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Abstract

Sparse Coding Models of Natural Images: Algorithms for Efficient Inference and

Learning of Higher-Order Structure

by

Pierre Jérôme Garrigues

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Bruno Olshausen, Chair

The concept of sparsity is widely used in the signal processing, machine learning,

and statistics communities for model fitting and solving inverse problems. It is also

important in neuroscience as it is thought to underlie the neural representations used

in the brain. In this thesis, I derive new algorithms for learning higher-order structure

in sparse coding models of images, and I present an improved algorithm for inferring

sparse representations with sequential observations.

It has been shown that adapting a dictionary of basis functions to the statistics

of natural images so as to maximize sparsity in the coefficients results in a set of

dictionary elements whose spatial properties resemble those of primary visual cortex

receptive fields. The operation to compute the sparse coefficients can be implemented

via an `1-penalized least-square problem commonly referred to as Basis Pursuit De-

noising or Lasso. However, the resulting sparse coefficients still exhibit pronounced

statistical dependencies, thus violating the independence assumption of the sparse

coding model. I propose in this thesis two models that attempt to capture the de-

pendencies among the basis function coefficients. The first model includes a pairwise

coupling term in the prior over the coefficient activity states. When adapted to
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the statistics of natural images, the coupling terms converge to a solution involving

facilitatory and inhibitory interactions among neighboring basis functions. In the

second model, the prior is a mixture of Laplacian distributions, where the statisti-

cal dependencies among the basis function coefficients are modeled through the scale

parameters. I show that I can leverage the efficient algorithms developed for Basis

Pursuit Denoising to derive improved inference algorithms with the Laplacian scale

mixture prior.

I also propose in this thesis a new algorithm, RecLasso, to solve the Lasso with

online observations. I introduce an optimization problem that allows us to compute an

homotopy from the current solution to the solution after observing a new data point.

I compare RecLasso to Lars and Coordinate Descent, and present an application

to compressive sensing with sequential observations. I also propose an algorithm to

automatically update the regularization parameter after observing a new data point.

Chair Date
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Natural images

Natural images are the typical images that we see as we interact with our environment.

For instance, a person taking a walk in a forest would encounter images such as the

ones in Figure 1.1. The retina senses the visual world via its photoreceptor cells

which absorb photons and signal the light information via a change in membrane

potential. This information is used by the visual system to form a representation of

the visual world that is subsequently used to interact with the world and accomplish

tasks such as navigation or object recognition and grasping. To gain insight into what

this representation might be I will study in this work natural photographic images.

Such images are sensed by the CCD array of the digital camera that turns light into

discrete signals, and the image in its raw format is represented as a collection of

pixels.

When looking at the images in Figure 1.1, one does not perceive the individual

pixel values, but rather trees, foliage, or the three-dimensional structure of the scene.
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Chapter 1. Introduction

The problem of image representation is to understand how the pixels are mapped

to our percepts. This is a task that we have to perform as humans to interact

with the world, and our brains have evolved an incredibly sophisticated machinery

to accomplish the task of interpreting the visual signals sensed in our retina. No

computer algorithm to date is able to replicate a human’s ability to interpret complex

visual inputs.

We consider images as vectors x = (x1, . . . , xn) ∈ Rn, where the xi’s are the

pixels and n is the number of pixels. Images are high-dimensional; with modern

digital cameras, n is typically in the order of 10 millions. However, natural images

occupy a very small portion of Rn. Indeed, if we pick an element at random in this

space, it is extremely unlikely that it will look anything like the type of visual input

we typically encounter. The field of natural image statistics aims to capture the

complex structure of the space of natural images. Understanding the statistics of

natural images will allow us to derive representations such that the underlying causes

giving rise to our percepts are explicit. Such a representation can then be used to

teach a machine how to interpret images and replicate the human visual system’s

performance. Furthermore, the learned representations provide a hypothesis for how

the brain is representing images, and the resulting predictions can then be tested

experimentally.

1.1.2 Efficient coding hypothesis

The efficient coding hypothesis [Barlow, 1961][Attneave, 1954] assumes that nervous

systems exploit the statistical dependencies contained in sensory signals. It supposes

that the brain has internalized the statistics of its sensory inputs and represents them

optimally. Hence, we can gain insight into what types of representations are used in

the brain and how they are computed by developing probabilistic models of natural

2



Chapter 1. Introduction

Figure 1.1: Natural scenes taken from the Kyoto database [Doi et al., 2003].
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Chapter 1. Introduction

images that capture their structure.

For instance, natural images are redundant in that there exist statistical depen-

dencies among the pixel values. In a biological system, it is therefore wasteful to

represent each “pixel” value individually, and the visual system should reduce re-

dundancy by removing statistical dependencies [Barlow, 1961]. We will see that an

important characteristic of natural images is that they are sparse, and that this prop-

erty can be used to explain early visual processing.

1.1.3 Applications to inverse problems

Having a prior p(x) for natural images is necessary for all inverse problems encoun-

tered in image processing. Let us consider for instance the problem of image denoising.

An image x is corrupted by some noise ν, resulting in the noisy image

y = x + ν. (1.1)

The goal of denoising is to recover the original image x. This problem is ill-posed:

there are many combinations of x and ν such that (1.1) is verified. However, few of

those combinations are such that x is a natural image having high probability under

the image model p(x), which allows us to regularize this problem. We consider as our

solution the maximum a posteriori (MAP) estimate of x given y. Using Bayes’ rule

we can write

p(x | y) =
p(y | x)p(x)

p(y)
=

pν(y − x)p(x)

p(y)
,

where pν is the probability distribution of the noise. If the noise is independent

identically distributed (i.i.d.) Gaussian with variance σ2, we have

pν(ν) =
1

(2πσ2)n/2
e−

1
2σ2 ‖ν‖22 .

4



Chapter 1. Introduction

The solution of the denoising problem is therefore given by

x̂ = arg max
x

pν(y − x)p(x).

Image priors have been used successfully for image denoising [Portilla et al., 2003][Elad

and Aharon, 2006]. Other inverse problems using image priors are in-painting [Roth

and Black, 2009], matting [Levin and Weiss, 2007], or deconvolution [Fergus et al.,

2006]. The image priors that are used in these algorithms are far from capturing all

the structure in natural images. Constructing better models of images is therefore

an important problem as it will result in increased performance in image inverse

problems.

1.2 Second order image models

Images are composed of large smooth regions where pixel values change rather slowly.

Hence, the pixels in images are highly correlated. We review in this Section proba-

bilistic models that capture the second-order correlations in images, and look at their

descriptive power.

1.2.1 Amplitude spectrum of images

The pixel correlations are captured by the pixel autocorrelation function, whose

Fourier transform is the power spectrum. We first review an empirical observation

concerning the decay rate of the power spectrum in individual natural images. Let

x[i, j] denote the pixel at the position (i, j) in an image x whose dimensions are p by

5



Chapter 1. Introduction

p pixels. The 2D Fourier transform of x is given by

X[fi, fj] =

p∑
i,j=0

x[i, j]e−j 2π
N

(fii+fjj) (1.2)

= A[fi, fj]e
jΘ(fi,fj), (1.3)

where A[fi, fj] is the amplitude spectrum of x, and Θ[fi, fj] is the phase. The power

spectrum A[fi, fj]
2 gives information about the distribution of the signal’s energy

among the different spatial frequencies.

Let A[f ]2 be the power spectrum of A[fi, fj]
2 averaged over all orientations, i.e.

such that f 2
i + f 2

j = f 2. We show in Figure 1.2 the average amplitude spectrum A[f ]

for each image that appeared in Figure 1.1. We can see that even though these images

are rather different and contain diverse types of structures, their amplitude spectrum

decays with a similar profile that can be approximated by 1/f [Field, 1987]. This

property is in fact consistent over most natural images.

1.2.2 A Gaussian image model

Let D = {x(1), . . . , x(N)} be a dataset of image patches xi ∈ Rn that have been

randomly selected from the collection of images shown in Figure 1.1. We show in

Figure 1.3 a collection of 100 such patches. We denote by p∗ the empirical distribution,

i.e.

p∗(x) =
1

N

N∑
k=1

δ(x− x(k)).

The empirical correlation between pixel i and pixel j is

< xixj >p∗=
1

N

N∑
k=1

x
(k)
i x

(k)
j ,
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Chapter 1. Introduction

10-1 100

log f

102
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g
A

[f
]

Figure 1.2: Amplitude spectrum decay of the images in Figure 1.1, where the spectrum
is averaged over all orientations. The black line corresponds to a slope of −1.
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Chapter 1. Introduction

Figure 1.3: Image patches of dimension 16 × 16 selected from a collection of gray-scale
natural images whose pixel values are between 0 and 255. We show patches whose pixel
variance is above 20 which has the effect of rejecting patches coming from uniform regions
such as the sky.
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Chapter 1. Introduction

where < . >p∗ denotes the expectation with respect to the distribution p∗. There are

many probabilistic models p(x) that capture the second-order correlations, i.e. where

< xixj >p=< xixj >p∗ for every pixel i and j. It can be shown that the family of

distributions with fixed second-order correlations and highest entropy is the family of

Gaussian distributions parameterized by a mean µ and covariance matrix Σ

p(x | µ, Σ) =
1

(2π)n/2 det Σ1/2
e−

1
2
(x−µ)T Σ−1(x−µ).

Hence, for our ensemble of image patches D, we wish to find the parameters of the

Gaussian model µ and Σ that best fit the data which is typically done via maximum

likelihood

max
µ,Σ

〈log p(x | µ, Σ)〉p∗ .

It can be shown easily that the derivative of the cost function is zero whenµ̂ = 1
N

∑N
k=1 x(k)

Σ̂ = 1
N

∑N
k=1 (x(k) − µ̂)(x(k) − µ̂)T

Note that this estimate of the covariance matrix is biased. Now that we have a

Gaussian model, we can rotate image patches such that the representation is aligned

with the axis of maximum variance. The covariance matrix Σ̂ is symmetric and can be

written Σ̂ = V ΓV T , where Γ is a diagonal matrix whose elements are the eigenvalues

of Σ̂, and V is an orthogonal matrix or rotation. Let a = V T x. We have

〈
aaT
〉

=
〈
V T x(V T x)T

〉
= V T

〈
xxT

〉
V = V T Σ̂V = V T V ΓV T V = Γ.

Hence, the representation a does not have second-order correlations. The filters that

map x to a are the columns of V and displayed in Figure 1.4. We can see that they

9



Chapter 1. Introduction

resemble a Fourier transform, which is also a consequence of the Toeplitz structure

of the covariance matrix. We show in Figure 1.5 the decay of the corresponding

eigenvalues.

V

Figure 1.4: Eigenvectors of the covariance matrix for an ensemble of 100000 16 × 16
image patches.

1.2.3 Samples from the model

We can get an intuition for the descriptive power of the Gaussian model by sampling

from the model and looking at whether the samples look “natural.” We have seen

that fitting a Gaussian to a collection of image patches leads to a Covariance matrix

10
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50 100 150 200 250 300
i

10-2

10-1

100

101

102

Γ
i

Eigenvalues of Σ̂

Figure 1.5: Eigenvalues of the covariance matrix for an ensemble of 100000 16×16 image
patches.

that is diagonal in the Fourier basis, and where the power spectrum decays as 1/f2.

To sample a large image from such a distribution, we first sample a white noise image

and filter it such that its spectrum obeys the 1/f2 property. We can see in Figure 1.6

that such a sample does not capture the edge structure in images, and the resulting

image looks “cloudy.” We show in Figure 1.6 an image that has been whitened, i.e.

its second order correlations have been removed [Olshausen and Field, 1997]. We can

see that most of its interesting edge-like structure remains.

It is intuitive that the Gaussian model is not sufficient to capture the structure

in natural images. Edges are indeed characterized by higher-order correlations, and

therefore cannot be captured by a second-order model. The Gaussian model has been

widely used in image denoising, an approach that is known as Wiener filtering.

11
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Figure 1.6: Top A “pink noise” sample from the Gaussian model. Bottom A whitened
image.
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1.3 Analysis-based image prior

In this Section we review a class of probabilistic models that have the ability to

model higher-order dependencies. The principle in analysis-based modeling is to

model the probability distribution of forward projections of natural images. Note

that the Gaussian model is an analysis-based model as a = V x can be modeled with

a factorial Gaussian distribution.

1.3.1 Evidence of sparsity in natural scenes

The kurtosis of a random variable is a measure of how a distribution is “peaked”

around its mean. A random variable with high kurtosis has its realizations mostly

around its mean, with some large deviations. The kurtosis of random variable Z is

defined as

κ(Z) =
E[(Z − E[Z])4]

E[(Z − E[Z])2]
.

For instance, a Gaussian random variable has its kurtosis equal to 3.

It has been observed that the histogram of linear responses of natural images

to oriented edge filters have kurtotic histograms [Field, 1994]. The intuition is that

natural images are composed of extended smooth regions where the response of a filter

is small, and discontinuities at contours where the response of the filter is large if the

orientation of the contour matches its orientation. Kurtosis is an important property

of natural images that provides evidence for higher-order statistical dependencies.

For instance, all projections of a multivariate Gaussian random variable are Gaussian

themselves. As an illustration, we convolved the image Lena with an oriented filter

as shown in Figure 1.7. We see in Figure 1.8 that the histogram of the convolved

image is indeed heavy-tailed and has kurtosis 7.4.

Kurtosis for subbands of natural images varies with filter bandwidth and is max-

13
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x ∗ ϕix

=∗
ϕi

Figure 1.7: Convolution of Lena with an oriented Gabor filter.
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x ∗ϕi
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b
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ty

Figure 1.8: Histogram of the convolved image. It is peaked around zero and has heavy
tails. The estimated kurtosis is 7.4. We show in dashed red the log-probability of the
Gaussian distribution with equal variance.
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imal at roughly one octave [Field, 1994]. The filters in a wavelet transform have a

frequency support of one octave and have been used successfully in image processing.

The probability density function of a wavelet coefficients is modeled in [Mallat, 1989]

with a generalized Gaussian distribution

p(a) ∝ e−|λa|p .

Denoising individual wavelet coefficients using such a model is known as “coring”

[Simoncelli and Adelson, 1996], where the non-linear operator resembles a “soft”

threshold. It provides superior results to the Wiener filter, as it has a better ability

to preserve the edge structure.

1.3.2 Independent component analysis

The goal of Independent Component Analysis (ICA) is to find a linear mapping W ∈

Rn×n such that the ouptouts a = Wx are independent and have sparse distributions

[Bell and Sejnowski, 1997]. Let wT
i be the ith row of W . The likelihood of an image

x in this model is given by

p(x | W ) = det(W )
n∏

i=1

q(wT
i x),

where q is a heavy tailed distribution. Common choices for q shown in Figure 1.9 are

q(ai) =


1
2
λe−λ|ai|, Laplacian distribution

Γ(α+1
2 )

√
απΓ(α

2 )

(
1 +

a2
i

α

)α+1
2

, Student-t distribution
(1.4)

For our ensemble of image patches D, we wish to find the parameters of the ICA

model W that best fit the data. Maximizing the log-likelihood leads to the cost

15



Chapter 1. Introduction

4 2 0 2 4
a

10-2

10-1

p
(a

)

Laplace
Student-t

Figure 1.9: Laplacian distribution with λ = 1 and Student-t distribution with parameter
α = 1. The Laplacian distribution is more peaked at zero whereas the Student-t has
heavier tails.

function

〈log p(x | W )〉p∗ = log det(W ) +

〈
n∑

i=1

log q(wT
i x)

〉
p∗

,

and when it is maximized leads to the solution shown in Figure 1.10 learned using the

FastICA algorithm [Hyvärinen, 1999]. We can see that the learned filters are localized

and oriented, and resemble the receptive fields of simple cells in visual cortex. Edges

are important in natural images, and can be detected by linear filtering.

1.3.3 Circular dependencies

The ICA model supposes that the outputs ai are independent. However, when learn-

ing the optimal transfrom W , the responses of the elements of the code are in fact

not independent. An interesting example of the types of filters learned by ICA that

exhibit dependencies are filters in quadrature pair. Let ϕi and ϕj denote such fil-

16
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Figure 1.10: Learned ICA filters for 16 × 16 image patches. The patches have their
dimensionality reduced to 160 which is the number of learned filters.
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ters shown in Figure 1.11. We denote as their responses ai = ϕT
i x and aj = ϕT

j x,

and we get an estimate of their distribution by convolving those filters with a set of

images. The histograms of ai and aj are both sparse and similar to the histogram

shown in Figure 1.8. If the responses ai and aj were independent, then their joint

probability would be given by p(ai, aj) = p(ai)p(aj). We illustrate this distribution

in Figure 1.12. Note that the iso-contours are diamond-shaped. However, the iso-

contours of the joint distribution p(ai, aj) are in fact circular [Zetzsche et al., 1999].

Hence the coefficients ai and aj are not independent. This property is not limited to

quadrature pair filters, and is consistent over pairs of Gabor-like filters that have a

similar position, orientation, and scale. We show such an example in Figure 1.13.

ϕi ϕj

Figure 1.11: Quadrature pair filters.

1.3.4 Gaussian scale mixtures

Those circular dependencies are informative and should be exploited. The Gaussian

scale mixture (GSM) introduced in [Wainwright et al., 2001b] proposes a probabilistic

model that makes it possible to model the distribution of two random variables (ai, aj)

such that their marginals p(ai) and p(aj) are sparse, and their joint distribution

p(ai, aj) has circular iso-contours.

The random variable ai is a Gaussian scale mixture if it can be written ai = ziui,

18
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Figure 1.12: Joint statistics of the responses of quadrature pair filters.
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Figure 1.13: Joint statistics of the responses of filters that have a similar position, orien-
tation, and scale.
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where ui is a zero mean Gaussian with unit-variance, and zi is a random variable that

is positive only and is called the multiplier variable. The marginal of ai is given by

p(ai) =

∫
z

p(ai | z)p(z)dz

=

∫
z

1√
2πz2

e−
a2

i
2z2 p(z)dz.

Hence ai is a continuous mixture of Gaussian distributions, and for most choices of

p(z) this leads to a distribution with heavy tails. It has been shown in [Wainwright

et al., 2001b] that GSMs fit well the coefficients of a wavelet transform.

The dependencies between ai and aj can be modeled via dependencies between

their multiplier variables zi and zj. Consider the simple case where these multiplier

variables are the same, i.e. ai = zui

aj = zuj,

and ui and uj are independent. The corresponding graphical model is shown in

Figure 1.14. The nodes corresponding to the observed variables ai and aj are shaded

in gray. Given the latent variable z, ai and aj are independent, i.e. p(ai, aj | z) =

p(ai | z)p(aj | z). The joint probability is given by

ai aj

z

Figure 1.14: Graphical model of a simple GSM model.
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p(ai, aj) =

∫
z

p(ai, aj | z)p(z)dz

=

∫
z

p(ai | z)p(aj | z)p(z)dz

=

∫
z

(
1√

2πz2

)2

e−
a2

i +a2
j

2z2 p(z)dz.

Hence the joint probability depends on a2
i + a2

j , and its iso-contours are circular-

symmetric.

The joint dependencies among the elements of a wavelet code are modeled us-

ing multiplier variables whose dependencies are governed by a tree-structure Markov

model in [Wainwright et al., 2001b], and using a Markov random field within a sub-

band in [Lyu and Simoncelli, 2006]. Modeling the statistics of wavelet coefficients

with GSMs leads to state-of-the-art image denoising algorithms [Portilla et al., 2003].

The density components model [Karklin and Lewicki, 2005] is an interesting example

of a GSM where the dependencies among the multiplier variables are modeled using

latent variables. Let a = Wx be the responses of image patches x to a linear trans-

form W learned using ICA. Karklin and Lewicki write a = z�u, where � denotes the

element-wise multiplication, z is the vector of muliplier variables, and u is Gaussian.

The log of the vector of multiplier variables is decomposed in a linear basis Ψ ∈ Rn×d

log z = Ψb,

where b ∈ Rd is a vector of latent variables that are independent and have sparse

marginals such as (1.4).

The ICA framework has also been extended to account for the residual depen-

dencies in the coefficients. In Independent Subspace Analysis [Hyvärinen and Hoyer,

2000], the coefficients ai are assumed to be divided into subspaces such that dependen-

cies within the subspaces are allowed, but not across the subspaces. In topographic
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ICA [Hyvärinen et al., 2001], a topographic ordering is imposed such that the distance

between two coefficients is defined using their higher-order correlations. In tree-based

component analysis [Bach and Jordan, 2004], the dependencies among the coefficients

are restricted to have a tree-structure that is also learned.

1.4 Synthesis-based image prior

In a synthesis-based model we seek to reconstruct the image x using latent variables

that represent the underlying causes of the image. Hence in such a generative model

the causes are represented explicitly, which makes it easier to interpret the inferred

representations as compared to analysis-based models.

1.4.1 Analysis vs Synthesis

Let Φ = [ϕ1, . . . , ϕm] ∈ Rn×m be a matrix whose columns are the basis functions.

The analysis coefficients are given by

a = ΦT x = (ϕT
1 x, . . . , ϕT

mx)T .

The analysis coefficients are the correlation of the input signal with all the elements

of the code. For example if Φ is a wavelet transform, the analysis coefficients are the

wavelet coefficients.

Let s ∈ Rm such that

x = Φs =
m∑

i=1

siϕi.

The coefficients s can be used to reconstruct x and are called the synthesis coefficients.

In general the analysis coefficients cannot be used for synthesis, unless ΦΦT = κIn

for some constant κ. A matrix verifying this property is called a tight frame, and an
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example is the steerable pyramid [Simoncelli et al., 1992].

It has been shown that in multiscale, oriented image pyramids overcompleteness,

i.e. having more features than the dimensionality of the space (m > n), is necessary

to ascribe meaning to coefficients [Simoncelli et al., 1992]. In this case the set of

synthesis coefficients {s : Φs = x} is infinite. The representation that is best able

to reveal the structure in the signal is the one that is maximally sparse [Barlow,

1961], where sparsity is defined as the number of nonzero coefficients and is usually

referred to as the `0 norm. The maximally sparse solution is hence the solution of

the optimization problem

min
s

‖s‖0 subject to Φs = x. (1.5)

This problem is combinatorial and cannot be solved in polynomial time. However,

replacing the `0 norm with the `1 norm leads to the following convex optimization

problem commonly referred to as Basis Pursuit (BP) [Chen et al., 1999]

min
s

‖s‖1 subject to Φs = x, (1.6)

where the `1 norm is the sum of the absolute values

‖s‖1 =
m∑

i=1

|si|.

The solution of BP are also sparse, and it has been shown that under some conditions

on the dictionary Φ the solutions of (1.5) and (1.6) are in fact identical [Donoho,

2006b].
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1.4.2 Sparse coding model

In the sparse coding model introduced in [Olshausen and Field, 1996] one seeks to

reconstruct an image x in a possibly overcomplete dictionary of features {ϕ1, . . . , ϕm}.

The proposed generative model is

x = Φs + ν =
m∑

i=1

siϕi + ν, (1.7)

where ν ∼ N (0, σ2In) is small Gaussian noise, and accounts for the part of x that

cannot be well modeled by the features ϕi. The coefficients s are independent latent

variables that define the representation of x in the dictionary Φ. The corresponding

graphical model is shown in Figure 1.15. In the sparse coding model the coefficients

s1 s2 smsj

x1 xnxi

φij

Figure 1.15: Graphical model representation of the sparse coding model.

s have sparse distributions such as the Laplacian or Student-t (1.4). The probability

distribution of x is given by

p(x) =

∫
s

p(x | s)p(s)ds

=

∫
s

1

(2πσ2)
n
2

e−
1

2σ2 ‖x−Φs‖22p(s)ds
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Note that in general we cannot compute p(x) analytically. However, it is easy to

sample from this generative model as long as we can sample from p(s) easily.

1.4.3 Inference

Given an image x, we wish to compute its sparse representation ŝ in the dictionary

Φ. We consider the MAP estimate given by

ŝ = arg max
s

p(s | x)

= arg max
s

p(x | s)p(s)

= arg min
s

1

2σ2
‖x− Φs‖2

2 −
m∑

i=1

log p(si).

(1.8)

The sparse representation is therefore the solution of an optimization problem that

is the sum of a reconstruction term and a sparsity-inducing term. In the case where

the prior on the coefficient is the Laplacian distribution, the objective function takes

the form
1

2σ2
‖x− Φs‖2

2 + λ‖s‖1. (1.9)

In this particular case the objective function is convex and is part of the class of

quadratic programs. It is often referred to a Basis Pursuit DeNoising (BPDN) and

was introduced in [Chen et al., 1999]. The solution is unique and can be computed

using efficient algorithms [Efron et al., 2004] [Osborne et al., 2000][Daubechies et al.,

2004][Rozell et al., 2007][Friedman et al., 2007][Figueiredo et al., 2007].

1.4.4 Learning

The image prior in the sparse coding model is parameterized by the dictionary Φ ∈

Rn×m. The goal of learning is to find the dictionary maximizing the likelihood for the
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ensemble of natural images, i.e.

max
Φ

〈log p(x | Φ)〉p∗ .

As we cannot compute the likelihood p(x | Φ) analytically, the learning algorithm in

[Olshausen and Field, 1996] proposes the following approximation

log p(x | Φ) =

∫
s

p(x, s | Φ)ds

≈ p(x, ŝ | Φ),

where ŝ is the MAP estimate computed during inference

ŝ = arg max
s

p(s | x) = arg max
s

p(x | s)p(s).

Using this approximation, the dictionary is updated via the learning rule

∆Φ = η
〈
(x− Φŝ)ŝT

〉
,

where the average is taken over a batch of image patches, typically on the order of

100. We show in Figure 1.16 a dictionary learned from a set of whitened images. The

basis functions resemble the receptive fields of neurons in primary visual cortex (V1).

They tile the frequency plane in a similar manner to wavelet transforms.

1.5 Contributions

In this thesis, I propose new synthesis-based models where the prior over the coeffi-

cients is non-factorial. The standard sparse coding model supposes indeed that the

coefficients are independent. However, the resulting sparse coefficients still exhibit
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Figure 1.16: Basis functions learned from a collection of natural images in the sparse
coding model.
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pronounced statistical dependencies, thus violating the independence assumption of

the sparse coding model with factorial prior over the coefficients. These statistical

dependencies are informative and should be modeled.

I propose in Chapter 2 a model that attempts to capture the dependencies among

the basis function coefficients by including a pairwise coupling term in the prior over

the coefficients’ activity states. When adapted to the statistics of natural images,

the coupling terms converge to a solution involving a combination of facilitatory and

inhibitory interactions among neighboring basis functions. These learned interactions

may offer an explanation for the function of horizontal connections in V1 in terms

of a prior over natural images. Part of this Chapter appeared in [Garrigues and

Olshausen, 2007].

I propose in Chapter 3 a class of sparse priors called the Laplacian Scale Mix-

ture. In this model the coefficients are distributed as continuous mixtures of Lapla-

cian distributions, where the multiplier represents the inverse scale of the Laplacian

distribution. The statistical dependencies among the coefficients are modeled via de-

pendencies among the multiplier variables as in the Gaussian scale mixture model.

I show that one can capture higher-order dependencies in natural images and lever-

age the efficient algorithms developed for Basis Pursuit Denoising to derive improved

inference algorithms.

Up to now we have discussed the application of sparse approximation to signal and

image processing, but it turns out that there is a formal relation between the sparse

approximation problem and the problem of sparse linear regression in statistics. It

is desired for the sake of interpretable results to have a vector of regressors that is

sparse, such that the relevant features in the data are identified. A common solution

is to solve the `1-regularized least-square problem that is referred to as Lasso in the

statistics community [Tibshirani, 1996]. Note that it has the same cost-function as

Basis Pursuit Denoising, but in most cases the least-square is overdetermined in the
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regression setting. I propose in Chapter 4 RecLasso, an algorithm to solve the Lasso

with online (sequential) observations. I introduce an optimization problem that allows

us to compute an homotopy from the current solution to the solution after observing

a new data point. I compare RecLasso to Lars [Efron et al., 2004] and Coordinate

Descent [Friedman et al., 2007], and present an application to compressive sensing

with sequential observations. The approach can easily be extended to compute an

homotopy from the current solution to the solution that corresponds to removing a

data point, which leads to an efficient algorithm for leave-one-out cross-validation.

I also propose an algorithm to automatically update the regularization parameter

after observing a new data point. Part of this Chapter appeared in [Garrigues and

El Ghaoui, 2008].
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Learning horizontal connections

2.1 Introduction

We propose in this Chapter a linear generative model of image patches as in (1.7)

that is such that the prior over the coefficients is not factorial. We introduce as in

[Olshausen and Millman, 2000] a binary latent variable or “spin”for each coefficient.

If the spin is equal to −1, then the corresponding coefficient is zero with probability

1. If the spin is equal to 1, then the corresponding coefficient has a Gaussian distri-

bution. The spin variables therefore control which basis functions are being used to

represent an image patch. We model these binary variables with a Boltzmann-Gibbs

distribution, whose coupling weights control the dependencies among the coefficients.

Our model is motivated in part by the architecture of the visual cortex, namely

the extensive network of horizontal connections among neurons in V1 [Fitzpatrick,

1996]. It has been hypothesized that they facilitate contour integration [Ben-Shahar

and Zucker, 2004] and are involved in computing border ownership [Zhaoping, 2005].

In both of these models the connections are set a priori based on geometrical prop-

erties of the receptive fields. We propose here to learn the connection weights in an
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unsupervised fashion. We hope with our model to gain insight into the the compu-

tations performed by this extensive collateral system and compare our findings to

known physiological properties of these horizontal connections. Furthermore, a re-

cent trend in neuroscience is to model networks of neurons using Ising models, and it

has been shown to predict remarkably well the statistics of groups of neurons in the

retina [Schneidman et al., 2006]. Our model gives a prediction for what is expected

if one fits an Ising model to future multi-unit recordings in V1. We also propose in

Section 2.A another functional model for the horizontal connections in V1. We show

that one can use such a network to decrease the number of connections in a linear

dynamical system, which might explain how a neuron with a large receptive field

computes its response.

2.2 A non-factorial sparse coding model

We begin with the following generative model, as described previously (1.7)

x = Φs + ν =
m∑

i=1

siϕi + ν,

where Φ = [ϕ1 . . . ϕm] ∈ Rn×m is an overcomplete transform or basis set, and the

columns ϕi are its basis functions. ν ∼ N (0, ε2In) is small Gaussian noise. Each

coefficient si can be decomposed as follows

si =
hi + 1

2
ui,

where ui is a Gaussian random variable and hi is a binary random variable whose

values are ±1. The distribution of the coefficients is thus a special case of Gaussian

Scale Mixture (GSM) composed of two discrete states of the multiplier variable. We
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model the multiplier h with an Ising model, i.e. h ∈ {−1, 1}m has a Boltzmann-Gibbs

distribution

p(h) =
1

Z
e

1
2
hT Wh+bT h,

where Z is the normalization constant. If the spin hi is down (hi = −1), then

si = 0 and the basis function ϕi is silent. If the spin hi is up (hi = 1), then the

basis function is active and the analog value of the coefficient si is drawn from a

Gaussian distribution with ui ∼ N (0, σ2
i ). The prior on s can thus be described as a

“hard-sparse” prior as it is a mixture of a point mass at zero and a Gaussian.

The corresponding graphical model is shown in Figure 2.1. It is a chain graph

since it contains both undirected and directed edges. It bears similarities to [Hinton

et al., 2005], which however does not have the intermediate layer s and is not a sparse

coding model. To sample from this generative model, one first obtains a sample h

from the Ising model, then samples coefficients s according to p(s | h), and then x

according to p(x | s) ∼ N (Φs, ε2In).

The parameters of the model to be learned from data are θ = (Φ, (σ2
i )i=1..m, W, b).

This model does not make any assumption about which linear code Φ should be used,

and about which units should exhibit dependencies. The matrix W of the interaction

weights in the Ising model describes these dependencies. Wij > 0 favors positive

correlations and thus corresponds to an excitatory connection, whereas Wij < 0

corresponds to an inhibitory connection. A local magnetic field bi < 0 favors the spin

hi to be down, which in turn makes the basis function ϕi mostly silent.
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s1 s2 smsj

x1 xnxi

h1 h2 hmhj

φij

W1m

W2j

Figure 2.1: Proposed graphical model

2.3 Inference and learning

2.3.1 Coefficient estimation

We describe here how to infer the representation s of an image patch x in our model.

To do so, we first compute the maximum a posteriori (MAP) multiplier h (see Section

2.3.2). Indeed, a GSM model reduces to a linear-Gaussian model conditioned on the

multiplier s, and therefore the estimation of s is easy once h is known.

Given h = ĥ, let Γ = {i : ĥi = 1} be the set of active basis functions. We

know that ∀i /∈ Γ, si = 0. Hence, we have x = ΦΓsΓ + ν, where sΓ = (si)i∈Γ and

ΦΓ = [(ϕi)i∈Γ]. The model reduces thus to linear-Gaussian, where sΓ ∼ N (0, H =

diag((σ2
i )i∈Γ)). We have sΓ | x, ĥ ∼ N (µ, K), where K = (ε−2ΦΓΦT

Γ + H−1)−1 and

µ = ε−2KΦT
Γx. Hence, conditioned on x and ĥ, the Bayes Least-Square (BLS) and

maximum a posteriori (MAP) estimators of sΓ are the same and given by µ.
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2.3.2 Multiplier estimation

The MAP estimate of h given x is given by ĥ = arg maxh p(h | x). Given h, x has a

Gaussian distribution N (0, Σ), where

Σ = ε2In +
∑

i : hi=1

σ2
i ϕiϕ

T
i .

Using Bayes’ rule, we can write p(h | x) ∝ p(x | h)p(h) ∝ e−Ex(h), where

Ex(h) =
1

2
xT Σ−1x +

1

2
log det Σ− 1

2
hT Wh− bT h.

We can thus compute the MAP estimate using Gibbs sampling and simulated anneal-

ing. In the Gibbs sampling procedure, the probability that node i changes its value

from hi to h̄i given x, all the other nodes h¬i and at temperature T is given by

p(hi → h̄i|h¬i, x) =

(
1 + exp

(
−∆Ex

T

))−1

,

where ∆Ex = Ex(hi, h¬i)−Ex(h̄i, h¬i). Note that computing Ex requires the inverse

and the determinant of Σ, which is expensive. Let Σ̄ and Σ be the covariance matrices

corresponding to the proposed state (h̄i, h¬i) and current state (hi, h¬i) respectively.

They differ only by a rank 1 matrix, i.e. Σ̄ = Σ + αϕiϕ
T
i , where α = 1

2
(h̄i − hi)σ

2
i .

Therefore, to compute ∆Ex we can take advantage of the Sherman-Morrison formula

Σ̄−1 = Σ−1 − αΣ−1ϕi(1 + αϕT
i Σ−1ϕi)

−1ϕT
i Σ−1 (2.1)

and of a similar formula for the log det term

log det Σ̄ = log det Σ + log
(
1 + αϕT

i Σ−1ϕi

)
. (2.2)
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Using (2.1) and (2.2) ∆Ex can be written as

∆Ex =
1

2

α(xT Σ−1ϕi)
2

1 + αϕT
i Σ−1ϕi

− 1

2
log
(
1 + αϕT

i Σ−1ϕi

)
+ (h̄i − hi)

(∑
j 6=i

Wijhj + bi

)
.

The transition probabilities can thus be computed efficiently, and if a new state is

accepted we update Σ and Σ−1 using (2.1).

2.3.3 Model estimation

Given a dataset D = {x(1), . . . , x(N)} of image patches, we want to learn the pa-

rameters θ = (Φ, (σ2
i )i=1..m, W, b) that offer the best explanation of the data. Let

p∗(x) = 1
N

∑N
i=1 δ(x− x(i)) be the empirical distribution. Since in our model the

variables s and h are latent, we use a variational expectation maximization algorithm

[Jordan et al., 1999] to optimize θ, which amounts to maximizing a lower bound on

the log-likelihood derived using Jensen’s inequality

log p(x | θ) ≥
∑

h

∫
s

q(s, h | x) log
p(x, s, h | θ)
q(s, h | x)

ds , L(θ, q),

where q(s, h | x) is a probability distribution. We restrict ourselves to the family of

point mass distributions Q = {q(s, h | x) = δ(s − ŝ)δ(h − ĥ)}, and with this choice

the lower bound on the log-likelihood of D can be written as

L(θ, q) = Ep∗ [log p(x, ŝ, ĥ | θ)] (2.3)

= Ep∗ [log p(x | ŝ, Φ)]︸ ︷︷ ︸
LΦ

+ Ep∗ [log p(ŝ | ĥ, (σ2
i )i=1..m)]︸ ︷︷ ︸

Lσ

+ Ep∗ [log p(ĥ | W, b)]︸ ︷︷ ︸
LW,b

.

We perform coordinate ascent in the objective function L(θ, q).
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2.3.3.1 Maximization with respect to q

We want to solve maxq∈Q L(θ, q), which amounts to finding arg maxs,h log p(x, s, h)

for every x ∈ D. This is computationally expensive since h is discrete. Hence, we

introduce two phases in the algorithm.

In the first phase, we infer the coefficients in the usual sparse coding model where

the prior over s is factorial, i.e. p(s) =
∏

i p(si) ∝
∏

i exp{−λS(si)}. In this setting,

we have

ŝ = arg max
s

p(x|s)
∏

i

e−λS(si) = arg min
s

1

2ε2
‖x− Φs‖2

2 + λ
∑

i

S(si). (2.4)

With S(si) = |si|, (2.4) is known as basis pursuit denoising (BPDN) whose solution

has been shown to be such that many coefficient of ŝ are exactly zero [Chen et al.,

1999]. This allows us to recover the sparsity pattern ĥ, where ĥi = 21[ŝi 6= 0]− 1 ∀i.

BPDN can be solved efficiently using a competitive algorithm [Rozell et al., 2008].

Another possible choice is S(si) = 1[si 6= 0] (p(si) is not a proper prior though), where

(2.4) is combinatorial and can be solved approximately using orthogonal matching

pursuits (OMP) [Tropp, 2004].

After several iterations of coordinate ascent and convergence of θ using the above

approximation, we enter the second phase of the algorithm and refine θ by using the

GSM inference described in Section 2.3.1 where ĥ = arg max p(h|x) and ŝ = E[s |

ĥ, x].

2.3.3.2 Maximization with respect to θ

We want to solve maxθ L(θ, q). Our choice of variational posterior allowed us to write

the objective function as the sum of the three terms LΦ, Lσ and LW,b (2.3), and hence

to decouple the variables Φ, (σ2
i )i=1..m and (W, b) of our optimization problem.
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Maximization of LΦ. Note that LΦ is the same objective function as in the

standard sparse coding problem when the coefficients a are fixed. Let {ŝ(i), ĥ(i)} be

the coefficients and multipliers corresponding to x(i). We have

LΦ = − 1

2ε2

N∑
i=1

‖x(i) − Φŝ(i)‖2
2 −

Nn

2
log 2πε2.

We add the constraint that ‖ϕi‖2 ≤ 1 to avoid the spurious solution where the norm

of the basis functions grows and the coefficients tend to 0. We solve this `2 constrained

least-square problem using the Lagrange dual as in [Lee et al., 2007].

Maximization of Lσ. The problem of estimating σ2
i is a standard variance

estimation problem for a 0-mean Gaussian random variable, where we only consider

the samples ŝi such that the spin ĥi is equal to 1, i.e.

σ2
i =

1

card{k : ĥ
(k)
i = 1}

∑
k : ĥ

(k)
i =1

(ŝ
(k)
i )2.

Maximization of LW,b. This problem is tantamount to estimating the param-

eters of a fully visible Boltzmann machine [Ackley et al., 1985] which is a convex

optimization problem. We do gradient ascent in LW,b, where the gradients are given

by 
∂LW,b

∂Wij
= −Ep∗ [hihj] + Ep[hihj]

∂LW,b

∂bi
= −Ep∗ [hi] + Ep[hi]

We use Gibbs sampling to obtain estimates of Ep[hihj] and Ep[hi].

Note that since computing the parameters (ŝ, ĥ) of the variational posterior in

phase 1 only depends on Φ, we first perform several steps of coordinate ascent in (Φ, q)

until Φ has converged, which is the same as in the usual sparse coding algorithm. We

then maximize Lσ and LW,b, and after that we enter the second phase of the algorithm.
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2.4 Recovery of the model parameters

Although the learning algorithm relies on a method where the family of variational

posteriors q(s, h | x) is quite limited, we argue here that if data D = {x(1), . . . , x(N)}

is being sampled according to parameters θ0 that obey certain conditions that we

describe now, then our proposed learning algorithm is able to recover θ0 with good

accuracy using phase 1 only.

Let η be the coherence parameter of the basis set which equals the maximum

absolute inner product between two distinct basis functions. It has been shown that

given a signal that is a sparse linear combination of p basis functions, BP and OMP

will identify the optimal basis functions and their coefficients provided that p <

1
2
(η−1 + 1), and the sparsest representation of the signal is unique [Tropp, 2004].

Similar results can be derived when noise is present (ε > 0) [Tropp, 2006], but we

restrict ourselves to the noiseless case for simplicity. Let ‖h‖↑ be the number of spins

that are up. We require (W0, b0) to be such that Pr
(
‖h‖↑ < 1

2
(η−1 + 1)

)
≈ 1, which

can be enforced by imposing strong negative biases. A data point x(i) ∈ D thus

has a high probability of yielding a unique sparse representation in the basis set Φ.

Provided that we have a good estimate of Φ we can recover its sparse representation

using OMP or BP, and therefore identify h(i) that was used to originally sample x(i).

That is we recover with high probability all the samples from the Ising model used

to generate D, which allows us to recover (W0, b0).

We provide for illustration a simple example of model recovery where n = 7 and

m = 8. Let (e1, . . . , e7) be an orthonormal basis in R7. We let Φ0 = [e1, . . . e7,
1√
7

∑
i ei].

We fix the biases b0 at −1.2 such that the model is sufficiently sparse as shown by

the histogram of ‖h‖↑ in Figure 2.2, and the weights W0 are sampled according to a

Gaussian distribution. The variance parameters σ0 are fixed to 1. We then generate

synthetic data by sampling 100000 data from this model using θ0. We then estimate
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θ from this synthetic data using the variational method described in Section 2.3 using

OMP and phase 1 only. We found that the basis functions are recovered exactly (not

shown), and that the parameters of the Ising model are recovered with high accuracy

as shown in Figure 2.2.
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Figure 2.2: Recovery of the model. The histogram of ‖s‖↑ is such that the model is
sparse. The parameters (W, b) learned from synthetic data are close to the parameters
(W0, b0) from which this data was generated.
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2.5 Results for natural images

We build our training set by randomly selecting 16×16 image patches from a standard

set of 10 512 × 512 whitened images as in [Olshausen and Field, 1996]. It has been

shown that change of luminance or contrast have little influence on the structure of

natural scenes [Wang et al., 2005]. As our goal is to uncover this structure, we subtract

from each patch its own mean and divide it by its standard deviation such that our

dataset is contrast normalized (we do not consider the patches whose variance is below

a small threshold). We fix the number of basis functions to 256. In the second phase

of the algorithm we only update (W, b), and we have found that the basis functions

do not change dramatically after the first phase.

Figure 2.3 shows the learned parameters Φ, σ and b. The basis functions resemble

Gabor filters at a variety of orientations, positions and scales. We show the weights W

in Figure 2.5 and Figure 2.6 according to the spatial properties (position, orientation,

length) of the basis functions that are linked together by them. Each basis function

is denoted by a bar that indicates its position, orientation, and length within the

16× 16 patch.

We observe that the connections are mainly local and connect basis functions at

a variety of orientations. The histogram of the weights (see Figure 2.7) shows a long

positive tail corresponding to a bias toward facilitatory connections. We can see in

Figure 2.4 that the 10 most “positive” pairs have similar orientations, whereas the

majority of the 10 most “negative” pairs have dissimilar orientations. We compute

for a basis function the average number of basis functions sharing with it a weight

larger than 0.01 as a function of their orientation difference in four bins, which we

refer to as the “orientation profile” in Figure 2.7. The error bars are a standard

deviation. The resulting orientation profile is consistent with what has been observed

in physiological experiments [Malach et al., 1993; Bosking et al., 1997].
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Figure 2.3: Top Set of basis functions Φ learned on natural images. Bottom left Learned
variances (σ2

i )i=1..m. Bottom right Learned biases b in the Ising model.

(a) 10 most positive weights

(b) 10 most negative weights

Figure 2.4: (a) (resp. (b)) shows the basis function pairs (columnwise) that share the
strongest positive (resp. negative) weights ordered from left to right.
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!i !j !k

(a) Weights visualization

(b) Association fields

Figure 2.5: Each subplot in (b) shows the association field for a basis function ϕi whose
position and orientation are denoted by the black bar. The horizontal connections (Wij)j 6=i

are displayed by a set of colored bars whose orientation and position denote those of
the basis functions ϕj to which they correspond, and the color denotes the connection
strength, where red is positive and blue is negative (see (a), Wij < 0 and Wik > 0). We
show a random selection of 36 association fields.
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Figure 2.6: Entire set of learned association fields.
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We also show in Figure 2.7 the tradeoff between the signal to noise ratio (SNR)

of an image patch x and its reconstruction Φŝ, and the `0 norm of the representation

‖ŝ‖0. We consider ŝ inferred using both the Laplacian prior and our proposed prior.

We vary λ (see Equation (2.4)) and ε respectively, and average over 1000 patches

to obtain the two tradeoff curves. We see that at similar SNR the representations

inferred by our model are more sparse by about a factor of 2, which bodes well for

compression. We have also compared our prior for tasks such as denoising and filling-

in, and have found its performance to be similar to the factorial Laplacian prior even

though it does not exploit the dependencies of the code. One possible explanation

is that the greater sparsity of our inferred representations makes them less robust to

noise.

To assess how well the pairwise model captures the actual joint distribution of

coefficients we compare the model’s probability vs. the actual probability of occur-

rence for a select group of 10 basis function coefficients sharing strong weights. Let

Λ denote the indices for this group. Given a collection of image patches that we

sparsify using (2.4), we obtain a number of spins (ĥi)i∈Λ from which we can esti-

mate the empirical distribution pemp, the Boltzmann-Gibbs distribution pIsing con-

sistent with first and second order correlations, and the factorial distribution pfact

(i.e. no horizontal connections) consistent with first order correlations. We can see

in Figure 2.8 that the Ising model produces better estimates of the empirical distri-

bution, and results in better coding efficiency since KL(pemp||pIsing) = .02 whereas

KL(pemp||pfact) = .1. As a comparison, we also selected a group of 10 basis functions

randomly and estimated the Boltzmann-Gibbs and factorial distributions. In this

case, we have KL(pemp||pIsing) = .01 whereas KL(pemp||pfact) = .04. As expected,

the reduction in coding efficiency with the Ising model is not as great as in the case

where the basis functions coefficients have greater statistical dependencies. We can

visualize the estimated distributions in Figure 2.9.
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Figure 2.7: Upper left Histogram of the coupling weights Wij. The distribution is skewed
towards positive weights. Upper right Correlation between the coupling weights and the
Gramm matrix of the basis functions. Bottom left Orientation profile: distribution of the
angular difference between a basis function and the basis functions that it is coupled to
with weights greater than .01. The error bars represent one standard deviation. Bottom
right Comparison of the tradeoff curve SNR - `0 norm for the inferred coefficients using
a factorial Laplacian prior and our proposed prior.
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Figure 2.8: Model validation for a group of 10 basis functions sharing strong weights
(top). The empirical probabilities of the 210 patterns of activation are plotted against the
probabilities predicted by the Ising model (red), the factorial model (blue), and their own
values (black). These patterns having exactly three spins up are circled. The prediction
of the Ising model is noticably better than that of the factorial model.
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Figure 2.9: Model validation for a group of 10 basis functions selected at random (top).
The empirical probabilities of the 210 patterns of activation are plotted against the proba-
bilities predicted by the Ising model (red), the factorial model (blue), and their own values
(black).
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2.6 Discussion

In this Chapter, we proposed a new sparse coding model where we include pair-

wise coupling terms among the coefficients to capture their dependencies. During

inference, the hidden binary units now attempt to encourage or discourage other

units to be active, similar to the likely role of horizontal connections in the cor-

tex. We derived a new learning algorithm to adapt the parameters of the model

given a data set of natural images, and we were able to discover the dependen-

cies among the basis functions coefficients. We showed that the learned connec-

tion weights are consistent with physiological data. Furthermore, the representa-

tions inferred in our model have greater sparsity than when they are inferred us-

ing the Laplacian prior as in the standard sparse coding model. Note however

that we have not found evidence that these horizontal connections facilitate con-

tour integration, as they do not primarily connect colinear basis functions. Previ-

ous models in the literature simply assume these weights according to prior intu-

itions about the function of horizontal connections [Ben-Shahar and Zucker, 2004;

Zhaoping, 2005]. These models are largely inspired by a line-drawing view of the

visual world, and our goal here was to derive a model of pairwise interactions in

a principled manner informed from the statistics of the visual world. The results

are not altogether intuitive in that simple contour grouping did not emerge from

the pairwise statistics. We offer several possible explanations. First, it is probable

that the pairwise constraint is too weak to capture the complex image structure that

includes contours, textures and boundary intersections. In addition, our model as-

sumes that images are the linear superposition of features, which is not an efficient

way of representing how surfaces occlude each other in natural images and give rise

to contours.
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Appendix 2.A Feedforward computation with horizon-

tal connections

The receptive fields of simple cells in primary visual cortex (V1) resemble a collec-

tion of oriented Gabor filters at a variety of scales and orientations. A standard

hypothesis is that these cells construct their receptive fields by taking a weighted

sum of inputs from the Lateral Geniculate Nucleus (LGN) through a feedforward

computation. However, the simple cells whose receptive fields’ frequencies are low in-

tegrate information over a large portion of the visual field, and in a purely feedforward

model they should receive information from a large spatial extent of neurons in the

LGN, which is not physiologically feasible due to neuronal branching constraints. We

propose here a model where a dynamical system with recurrent computations using

horizontal connections allows the cells with large receptive fields to reduce the region

in the LGN they need to receive inputs from while achieving the same computation

as the purely feedforward system. Note that a similar strategy might be used by the

retina to compute center-surround receptive fields by spreading inhibition laterally

using horizontal cells. For a review of dynamical systems in neural computation, see

[Eliasmith and Anderson, 2003].

To investigate this problem, we make the following abstractions. We saw in Sec-

tion 1.3.2 that learning a set of filters from the statistics of natural images so as to

maximize the sparsity of the outputs, an approach known as Independent Component

Analysis, results in filters that resemble the receptive fields of simple cell neurons in

V1 as shown in Figure 2.10. Let x ∈ Rn denote the image pixels, and a ∈ Rn denote

the outputs in the mapping a = Tx, where T is the transform learned using ICA. The

first layer x denotes the activity of our model LGN neurons, and the second layer a

denotes the activity of our model V1 simple cells. In the feedforward model, the ith
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model unit computes its response via

ai =
n∑

j=1

Tijxj.

Hence, the ith units receives inputs from the units in the first layer {xj : Tij 6= 0}.

We can see in Figure 2.10 that the low frequency units receive inputs from a large

portion of the pixels in the 16× 16 patch.

Figure 2.10: Model receptive fields learned using ICA (n = 144).

2.A.1 Dynamical system formulation

We propose the following dynamical system

τ
da

dt
+ a = Ma + Wx,
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where the dynamics are illustrated in Figure 2.11. M is a matrix that defines recurrent

connections among the model simple cells, and W is the matrix of feedforward weights.

At the equilibrium, we have

a = Ma + Wx ⇒ a = (I −M)−1Wx.

x1 xnxi

a1 anai

M1n Mi1
Mn1Min

Tii

TniT1i

Figure 2.11: The recurrent system.

Since we want the system to compute a = Tx, we have the constraint (I −

M)−1W = T . Let ‖T‖0 be the `0 norm of T , i.e. the number of nonzero elements in

T . ‖T‖0 corresponds to the number of connections between x and a. The question is

thus whether we can find M and W such that (I −M)−1W = T , and the number of

connections in the recurrent system is smaller than a purely feedforward computation,

i.e. ‖M‖0 + ‖W‖0 < ‖T‖0. Note that a purely feedforward system corresponds to

M = 0 and W = T .
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2.A.2 Optimization problem formulation

Ideally, we would like to solve

min
W,M

‖M‖0 + ‖W‖0 : (I −M)−1W = T.

Unfortunately, this is a combinatorial optimization problem and cannot be solved as

is. A standard relaxation as seen in Section 1.4.1 is to replace the `0 norm by the `1

norm (‖z‖1 =
∑

i |zi|). Furthermore, we reformulate the constraint in the following

way

(I −M)−1W = T ⇒ W = T −MT ⇒ W + MT = T.

We also add the constraint that Mii = 0 for all i, i.e. there are no self-connections.

This avoids the trivial solution W = 0 and M = I, in which case (I −M)−1 is not

even defined. The optimization problem becomes

min
W,M

‖M‖1 + ‖W‖1 subject to

 W + MT = T

Mii = 0 ∀i

This can be formulated as a convex linear program, and can be thus solved efficiently

using a standard interior point method.

2.A.3 Results

To compare the number of connections in the purely feedforward and the optimal

recurrent system, we compute the `0 norm reduction defined by

100× ‖T‖0 − (‖M‖0 + ‖W‖0)

‖T‖0

. (2.5)
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As the smallest elements of these matrices are not exactly 0 due to the interior-point

method that we use, we compute the `0 norm by setting to zero the elements that are

smaller than some threshold. Figure 2.12 shows the `0 norm reduction as a function

of the threshold. We can see that by introducing recurrent connections we are indeed

capable of reducing the overall number of connections. Note that for a conservative

threshold choice of 0.01, we still have a reduction of about 15%.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

5

10

15

20

25

threshold

l0
 n

o
rm

 r
e

d
u

c
ti
o

n
 (

%
)

Figure 2.12: Reduction in number of connections. The reduction is not monotonic as the
number of connections in the feedforward system also decreases with threshold.

It is also interesting to visualize the feedforward weights W shown in Figure 2.13 in

the (M, W ) recurrent system. Our primary goal was to decrease the area of the region

in the x layer over which neurons in V1 receive their inputs, and it is interesting to

see that it is indeed the case, even though our optimization problem does not add this

constraint explicitly. Several model neurons with large receptive fields receive almost

no input from the x layer in the recurrent system, and construct their receptive fields

mostly by means of horizontal connections. To make this claim more quantitative,
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we compute the area reduction as a function of the receptive field area as shown in

Figure 2.14. We observe that the larger the receptive field, the bigger the reduction,

up to 100% for 4 neurons.

Figure 2.13: Feedforward weights in the optimal recurrent system.
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Figure 2.14: Branching reduction as a function of receptive field area. We define the
area over which the ith model simple cell receives inputs in the feedforward system in
percent of the image patch size by 100× card({j : Tij 6=0})

12×12
, and in the recurrent system by

100× card({j : Wij 6=0}.)
12×12

. Each dot corresponds to a model simple cell.
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Laplacian Scale Mixture

3.1 Introduction

We saw in Section 1.4.3 that a popular method to compute the sparse representation

of a signal consists of solving the `1-regularized least-square problem

1

2σ2
‖x− Φs‖2

2 + λ‖s‖1,

an approach known as Basis Pursuit Denoising (BPDN). The cost function of BPDN

is convex, and many efficient algorithms have been recently developed to solve this

problem [Efron et al., 2004][Daubechies et al., 2004][Rozell et al., 2007][Friedman

et al., 2007][Figueiredo et al., 2007][Lee et al., 2007]. The `1 penalty leads to sparse

solutions, which is a desirable property to achieve model selection or data compression,

or for obtaining interpretable results.

We saw in Section 1.4.3 that BPDN corresponds to MAP inference in a generative

model where the coefficients are independent and have Laplacian priors

p(si) =
λ

2
e−λ|si|.
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Hence, the signal model assumed by BPDN is linear, generative, and the basis function

coefficients are independent. We saw in Chapter 1 and 2 that this is not a good model

for real-world signals such as natural images. We were able to capture dependencies

using a Gaussian Scale Mixture (GSM) prior on the coefficient where the dependencies

are captured using the multiplier variables. Note that a similar prior was recently

proposed in [Cevher et al., 2008]. We also saw in Section 2.5 that BPDN is not always

able to identify the sparsest representation for a given reconstruction error.

It has been proposed in block-`1 methods [Yuan and Lin, 2006] to account for

dependencies among the coefficients by dividing them into subspaces such that de-

pendencies within the subspaces are allowed, but not across the subspaces. This

approach can produce blocking artifacts and has recently been generalized to over-

lapping subspaces in [Jacob et al., 2009][Jenatton et al., 2009]. Another approach is

to only allow certain configurations of active coefficients [Baraniuk et al., 2008].

We propose in this Chapter a new class of prior on the basis function coefficients

that makes it possible to model their statistical dependencies, whose inferred repre-

sentations are more sparse than those obtained with the factorial Laplacian prior, and

for which we have efficient inference algorithms. Our approach consists of introducing

for each coefficient a hyperprior on the inverse scale parameter λi of the Laplacian

distribution. The coefficient prior is thus a mixture of Laplacian distributions which

we denote “Laplacian Scale Mixture” (LSM), which is an analogy to the Gaussian

scale mixture (GSM) [Wainwright et al., 2001b]. The prior has higher kurtosis, and

the representations are therefore more sparse. A natural way to model the statistical

dependencies among the coefficients is to use a non-factorial hyperprior, i.e.

p(λ1, . . . , λm) 6=
m∏

i=1

p(λi).

In analysis-based models, such non-factorial hyperpriors on the scale parameters of
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the Gaussian [Wainwright et al., 2001b] or generalized Gaussian [Karklin and Lewicki,

2005] have been shown to capture higher-order dependencies in natural images. We

extend this approach to a synthesis-based model. An advantage of having a mixture

of Laplacian distribution as opposed to a mixture of Gaussian distribution is also

computational, as we can exploit the sparsity of the solutions obtained using a the

Laplacian prior and leverage efficient inference algorithms developed for BPDN. In-

deed we show that inference can be solved efficiently via a sequence of reweighted

`1-regularized least-square problems. Note that such optimization algorithms have

been proposed for sparse coding in [Candès et al., 2008][Wipf and Nagarajan, 2008].

Here we propose a Bayesian interpretation of [Candès et al., 2008].

We saw in Section 1.1.3 that a natural way to compare signal models is to look

at their performance in ill-posed inverse problems. We focus in this Chapter on the

problem of compressive sensing recovery. Compressive sensing is an alternative to

Shannon/Nyquist sampling for acquisition of sparse signals where inner-products of

the signal with random vectors are observed, and the signal is subsequently recovered

with a sparsity-seeking optimization algorithm such as BPDN. In the case where the

signals of interest have structure beyond sparsity such as dependencies among the

coefficients, it has been shown that better recovery can be achieved using an algorithm

that exploits this structure [Baraniuk et al., 2008][Cevher et al., 2008][Cevher et al.,

2009]. We show that our model is also able to achieve significant improvements with

signals having higher-order structure beyond sparsity.

The outline of this Chapter is as follows. We define the Laplacian scale mixture

in Section 3.2, and describe the inference algorithms in the resulting sparse coding

models with an LSM prior on the coefficients in Section 3.3. We present an example of

a factorial LSM model in Section 3.4, and of a non-factorial LSM model in Section 3.5

that is particularly well suited to signals having the “group sparsity” property.
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3.2 The Laplacian Scale Mixture distribution

3.2.1 Definition

A random variable si is a Laplacian scale mixture if it can be written

si = λ−1
i ui,

where ui has a Laplacian distribution with scale 1, i.e. p(ui) = 1
2
e−|ui|, and λi is

a positive random variable with probability p(λi). We also suppose that λi and ui

are independent. Conditioned on the parameter λi, the coefficient si has a Laplacian

distribution with inverse scale λi, i.e.

p(si|λi) =
λi

2
e−λi|si|.

We show in Figure 3.1 examples of Laplacian distributions with various inverse scales.

The distribution over si is therefore a continuous mixture of Laplacian distribu-

tions with different inverse scales, and it can be computed by integrating out λi

p(si) =

∫ ∞

0

p(si| λi)p(λi)dλi =

∫ ∞

0

λi

2
e−λi|si|p(λi)dλi.

Note that for most choices of p(λi) we do not have an analytical expression for p(si).

We denote such a distribution a Laplacian Scale Mixture (LSM) as an analogy to the

Gaussian Scale Mixture [Wainwright et al., 2001b], and we similarly refer to λi as the

multiplier variable.

The family of LSM defines distributions that have heavy tails. To see that, we

compute the kurtosis of an LSM, and show that it is always greater than the kurtosis

of the Laplacian distribution. We first note that ui is a Laplacian distribution, and
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Figure 3.1: Laplacian distribution corresponding to three inverse scales λ.

its kurtosis is given by

κ(ui) =
E[u4

i ]

(E[u2
i ])

2
= 6.

Note that the mean of an LSM is given by

E[si] = E[λ−1
i ui] = E[λ−1

i ]E[ui] = 0.

The kurtosis of si is thus

κ(si) =
E[s4

i ]

(E[s2
i ])

2
=

E[(λ−1
i ui)

4]

(E[(λ−1
i ui)2])2

=
E[(λ−1

i )4]

(E[(λ−1
i )2])2

κ(ui).

Using the convexity of f(x) = x2 it is easy to see that E[X2] ≥ (E[X])2 for any

random variable X. By applying this inequality to λ−2
i we conclude that

κ(si) ≥ κ(ui) = 6.
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Hence an LSM random variable typically has heavier tails than a Laplacian random

variable.

3.2.2 Examples

The Laplacian distribution is part of the LSM family. Indeed, if the multiplier takes

some value with probability 1, i.e. p(λi) = δ(λi − λ̃i), then we have

p(si) =
λ̃i

2
e−λ̃i|si|.

If the multiplier takes on discrete values {λ̃j
i}j=1..J with probabilities {πj}j=1..J ,

the resulting distribution is a discrete mixture of Laplacian distributions

p(si) =
J∑

i=1

πj
λ̃j

i

2
e−λ̃j

i |si|.

In [Levin and Weiss, 2007] a discrete mixture of two Laplacian distributions is used

to model the distribution of derivative filter outputs as applied to natural images.

Suppose that the multiplier has a Gamma distribution, i.e.

p(λi) =
βα

Γ(α)
λα−1

i e−βλi ,

where α is the shape parameter and β is the inverse scale parameter. If α ∈ N,

we have Γ(α) = (α − 1)!. A few examples of Gamma distributions are shown in

Figure 3.2. Note that a particular case of Gamma distribution is the exponential

distribution when α = 1. With this particular choice of a prior on the multiplier, we

can compute the probability distribution of si analytically

p(si) =
αβα

2(β + |si|)α+1
. (3.1)
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We can see in Figure 3.2 that the distribution on the coefficients has heavier tails

than the Laplacian distribution.

3.3 Resulting sparse coding models

3.3.1 Generative model with Laplacian scale mixture prior

We propose as we did in Chapter 2 the linear generative model

x = Φs + ν =
m∑

i=1

siϕi + ν,

where Φ = [ϕ1, . . . , ϕm] ∈ Rn×m is an overcomplete transform or basis set, and the

columns ϕi are its basis functions. ν ∼ N (0, σ2In) is small Gaussian noise. In this

model the coefficients are endowed with LSM distributions. The graphical model for

an LSM sparse coding model is shown in Figure 3.3. The nodes λi are fully connected

as in general we do not make any assumptions about p(λ).

The standard sparse coding model corresponds to the particular case where the

LSM prior is the Laplacian prior. We can create richer models that capture the

statistical dependencies among the coefficients by means of non-factorial priors on

the multipliers, i.e.

p(λ) 6=
∏

i

p(λi).

We propose in Section 3.4 and 3.5 various choices on the multiplier distribution p(λ),

which lead to models having different properties.
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Figure 3.2: Distribution of the multipliers and coefficients in the LSM model with Gamma
prior.
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s1 s2 smsj

x1 xnxi

λ1 λ2 λmλj

φij

Figure 3.3: Graphical model representation of our proposed generative model with LSM
prior.

3.3.2 Inference

Given a signal x, we wish to infer its sparse representation s in the dictionary Φ.

We consider in this section the computation of the maximum a posteriori (MAP)

estimate of the coefficients s given the input signal x. Using Bayes’ rule we have

p(s | x) ∝ p(x | s)p(s), and therefore the MAP estimate ŝ is given by

ŝ = arg min
s

− log p(s | x) (3.2)

= arg min
s

− log p(x | s)− log p(s). (3.3)

It is in general difficult to compute the MAP estimate with an LSM prior on s since

we do not necessarily have an analytical expression for the log-likelihood log p(s).

65



Chapter 3. Laplacian Scale Mixture

However, we can compute the complete log-likelihood log p(s, λ) analytically

log p(s, λ) = log p(s | λ) + log p(λ)

= −λi|si|+ log
λi

2
+ log p(λ).

Hence, if we also observed the latent variable λ, we would have an objective function

that can be maximized with respect to s. The standard approach in machine learning

when confronted with such a problem is the Expectation-Maximization (EM) algo-

rithm [Dempster et al., 1977], and we derive in this Section an EM algorithm for the

MAP estimation of the coefficients.

Let us first use Jensen’s inequality and the concavity of the logarithm to write

log p(s) ≥
∫

λ

q(λ) log
p(s, λ)

q(λ)
dλ, (3.4)

which is true for any probability distribution q(λ). This gives an upper bound on the

posterior likelihood

− log p(s | x) ≤ − log p(x | s)−
∫

λ

q(λ) log
p(s, λ)

q(λ)
dλ := L(q, s) (3.5)

Performing coordinate descent in the auxiliary function L(q, s) leads to the following

updates that are usually called the E step and the M step.

E Step q(t+1) = arg min
q

L(q, s(t)) (3.6)

M Step s(t+1) = arg min
s

L(q(t+1), s) (3.7)

Let < . >q denote the expectation with respect to q(λ). We can write L(q, s) as
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follows

L(q, s) = − log p(x | s) + 〈− log p(s | λ)〉q + KL(q(λ)||p(λ))

=
1

2σ2
‖x− Φs‖2

2 +
n

2
log 2πσ2 +

m∑
i=1

(
〈λi〉q |si| −

〈
log

λi

2

〉
q

)
+ . . .

. . . + KL(q(λ)||p(λ)),

where we have used the conditional independence of the coefficients s given the mul-

tipliers λ, i.e. p(s | λ) =
∏m

i=1 p(si | λ), and KL(q(λ)||p(λ)) represents the KL diver-

gence between the distribution q(λ) and p(λ)

KL(q(λ)||p(λ)) =

∫
λ

q(λ) log
q(λ)

p(λ)
dλ.

Hence, the M Step (3.7) simplifies to

s(t+1) = arg min
s

1

2σ2
‖x− Φs‖2

2 +
m∑

i=1

〈λi〉q(t+1) |si|, (3.8)

which is a least-square problem regularized by a weighted sum of the absolute values

of the coefficients. It is a quadratic program very similar to BPDN, and we can use

efficient algorithms that have been developed for BPDN in the M step.

We have equality in (3.4) if q(λ) = p(λ | s). The inequality (3.5) is therefore tight

for this particular choice of q, which implies that the E step reduces to q(t+1)(λ) =

p(λ | s(t)). Note that in the M step we only need to the expectation of λi with respect

to the maximizing distribution in the E step. Hence we only need to compute the

sufficient statistics

〈λi〉p(λ|s(t)) =

∫
λ

λip(λ | s(t))dλ. (3.9)

This explains why this step is usually referred to as the expectation step.
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Note that the posterior of the multiplier given the coefficient p(λ | s) might be

hard to compute. We will see in Section 3.4.1 that it is tractable if the prior on λ

is factorial and each λi has a Gamma distribution, as the Laplacian distribution and

the Gamma distribution are conjugate.

3.3.3 Variational approximation

In the case where we cannot compute the sufficient statistics (3.9), we can use a

variational approximation [Jordan et al., 1999] whose principle is to restrict the family

of distribution in the E step to a family of distribution Q that is simple enough such

that we can compute the sufficient statistics. The variational E step is given by

max
q∈Q

L(q, s(t)). (3.10)

Note that in this case we no longer have equality in (3.4) for the maximizing distri-

bution.

An example for Q is the family of point-mass distributions

Q = {q(λ) = δ(λ− λ∗), λ∗ ∈ R+} .

With this choice, Jensen’s inequality (3.4) has the simple form

log p(s(t)) ≥ log p(s(t), λ̃).

Let q(t+1)(λ) = δ(λ− λ(t+1)) be the solution of (3.10). We have

λ(t+1) = arg max
λ̃

log p(s(t), λ̃), (3.11)
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and the sufficient statistics are given by 〈λi〉q(t+1) = λ
(t+1)
i .

We can recast the “point-mass” variational approximation as simply computing

the maximum a posteriori estimate of the latent variables s and λ. Using Bayes’ rule

the MAP estimate is the solution of

ŝ, λ̂ = arg max
s,λ

p(s, λ | x)

= arg max
s,λ

p(x | s)p(s | λ)p(λ)

= arg min
s,λ

1

2σ2
‖x− Φs‖2

2 +
m∑

i=1

(λi|si| − log λi)− log p(λ).

Let E(s, λ) be the objective function that is minimized. Performing block-coordinate

descent in E with respect to s and λ leads to the following algorithm

Step 1 s(t+1) = arg max
s

E
(
s, λ(t)

)
(3.12)

Step 2 λ(t+1) = arg max
λ

E
(
s(t+1), λ

)
. (3.13)

Suppose that the probability over λ is log-concave. In this case the objective function

E is convex in s and in λ, but in general not in both variables. We are however

guaranteed to decrease E by applying the block-coordinate descent in s and λ.

We can rewrite (3.12) as

s(t+1) = arg min
s

1

2σ2
‖x− Φs‖2

2 +
m∑

i=1

λ
(t)
i |si|,
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which is similar to (3.8). The second step is given by

λ(t+1) = arg max
λ

log p(s(t), λ) (3.14)

= arg min
λ

m∑
i=1

λi|si| − log λi − log p(λ), (3.15)

which is the problem solved in (3.11). Hence these are in reverse order the updates

proposed in the “point-mass” variational approximation. We typically initialize the

multipliers with their expected value E[λi], and the first step is similar to inference

in the standard sparse coding model. However, at the next iteration the multipliers

modified according to (3.15) provide contextual feedback for the inference.

3.4 A factorial model

We propose in this Section a sparse coding model where the distribution of the mul-

tipliers is factorial, and each multiplier has a Gamma distribution with parameters

α and β. The graphical model corresponding to this generative model is shown in

Figure 3.4.

3.4.1 Conjugacy

The Gamma distribution and Laplacian distribution are conjugate, i.e. the posterior

probability of λi given si is also a Gamma distribution when the prior over λi is

a Gamma distribution and the conditional probability of si given λi is a Laplace
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s1 s2 smsj

x1 xnxi

λ1 λ2 λmλj

φij

Figure 3.4: Graphical model representation of our proposed generative model where the
multipliers distribution is factorial.

distribution with inverse scale λi. We have indeed

p(λi | si) ∝ p(si | λi)p(λi)

∝ λie
−λi|si|λα−1

i e−βλi

∝ λα
i e−(β+|si|)λi .

The posterior of λi given si is thus a Gamma distribution with parameters α + 1 and

β + |si|.

The conjugacy is a key property that we can use in our EM algorithm proposed in

Section 3.3.2. We saw that the solution of the E step is given by q(t+1)(λ) = p(λ | s(t)).

In the factorial model shown in Figure 3.4 we have p(λ | s) =
∏

i p(λi | s(t)
i ). The

solution of the E step is therefore a product of Gamma distributions with parameters

α + 1 and β + |s(t)
i |, and the sufficient statistics (3.9) are given by

〈λi〉p(λi|s
(t)
i )

=
α + 1

β + |s(t)
i |

. (3.16)
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We can thus rewrite (3.8) as follows

s(t+1) = arg min
s

1

2σ2
‖x− Φs‖2

2 +
m∑

i=1

α + 1

β + |s(t)
i |
|si|. (3.17)

Inference in the model can be solved via a sequence of reweighted `1-regularized least-

square problems. The parameters λi are typically initialized to E[λi] = α/β for all

i. The first step is thus equivalent to solving BPDN. A coefficient that has a small

value after t iterations but is not exactly zero will have in the next iteration a large

reweighting factor λ
(t+1)
i , which increases the chance that it will be set to zero in the

next iteration, resulting in a sparser representation. On the other hand, a coefficient

having a large value after t iterations corresponds to a feature that is very salient in

the signal x. It is therefore beneficial to reduce its corresponding inverse scale λ
(t+1)
i

such that it is not penalized and can account for as much information as possible.

We saw that with the Gamma prior we can compute the distribution of si ana-

lytically (see (3.1)), and therefore we can compute the gradient of log p(s | x) with

respect to s. Hence another inference algorithm is to descend the cost function in

(3.3) directly using a method such as conjugate gradient. We argue here that the

EM algorithm is in fact more efficient. The solution of (3.17) indeed has typically

few elements that are non-zero, and the computational complexity scales with the

number of non-zero coefficients [Efron et al., 2004][Daubechies et al., 2004][Rozell

et al., 2008]. On the other hand, a gradient-based method will have a harder time

identifying the support of the solution, and therefore the required computations will

involve all the coefficients which is expensive.
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3.4.2 A connection with reweighted `1 optimization methods

It has been proposed in [Candès et al., 2008] to solve the following sequence of prob-

lems

s(t+1) = arg min
s

m∑
i=1

λ
(t)
t |si| subject to ‖x− Φs‖2 ≤ δ (3.18)

λ
(t+1)
i =

1

β + |s(t)
i |

. (3.19)

The authors show that the solutions achieved by their algorithm are more sparse than

the solution of

min
s

m∑
i=1

|si| subject to ‖x− Φs‖2 ≤ δ. (3.20)

The update (3.19) is equivalent to the update we propose in (3.16). Hence our

proposed probabilistic model leads to an optimization scheme that is akin to the

one proposed in [Candès et al., 2008] for the unconstrained problem. We provide an

interpretation for their algorithm as inference in a probabilistic generative model.

It was shown in [Wipf and Nagarajan, 2008] that evidence maximization in a

sparse coding model with automatic relevance determination prior can also be solved

via a sequence of reweighted `1 optimization problems. The update is in this case

non-factorial, i.e. λ
(t+1)
i depends on (s

(t)
1 , . . . , s

(t)
1 ) as opposed to s

(t)
i only. The authors

show indeed that their algorithm is equivalent to MAP estimation in a sparse coding

model with a non-factorial prior in coefficient space, where the dependencies are

governed by the features and the noise. Note that this is different from the non-

factorial prior proposed in Chapter 2 and the one we consider in Section 3.5 where

the statistical dependencies are governed by the statistics of the signals of interest.
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3.4.3 Application to image coding

We saw in Section 1.4.1 that the convex relaxation consisting of replacing the `0

norm with the `1 norm is able to identify the sparsest solution under some conditions

on the dictionary of basis functions. However, these conditions are typically not

verified for the dictionaries learned from the statistics of natural images using the

algorithm presented in Section 1.4.4, or for the set of basis functions in the steerable

pyramid [Simoncelli et al., 1992]. For instance, we observed indeed in Section 2.5

that it is possible to infer sparser representations with a prior over the coefficients

that is a mixture of a delta function at zero and a Gaussian distribution than with

the Laplacian prior. We show that our proposed inference algorithm also leads to

representations that are more sparse, as the LSM prior with Gamma hyperprior has

heavier tails than the Laplacian distribution.

We selected 1000 16 × 16 image patches at random, and computed their sparse

representations in a dictionary with 256 basis functions using a Laplacian prior and

the LSM prior with factorial Gamma hyperprior. To ensure that the reconstruction

error is the same in both cases, we solve the constrained version of the problem

as in [Candès et al., 2008], where we require that the signal to noise ratio of the

reconstruction is equal to 10. We choose β = 0.01 and 5 EM iterations. We can see

in Figure 3.5 that the representations using the LSM prior are indeed more sparse by

a factor of about 2. Note that the computational complexity to compute those sparse

representations is much lower than that of our horizontal connections model.

3.5 A non-factorial model

Many real-world signals such as sound or images have a sparse structure, but this

property is not enough to fully characterize their statistics. We focus in this Section
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Figure 3.5: Sparsity comparison of the inferred representation with a Laplacian prior and
an LSM prior with Gamma hyperprior on the coefficients. We code 1000 image patches
such that the signal to noise ratio is 10, and each dot represents an image patch. On the
x-axis (resp. y-axis) is the `0 norm of the representation inferred with the Laplacian prior
(resp. LSM prior).
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on a class of signals that has a particular type of higher-order structure where the

active coefficients occur in groups. We use the LSM framework to propose an efficient

inference algorithm that utilizes this property, and show that it is applicable to images.

3.5.1 Group sparsity

We consider a dictionary Φ such that the basis functions can be divided in a set of

disjoint groups or neighborhoods indexed by Nk, i.e. {1, . . . ,m} =
⋃

k∈ΛNk, and

Ni ∩ Nj = ∅ if i 6= j. A signal having the group sparsity property is such that the

sparse coefficients occur in groups, i.e. the indices of the nonzero coefficients are given

by
⋃

k∈ΓNk, where Γ is a subset of Λ.

The group sparsity structure can be captured using LSM priors on the coefficients.

We propose a model where all the coefficients in a group share the same inverse scale

parameter, i.e.

∀i ∈ Nk, λi = λ(k).

The corresponding graphical model is shown in Figure 3.6. This addresses the case

where dependencies are allowed within groups, but not across groups as in the block-

`1 method [Yuan and Lin, 2006]. Note that for some types of dictionaries it is more

natural to consider overlapping groups to avoid blocking artifacts. We propose in the

next Section inference algorithms for both overlapping and non-overlapping cases.

Note that a related notion of clustered sparsity parameterized by the number of

nonzero coefficients and number of clusters was recently introduced in [Cevher et al.,

2009].

3.5.2 Inference

In the EM algorithm we proposed in Section 3.3.2, the sufficient statistics that are

computed in the E step are 〈λi〉p(λi|s(t)) for all i. We suppose as in Section 3.4.1 that

76



Chapter 3. Laplacian Scale Mixture

si-1

λ(k)

si-2 si si+1 si+2

λ(l)

si+3

Figure 3.6: The two groups N(k) = {i − 2, i − 1, i} and N(l) = {i + 1, i + 2, i + 3} are
non-overlapping.

the prior on λ(k) is Gamma with parameters α and β. Using the structure of the

dependencies in the probabilistic model shown in Figure 3.6, we have

〈λi〉p(λi|s(t)) =
〈
λ(k)

〉
p(λ(k)|s

(t)
Nk

)
, (3.21)

where the index i is in the group Nk, and sNk
= (sj)j∈Nk

is the vector containing

all the coefficients in the group. Using the conjugacy of the Laplacian and Gamma

distributions we can compute the posterior distribution

p(λ(k) | sNk
) ∝ p(sNk

| λ(k))p(λ(k))

∝

(∏
j∈Nk

p(sj | λ(k))

)
p(λ(k))

∝ λ
α+|Nk|−1
(k) e−(β+

P
j∈Nk

|sj |)λ(k) ,

where |Nk| denotes the size of the neighborhood. The distribution of λ(k) given all the

coefficients in the neighborhood is therefore a Gamma distribution with parameters

α + |Nk| and β +
∑

j∈Nk
|sj|. Hence (3.21) can be rewritten as follows

λ
(t+1)
(k) =

α + |Nk|
β +

∑
j∈Nk

|s(t)
j |

. (3.22)
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This update is a form of divisive normalization, an operation thought to play an

important role in human visual processing [Wainwright et al., 2001a].

We suppose now that the coefficient neighborhoods are allowed to overlap. Let

N (i) denote the indices of the neighborhood that is centered around si (see Figure 3.7

for an example). We propose to estimate the scale parameter λi by only considering

the coefficients in N (i), and suppose that they all share the same multiplier λi. In

this case the EM update is given by

λ
(t+1)
i =

α + |N (i)|
β +

∑
j∈N (i) |s

(t)
j |

. (3.23)

Note that we have not derived this rule from a proper probabilistic model. A coef-

ficient is indeed a member of many neighborhoods as shown in Figure 3.7, and the

structure of the dependencies implies

p(λi | s) 6= p(λi | sN(i)).

However, we show experimentally that estimating the multiplier using (3.23) gives

good performance.

In [Figueras and Simoncelli, 2007], the noise shaping algorithm, which bears simi-

larities with iterative thresholding algorithm developed for BPDN [Rozell et al., 2008],

is modified such that the update is given by

λ
(t+1)
i ∝

√
β +

∑
j∈N (i)

s
(t)
j

2
. (3.24)

The authors show improved coding efficiency in the context of natural images. Note

that our proposed update (3.23) is essentially inversely proportional to (3.24).
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si-1

λi-1

si-2 si

λi

si+1 si+2

λi+2

si+3

λi+1

Figure 3.7: The basis functions coefficients in the neighborhood defined by N (i) =
{i − 1, i, i + 1} share the same multiplier λi. The coefficient si is a member of the
neighborhoods N (i−1), N (i) and N (i+1). However, to estimate λi only the coefficients
in N (i) are considered.

3.5.3 Compressive sensing recovery

We saw in Section 1.1.3 that a way to compare signal priors is to look at the perfor-

mance of the corresponding inference algorithms in ill-posed inverse problems. We

focus here on compressive sensing recovery using synthetic data that have the over-

lapping group sparsity structure. We consider 50-dimensional signals that are sparse

in the canonical basis and where the neighborhood size is 3. To sample such a signal

s ∈ R50, we sample a number d of “centroids” i, and we sample three values for si−1,

si and si+1 using a normal distribution of variance 1. The groups are thus allowed to

overlap. We show examples of such signals in Figure 3.8.

In the compressive sensing scenario, we observe a number n of random projec-

tions of a signal s0 from our overlapping group sparsity class. Let W ∈ Rn×m denote

the measurement matrix and y = Ws0. It is in principle impossible to recover s0

from y if n < m. However, if s0 has k non-zero coefficients, it has been shown in

[Candès, 2006][Donoho, 2006a] that it is sufficient to use n ∝ k log m such measure-

ments. This means that we can identify the active coefficients and their values using

more measurements than the sparsity of the signal, but fewer measurements than the
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Figure 3.8: Examples of signals with overlapping group sparsity. We set m = 50 and the
number of sampled “centroids” is d = 5.
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dimensionality of the signal. A standard method to obtain the reconstruction is to

use the solution of the Basis Pursuit (BP) problem

ŝ = arg min
s

‖s‖1 subject to Ws = y.

The performance metric is the recovery error ‖ŝ− s0‖2/‖s0‖2. Note that the solution

of BP is the solution of BPDN as λ converges to zero, or δ = 0 in (3.20). We

compare the performance of BP with the performance of our proposed LSM inference

algorithms

min
s

m∑
i=1

λ
(t)
i |si| subject to Ws = y,

where

λ
(t+1)
i =


α+1

β+|s(t)
i |

, factorial update

α+|N (i)|
β+

P
j∈N (i) |sj | , divisive normalization update.

(3.25)

We denote by RWBP the algorithm with the factorial update, and RW3BP (resp.

RW5BP) the algorithm with our proposed divisive normalization update with group

size 3 (resp. 5).

A compressive sensing recovery problem is parameterized by (m, n, d). To explore

the problem space we display the results using phase plots as in [Donoho and Tsaig,

2006]. We fix m = 50 and parameterize the phase plots using the indeterminacy of

the system indexed by δ = n/m, and the sparsity of the system indexed by ρ = 3d/m.

We vary δ and ρ in the range [.1, .9] using a 30 by 30 grid. For a given value (δ, ρ) on

the grid, we sample 10 sparse signals using the corresponding (m, n, d) parameters.

We attempt to recover the underlying sparse signal using the three algorithms and

average the recovery error for each of them. The results are displayed in Figure 3.9,

and we can see that our proposed algorithm with the divisive normalization update

clearly has the best performance. There is a slight improvement by going from BP
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to RWBP, but this improvement is rather small as compared with going from RWBP

to RW3BP and RW5BP. This illustrates the importance of using the higher-order

structure of the signals in the inference algorithm. The peformance of RW3BP and

RW5BP is comparable, which shows that our algorithm is not very sensitive to the

choice of the neighborhood size.
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Figure 3.9: Compressive sensing recovery results using synthetic data. We show the
phase plots for BP, a sequence of BP problems with the factorial update (RWBP), and
a sequence of BP problems with the divisive normalization update with neighborhood
size 3 (RW3BP) and 5 (RW5BP). On the x-axis is the sparsity of the system indexed by
ρ = 3d/m, and on the y-axis is the indeterminacy of the system indexed by δ = n/m.
At each point (ρ, δ) in the phase plot, we sample 10 compressive sensing problems and
display the average recovery error.
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3.5.4 Application to images

We saw in Section 1.4.4 that natural images are sparse with respect to dictionaries

that are composed of Gabor-like basis functions at a variety of positions, scales, and

orientations. We learned in Chapter 2 a non-factorial prior on the coefficients such

that the statistical dependencies are governed by a weight matrix we learned from

data. We saw that a basis function coefficient exhibits statistical dependencies with

the coefficients corresponding to basis functions that have a similar position, scale,

and orientation. Hence, for a dictionary composed of oriented Gabor-like filters, it is

natural to define a topology in terms of these parameters. Furthermore, it was shown

in [Hyvärinen et al., 2003] that structures in images such as edges and contours

are formed by combinations of basis functions that are close in position, scale, and

orientation. The authors denote a set of active coefficients used to represent such as

structure a “bubble”.

The overlapping group sparsity is therefore relevant to images, and we show that

our proposed algorithm improves the performance in compressive sensing recovery for

the reconstruction from a multi-scale subband of the Shepp-Logan phantom. This

image shown in Figure 3.10 is a good example of the types of images in medical

imaging and has edge and contour structures. Considering the reconstruction from a

multiscale subband allows us to control the dimensionality of the problem, computa-

tional complexity, and memory requirements by limiting the size of the subband. A

natural topography is also in this case particularly simple to define and we choose a

grid. We consider overlapping groups of size 3× 3.

Let (ϕi)i∈Γ denote the basis functions in the steerable pyramid [Simoncelli et al.,

1992]. As it is a tight frame, we have

x = κ
∑
i∈Γ

aiϕi
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Figure 3.10: The Shepp-Logan phantom.

for some constant κ, where a is the vector of analysis coefficients, i.e. ai = xT ϕi.

Let Φ = (ϕi)i∈Λ be the set of basis functions corresponding to a multi-scale oriented

subband of the steerable pyramid, and m be the number of basis functions in the

subband Λ. These basis functions are the translations at all possible positions of the

atom shown in Figure 3.11.

The reconstruction from the coefficients in the subband is given by

x̃ = κ
∑
i∈Λ

aiϕi (3.26)

and is shown in Figure 3.12. We have therefore x̃ ∈ span(Φ), and x̃ has a sparse

representation in this basis. Note that the analysis coefficients do not in general

correspond to the representation that is the most sparse.

In the compressive sensing scenario, we observe y = Wx̃, where W ∈ Rk×m is

a matrix of random projections where each element is Gaussian with unit variance.
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atom ϕi

Figure 3.11: Left The atom of size 9 × 9 pixels that is used to generate all the basis
functions by placing the atom at every possible position. Right An example of such a
basis function of size 32× 32 pixels.

Figure 3.12: Left A 32 × 32 cutout of the Shepp-Logan phantom. Middle Analysis
coefficients. Right Reconstruction using the analysis coefficients.
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The reconstruction given by BP is given by Φŝ, where ŝ is the solution of

min
s
‖s‖1 subject to WΦs = y.

The performance metric is the signal-to-noise ratio

20 log10

(
‖x̃‖2

‖Φŝ− x̃‖2

)

We compare the performance of BP with the performance of our proposed LSM

inference algorithms

min
s

m∑
i=1

λ
(t)
i |si| subject to WΦs = y,

with the same updates as in (3.25). We denote by RW3×3BP the algorithm with

divisive normalization update and 3 × 3 groups. We can see in Figure 3.13 that

RW3×3BP offers the best performance. The signal-to-noise ratio of the recovered

signal is indeed superior to the other method by more than 1dB when the number of

observations is between 150 and 400. When the number of observations is above 400,

all methods are able to correctly recover the input image. Note that with very few

observations the three methods perform equally poorly. We display in Figure 3.14

and 3.15 the coefficients inferred using the three algorithms. The coefficients inferred

by RW3×3BP are clustered and able to identify where the important structure in

the image lies, whereas the coefficients inferred using the other methods are more

dispersed.
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Figure 3.13: Compressive sensing recovery. On the x-axis is the number of observations
k, and on the y-axis is the signal-to-noise ratio of the reconstruction. We compare the
three algorithms BP, RWBP and RW3×3BP

3.6 Conclusion

We introduced a new class of probability densities that can be used as the coefficients

prior in sparse coding models. We proposed efficient inference algorithms that consist

of solving a sequence of reweighted `1 least-square problems, and can therefore lever-

age the algorithms developed for BPDN. Our framework also makes it possible to

capture higher-order structure beyond sparsity, and we demonstrated improvements

in compressive sensing recovery for signals having the group sparsity property.
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BP RWBP RW3x3BP

Figure 3.14: Inferred coefficients (top) and reconstructed image (bottom) with k = 200
observations.
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BP RWBP RW3x3BP

Figure 3.15: Inferred coefficients (top) and reconstructed image (bottom) with k = 350
observations.
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Chapter 4

An homotopy algorithm with on-line

observations

4.1 Introduction

Regularization using the `1-norm has attracted much interest in the statistics [Tibshi-

rani, 1996], signal processing [Chen et al., 1999], and machine learning communities.

The `1 penalty indeed leads to sparse solutions, which is a desirable property to

achieve model selection, data compression, or for obtaining interpretable results. In

this Chapter, we focus on the problem of `1-penalized least-square regression com-

monly referred to as the Lasso [Tibshirani, 1996]. We have seen in Chapter 1 how this

problem can be used to compute sparse approximations of signals with respect to an

overcomplete dictionary. We investigate in this Chapter how this problem is used in

statistics, and propose an efficient algorithm in the on-line observations settings. We

are given a set of training examples or observations (yi, xi) ∈ R×Rm, i = 1 . . . n. We

wish to fit a linear model to predict the response yi as a function of xi and a feature

vector θ ∈ Rm, yi = xT
i θ + νi, where νi represents the noise in the observation. The
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Lasso optimization problem is given by

min
θ

1

2

n∑
i=1

(xT
i θ − yi)

2 + µn‖θ‖1, (4.1)

where µn is a regularization parameter. The solution of (4.1) is typically sparse,

i.e. the solution θ has few entries that are non-zero, and therefore identifies which

dimensions in xi are useful to predict yi. Note that the cost function is the sum of a

squared-error term and the `1 norm, as in the Basis Pursuit Denoising problem that

we have encountered in the context of image coding.

The `1-regularized least-square problem can be formulated as a convex quadratic

problem (QP) with linear equality constraints. The equivalent QP can be solved

using standard interior-point methods (IPM) [Boyd and Vandenberghe, 2004] which

can handle medium-sized problems. A specialized IPM for large-scale problems was

recently introduced in [Kim et al., 2007]. Homotopy methods have also been applied

to the Lasso to compute the full regularization path when λ varies [Efron et al.,

2004] [Osborne et al., 2000][Malioutov et al., 2005]. They are particularly efficient

when the solution is very sparse [Drori and Donoho, 2006]. Other methods to solve

(4.1) include iterative thresholding algorithms [Daubechies et al., 2004][Rozell et al.,

2007][Friedman et al., 2007], feature-sign search [Lee et al., 2007], bound optimization

methods [Figueiredo and Nowak, 2005] and gradient projection algorithms [Figueiredo

et al., 2007].

We propose an algorithm to compute the solution of the Lasso when the training

examples (yi, xi)i=1...N are obtained sequentially. Let θ(n) be the solution of the Lasso

after observing n training examples and θ(n+1) the solution after observing a new data

point (yn+1, xn+1) ∈ R × Rm. We introduce an optimization problem that allows us

to compute an homotopy from θ(n) to θ(n+1). Hence we use the previously computed

solution as a “warm-start”, which makes our method particularly efficient when the
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supports of θ(n) and θ(n+1) are close. A similar algorithm appeared independently in

[Asif and Romberg, 2008].

In Section 2 we review the optimality conditions of the Lasso, which we use in

Section 3 to derive our algorithm. We test in Section 4 our algorithm numerically,

and show applications to compressive sensing with sequential observations and leave-

one-out cross-validation. We also propose an algorithm to automatically select the

regularization parameter each time we observe a new data point.

4.2 Optimality conditions for the Lasso

The objective function in (4.1) is convex and non-smooth since the `1 norm is not

differentiable when θi = 0 for some i. Hence there is a global minimum at θ if and

only if the subdifferential of the objective function at θ contains the 0-vector. The

subdifferential of the `1-norm at θ is the following set

∂‖θ‖1 =

v ∈ Rm :

vi = sgn(θi) if |θi| > 0

vi ∈ [−1, 1] if θi = 0

 .

Let X ∈ Rn×m be the matrix whose ith row is equal to xT
i , and y = (y1, . . . , yn)T .

The optimality conditions for the Lasso are given by

XT (Xθ − y) + µnv = 0, v ∈ ∂‖θ‖1.

We define as the active set the indices of the elements of θ that are non-zero. To

simplify notations we assume that the active set appears first, i.e. θT = (θT
1 , 0T )

and vT = (vT
1 , vT

2 ), where v1i = sgn(θ1i) for all i, and −1 ≤ v2j ≤ 1 for all j. Let

X = (X1 X2) be the partitioning of X according to the active set. If the solution is
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unique it can be shown that XT
1 X1 is invertible, and we can rewrite the optimality

conditions as θ1 = (XT
1 X1)

−1(XT
1 y − µnv1)

−µnv2 = XT
2 (X1θ1 − y)

.

Note that if we know the active set and the signs of the coefficients of the solution,

then we can compute it in closed form.

4.3 Proposed homotopy algorithm

4.3.1 Outline of the algorithm

Suppose we have computed the solution θ(n) to the Lasso with n observation and

that we are given an additional observation (yn+1, xn+1) ∈ R × Rm. Our goal is to

compute the solution θ(n+1) of the augmented problem. We introduce the following

optimization problem

θ(t, µ) = arg min
θ

1

2

∥∥∥∥∥
 X

txT
n+1

 θ −

 y

tyn+1

∥∥∥∥∥
2

2

+ µ‖θ‖1. (4.2)

We have θ(n) = θ(0, µn) and θ(n+1) = θ(1, µn+1). We propose an algorithm that

computes a path from θ(n) to θ(n+1) in two steps:

• Step 1 Vary the regularization parameter from µn to µn+1 with t = 0. This

amounts to computing the regularization path between µn and µn+1 as done

in Lars. The solution path is piecewise linear and we do not review it in this

Chapter (see [Osborne, 1992][Malioutov et al., 2005][Efron et al., 2004]).

• Step 2 Vary the parameter t from 0 to 1 with µ = µn+1. We show in Section

4.3.2 how to compute this path.
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4.3.2 Algorithm derivation

We show in this Section that θ(t, µ) is a piecewise smooth function of t. To make

notations lighter we write θ(t) := θ(t, µ). We saw in Section 4.2 that the solution to

the Lasso can be easily computed once the active set and signs of the coefficients are

known. This information is available at t = 0, and we show that the active set and

signs will remain the same for t in an interval [0, t∗) where the solution θ(t) is smooth.

We denote such a point where the active set changes a “transition point” and show

how to compute it analytically. At t∗ we update the active set and signs which will

remain valid until t reaches the next transition point. This process is iterated until

we know the active set and signs of the solution at t = 1, and therefore can compute

the desired solution θ(n+1).

We suppose as in Section 4.2 and without loss of generality that the solution at

t = 0 is such that θ(0) = (θT
1 , 0T ) and vT = (vT

1 , vT
2 ) ∈ ∂‖θ(0)‖1 satisfy the optimality

conditions.

Lemma 1. Suppose θ1i 6= 0 for all i and |v2j| < 1 for all j. There exist t∗ > 0 such

that for all t ∈ [0, t∗), the solution of (4.2) has the same support and the same sign

as θ(0).

Proof. The optimality conditions of (4.2) are given by

XT (Xθ − y) + t2xn+1

(
xT

n+1θ − yn+1

)
+ µw = 0, (4.3)

where w ∈ ∂‖θ‖1. We show that there exists a solution θ(t)T = (θ1(t)
T , 0T ) and

w(t)T = (vT
1 , w2(t)

T ) ∈ ∂‖θ(t)‖1 satisfying the optimality conditions for t sufficiently

small. We partition xT
n+1 = (xT

n+1,1, x
T
n+1,2) according to the active set. We rewrite
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the optimality conditions asXT
1 (X1θ1(t)− y) + t2xn+1,1

(
xn+1,1

T θ1(t)− yn+1

)
+ µv1 = 0

XT
2 (X1θ1(t)− y) + t2xn+1,2

(
xn+1,1

T θ1(t)− yn+1

)
+ µw2(t) = 0

.

Solving for θ1(t) using the first equation gives

θ1(t) =
(
XT

1 X1 + t2xn+1,1 xn+1,1
T
)−1 (

XT
1 y + t2yn+1 xn+1,1 − µv1

)
. (4.4)

We can see that θ1(t) is a continuous function of t. Since θ1(0) = θ1 and the elements

of θ1 are all strictly positive, there exists t∗1 such that for t < t∗1, all elements of θ1(t)

remain positive and do not change signs. We also have

−µn+1w2(t) = XT
2 (X1θ1(t)− y) + t2xn+1,2

(
xn+1,1

T θ1(t)− yn+1

)
. (4.5)

Similarly w2(t) is a continuous function of t, and since w2(0) = v2, there exists t∗2 such

that for t < t∗2 all elements of w2(t) are strictly smaller than 1 in absolute value. By

taking t∗ = min(t∗1, t
∗
2) we obtain the desired result.

The solution θ(t) will therefore be smooth until t reaches a transition point where

either a component of θ1(t) becomes zero, or one of the component of w2(t) reaches

one in absolute value. We now show how to compute the value of the transition point.

Let X̃ =

 X

xn+1
T

 and ỹ =

 y

yn+1

. We partition X̃ =
(
X̃1 X̃2

)
according

to the active set. We use the Sherman-Morrison formula and rewrite (4.4) as

θ1(t) = θ̃1 −
(t2 − 1)ē

1 + α(t2 − 1)
u,
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where 

θ̃1 = (X̃T
1 X̃1)

−1(X̃T
1 ỹ − µv1)

ē = xn+1,1
T θ̃1 − yn+1

α = xn+1,1
T (X̃T

1 X̃1)
−1xn+1,1

u = (X̃T
1 X̃1)

−1xn+1,1

.

Let t1i the value of t such that θ1i(t) = 0. We have

t1i =

(
1 +

(
ēui

θ̃1i

− α

)−1
) 1

2

.

We now examine the case where a component of w2(t) reaches one in absolute

value. We first notice thatxn+1,1
T θ1(t)− yn+1 = ē

1+α(t2−1)

X̃1θ1(t)− ỹ = ẽ− (t2−1)ē
1+α(t2−1)

X̃1u

,

where ẽ = X̃1θ̃1 − ỹ. We can rewrite (4.5) as

−µw2(t) = X̃T
2 ẽ +

ē(t2 − 1)

1 + α(t2 − 1)
(xn+1,2 − X̃T

2 X̃1u).

Let cj be the jth column of X̃2, and x(j) the jth element of xn+1,2. The jth component

of w2(t) will become 1 in absolute value as soon as∣∣∣∣cT
j ẽ +

ē(t2 − 1)

1 + α(t2 − 1)

(
x(j) − cT

j X̃1u
)∣∣∣∣ = µ.
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Let t+2 j (resp. t−2 j) be the value such that w2j(t) = 1 (resp. w2j(t) = −1). We have


t+2 j =

(
1 +

(
ē(x(j)−cT

j X̃1u)

−µ−cT
j ẽ

− α
)−1
) 1

2

t−2 j =

(
1 +

(
ē(x(j)−cT

j X̃1u)

µ−cT
j ẽ

− α
)−1
) 1

2
.

Hence the transition point will be equal to t′ = min{mini t1i, minj t+2 j, minj t−2 j}

where we restrict ourselves to the real solutions that lie between 0 and 1. We now

have the necessary ingredients to derive the proposed algorithm.

Algorithm 1 RecLasso: homotopy algorithm for online Lasso

1: Compute the path from θ(n) = θ(0, µn) to θ(0, µn+1).
2: Initialize the active set to the non-zero coefficients of θ(0, µn+1) and let v =

sign (θ(0, µn+1)).
Let v1 and xn+1,1 be the subvectors of v and xn+1 corresponding to the active set,
and X̃1 the submatrix of X̃ whose columns correspond to the active set.
Initialize θ̃1 = (X̃T

1 X̃1)
−1(X̃T

1 ỹ − µv1).
Initialize the transition point t′ = 0.

3: Compute the next transition point t′. If it is smaller than the previous transition
point or greater than 1, go to Step 5.

Case 1 The component of θ1(t
′) corresponding to the ith coefficient goes to zero:

Remove i from the active set.
Update v by setting vi = 0.

Case 2 The component of w2(t
′) corresponding to the jth coefficient reaches one in

absolute value:
Add j to the active set.
If the component reaches 1 (resp. −1), then set vj = 1 (resp. vj = −1).

4: Update v1, X̃1 and xn+1,1 according to the updated active set.
Update θ̃1 = (X̃T

1 X̃1)
−1(X̃T

1 ỹ − µv1) (rank 1 update).
Go to Step 3.

5: Compute final value at t = 1, where the values of θ(n+1) on the active set are
given by θ̃1.

The initialization amounts to computing the solution of the Lasso when we have
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Figure 4.1: Solution path for both steps of our algorithm. We set n = 5, m = 5, µn = .1n.
All the values of X, y, xn+1 and yn+1 are drawn at random. Top Homotopy when the
regularization parameter goes from µn = .5 to µn+1 = .6. There is one transition point
as θ2 becomes inactive. Bottom Piecewise smooth path of θ(t) when t goes from 0 to 1.
We can see that θ3 becomes zero, θ2 goes from being 0 to being positive, whereas θ1, θ4

and θ5 remain active with their signs unchanged. The three transition points are shown
as black dots.
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only one data point (y, x) ∈ R × Rm. In this case, the active set has at most one

element. Let i0 = arg maxi |x(i)| and v = sign(yx(i0)). We have


1

(x(i0))2
(yx(i0) − µ1v)ei0 , if |yx(i0)| > µ1

0, otherwise.

.

We illustrate our algorithm by showing the solution path when the regularization

parameter and t are successively varied with a simple numerical example in Figure

4.1.

4.3.3 Complexity

The complexity of our algorithm is dominated by the inversion of the matrix X̃T
1 X̃1

at each transition point. The size of this matrix is bounded by q = min(n, m). As

the update to this matrix after a transition point is rank 1, the cost of computing

the inverse is O(q2). Let k be the total number of transition points after varying

the regularization parameter from µn to µn+1 and t from 0 to 1. The complexity of

our algorithm is thus O(kq2). In practice, the size of the active set d is much lower

than q, and if it remains ∼ d throughout the homotopy, the complexity is O(kd2).

It is instructive to compare it with the complexity of recursive least-square, which

corresponds to µn = 0 for all n and n > m. For this problem the solution typically

has m non-zero elements, and therefore the cost of updating the solution after a new

observation is O(m2). Hence if the solution is sparse (d small) and the active set does

not change much (k small), updating the solution of the Lasso will be faster than

updating the solution to the non-penalized least-square problem.

Suppose that we applied Lars directly to the problem with n + 1 observations

without using knowledge of θ(n) by varying the regularization parameter from a large

value where the size of the active set is 0 to µn+1. Let k′ be the number of transition
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points. The complexity of this approach is O(k′q2), and we can therefore compare

the efficiency of these two approaches by comparing the number of transition points.

4.4 Applications

4.4.1 Compressive sensing

Let θ0 ∈ Rm be an unknown vector that we wish to reconstruct. We observe n

linear projections yi = xT
i θ0 + νi, where νi is Gaussian noise of variance σ2. In

general one needs m such measurement to reconstruct θ0. However, if θ0 has a sparse

representation with k non-zero coefficients, it has been shown in the noiseless case

that it is sufficient to use n ∝ k log m (see Section 3.5.3). The reconstruction is given

by the solution of the Basis Pursuit (BP) problem

min
θ
‖θ‖1 subject to Xθ = y.

If measurements are obtained sequentially, it is advantageous to start estimating the

unknown sparse signal as measurements arrive, as opposed to waiting for a specified

number of measurements. Algorithms to solve BP with sequential measurements have

been proposed in [Sra and Tropp, 2006][Malioutov et al., 2008], and it has been shown

that the change in the active set gives a criterion for how many measurements are

needed to recover the underlying signal [Malioutov et al., 2008].

In the case where the measurements are noisy (σ > 0), a standard approach to

recover θ0 is to solve the Basis Pursuit DeNoising problem instead [Tsaig and Donoho,

2006]. Hence, our algorithm is well suited for compressive sensing with sequential and

noisy measurements. We compare our proposed algorithm to Lars as applied to the

entire dataset each time we receive a new measurement. We also compare our method

to coordinate descent [Friedman et al., 2007] with warm start: when receiving a new
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measurement, we initialize coordinate descent (CD) to the actual solution.

We sample measurements of a model where m = 100, the vector θ0 used to sam-

ple the data has 25 non-zero elements whose values are Bernoulli ±1, xi ∼ N (0, Im),

σ = 1, and we set µn = .1n. The reconstruction error decreases as the number of

measurements grows as seen in Figure 4.2. The parameter that controls the complex-

ity of Lars and RecLasso is the number of transition points. We see in Figure 4.3 that

this quantity is consistently smaller for RecLasso, and that after 100 measurements

when the support of the solution does not change much there are typically less than

5 transition points for RecLasso. We also show in Figure 4.3 timing comparison for

the three algorithms that we have each implemented in Python. We observed that

CD requires a lot of iterations to converge to the optimal solution when n < m, and

we found difficult to set a stopping criterion that ensures convergence. Our algorithm

is consistently faster than Lars and CD with warm-start.

We also sample measurements of a model where there is no observation noise, i.e.

σ = 0. It has been shown in [Zhao and Yu, 2006] that Lasso recovers the active set of

the original vector θ0 under a simple condition on the generating covariance matrix

of the observations, with a regularization schedule µn ∼
√

n. We show in Figure 4.4

that the Hamming distance between θ(n) and θ0 indeed decreases with the number

of observations. We can see in Figure 4.5 that our proposed algorithm outperforms

coordinate descent and Lars in this setting as well.

4.4.2 Selection of the regularization parameter

We have supposed until now a pre-determined regularization schedule, an assumption

that is not practical. The amount of regularization depends indeed on the variance of

the noise present in the data which is not known a priori. It is therefore not obvious

how to determine the amount of regularization. We write µn = nλn such that λn is
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Figure 4.2: On the x-axis of the plots are the iterations of the algorithm, where at each
iteration we receive a new measurement. We show the evolution of the reconstruction
error ‖θ(n)−θ0‖2/‖θ0‖2. The simulation is repeated 100 times and shaded areas represent
one standard deviation.

102



Chapter 4. An homotopy algorithm with on-line observations

Figure 4.3: Compressive sensing results. Top Comparison of the number of transition
points for Lars and RecLasso. Bottom Timing comparison for the three algorithms.
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Figure 4.4: Evolution of the hamming distance H(θ(n), θ0).

the weighting factor between the average mean-squared error and the `1-norm. We

propose an algorithm that selects λn in a data-driven manner. The problem with n

observations is given by

θ(λ) = arg min
θ

1

2n

n∑
i=1

(xT
i θ − yi)

2 + λ‖θ‖1.

We have seen previously that θ(λ) is piecewise linear, and we can therefore compute

its gradient unless λ is a transition point. Let err(λ) = (xT
n+1θ(λ) − yn+1)

2 be the

error on the new observation. We propose the following update rule to select λn+1

log λn+1 = log λn − η
∂err

∂ log λ
(λn)

⇒ λn+1 = λn × exp
{

2nλnηxT
n+1,1(X

T
1 X1)

−1v1(x
T
n+1θ1 − yn+1)

}
,
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Figure 4.5: Model recovery results. Top Comparison of the number of transition points
for Lars and RecLasso. Bottom Timing comparison for the three algorithms.
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where the solution after n observations corresponding to the regularization parameter

λn is given by (θT
1 , 0T ), and v1 = sgn(θ1). We therefore use the new observation as a

test set, which allows us to update the regularization parameter before introducing

the new observation by varying t from 0 to 1. We perform the update in the log

domain to ensure that λn is always positive. We performed simulations using the

same experimental setup as in Section 4.4.1 and using η = .01. We show in Figure 4.6

a representative example where λ converges. We compared this value to the one we

would obtain if we had a training and a test set with 250 observations each such that

we could fit the model on the training set for various values of λ, and see which one

gives the smallest prediction error on the test set. We obtain a very similar result,

and understanding the convergence properties of our proposed update rule for the

regularization parameter is the object of current research.

4.4.3 Leave-one-out cross-validation

We suppose in this Section that we have access to a dataset (yi, xi)i=1...n and that

µn = nλ. The parameter λ is tied to the amount of noise in the data which we do

not know a priori. A standard approach to select this parameter is leave-one-out

cross-validation. For a range of values of λ, we use n − 1 data points to solve the

Lasso with regularization parameter (n− 1)λ and then compute the prediction error

on the data point that was left out. This is repeated n times such that each data

point serves as the test set. Hence the best value for λ is the one that leads to the

smallest mean prediction error.

Our proposed algorithm can be adapted to the case where we wish to update

the solution of the Lasso after a data point is removed. To do so, we compute the

first homotopy by varying the regularization parameter from nλ to (n − 1)λ. We

then compute the second homotopy by varying t from 1 to 0 which has the effect of
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Figure 4.6: Top Evolution of the regularization parameter when using our proposed update
rule. Bottom Regularization parameter selected using a hold-out set. On the x-axis are
a range of λ values, and the generalization error is on the y-axis. The optimal λ is .044,
which is very similar to the value that our learning algorithm converges to.
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removing the data point that will be used for testing. As the algorithm is very similar

to the one we proposed in Section 4.3.2 we omit the derivation. We sample a model

with n = 32 and m = 32. The vector θ0 used to generate the data has 8 non-zero

elements. We add Gaussian noise of variance 0.2 to the observations, and select λ for

a range of 10 values. We show in Figure 4.7 the histogram of the number of transition

points for our algorithm when solving the Lasso with n− 1 data points (we solve this

problem 10× n times). Note that in the majority cases there are very few transition

points, which makes our approach very efficient in this setting.

Figure 4.7: Histogram of the number of transition points when removing an observation.

4.5 Conclusion

We have presented an algorithm to solve `1-penalized least-square regression with

online observations. We use the current solution as a “warm-start” and introduce

an optimization problem that allows us to compute an homotopy from the current
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solution to the solution after observing a new data point. The algorithm is particu-

larly efficient if the active set does not change much, and we show a computational

advantage as compared to Lars and Coordinate Descent with warm-start for appli-

cations such as compressive sensing with sequential observations and leave-one-out

cross-validation. We have also proposed an algorithm to automatically select the

regularization parameter where each new measurement is used as a test set.

109



Chapter 5

Conclusion

Exploiting the sparse structure of natural images is at the heart of most theories

about the visual system and the ability to infer sparse solutions is central to solve in-

verse problems in image processing and computer vision. Learning algorithms seeking

sparse solutions are also increasingly popular in the machine learning and statistics

communities as they are easier to interpret and avoid over-fitting. We have seen that

a classic example of an optimization problem used in these fields is the `1-regularized

least-square problem known as Basis Pursuit Denoising or Lasso, for which many ef-

ficient algorithms have been proposed. However, natural signals that are sparse often

have more structure that is not accounted for when regularizing using the `1 norm,

which amounts to assuming independence among the basis functions coefficients. In

this thesis, I have proposed richer models where the statistical dependencies among

the basis functions coefficients are modeled.

In Chapter 2, I modeled the distribution of the basis function activation patterns

using an Ising model where a pairwise coupling term captures the dependencies among

the basis function coefficients. When adapted to a collection of natural images, these

coupling terms converge to a solution consisting of a combination of facilitatory and
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inhibitory interactions among neighboring basis functions, and are consistent with

physiological data. Furthermore, the representations inferred using the proposed

prior have greater sparsity than those inferred using the factorial Laplacian prior.

I introduced in Chapter 3 a class of probability distributions called the Laplace

Scale Mixture. A random variable having such a distribution can be written as the

product of random variable having a Laplace distribution with scale 1, and a positive

random variable called the multiplier. I developed sparse coding models where the

basis function coefficients have Laplace Scale Mixture priors. Inference in such models

can be performed by solving a sequence of least-square problems regularized by a

weighted sum of the coefficients’ absolute values, where the weights are updated at

each step. The updates are particularly simple when the multipliers have independent

Gamma priors. In the case where the distribution of the multiplier variables is non-

factorial, I proposed an update that takes a form of divisive normalization, which is

thought to be an important operation performed by the human visual system. This

model shows increased performance in compressive sensing recovery when applied to

signals whose sparsity patterns are clustered.

Finally, I presented in Chapter 4 an efficient algorithm to solve the Lasso with

on-line observations. I introduced an optimization problem that makes it possible to

compute an homotopy from the current solution to the solution after observing a new

data point. The algorithm is particularly efficient if the active set does not change

much, and I showed a computational advantage as compared to Lars and Coordinate

Descent with warm-start for applications such as compressive sensing with sequential

observations and leave-one-out cross-validation. I also proposed an algorithm to au-

tomatically select the regularization parameter where each new measurement is used

as a test set.

It is essential to have a good signal model when solving inverse problems with

real-world signals such as natural images. The image priors I have proposed do not
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capture all the structure in natural images, and it is important to continue developing

richer models. A key challenge with generative models is the problem of inference

and learning. In the algorithms I proposed, the computational complexity of learn-

ing is governed by the computational complexity of inference. Hence, learning is not

tractable if the inference algorithm is not efficient. In Section 2.3.3, I proposed a

variational approximation relying on the MAP estimate for learning the parameters

of the model. Though I showed empirically in Section 2.4 that this variational ap-

proximation is able to recover the parameters of the model under some conditions,

it may not be adequate when applied to learning in more complex models. Also, the

generative models I have considered assume that the signals are formed by a linear

superposition of features. This assumption is clearly wrong for natural images where

occlusion plays a crucial role. It is therefore challenging to develop models that are

rich enough to capture the structure of real-world signals such as natural images, in

which inference is efficient, and learning is tractable.

112



Bibliography

[Ackley et al., 1985] D.H. Ackley, G.E. Hinton, and T.J. Sejnowski. A learning algo-
rithm for boltzmann machines. Cognitive Science, 9(1):147–169, 1985.

[Asif and Romberg, 2008] M.S. Asif and J. Romberg. Streaming measurements in
compressive sensing: L1 filtering. In Proc. of 42nd Asilomar Conference on Signals,
Systems and Computers, October 2008.

[Attneave, 1954] F. Attneave. Some informational aspects of visual perception. Psy-
chol Rev, 61(3):183–193, May 1954.

[Bach and Jordan, 2004] F.R. Bach and M.I. Jordan. Beyond independent compo-
nents: trees and clusters. J. Mach. Learn. Res., 4(7-8):1205–1233, 2004.

[Baraniuk et al., 2008] R.G. Baraniuk, V. Cevher, M.F. Duarte, and C. Hegde.
Model-based compressive sensing. Preprint, August 2008.

[Barlow, 1961] H.B. Barlow. Possible principles underlying the transformation of
sensory messages. Sensory Communications, pages 217–234, 1961.

[Bell and Sejnowski, 1997] A.J. Bell and T.J. Sejnowski. The ‘independent compo-
nents’ of natural scenes are edge filters. Vision Research, 37(23):3327–3338, 1997.

[Ben-Shahar and Zucker, 2004] O. Ben-Shahar and S. Zucker. Geometrical compu-
tations explain projection patterns of long-range horizontal connections in visual
cortex. Neural Comput, 16(3):445–476, March 2004.

[Bosking et al., 1997] W. Bosking, Y. Zhang, B. Schofield, and D. Fitzpatrick. Orien-
tation selectivity and the arrangement of horizontal connections in the tree shrew
striate cortex. J. Neuroscience, 17(6):2112–2127, 1997.

[Boyd and Vandenberghe, 2004] S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge Univ. Press, 2004.

113



BIBLIOGRAPHY

[Candès et al., 2008] E.J. Candès, M.B. Wakin, and S.P. Boyd. Enhancing sparsity
by reweighted l1 minimization. J. Fourier Anal. Appl., to appear, 2008.

[Candès, 2006] E. Candès. Compressive sampling. Proceedings of the International
Congress of Mathematicians, 2006.

[Cevher et al., 2008] V. Cevher, , M. F. Duarte, C. Hegde, and R. G. Baraniuk.
Sparse signal recovery using markov random fields. In Advances in Neural Compu-
tation Systems (NIPS), Vancouver, B.C., Canada, 2008.

[Cevher et al., 2009] V. Cevher, P. Indyk, C. Hedge, and R.G. Baraniuk. Recovery
of clustered sparse signals from compressive measurements. 2009.

[Chen et al., 1999] S.S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decompo-
sition by basis pursuit. SIAM Journal on Scientific Computing, 20(1):33–61, 1999.

[Daubechies et al., 2004] I. Daubechies, M. Defrise, and C. De Mol. An iterative
thresholding algorithm for linear inverse problems with a sparsity constraint. Com-
munications on Pure and Applied Mathematics, 57:1413–1541, 2004.

[Dempster et al., 1977] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum like-
lihood from incomplete data via the em algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), 39(1):1–38, 1977.

[Doi et al., 2003] E. Doi, T. Inui, T.-W. Lee, T. Wachtler, and T.J. Sejnowski. Spa-
tiochromatic receptive field properties derived from information-theoretic analyses
of cone mosaic responses to natural scenes. Neural Computation, 15:397–417, 2003.

[Donoho and Tsaig, 2006] D. Donoho and Y. Tsaig. Fast solution of l 1-norm mini-
mization problems when the solution may be sparse. preprint, 2006.

[Donoho, 2006a] D.L. Donoho. Compressed sensing. IEEE Transactions on Informa-
tion Theory, 52(4):1289–1306, 2006.

[Donoho, 2006b] D.L. Donoho. For most large underdetermined systems of linear
equations the minimal l1-norm solution is also the sparsest solution. Communica-
tions on Pure and Applied Mathematics, 59(6):797–829, 2006.

[Drori and Donoho, 2006] I. Drori and D.L. Donoho. Solution of `1 minimization
problems by lars/homotopy methods. In Proceedings of the International Con-
ference on Acoustics, Speech, and Signal Processing (ICASSP), Toulouse, France,
May 2006.

114



BIBLIOGRAPHY

[Efron et al., 2004] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle
regression. Annals of Statistics, 32(2):407–499, 2004.

[Elad and Aharon, 2006] M. Elad and M. Aharon. Image denoising via sparse and
redundant representations over learned dictionaries. IEEE Transactions on Image
Processing, 15(12):3736–3745, Dec. 2006.

[Eliasmith and Anderson, 2003] C. Eliasmith and C.H. Anderson. Neural engineer-
ing: Computation, representation, and dynamics in neurobiological systems. Brad-
ford Books, 2003.

[Fergus et al., 2006] R. Fergus, B. Singh, A. Hertzmann, S.T. Roweis, and W.T. Free-
man. Removing camera shake from a single photograph. In ACM Trans. on Graph-
ics (Proc. SIGGRAPH 2006), 2006.

[Field, 1987] D.J. Field. Relations between the statistics of natural images and the
response properties of cortical cells. J Opt Soc Am A, 4(12):2379–2394, December
1987.

[Field, 1994] D.J. Field. What is the goal of sensory coding? Neural computation,
6(4):559–601, 1994.

[Figueiredo and Nowak, 2005] M. Figueiredo and R. Nowak. A bound optimization
approach to wavelet-based image deconvolution. In Proceedings of the International
Conference on Image Processing (ICIP), Genova, Italy, September 2005.

[Figueiredo et al., 2007] M. Figueiredo, R. Nowak, and S. Wright. Gradient projec-
tion for sparse reconstruction: Application to compressed sensing and other inverse
problems. IEEE Journal of Selected Topics in Signal Processing, 1(4):586–597,
2007.

[Figueras and Simoncelli, 2007] R.M. Figueras and E.P. Simoncelli. Statistically
driven sparse image representation. In Proc 14th IEEE Int’l Conf on Image Proc,
volume 6, pages 29–32, September 2007.

[Fitzpatrick, 1996] D. Fitzpatrick. The functional organization of local circuits in
visual cortex: insights from the study of tree shrew striate cortex. Cerebral Cortex,
6:329–41, 1996.

[Friedman et al., 2007] J. Friedman, T. Hastie, H. Hoefling, and R. Tibshirani. Path-
wise coordinate optimization. The Annals of Applied Statistics, 1(2):302–332, 2007.

115



BIBLIOGRAPHY

[Garrigues and El Ghaoui, 2008] P.J. Garrigues and L. El Ghaoui. An homotopy al-
gorithm for the lasso with online observations. In Advances in Neural Computation
Systems (NIPS), Vancouver, Canada, 2008.

[Garrigues and Olshausen, 2007] P.J. Garrigues and B.A. Olshausen. Learning hor-
izontal connections in a sparse coding model of natural images. In Advances in
Neural Computation Systems (NIPS), Vancouver, Canada, 2007.

[Hinton et al., 2005] G. Hinton, S. Osindero, and K. Bao. Learning causally linked
markov random fields. Artificial Intelligence and Statistics, Barbados, 2005.

[Hyvärinen and Hoyer, 2000] A. Hyvärinen and P.O. Hoyer. Emergence of phase-
and shift-invariant features by decomposition of natural images into independent
feature subspaces. Neural Comp., 12(7):1705–1720, July 2000.

[Hyvärinen et al., 2001] A. Hyvärinen, P.O. Hoyer, and M. Inki. Topographic inde-
pendent component analysis. Neural Computation, 13(7):1527–1558, 2001.

[Hyvärinen et al., 2003] A. Hyvärinen, J. Hurri, and J. Väyrynen. Bubbles: a uni-
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