) ==  [0,0,0]) 
    T = Table1(row, 1:4); 
elseif(Sd(7:9) == [0,1,0]) 
    T = Table1(row, 5:8); 
elseif(Sd(7:9) == [1,0,0]) 
    T = Table1(row, 9:12); 
elseif(Sd(7:9) == [1,1,0]) 
    T = Table1(row, 13:16); 
elseif(Sd(7:9) ==  [0,0,1]) 
    T = Table2(row, 1:4); 
elseif(Sd(7:9) == [0,1,1]) 
    T = Table2(row, 5:8); 
elseif(Sd(7:9) == [1,0,1]) 
    T = Table2(row, 9:12); 
elseif(Sd(7:9) == [1,1,1]) 
    T = Table2(row, 13:16); 
else 
    T = 1/0; 
end 



function [ number ] = getBitValues6( bits ) 
 
if bits == [0 0 0 0 0 0] 
        number = 0; 
elseif bits == [0 0 0 0 0 1] 
        number = 1; 
elseif bits == [0 0 0 0 1 0] 
        number = 2; 
elseif bits == [0 0 0 0 1 1] 
        number = 3; 
elseif bits == [0 0 0 1 0 0] 
        number = 4; 
elseif bits == [0 0 0 1 0 1] 
        number = 5; 
elseif bits == [0 0 0 1 1 0] 
        number = 6; 
elseif bits == [0 0 0 1 1 1] 
        number = 7; 
elseif bits == [0 0 1 0 0 0] 
        number = 8; 
elseif bits == [0 0 1 0 0 1] 
        number = 9; 
elseif bits == [0 0 1 0 1 0] 
        number = 10; 
elseif bits == [0 0 1 0 1 1] 
        number = 11; 
elseif bits == [0 0 1 1 0 0] 
        number = 12; 
elseif bits == [0 0 1 1 0 1] 
        number = 13; 
elseif bits == [0 0 1 1 1 0] 
        number = 14; 
elseif bits == [0 0 1 1 1 1] 
        number = 15; 
elseif bits == [0 1 0 0 0 0] 
        number = 16; 
elseif bits == [0 1 0 0 0 1] 
        number = 17; 
elseif bits == [0 1 0 0 1 0] 
        number = 18; 
elseif bits == [0 1 0 0 1 1] 
        number = 19; 
elseif bits == [0 1 0 1 0 0] 
        number = 20; 
elseif bits == [0 1 0 1 0 1] 
        number = 21; 
elseif bits == [0 1 0 1 1 0] 
        number = 22; 
elseif bits == [0 1 0 1 1 1] 
        number = 23; 
elseif bits == [0 1 1 0 0 0] 
        number = 24; 
elseif bits == [0 1 1 0 0 1] 
        number = 25; 
elseif bits == [0 1 1 0 1 0] 
        number = 26; 
elseif bits == [0 1 1 0 1 1] 
        number = 27; 
elseif bits == [0 1 1 1 0 0] 
        number = 28; 
elseif bits == [0 1 1 1 0 1] 
        number = 29; 
elseif bits == [0 1 1 1 1 0] 
        number = 30; 
elseif bits == [0 1 1 1 1 1] 
        number = 31; 
elseif bits == [1 0 0 0 0 0] 
        number = 32; 
elseif bits == [1 0 0 0 0 1] 
        number = 33; 
elseif bits == [1 0 0 0 1 0] 



        number = 34; 
elseif bits == [1 0 0 0 1 1] 
        number = 35; 
elseif bits == [1 0 0 1 0 0] 
        number = 36; 
elseif bits == [1 0 0 1 0 1] 
        number = 37; 
elseif bits == [1 0 0 1 1 0] 
        number = 38; 
elseif bits == [1 0 0 1 1 1] 
        number = 39; 
elseif bits == [1 0 1 0 0 0] 
        number = 40; 
elseif bits == [1 0 1 0 0 1] 
        number = 41; 
elseif bits == [1 0 1 0 1 0] 
        number = 42; 
elseif bits == [1 0 1 0 1 1] 
        number = 43; 
elseif bits == [1 0 1 1 0 0] 
        number = 44; 
elseif bits == [1 0 1 1 0 1] 
        number = 45; 
elseif bits == [1 0 1 1 1 0] 
        number = 46; 
elseif bits == [1 0 1 1 1 1] 
        number = 47; 
elseif bits == [1 1 0 0 0 0] 
        number = 48; 
elseif bits == [1 1 0 0 0 1] 
        number = 49; 
elseif bits == [1 1 0 0 1 0] 
        number = 50; 
elseif bits == [1 1 0 0 1 1] 
        number = 51; 
elseif bits == [1 1 0 1 0 0] 
        number = 52; 
elseif bits == [1 1 0 1 0 1] 
        number = 53; 
elseif bits == [1 1 0 1 1 0] 
        number = 54; 
elseif bits == [1 1 0 1 1 1] 
        number = 55; 
elseif bits == [1 1 1 0 0 0] 
        number = 56; 
elseif bits == [1 1 1 0 0 1] 
        number = 57; 
elseif bits == [1 1 1 0 1 0] 
        number = 58; 
elseif bits == [1 1 1 0 1 1] 
        number = 59; 
elseif bits == [1 1 1 1 0 0] 
        number = 60; 
elseif bits == [1 1 1 1 0 1] 
        number = 61; 
elseif bits == [1 1 1 1 1 0] 
        number = 62; 
elseif bits == [1 1 1 1 1 1] 
        number = 63; 
else   
        number = 1/0; 
end 
 

 


