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Abstract

The energy efficiency of network elements is beegmmnore prominent, with
growing concern for Internet power consumption hedt dissipation in datacenters
and communications closets. Previous work has kbakenergy efficient wireless
topologies, network nodes, routers, and protodolsonsidering a fresh redesign of
the Internet datacenter for energy efficiency, wheve that energy efficient
encodings are worthy of study. In this work, weerkamine the choice of Ethernet
encoding, develop an associated energy model, aeatwirrent encodings, propose
new encodings, and identify the desirable featafégture encodings. We found that
simpler encodings are more energy efficient, witlver savings of around 20% for
the best encoding. Our work represents a firstiste@-examining the established
assumptions and practices of the PHY level of #tevark stack with respect to

energy.
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1. Introduction

The energy efficiency of communication networksaeeiving increasing attention.
Global warming, energy costs, and heat dissipatiaatacenters and communication
closets makes power management an essential patwdrk research. Studies in
2001 found that 2% of U.S. electricity consumptiam be attributed to powering our
information infrastructure. This amounts to 74TVehid $6 billion spent in 2001 [1,
2]. In contrast to the continuously increasing ggetemand of the Internet, U.S.
national electricity generation capacity has remdiconstant since 2005 [3].
Improving Internet energy efficiency will not onlgduce the operating costs of
Internet equipment, it will also bring tangible uetions to Internet’s carbon

footprint. There is considerable work on Internatrgy efficiency. The network stack
has already been thoroughly examined [4, 5, 6]epixfor link layer encodings. The
dominant Internet link layer technology is Ethernistencodings were traditionally
considered difficult to change, and consequerttigre is no systematic understanding
of the problem space for energy efficiency in #riga. Recent interest in “Greenfield”
datacenter design opens up the question of howdigu link layer encodings for

energy efficiency.

We suspected that there would be opportunitieave snergy, since the widely
implemented encodings were developed before emmengygerns became important. It
is now critical to quantify the possible energyisgs through energy conscious

encodings, compared with savings attributed toradgehniques. As a first step, any



new encodings we propose must be compatible wittieg technology, in that we
should require no changes to higher layers of dteark stack. We focus on three
encodings: 4B5B and MLT-3 for 100Mbps over UTP [tie¢ cables, 8B10B for
1Gbps over optical fiber, and 4D-PAMS for 1GbpsravdP. Section 2 gives a brief
overview of these encodings, which are the moselyideployed. Internet
datacenters and high end networks are predomina@ihps, and most residential
networks remain 100Mbps. We do not consider 10Giggause while it may present
an even greater opportunity for energy savings,stgnificantly less widely deployed
in 2009 due to cost reasons. Nevertheless, weshdlv that the methodology and
insights gained from a study at 100Mbps and 1Glegsine even more relevant for

higher speed links.

To the best of our knowledge, our work is the fitstailed study to re-consider the
choice of Ethernet encoding with respect to eneffigiency. Our contribution is
three-fold. First, we offer a new view of how tans@er the impact of energy
consumption on communications encodings. Seconeéxamine the energy
consumption of Ethernet encodings for 100Mbps d@lgdk technologies, and
suggest an improved encoding for 100Mbps. Thirdptfer a power model of

Ethernet encodings to help guide further work mdhea.

The report is structured as follows. Section 2 kjyiceviews existing Ethernet
encodings and the large body of prior work in Inegrpower management and energy
efficiency. Section 3 explains our view of the ethd communication problem and
outlines our power model for Ethernet encodingstiSe 4 describes our proposed
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encoding. Section 5 evaluates various encodingitirdlatiab and Verilog
simulation, at the same time verifying our powerdelo Section 6 distills key insights
from our work, and makes recommendations for futuwek in energy efficient
Ethernet encodings and Internet energy efficiengyeneral. Our key result is that
simpler encodings are more energy efficient, wawisgs of around 20% for the

encoding.

2. Background and Related Work

2.1. Existing Ethernet Encodings

We look at 4B5B and MLT-3 for 100Mbps over UTP @&I8B10B for 1Gbps over
optical fiber, and 4D-PAMS for 1Gbps over UTP. Rddiscriptions of the Ethernet
encodings are found in the IEEE and ANSI standpfd8]. We will give a brief
overview below, and relevant excerpts from the IEEEhdards [7] are found in

Appendix 1.

4B5B and MLT-3 encodings are used in 100BASE-TX1f00Mbps over UTP. Four-
bit blocks of the input bit stream are mapped te-bit output blocks to facilitate
synchronization and other functions. The outgoigate is 125Mbps, above the
natural frequencies of the copper UTP cable. ThdNlencoding allows 125Mbps
to be delivered at 31.25 MHz. MLT-3 output signadse three analog levels, with a

peak-to-peak voltage of 2V. It delivers 125Mbp85B125 MHz because it cycles



through +1, 0, and -1 logic levels, with a “1” mtthe input causing a logic level
transition. There are no direct transitions betwent+1 and -1 logic levels, allowing

a low frequency signal to be used.

8B10B encoding is used in 1000BASE-LX/SX for 1Glopsr single/multi-mode
optical fiber. Eight-bit blocks of the input biteam are mapped to ten-bit blocks to
facilitate clock synchronization. A running pardigeck ensures the output is DC
balanced. The output bit stream gets sent ovecagtber using either on-off-keying

or phase modulation.

The 4D-PAMS5 (4-dimensions, 5 levels pulse amplitod®lulation) encoding

delivers 1Gbps over UTP. Eight-bit blocks of theaming bit stream are converted

to four PAMS5 signals, with a peak-to-peak volta§@éd and sent over four twisted
pairs of the UTP cable. A complex scrambling schemsures output DC balance and
facilitates full duplex on all four twisted paingith each pair being 250Mbps full

duplex.

The original rationale for selection of these eniegs was data rate and convenience
over efficiency. The problem facing the designdrdBbB and MLT-3 encodings was
how to enable 100 Mbps over an analog UTP chaha¢hias a bandwidth of 31.25
MHz. The pre-existing UTP encoding for 10 Mbps, kh@nchester Encoding, would
require 200 MHz to deliver 100 Mbps. 4B5B/MLT-3alled the required data rate to
be achieved within the bandwidth constraints. Ti@ding uses only one of four
twisted-pair wires in the UTP cable for simplex coanication, a significant strength
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since signaling on all four twisted-pair wires netUTP cable would readily permit

duplex communications at 200Mbps.

Similarly, the 4D-PAM5 encoding was devised to agki1Gbps over UTP channel
with limited analog bandwidth. The encoding has erats per symbol (PAM5 vs.
something resembling PAM3 for MLT-3), which leadsathigher bit rate when the
signaling rate is a fixed number of symbols peosdc It also facilitates a scrambling
scheme to permit duplex communications on a sitvwged-pair, thus reducing the

data rate needed from each of the four twistedvpizes.

The choice of 8B10B for single and multi-mode filaexs one of convenience. 8B10B
has been an established technology before its iatioges standard for 1Gbps over
fiber. It was not adopted as standard earlier kseduwas formerly covered by a
patent from IBM. When the patent expired, 8B10Blifgrated to a variety of uses,
including 1Gbps over fiber, SATA 1.5Gbps and 3Ghp&niBand, USB 3.0, and
others. A significant strength of the encodingasifided bit disparity in a given run

of symbols, which will reduce demand for the lowandwidths of the channel.

2.2. Network Energy Efficiency

One of the earliest works in Internet energy ey is [9]. Many studies have
followed. There is well established research ireless energy efficiency, motivated

by the limited power budgets for wireless devisegh as those in sensor nets and ad



hoc networks [10, 11]. Studies have also lookdtbat channel conditions and
wireless protocols affect power consumption [1&8]cdmparison, our work focuses

on higher speed wired topologies.

Prior work has looked at power management at nétwodes, such as network
switches [4, 13], networked storage and disk drjtd$, servers [15], and PCs [16].

Our work focuses on communication between netwodes.

Other power saving strategies focus on protocdie#t the transport and network
layers. There have been studies on the power cqrtguma of different flavors of
TCP [5], TCP in wireless [17], sleep option for T{IB], and using proxies to
facilitate extensive sleep time [19]. Our workagdised on PHY and link encodings

rather than new protocols.

Possible ways to save energy in the link layeridet reducing the link layer speed to
facilitate energy savings during times of low tiaf6]. Current work in the IEEE
802.3 Energy Efficient Ethernet (EEE) Task Foragdudes diverse ideas on how to
save energy in the link layer [20]. We compleméetwork there by offering energy
efficient encodings that can be deployed in corjonowith other link layer power

management techniques.

Past work in ADSL2+ power management hints atdea iof using line encodings to

save energy [21]. There, it was suggested thagreifit modulation schemes would



deliver different transmission energy. We are nedre if the idea was pursued

further.

Our work on energy efficient Ethernet encodingsEE[is an alternative approach to
saving energy for the Internet. Our focus on Etaeismdriven both by a vacuum in
our understanding in the area, and that the biggesty savings are to be had at the
edge of the network than at the highly concentratgd/ork core. We differ from
previous work in our focus to investigate and giftihe energy benefits of
alternative PHY encodings. Our work complementsteg research. One can
envision a power efficient Internet in the futunéth energy efficient protocols and
energy efficient nodes, energy efficient wirelesswireless nodes, and optimized

wired links with EEEE for encoding the data sent.

3. Energy Conscious Encodings

3.1. A Framework for Energy Conscious Communications

The canonical digital communication problem is:ayi\a certain bandwidth of the
communication channel, an energy budget at the agmuation endpoints, and a
target error rate, we try to maximize the data chtsommunication. The bandwidth
and energy budget are the resources availablestberate is a performance bound,
and the maximized data rate is the performance goaloding is a tool to maximize

performance using the resources available.
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Traditionally, bandwidth and channel conditions é&een the bottlenecks, affecting
the data rate and the error rate respectively. ,Tthesfocus of encoding schemes has
been to efficiently use the available bandwidtid eorrect errors introduced by
channel noise. Only in applications with limitedysy supply, such as mobile devices
or sensor networks, has the energy budget beenc&ico Now, with a rising focus

on power consumption, we need an alternate vietilgalights energy issues.

We formulate an alternative digital communicatioolgem. Given a certain
bandwidth, an error rate, and a data rate presthidnternet standards, we
minimize the energy budget required. In this vidve, bandwidth is the resource
available, the data rate and error rate are bowamikthe minimized energy

consumption is the goal.

A performance metric common to both views is thedvédth-energy product,
helpful for comparing different encodings, giver game data rate, error rate, and
“all else equal”. For an “efficient” encoding, tkialue of this product should be low.
We could also look at the data rate to bandwidirgyratio, i.e., (data rate) /
(bandwidth x energy), a re-cast of the “energyig€reoncept. This metric is not as
helpful since the data rate is often prescribed,different communications channels

may preclude certain data rates.

For comparing the energy efficiency of two encodirthe only metric we need is the
energy budget. The encodings need to have the lsantsvidth, data rate, error rate,
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and other performance criteria. Otherwise, we canompare two encodings using

energy efficiency alone.

3.2. An Energy Model for Ethernet Encodings

The goal of an energy model is to understand hdferdnt parts of the
communication system contribute to the energy coresl For Ethernet encodings,
we find it helpful to include only two sources afeggy consumption — the encoding
circuits, and the transmission energy put on themanication channel. The
encoding circuits include digital encoding circull8A converters, and pulse-shaping
circuits. The transmission energy of the commuiocathannel is either dissipated

into the channel, or received at the destination.

There are, of course, other energy consumers amenzinication system, including
send/receive buffers, memory, and possibly theaipgy system. These sources are
independent of the encodings used, and are leftfouir energy model. A more fine-
grained model should account for these energy enaesiand quantify their

contribution.

We propose that in wired Ethernet, the energy sipescoding circuits is much
larger than the transmission energy. This is aifstggmt departure from wireless
energy models, where the encoding circuit energyusinely assumed to be

negligible compared to the transmission energy, md22, 23, 24]. The difference is
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due to two reasons. First, the wireless channabisy and three-dimensional.
Therefore, large transmission energy is required faseful signal to noise ratio
(SNR). In contrast, wired Ethernet is less noisyl tne signal is concentrated along a
one-dimensional cable. Therefore, the transmissigargy need not be large. Second,
the data rates prescribed for 100Mbps and 1Gbslgexceeds the natural
frequencies for UTP cables, requiring non-triviatlaometimes very complex
encodings to deliver the prescribed data rate. Gexgncodings means circuits with
larger areas, and higher signaling speeds meaateg@rcuit energy consumption.
Therefore, we believe the encoding energy to lgetathan transmission energy in
wired Ethernet, and the ratio would become everemacute as data rates increase to

10Gbps and beyond.

Verifying this energy model requires getting a ditative measure of the encoding
energy and transmission energy. The transmissierggiis relatively easy to
estimate. For 100Mbps and 1Gbps over UTP, we damae the transmission
energy by the line voltage and the cable insettsn. For 1Gbps over optical fiber,
we can estimate the transmission energy by thealmiutput of laser diodes. This
estimate would exclude the power consumed in théIa€ circuits necessary for
operating the laser diode; the power for thesaitgshould also be excluded from
the encoding energy. Estimating the encoding ensrgyre difficult. The most
direct verification would require probing the enoagcircuits. We are not aware of
commercial chip-sets that allow such probing. Bpproach may also run into
difficulties in identifying and isolating the endad circuits in a highly optimized
chip-set layout. Another approach would be to desigd layout a communication
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chip-set from scratch, then simulate the power gomtion using a CAD suite. This
approach has the side benefit of generating agiragied power model for the chipset
in a NIC card, but is probably best left to expéntsircuit design. We use a third
approach, which gives only a first-order estimde. take the power consumption of
typical NICs, and subtract from it the transmisgianver. The remainder would
include the power consumption of encoding circaitd other circuits, such as
buffers, or DC bias circuits in optical fiber NIGs.the absence of a more fine-
grained method, this calculation gives a ball-pgstimate of the encoding circuit
power consumption. As will be evident later in tbport, such estimates are

sufficient to distinguish the relative energy atiacy of different encodings.

In addition, we can compare the relative encodir@uit energy for different
encodings by looking at the size of the differemtaing circuits. Larger circuits
generally mean greater energy consumption. Inqudati, we can build circuit
simulations of different encodings using a unifdeohnology, and compare the size
of the resulting circuits. Such simulations woutd give us absolute values for
energy consumption. They would, however, give uglaa on the relative energy

consumptions for the circuits used in differentangs.

4. An Alternative Encoding for MLT-3

We propose an alternative encoding to MLT-3 thatlbaer power consumption.
Like MLT-3, it takes as input the result of 4B5Bceding, and outputs the voltages to

be sent. It also delivers 125 Mbps at 31.25 MHz. éhcoding is a fully backwards
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compatible alternative to MLT-3, in that we requm@ changes to 4B5B and the Mac
layer above, nor the physical medium below. In i8adh, we show that our encoding

can save 18% of transmission energy, and 60% afdang circuit energy.

Our encoding is inspired by the observation thatenhe 4B5B output bit stream is
not DC-balanced, the output of 4B5B in conjunctigth MLT-3 is. If we assign
voltage levels based on sequences in the 4B5B psitigam, we can get a larger
fraction of symbols in a low energy state, at thst ©f slight DC-imbalance. If we
ensure our encoding conforms to the output lewaglsition constraints of MLT-3 and
signals at the same baud rate, then we can dél2eMbps at 31.25 MHz for lower

transmission energy.

The new encoding uses a state machine involvingaisetwo bits in the 4B5B output

stream. The state transition diagram is showngn EiAn incoming data bit causes a

state transition. For example, if the past two aits01, the machine is in State 01. An
incoming bit with value 0 will cause a transitian$tate 10. In State 10, the previous

two bits are the 1 bit carried over from Statedd the new 0 bit. Given a

predetermined initial state, the output is uniquddgodable.

15



Initial state

Output level

Figure 1. State transition diagram for our improved encoding.

The states are mapped to three logical outputdetted same as the three logical
levels in MLT-3. The mapping is shown in Fig. 1k&iMLT-3, our encoding has no
direct transitions between +1 and -1 output levEtss allows 125Mbps at
31.25MHz. If we signal at the same baud rate aedhus same peak-to-peak voltage,
our encoding would be fully compatible with 4B5Bdagxisting technology. We
would require both endpoints on the link use eitfieil-3 or our alternative, and

endpoints could potentially support both kind oftpo

As we will detail later, our alternative is sigeiintly simpler to implement compared

with MLT-3, leading to lower encoding circuit engrg

A potential limitation is that our encoding is @€ balanced. This was formerly a

significant issue. When encodings were first dgwetbfor the telephone network, the
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AC signal component would carry the voice, while C component would be used
to power the telephone sets and the line repe#&aysDC imbalance in the encoding
would be treated as another DC power componentwatl be unrecoverable at the
receiver. Also, the DC component would not passubh any transformers used for
impedance matching for the transmission line. Suwiterns may still persist for
DSL, but not for the vast majority of Ethernet knldlso, a DC balanced signal
would allow hardware implementations to use AC ¢edgommunication circuits,
which are easier to design than their DC countérpet balance may be restored
through scrambling, but applying the technique siggificantly add to the

complexity of the circuit.

Another possible limitation is that our encodingssentially amplitude modulation,
where data is encoded in the voltage levels, itrashto differential signaling in
MLT-3, where data is encoded in the presence aratesof transitions. Differential
signaling is preferred in noisy environments, bseadetecting a transition is easier
than comparing against a threshold voltage. Webelihis is not a critical issue,
since wired Ethernet is a relatively non-noisy medi Also, our encoding divides 2V
peak-to-peak into three levels, with the differebheéveen the voltage amplitude
thresholds being smaller than that for 1000BASE-WKh PAMS dividing 2V peak-

to-peak into five levels.
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5. Evaluation

We built simulations of the encodings in Matlab Afetilog to evaluate their
performance. The former allow us to analyze thissiizal distribution of output
voltage levels, and identify any obvious opportesito save on transmission energy.
The later give us an FPGA implementation of theodimg circuits, allowing us to
compare the encoding circuit size and encodingiitienergy. The simulations take

in a random bit stream supplied by the MAC layat antput a symbol stream sent to

the media D/A converter.

For our Matlab simulations, we simulate for 100Mioper UTP (100BASE-TX) the
Physical Coding Sublayer (PCS) and the Physicalilviedependent (PMD)
sublayer, containing the 4B5B and MLT-3 encodirkgs. 1Gbps over fiber
(1000BASE-LX/SX) and 1Gbps over UTP (1000BASE-T)r Matlab simulations
include the PCS only, with the 8B10B encoding fGbps over fiber, and the 4D-
PAM5 encoding for 1Gbps over UTP. The output vaaffom our simulation
correspond to the inputs to the Media Dependeatfate (MDI), which is

immediately converted to an analog signal and eenhe physical medium.

For our Verilog simulations, we also include they$tbal Medium Attachment
sublayer (PMA), which serializes the output bitdds from the PCS. The PMA also
performs some other functions that were not siredlatuch as generating control
signals and performing synchronization. We do moint the PMA towards our

encoding circuit size, since it is not a part af &mcoding per se.
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Fig. 2 shows the relationship between differentaydys included in our simulations.

MAC MAC
Mil Media Independent Interface MII
|
PCS Physical Coding Sublayer PCS
_—
PMA Physical Medium Attachment sublayer
| PMA
PMD Physical Medium Dependent sublayer
|
MDI Mediurm Dependent Interface MDI
100Mbps Medium 1Gbps Medium

Figure 2. Simulation layers.

For transmission energy, encodings with a greadetibn of symbols in lower
voltage levels would consume less transmissionggn&or encoding circuit energy,
encodings with smaller circuits, indicated by fewwggical units required, would

consume less circuit energy. Encodings with lowergy are more preferable.

5.1. Simulation Results — Transmission Energy

We used Matlab simulations to obtain the outputattaristics of the encodings and
analyze the output transmission energy. The fulllftesimulation code is in

Appendix 2. Table 1 shows the Matlab simulatiorultss For each encoding, we
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compute the fraction of output symbols at eachclegitage level. To simplify
analysis, we have lumped together logic levelfiefsame magnitude, e.g. for 4B5B
and MLT-3 encoding, the +1 and -1 logic levels tbge account for 50% of the

output symbols. The peak-to-peak analog volta@¥ifor all encodings on UTP.

TABLEL MATLAB SIMULATION RESULTS
. Fraction of output svmbols in each logical level
Encoding
[/ t1 12
4D-PAMS 022 044 0.34
SB10B 0.5 0.5 -
4B5B MLT-3 0.5 0.5 -
4B5B and
alternative to 0.539 041 -
MLT3

For 100Mbps, logic levels £1 correspond to anaéls +1V. For 1Gbps, logic
levels +1 are +0.5V in analog, and logic levelsat2 +1V in analog. For 8B10B on
optical fiber, the logic level is translated tdheit on-off-keying of the laser diode, or

a phase modulated optical signal.

For 4D-PAM5, we see from Table 1 that it has addrgction of symbols in logic
level 1. This means the 4D-PAM5 is somewhat optanljan that more symbols are
in logic level 1 than in logic level 2. Howevergtle is likely to be opportunities to
further optimize the code, since there are morebgysnin logic level 1 than in logic

level 0. Given the complexity and functional reganents of 4D-PAMS, it is not
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immediately obvious what the possible optimizatians Any efforts must consider
that we are optimizing the transmission energyc&ihis is small compared with
encoding circuit energy, "optimizations" that reésala more complex code is likely

to lead to larger circuits and an undesired in@é&agnergy consumption.

For 8B10B encoding, the output logic levels are pagpto on-off-keying or phase
modulation optical signals. The transmission enangyptical fiber is given by the
optical power used to drive the fiber, and notltggc levels sent. Hence 8B10B has
no need to be further optimized for transmissioroptical fiber. We will mention
that for phase modulation, the optical signal vgagis "on", with logical high and low
distinguished by a different optical phase. Thisansethat for the same peak optical
power, phase modulation spends two times the tresgon energy of on-off-keying.
However, the energy is not wasted, since phase latoolu will result in a 3dB gain
in the optical signal to noise ratio. From a cit@nergy perspective, phase
modulation circuitry is more complex than circuiis on-off-keying. Hence it is
preferential to send 8B10B using on-off-keying, autwice the transmitted optical

power to achieve the same signal to optical n@tie as phase modulation.

For 4B5B and MLT-3 encoding, we see that half §ralsols are not energized.
However, our improved alternative to MLT-3 allowgeo half of the symbols to be in
a non-energized state. It is inspired by DC-imbadain the 4B5B output. Our
improved encoding takes advantage of this facssiga over half of the symbols to
the non-energized state. However 9% of the outpubsls are assigned to logic level
1, while 32% of the symbols are assigned to logvel -1, leading to a slight DC-
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imbalance. On the other hand, based on simulagismlts, our improved encoding
spends 9% less time in logic levels +1 comparetd MLT-3, leading to an 18%

saving in transmission energy.

To repeat our transmission energy saving calculafizve use the results in Table 2.
This shows the statistical characteristics of tBBB output bit stream, when a
random bit stream is used as the input. The 4B3Bubus then fed into either MLT-3
or our improved encoding. As shown in the tableemive encode a random bit
stream into 4B5B, 61% of the output bits are “1Is@ 9% of the output two-bit
sequences are “00” and 32% of the output two-lgisaces are “11”. Thus, for our
encoding, the state machine would spend 9% ofitie in State “00” and 32% of the
time in State “11”. Fig. 1 shows that these twdestaespectively correspond to
analog voltage levels +1 and -1. Thus, our imprasmecbding spends 9% + 32% =
41% of the time in an energized state, compareld 5086 for MLT-3, leading to a

(41% — 50%) / 50% = 18% saving in transmission gyer

As we will show below, our improved encoding iscedsgnificantly easier to

implement, leading to a reduction in the circuit@ting energy also.
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TABIEIT STATISICAT ANATYSIS FOR 4B3B OUTPUT SEQUENCES

Output Sequence Fraction of all sequences

0 0.3873
1 0.6125
Total 1.0

00 0.0937
01 0.2938
10 0.2938
11 0.3186
Total 1.0

5.2. Simulation Complexity — Encoding Circuit Energy

We used Verilog simulations to quantify the cirdmplementation complexity of the
encodings. This would give us an indication of tblative encoding circuit energy
consumption. Larger circuits and more complex omdeld lead to greater encoding
circuit energy consumption. We built our Verilognsilations with the Xilinx FPGA
design suite. Our block designs follow the genblatk layout found in [25]. We
used ModelSim to verify the correctness of our satons. We ran the Xilinx
synthesis tool to synthesize the design for FPGplementation, and we looked at
the synthesis report to extract the circuit sizeemms registers and logical look-up
tables (LUTSs) used. Table 3 shows a summary otwmoulated encoding circuit size.

We can break down each encoding circuit into twaspaan asynchronous
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translation table for mapping input symbols to atigymbols, and a synchronous

state machine for cycling through voltages or enguoutput DC balance.

TABLE III VERILOG SIMULATION ENCODING CIRCUIT SIZE
Simulation Block Registers Used LUTs Used

4B5B translation table 0 4
MLT-3 state machine 4 6
Alt. to MLT-3 state machine 1 2
4B5B & MLT-3 total 0+4 =4 4+6 =10
4B5B & alt. to MLT-3 total 0+1=1 4+2=06
8B10B translation table 0 10
8B10B state machine 1 3
8B10B total 0+1=1 10+3=13
4D-PAMS translation table 0 46
4D-PAMS state machine 38 28
4D-PAMS total 0+38=38 46 +28=74

Compared with the state machine for MLT-3, theestachine for our improved
alternative encoding uses only a third of the tegssand LUTSs, due to the reduced
state space for our improved encoding. Fig. 3 shbe®ptimized state machines.
Our alternative to MLT-3 is the equivalent of thate machine in Fig. 1, with the
state transitions given bgput / output. The MLT-3 state machine has transitions

driven byinput and states marked wiitate / output. Using a good first-order
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approximation that circuit power is proportionalciccuit area, we find that our

encoding uses only a third of the encoding cirpoiver of MLT-3.

H—

Figure 3. State machines for MLT-3 (left) and our alternative (right).

Also, the 8B10B state machine is as simple asftihaiur improved alternative to
MLT-3, while the 4D-PAM5 state machine is an ordeEmagnitude more complex.
The 8B10B uses one memory variable of one bit &pkeack of the running disparity
in the output. In comparison, the state machinglPAMS5 has a 32 bit scrambler,

with an exponentially larger state space.

Consequently, the complexity of encoding state nmashis determined by the size of
the state space, given by the number of memorgblkas required and the bits for
each variable. The translation table sizes offettzar insight. For 8B10B, the
translation table has 256 rows of 10 bits each @etgpwith 16 rows of 5 bits for
4B5B. By counting bits, we would expect the 8B1@dhslation table to be 32 times

larger than that for 4B5B, instead of 2.5 timetaage. 8B10B breaks down its input-
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output translation into a 5B6B translation tabld ar8B4B translation table. There
are two translations for each input, with the stagehine keeping track of a running
disparity that determines which of the two tranela would be used. Thus the
8B10B translation tables would have 32 lines obitg, and 8 lines of 8 bits, for 5.5
times the number of bits. Automatic optimizationXiinx tools reduces the

translation table even further, and it is 2.5 timasdarge as that for 4B5B.

For 4D-PAMS5, the translation table has 256 row&dbits each, where each row is a
4-tuple of 3-bit PAM5 symbols. Counting bits givéranslation table 38.4 times
larger than that for 4B5B. Instead, the table isid@s as large, even with automatic
optimization. We believe this is the overhead of

having large tables, where additional circuitryeguired to facilitate lookup under
the same timing constraints. Thus, we believeg¢habdings should avoid large
translation tables whenever possible. One waydaoae the complexity of input-to-
output bit translations is to adopt the strategydusy 8B10B, dividing the input bits

into groups, and translating each group separately.

In short, our Verilog simulations show that to red@ncoding circuit complexity, we
need to keep the state space small and avoidtianggation tables — an

unsurprising result.

Generally speaking, reducing circuit size and caxipf have been traditional circuit
design goals. Reducing state space and translatibes size are natural ways to
achieve this goal, and have been routinely emplaydide circuit design field. We
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offer a new perspective here that the same techsigan reduce not just the cost of
producing circuits, but also the circuits’ opergtanergy costs. These traditional

circuit design goals remain relevant in the contdreen computing.

5.3. Verifying the Energy Model

We seek to verify our proposed energy model foeEtat encodings, i.e., that
encoding circuit energy is much larger than trassion energy. We calculate the
transmission power from line voltage and insert@ss, and compare it against the

total power of NIC cards to get a estimate of emugdircuit power.

We calculate the total transmission power in sé\stegps. We take the RMS
transmission voltage and DC resistance to findRNES current, assuming sinusoidal
waveforms. The power loss is given BysRoc. The insertion loss for the cable tells
us what fraction of the total transmission powdost. We divide the power loss by

this fraction to get the total transmission povifeg. 4 illustrates our calculations.

The peak voltage for 100Mbps and 1Gbps over UTI/isNe take from technical
specs for off-the-shelf CatSe UTP Ethernet calypsal values for DC resistance
and insertion loss. Substituting typical DC resistaof 9 Ohms at 100 meters and
insertion loss of 10dB at 31.25 MHz for 100Mbpsd éarger for 1Gbps, we find the

transmission power to be approximately 0.062 W.
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Voo = Peak AC voltage on the cable

V 'l
Vaas = VDC equivalent of VAC = peak for sinusoids

V2

V
. M
I = DC equivalent current = _RE
De

Rpe=DC resistance of the cable
P,,.. = Transmission power lost in the cable = /4, R~
Pognsmz = T0tal transmission power

™
P —P
i = Insertion loss in dB = —10log, | =24
. Pn'armuir
P,
Pmm.smzr = %
1-10 ©

Figure 4. Calculating Transmission Power

For encoding circuit power, we estimate by subimngdhe transmission power from
the total power for NICs. We obtain the power cangtion of NICs from the
technical specs for some off-the-shelf 1Gbps E#tefiCs [26, 27, 28]. NIC power

consumption ranges from 3.3W to 5W.

Average NIC power is typically lower than stateclp@ower rating. Even if we make
a conservative assumption that average power isdf(G8¢ak power, we find the
transmission power is 0.062W / (10% x 3.3W) = 1%%he total power
consumption, and encoding circuit power is the iamg 81%. This calculation
confirms our encoding energy model, that most efahergy is consumed in the

encoding circuits rather than in data transmission.
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Our energy model is indirectly verified by an indadent study [29]. Recall the
results from Section 5.B. indicate that 4D-PAM&lisost an order of magnitude
more complex than 4B5B and MLT-3. If circuit powerdirectly related to circuit
size, our observations suggest that 4D-PAM5 conslatreost an order of magnitude
more energy. In [29], using a completely differer@thod, the NIC power is shown to
indeed grow exponentially as link speed increasssa fLOOMbps to 1Gbps and
10Gbps. Hence, we believe in our assumption thadding circuit power is
correlated with NIC power. At the same time, weagetely aware that NIC power is
more than encoding power, since it also contaimsritutions from buffers, OS

interfaces, Wake-on-LAN, and other functions.

We should also mention that even though the availdliC specs offer the same data
rate, their power consumption is considerably d#ife. The NIC from 2001
consumed 5 W [27]. A 2004 model consumed 4.5 W.[2§jroduct from 2006
consumes only 3.3 W [26]. We believe that thesebmmnindicate either a growing
energy consciousness in the circuit design commumitimproving technology that
leads to decreased transistor features and redurceit area, thus lowering energy
consumption as a side effect. Circuits for the sameodings can consume
considerably less power. We are encouraged by tieeséis, because our energy
model suggests that there is room for energy sabogh in simpler encoding for

simpler circuits, and more energy efficient cirsuir a given encoding.
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For Ethernet over optical fiber, the calculations more straight-forward. The
transmission power is simply the optical output powf the laser diode, typically 20-
40mW, the same order of magnitude as the transoniggwer for Ethernet over
UTP. The power consumption for optical fiber NIGsear identical to counterpart
UTP NICs in the same product family, as suggesyel@®]. Hence we can extend the
above discussion to say that for optical fiber,eéheoding circuit energy is also much

larger than the transmission energy.

6. Future Work and Conclusion

6.1. Key Insights

We developed several key insights regarding eneffgyrent Ethernet encodings.

We can look at the canonical encoded communicatioblem from a perspective
that prioritizes energy. The goal of encoding islétiver the prescribed data rate with
the least energy, rather than to deliver the marirdata rate using a given energy
budget. We believe this energy conscious perspeiitielpful in designing future
encodings. For wired Ethernet, the encoding cirenérgy is much larger than the
transmission energy. This reverses the energy nfodelireless encodings, where

the encoding circuit energy is negligible, andtiia@smission energy dominates.
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In the near future, the encoding circuit enerdiksly to take an even larger share of
the total energy for encodings, with lower transiais voltage over UTP and more

complex encodings for 10Gbps and beyond.

Our proposed alternative to MLT-3 and our simulagishows that existing Ethernet
encodings may not be energy efficient. In particulge can reduce transmission
energy by devising encodings for which a largetfoacof encoded symbols have low

energy.

Also, given that encoding circuit energy is mualgéa than transmission energy, we
can get more energy savings by using simpler céuepler code means small
translation tables, and state machines with a smstihte space. Our recommendation
for simpler code is mirrored in suggestions forrggeonscious wireless applications,

where on-off-keying is also championed as the prefeencoding scheme [30].
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Summarizing our insights, we believe that the idgedrgy efficient Ethernet
encoding for 1Gbps and beyond should have theviotip characteristics:

* Meets the prescribed data rate, bandwidth, and exte constraints

* Has small state space — smaller circuits, redureditpower

» Has high bits per symbol — slower circuits, reduciecuit power density

* Uses low transmission voltage — reduced transnmgsoover

6.2. Future Work

We make several recommendations for future wodniergy efficient Ethernet

encodings, in energy conscious encoding in genandlin energy efficient Internet.

For energy efficient Ethernet encodings, a morerags method is required for
verifying or measuring encoding circuit energy. @pproximations, although
reasonable, is not sufficiently fine grained. Al evaluations here should be
extended to emerging encodings for 10Gbps Ethaméeven higher speeds.
Furthermore, we should extend the simulations iti&e 5.B to include the decoder;
for some encodings, the encoder and decoder mhighly asymmetric in

complexity.

Last but not least, any new encodings should igéalbackwards compatible,
although Greenfield datacenters give opportunfoeshe entire network stack to be

redesigned. For work on energy conscious commuaitatn general, we believe our
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alternative view on the encoded communication @obivould be helpful. Our
approach to understand the relative energy consongpbetween encoding circuit

power and transmission power should also be helpful

Energy efficient Ethernet encodings is one of maays to improve Internet energy
efficiency. We hope our work invites a re-examioatof the established assumptions

and practices of the network stack with respeetrergy.

6.3. Closing

The energy efficient Ethernet is a new study taicednternet energy consumption.
Power considerations make it worthwhile to recoasttie choice of link layer

encodings.

We evaluated existing encodings and proposed aenevgy efficient encoding. Our
study showed that simpler encoding is better, amwd&@ngs can be made more power

efficient by being energy conscious.

Our work is a first step in this area. There gkelyi to be encodings even better than
the alternative to MLT-3 we proposed. One colleaguuggested another alternative to
MLT-3 that has a slight advantage in transmissiwergy (22.5% saving vs. 18%
saving for us) at the cost of a disadvantage cudicomplexity (same complexity as

MLT-3 vs. considerable savings for us). The suggesatternative is DC balanced.
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We hope our work would catalyze a thorough reexatron of Ethernet encodings,
leading to potentially a flurry of proposals foreegy efficient alternatives. The

tradeoffs for all these encodings are worthy oftfer analysis and implementation.
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Appendix 1 — Excerpts from IEEE Ethernet Specificaions

The following are excerpts from IEEE 802.3 speaifians for Ethernet encodings,
the authoritative source for the subject. The spations are very lengthy, so we
quote only the sections most relevant to the emgsdihat we examined for 100Mbps
and 1Gbps.

Each section describes the Physical Coding Sub(&@8) for the encoding, which is
responsible for converting the bit stream fromM#&C layer and the Media

Independent Interface (MII) to a format requiredtiy Physical Media Attachment
sublayer (PMA).

The relationship between the sublayers is showigare 2.

Appendix 1.a. — Excerpts for 4B5B encoding
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24.2 Physical Coding Sublayer (PCS)
24.2.1 Service Interface (MIl)

The PCS Service Interface allows the I00BASE-X PCS to transfer information to and from the MAC (via
the Reconciliation sublayer) or other PCS client, such as a repeater. The PCS Service Interface is precisely
defined as the Media Independent Interface (MII) in Clause 22.

In this clause, the setting of MII variables to TRUE or FALSE is equivalent, respectively, to “asserting” or
“de-asserting” them as specified in Clause 22.

24.2.2 Functional requirements

The PCS comprises the Transmit, Receive, and Carrier Sense functions for I00BASE-T. In addition, the col-
lisionDetect signal required by the MAC (COL on the MII) is derived from the PMA code-bit stream. The
PCS shields the Reconciliation sublayer (and MAC) from the specific nature of the underlying channel. Spe-
cifically for receiving, the I00BASE-X PCS passes to the MII a sequence of data nibbles derived from
incoming code-groups, each comprised of five code-bits, received from the medium. Code-group alignment
and MAC packet delimiting is performed by embedding special non-data code-groups. The MII uses a nib-
ble-wide, synchronous data path, with packet delimiting being provided by separate TX EN and RX DV
signals. The PCS provides the functions necessary to map these two views of the exchanged data. The pro-
cess is reversed for transmit.

The following provides a detailed specification of the functions performed by the PCS, which comprise five
parallel processes (Transmit, Transmit Bits, Receive, Receive Bits, and Carrier Sense). Figure 24—4 includes
a functional block diagram of the PCS.

The Receive Bits process accepts continuous code-bits via the PMA UNITDATA.indicate primitive.
Receive monitors these bits and generates RXD <3:0>, RX DV and RX ER on the MII, and the internal
flag, receiving, used by the Carrier Sense and Transmit processes.

The Transmit process generates continuous code-groups based upon the TXD <3:0>, TX EN, and TX ER
signals on the MIIL. These code-groups are transmitted by Transmit Bits via the PMA UNITDATA.request
primitive. The Transmit process generates the MII signal COL based on whether a reception is occurring
simultaneously with transmission. Additionally, it generates the internal flag, transmitting, for use by the
Carrier Sense process.

The Carrier Sense process asserts the MII signal CRS when either transmitting or receiving is TRUE. Both
the Transmit and Receive processes monitor link status via the PMA LINK.indicate primitive, to account
for potential link failure conditions.

24.2.2.1 Code-groups

The PCS maps four-bit nibbles from the MII into five-bit code-groups, and vice versa, using a 4B/5B block
coding scheme. A code-group is a consecutive sequence of five code-bits interpreted and mapped by the
PCS. Implicit in the definition of a code-group is an establishment of code-group boundaries by an align-
ment function within the PCS Receive process. It is important to note that, with the sole exception of the
SSD, which is used to achieve alignment, code-groups are undetectable and have no meaning outside the
100BASE-X physical protocol data unit, called a “stream.”

The coding method used, derived from ISO/IEC 9314-1, provides

a)  Adequate codes (32) to provide for all Data code-groups (16) plus necessary control code-groups;

142 Copyright © 2005 IEEE. All rights reserved.



IEEE
CSMA/CD Std 802.3-2005

b)  Appropriate coding efficiency (4 data bits per 5 code-bits; 80%) to effect a 100 Mb/s Physical Layer
interface on a 125 Mb/s physical channel as provided by FDDI PMDs; and
c) Sufficient transition density to facilitate clock recovery (when not scrambled).

Table 24-1 specifies the interpretation assigned to each five bit code-group, including the mapping to the
nibble-wide (TXD or RXD) Data signals on the MII. The 32 code-groups are divided into four categories, as
shown.

For clarity in the remainder of this clause, code-group names are shown between /slashes/. Code-group
sequences are shown in succession, e.g., /1/2/....

The indicated code-group mapping is identical to ISO/IEC 9314-1: 1989, with four exceptions:

a)  The FDDI term symbol is avoided in order to prevent confusion with other I00BASE-T terminol-
ogy. In general, the term code-group is used in its place.

b) The/S/and /Q/ code-groups are not used by l00BASE-X and are interpreted as INVALID.

c¢) The/R/code-group is used in 100BASE-X as the second code-group of the End-of-Stream delimiter
rather than to indicate a Reset condition.

d)  The /H/ code-group is used to propagate receive errors rather than to indicate the Halt Line State.

24.2.2.1.1 Data code-groups

A Data code-group conveys one nibble of arbitrary data between the MII and the PCS. The sequence of Data
code-groups is arbitrary, where any Data code-group can be followed by any other Data code-group. Data
code-groups are coded and decoded but not interpreted by the PCS. Successful decoding of Data
code-groups depends on proper receipt of the Start-of-Stream delimiter sequence, as defined in Table 24—1.

24.2.2.1.2 Idle code-groups

The Idle code-group (/I/) is transferred between streams. It provides a continuous fill pattern to establish and
maintain clock synchronization. Idle code-groups are emitted from, and interpreted by, the PCS.

24.2.2.1.3 Control code-groups

The Control code-groups are used in pairs (/J/K/, /T/R/) to delimit MAC packets. Control code-groups are
emitted from, and interpreted by, the PCS.

24.2.2.1.4 Start-of-Stream delimiter (/J/K/)

A Start-of-Stream delimiter (SSD) is used to delineate the boundary of a data transmission sequence and to
authenticate carrier events. The SSD is unique in that it may be recognized independently of previously
established code-group boundaries. The Receive function within the PCS uses the SSD to establish
code-group boundaries. A SSD consists of the sequence /J/K/.

On transmission, the first 8 bits of the MAC preamble are replaced by the SSD, a replacement that is
reversed on reception.

24.2.2.1.5 End-of-Stream delimiter (/T/R/)
An End-of-Stream delimiter (ESD) terminates all normal data transmissions. Unlike the SSD, an ESD can-

not be recognized independent of previously established code-group boundaries. An ESD consists of the
sequence /T/R/.
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Table 24—1—4B/5B code-groups

PCS code-group MII (TXD/RXD)
[4:0] Name <3:0> Interpretation
43210 3210
D 11110 0 0 0 0 O Data 0
A 01001 1 00 0 1 Data |
1 10100 2 0 0 1 0 Data 2
10101 3 0o 0 1 1 Data 3
01010 4 01 0 O Data 4
01011 5 0 1 0 1 Data 5
01110 6 0 1 1 0 Data 6
01111 7 0o 1 1 1 Data 7
10010 8 1 0 0 O Data 8
10011 9 1 0 0 1 Data 9
10110 A 1 0 1 O Data A
10111 B 1 0 1 1 Data B
11010 C 1 1 0 O Data C
11011 D 1 1 0 1 Data D
11100 E 1 1 1 0 Data E
11101 F 1 1 1 1 Data F
11111 I undefined IDLE;
used as inter-stream fill code
C 11000 J 01 0 1 Start-of-Stream Delimiter, Part 1 of 2;
o always used in pairs with K
N 10001 K 01 0 1 Start-of-Stream Delimiter, Part 2 of 2;
T always used in pairs with J
Ié 01101 T undefined End-of-Stream Delimiter, Part 1 of 2;
L always used in pairs with R
00111 R undefined End-of-Stream Delimiter, Part 2 of 2;
always used in pairs with T
I 00100 H Undefined Transmit Error;
N used to force signaling errors
v 00000 \Y Undefined Invalid code
‘é 00001 \% Undefined Invalid code
1 00010 A Undefined Invalid code
D 00011 \ Undefined Invalid code
00101 \% Undefined Invalid code
00110 \% Undefined Invalid code
01000 \Y Undefined Invalid code
01100 \% Undefined Invalid code
10000 \% Undefined Invalid code
11001 \' Undefined Invalid code
144 Copyright © 2005 IEEE. All rights reserved.
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GMII
TXD<7:0> A A o0
TX_EN RX_DV
TX_ER coL CRS RX_ER
GTX_CLK RX_CLK
PCS
CARRIER
SENSE
A
A 4
RECEIVE
TRANSMIT < ®

<_

AUTO-NEGOTIATION SYNCHRONIZATION

A

tx_code-group<9:0> rx_code-group<9:0>

h 4
PMA TRANSMIT RECEIVE
tx_bit rx_bit
PMD

| 4

Transmit Receive

I Z O R

Figure 36—2—Functional block diagram

MDI

36.2 Physical Coding Sublayer (PCS)

36.2.1 PCS Interface (GMII)

The PCS Service Interface allows the 1000BASE-X PCS to transfer information to and from a PCS client.
PCS clients include the MAC (via the Reconciliation sublayer) and repeater. The PCS Interface is precisely

defined as the Gigabit Media Independent Interface (GMII) in Clause 35.

In this clause, the setting of GMII variables to TRUE or FALSE is equivalent, respectively, to “asserting” or
“de-asserting” them as specified in Clause 35.
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36.2.2 Functions within the PCS

The PCS comprises the PCS Transmit, Carrier Sense, Synchronization, PCS Receive, and Auto-Negotiation
processes for 1000BASE-X. The PCS shields the Reconciliation sublayer (and MAC) from the specific
nature of the underlying channel. When communicating with the GMII, the PCS uses an octet-wide, syn-
chronous data path, with packet delimiting being provided by separate transmit control signals (TX_EN and
TX ER) and receive control signals (RX DV and RX ER). When communicating with the PMA, the PCS
uses a ten-bit wide, synchronous data path, which conveys ten-bit code-groups. At the PMA Service Inter-
face, code-group alignment and MAC packet delimiting are made possible by embedding special non-data
code-groups in the transmitted code-group stream. The PCS provides the functions necessary to map packets
between the GMII format and the PMA Service Interface format.

The PCS Transmit process continuously generates code-groups based upon the TXD <7:0>, TX EN, and
TX ER signals on the GMII, sending them immediately to the PMA Service Interface via the
PMA_UNITDATA request primitive. The PCS Transmit process generates the GMII signal COL based on
whether a reception is occurring simultaneously with transmission. Additionally, it generates the internal
flag, transmitting, for use by the Carrier Sense process. The PCS Transmit process monitors the Auto-
Negotiation process xmit flag to determine whether to transmit data or reconfigure the link.

The Carrier Sense process controls the GMII signal CRS (see Figure 36-8).

The PCS Synchronization process continuously accepts code-groups via the PMA UNITDATA. indication
primitive and conveys received code-groups to the PCS Receive process via the SYNC_UNITDATA.indi-
cate primitive. The PCS Synchronization process sets the sync_status flag to indicate whether the PMA is
functioning dependably (as well as can be determined without exhaustive error-rate analysis).

The PCS Receive process continuously accepts code-groups via the SYNC UNITDATA .indicate primitive.
The PCS Receive process monitors these code-groups and generates RXD <7:0>, RX DV, and RX _ER on
the GMII, and the internal flag, receiving, used by the Carrier Sense and Transmit processes.

The PCS Auto-Negotiation process sets the xmit flag to inform the PCS Transmit process to either transmit
normal idles interspersed with packets as requested by the GMII or to reconfigure the link. The PCS Auto-
Negotiation process is specified in Clause 37.

36.2.3 Use of code-groups

The PCS maps GMII signals into ten-bit code groups, and vice versa, using an 8B/10B block coding
scheme. Implicit in the definition of a code-group is an establishment of code-group boundaries by a PMA
code-group alignment function as specified in 36.3.2.4. Code-groups are unobservable and have no meaning
outside the PCS. The PCS functions ENCODE and DECODE generate, manipulate, and interpret code-
groups as provided by the rules in 36.2 4.

36.2.4 8B/10B transmission code

The PCS uses a transmission code to improve the transmission characteristics of information to be trans-
ferred across the link. The encodings defined by the transmission code ensure that sufficient transitions are
present in the PHY bit stream to make clock recovery possible at the receiver. Such encoding also greatly
increases the likelihood of detecting any single or multiple bit errors that may occur during transmission and
reception of information. In addition, some of the special code-groups of the transmission code contain a
distinct and easily recognizable bit pattern that assists a receiver in achieving code-group alignment on the
incoming PHY bit stream. The 8B/10B transmission code specified for use in this standard has a high transi-
tion density, is a run-length-limited code, and is dc-balanced. The transition density of the 8B/10B symbols
ranges from 3 to 8 transitions per symbol.
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The definition of the 8B/10B transmission code in this standard is identical to that specified in ANSI
X3.230-1994 (FC-PH), Clause 11. The relationship of code-group bit positions to PMA and other PCS con-
structs is illustrated in Figure 36-3.

GMiIl Management Registers GMIl
TXD<7:0> tx_Config_Reg<D7:D0> rx_Config_Reg<D7:D0> RXD<7:0>
tx_Config_Reg<D15:D8> rx_Config_Reg<D15:D8>
v |
76543210 76543210
(125 million octets/s) I:I:II:I:I:I:I I:I:II:I:I:I:I (125 million octets/s)
A
4 8 + control £ 8 + control
Input to ENCODE function HGFEDCBA HGFEDCBA Output of DECODE function
) 8B/10B 8B/10B )
PCS ENCODE function Encoder Decoder PCS DECODE function
Output of ENCODE function abcdeifghj abcdeifghj Input to DECODE function
10 + 10
0011111xxx Properly aligned comma+ symbol
A 4
PMA Service Interface E{D IEI: PMA Service Interface
(125 million code-groups/s) (125 million code-groups/s)
tx_code-group<9:0>| 0123456789 0123456789 rx_code-group<9:0>
PMD Service Interface PMD Service Interface
(1250 million tx_bits/s) (1250 million rx_bits/s)
bit 0 is transmitted first bit 0 is received first

Figure 36—3—PCS reference diagram

36.2.4.1 Notation conventions

8B/10B transmission code uses letter notation for describing the bits of an unencoded information octet and
a single control variable. Each bit of the unencoded information octet contains either a binary zero or a
binary one. A control variable, Z, has either the value D or the value K. When the control variable associated
with an unencoded information octet contains the value D, the associated encoded code-group is referred to
as a data code-group. When the control variable associated with an unencoded information octet contains the
value K, the associated encoded code-group is referred to as a special code-group.

The bit notation of A,B,C,D,E.F,G,H for an unencoded information octet is used in the description of the 8B/
10B transmission code. The bits A,B,C,D,E,F,G,H are translated to bits a,b,c,d,e,i,f,g,h,j of 10-bit transmis-
sion code-groups. 8B/10B code-group bit assignments are illustrated in Figure 36-3. Each valid code-group
has been given a name using the following convention: /Dx.y/ for the 256 valid data code-groups, and /Kx.y/
for special control code-groups, where x is the decimal value of bits EDCBA, and y is the decimal value of
bits HGF.

36.2.4.2 Transmission order

Code-group bit transmission order is illustrated in Figure 36-3.

Code-groups within multi-code-group ordered_sets (as specified in Table 36-3) are transmitted sequentially
beginning with the special code-group used to distinguish the ordered_set (e.g., /K28.5/) and proceeding

code-group by code-group from left to right within the definition of the ordered_set until all code-groups of
the ordered_set are transmitted.
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The first code-group of every multi-code-group ordered_set is transmitted in an even-numbered code-group
position counting from the first code-group after a reset or power-on. Subsequent code-groups continuously
alternate as odd and even-numbered code-groups.

The contents of a packet are transmitted sequentially beginning with the ordered set used to denote the
Start of Packet (the SPD delimiter) and proceeding code-group by code-group from left to right within the
definition of the packet until the ordered set used to denote the End of Packet (the EPD delimiter) is
transmitted.

36.2.4.3 Valid and invalid code-groups

Table 36—1a defines the valid data code-groups (D code-groups) of the 8B/10B transmission code. Table
36-2 defines the valid special code-groups (K code-groups) of the code. The tables are used for both gener-
ating valid code-groups (encoding) and checking the validity of received code-groups (decoding). In the
tables, each octet entry has two columns that represent two (not necessarily different) code-groups. The two
columns correspond to the valid code-group based on the current value of the running disparity (Current
RD — or Current RD +). Running disparity is a binary parameter with either the value negative (—) or the
value positive (+). Annex 36B provides several 8B/10B transmission code running disparity calculation
examples.

36.2.4.4 Running disparity rules

After powering on or exiting a test mode, the transmitter shall assume the negative value for its initial
running disparity. Upon transmission of any code-group, the transmitter shall calculate a new value for its
running disparity based on the contents of the transmitted code-group.

After powering on or exiting a test mode, the receiver should assume either the positive or negative value for
its initial running disparity. Upon the reception of any code-group, the receiver determines whether the code-
group is valid or invalid and calculates a new value for its running disparity based on the contents of the
received code-group.

The following rules for running disparity shall be used to calculate the new running disparity value for code-
groups that have been transmitted (transmitter's running disparity) and that have been received (receiver’s
running disparity).

Running disparity for a code-group is calculated on the basis of sub-blocks, where the first six bits (abcdei)
form one sub-block (six-bit sub-block) and the second four bits (fghj) form the other sub-block (four-bit sub-
block). Running disparity at the beginning of the six-bit sub-block is the running disparity at the end of the
last code-group. Running disparity at the beginning of the four-bit sub-block is the running disparity at the
end of the six-bit sub-block. Running disparity at the end of the code-group is the running disparity at the
end of the four-bit sub-block.

Running disparity for the sub-blocks is calculated as follows:

a)  Running disparity at the end of any sub-block is positive if the sub-block contains more ones than
zeros. It is also positive at the end of the six-bit sub-block if the six-bit sub-block is 000111, and it is
positive at the end of the four-bit sub-block if the four-bit sub-block is 0011;

b) Running disparity at the end of any sub-block is negative if the sub-block contains more zeros than
ones. It is also negative at the end of the six-bit sub-block if the six-bit sub-block is 111000, and it is
negative at the end of the four-bit sub-block if the four-bit sub-block is 1100;

c¢) Otherwise, running disparity at the end of the sub-block is the same as at the beginning of the sub-
block.
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NOTE—AII sub-blocks with equal numbers of zeros and ones are disparity neutral. In order to limit the run length of 0’s
or 1’s between sub-blocks, the 8B/10B transmission code rules specify that sub-blocks encoded as 000111 or 0011 are
generated only when the running disparity at the beginning of the sub-block is positive; thus, running disparity at the end
of these sub-blocks is also positive. Likewise, sub-blocks containing 111000 or 1100 are generated only when the run-
ning disparity at the beginning of the sub-block is negative; thus, running disparity at the end of these sub-blocks is also
negative.

36.2.4.5 Generating code-groups

The appropriate entry in either Table 36—1a or Table 36-2 is found for each octet for which a code-group is
to be generated (encoded). The current value of the transmitter’s running disparity shall be used to select the
code-group from its corresponding column. For each code-group transmitted, a new value of the running
disparity is calculated. This new value is used as the transmitter’s current running disparity for the next octet
to be encoded and transmitted.

36.2.4.6 Checking the validity of received code-groups
The following rules shall be used to determine the validity of received code groups:

a)  The column in Tables 36—1a and 36-2 corresponding to the current value of the receiver’s running
disparity is searched for the received code-group;

b) If the received code-group is found in the proper column, according to the current running disparity,
then the code-group is considered valid and, for data code-groups, the associated data octet deter-
mined (decoded);

c) Ifthe received code-group is not found in that column, then the code-group is considered invalid;

d) Independent of the code-group’s validity, the received code-group is used to calculate a new value of
running disparity. The new value is used as the receiver’s current running disparity for the next
received code-group.

Detection of an invalid code-group does not necessarily indicate that the code-group in which the invalid
code-group was detected is in error. Invalid code-groups may result from a prior error which altered the run-
ning disparity of the PHY bit stream but which did not result in a detectable error at the code-group in which
the error occurred.

The number of invalid code-groups detected is proportional to the bit error ratio (BER) of the link. Link
error monitoring may be performed by counting invalid code-groups.

36.2.4.7 Ordered_sets

Eight ordered_sets, consisting of a single special code-group or combinations of special and data code-
groups are specifically defined. Ordered sets which include /K28.5/ provide the ability to obtain bit and
code-group synchronization and establish ordered set alignment (see 36.2.4.9 and 36.3.2.4). Ordered_sets
provide for the delineation of a packet and synchronization between the transmitter and receiver circuits at
opposite ends of a link. Table 36-3 lists the defined ordered_sets.

36.2.4.7.1 Ordered_set rules
Ordered_sets are specified according to the following rules:

a) Ordered_sets consist of either one, two, or four code-groups;
b)  The first code-group of all ordered_sets is always a special code-group;

¢) The second code-group of all multi-code-group ordered sets is always a data code-group. The
second code-group is used to distinguish the ordered set from all other ordered sets. The second
code-group provides a high bit transition density.
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Table 36—1a—Valid data code-groups

Code Octet Octet Bits Current RD — Current RD +
Group | vy | HGFEDCBA o T
Name abcdei fghj abcdei fghj
D0.0 00 000 00000 100111 0100 011000 1011
D1.0 01 000 00001 011101 0100 100010 1011
D2.0 02 000 00010 101101 0100 010010 1011
D3.0 03 000 00011 110001 1011 110001 0100
D4.0 04 000 00100 110101 0100 001010 1011
D5.0 05 000 00101 101001 1011 101001 0100
D6.0 06 000 00110 011001 1011 011001 0100
D7.0 07 000 00111 111000 1011 000111 0100
D8.0 08 000 01000 111001 0100 000110 1011
D9.0 09 000 01001 100101 1011 100101 0100
D10.0 0A 000 01010 010101 1011 010101 0100
DI11.0 0B 000 01011 110100 1011 110100 0100
D12.0 0C 000 01100 001101 1011 001101 0100
D13.0 0D 000 01101 101100 1011 101100 0100
D14.0 OE 000 01110 011100 1011 011100 0100
D15.0 OF 000 01111 010111 0100 101000 1011
D16.0 10 000 10000 011011 0100 100100 1011
D17.0 11 000 10001 100011 1011 100011 0100
D18.0 12 000 10010 010011 1011 010011 0100
D19.0 13 000 10011 110010 1011 110010 0100
D20.0 14 000 10100 001011 1011 001011 0100
D21.0 15 000 10101 101010 1011 101010 0100
D22.0 16 000 10110 011010 1011 011010 0100
D23.0 17 000 10111 111010 0100 000101 1011
D24.0 18 000 11000 110011 0100 001100 1011
D25.0 19 000 11001 100110 1011 100110 0100
D26.0 1A 000 11010 010110 1011 010110 0100
D27.0 1B 000 11011 110110 0100 001001 1011
D28.0 1C 000 11100 001110 1011 001110 0100
D29.0 1D 000 11101 101110 0100 010001 1011
D30.0 1E 000 11110 0111100100 100001 1011
D31.0 IF 000 11111 101011 0100 010100 1011
DO.1 20 001 00000 100111 1001 011000 1001
DI1.1 21 001 00001 011101 1001 100010 1001
D2.1 22 001 00010 101101 1001 010010 1001
D3.1 23 001 00011 110001 1001 110001 1001
D4.1 24 001 00100 110101 1001 001010 1001
D5.1 25 001 00101 101001 1001 101001 1001
D6.1 26 001 00110 011001 1001 011001 1001
D7.1 27 001 00111 111000 1001 000111 1001
D8.1 28 001 01000 111001 1001 000110 1001
D9.1 29 001 01001 100101 1001 100101 1001
D10.1 2A 001 01010 010101 1001 010101 1001
DI11.1 2B 001 01011 110100 1001 110100 1001
D12.1 2C 001 01100 001101 1001 001101 1001
D13.1 2D 001 01101 101100 1001 101100 1001
Dl14.1 2E 001 01110 011100 1001 011100 1001
D15.1 2F 001 01111 010111 1001 101000 1001
D16.1 30 001 10000 011011 1001 100100 1001
D17.1 31 001 10001 100011 1001 100011 1001
D18.1 32 001 10010 010011 1001 010011 1001
D19.1 33 001 10011 110010 1001 110010 1001
D20.1 34 001 10100 001011 1001 001011 1001
D21.1 35 001 10101 101010 1001 101010 1001
D22.1 36 001 10110 011010 1001 011010 1001
D23.1 37 001 10111 111010 1001 000101 1001
D24.1 38 001 11000 110011 1001 001100 1001
D25.1 39 001 11001 100110 1001 100110 1001
D26.1 3A 001 11010 010110 1001 010110 1001
D27.1 3B 001 11011 110110 1001 001001 1001
(continued)
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Table 36—1b—Valid data code-groups

Code Octet Octet Bits Current RD — | Current RD +
Group | v e | HGF EDCBA o o
Name abcedei fghj abcedei fghj
D28.1 3C 001 11100 001110 1001 001110 1001
D29.1 3D 001 11101 101110 1001 010001 1001
D30.1 3E 001 11110 011110 1001 100001 1001
D31.1 3F 001 11111 101011 1001 010100 1001
D0.2 40 010 00000 100111 0101 011000 0101
D1.2 41 010 00001 011101 0101 100010 0101
D2.2 42 010 00010 101101 0101 010010 0101
D3.2 43 010 00011 110001 0101 110001 0101
D4.2 44 010 00100 110101 0101 001010 0101
D5.2 45 010 00101 101001 0101 101001 0101
D6.2 46 010 00110 011001 0101 011001 0101
D7.2 47 010 00111 111000 0101 000111 0101
DS8.2 48 010 01000 111001 0101 0001100101
D9.2 49 010 01001 100101 0101 100101 0101
D10.2 4A 010 01010 010101 0101 010101 0101
DI11.2 4B 010 01011 110100 0101 110100 0101
D12.2 4C 010 01100 001101 0101 001101 0101
D13.2 4D 010 01101 101100 0101 101100 0101
D14.2 4E 01001110 011100 0101 0111000101
D15.2 4F 010 01111 010111 0101 101000 0101
D16.2 50 010 10000 011011 0101 100100 0101
D17.2 51 010 10001 100011 0101 100011 0101
D18.2 52 010 10010 010011 0101 010011 0101
D19.2 53 010 10011 110010 0101 110010 0101
D20.2 54 010 10100 001011 0101 001011 0101
D21.2 55 010 10101 101010 0101 101010 0101
D22.2 56 010 10110 0110100101 0110100101
D23.2 57 010 10111 111010 0101 000101 0101
D24.2 58 010 11000 110011 0101 001100 0101
D25.2 59 010 11001 100110 0101 100110 0101
D26.2 SA 010 11010 0101100101 0101100101
D27.2 5B 010 11011 110110 0101 001001 0101
D28.2 5C 010 11100 0011100101 0011100101
D29.2 5D 010 11101 101110 0101 010001 0101
D30.2 5E 010 11110 0111100101 100001 0101
D31.2 S5F 010 11111 101011 0101 010100 0101
DO0.3 60 011 00000 100111 0011 011000 1100
D13 61 011 00001 011101 0011 100010 1100
D23 62 011 00010 101101 0011 010010 1100
D33 63 011 00011 110001 1100 110001 0011
D43 64 011 00100 110101 0011 001010 1100
D5.3 65 011 00101 101001 1100 101001 0011
D6.3 66 011 00110 011001 1100 011001 0011
D7.3 67 011 00111 111000 1100 000111 0011
D8.3 68 011 01000 111001 0011 000110 1100
D9.3 69 011 01001 100101 1100 100101 0011
D10.3 6A 011 01010 010101 1100 010101 0011
DI11.3 6B 011 01011 110100 1100 110100 0011
D123 6C 011 01100 001101 1100 001101 0011
D133 6D 011 01101 101100 1100 101100 0011
D14.3 6E 011 01110 011100 1100 0111000011
D153 6F 011 01111 010111 0011 101000 1100
D16.3 70 011 10000 011011 0011 100100 1100
D17.3 71 011 10001 100011 1100 100011 0011
D18.3 72 011 10010 010011 1100 010011 0011
D19.3 73 011 10011 110010 1100 110010 0011
D20.3 74 011 10100 001011 1100 001011 0011
D21.3 75 011 10101 101010 1100 101010 0011
D223 76 011 10110 011010 1100 0110100011
D233 77 011 10111 111010 0011 000101 1100
(continued)
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Table 36—1c—Valid data code-groups

Code Octet Octet Bits Current RD — | Current RD +

Group HGF EDCBA
Name | Yalue abedei fghj | abedei fghj

D24.3 78 011 11000 110011 0011 001100 1100
D25.3 79 011 11001 100110 1100 100110 0011
D26.3 TA 011 11010 | 0101101100 010110 0011
D27.3 7B 011 11011 110110 0011 001001 1100
D28.3 7C 01111100 | 0011101100 001110 0011
D29.3 7D 011 11101 101110 0011 010001 1100
D30.3 7E 011 11110 | 0111100011 100001 1100
D31.3 7F 011 11111 101011 0011 010100 1100
DO0.4 80 100 00000 100111 0010 011000 1101
D14 81 100 00001 011101 0010 100010 1101
D2.4 82 100 00010 101101 0010 010010 1101
D3.4 83 100 00011 110001 1101 110001 0010
D4.4 84 100 00100 110101 0010 001010 1101
D5.4 85 100 00101 101001 1101 101001 0010
Do6.4 86 100 00110 | 011001 1101 011001 0010
D7.4 87 100 00111 111000 1101 000111 0010
D8.4 88 100 01000 111001 0010 000110 1101
D9.4 89 100 01001 100101 1101 100101 0010
D10.4 8A 100 01010 | 010101 1101 010101 0010
D114 8B 100 01011 110100 1101 110100 0010
D124 8C 100 01100 | 001101 1101 001101 0010
D13.4 8D 100 01101 101100 1101 101100 0010
D14.4 8E 100 01110 | 0111001101 011100 0010
D15.4 8F 100 01111 010111 0010 101000 1101
Dl6.4 90 100 10000 | 0110110010 100100 1101
D17.4 91 100 10001 100011 1101 100011 0010
D18.4 92 100 10010 | 010011 1101 010011 0010
D19.4 93 100 10011 110010 1101 110010 0010
D20.4 94 100 10100 | 001011 1101 001011 0010
D21.4 95 100 10101 101010 1101 101010 0010
D22.4 96 100 10110 | 0110101101 011010 0010
D234 97 100 10111 111010 0010 000101 1101
D24.4 98 100 11000 110011 0010 001100 1101
D25.4 99 100 11001 100110 1101 100110 0010
D26.4 9A 100 11010 | 0101101101 010110 0010
D27.4 9B 100 11011 110110 0010 001001 1101
D28.4 9C 100 11100 | 0011101101 001110 0010
D29.4 9D 100 11101 101110 0010 010001 1101
D30.4 9E 100 11110 | 0111100010 100001 1101
D31.4 9F 100 11111 101011 0010 010100 1101
DO0.5 A0 101 00000 100111 1010 011000 1010
D1.5 Al 101 00001 011101 1010 100010 1010
D25 A2 101 00010 101101 1010 010010 1010
D3.5 A3 101 00011 110001 1010 110001 1010
D4.5 A4 101 00100 110101 1010 001010 1010
D55 AS 101 00101 101001 1010 101001 1010
D6.5 A6 101 00110 | 011001 1010 011001 1010
D7.5 A7 101 00111 111000 1010 000111 1010
D8&.5 A8 101 01000 111001 1010 000110 1010
D9.5 A9 101 01001 100101 1010 100101 1010
D10.5 AA 101 01010 | 010101 1010 010101 1010
D11.5 AB 101 01011 110100 1010 110100 1010
D12.5 AC 101 01100 | 0011011010 001101 1010
D13.5 AD 101 01101 101100 1010 101100 1010
D145 AE 101 01110 | 0111001010 011100 1010
D15.5 AF 101 01111 010111 1010 101000 1010
D16.5 BO 101 10000 | 0110111010 100100 1010
D17.5 B1 101 10001 100011 1010 100011 1010
D18.5 B2 101 10010 | 010011 1010 010011 1010
D19.5 B3 101 10011 110010 1010 110010 1010

(continued)
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Table 36—1d—Valid data code-groups

GCode Octet Octet Bits Current RD — | Current RD +
FOUP | value | HGF EDCBA o T
Name abcdei fghj abcdei fghj

D20.5 B4 101 10100 001011 1010 001011 1010
D21.5 BS 101 10101 101010 1010 101010 1010
D22.5 B6 101 10110 011010 1010 011010 1010
D23.5 B7 101 10111 111010 1010 000101 1010
D24.5 B8 101 11000 110011 1010 001100 1010
D25.5 B9 101 11001 100110 1010 100110 1010
D26.5 BA 101 11010 010110 1010 010110 1010
D27.5 BB 101 11011 110110 1010 001001 1010
D28.5 BC 101 11100 001110 1010 001110 1010
D29.5 BD 101 11101 101110 1010 010001 1010
D30.5 BE 101 11110 011110 1010 100001 1010
D31.5 BF 101 11111 101011 1010 010100 1010

DO0.6 Co 110 00000 100111 0110 011000 0110
D1.6 Cl 110 00001 011101 0110 100010 0110
D2.6 C2 110 00010 101101 0110 010010 0110
D3.6 C3 110 00011 110001 0110 110001 0110
D4.6 C4 110 00100 110101 0110 001010 0110
Ds.6 Cs 110 00101 101001 0110 101001 0110
D6.6 Co 110 00110 011001 0110 011001 0110
D7.6 Cc7 110 00111 111000 0110 000111 0110
D8&.6 C8 110 01000 111001 0110 0001100110
D9.6 C9 110 01001 100101 0110 100101 0110

D10.6 CA 110 01010 010101 0110 010101 0110
DI11.6 CB 110 01011 110100 0110 110100 0110
D12.6 CC 110 01100 001101 0110 001101 0110
D13.6 CD 110 01101 101100 0110 101100 0110
D14.6 CE 110 01110 0111000110 011100 0110
D15.6 CF 110 01111 010111 0110 101000 0110
D16.6 DO 110 10000 011011 0110 100100 0110
D17.6 D1 110 10001 100011 0110 100011 0110
D18.6 D2 110 10010 010011 0110 010011 0110
D19.6 D3 110 10011 110010 0110 110010 0110
D20.6 D4 110 10100 001011 0110 001011 0110
D21.6 D5 110 10101 101010 0110 101010 0110
D22.6 D6 110 10110 0110100110 011010 0110
D23.6 D7 110 10111 111010 0110 000101 0110
D24.6 D8 110 11000 110011 0110 001100 0110
D25.6 D9 110 11001 100110 0110 100110 0110
D26.6 DA 110 11010 0101100110 010110 0110
D27.6 DB 110 11011 110110 0110 001001 0110
D28.6 DC 110 11100 0011100110 001110 0110
D29.6 DD 110 11101 101110 0110 010001 0110

D30.6 DE 110 11110 0111100110 100001 0110
D31.6 DF 110 11111 101011 0110 010100 0110
DO0.7 EO 111 00000 100111 0001 011000 1110
D1.7 El 111 00001 011101 0001 100010 1110
D2.7 E2 111 00010 101101 0001 010010 1110
D3.7 E3 111 00011 110001 1110 110001 0001
D4.7 E4 111 00100 110101 0001 001010 1110
D5.7 ES 111 00101 101001 1110 101001 0001
D6.7 E6 111 00110 011001 1110 011001 0001
D7.7 E7 111 00111 111000 1110 000111 0001
D8&.7 E8 111 01000 111001 0001 000110 1110
D9.7 E9 111 01001 100101 1110 100101 0001
D10.7 EA 111 01010 010101 1110 010101 0001
D11.7 EB 111 01011 110100 1110 110100 1000
D12.7 EC 111 01100 001101 1110 001101 0001
D13.7 ED 111 01101 101100 1110 101100 1000
D14.7 EE 111 01110 011100 1110 011100 1000
D15.7 EF 111 01111 010111 0001 101000 1110

(continued)
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Table 36—1e—Valid data code-groups

Code Octet Octet Bits Current RD — Current RD +
Group | vajue | HGFEDCBA - e
Name abcedei fghj abcedei fghj
Dl16.7 FO 111 10000 011011 0001 100100 1110
D17.7 F1 111 10001 100011 0111 100011 0001
D18.7 F2 111 10010 010011 0111 010011 0001
D19.7 F3 111 10011 110010 1110 110010 0001
D20.7 F4 111 10100 001011 0111 001011 0001
D21.7 F5 111 10101 101010 1110 101010 0001
D22.7 F6 111 10110 011010 1110 011010 0001
D23.7 F7 111 10111 111010 0001 000101 1110
D24.7 F8 111 11000 110011 0001 001100 1110
D25.7 F9 111 11001 100110 1110 100110 0001
D26.7 FA 111 11010 010110 1110 010110 0001
D27.7 FB 111 11011 110110 0001 001001 1110
D28.7 FC 111 11100 0011101110 001110 0001
D29.7 FD 111 11101 101110 0001 010001 1110
D30.7 FE 111 11110 011110 0001 100001 1110
D31.7 FF 111 11111 101011 0001 010100 1110
(concluded)
Table 36—2—Valid special code-groups
(?r(:ﬂlep Octet Octet Bits Current RD — | Current RD +
Name | Yalue |'HGFEDCBA | apcdejfghj | abedeifghj | Notes
K28.0 1C 000 11100 | 0011110100 110000 1011 1
K28.1 3C 001 11100 | 001111 1001 110000 0110 1,2
K28.2 5C 010 11100 | 0011110101 110000 1010 1
K28.3 7C 011 11100 | 0011110011 110000 1100 1
K28.4 9C 100 11100 | 0011110010 110000 1101 1
K28.5 BC 101 11100 | 001111 1010 110000 0101 2
K28.6 DC 110 11100 | 0011110110 110000 1001 1
K28.7 FC 111 11100 | 001111 1000 110000 0111 1,2
K23.7 F7 111 10111 | 111010 1000 000101 0111
K27.7 FB 111 11011 | 110110 1000 001001 0111
K29.7 FD 111 11101 | 101110 1000 010001 0111
K30.7 FE 111 11110 | 0111101000 100001 0111
NOTE 1—Reserved.
NOTE 2—Contains a comma.

Table 36-3 lists the defined ordered_sets.

36.2.4.8 /K28.5/ code-group considerations

IEEE
Std 802.3-2005

The /K28.5/ special code-group is chosen as the first code-group of all ordered_sets that are signaled repeat-
edly and for the purpose of allowing a receiver to synchronize to the incoming bit stream (i.e., /C/ and /I/),

for the following reasons:

a)  Bits abcdeif make up a comma. The comma can be used to easily find and verify code-group and
ordered_set boundaries of the rx_bit stream.
b) Bits ghj of the encoded code-group present the maximum number of transitions, simplifying
receiver acquisition of bit synchronization.
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Table 36—3—Defined ordered_sets

Code Ordered_Set Clj(lll:-l(b}?(;l(:[f)s Encoding

/C/ Configuration Alternating /C1/ and /C2/

/C1/ Configuration 1 4 /K28.5/D21.5/Config_Reg?

/C2/ Configuration 2 4 /K28.5/D2.2/Config_Reg?

1/ IDLE Correcting /11/, Preserving /12/

M1/ IDLE 1 2 /K28.5/D5.6/

12/ IDLE 2 2 /K28.5/D16.2/
Encapsulation

/R/ Carrier_Extend 1 /K23.7/

/S/ Start_of Packet 1 /K27.7/

/T/ End of Packet 1 /K29.7/

V/ Error_Propagation | 1 /K30.7/

#Two data code-groups representing the Config_Reg value.

36.2.4.9 Comma considerations

The seven bit comma string is defined as either b’0011111° (comma+) or b’ 1100000’ (comma-). The /I/ and
/C/ ordered_sets and their associated protocols are specified to ensure that commat is transmitted with
either equivalent or greater frequency than comma- for the duration of their transmission. This is done to
ensure compatibility with common components.

The comma contained within the /K28.1/, /K28.5/, and /K28.7/ special code-groups is a singular bit pattern,
which, in the absence of transmission errors, cannot appear in any other location of a code-group and cannot
be generated across the boundaries of any two adjacent code-groups with the following exception:

The /K28.7/ special code-group is used by 1000BASE-X for diagnostic purposes only (see Annex 36A).
This code-group, if followed by any of the following special or data code-groups: /K28.x/, /D3.x/, /D11.x/,/
DI12.x/,/D19.x/, /D20.x/, or /D28.x/, where x is a value in the range 0 to 7, inclusive, causes a comma to be
generated across the boundaries of the two adjacent code-groups. A comma across the boundaries of any two
adjacent code-groups may cause code-group realignment (see 36.3.2.4).

36.2.4.10 Configuration (/C/)

Configuration, defined as the continuous repetition of the ordered sets /C1/ and /C2/, is used to convey the
16-bit Configuration Register (Config Reg) to the link partner. See Clause 37 for a description of the
Config_Reg contents.

The ordered sets, /C1/ and /C2/, are defined in Table 36-3. The /C1/ ordered_set is defined such that the
running disparity at the end of the first two code-groups is opposite that of the beginning running disparity.
The /C2/ ordered_set is defined such that the running disparity at the end of the first two code-groups is the
same as the beginning running disparity. For a constant Config_Reg value, the running disparity after trans-
mitting the sequence /C1/C2/ will be the opposite of what it was at the start of the sequence. This ensures
that K28.5s containing comma-+ will be sent during configuration.
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36.2.4.11 Data (/D/)

A data code-group, when not used to distinguish or convey information for a defined ordered _set, conveys
one octet of arbitrary data between the GMII and the PCS. The sequence of data code-groups is arbitrary,
where any data code-group can be followed by any other data code-group. Data code-groups are coded and
decoded but not interpreted by the PCS. Successful decoding of the data code-groups depends on proper
receipt of the Start of Packet delimiter, as defined in 36.2.4.13 and the checking of validity, as defined in
36.2.4.6.

36.2.4.12 IDLE (/I/)

IDLE ordered sets (/I/) are transmitted continuously and repetitively whenever the GMII is idle (TX EN
and TX ER are both inactive). /I/ provides a continuous fill pattern to establish and maintain clock
synchronization. /I/ is emitted from, and interpreted by, the PCS. /I/ consists of one or more consecutively
transmitted /I1/ or /12/ ordered_sets, as defined in Table 36-3.

The /I1/ ordered_set is defined such that the running disparity at the end of the transmitted /I1/ is opposite
that of the beginning running disparity. The /I2/ ordered_set is defined such that the running disparity at the
end of the transmitted /I2/ is the same as the beginning running disparity. The first /I/ following a packet or
Configuration ordered_set restores the current positive or negative running disparity to a negative value. All
subsequent /I/s are /12/ to ensure negative ending running disparity.

Distinct carrier events are separated by /I/s.

Implementations of this standard may benefit from the ability to add or remove /I2/ from the code-group
stream one /12/ at a time without altering the beginning running disparity associated with the code-group
subsequent to the removed /12/.

A received ordered set which consists of two code-groups, the first of which is /K28.5/ and the second of
which is a data code-group other than /D21.5/ or /D2.2/ is treated as an /I/ ordered_set.

36.2.4.13 Start_of_Packet (SPD) delimiter

A Start_of Packet delimiter (SPD) is used to delineate the starting boundary of a data transmission sequence
and to authenticate carrier events. Upon each fresh assertion of TX EN by the GMII, and subsequent to the
completion of PCS transmission of the current ordered_set, the PCS replaces the current octet of the MAC
preamble with SPD. Upon initiation of packet reception, the PCS replaces the received SPD delimiter with
the data octet value associated with the first preamble octet. A SPD delimiter consists of the code-group /S/,
as defined in Table 36-3.

SPD follows /I/ for a single packet or the first packet in a burst.

SPD follows /R/ for the second and subsequent packets of a burst.

36.2.4.14 End_of_Packet delimiter (EPD)

An End_of Packet delimiter (EPD) is used to delineate the ending boundary of a packet. The EPD is trans-
mitted by the PCS following each de-assertion of TX EN on the GMII, which follows the last data octet
comprising the FCS of the MAC packet. On reception, EPD is interpreted by the PCS as terminating a
packet. A EPD delimiter consists of the code-groups /T/R/R/ or /T/R/K28.5/. The code-group /T/ is defined

in Table 36-3. See 36.2.4.15 for the definition of code-groups used for /R/. /K28.5/ normally occurs as the
first code-group of the /I/ ordered set. See 36.2.4.12 for the definition of code-groups used for /1/.
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The receiver considers the MAC interpacket gap (IPG) to have begun two octets prior to the transmission of
/I/. For example, when a packet is terminated by EPD, the /T/R/ portion of the EPD occupies part of the
region considered by the MAC to be the IPG.

36.2.4.14.1 EPD rules

a)
b)

¢)

The PCS transmits a /T/R/ following the last data octet from the MAC;

If the MAC indicates carrier extension to the PCS, Carrier Extend rules are in effect. See
36.2.4.15.1;

If the MAC does not indicate carrier extension to the PCS, perform the following:

1) If /R/ is transmitted in an even-numbered code-group position, the PCS appends a single
additional /R/ to the code-group stream to ensure that the subsequent /I/ is aligned on an even-
numbered code-group boundary and EPD transmission is complete;

2) The PCS transmits /1/.

36.2.4.15 Carrier_Extend (/R/)

Carrier Extend (/R/) is used for the following purposes:

a)

b)

d)

Carrier extension: Used by the MAC to extend the duration of the carrier event. When used for this
purpose, carrier extension is emitted from and interpreted by the MAC and coded to and decoded
from the corresponding code-group by the PCS. In order to extend carrier, the GMII must deassert
TX_ EN. The deassertion of TX EN and simultancous assertion of TX ER causes the PCS to emit
an /R/ with a two-octet delay, which gives the PCS time to complete its EPD before commencing
transmissions. The number of /R/ code-groups emitted from the PCS equals the number of GMII
GTX CLK periods during which it extends carrier;

Packet separation: Carrier extension is used by the MAC to separate packets within a burst of pack-
ets. When used for this purpose, carrier extension is emitted from and interpreted by the MAC and
coded to and decoded from the corresponding code-group by the PCS;

EPD2: The first /R/ following the /T/ in the End_of Packet delimiters /T/R/1/ or /T/R/R/1/;

EPD3: The second /R/ following the /T/ in the End_of Packet delimiter /T/R/R/I/. This /R/ is used,
if necessary, to pad the only or last packet of a burst of packets so that the subsequent /I/ is aligned
on an even-numbered code-group boundary. When used for this purpose, Carrier Extend is emitted
from, and interpreted by, the PCS. An EPD of /T/R/R/ results in one /R/ being delivered to the PCS
client (see 36.2.4.14.1).

Carrier Extend consists of one or more consecutively transmitted /R/ ordered sets, as defined in Table

36-3.

36.2.4.15.1 Carrier_Extend rules

a)

b)

If the MAC indicates carrier extension to the PCS, the initial /T/R/ is followed by one /R/ for each
octet of carrier extension received from the MAC;

If the last /R/ is transmitted in an even-numbered code-group position, the PCS appends a single
additional /R/ to the code-group stream to ensure that the subsequent /I/ is aligned on an even-
numbered code-group boundary.

36.2.4.16 Error_Propagation (/V/)

Error Propagation (/V/) indicates that the PCS client wishes to indicate a transmission error to its peer
entity. The normal use of Error Propagation is for repeaters to propagate received errors. /V/ is emitted from
the PCS, at the request of the PCS client through the use of the TX ER signal, as described in Clause 35.
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Error Propagation is emitted from, and interpreted by, the PCS. Error Propagation consists of the
ordered_set /V/, as defined in Table 36-3.

The presence of Error Propagation or any invalid code-group on the medium denotes a collision artifact or
an error condition. Invalid code-groups are not intentionally transmitted onto the medium by DTEs. The
PCS processes and conditionally indicates the reception of /V/ or an invalid code-group on the GMII as false
carrier, data errors, or carrier extend errors, depending on its current context.

36.2.4.17 Encapsulation

The 1000BASE-X PCS accepts packets from the MAC through the Reconciliation sublayer and GMII. Due
to the continuously signaled nature of the underlying PMA, and the encoding performed by the PCS, the
1000BASE-X PCS encapsulates MAC frames into a code-group stream. The PCS decodes the code-group
stream received from the PMA, extracts packets from it, and passes the packets to the MAC via the Recon-

ciliation sublayer and GMII.

Figure 364 depicts the PCS encapsulation of a MAC packet based on GMII signals.

TX_EN J ) \
TXD<T:05 { preame—— § Y 1 X K K —ros—)

tx_code-group ( n X/SIX/DIXIDIX/DIXID/X/DIXID/X/DIXID/X/DIXID/XID/XID/XIDIXID/XIDIXIT/XIRIX n )

TX_ER

N

CRS Z”” ) Q;;;S

CcoL

AN

Figure 36—4—PCS encapsulation

36.2.4.18 Mapping between GMIl, PCS and PMA

Figure 36-3 depicts the mapping of the octet-wide data path of the GMII to the ten-bit-wide code-groups of
the PCS, and the one-bit paths of the PMA/PMD interface.

The PCS encodes an octet received from the GMII into a ten-bit code-group, according to Figure 36-3.
Code-groups are serialized into a tx_bit stream by the PMA and passed to the PMD for transmission on the
underlying medium, according to Figure 36-3. The first transmitted tx_bit is tx_code-group<0>, and the last
tx_bit transmitted is tx_code-group<9>. There is no numerical significance ascribed to the bits within a
code-group; that is, the code-group is simply a ten-bit pattern that has some predefined interpretation.
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40.2.9 PMA_REMRXSTATUS.request

This primitive is generated by PCS Receive to indicate the status of the receive link at the remote PHY as
communicated by the remote PHY via its encoding of its loc _rcvr status parameter. The parameter
rem_rcvr_status conveys to the PMA PHY Control function the information on whether reliable operation of
the remote PHY is detected or not. The criterion for setting the parameter rem_rcvr_status is left to the
implementor. It can be based, for example, on asserting rem_rcvr_status is NOT OK until loc_rcvr_status is
OK and then asserting the detected value of rem_rcvr_status after proper PCS receive decoding is achieved.
40.2.9.1 Semantics of the primitive

PMA REMRXSTATUS.request (rem_rcvr_status)

The rem_rcvr_status parameter can take on one of two values of the form:

OK The receive link for the remote PHY is operating reliably.
NOT_OK Reliable operation of the receive link for the remote PHY is not detected.

40.2.9.2 When generated

The PCS generates PMA REMRXSTATUS.request messages continuously on the basis on signals received
at the MDI.

40.2.9.3 Effect of receipt

The effect of receipt of this primitive is specified in Figure 40-15.

40.2.10 PMA_RESET.indication

This primitive is used to pass the PMA Reset function to the PCS (pcs_reset=ON) when reset is enabled.
The PMA_RESET.indication primitive can take on one of two values:

TRUE Reset is enabled.
FALSE Reset is not enabled.

40.2.10.1 When generated
The PMA Reset function is executed as described in 40.4.2.1.
40.2.10.2 Effect of receipt

The effect of receipt of this primitive is specified in 40.4.2.1.

40.3 Physical Coding Sublayer (PCS)
The PCS comprises one PCS Reset function and four simultaneous and asynchronous operating functions.
The PCS operating functions are: PCS Transmit Enable, PCS Transmit, PCS Receive, and PCS Carrier

Sense. All operating functions start immediately after the successful completion of the PCS Reset function.

The PCS reference diagram, Figure 40-5, shows how the four operating functions relate to the messages of
the PCS-PMA interface. Connections from the management interface (signals MDC and MDIO) to other
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layers are pervasive, and are not shown in Figure 40-5. Management is specified in Clause 30. See also
Figure 40-7, which defines the structure of frames passed from PCS to PMA.

; P ' tx_mode
GTX_CLK ————— . = PMA_UNITDATA request (tx_symb_vector)
TXD<7:0> »> < "
0 "I TRANSMIT |TodoBTtdnsmit
d
tx_erron -
TX_EN
I >
| < PCS
TX_EN P> TRANSMIT
TX ER » ENABLE
_i PCS >R link_status
coL P COLLISION
< PRESENCE [¢
3| Pcs CARRIER [&
CRS <« SENSE
1000BTreceive
loc_rcvr_status
rem_rcvr_status
v | »
RX_CLK <« config
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RX DV ¢ RECEIVE scr_status
RX_ER < >
! |
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GIGABIT MEDIA
INDEPENDENT PMA SERVICE
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Figure 40—-5—PCS reference diagram
40.3.1 PCS functions

40.3.1.1 PCS Reset function

PCS Reset initializes all PCS functions. The PCS Reset function shall be executed whenever one of the fol-
lowing conditions occur:

a) Power on (see 36.2.5.1.3).
b)  The receipt of a request for reset from the management entity.

PCS Reset sets pcs_reset=ON while any of the above reset conditions hold true. All state diagrams take the

open-ended pcs_reset branch upon execution of PCS Reset. The reference diagrams do not explicitly show
the PCS Reset function.
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40.3.1.2 PCS Data Transmission Enable

The PCS Data Transmission Enabling process generates the signals tx_enable and tx_error, which PCS
Transmit uses for data and carrier extension encoding. The process uses logical operations on tx_mode,
TX ER, TX EN, and TXD<7:0>. The PCS shall implement the Data Transmission Enabling process as
depicted in Figure 40-8 including compliance with the associated state variables as specified in 40.3.3.

40.3.1.3 PCS Transmit function
The PCS Transmit function shall conform to the PCS Transmit state diagram in Figure 40-9.

The PCS Transmit function generates the GMII signal COL based on whether a reception is occurring
simultaneously with transmission. The PCS Transmit function is not required to generate the GMII signal
COL in a I000BASE-T PHY that does not support half duplex operation.

In each symbol period, PCS Transmit generates a code-group (A, B, C,,, D)) that is transferred to the PMA
via the PMA UNITDATA request primitive. The PMA transmits symbols A, B,, C,, D, over wire-pairs
BI DA, BI DB, BI DC, and BI DD respectively. The integer, n, is a time index that is introduced to estab-
lish a temporal relationship between different symbol periods. A symbol period, T, is nominally equal to 8
ns. In normal mode of operation, between streams of data indicated by the parameter tx_enable, PCS Trans-
mit generates sequences of vectors using the encoding rules defined for the idle mode. Upon assertion of
tx_enable, PCS Transmit passes a SSD of two consecutive vectors of four quinary symbols to the PMA,
replacing the first two preamble octets. Following the SSD, each TXD<7:0> octet is encoded using an 4D-
PAMS technique into a vector of four quinary symbols until tx_enable is de-asserted. If TX ER is asserted
while tx_enable is also asserted, then PCS Transmit passes to the PMA vectors indicating a transmit error.
Note that if the signal TX_ER is asserted while SSD is being sent, the transmission of the error condition is
delayed until transmission of SSD has been completed. Following the de-assertion of tx_enable, a Convolu-
tional State Reset (CSReset) of two consecutive code-groups, followed by an ESD of two consecutive code-
groups, is generated, after which the transmission of idle or control mode is resumed.

If a PMA TXMODE.indication message has the value SEND_Z, PCS Transmit passes a vector of zeros at
each symbol period to the PMA via the PMA UNITDATA request primitive.

If a PMA TXMODE.indication message has the value SEND I, PCS Transmit generates sequences of
code-groups according to the encoding rule in training mode. Special code-groups that use only the values
{+2, 0, -2} are transmitted in this case. Training mode encoding also takes into account the value of the
parameter loc_rcvr status. By this mechanism, a PHY indicates the status of its own receiver to the link
partner during idle transmission.

In the normal mode of operation, the PMA_TXMODE.indication message has the value SEND N, and the
PCS Transmit function uses an 8B1Q4 coding technique to generate at each symbol period code-groups that
represent data, control or idle based on the code-groups defined in Table 40—1 and Table 40-2. During trans-
mission of data, the TXD<7:0> bits are scrambled by the PCS using a side-stream scrambler, then encoded
into a code-group of quinary symbols and transferred to the PMA. During data encoding, PCS Transmit uti-
lizes a three-state convolutional encoder.

The transition from idle or carrier extension to data is signalled by inserting a SSD, and the end of transmis-
sion of data is signalled by an ESD. Further code-groups are reserved for signaling the assertion of TX ER
within a stream of data, carrier extension, CSReset, and other control functions. During idle and carrier
extension encoding, special code-groups with symbol values restricted to the set {2, 0, —2} are used. These
code-groups are also generated using the transmit side-stream scrambler. However, the encoding rules for
the idle, SSD, and carrier extend code-groups are different from the encoding rules for data, CSReset, CSEx-
tend, and ESD code-groups. During idle, SSD, and carrier extension, the PCS Transmit function reverses the
sign of the transmitted symbols. This allows, at the receiver, sequences of code-groups that represent data,
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CSReset, CSExtend, and ESD to be easily distinguished from sequences of code-groups that represent SSD,
carrier extension, and idle.

PCS encoding involves the generation of the four-bit words Sx,[3:0], Sy,[3:0], and Sg,[3:0] from which the
quinary symbols (A, B,, C,, D,) are obtained. The four-bit words Sx,[3:0], Sy,[3:0], and Sg,[3:0] are
determined (as explained in 40.3.1.3.2) from sequences of pseudorandom binary symbols derived from the
transmit side-stream scrambler.

40.3.1.3.1 Side-stream scrambler polynomials

The PCS Transmit function employs side-stream scrambling. If the parameter config provided to the PCS by
the PMA PHY Control function via the PMA CONFIG.indication message assumes the value MASTER,
PCS Transmit shall employ

gulx) = 1+x"+x%

as transmitter side-stream scrambler generator polynomial. If the PMA CONFIG.indication message
assumes the value of SLAVE, PCS Transmit shall employ

gs(x) = 1+ + 5%

as transmitter side-stream scrambler generator polynomial. An implementation of master and slave PHY
side-stream scramblers by linear-feedback shift registers is shown in Figure 40—6. The bits stored in the shift
register delay line at time n are denoted by Scr,[32:0]. At each symbol period, the shift register is advanced
by one bit, and one new bit represented by Scr,[0] is generated. The transmitter side-stream scrambler is
reset upon execution of the PCS Reset function. If PCS Reset is executed, all bits of the 33-bit vector repre-
senting the side-stream scrambler state are arbitrarily set. The initialization of the scrambler state is left to
the implementor. In no case shall the scrambler state be initialized to all zeros.

Side-stream scrambler employed by the MASTER PHY
Scr,[0] Scr,[1] Scr[1 2] Scr,[13] Scr,[31] Scr,[32]

ol ol

) 4
D,

Side-stream scrambler employed by the SLAVE PHY

Scr,[0] Scr,[1] Scr,[19] Scr,[20] Scr,[31] Scr,[32]
s ad il e il e
) 4
f\<

Figure 40—6—A realization of side-stream scramblers by linear feedback shift registers

40.3.1.3.2 Generation of bits Sx,,[3:0], Sy,[3:0], and Sg,,[3:0]

PCS Transmit encoding rules are based on the generation, at time n, of the twelve bits Sx,[3:0], Sy,[3:0],
and Sg,[3:0]. The eight bits, Sx,[3:0] and Sy, [3:0], are used to generate the scrambler octet Sc,[7:0] for
decorrelating the GMII data word TXD<7:0> during data transmission and for generating the idle and train-
ing symbols. The four bits, Sg,[3:0], are used to randomize the signs of the quinary symbols (A, B,, C,,
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D,) so that each symbol stream has no dc bias. These twelve bits are generated in a systematic fashion using
three bits, X,;, Y,,, and Scr,[0], and an auxiliary generating polynomial, g(x). The two bits, X, and Y, are
mutually uncorrelated and also uncorrelated with the bit Scr,[0]. For both master and slave PHYss, they are
obtained by the same linear combinations of bits stored in the transmit scrambler shift register delay line.
These two bits are derived from elements of the same maximum-length shift register sequence of length
2% 1 as Scr,[0], but shifted in time. The associated delays are all large and different so that there is no
short-term correlation among the bits Scr,[0], X, and Y,,. The bits X, and Y, are generated as follows:

X, = Scr,[4] ~ Scr,[6]

Y, = Scr,[1] " Scr,[5]

where * denotes the XOR logic operator. From the three bits X, Y,,, and Scr,[0], further mutually uncorre-
lated bit streams are obtained systematically using the generating polynomial

gl =x’ A

The four bits Sy, [3:0] are generated using the bit Scr,[0] and g(x) as in the following equations:
Sy, [0] = Scr,[0]

Syl 1] = &(Scry[0]) = Scry[3] ~ Scr,[8]

Syal2] = &°(Scr,[0]) = Scr,,[6] ~ Scr, [16]

Sy, [3] = g3(Scrn[()]) = Scr,[9] ~ Scr,[14] ~ Scr,[19] ~ Scr, [24]

The four bits Sx,[3:0] are generated using the bit X, and g(x) as in the following equations:
Sx,[0] = X, = Scr,[4] ~ Scr,[6]

Sx,[1] = g(X,) = Scr,[7] ~ Scr,[9] ~ Scr,[12] ~ Scr,[14]

Sx,[2] = gz(Xn) = Scr,[10] ~Scr,[12] ~ Scr, [20] * Scr,[22]

Sx,[3] = g3(Xn) = Scr,[13] ~Scr,[15] ~ Scr,[18] ™ Scr, [20] »
Scr,[23] "~ Scr,[25] * Scr,[28] *~ Scr,[30]

The four bits Sg,[3:0] are generated using the bit Y, and g(x) as in the following equations:
Sg,[0] = Y, = Scr,[1] ~ Scr,[5]

Sg,[1] = g(Y,) = Scr,[4] ~ Scr,[8] ~ Scr,[9] ~ Scr,[13]

Sg,[2] = gZ(Y,,) = Scr,[7] ~Scr,[11] ~ Scr,[17] ~ Scr,[21]

Sg,[3] = g3(Y,,) = Scr,[10] ~ Scr,[14] ~ Scr,[15] ™ Scr, [19] »
Scr,[20] " Scr,[24] * Scr,[25] ~ Scr,[29]

By construction, the twelve bits Sx,[3:0], Sy,[3:0], and Sg,[3:0] are derived from elements of the same

maximum-length shift register sequence of length 2331 as Scr,[0], but shifted in time by varying delays.
The associated delays are all large and different so that there is no apparent correlation among the bits.
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40.3.1.3.3 Generation of bits Sc,,[7:0]

The bits Sc,,[7:0] are used to scramble the GMII data octet TXD[7:0] and for control, idle, and training mode
quartet generation. The definition of these bits is dependent upon the bits Sx,[3:0] and Sy, [3:0] that are
specified in 40.3.1.3.2, the variable tx_mode that is obtained through the PMA Service Interface, the vari-
able tx_enable, that is defined in Figure 40-8, and the time index n.

The four bits Sc,[7:4] are defined as

Sx,/3:0] if (tx_enable, , = 1)
[0 00 0] else

Sc,[7:4] = —

The bits Sc,[3:1] are defined as

[0 0 0] if (tx_mode = SEND_Z)
Sc,[3:1] =—  Sy,[3:1] else if (n-ny) = 0 (mod 2)
(Sy,.1[3:1] N [1 1 1]) else

where n, denotes the time index of the last transmitter side-stream scrambler reset.

The bit Sc,[0] is defined as

0 if (&x_mode = SEND_Z)
Sy,[0] else

Scn[ 0] =

40.3.1.3.4 Generation of bits Sd,[8:0]

The PCS Transmit function generates a nine-bit word Sd,[8:0] from Sc, that represents either a convolution-
ally encoded stream of data, control, or idle mode code-groups. The convolutional encoder uses a three-bit
word cs,[2:0], which is defined as

8d,[6] ~ cs,,_;[0] if (tx_enable,_,=1)
Csn[]] = 0.
else
Sd. [7] " 17 if bl -
cs,[2] = — ) ”1[] Sy [ 1] if (tx_enable, ;= 1)
else

csp[0] = csp1[2]

from which Sd,[8] is obtained as

Sd,[8] = cs,[0]
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The convolutional encoder bits are non-zero only during the transmission of data. Upon the completion of a
data frame, the convolutional encoder bits are reset using the bit csreset,,. The bit csreset,, is defined as

csreset,, = (tx_enable,,_,) and (not tx_enable,)

The bits Sd,,[7:6] are derived from the bits Sc,[7:6], the GMII data bits TXD,[7:6], and from the convolu-
tional encoder bits as

Sc,[7] ~TXD,[7] if (csreset,= 0 and tx_enable, ,=1)
Sd,[7] = —  cs,_1[1] elseif (csreset,=1)
Sc,[7] else

_Scn[6] ~TXD, [6] if (csreset, = 0 and tx_enable,_,= 1)
Sd,[6] = —  cs,_;[0] elseif (csreset,=1)
Sc,[6] else

The bits Sd,,[5:3] are derived from the bits Sc,[5:3] and the GMII data bits TXD,[5:3] as

Sc,[5:3] "TXD,,[5:3] if (ix_enable, ,=1)
Sc,[5:3] else

Sd [5:3] = —

The bit Sd,[2] is used to scramble the GMII data bit TXD,[2] during data mode and to encode
loc_revr_status otherwise. It is defined as

Sc,[2] » TXD,,[2] if (tx_enable, ,=1)
Sd,[2] = — Sc,[2] ™1 elseif (loc_revr_status = OK)
Sc,[2] else

The bits Sd,[1:0] are used to transmit carrier extension information during tx_mode=SEND_N and are thus
dependent upon the bits cext, and cext_err,. These bits are dependent on the variable tx_error,, which is
defined in Figure 40-8. These bits are defined as

tx_error, if (tx_enable, = 0) and (TXD,[7:0] = 0xOF))

cext, = —
" 0 else
| tx_error, if (tx_enable, = 0) and (TXD,[7:0] # 0xOF))
cext_err, =—
0 else
" Se,[1] ~TXD,[1] if (&x_enable, ,=1)
Sd,[1] =—
1] Sc,[1] ~cext_err, else

Copyright © 2005 IEEE. All rights reserved. 167



IEEE
Std 802.3-2005 REVISION OF IEEE Std 802.3:

" Sec,[0] ~TXD, [0] if (ex_enable, ,= 1)
Sc,[0] ~cext,, else

Sdn[0] =

40.3.1.3.5 Generation of quinary symbols TA,,, TB,,, TC,, TD,,

The nine-bit word Sd,[8:0] is mapped to a quartet of quinary symbols (TA,, TB,, TC,, TD,) according to
Table 40—1 and Table 40-2 shown as Sd,[6:8] + Sd,,[5:0].

Encoding of error indication:

If tx_error,=1 when the condition (tx_enable, * tx _enable, ,) = 1, error indication is signaled by means of
symbol substitution. In this condition, the values of Sd,[5:0] are ignored during mapping and the symbols
corresponding to the row denoted as “xmt_err” in Table 40—1 and Table 40-2 shall be used.

Encoding of Convolutional Encoder Reset:

If tx_error,=0 when the variable csreset, = 1, the convolutional encoder reset condition is normal. This
condition is indicated by means of symbol substitution, where the values of Sd,[5:0] are ignored during
mapping and the symbols corresponding to the row denoted as “CSReset” in Table 40—1 and Table 40-2
shall be used.

Encoding of Carrier Extension during Convolutional Encoder Reset:

If tx_error,=1 when the variable csreset, = 1, the convolutional encoder reset condition indicates carrier
extension. In this condition, the values of Sd,[5:0] are ignored during mapping and the symbols correspond-
ing to the row denoted as “CSExtend” in Table 40—1 and Table 40-2 shall be used when TXD,, = 0x’0OF, and
the row denoted as “CSExtend Err” in Table 40—1 and Table 40-2 shall be used when TXD,, # 0x’OF. The
latter condition denotes carrier extension with error. In case carrier extension with error is indicated during
the first octet of CSReset, the error condition shall be encoded during the second octet of CSReset, and dur-
ing the subsequent two octets of the End-of-Stream delimiter as well. Thus, the error condition is assumed to
persist during the symbol substitutions at the End-of-Stream.

Encoding of Start-of-Stream delimiter:

The Start-of-Stream delimiter (SSD) is related to the condition SSD,, which is defined as (tx_enable;) *
('tx_enable, ,) = 1, where “*” and denote the logic AND and NOT operators, respectively. For the
generation of SSD, the first two octets of the preamble in a data stream are mapped to the symbols corre-
sponding to the rows denoted as SSD1 and SSD2 respectively in Table 40—1. The symbols corresponding to
the SSD1 row shall be used when the condition (tx_enable,) * (!tx_enable,_;) = 1. The symbols correspond-
ing to the SSD2 row shall be used when the condition (tx_enable, ;) * (!tx_enable, ) = 1.

)

Encoding of End-of-Stream delimiter:

The definition of an End-of-Stream delimiter (ESD) is related to the condition ESD,,, which is defined as
('tx_enable, ) * (tn_enable, 4) = 1. This occurs during the third and fourth symbol periods after transmis-
sion of the last octet of a data stream.

If carrier extend error is indicated during ESD, the symbols corresponding to the ESD_Ext Err row shall be
used. The two conditions upon which this may occur are

(tx_error,) * (tx_error, 1) * (tx_error, ) * (TXD,= 0x0F) = 1, and
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(tx_error,) * (tx_error,_;) * (tx_error,,) * (tx_error, 3) * (TXD,= 0x0F) = 1.

The symbols corresponding to the ESD1 row in Table 40—1 shall be used when the condition (!tx_enable,,_,)
* (tx_enable,_3) = 1, in the absence of carrier extend error indication at time n.

The symbols corresponding to the ESD2 Ext 0 row in Table 40—1 shall be used when the condition
('tx_enable, 3) * (tx_enable, 4) * (tx_error,) * (Itx_error,_;) = 1.

The symbols corresponding to the ESD2 Ext 1 row in Table 40-1 shall be used when the condition
('tx_enable, 3) * (tx_enable, 4) * (tx_error,) * (tx_error,_;) * (tx_error, ) * (tx_error, 3) = 1.

The symbols corresponding to the ESD2 Ext 2 row in Table 40—1 shall be used when the condition
('tx_enable, _3) * (tx_enable,_4) * (tx_error,) * (tx_error,_;) * (tx_error, ) * (tx_error,_3) * (TXD,= 0x0F) =
1, in the absence of carrier extend error indication.

NOTE—The ASCII for Table 40-1 and Table 40-2 is available at h'rtp://www.ieee802.org/3/pub1ication/index.html.1

Table 40-1—Bit-to-symbol mapping (even subsets)

Sd,[6:8] =[000] Sd,[6:8] =[010] Sd,[6:8] = [100] Sd,[6:8] = [110]
Condition Sd,[5:0] | TA,TB,,TC,,TD, | TA,TB,TC,TD, | TA,TB,TC,TD, | TA,TB,TC,TD,
Normal 000000 0,0,0,0 0,0,+1,+1 0,+1,+1,0 0,+1, 0,+1
Normal 000001 -2,0,0,0 -2,0,+1,+1 -2,+1+1,0 -2,+1, 0,+1
Normal 000010 0,-2,0,0 0,-2,+1,+1 0,~1,+1,0 0,~1, 0,+1
Normal 000011 -2,-2,0,0 -2,2,+1,+1 -2,~1,+1,0 -2,-1,0,+1
Normal 000100 0,0,-2,0 0,0,—1,+1 0,+1,-1,0 0,+1,-2,+1
Normal 000101 -2,0,-2,0 -2,0,-1,+1 -2,+1,-1,0 -2,+1,-2,+1
Normal 000110 0,-2,-2,0 0,—2,~1,+1 0,-1,-1,0 0,-1,-2,+1
Normal 000111 2,220 2,2-1+1 2-1-1,0 2-1,-2+1
Normal 001000 0,0,0,-2 0,0,+1,-1 0,+41,+1,-2 0,+1, 0,1
Normal 001001 -2,0,0,-2 2,041,-1 241412 —2.+1,0-1
Normal 001010 0,-2,0,2 0,-2,+1,-1 0,-1,+1,-2 0,~1,0,—-1
Normal 001011 22,02 22411 21412 21,01
Normal 001100 0,0,-2,2 0,0,~1,-1 0,+1,-1,-2 0,+1,-2,—1
Normal 001101 -2,0,-2,-2 -2,0,-1,-1 -2,+1,-1,-2 —2,+1,-2,-1
Normal 001110 0,2,-2,-2 0,—2,-1,-1 0,-1,-1,2 0,-1,-2,-1
Normal 001111 -2,2,2-2 -2,-2,-1,-1 -2,-1,-1,-2 -2,-1,-2-1
Normal 010000 141,41+ +1,+1,0,0 +1,0, 0,+1 +1,0,+1,0
Normal 010001 —1,+1,+1,+1 -1,+1,0,0 -1,0,0,+1 -1,0,+1,0
Normal 010010 +1,-1,+1,+1 +1,-1,0,0 +1,-2,0,+1 +1,-2,+1,0

1Copyright release for symbol codes: Users of this standard may freely reproduce the symbol codes in this subclause so it can be used
for its intended purpose. Copies of the symbol codes can be obtained at http://standards.ieee.org/reading/ieee/std/downloads/

index.html.
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Table 40—1—Bit-to-symbol

mapping (even subsets) (continued)

REVISION OF IEEE Std 802.3:

Sd, [6:8] = [000] Sd, [6:8] = [010] Sd, [6:8] = [100] Sd, [6:8] = [110]
Condition Sd,[5:0] | TA,TB,TC,TD, | TA,TB,TC,TD,  TA,TB,TC,TD, | TA,TB,TC,TD,
Normal 010011 —1,-1,+1,+1 -1,-1,0,0 -1,-2,0,+1 -1,-2,+1,0
Normal 010100 A1, +1 +1,41,-2,0 +1,0,2,+1 +1,0-1,0
Normal 010101 BN G g 1,41,-2,0 ~1,0,-2,+1 ~1,0,-1,0
Normal 010110 111,41 +1-1,-2,0 +1,-2,2.41 +1,-2-1,0
Normal 010111 1141 “1,-1,-2,0 12,241 “1,2-1,0
Normal 011000 +1,+1,+1,-1 +1,+1, 0,2 +1,0,0,~1 +1,0,+1,-2
Normal 011001 —1,+1,+1,-1 -1,+1,0,-2 -1,0,0,-1 -1,0,+1,-2
Normal 011010 +1,-1,+1,—1 +1,-1,0,-2 +1,-2, 0,1 +1,-2,+1,-2
Normal 011011 1411 “1,-1,0,2 “1,-2,0,-1 12412
Normal 011100 +1,+1,-1,-1 +1,+1,-2,-2 +1, 0,—2,-1 +1,0,-1,-2
Normal 011101 —1,+1,-1,-1 -1,+1,-2,-2 -1,0,-2,-1 -1,0,-1,-2
Normal 011110 +1,-1,-1,-1 +1,-1,-2,-2 +1,-2,-2,-1 +1,-2-1,-2
Normal 011111 -1,-1,-1,-1 -1,-1,-2,-2 -1,-2,-2-1 -1,-2,-1,-2
Normal 100000 42,0,0,0 42, 0,4+1,+1 +241,+1,0 +2,41,0,+1
Normal 100001 42,2,0,0 42,241 41 +2,-141,0 +2.-1,0,+1
Normal 100010 +2,0,-2,0 42, 0,-1,+1 +2+1,-1,0 241,241
Normal 100011 42,2,2,0 42,2141 +2,1,-1,0 21,241
Normal 100100 +2,0,0,-2 +2,0,+1,—1 +2,+1,+1,-2 +2,+1, 0,1
Normal 100101 +2,-2,0,-2 +2,-2,+1,-1 +2,-1,+1,-2 +2,-1, 0,1
Normal 100110 +2,0,-2,-2 +2,0,-1,-1 +2,+1,-1,-2 +2,+1,-2,—1
Normal 100111 +2,2,-2-2 +2,-2-1,-1 +2,-1,-1,-2 +2,-1,-2,-1
Normal 101000 0,042, 0 +141,42,0 +1,042,+1 0,+1,42,+1
Normal 101001 2,042,0 141,420 ~1,042,+1 2414241
Normal 101010 0,242, 0 +1,-1,42,0 +1,242.+1 0-1,42,+1
Normal 101011 2,242,0 1,-142,0 —1,-2,42,+1 214241
Normal 101100 0,0,+42,-2 +1 41,422 +1,0,42,-1 041,421
Normal 101101 2,042,2 1 41A42,2 ~1,042,-1 241421
Normal 101110 0,2,+2,2 11,422 +1,-242,-1 0,-1,42,-1
Normal 101111 22,2422 11422 12421 21421
Normal 110000 0,+2,0,0 0,+2,+1,+1 +1,+2, 0,+1 +1,+2,+1,0
Normal 110001 -2,42,0,0 2,42 +1,+1 -1,+2, 0,+1 -1,+2+1,0
Normal 110010 0,+2,-2,0 0,+2,-1,+1 +1,+2,-2,+1 +1,+2,-1,0
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Table 40—-1—Bit-to-symbol mapping (even subsets) (continued)
Sd,[6:8] = [000] Sd,[6:8] = [010] Sd, [6:8] = [100] Sd, [6:8] = [110]
Condition Sd,[5:0] | TA,,TB,TC,TD, | TA,TB,TC,TD, | TA,TB,TC,TD, | TA,TB,TC,TD,

Normal 110011 242,2,0 242,141 142,241 “142,-1,0
Normal 110100 0,+2,0,-2 0,42,+1,-1 +1,42,0,-1 142,412
Normal 110101 2,42,0,-2 2424141 1,42, 0,-1 1 A42,41,2
Normal 110110 0,42,-2,-2 0,4+2,-1,-1 +142,2,-1 F1A42,-1,2
Normal 110111 242,22 24211 142,21 14212
Normal 111000 0,0,0,+2 +1,+1,0,+2 0,+1,+1,+2 +1,0,+1,+2
Normal 111001 -2,0,0,+2 -1,+1,0,+2 —2,+1,+1,+2 -1,0,+1,+2
Normal 111010 0,-2,0,+2 +1,-1,0,+2 0,~1,+1,+2 +1,-2,+1,+2
Normal 111011 22,042 11,042 214142 124142
Normal 111100 0,0,2,42 141,242 0,41,-1,42 +1,0,-1,+2
Normal 111101 2,0,242 141,242 241142 “1,0,-142
Normal 111110 0,2,2.42 +1,-1,-2,42 01,142 +1,-2,-1,42
Normal 111111 -2,-2,-2,+2 —1,-1,-2,+2 2-1,-1,+2 -1,-2,-1,+2
xmt_err XXXXXX | 042420 1 A1,42,42 2414142 2414241
CSExtend Err | XXXXXX | —2,42,42,-2 —1-1,42,42 21,142 2, 142,-1
CSExtend XXXXXX | +2,0,0,+2 +2,42,+1,+1 F1A2,42,4+1 1424142
CSReset XXXXXX | 42,-2,-242 242,11 142421 142,142
SSDI XXXXXX | +2,42,42,42 — — —
SSD2 XXXXXX | +2,42,42,-2 — — -
ESDI XXXXXX | +2,42,42,42 — — —
ESD2 Ext 0 | XXXXXX | +2,+2,+2,-2 — — —
ESD2 Ext 1 | XXXXXX | +2,+2,-242 — — —
ESD2 Ext 2 | XXXXXX | +2,-2,+2,+2 — — —

ESD Ext Err | XXXXXX | -2,42,+2,+2 — — —
Idle/Carrier 000000 0,0,0,0 — — —
Extension

Idle/Carrier 000001 -2,0,0,0 — — —
Extension

Idle/Carrier 000010 0,-2,0,0 — — —
Extension

Idle/Carrier 000011 -2,-2,0,0 — — —
Extension

Idle/Carrier 000100 0,0,-2,0 — — —
Extension
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Table 40—1—Bit-to-symbol mapping (even subsets) (continued)

REVISION OF IEEE Std 802.3:

Sd,[6:8] = [000] Sd,[6:8] = [010] Sd,,[6:8] = [100] Sd,[6:8] = [110]
Condition Sd,[5:0] TA,,TB,,TC,,TD, TA,,TB,,TC,,TD, TA,,TB,,TC,,TD, TA,,TB,,TC,,TD,

Idle/Carrier 000101 -2,0,-2,0 — — —
Extension

Idle/Carrier 000110 0,2,-2,0 — — —
Extension

Idle/Carrier 000111 2,220 — — —
Extension

Idle/Carrier 001000 0,0,0,-2 — — —
Extension

Idle/Carrier 001001 -2,0,0,-2 — — —
Extension

Idle/Carrier 001010 0,-2,0,-2 — — —
Extension

Idle/Carrier 001011 -2,-2,0,-2 — — —
Extension

Idle/Carrier 001100 0,0-2-2 — — —
Extension

Idle/Carrier 001101 -2,0,-2,-2 — — —
Extension

Idle/Carrier 001110 0,2,-2,-2 — — —
Extension

Idle/Carrier 001111 2,222 — — —
Extension

Table 40-2—Bit-to-symbol mapping (odd subsets)
Sd,[6:8] = [001] Sd,[6:8] = [011] Sd,[6:8] = [101] Sd,[6:8] = [111]
Condition Sd,,[5:0] TA,,TB,,TC,,TD, | TA,,TB,TC,TD, | TA,TB,TC,TD, | TA,TB,TC,TD,
Normal 000000 0,0,0,+1 0,0,+1,0 0,+1,+1,+1 0,+1,0,0
Normal 000001 -2,0,0,+1 -2,0,+1,0 —2,+1,+1,+1 -2,+1,0,0
Normal 000010 0,-2,0,+1 0,-2,+1,0 0,—1,+1,+1 0,-1,0,0
Normal 000011 -2,-2,0,+1 -2,2+1,0 2,-1,+1,+1 -2,-1,0,0
Normal 000100 0, 0,-2,+1 0,0,-1,0 0,+1,—1,+1 0,+1,-2,0
Normal 000101 -2,0,-2,+1 -2,0,-1,0 2,+1,-1,+1 -2,+1,-2,0
Normal 000110 0,-2,-2,+1 0,2-1,0 0,~1,-1,+1 0,-1,-2,0
Normal 000111 -2,-2,-2+1 -2,2-1,0 2,-1-1+1 2-1-2,0
Normal 001000 0,0,0,~1 0,0,+1,-2 0,+1,+1,-1 0,+1,0,-2
Normal 001001 -2,0,0,~1 -2,0,+1,-2 2,4+1,+1.-1 -2,4+1,0,-2
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Table 40—2—Bit-to-symbol mapping (odd subsets) (continued)
Sd,[6:8] = [001] Sd,[6:8] = [011] Sd,[6:8] = [101] Sd,[6:8] = [111]

Condition Sd,[5:0] | TA,,TB,,TC,,TD, | TA,,TB,TC,,TD,  TA,TB,TC,TD, | TA,TB,TC,TD,
Normal 001010 0,-2,0,-1 0,-2,+1,2 0,-1,+1,-1 0,-1,0,-2
Normal 001011 -2,-2,0,-1 2,241,2 21411 -2,-1,0,-2
Normal 001100 0,0,-2,-1 0,0,-1,-2 0,+1,—1,-1 0,+1,-2,-2
Normal 001101 -2,0,-2,-1 -2,0,-1,-2 —2,+1,-1,-1 2,+1,-2,-2
Normal 001110 0,-2,-2,-1 0,-2,-1,-2 0,-1,-1,-1 0,-1,-2,-2
Normal 001111 2,221 2,212 2,-1,-1,-1 -2,-1,-2,-2
Normal 010000 +1,4+1,41,0 +1,4+1, 0,41 +1,0,0,0 +1,0,+41,+1
Normal 010001 -1,+1,+1,0 -1,+1, 0,+1 -1,0,0,0 -1, 0,+1,+1
Normal 010010 +1,-1,+1,0 +1,-1,0,+1 +1,-2,0,0 +1,-2,+1,+1
Normal 010011 -1,-1,+1,0 -1,-1,0,+1 -1,-2,0,0 —1,-2+1,+1
Normal 010100 +1,+1,-1,0 +1,+1,-2,+1 +1,0,-2,0 +1,0,-1,+1
Normal 010101 “141,-1,0 141,241 ~1,0,-2,0 ~1,0,-1,+1
Normal 010110 +1,-1,-1,0 +1,-1,-2,+1 +1,2,2,0 +1,2,-1,+1
Normal 010111 ~1,-1,-1,0 11,241 ~1,2,-2,0 1,2, 1,41
Normal 011000 +1,+1,+1,-2 +1,+1, 0,1 +1,0,0,-2 +1,0,+1,—1
Normal 011001 —1,+1,+1,-2 -1,+1,0,~1 -1,0,0,-2 -1,0,+1,~1
Normal 011010 +1,-1,+1,-2 +1,-1,0,-1 +1,-2,0,-2 +1,-2,+1,-1
Normal 011011 1412 “1,-1,0,-1 ~1,-2,0,-2 12411
Normal 011100 F141,-1,-2 +1,41,-2,-1 +1,0,-2,2 +1,0,-1,-1
Normal 011101 411,22 141,21 -1,0,-2,-2 -1,0,-1,-1
Normal 011110 1,112 +1,-1,2,-1 +1,2,2,2 1,211
Normal 011111 -1,-1,-1,-2 -1,-1,-2,-1 -1,-2,-2,-2 -1,-2,-1,-1
Normal 100000 +2,0,0,+1 +2,0,+1,0 +2,+1,+1,+1 +2,+1,0,0
Normal 100001 +2,-2,0,+1 +2,2.41,0 214141 +2,-1,0,0
Normal 100010 +2,0,-2,+1 +2,0,-1,0 241,141 +2.41,-2,0
Normal 100011 +2,-2-2.+1 +2,2.-1,0 +2,-1,-1,+1 +2,1,2,0
Normal 100100 +2,0,0,-1 +2,0,+1,2 +2,+1,+1,-1 +2,+1,0,-2
Normal 100101 +2,-2,0,~1 +2,-2,+1,-2 +2,~1,+1,—1 +2,-1,0,-2
Normal 100110 +2,0,-2,-1 +2,0,-1,-2 +2,+1,-1,-1 +2,+1,-2,-2
Normal 100111 2,221 +2,2.1,2 21,11 +2,1,2,2
Normal 101000 0,0,4+2,+1 +1,41,42,+1 +1,0,42,0 0+1,42,0
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Table 40—2 —Bit-to-symbol mapping (odd subsets) (continued)

REVISION OF IEEE Std 802.3:

Sd,,[6:8] = [001] Sd,,[6:8] = [011] Sd,,[6:8] = [101] Sd,,[6:8] = [111]
Condition Sd,[5:0] | TA,,TB,TC,,TD, | TA,TB,TC,TD, | TA,TB,TC,TD, | TA,TB,TC,TD,

Normal 101001 -2,0,42,+1 —1,41,42,+1 -1,0,42,0 241,42,0
Normal 101010 0,-2,+2,+1 +1,-1,+2,+1 +1,-2,+2,0 0,-1,+2,0
Normal 101011 2, 242.41 11,4241 1,242,0 2.142,0
Normal 101100 0,0,+2,-1 +1,+1,+2,-1 +1,0,+2,2 0,+1,+2,-2
Normal 101101 22,0421 “1,+1,42,-1 ~1,042,2 241,422
Normal 101110 0,2,42,-1 11,421 +1,2,42,2 0,-1,42,2
Normal 101111 22421 11,421 “1,-2,42,-2 21,422
Normal 110000 0,+2,0,+1 0,+2,+1,0 +1,+2,0,0 +1,+2,+1,+1
Normal 110001 -2,4+2,0,+1 2,42,+1,0 -1,+2,0,0 —1,+2,+1,+1
Normal 110010 0,+2,-2,+1 0,+2,-1,0 +1,+2,-2,0 +1,+2,-1,+1
Normal 110011 —-2,+2,-2.+1 -2,+2,-1,0 -1,+2,-2,0 -1,+2,-1,+1
Normal 110100 0,42, 0,1 042,41,-2 +1,42,0,-2 +1,42,41-1
Normal 110101 —2,42,0,-1 242,412 ~1,42,0,-2 142,411
Normal 110110 0,42,-2,-1 0,42,—1,-2 +1,42,2,2 +1,42-1,-1
Normal 110111 242,21 24212 142,22 142,11
Normal 111000 +1,41,4+1,42 0,0,4+1,+2 +1,0, 0,42 0,+1, 0,42
Normal 111001 —1,+1,+1,+2 -2,0,+1,+2 -1,0,0,+2 -2,+1,0,+2
Normal 111010 F1,1,41,42 0,2,+1,+2 +1,-2, 0,42 0,-1,0,+2
Normal 111011 “1,-1,+1,+2 2,-24+1,42 -1,-2,042 21,042
Normal 111100 141142 0,0,-1,+2 +1,0,-2,+2 0,+1,-2,42
Normal 111101 B S P ) -2,0,-1,42 -1,0,-2,+2 241,242
Normal 111110 +1,-1,-1,+2 0,-2,-1,+2 +1,-2,-2,+2 0,-1,-2,+2
Normal 111111 —1,-1,-1,+2 -2,2-1,+2 -1,-2,-2,+2 -2,-1,-2,+2
xmt_err XXXXXX 2,42, 0,+1 0,42,4+1,42 +1,42,42,0 +2,41,42,0
CSExtend Err | XXXXXX +2,42,-2,-1 242,142 142,422 +2,-1,42,-2
CSExtend XXXXXX +2,0,42,+1 +2,0,+1,+2 +1, 0,42,+2 +2,+1, 0,+2
CSReset XXXXXX 22421 +2,2-1+2 12,4242 +2,-1,-2,42

40.3.1.3.6 Generation of A, B, C,,, D,

The four bits Sg,[3:0] are used to randomize the signs of the quinary symbols (A,, B, C,,, D,)) so that each
symbol stream has no dc bias. The bits are used to generate binary symbols (SnA,, SnB,, SnC,, SnD,)) that,

when multiplied by the quinary symbols (TA,, TB,, TC,, TD,), result in (A, B,, C,, D,).
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PCS Transmit ensures a distinction between code-groups transmitted during idle mode plus SSD and those
transmitted during other symbol periods. This distinction is accomplished by reversing the mapping of the
sign bits when the condition (tx_enable, , + tx _enable, 4) = 1. This sign reversal is controlled by the vari-
able Srev, defined as

Srev, = tx_enable,_,+ tx_enable,_,

The binary symbols SnA,,, SnB,,, SnC,, and SnD,, are defined using Sg,[3:0] as

4+ 1if[(Sg, [0]  Srev,) = 0]
SnA,=
-1 else
 +1if[(Sg, /1]~ Srev,)= 0]
B = _
SnB, -1 else
 +1if[(Sg, [2] " Srev,) = 0]
SnCy= -1 else
 +1if[(Sg, [3]  Srev,) = 0]
SnD,= —
-1 else

The quinary symbols (A,, B,, C,, D,) are generated as the product of (SnA,, SnB,, SnC,, SnD,) and (TA,,
TB,, TC,, TD,) respectively.

A,= TA, x SnAd,

B,= TB, x SnB,

C,=T1C,x 5nC,

D,=TD, x SnD,

40.3.1.4 PCS Receive function

The PCS Receive function shall conform to the PCS Receive state diagram in Figure 40—10a including com-
pliance with the associated state variables as specified in 40.3.3.

The PCS Receive function accepts received code-groups provided by the PMA Receive function via the
parameter rx_symb_vector. To achieve correct operation, PCS Receive uses the knowledge of the encoding
rules that are employed in the idle mode. PCS Receive generates the sequence of vectors of four quinary
symbols (RA,, RB,, RC,, RD,) and indicates the reliable acquisition of the descrambler state by setting the
parameter scr_status to OK. The sequence (RA,, RB,, RC,, RD,) is processed to generate the signals
RXD<7:0>, RX DV, and RX ER, which are presented to the GMIIL. PCS Receive detects the transmission
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of a stream of data from the remote station and conveys this information to the PCS Carrier Sense and PCS
Transmit functions via the parameter 1000BTreceive.

40.3.1.4.1 Decoding of code-groups

When the PMA indicates that correct receiver operation has been achieved by setting the loc_rcvr_status
parameter to the value OK, the PCS Receive continuously checks that the received sequence satisfies the
encoding rule used in idle mode. When a violation is detected, PCS Receive assigns the value TRUE to the
parameter 1000BTreceive and, by examining the last two received vectors (RA, 1, RB,_;, RC,.;, RD,_;) and
(RA,, RB,, RC,, RD,), determines whether the violation is due to reception of SSD or to a receiver error.

Upon detection of SSD, PCS Receive also assigns the value TRUE to the parameter 1000BTreceive that is
provided to the PCS Carrier Sense and Collision Presence functions. During the two symbol periods corre-
sponding to SSD, PCS Receive replaces SSD by preamble bits. Upon the detection of SSD, the signal
RX DV is asserted and each received vector is decoded into a data octet RXD<7:0> until ESD is detected.

Upon detection of a receiver error, the signal RX ER is asserted and the parameter rxerror_status assumes
the value ERROR. De-assertion of RX ER and transition to the IDLE state (rxerror_status=NO_ERROR)
takes place upon detection of four consecutive vectors satisfying the encoding rule used in idle mode.

During reception of a stream of data, PCS Receive checks that the symbols RA, RB,, RC,, RD, follow the
encoding rule defined in 40.3.1.3.5 for ESD whenever they assume values + 2. PCS Receive processes two
consecutive vectors at each time n to detect ESD. Upon detection of ESD, PCS Receive de-asserts the signal
RX DV on the GMIL. If the last symbol period of ESD indicates that a carrier extension is present, PCS
Receive will assert the RX ER signal on the GMII. If no extension is indicated in the ESD2 quartet, PCS
Receive assigns the value FALSE to the parameter receiving. If an extension is present, the transition to the
IDLE state occurs after detection of a valid idle symbol period and the parameter receiving remains TRUE
until check idle is TRUE. If a violation of the encoding rules is detected, PCS Receive asserts the signal
RX_ER for at least one symbol period.

A premature stream termination is caused by the detection of invalid symbols during the reception of a data
stream. Then, PCS Receive waits for the reception of four consecutive vectors satisfying the encoding rule
used in idle mode prior to de-asserting the error indication. Note that RX DV remains asserted during the
symbol periods corresponding to the first three idle vectors, while RX ER=TRUE is signaled on the GMII.
The signal RX ER is also asserted in the LINK FAILED state, which ensures that RX ER remains asserted
for at least one symbol period.

40.3.1.4.2 Receiver descrambler polynomials

The PHY shall descramble the data stream and return the proper sequence of code-groups to the decoding
process for generation of RXD<7:0> to the GMII. For side-stream descrambling, the MASTER PHY shall
employ the receiver descrambler generator polynomial g'y,(x) = 1 + x* + x> and the SLAVE PHY shall
employ the receiver descrambler generator polynomial g's(x) = 1+ xex,

40.3.1.5 PCS Carrier Sense function

The PCS Carrier Sense function generates the GMII signal CRS, which the MAC uses for deferral in half
duplex mode. The PCS shall conform to the Carrier Sense state diagram as depicted in Figure 40—11 includ-
ing compliance with the associated state variables as specified in 40.3.3. The PCS Carrier Sense function is
not required in a 1000BASE-T PHY that does not support half duplex operation.
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Appendix 2 — Source code for Matlab simulations

Thefollowingis our full simulation code for the Matlab simulations. We include them for
completing the description of our simulations.

Appendix 2.a. — Matlab simulation for 4B5B/MLT-3

%%%%% MAIN SIMULATION

%SYMBOLS
n = 40000;
symbols = floor(rand(1,n)*16);
%CONVERT to 4b5b
bits =[1,1,1,1,0];
fori=1:nn
if symbols(i) == 0
bits = [bits, 111 1 0];
elseif symbols(i) == 1
bits = [bits, 0 1 0 0 1];
elseif symbols(i) == 2
bits = [bits, 101 0 0];
elseif symbols(i) == 3
bits = [bits, 101 0 1];
elseif symbols(i) == 4
bits = [bits, 01 0 1 0];
elseif symbols(i) == 5
bits = [bits, 01 0 1 1];
elseif symbols(i) == 6
bits = [bits, 01 1 1 0];
elseif symbols(i) == 7
bits = [bits, 011 1 1];
elseif symbols(i) == 8
bits = [bits, 100 1 0];
elseif symbols(i) == 9
bits = [bits, 100 1 1];
elseif symbols(i) == 10
bits = [bits, 101 1 0];
elseif symbols(i) == 11
bits = [bits, 101 1 1];
elseif symbols(i) == 12
bits = [bits, 110 1 0];
elseif symbols(i) == 13
bits = [bits, 11 0 1 1];
elseif symbols(i) == 14
bits = [bits, 111 0 0];
elseif symbols(i) == 15
bits = [bits, 111 0 1];
else i/0;
end
end
%CONVERT to MLT
output = zeros(1,length(bits));
state = 0;
prevState = -1;
for i = 1:length(bits)
if bits(i)==1
if state==0 && prevState==-1
output(i) = 1;



elseif state==0 && prevState==
output(i) = -1;
end
if state==1 || state==-1
output(i) = 0;
end
prevState = state;
elseif bits(i)==0
output(i) = state;
else
i10;
end
state = output(i);
end
%ANALYSIS
bitsCount00 = 0;
bitsCount01 = 0;
bitsCount11 = 0;
bitsCount10 = 0;
for i = 2:length(bits)
if bits(i-1)==0 && bits(i)==0
bitsCount00 = bitsCount00 + 1;
elseif bits(i-1)==0 && bits(i)==1
bitsCount01 = bitsCount01 + 1;
elseif bits(i-1)==1 && bits(i)==1
bitsCount11 = bitsCount11 + 1;
elseif bits(i-1)==1 && bits(i)==0
bitsCount10 = bitsCount10 + 1;
else
i/0;
end
end
%ENERGY
energy = output."2;
%OUTPUT

n

%lengthCheck = length(bits)/(length(symbols) + 1)
avgSymbols = mean([0, symbols])

avgBits = mean(bits)

%avgDCOutput = mean(output)

avgEnergy = mean(sqrt(energy))

bitsFraction00 = bitsCount00 / (length(bits)-1)
bitsFraction01 = bitsCount01 / (length(bits)-1)
bitsFraction11 = bitsCount11 / (length(bits)-1)
bitsFraction10 = bitsCount10 / (length(bits)-1)

Appendix 2.b. — Matlab simulation for 8B10B

%%%% MAIN SIMULATION

%SYMBOLS
n = 20000;
symbols=[10100010J;

code5=[100111 011000; ..
011101 100010;...
101101 010010;...
110001 110001;..
110101 001010;...

101001 101001; ..



011001 011001,
111000 000111,
111001 000110;
100101 100101;

010101 010101;
110100 110100;
001101 001101,
101100 101100;
011100 011100;

010111 101000;
011011 100100;
100011 100011;
010011 010011,
110010 110010;

001011 001011,
101010 101010;
011010 011010;
111010 000101;
110011 001100;

100110 100110;
010110 010110;
110110 001001;
001110 001110;
101110 010001;

011110 100001;
101011 010100

I3

code3=[1011 0100;

1001
0101
1100
1101
1010
0110
1110
I

1001;

0001,

%CONVERT to 8b10b

bits = [];
i=1;
currentRD = 0;

while i<length(symbols)
if (i+7 > length(symbols))
foo = length(symbols) - i;
current8 = symbols(i:length(symbols));
current8 = [current10, zeros(foo)];

else

current8 = symbols(i:i+7);

end

x = code5(getBitValues5(rot90(rot90(current8(4:

if currentRD

=1

code = x(7:12);

else

code = x(1:6);

disparity = ones(code) - zeros(code);
currentRD = compute_RD(currentRD, disparity);

bits = [bits, code];

y = code3(getBitValues3(rot90(rot90(current8(1:

if (currentRD ==
code = y(5:8);

else

code =y(1:4);

disparity = ones(code) - zeros(code);

8)M+1);

3)N+1);



currentRD = compute_RD(currentRD, disparity);
bits = [bits, code];

i+=8;
end

%%%% SUPPORT FUNCTIONS

function [ number ] = getBitValues5( bits )

if bits ==[0 000 0]
number = 0;

elseif bits==[00 0 0 1]
number = 1;

elseif bits==[0001 0]
number = 2;

elseif bits==[000 1 1]
number = 3;

elseif bits==[00 1 0 0]
number = 4;

elseif bits==[00 10 1]
number = 5;

elseif bits==[00 11 0]
number = 6;

elseif bits==[001 1 1]
number = 7;

elseif bits==[01 00 0]
number = 8;

elseif bits==[01 00 1]
number = 9;

elseif bits==[01010]
number = 10;

elseif bits==[0101 1]
number = 11,

elseif bits==[01100]
number = 12;

elseif bits==[0110 1]
number = 13;

elseif bits==[0111 0]
number = 14;

elseif bits==[01111]
number = 15;

elseif bits==[1 000 0]
number = 16;

elseif bits==[1000 1]
number = 17

elseif bits==[1001 0]
number = 18;

elseif bits==[1001 1]
number = 19;

elseif bits==[10100]
number = 20;

elseif bits==[1010 1]
number = 21;

elseif bits==[1011 0]
number = 22;

elseif bits==[10111]
number = 23;

elseif bits==[1100 0]
number = 24;

elseif bits==[1100 1]
number = 25;

elseif bits==[1101 0]
number = 26;

elseif bits==[11011]
number = 27,

elseif bits==[11100]



number = 28;
elseif bits==[11101]
number = 29;
elseif bits==[11110]
number = 30;
elseif bits==[1111 1]
number = 31,

else
number = 1/0;
end

function [ RD ] = compute_RD( currentRD, disparity
%UNTITLED1 Summary of this function goes here
% Detailed explanation goes here

if currentRD==-1 && disparity == -2
RD =0;

elseif currentRD==-1 && disparity ==
RD =-1;

elseif currentRD == -1 && disparity == 2
RD =1,

elseif currentRD ==1 && disparity == -2
RD =-1;

elseif currentRD == 1 && disparity == 0
RD =1,

elseif currentRD == 1 && disparity ==
RD =0;

else
RD =0;

end

function [ number ] = getBitValues3( bits )

if bits==[000]
number = 0O;
elseif bits ==[00 1]
number = 1;
elseif bits==[0 1 0]
number = 2;
elseif bits==[0 1 1]
number = 3;
elseif bits==[1 0 0]
number = 4;
elseif bits ==[1 0 1]
number = 5;
elseif bits==[1 1 0]
number = 6;
elseif bits==[111]
number = 7;
else
number = 1/0;
end



Appendix 2.c. — Matlab simulation for 4D-PAM5

%%%% MAIN SIMULATION

TXD=[1,1,1,1,1,1,1,1, 0,0,0,0,0,0, O, Of;
Scr=1;
Syn=[J;
Sxn=[];
Sgn=[J;
Csn=[];

Sy=zeros(1,4);
Sx=zeros(1,4);
Sg=zeros(1,4);
Cs=zeros(1,3);

even =1,
i=1;

[Tablel, Table2] = initializeLookupTables;
bits = [];

while(i<= length(TXD))

%save state
Syn = Sy;
Sxn = Sx;
Sgn = Sg;
Csn =Cs;

Scr = getMasterScrambler(Scr);

Sy = [Scr(1), bitxor(Scr(4), Scr(9)), ...
bitxor(Scr(7), Scr(17)), ...
bitxor(bitxor(bitxor(Scr(10), Scr(15)),

Sx = [bitxor(Scr(5), Scr(7)), bitxor(bitxor(bit
bitxor(bitxor(bitxor(Scr(11), Scr(13)),
bitxor(bitxor(bitxor(bitxor(bitxor(bitx

Scr(21)), Scr(24)), Scr(26)), Scr(29)), Scr(31))];

Sg = [bitxor(Scr(2), Scr(6)), bitxor(bitxor(bit
bitxor(bitxor(bitxor(Scr(8), Scr(12)),
bitxor(bitxor(bitxor(bitxor(bitxor(bitx

Scr(20)), Scr(21)), Scr(25)), Scr(26)), Scr(30))];

Sc = zeros(1, 8);
Sc(5:8) = Sx(1:4);
if(even)
Sc(2:4) = Sy(2:4);
else
Sc(2:4) = xor(Syn(2:4), [1,1,1]);
end

Sc(1) = Sy(1);

Sd = zeros(1,9);

Cs(1) = Csn(3);

Sd(9) = Cs(1);

Sd(1:8) = xor(Sc(1:8), TXD(i:i+7));
display(TXD(i:i+7));

Cs(1) = bitxor(Sd(7), Csn(1));
Cs(2) = bitxor(Sd(8), Csn(2));

Tx = lookupSymbol(Tablel, Table2, Sd);

Scr(20)), Scr(25))];

xor(Scr(8), Scr(10)), Scr(13)), Scr(15)),...

Scr(21)), Scr(23)),...
or(bitxor(Scr(14), Scr(16)), Scr(19)),

xor(Scr(5), Scr(9)), Scr(10)), Scr(14)),...
Scr(18)), Scr(22)),...
or(bitxor(Scr(11), Scr(15)), Scr(16)),



-1;end
-1;end
-1;end
-1;end

1; else SnA
1; else SnB
1; else SNC
1; else SNnD

TX(1);
TX(2);
TX(3);
TX(4);

bits = [bits, Ta*SnA, Tb*SnB, Tc*SnC, Td*SnD];

if (bitxor(Sg(1), 0) == 0) SnA
if (bitxor(Sg(2), 0) == 0) SnB
if (bitxor(Sg(3), 0) == 0) SnC
if (bitxor(Sg(4), 0) == 0) SnD

Ta
Th
Tc
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-2,-22,1 -1,-1,21 -1,-2,2,0 -2,-
0,02-1 112-1 1,02,-2 0,1,
-2,02,-1 -1,1,2-1 -1,0,2,-2 -2,
0-22-1 1-12-1 1,-22,-2 0,
-2,-22,-1 -1,-1,2,-1 -1,-2,2,-2 -2
02,01 0,21,0 12,0,0 1,21
-2,2,01 -221,0 -1,2,0,0 -1,2
02,-21 02-1,0 12-2,0 1,2,
-2,2,-21 -2,2-1,0 -1,2,-2,0 -1,
02,0-1 021-2 1,2,0,-2 1,2,
-2,2,0,-1 -22,1,-2 -1,2,0,-2 -1,
02,-2-1 02-1,-2 12,-2-2 1.2
-2,2,-2,-1 -22,-1,-2 -12,-2,-2 -1
1112 0,012 1,0,02 01,0
-,1,12 -2,01,2 -1,0,0,2 -2,1,
1,-1,12 0,212 1,-2,0,2 0,1,
-1,-1,1,2 -2,-212 -1,-2,0,2 -2,-
11-12 0,012 1,022 0.1,
-1,1,-1,2 -2,0,-1,2 -1,0,-2,2 -2,
1,-1,-12 0,-2-1,2 1,-2,-2,2 O,-
-1,-1,-1,2 -2,-2,-1,2 -1,-2,-22 -2

function scrambler = getMasterScrambler( currentScr

if(length(currentScrambler) ==0)

scrambler = round(random(‘uniform’, zeros(1,33)
else

scrambler = [xor(currentScrambler(13), currentS
end

function scrambler = getSlaveScrambler( currentScra

if(length(currentScrambler) ==0)

scrambler = round(random(‘uniform’, zeros(1,33)
else

scrambler = [xor(currentScrambler(13), currentS
end

function T = lookupSymbol( Tablel, Table2, Sd )
row = getBitValues6(rot90(rot90(Sd(1:6))))+1;

if(Sd(7:9) == [0,0,0])
T = Table1(row, 1:4);
elseif(Sd(7:9) == [0,1,0])
T = Table1(row, 5:8);
elseif(Sd(7:9) == [1,0,0])
T = Table1(row, 9:12);
elseif(Sd(7:9) == [1,1,0])
T = Table1(row, 13:16);
elseif(Sd(7:9) == [0,0,1])
T = Table2(row, 1:4);
elseif(Sd(7:9) == [0,1,1])
T = Table2(row, 5:8);
elseif(Sd(7:9) == [1,0,1])
T = Table2(row, 9:12);
elseif(Sd(7:9) == [1,1,1])
T = Table2(row, 13:16);
else
T =1/0;
end

1,-2,2;
1,-2,2;
-1,-2,2;

ambler )

,ones(1,33)));

crambler(33)), currentScrambler(1:32)];

mbler)

,ones(1,33)));

crambler(33)), currentScrambler(1:32)];



function [ number ] = getBitValues6( bits )

if bits ==[000000]
number = 0O;

elseif bits==[00000 1]
number = 1;

elseif bits==[00001 0]
number = 2;

elseif bits==[0000 1 1]
number = 3;

elseif bits==[000100]
number = 4;

elseif bits==[00010 1]
number = 5;

elseif bits==[000110]
number = 6;

elseif bits==[00011 1]
number = 7;

elseif bits==[001000]
number = 8;

elseif bits==[001 00 1]
number = 9;

elseif bits==[001010]
number = 10;

elseif bits==[001011]
number = 11,

elseif bits==[001 10 0]
number = 12;

elseif bits==[001101]
number = 13;

elseif bits==[001110]
number = 14;

elseif bits==[001111]
number = 15;

elseif bits==[01 000 0]
number = 16;

elseif bits==[01000 1]
number = 17,

elseif bits==[01001 0]
number = 18;

elseif bits==[010011]
number = 19;

elseif bits==[010100]
number = 20;

elseif bits==[010101]
number = 21;

elseif bits==[010110]
number = 22;

elseif bits==[010111]
number = 23;

elseif bits==[01100 0]
number = 24;

elseif bits==[011001]
number = 25;

elseif bits==[01101 0]
number = 26;

elseif bits==[011011]
number = 27,

elseif bits==[011100]
number = 28;

elseif bits==[011101]
number = 29;

elseif bits==[011110]
number = 30;

elseif bits==[011111]
number = 31;

elseif bits==[10000 0]
number = 32;

elseif bits==[10000 1]
number = 33;

elseif bits==[10001 0]



number = 34;

elseif bits==[10001 1]
number = 35;

elseif bits==[100100]
number = 36;

elseif bits==[100101]
number = 37,

elseif bits==[100110]
number = 38;

elseif bits==[100111]
number = 39;

elseif bits==[101000]
number = 40;

elseif bits==[10100 1]
number = 41,

elseif bits==[101010]
number = 42;

elseif bits==[101011]
number = 43;

elseif bits==[101100]
number = 44;

elseif bits==[101101]
number = 45;

elseif bits==[101110]
number = 46;

elseif bits==[101111]
number = 47,

elseif bits==[110000]
number = 48;

elseif bits==[11000 1]
number = 49;

elseif bits==[110010]
number = 50;

elseif bits==[11001 1]
number = 51;

elseif bits==[110100]
number = 52;

elseif bits==[110101]
number = 53;

elseif bits==[110110]
number = 54;

elseif bits==[110111]
number = 55;

elseif bits==[111000]
number = 56;

elseif bits==[11100 1]
number = 57,

elseif bits==[111010]
number = 58;

elseif bits==[111011]
number = 59;

elseif bits==[111100]
number = 60;

elseif bits==[111101]
number = 61;

elseif bits==[111110]
number = 62;

elseif bits==[111111]
number = 63;

else
number = 1/0;

end



