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Abstract

Signal processing meets computer vision: Overcoming challenges in wireless camera

networks

by

Chuohao Yeo

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

and the Designated Emphasis in Communication, Computation and Statistics

University of California, Berkeley

Professor Kannan Ramchandran, Chair

The availability of cheap wireless sensor motes with imaging capability has made possible

wireless camera networks that can be cheaply deployed for applications such as environ-

ment monitoring, surveillance and 3DTV. However, the gaping disconnect between high-

bandwidth image sensors and a combination of low bandwidth channels, lossy communica-

tions and low processing capabilities makes realizing such applications especially challenging

and forces tradeoffs between rate, reliability, performance and complexity. In this disser-

tation, we attempt to bridge that disconnect and address those tradeoffs in a meaningful

fashion by drawing from both the Signal Processing and Computer Vision fields.

First, we focus our attention on compression and transmission of video from multiple

camera sensors in a robust and distributed fashion over wireless packet erasure channels. We

develop a low encoding complexity, low latency and error resilient video streaming solution

based on distributed source coding that effectively uses information from all available camera

views. We also investigate two correlation models for modeling correlation between camera

views; one is based on view synthesis and another is based on epipolar geometry.
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Second, we examine the problem of establishing visual correspondences between mul-

tiple cameras under rate-constraints. This is a critical step in performing many computer

vision tasks such as extrinsic calibration and multi-view object recognition, yet the wireless

medium requires that any information exchange should be done in a rate-efficient manner.

We pose this as a rate-constrained distributed distance testing problem and propose two

novel and complementary solutions: one using distributed source coding to exploit statis-

tical correlation between descriptors of corresponding features and another using random

projections to construct low bit-rate and distance-preserving descriptors.

Third, we study the problem of video analysis for multiple video streams generated by

the deployment of camera networks, where methods that can run in real-time at a back-end

server are needed. We develop computer vision techniques that exploit information which

can be efficiently extracted from compressed videos. We consider their application to the

task of detecting occurrences of human actions at specific times and locations and study

the effects of video compression parameters on recognition performance. We also consider

their use in the analysis of meetings to perform tasks such as slide change detection and

dominance modeling of participants.

Professor Kannan Ramchandran
Dissertation Committee Chair
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Chapter 1

Introduction

The fusion of wireless sensor motes and cheap cameras has resulted in a flurry of research

into problems and applications of wireless camera networks. In particular, it holds great

potential as a system that can be cheaply deployed for applications such as environment

monitoring, scene reconnaissance and 3DTV recording. Our vision is that of emulating a

single expensive high-end video camera with the clever and opportunistic use of numerous

cheap low-quality cameras that are wirelessly networked and connected to a high-end back-

haul server connected to the base station, as illustrated in Figure 1.1. We call this the

“Big-Eye” vision. This architecture allows us to leverage both the high density of cheap

cameras as well as the availability of increasingly inexpensive backend processing power

riding Moore’s law.

The density of these cameras and the interaction of these cameras with the wireless

network both provide opportunities and pose challenges: How should the distributed cam-

eras reliably transmit their captured video data to the server over the lossy wireless channel

while leveraging the possible overlap between their views? If the cameras are constantly

perturbed or mobile, how should we keep them calibrated in a rate-efficient manner? Given

the large number of cameras, how can we quickly analyze videos from so many camera

streams?

More broadly, these questions fall into various categories of technical issues, as illustrated
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Figure 1.1. The “Big-Eye” vision

in Figure 1.2, that the “Big-Eye” vision requires to be considered. We aim to address each

of these categories in this dissertation.

We address in Part I the problem of compressing and transmitting video from multiple

camera sensors in a robust and distributed fashion over wireless packet erasure channels.

This is a challenging problem that requires taking into account the error characteristics and

bandwidth constraints of the wireless channel, the limitations of the sensor mote platform

and the correlation between overlapping views of cameras. Furthermore, the real-time

requirement of monitoring applications imposes stringent latency constraints on the system.

Current video codecs such as MPEG and H.264 are based on the motion compensated

predictive coding (MCPC) framework, which can achieve high compression efficiency at

the cost of high encoding complexity. However, in a wireless camera network, the MCPC

framework is inadequate because each camera does not have access to other camera views.

In addition, MCPC is not robust to errors in the video bitstream. Channel errors can cause

loss of synchronization between the encoder and decoder that result in error propagation.

This causes severe video quality degradation known as “drift”. While tools such as forward

error correction (FEC) codes or automatic-repeat-request (ARQ) protocols can be used to

protect against channel errors, they do not satisfy stringent latency constraints.

We recognize that in cameras with overlapping views, there exists redundancy between

views that can be exploited for robustness. Motivated by theoretical results in distributed
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source coding [120, 137], we take the approach that information found in other camera views

that have been correctly reconstructed can be used to help decode blocks that have been

affected by erroneous transmission. Our main contributions are:

• We propose two correlation models that can be used to capture the statistical corre-

lation of corresponding blocks in neighboring views. One is based on view synthesis

and the other is based on epipolar geometry,

• We show how the correlation models can be used in a distributed source coding frame-

work to exploit inter-camera redundancy effectively for robustness when transmitting

videos from multiple cameras over lossy transmission channels. Furthermore, encod-

ing is done independently, so there is no need for the wireless cameras to exchange

information with each other. We present simulation results that demonstrate the ro-

bustness of our system compared to baseline methods such as using FEC and random

intra-refresh.

Up to now, we have assumed that the external calibration parameters, i.e. location
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and pose, of the cameras in the network are known. In a fixed camera network, such an

assumption might seem reasonable because calibration can be performed with a one-time

cost at the beginning of deployment. In a mobile camera network, this is certainly not

the case. Furthermore, even if the camera network is designed to be fixed, environmental

factors such as wind can perturb the location and pose of deployed cameras. Thus, if

a bandwidth-constrained network of wireless cameras needs to be calibrated continuously,

the communications cost of exchanging information for performing calibration needs to be

accounted for.

In Part II of this dissertation, we address the above concern by investigating the problem

of establishing visual correspondences between multiple cameras in a rate-efficient manner.

Visual correspondences are not only used for calibration but also for other vision tasks such

as multi-view object recognition. Our main contributions are:

• We propose a solution based on distributed source coding that exploits the statis-

tical correlation between descriptors of corresponding features for rate savings. We

show through simulations that our proposed method yields significant rate savings in

practice.

• We propose a complementary solution based on constructing distance-preserving

hashes using binarized random projections. We analyze its distance-preserving prop-

erties and verify it through simulations. We then show how this can be applied

effectively in conjunction with distributed source coding by using linear codes.

• We describe a general class of problems that we term “rate-constrained distributed

distance testing” that includes not just establishing visual correspondences but also

video hashing for video file synchronization across remote users. While we have pro-

posed practical methods for performing such tests, we believe that a theoretical study

of this problem would be a fruitful area of future research and would shed light on

how close to optimal our methods are.

Finally, in Part III, we consider the problem of efficient video processing for camera

networks. Given the expected influx of large amounts of video data from deployment of
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multiple cameras, we need efficient methods for analyzing video that can run in real-time.

Our approach to efficient video processing is to reuse video processing already performed

for video compression to minimize the amount of computation needed to compute features

for video analysis. This technique is known in the literature as compressed domain process-

ing [20].

Concretely, we first consider the task of human action recognition and localization. In

surveillance applications, it is useful to perform rudimentary action recognition that can

alert human operators when an activity of interest occurs. Current methods for action

recognition in the pixel domain are slow [117], require difficult segmentation [40], or involve

expensive computation of local features [114]. While computationally efficient, related work

in performing action recognition in the compressed domain have shortcomings such as re-

quiring segmentation of body parts [100] or the inability to localize actions [11, 10]. Our

proposed method uses motion vector information to capture the salient and appearance-

invariant features of actions. We then turn to analysis of meetings where an instrumented

meeting room would have many camera views in order to capture movements of all par-

ticipants. We consider the tasks of dominance estimation and slide change detection and

propose features for these tasks that can be efficiently computed from compressed videos.

Our main contributions are:

• We show how motion vectors computed for video compression can also be used for

action recognition and localization in videos and propose a novel similarity measure,

Non-Zero Motion block Similarity (NZMS), for this purpose. We show experimentally

that this has a performance comparable to state-of-the-art vision techniques at a

fraction of their computational costs. We also give insight into how video compression

parameters affect recognition performance. Finally, we show how NZMS can be used

to perform unsupervised organization of a collection of videos based on the similarity

of actions in those videos.

• We show how data such as residual coding bitrate, motion vectors and transform

coefficients in compressed videos can be used to perform meeting analysis tasks such
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as slide change detection and dominance modeling. We show experimentally that

such features achieve performance that matches or is superior to their pixel-domain

counterparts with much lower computational cost.

We conclude in Chapter 9 and discuss possible future research directions and extensions

to the work presented in this dissertation.
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Chapter 2

Multi-view video transmission

The practical deployment of wireless sensor networks [84] and the availability of small

CMOS camera chips has held out the possibility of populating the world with networked

wireless video camera sensors. Such a setup can be used for a wide variety of applications,

ranging from surveillance to entertainment. For instance, a system endowed with multiple

views can improve tracking performance by being able to disambiguate the effects of occlu-

sion [34]. Free viewpoint TV and 3-D TV [87, 74] and tele-immersive applications can also

benefit from the easy deployment of dense networks of wireless cameras.

The applications described above, as well as the “Big-Eye” vision proposed in Chapter 1,

need to rely on a robust infrastructure which is capable of delivering accurate video streams

from the wireless cameras. Unfortunately, this is a rather challenging task. The wireless

environment poses bandwidth constraints and channel loss, while the sensor mote platform

has limited processing capability and limited battery life [84]. In applications such as real-

time surveillance, there are very stringent end-to-end delay requirements, which impose

tight latency constraints on the system.

Traditional hybrid video encoders such as MPEGx and H.26x, while achieving high

compression, have high encoder complexity due in part to the use of motion compensation,

and are susceptible to prediction mismatch, or “drift”, in the presence of data loss. Such

drift causes visually disturbing artifacts and is made particularly worse in wireless channels
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where packet losses are bursty and more frequent than in wired networks. On the other hand,

Motion JPEG1 (MJPEG) is computationally light-weight and robust to channel loss, but

has poor compression performance. Recent work on low-complexity video codecs using joint

source-channel coding ideas based on distributed source coding (DSC) principles provide a

promising middle-ground between the robustness and low encoding complexity of MJPEG

and the compression efficiency of full-search motion-compensated MPEG/H.26x [106, 1].

We will discuss our proposed approach to robust and distributed multi-view video com-

pression in the next chapter (Chapter 3). In the rest of this chapter, we review the relevant

background topics that are important in presenting our approach: video coding, distributed

source coding (DSC), epipolar geometry and disparity estimation and compensation.

2.1 Video coding background

Hybrid video encoding technology, such as MPEGx and H.26x, uses a combination of

motion compensation and transform coding and has been very successful at improving the

rate-distortion (RD) performance of video compression [28, 136]. In this section, we describe

the key features of such video encoding technology.

The input to a video encoder is typically raw video data that is a sequence of image

frames. Each image frame commonly consists of either 3 matrices of tri-stimulus color pixels,

e.g. RGB or XYZ, or 1 matrix of luminance pixels and 2 matrices of chrominance pixels,

e.g. YUV or YCbCr. Since the tri-stimulus color components are highly correlated with

each other, RGB video data is typically first converted to some luminance/chrominance

space to decorrelate them [78]. Chrominance sub-sampling is also often applied to reduce

the amount of data, as illustrated in Figure 2.1, because the human visual system is more

sensitive to luminance than chrominance components [95] and high-frequency image details

exist mainly in the luminance component [78]. For simplicity in the remaining discussion,

we assume that only luminance data is to be compressed, although much of what we describe

is applicable to chrominance data; see for example [28, 136] for further details.
1MJPEG simply codes each frame independently with JPEG without exploiting any temporal redundancy.
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Figure 2.1. Illustration of color space conversion. A color image can be decomposed into
some luminance/chrominance space such as YCbCr. Furthermore, the chrominance com-
ponents, Cb and Cr, are often sub-sampled before video compression.

Uncompressed luminance data typically has both high spatial redundancy within a frame

and high temporal redundancy between frames. Video encoding aims to reduce both sources

of redundancy to achieve compression. Spatial redundancy is usually reduced through

transform coding, e.g. Discrete Cosine Transform (DCT), while temporal redundancy is

usually reduced using motion compensation. In the encoding process, each frame is divided

into non-overlapping square blocks of equal size. Each block can be encoded in one of the

following ways:

• Intra block encoding. Intra block encoding aims to remove spatial redundancy

between pixels in the block. This is done by applying a 2-D transform such as the

DCT to approximately decorrelate the pixels. Each transform coefficient is then quan-

tized, zig-zag scanned, and run-length and entropy coded. The choice of quantization

parameter allows one to make a rate-distortion tradeoff.

• Inter block encoding. Inter block encoding aims to reduce both temporal redun-

dancy and spatial redundancy. As shown in Figure 2.2, for the ith block to be encoded,
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Xi, motion search is first performed in a reference frame, typically a temporally neigh-

boring frame that has already been encoded, for the best predictor block, Yi. The

residual, Ni = Xi − Yi, which collected from all the blocks in the source frame forms

the displaced frame difference (DFD), is then encoded using transform encoding as

described above. The motion vector, ~vi, is also entropy coded and stored.

Figure 2.2. Illustration of inter block encoding. The predictor for a source block, Xi, is
found by searching in the reference image. The motion vector, vi, indicates which predictor
is to be used, while the difference or residual, Ni = Xi − Yi, is transform coded.

For random access and robustness reasons, video data is typically grouped into multiple

Group of Pictures (GOP), illustrated in Figure 2.3. The first frame of each GOP is an intra

frame (I-frame), in which every block in the frame is intra-coded. The remaining frames can

either be a predictive frame (P-frame) or a bi-directionally predictive frame (B-frame), in

which most blocks in the frame are inter-coded with the remaining blocks being intra-coded.

They differ in how source blocks are predicted: an inter P-block uses only one predictor

from a frame in the past (forward prediction) while an inter B-block uses two predictors,

one in a frame in the past (forward prediction) and one in a frame in the future (backward

prediction)2. Generally, a smaller GOP size leads to better random access capability and

greater robustness to errors, while a larger GOP size leads to better compression efficiency.

2In H.264, this has been extended such that any combination of two predictors can be used [136]
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Figure 2.3. Illustration of Group-Of-Pictures (GOP) structure. Each GOP starts with an
intra frame (I-frame). A predictive frame (P-frame) uses only forward prediction, i.e. from a
reference frame in the past. A bi-directionally predictive frame (B-frame) uses both forward
prediction and backward prediction, i.e. from a reference frame in the future.

2.2 Distributed source coding

To enable distributed coding of physically separated sources, we rely on and are inspired

by both information-theoretic and practical results in a particular setup of distributed source

coding: lossy source coding with side-information, illustrated in Figure 2.4(a). In a video

coding context, Xn is the current video block to be encoded, and Y n is the best predictor

for Xn from reconstructions of reference frames such as temporally neighboring frames

or spatially neighboring camera views. {Xi, Yi}ni=1 are i.i.d. with known joint probability

distribution p(x, y), and X̂n is the decoder reconstruction of Xn. The objective is to recover

X̂n to within distortion D for some per-letter distortion d(x, x̂). Note that in the set-up,

Y n is only available at the decoder. In contrast, in Figure 2.4(b), the side-information Y n

is available at both encoder and decoder; this setup is exemplified by conventional motion-
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compensated predictive coding (MCPC) schemes such as MPEGx and H.26x (see [28] for

example).

Encoder Decoder

Reconstructed

Video Frame

Input

Video Frame

Predictor

X̂n

Y n

Xn

(a) Distributed source coding (DSC) model

Encoder Decoder

Reconstructed

Video Frame

Input

Video Frame

Predictor

X̂n

Y n

Xn

(b) Motion-compensated predictive coding (MCPC) model

Figure 2.4. Source coding models. (a) DSC model, where side-information ~Y is available
only at the decoder; (b) MCPC model, where the same side-information ~Y is available at
both encoder and decoder.

In the case when X and Y are jointly Gaussian and the distortion measure is the mean

square error (MSE), it can be shown using the Wyner-Ziv theorem [137] that the rate-

distortion performance of coding Xn is the same whether or not Y n is available at the

encoder. This is also true when Xn = Y n + Nn, with Nn being i.i.d. Gaussian and the

distortion measure being the MSE [102]. However, in general, there is a small loss in rate-

distortion performance, termed the Wyner-Ziv rate loss, when correlated side-information

is not available at the encoder [153].

While the above results are non-constructive and asymptotic in nature, a practical

approach was proposed by Pradhan and Ramchandran [104] and subsequently applied to
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video coding [106, 1]. We will illustrate some of the main terms and concepts in lossy

source coding with side-information using the following scalar example of source coding

with side-information [70].

Suppose X is a real-valued random variable that the encoder wishes to transmit to the

decoder, with a maximum distortion of ∆
2 , i.e. |X − X̂| < ∆

2 , where X̂ is the estimate

computed by the decoder. Furthermore, the decoder has access to side-information Y ,

where X and Y are correlated such that |X − Y | < ∆. To satisfy the distortion constraint,

the encoder quantizes X to X̂ using a uniform scalar quantizer with step size ∆. Instead

of sending the identity of the quantized codeword, X̂, the encoder divides all possible

quantized codewords into 3 cosets, as shown in Figure 2.5, and transmits the coset index of

the coset containing the codeword, thus requiring only log2 3 bits. The decoder has access

to the received coset index (or syndrome) as well as the side-information Y . Due to the

correlation structure of (X,Y ) and the quantizer used, we have, by using the triangular

inequality, that |X̂ − Y | < 3∆
2 . Thus, the decoder only has to look for the closest codeword

to Y in the coset indicated by the coset index since there is only one codeword in each coset

that is within ±3∆
2 of Y .

3
 c

o
s
e
ts

Encoder Decoder
U

Y

X X̂

YX

X̂

X̂

Y

∆

3∆

Figure 2.5. Scalar Wyner-Ziv example. The set of quantized codewords is divided into 3
cosets, corresponding to the black, grey and white colored circles. The encoder quantizes X
to X̂ with a scalar quantizer of step size ∆ and transmits the coset index, grey, that contains
the quantized codeword. The decoder then reconstructs X̂ by looking for the codeword in
the grey coset that is closest to the side-information Y .

In the above example, as well as in general distributed source coding, two pieces of
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information are needed to design the quantizer and the coset. First, the targeted distortion

constraint between the source and decoder reconstruction needs to be specified. Second,

the correlation structure (model) between X and Y needs to be known or estimated.

2.3 Epipolar geometry

The geometric constraint of a single point imaged in two views, using the projective

camera (pinhole camera) model, is governed by epipolar geometry [62]. As shown in Fig-

ure 2.6, given an image point in the first view, the corresponding point in the second view

can be found on the epipolar line if it is not occluded in the second view. Furthermore,

the epipolar line can be computed from the position of the point in the first view and the

projection matrices of the cameras, and is independent of the scene geometry. Therefore, if

the cameras are assumed to be stationary, then it is only necessary to calibrate the cameras

once at the beginning to obtain the fundamental matrix necessary for computation of the

epipolar line between the two views [62].

Camera 2Camera 1

C C ′

l′

e′e

x

x′
1

x′
2

x′
3

X1

X2

X3

Figure 2.6. Epipolar geometry [62]. Cameras 1 and 2 have camera centers at C and C ′

respectively. An epipole is the projected image of a camera center in the other view; e
and e′ are the epipoles in this diagram. A point x seen in the image plane of camera 1
(assuming a projective camera) could be the image of any point along the ray connecting
C and x, such as X1, X2 or X3. This ray projects to the epipolar line l′ in camera 2; l′

represents the set of all possible point correspondences for x. If x was the image of X2,
then the corresponding image point in Camera 2 would be x′2.
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Figure 2.7 illustrates the parallel cameras setup that we use for ease of discussion in

Chapter 3. There is no loss of generality since image rectification3 can be applied as a

pre-processing step [62]. In this setup, the key observation is that given a point in one

camera view, the epipolar line in the other rectified view is just the same scan-line.

Camera 1 Camera 2

Image plane of camera 2Image plane of camera 1

x

y z

U

(u1, v) (u2, v)

C C ′

Figure 2.7. Parallel cameras setup. Cameras 1 and 2 have camera centers at C and C ′

respectively, whose displacement is parallel to the x-axis. The image planes are parallel to
the x-y plane, and the camera axis is parallel to the z-axis. In this case, the epipoles lie
at infinity. A point at (u1, v) in the image plane of camera 1 would have a corresponding
image point at (u2, v) in camera 2.

Epipolar geometry allows us to constrain a search for corresponding points in a different

view to a 1-D search. If there are constraints on the minimum and maximum scene depth,

then the search can be further constrained to reduce decoder complexity [55].

2.4 Disparity estimation and compensation

Disparity refers to the shift in horizontal locations of a corresponding point imaged

in two rectified views; in Figure 2.7, the disparity of point U imaged in camera 1 with

respect to camera 2 is simply u1 − u2. The depth of a point is inversely proportional to

its disparity; the smaller the disparity, the farther away the point. Disparity estimation, or

stereo correspondence, is a problem in computer vision that is concerned with computing a

dense disparity map from two rectified stereo images under known camera geometry. From
3Image rectification is a warping technique used in computer vision to project two or more views onto

a common image plane, given the external (and intrinsic) calibration parameters of the set of cameras. By
doing this, for any pixel in one rectified view, its corresponding pixel lies on the same scanline in other
rectified views, hence simplifying stereo correspondence.
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the disparity map, a relative depth map representing scene geometry can be computed.

Among other things, depth maps can be used for disparity compensation as discussed later.

Further discussion of disparity estimation is outside the scope of this dissertation, but a good

survey and taxonomy of disparity estimation algorithms has been presented by Scharstein

and Szeliski [113].

In computer graphics, both view synthesis and image based rendering involve solving the

problem of using a set of captured images from calibrated cameras to generate an image that

would have been captured by a camera at a desired viewpoint. For the synthesized image

to be reasonably accurate, the desired viewpoint should be near the capturing viewpoints.

If the camera views are rectified, then one can also use disparity compensation as a view

synthesis approach to predict a desired view. There, assuming Lambertian surfaces4 in the

scene and no occlusions, a pixel is predicted by looking up its corresponding pixel, which

is indicated by its disparity, in a captured view. For example, in the parallel camera setup

shown in Figure 2.7, the pixel at (u2, v) in camera 2 can be predicted through disparity

compensation by the pixel at (u1, v) in camera 1.

4Given an illumination source, the radiance of a Lambertian surface is the same from all viewing angles.
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Chapter 3

Robust and distributed video

transmission for camera networks

There is significant inter-view correlation between cameras with overlapping views.

While exploiting this correlation for either compression or robustness is straight-forward

in a centralized approach where all video streams are available at one encoder, such is not

the case for a distributed wireless camera network where cameras are expected to work

independently and where inter-camera communication is expensive. We seek solutions that

can utilize inter-view correlation between cameras with overlapping views, even if the cam-

eras are unable to communicate freely with each other. Specifically, as shown in Figure 3.1,

our goal is to compress and transmit video frames from multiple wireless camera sensors in

a robust and distributed fashion. Each encoder should have high compression performance

to minimize transmission costs and low computational complexity to preserve battery life.

We model the wireless links by packet erasure channels; the transmission scheme should be

robust to packet losses. In addition, the overall system should have low end-to-end delay

to satisfy tight latency constraints.

We do assume that the cameras have been calibrated and are fixed. However, even if this

is not the case, there exist solutions for continuously calibrating cameras in a distributed

and rate-efficient manner [26, 140], as we will discuss in Part II of this dissertation.
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Figure 3.1. Problem setup of distributed video transmission. Each camera views a portion
of the scene. Due to energy and computational limitations on the camera sensor platform
and bandwidth constraints of the channel, the encoders are not allowed to communicate
with each other. Therefore, the encoders have to work independently without knowledge
of what other cameras are viewing. Furthermore, they have to encode under complexity
constraints. In real-time applications such as surveillance, tight latency constraints would
have to be satisfied. Each encoder then transmits the coded bitstream over a wireless
channel, which we model as a packet erasure channel which can have bursty errors. The
decoder receives packets from each encoder over the erasure channel, and performs joint
decoding to reconstruct the video frames for each camera view.

The work presented in this chapter is joint work with Kannan Ramchandran, and has

been presented in part in [146, 149, 148]. We also like to acknowledge the advice and

assistance given by Jiajun Wang.

3.1 Contributions

Recognizing that cameras with overlapping views provide redundancy, our key contri-

bution is the systematic development of principled approaches that can effectively harness

this redundancy for robust video transmission with completely distributed encoders. In

doing so, we jointly address two main issues by drawing from results in information theory

and computer vision. First, the encoder at each camera does not have access to views

observed from other cameras. Therefore, we propose a distributed source coding approach
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based on the PRISM framework [105] that is able to make use of side-information (predic-

tors) from other camera views for decoding even if that is not available at the encoder. Our

approach also does not require explicit correspondence information between camera views

to be known at the time of encoding. However, such a coding approach needs models which

capture both the statistical relationships and the geometrical constraints between multiple

camera views. In this work, we describe two such models. The first model requires two

other camera views at the decoder and uses disparity estimation and view interpolation to

generate side-information for decoding. The second model requires only one other camera

view at the decoder and uses epipolar constraints to generate side-information for decoding.

In our simulations, we show that with these two models, our proposed approaches are able

to effectively exploit the redundancy in overlapping views for robustness.

The rest of this chapter is organized as follows. Section 3.2 discusses related work in

multi-view video coding. The two different multi-camera correlation models we use for this

work are presented in Section 3.3, and we describe the encoding and decoding procedures in

Section 3.4. Experimental results on the performance of our proposed and baseline schemes

using a realistic wireless channel simulator are presented in Section 3.5. Finally, concluding

remarks and directions for future work are given in Section 3.6.

3.2 Related work

There has been work establishing significant compression gains in using block-based

disparity compensation over independent coding for multi-view image compression [8, 119]

and multi-view video compression [18]. Sophisticated methods using pixel-based disparity

compensation and view synthesis for prediction have also been proposed [121, 85]. More

recently, there has also been great amount of research interest in multi-view video coding

methods due to ongoing standardization efforts [96, 47]. However, these approaches require

knowledge of scene depth information at the encoder and hence assume joint encoding of

the multi-view video.

In a wireless camera network, a more realistic approach is to perform compression in a
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distributed fashion (as shown in Figure 3.1), in which encoders have no or low-bandwidth

communications with each other. Wagner et al. proposed a scheme where compression

gains are realized by down-sampling the image at each camera [132]. Reconstruction is

then performed via application of a super-resolution procedure on the received images.

This procedure requires each camera to perform a scene-dependent image warping before

down-sampling the captured image for transmission. Hence, the scheme could be used if

the depth map of the scene remains static; this may not be a suitable assumption in a

surveillance scenario in which many objects of interest are moving about.

Zhu et al. divide cameras in a large array into conventional cameras and “Wyner-Ziv”

cameras [158] . The image at each conventional cameras is coded independently using

JPEG2000. The decoder first uses view synthesis to generate a prediction of the image at

each “Wyner-Ziv” camera and then requests parity bits from each “Wyner-Ziv” camera,

using the predicted image as side information to decode. Varodayan et al. proposed an

interesting approach where disparity is learned in an unsupervised fashion and recovered

jointly with the encoded image [130].

Gehrig and Dragotti model each scan-line of stereo images as piecewise polynomials [55].

Each camera encoder sends the locations of end-points of the polynomial pieces, as well as

parameters of complementary polynomial pieces. The decoder attempts to match the dis-

continuities between the views and reconstructs each scan-line according to the polynomial

pieces. Their method assumes no occlusions and that the same sequence of polynomial

pieces will be generated for each scan-line. This is somewhat fragile since the reconstructed

scan-line will be erroneous if the polynomials of each view were not correctly matched.

This approach has recently been extended to the 2-D case, by using quad-tree decompo-

sitions [56]. In a similar geometric approach, Tosic and Froosard proposed using a sparse

over-complete decomposition of images captured by omni-directional cameras and applying

DSC to the location and shape parameters of the decomposed atoms [129].

Song et al. address distributed compression of multi-view video by first implementing a

distributed algorithm that tracks block correspondences between two cameras views [122] .

The corresponding blocks of the cameras are then encoded using distributed source coding.
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Their experiments are performed with the actual block coefficients instead of the residual

after temporal motion compensation; therefore, their implementation does not fully realize

the potential for compression gains from exploiting both temporal and inter-view correla-

tion. Using a similar approach, Yang et al. predict motion vectors for a stereo view which

can be used as side-information when applying DSC to the motion vectors [138].

Others have used Wyner-Ziv video coding [57] with an appropriate fusion of side-

information generated by both temporal and view interpolation [59, 99]. Inter-view cor-

relation is modeled by the use of an affine scene model which is suitable in videos with

simple scene geometry and with low temporal motion. Flierl and Girod exploit tempo-

ral correlation by using a motion-compensated lifted wavelet transform [45] and exploit

inter-view correlation by applying disparity compensation to transform coefficients using

disparity maps estimated from previously decoded frames [46].

The above works focus on compression performance by removing redundancies present in

overlapping camera views and at the same time assume that lossless transmission of video

data from individual cameras is possible. While they are interesting in their own right,

here we take the view that packet drops are to be expected in wireless camera networks

and choose to focus on robustness in video compression and transmission by exploiting

redundancies present in overlapping camera views. Forward Error Correction (FEC) and

Automatic-Repeat-Request (ARQ) are two popular approaches for providing protection,

but they may not be suitable or adequate in a multi-camera video network operating in

real-time and under channel loss. FEC requires long block lengths to work well and this

could introduce intolerable latencies in a real-time surveillance scenario. While an ARQ

system is an effective and simple way of dealing with erasure channels, it may require

an arbitrary number of round-trips and this would not be suitable for systems with tight

latency constraints. Furthermore, the decoder would have to scale its feedback responses

with the number of camera sensors and this is not practical if the number of cameras grows

large.
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3.3 Correlation models for multiple camera networks

We now describe two alternative multi-view correlation models. The video frame to

be encoded is divided into non-overlapping blocks of 8 × 8 pixels. We denote the DCT

coefficients of the block to be encoded, the predictor block and the innovations process by

~X, ~Y and ~N respectively. Furthermore, we assume that the scene contains only Lambertian

surfaces and that cameras have identical photometric responses1. We defer discussion of

the empirical performance of these models to Section 3.5.

3.3.1 View synthesis based correlation model

View synthesis using dense disparity maps has been used in the past for both joint and

distributed multi-view video compression [85, 158]. In the view synthesis based correlation

model, we use view synthesis to generate predictors for decoding when an estimate of scene

depth can be obtained. As illustrated in Figure 3.2, if the current frame at camera 2 is to

be encoded, and two neighboring views, corresponding to cameras 1 and 3, are available,

it is possible to use those views to synthesize the frame at camera 2. To compensate for

small errors in calibration, disparity estimation or view interpolation, the predictor block

for ~X, ~YV S , is allowed to be one of the blocks from a small area around its location in

the synthesized frame. The correlation model is thus ~X = ~YV S + ~NV S , where ~NV S is

the prediction error between ~X and ~YV S and is independent of ~YV S . Compared to past

distributed encoding approaches which simply use the synthesized frame without allowing

for slight perturbations in the location of the predictor [158, 138, 46] i.e. a candidate set of

size 1, this correlation model can choose a predictor from a candidate set that is a superset

of the former and thus the prediction error between the source block and its predictor

would be no larger than the former. This can be observed in our experimental results (see

Section 3.5.3).

The view synthesis based correlation model can also be extended to non-rectified views
1This can be accounted for by calibrating the photometric responses of the cameras in advance.
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Figure 3.2. View synthesis based correlation model. The dark shaded block in frame t
of camera 2 is the source block, ~X. In the view synthesis based correlation model, ~X is
correlated through an additive innovations process with a predictor block, ~YV S , located
within a small range centered on the co-located block in the predicted view (denoted by the
shaded region). The predicted view is generated by first estimating the scene depth map of
camera 2 from disparity estimation between frame t of cameras 1 and 3, and subsequently
synthesizing an interpolated view for camera 2. Note that prediction is done at the decoder
instead of the encoder.

by performing dense pixel correspondence instead of disparity estimation, and then applying

view interpolation with the computed correspondence map.

3.3.2 Disparity based correlation model

While the view synthesis based correlation model is conceptually simple, there are some

practical challenges. First, dense disparity estimation is a difficult problem in computer

vision and remains an area of active research (for a recent survey and discussion, see [113]).

The difficulty lies in the tension between locality, which requires a small image neighbor-

hood, and robustness, which requires a large image neighborhood. Forced to compute dense

correspondence, disparity estimation often returns estimated depth maps which are noisy.

Furthermore, occlusions are also not easily handled. Second, view interpolation requires

accurate disparity estimates and camera calibration for a high quality synthesis [25]. If dis-

parity estimates are inaccurate, then the predictors will be degraded. Third, view synthesis

search requires at least two other camera views. To circumvent these challenges, we consider
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an alternative correlation model that can directly use one other camera view without any

further processing.

Illustrated in Figure 3.3, the disparity based correlation model is based on exploiting

the geometric constraints imposed by epipolar geometry on images captured by different

cameras of the same scene. Assume that each 8x8 source block, ~X, has negligible depth

variation. Recall that depth is inversely proportional to disparity; hence, if the depths of

all points within each 8x8 block are equal, then their disparities are also equal, and hence

the corresponding block is simply a block on the epipolar line. Thus, the predictor block

for ~X, ~YDS , is allowed to be one of the blocks along the epipolar line in other available

camera views. To cope with small errors in camera calibration and image rectification, we

also allow predictors to be a little above and below the epipolar line. The correlation model

is then ~X = ~YDS + ~NDS , where ~NDS is the prediction error between ~X and ~YDS and is

independent of ~YDS .

Camera 2
Predictor, Frame t,

Frame t,

Camera 1

Prediction error,

Epipolar

line

~X

~NDS

~YDS

Figure 3.3. Disparity search correlation model. The dark shaded block in frame t of camera
2 is the source block, ~X. In the disparity search correlation model, ~X is correlated through
an additive innovations process with a predictor block, ~YDS , located along the epipolar
line in a neighboring view. In contrast to the view synthesis based correlation model, no
attempt is made to first estimate the scene geometry. Note that prediction is also done at
the decoder instead of the encoder.

This correlation model can be extended to the case when camera views are not rectified

by making a constant depth assumption on the surface imaged by the 8x8 block, and

then performing an appropriate re-sampling in the other camera view (i.e. camera 1 in

Figure 3.3).
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3.4 Proposed approach

The proposed approach is inspired in part by the PRISM framework, which is developed

using the principles of distributed source coding [105]. Unlike conventional MCPC schemes

(as modeled in Figure 2.4(b)) such as MPEGx and H.26x, in a DSC based video codec

(as modeled in Figure 2.4(a)), there is no need for coding and decoding to depend on

encoders and decoders having “deterministic” predictors [105, 57]. Therefore, there is an

inherent robustness and flexibility in DSC based video codecs, since successful decoding

can be performed as long as the decoder is able to find a suitable predictor to use as side-

information. The encoder does not need to know block correspondence or the locations of

other cameras; instead, the decoder performs motion search or correspondence search during

the decoding process. Due to the use of DSC (rather than differential coding), our approach

is also robust to transmission errors since drift can be mitigated even if the encoder and

decoder do not have the same exact predictors.

The block diagrams of the encoder and decoder are shown in Figure 3.4. We will describe

encoding and decoding in the following sub-sections.
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(a) Encoder block diagram
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(b) Decoder block diagram

Figure 3.4. System block diagrams.
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3.4.1 Encoding

Figure 3.4(a) shows the block diagram of the encoder for the inter-frames [105]; intra-

frames are coded conventionally using a H.263+ intra frame encoder (see, for example, the

discussion in Section 2.1 of Chapter 6). Each video frame is divided into non-overlapping

8x8 blocks. The 2-D DCT is first applied to each source block to obtain its DCT coefficients,

which are then arranged into a vector of 64 coefficients, denoted by ~X, using a zig-zag scan.

Next, the coefficients are quantized with a scalar quantizer with a step size chosen to achieve

a user-specified reconstruction quality.

We assume a correlation structure of ~X = ~Y + ~N , where ~N denotes the uncorrelated

innovations process. Also, denote the innovations noise variance for the kth coefficient by

σ2
k and the quantization step size to achieve a target distortion by δ. A suitable channel

code that is matched to the statistics of ~N is used to partition the quantized codeword

space of ~X into cosets [104]. The coset index of the quantized ~X is then transmitted. Note

that no motion estimation is performed at the encoder; instead, a simple classifier based

on the prediction error between ~X and its co-located block in the reference frame is used

to determine the block mode and hence estimate the statistics of ~N and the appropriate

channel code parameters to use. To aid decoding, the encoder also transmits a 16-bit

cyclic redundancy check (CRC) hash of the quantized coefficients to the decoder. Thus,

the bitstream for each block consists of the block mode, the syndrome bits, and the 16-bit

CRC.

In this work, we use a multilevel block modulation code [131, 48, 80] as the channel code,

with appropriately chosen binary BCH codes2 as binary component codes for each level.

More specifically, we use the quantization lattice as our signal set and consider a binary

level decomposition of the quantization codeword index, as shown in Figure 3.5. Note that

this decomposition is in reverse bit order. The bit at each level signals which coset to use

at the next level. As shown in Figure 3.6, bitplanes of coefficients in a block are arranged

such that at each level, the ratio of the squared distance between codewords in a coset
2BCH codes are used instead of more powerful codes such as LDPC or Turbo codes due to the short

block lengths used.
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at that level to the innovations noise variance is the same, thus ensuring that each level

has the same signal-to-noise ratio (SNR). In the general multilevel block modulation code

framework, bits from each level across coefficients can be coded with a binary BCH code.

In our implementation, as illustrated in Figure 3.6, we use a non-trivial binary BCH code

only for a single level. For bits above that level, we use a zero rate code, i.e. the bits are

sent as is (corresponding to the parity bits of the code), since they are not very predictable

from the side-information due to low SNR at those levels. For bits below that level, we

use a rate-1 code, i.e. no bits are sent (corresponding to no parity bits), since given the

lower-order bits and the side-information, they can be inferred with high probability due to

high SNR at those levels. The coset index is then the concatenation of parity (syndrome)

bits of the binary component code of each level.

x0 = 0

x1 = 0 x1 = 1

x2 = 0 x2 = 1

x1 = 0 x1 = 1

x2 = 0 x2 = 1 x2 = 0 x2 = 1 x2 = 0 x2 = 1

x0 = 1

x = (x2x1x0)

Figure 3.5. Illustrative example of multilevel coset code [131]. The constellation at the top
represents the set of quantized codewords, while x denotes the quantization index; here we
consider a 3 level binary decomposition. Each bit specifies the coset for the next level, e.g.
x0 specifies the coset on the left. For a finite constellation, this decomposition continues until
only a single signal point is specified, as in this 3-bit example; for an infinite constellation,
this decomposition can continue indefinitely. The distance between codewords in the coset
indicated at each level is used to line up bitplanes across different coefficients.

More concretely, the number of levels to be coded for the kth coefficient is (Lk + 1),

where [48]:

Lk =
⌈

1
2

log2

(
2πeα2σ

2
k

δ2

)⌉
(3.1)

and α is a user parameter that determines the probability of decoding error on the highest

uncoded bitplane, i.e. the (Lk − 1)th bitplane. In our implementation, we choose α2 = 6.4

dB. Note that in general, Lk is different for each coefficient k. For each coefficient, bitplanes

0 through Lk−1 are sent uncoded. Bits from bitplane Lk of all coefficients are concatenated
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Figure 3.6. Computation of coset index. In this work, we quantize the coefficients, and
line up their bits such that each level has the same coset codeword squared distance to
innovations noise variance ratio. In other words, if for the kth coefficient, lk, δk and σ2

k are
the bitplane number at a particular level, the quantization step size and the innovations
noise variance respectively, then (2lkδk)2/σ2

k is the same for all k at that level.

into a bit vector and its parity bits computed with an appropriate BCH code. The resulting

syndrome bits are thus the uncoded bits from each coefficient and the computed BCH parity

bits.

3.4.2 Decoding

The decoder operation is shown in Figure 3.4(b) [105]. For each block, the decoder

receives the syndrome and CRC of the quantized coefficients. Unlike the classical Wyner-

Ziv setup shown in Figure 2.4(a), the video decoder has many potential side-information

candidates since it has not been indicated which is the “right” predictor to use as side-

information for decoding. Decoder search is performed to generate a list of candidate

predictors from previously decoded reference frames. In theory, the decoder should choose

a predictor that is jointly typical with the quantized ~X [67]; this involves an exhaustive

search through all combinations of possible predictors at the decoder and codewords in

the coset indicated by the received syndrome to find a pair that is jointly typical. In
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practice, due to practical complexity constraints, the decoder instead performs approximate

maximum-likelihood syndrome decoding using multistage soft-decision decoding, where the

soft-decision decoding is performed via ordered statistic decoding [80].

In multistage decoding, component BCH codes of each bitplane level are decoded one

at a time, starting from the lowest level; the decoded information from each level is used in

subsequent decoding of the next bitplane level [131]. In our implementation, the received

uncoded bits corresponding to the first Lk bitplanes of each coefficient need not be further

decoded. The received parity bits corresponding to the Lkth bitplane of all coefficients are

decoded using ordered statistic decoding with soft-information provided by the candidate

predictor (side-information) [80]. Together, all (Lk + 1) decoded bits of the kth coefficient

will signal a coset of quantized codewords. We then choose the quantized codeword in this

coset that is closest to its side-information.

As a further verification step, the received CRC is used to check decoding success: if the

CRC of the quantized coefficients of the decoded block checks out with the received hash,

decoding is assumed to be successful; if not, the next candidate predictor is used and the

process repeated.

The reconstruction of ~X is obtained by computing the minimum mean square error

(MMSE) estimate of ~X given the decoded quantized coefficients, the candidate predictor

and the assumed correlation model. Following that, the inverse DCT is performed to obtain

the reconstructed pixels.

Typically, decoder search is performed by doing a temporal motion search to half-pel

accuracy in a limited search range (±15 pixels in both directions) of the co-located position

in the reconstructed previous frame [105]. If predictors in the temporal reference frame are

lost or badly corrupted due to packet drops, but the block to be reconstructed is visible

from other camera views, then it might be possible to construct a good predictor from those

views. As it turns out, we can use the correlation models described in Section 3.3 to guide

this search for predictors.
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3.4.3 Decoder view synthesis search

To perform decoder view synthesis search, we use the view synthesis based correlation

model described in Section 3.3.1. As illustrated in Figure 3.2, suppose we want to decode

a block from camera 2. We first use a relatively fast and simple stereo correspondence

algorithm based on dynamic programming [49] to generate a dense disparity map using the

current decoded frames from neighboring cameras (cameras 1 and 3 in Figure 3.2). Together

with the decoded images from the neighboring cameras, the estimated disparity map is then

given as input to a view interpolation routine [25] to synthesize a prediction of the current

frame from camera 2. After performing disparity estimation and view interpolation, the

decoder would sample blocks from a small area around its location in the synthesized frame

to use as side-information in decoding the received syndrome.

If the camera calibration parameters are perfectly known, stereo correspondence is ac-

curately performed and view interpolation is done correctly, then the co-located block in the

synthesized frame would be the best side-information for syndrome decoding. However, in

practice, this is not the case and each of the above steps introduces errors in the synthesized

view. Therefore the best predictor might have a small offset which could be different for

each source block. The decoder search and CRC check mechanisms in PRISM allow us to

determine the appropriate offset independently for each source block. As our experimental

results will show, this is helpful in letting the decoder tolerate small amounts of calibration,

correspondence and interpolation errors inherently accumulated in the process of generating

the predicted frame.

This will be referred to as PRISM-VS (PRISM view synthesis search).

3.4.4 Decoder disparity search

To perform decoder disparity search, we use the correlation model described in Sec-

tion 3.3.2. This time, suppose we want to decode a block from camera 2 shown in Figure 3.3.

From the epipolar constraint, the best predictor should lie along the epipolar line in the

neighboring camera view. Therefore, as shown in Figure 3.3, the decoder would sample
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blocks along the epipolar line from a neighboring view to use as side-information in decod-

ing the received syndrome. In practice, we compensate for small amounts of calibration

error by allowing the decoder to also search a little above and below the epipolar line.

The architecture of PRISM serves us well here. The small block size lets us assume that

there is little depth variation within each block, therefore block sampling along the epipolar

line would produce good side-information. Furthermore, the use of DSC allows us to decode

the received syndrome using any suitable predictor as side-information. Finally, the use of

CRC allows us to determine the success of disparity search and hence the location of the

appropriate predictor.

This will be referred to as PRISM-DS (PRISM disparity search).

3.4.5 Discussion

In both PRISM-VS and PRISM-DS, the encoder at each of the video camera sensors

does not need any knowledge about the relative positions of any other cameras. This is

highly desirable since it reduces the computational and storage burdens on these sensor

nodes which do not need to compute or store the camera parameters of its neighboring

cameras.

Obviously, decoding has to be causal. For example, in the setup illustrated in Fig-

ure 3.3, when decoding the video from camera 1, we would need to make use of the current

frame of camera 2 for decoder disparity search, and vice versa. Our solution is to first

decode all the views using decoder temporal motion search, as in PRISM. For each block

that is not successfully decoded, PRISM-DS and/or PRISM-VS is performed on the cur-

rently available reconstructions (possibly with error concealment). As it is possible that a

successful decoding in one view can lead to a successful decoding in another view, we will

attempt PRISM-DS/PRISM-VS across all cameras until either all blocks are successfully

reconstructed or there are no further successful reconstructions. Since the number of blocks

that fail to decode with temporal motion search is expected to be small, this iteration does
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not pose much additional computational burden on the decoder over the original PRISM

decoding.

3.5 Experimental results

In our experiments, we used multi-view test videos (cropped to 320 × 240, 30 fps)

made publicly available by MERL [94], in which eight cameras were placed along a line,

at an inter-camera distance of 19.5 cm, with optical axes that are perpendicular to camera

displacement. The sequences are named “Ballroom” and “Vassar”. Figure 3.7 shows two

central neighboring views from each of the sequences to give an idea of the amount of overlap

between cameras.

Each camera is assumed to be transmitting over a separate packet erasure channel. Our

simulations used packet erasures generated using a two-state channel simulator to capture

the bursty nature of lossy wireless channels, with a “good” state packet erasure rate of 0.5%

and “bad” state packet erasure rate of 50%. All tests were carried out on a group-of-pictures

(GOP) with 25 frames, and results shown are averaged over 100 trials of wireless channel

simulation.

(a) Ballroom (b) Vassar

Figure 3.7. Multi-view test video sequences used in experiments.

3.5.1 Empirical validation of correlation models

To get an understanding of how well the correlation models introduced in Section 3.3

perform, we ran the following experiment. We used the MERL “Vassar” multi-view video

sequence. For each source block, we find its mode using the classifier described in Sec-

33



tion 3.4.1. We then accumulate statistics of the best matching predictor using the view

synthesis based correlation model and the disparity based correlation model, as well as us-

ing temporal motion search. In Figure 3.8, we show the variance of the innovations noise

of the first 16 coefficients (using zig-zag scanning) for one particular mode3. We can make

several interesting observations from the plot. First, the innovations noise statistics for

temporal motion search and disparity search are relatively similar, which suggests that dis-

parity search should provide reasonable side-information for decoding. Second, the disparity

search model out-performs the view synthesis search model; this gap is also observed in all

our other experimental results. Finally, there is a clear gap in performance between using

the co-located block in the view predicted reference and doing a small search around that

location.
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Figure 3.8. Innovations noise statistics of various correlation models. In this graph, we show
the innovations noise statistics when different correlation models are used. These statistics
were obtained from the “Vassar” multi-view video sequences using the correlation models
described earlier, as well as using temporal motion search.

3.5.2 Comparison with simulcast schemes

We compare the performance of our proposed decoding schemes, PRISM-DS and

PRISM-VS with the following: (a) PRISM, which uses only decoder motion search; (b)

Motion JPEG4 (MJPEG); (c) H.263+ with forward error correction (H.263+FEC); and
3MSE between source and previous co-located block is in the range [650, 1030].
4Simulated by coding all frames as I-frames with a H.263+ encoder. We used a free version of H.263+

obtained from University of British Columbia for our simulations.
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(d) H.263+ with random intra refresh (H.263+IR). These represent plausible simulcast

solutions for multiple cameras.

All test systems used the same total rate of 960 Kbps per camera view, with a latency

constraint of 1 frame. Each frame is transmitted with 15 packets, with an average packet

size of 270 bytes. For H.263+FEC, we used an appropriate fraction of the rate for FEC,

implemented with Reed-Solomon codes, such that the quality with no data loss matches

that of PRISM. Similarly, we set the intra-refresh rate for H.263+IR such that the quality

with no data loss matches that of PRISM.

Figure 3.9 shows the quality in PSNR of decoded video from all the cameras. In the

“Ballroom” sequence, PRISM-DS and PRISM-VS achieved up to 0.9 dB and 0.4 dB gain

in PSNR over PRISM respectively. Compared to H.263+FEC, PRISM-DS and PRISM-VS

achieved up to 2.5 dB and 2.1 dB gain in PSNR respectively. In the “Vassar” sequences,

both PRISM-DS and PRISM-VS demonstrated modest gains over PRISM. The main reason

for this is that the “Vassar” sequence is largely static, and compared to the “Ballroom”

sequence, a much smaller fraction of the frame consist of moving objects. Hence, the error

concealment strategy of copying from the previous frame works very well, and there is very

little further gain in using disparity search.

Figure 3.10 shows the recovery behaviors after catastrophic packet losses in frame 1 and

again in frame 16, at 8% average packet drop rate. For both video sequences, the PRISM

based systems are able to recover quickly after the loss event, with PRISM-DS and PRISM-

VS doing better than PRISM. The difference in performance between the two was more

significant in the “Ballroom” sequence due to the higher motion content. While H.263+IR

demonstrated some error-resilience properties, it took a longer time to recover than PRISM,

since it requires a few frames before being able to complete the intra refresh of the entire

frame. As expected, the distortion in MJPEG is correlated with just the number of lost

packets in that frame, since each frame is independently coded and no dependency exists

between frames. However, because of its coding inefficiencies, it is unable to match the

quality of the PRISM based systems.
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Figure 3.9. System performance over different error rates.

For visual comparison, Figure 3.11 shows a portion of the frame from the “Ballroom”

sequence after a catastrophic loss event where 60% (reflecting the bursty nature of wireless

packet drops) of the previous frame’s packets were dropped. Both PRISM-DS and PRISM-

VS produced more visually pleasing reconstruction than the other simulcast schemes.

3.5.3 Effect of decoder search range in view synthesis search

To investigate the effect that performing decoder search has on PRISM-VS, we varied

the range of the search size (centered at the co-located block) at the decoder. The results

shown in Table 3.1 are for 8% average packet drop rate. As evident, while decoder view

synthesis search does help in providing error resilience, we see that its performance saturates

at a search range of about ±2 pixels. As suggested in our earlier discussion on correlation

models (see Section 3.5.1), these results further reinforce the point that decoder search is

helpful in effectively exploiting side-information generation via dense stereo correspondence

and view synthesis. Other distributed video coding schemes[116, 57] code over the entire

frame, and hence it would be intractable to try out all combinations of shifts of all blocks

from the frame predicted by view synthesis.
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Figure 3.10. System performance over frames at 8% packet outage

Table 3.1. PSNR (dB) with different search ranges (pixels) in PRISM-VS

PRISM refers to independent decoding without using any other camera views. The other

columns refer to decoding with the specified search range in PRISM-VS.

Sequence PRISM 0 ±1 ±2 ±3 ±4
Ballroom 32.54 32.80 33.03 33.06 33.07 33.07

Vassar 35.37 35.37 35.41 35.41 35.41 35.42

3.5.4 Effect of redundancy of cameras used in disparity search

Recall that in PRISM-DS, for a given camera, decoder disparity search can be performed

in any of its neighboring cameras. We would like to know how much effect increasing

the number of neighboring cameras used would have on robustness. Thus, we performed

experiments in which we vary the number of closest neighboring cameras used for PRISM-

DS. Since we want to study the effect of having up to 6 neighboring cameras (3 on either

side), we only perform this experiment for the center two cameras, and the results reported

are their average. The results shown in Table 3.2 are for 8% average packet drop rate.
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(a) Original (b) MJPEG (c) H.263+FEC (d) H.263+IR

(e) PRISM (f) PRISM-DS (g) PRISM-VS

Figure 3.11. Visual results of “Ballroom” sequence at 8% average packet outage. Note the
obvious blocking artifacts in MJPEG, and the obvious signs of drift in both H.263+FEC
and H.263+IR. PRISM-DS and PRISM-VS produced reconstructions that are most visually
pleasing.

Table 3.2. PSNR (dB) with different number of cameras used in PRISM-DS

Sequence PRISM 2 4 6
Ballroom 32.33 33.09 33.10 33.10

Vassar 35.25 35.35 35.36 35.36

Table 3.2 shows that as the number of cameras available for PRISM-DS increases, the

quality of the reconstructed video also improves. Thus, PRISM-DS is able to take advantage

of additional overlapping cameras for increased robustness. On the other hand, there clearly

is a case of diminishing returns as the number of available cameras increases.

3.5.5 Effect of distance of cameras used in view synthesis search and

disparity search

In PRISM-DS, for a given camera, decoder disparity search can be performed in any

of its neighboring cameras. On the other hand, in PRISM-VS, disparity estimation and

view synthesis are done with the closest available neighboring cameras. We would like to

know how much effect increasing the distance of neighboring cameras used would have on

robustness. Thus, we performed experiments in which we vary the distance of neighboring

cameras used for both PRISM-VS and PRISM-DS. As above, we only perform this exper-
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iment for the center two cameras, and the results reported are their average. The results

shown in Table 3.3 are for 8% average packet drop rate.

Table 3.3. PSNR (dB) with distance of neighboring cameras used in PRISM-DS and
PRISM-VS

Sequence PRISM 1 2 3
Ballroom (DS) 32.33 33.09 33.01 32.95

Vassar (DS) 35.25 35.35 35.34 35.33
Ballroom (VS) 32.33 32.92 32.76 32.61

Vassar (VS) 35.25 35.29 35.28 35.27

Table 3.3 shows that as the distance of the available cameras increase, the reconstruction

quality decreases, probably because the quality of side-information degrades. The decrease

in reconstruction quality is more marked in the PRISM-VS scheme, due to the fact that

when the distance of neighboring cameras increases, disparity estimation is operating on

views with wider baseline, thus leading to poorer disparity estimates. This adversely affects

performance of view synthesis.

3.6 Recapitulation

In deploying wireless camera networks, it is important to design video transmission

systems that take into the account the lossy nature of wireless communications. We have

presented a distributed video compression scheme for wireless camera networks that is not

only robust to channel loss, but has independent encoders with low encoding complexity

that are highly suitable for implementation on sensor mote platforms. While past works

on distributed compression of multi-view videos have focused on achieving compression

gain, we instead exploit inter-view redundancy to achieve error resilience in a distributed

fashion. There is no need to perform correspondence tracking at the encoders and the

encoding operation is truly distributed. Our simulation results indicate that PRISM with

either view synthesis search or disparity search is able to exploit inter-view correlation for

robustness under tight latency constraints. We also show results that demonstrate how our

proposed approaches behave when physical camera network parameters, such as how far and
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how dense the cameras are placed, are changed. In particular, as the number of available

neighboring views increases, PRISM-DS becomes more robust, but with diminishing returns.

Furthermore, as the distance of neighboring views increase, the performance of both PRISM-

DS and PRISM-VS suffers, with PRISM-VS seeing a larger drop in reconstruction quality.

In future work, we would like to explore “smarter” encoders that are able to estimate

inter-camera correlation based on intra-camera properties such as edge strength. This would

require further research into (possibly distributed) inter-view correlation estimation. The

regime of low frame rate video also promises to be an interesting area of research, since

inter-camera correlation could possibly dominate intra-camera temporal correlation. While

PRISM is built with H.263+ primitives and so a comparison with H.264 [136] would not

provide any insight into the gains made possible by our approach, it would be worthwhile

to consider an implementation built with H.264 features, such as in [93]. Specifically, the

adoption of smaller block sizes and the integer transform makes it an interesting area of

future investigation.
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Part II

Establishing visual

correspondences under

rate-constraints
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Chapter 4

Rate considerations in computer

vision tasks

As motivated in this dissertation, the availability of cheap wireless sensor motes with

imaging capability has inspired research on wireless camera networks that can be cheaply

deployed for applications such as environment monitoring [126], surveillance [98] and

3DTV [87] (see Figure 4.1). Much progress has been made on developing suitable wire-

less camera mote platforms which are compact and self-powered while being able to cap-

ture images or videos, perform local processing and transmit information over wireless

links [108, 127, 37, 24]. However, the gaping disconnect between high bandwidth image

sensors (up to 1280× 1024 pixels @ 15 fps [24]) and low bandwidth communications chan-

nels (a maximum of 250 kbps per IEEE 802.15.4 channel including overhead [24]) makes the

exchange of all captured views impractical. Fortunately, depending on the task assigned to

the wireless camera network, exchanging camera views may not be necessary, but there is

still a need for intelligent processing that can satisfy bandwidth budgets [79].

Our primary application of interest in this part of the dissertation is camera calibration.

Internal calibration, or the determination of camera parameters such as skew, aspect ratio

and focal length, and external calibration, or the determination of camera parameters such

as relative location and pose, have been the focus of much research in the computer vision
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(ii) Finds correspondences
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Camera calibration
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Object recognition

Novel view rendering

B

A

Figure 4.1. Problem setup for distributed visual correspondences. A typical wireless cam-
era network would have many cameras observing the scene. In many computer vision
applications such as camera calibration, object recognition, novel view rendering and scene
understanding, establishing visual correspondences between camera views is a key step. We
are interested in the problem within the dashed ellipse: cameras A and B observe the same
scene and camera B sends information to camera A such that camera A can determine a
list of visual correspondences between cameras A and B. The objective of our work is to
find a way to efficiently transmit such information.

community [83, 62]. It is often reasonable to assume that internal calibration parameters are

known, since in cheap cameras without zoom capability, internal calibration is a one-time

procedure that can be performed prior to deployment. Then, given a list of correspondences

between two camera views, the Essential matrix can be estimated using a variety of methods,

while the relative location and orientation of the cameras can be easily extracted from the

Essential matrix [83].

Traditionally, computer vision methods assume that images from all cameras are avail-

able at a central processor with an implicit one-time communications cost. In a mobile

and wireless camera network, these assumptions are called into question — due to changing

camera states and bandwidth constraints. For example, consider a calibration or localization

task. If wireless camera motes are attached to the helmets of security personnel on patrol,

it would be important to minimize the rate needed to continuously update the location

and orientation of each camera relative to a reference frame. Even if the camera motes are

designed to be static, environmental disturbance could affect their pose, thus requiring con-

stant updating of calibration parameters. Furthermore, to avoid central coordination and

long communication hops from sensor nodes to a backend server, the calibration procedure

should ideally be distributed.

In part to address these practical concerns, there has been recent work on calibration
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procedures which are more suitable for wireless camera networks [32, 77, 13]. Devara-

jan and Radke proposed a distributed algorithm that calibrates each camera’s position,

orientation and focal length but assumes that feature correspondences are known across

cameras [32]. Lee and Aghajan assume the availability of a single moving target that is

visible from the cameras that are to be calibrated [77], thus providing a temporal series of

correspondences between cameras. Barton-Sweeney et al. assume the availability of beacon

nodes that identify themselves by using LEDs to broadcast modulated light, hence allowing

cameras to determine visual correspondences [13]. However, such constrained or controlled

environments are not feasible in a practical deployment.

4.1 Key role of visual correspondences

Many computer vision tasks relevant to camera networks, such as calibration proce-

dures [62, 83], localization [115], vision graph building [26], object recognition [43, 82, 14],

novel view rendering [7, 118] and scene understanding [50, 112], typically require a list of vi-

sual correspondences between cameras. As illustrated in Figure 4.2, a visual correspondence

refers to the set of image points, one from each camera, which are known to be projections

of the same point in the observed scene. Partly due to the critical role that visual correspon-

dences play in a wide variety of computer vision tasks that are relevant for wireless camera

networks, we focus on the problem of finding visual correspondences between two cameras,

denoted as camera A and camera B, communicating under rate constraints. Although we

primarily use the two cameras problem as a way to illustrate our proposed approaches, the

solutions presented in Chapter 5 can in fact be directly extended to a multiple cameras

scenario.

In a centralized setup, one typical approach to finding visual correspondences is to

make use of point features and descriptors. Features, or interest points, are first located

in the images. Descriptors are then computed for each feature; these describe the image

neighborhood around each feature and are usually high-dimensional vectors. Visual cor-
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Figure 4.2. Visual correspondences example. In this example, we show two views taken of
the same scene (“Graf” [91]). In each view, we have marked out 3 feature points and a line
is drawn between each pair of corresponding features. A pair of visual correspondence tells
us that the image points are of the same physical point in the scene.

respondences are then found by performing feature matching between all pairs of features

between cameras A and B, based on some distance measure between descriptors.

In a distributed setting as shown in Figure 4.1, camera B should transmit information

to camera A such that camera A can determine a list of point correspondences with camera

B. A näıve approach would be for camera B to send either its entire image or a list of its

features and descriptors to camera A for further processing [26]. A key observation is that

in the feature matching process, the Euclidean distance between descriptors is often used as

the matching criterion [82, 91]. Pairs of features that are estimated to be in correspondence

would therefore have descriptors that are highly correlated. This observation suggests that a

distributed source coding [120, 137] (DSC) approach can be used to exploit the correlation

between corresponding features to reduce the rate needed for finding visual correspondences.

We will discuss such an approach in detail in Chapter 5. Another approach that combines

DSC with binarized random projections will also be discussed in Chapter 5.

One might question the choice of sending descriptors of features instead of the actual

image itself. However, if the task is to establish visual correspondences, then as we will show

in our results, sending descriptors is more bandwidth efficient than sending the entire image,

even if lossless image compression is employed. While lossy compression schemes such as

JPEG can be used, it would cause both feature localization and matching performance to

degrade [91]. Furthermore, in a distributed setting, computing and transmitting descriptors

at each camera offers the advantage of reducing redundant computational load. For example,

in our setup, camera A only needs to compute descriptors for its own image, instead of
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having to do so for both cameras A and B. This subtle point becomes even more important

in the general case of where camera A might be receiving data from multiple cameras for

calibration. Consider the example of a K cameras network sharing visibility in the region

of observation. Each of the K cameras would have to compute descriptors for K observed

images if the actual image was sent. However, if descriptors were transmitted, then each of

the K camera only has to compute descriptors once for its own observed image.

4.2 Background

In this section, we discuss relevant background material on feature detectors and de-

scriptors which are used in finding visual correspondences. Note that background material

on distributed source coding is already covered in Chapter 2 (Section 2.2).

4.2.1 Feature detector

Feature detectors are used in computer vision applications as diverse as wide baseline

matching, image retrieval, camera localization and object categorization [90]. Their goal

is to detect and localize features, or interest points, that are invariant to rotations, scale

changes and affine image transformations. Ideally, the same image patch can be reliably

detected and accurately localized under such transforms.

We primarily use an off-the-shelf Hessian-Affine region detector [90], giving output like

the example shown in Figure 4.3. In a comparison of affine region detectors, the Hessian-

Affine region detector has been shown to have good repeatability and provide more features

than other detectors [92].

We briefly describe the two step process used in the Hessian-Affine region detector.

First, a Hessian-Laplace region detector is used to localize interest points. The determinant

of the Hessian matrix of each pixel in the image is computed at various scales and candi-

date points are localized in space at local maximas of the computed determinant at each

scale [92]. Then, candidate points which are also local maximas of the image Laplacian-
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Figure 4.3. Examples of regions found by Hessian-Affine region detector. The detected
interest points are plotted as red crosses, while the estimated affine region are shown as
yellow ellipses.

of-Gaussians across scale are retained as interest points [90]. Therefore, they are simulta-

neously local maximas in space (in the determinant of the image Hessian) and in scale (in

the Laplacian-of-Gaussians). Second, an affine adaptation step is carried out to estimate a

feature neighborhood that is invariant to affine image transformations. This is a procedure

that assumes the region is elliptical in shape and iterates between estimating the shape of

the region and warping it into a circular region until the eigenvalues of the second moment

matrix of the warped interest point are equal [90]. Such an affine adaptation is important

when there are significant viewpoint changes between cameras.

4.2.2 Feature descriptor

Typically used in conjunction with feature detectors, feature descriptors are used to

uniquely characterize a region of interest and are required to be robust to illumination

and affine distortion. Descriptors can range from simple constructions, such as a vector

of image pixels in the region of interest, to complex constructions, such as a histogram of

gradients [91]. Ideally, the same image patch under different viewing conditions should yield

descriptors that are close under some similarity measure, such as their euclidean distance.

We primarily use an off-the-shelf scale-invariant feature transform (SIFT) descrip-

tor [82], which are 128-dimensional descriptors constructed to be invariant to scale and

orientation changes and robust to illumination and affine distortions. SIFT has shown to
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have good performance in practice and are widely used in computer vision [82, 91]. Briefly,

the descriptors are computed as illustrated in Figure 4.4. First, the pixel neighborhood

of the interest point, computed during Hessian-Affine region detection, is rotated, scaled

and warped to achieve rotational, scale and affine invariance. Next, the area of pixels is

divided into a total of 4 × 4 tiles. An 8-bin histogram of image gradients is constructed

for each tile from the pixels in that tile, where each entry is weighted by the magnitude of

each image gradient. The histograms are then stacked together to form a 128-dimensional

vector. Finally, the vector is normalized to mitigate illumination induced effects.
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Figure 4.4. Computation of SIFT descriptor. Each detected image region is first warped,
scaled and rotated to achieve affine invariance, scale invariance and rotational invariance.
The image patch in the warped region is then divided into 4× 4 tiles of pixels. In each tile,
the computed image gradients are binned into an 8-bin histogram based on the orientation
of the gradient and weighted by its magnitude. The 16 8-bin histograms are then stacked
into a 128-dimensional vector which is normalized.
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Chapter 5

Strategies for rate-constrained

distributed distance testing

The distributed visual correspondences problem discussed in Chapter 4 is just one mem-

ber of a general class of problems that we term distributed distance testing under severe rate-

constraints, which is illustrated in Figure 5.1. Suppose there are two distributed sources,

one that outputs ~DA ∈ RN , and another that outputs ~DB ∈ RN . Say Alice observes ~DA

and Bob observes ~DB. Under severe rate constraints in a distributed setup, Alice would

like to know with high probability if ‖ ~DA − ~DB‖2 < τ .

Figure 5.1. Rate-constrained distributed distance testing setup.

One other class of applications where such a problem arises is that of remote image
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authentication (see for example [110, 81]) and video hashing. Suppose Alice wants to verify

that her copy of an image (or video) is similar to what Bob has. To do so, they can compare

perceptual hashes of their images. One possibility is to use the actual images such that the

transmitted hash checks out if the images satisfy some mean square error (MSE) distortion

constraint [81]. Alternatively, we can perform such a distance check in some image feature

space [110].

A straight-forward solution is for Bob to send some suitably transformed and quantized

version of ~DB to Alice. However, under severe rate constraints in a distributed setup, this

might not be the best approach. In this chapter, we present two alternative approaches.

The first uses a distributed source coding [120, 137] (DSC) approach that exploits the

correlation between ~DA and ~DB for rate reductions. This is discussed in Section 5.3. The

second approach combines DSC with a distance-preserving binarized random projections

hash and is discussed in Section 5.4.

To provide a concrete context for discussion in this chapter, we consider the problem

of establishing visual correspondences in a distributed fashion between cameras operating

under rate constraints, as illustrated in Figure 4.1. Cameras A and B have overlapping

views of the same scene and camera A wishes to obtain a list of visual correspondences

between the two cameras. Camera B should send information in a rate-efficient manner

such that camera A can obtain this list and use it for any other down-stream computer

vision task. We assume that both cameras A and B have already extracted a list of features

and computed descriptors for each of the features from their respective image views. Let

Ai denote the ith feature out of NA features in camera A, with image coordinates (xAi , y
A
i )

and descriptor ~DA
i , and Bj denote the jth feature out of NB features in camera B, with

image coordinates (xBj , y
B
j ) and descriptor ~DB

j . In this chapter, we assume that camera A

will determine that Ai corresponds with Bj if

‖ ~DA
i − ~DB

j ‖2 < τ (5.1)

for some acceptance threshold τ . We denote this as the Euclidean matching criterion.

The work presented in this chapter is joint work with Parvez Ahammad and Kannan
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Ramchandran, and has been presented in part in [141, 142, 145]. We also like to acknowledge

the advice and assistance given by Hao Zhang.

5.1 Contributions

We make the following contributions in this chapter. First, we propose the novel use

of DSC in the problem of establishing visual correspondences between cameras in a rate-

efficient manner. We verify that descriptors of corresponding features are highly correlated,

and describe a framework for applying DSC in feature matching given a particular matching

constraint.

Next, we propose the use of coarsely quantized random projections of descriptors to build

binary hashes and the use of Hamming distance between binary hashes as the matching

criterion. We derive the analytic relationship of Hamming distance between the binary

hashes to Euclidean distance between the original descriptors. We then show how a linear

code can be applied to further reduce the rate needed. In particular, the rate to use for

the code can be easily determined by the desired Euclidean distance threshold and a target

probability of error.

Finally, we set up a systematic framework for performance evaluation of establishing

visual correspondences by viewing it as a retrieval (of visual correspondences) problem under

rate constraints. While Mikolajczyk and Schmid [90] consider the relative performance

of various descriptors for correspondence, here we investigate an orthogonal direction in

which rate constraints are imposed. Cheng et al. [26] considered the performance of vision

graph building under rate constraints; however, establishing visual correspondence is a more

fundamental task and we believe our approach and results are widely applicable to a variety

of vision tasks. While we demonstrate our proposed method on a particular choice of feature

detector and descriptor, namely the Hessian-Affine region detector [90] and Scale-Invariant

Feature Transform (SIFT) descriptor [82], the framework is generally applicable to any

other combination of feature detectors and descriptors.
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5.2 Related work

Han and Amari presented a survey of work on statistical inference with consideration

of communications costs [61]; while they presented theoretical and asymptotic results on

achievable error-exponents, no constructive and practical scheme is given.

Cheng et al. studied the related problem of determining a vision graph that indicates

which cameras in the network have significant overlap in their field of view [26]. A key

component of their proposed approach is a rate-efficient feature digest constructed from

features and their descriptors. They do this by applying Principal Components Analysis

(PCA) to the descriptors and achieve dimensionality reduction by sending only the co-

efficients of the top principal components. However, they chose an arbitrary number of

bytes (4) to represent each coefficient and ignored the correlation in descriptors between

the matched features. Chandrasekhar et al. apply transform coding and arithmetic coding

on descriptors to build compressed features for image matching and retrieval [19]. Tosic

and Frossard studied the use of over-complete decompositions in establishing coarse corre-

spondences between omni-directional cameras [128]. However, in these works, performance

is evaluated on either the detection of overlapping views between cameras [26] or depth

recovery of a small number of simple objects in a synthetic scene [128]. In particular, the

performance of establishing visual correspondences is not evaluated directly.

Roy and Sun used binarized random projections to build a descriptor hash [110]; the

Hamming distance between hash bits is then used to establish matching features. Martinian

et al. proposed a way of storing biometrics securely using a syndrome code to encode the

enrolled biometric bits [86], while Lin et al. proposed the use of syndrome codes on quantized

projections for image authentication [81]. In both approaches, the syndrome is decoded

using the test biometric or test image as side-information; a match is signaled by decoding

success. However, the rate of the syndrome code has to be chosen by trial and error to

balance security, false positive and false negative performance.
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5.3 Distributed source coding of descriptors

Recall that camera B wishes to send information for camera A to determine correspon-

dences between the two cameras (see Figure 4.1.) One possible approach is for camera

B to send
{

(xBj , y
B
j ), ~DB

j

}NB
j=1

to camera A. However, camera A does not actually care to

reconstruct the descriptors from camera B. Instead, camera A just wants to know whether

each descriptor from camera B is of a point that matches a feature from its own camera

view. In particular, if Bj is a feature that does not correspond with any features in camera

A, then there is no need for camera A to reconstruct ~DB
j . This inspires us to use DSC

to send just enough bits for each descriptor ~DB
j such that it can be decoded using ~DA

i as

side-information if Ai corresponds with Bj .

5.3.1 Descriptor coefficients de-correlation

Due to how SIFT descriptors are computed [82], their coefficients are highly correlated.

This is clearly demonstrated in Figure 5.2(a), which visualizes the covariance matrix of a set

of descriptors. We aim to de-correlate the coefficients by applying a linear transform (i.e. its

discrete Karhunen-Loève Transform) to the descriptor prior to encoding. This transform is

estimated by applying principal components analysis (PCA) to a set of 12514 descriptors

computed over a collection of 6 training images. Figure 5.2(b) shows that applying the

learned linear transform does a good job of de-correlation; the same linear transform will

be used in our experiments. For notational convenience, we will assume in this section that

~DA
i and ~DB

j refer to the decorrelated descriptors.

5.3.2 Correlation model for descriptors of corresponding features

As discussed in the DSC background in Section 2.2, to apply DSC effectively, we need

a reasonable correlation model for the descriptors of corresponding features. Suppose that

Ai and Bj are corresponding features; we will assume that their descriptors satisfy the

following correlation model:

~DB
j = ~DA

i + ~NBA
ji (5.2)
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(a) Before PCA (b) After PCA

Figure 5.2. De-correlating SIFT descriptors. Here, we show the covariance matrix of the
SIFT descriptors before and after applying PCA to de-correlate the coefficients. For better
visualization, we show the logarithm of the absolute values of the covariance matrix. A
brighter value thus indicates greater correlation between coefficients. It is clear from (a)
that coefficients of the SIFT descriptor are highly correlated. After applying PCA however,
most of the correlation between coefficients have been removed, as can be seen in (b).

Here, ~NBA
ji denotes the innovation noise between ~DA

i and ~DB
j , i.e. the side-information

at camera A, ~DA
i , is a noisy version of ~DB

j . Since de-correlation has been performed (see

Section 5.3.1), we assume ~NBA
ji is also de-correlated. Furthermore, we will assume that

the innovation noise is Gaussian. This enables bit allocation on each component through

inverse waterfilling on the innovations noise components [29, 103].

We estimate the statistics of the innovation noise, ~NBA
ji , from descriptors of features be-

longing to known and detected correspondences in training image pairs. In other words, we

apply the Euclidean matching criterion as in (5.1) to descriptors and restrict our attention

to the estimated correspondences which are also correct. For this set of correspondences,

we compute ~NBA
ji as in (5.2) and then use this to estimate

{
σ2
k

}128

k=1
, where σ2

k is the vari-

ance of the kth element of innovation noise. We will defer discussion of how ground-truth

correspondences are obtained to Section 5.5. Figure 5.3 shows both the source variance and

innovation noise variance (for τ = 0.195) of the descriptor coefficients in a log plot. It is

clear that the innovation noise variance is much smaller than the source variance and that

allows us to achieve rate savings.
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Figure 5.3. Variance of descriptor coefficients. We show the variance of each coefficient of
both descriptors and innovations noise after applying de-correlation. Note that variance is
shown in dB in this plot for a better visual comparison. The innovation noise variance is
clearly much smaller than that of the original coefficients and this enables the rate savings.

5.3.3 Descriptor encoding and decoding

Instead of just sending ~DB
j as is, we propose using DSC by dividing up the quantized

descriptor space into cosets and sending the coset index of the quantized ~DB
j . The size

of the coset would depend on the correlation strength between descriptors of correspond-

ing features, using the correlation model described earlier in Section 5.3.2. In theory, we

would find a channel code that is matched to ~NBA
ji and use that to partition the quantized

codeword space of ~DB
j [104]. Furthermore, since the choice of side-information for Bj is

unknown at camera A, the coset size needs to be reduced appropriately to account for that

uncertainty [67]. Joint-typical decoding can then be used to recover ~DB
j if there is indeed a

corresponding feature in camera A [67]; this involves checking through all combinations of

codewords in the coset and side-information at camera A and picking the codeword that is

jointly-typical with some ~DA
i . In our work, we use cosets of a Multilevel code for encoding

and decoding [131, 66]. Due to short block lengths and complexity constraints at the de-

coder, we first construct the Maximum-Likelihood (ML) estimate of ~DB
j given the received

coset index and side-information before using a Cyclic Redundancy Check (CRC) to verify

decoding success.

Based on the estimated innovation noise statistics for each coefficient of the descriptor,
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we compute the number of levels to use in the Multilevel code. In particular, we use Lk

levels for the kth coefficient [48]:

Lk =
⌈

1
2

log2

(
2πeα2σ

2
k

δ2

)⌉
(5.3)

where δ is the desired quantization step size and α is a user parameter that determines the

probability of decoding error. Recall that σ2
k is the variance of the kth element of ~NBA

ji .

While further compression is possible by coding each of the levels across all coefficients as

in the multilevel coset code framework, we transmit the coset indices uncoded in this work.

To encode a descriptor, the encoder will compute and transmit the coset index of each

descriptor based on the Multilevel code determined by Equation (5.3); for the kth coefficient,

the coset index is just the least significant Lk bits of the quantized coefficient. In addition,

the encoder will compute and transmit a sufficiently strong CRC of the quantized descriptor.

To ensure a low probability of collisions, a reasonable choice would be to use at least

d2 log2(NA)e CRC bits. This expression is obtained by by treating hash collision as a

birthday attack [123] with NA attempts and a uniform distribution assumption on the CRC

hash that is computed. The image coordinates of the feature are also transmitted.

At the decoder, camera A will take each received coset index and perform multi-stage

decoding using its descriptors,
{
~DA
i

}NA
i=1

, as side-information. Each candidate decoded

descriptor will then be tested with the received CRC. If the CRC for received feature Bj

checks out with feature Ai as side-information, then Ai is very likely to be the corresponding

feature to Bj . A second pass can be performed to ensure that Ai is indeed the matching

feature by using the Euclidean matching criterion. If the CRC for Bj does not check out

with any feature Ai as side-information, then it is likely that Bj has no corresponding

feature in camera A that satisfies the Euclidean matching criterion. This descriptor can

then be discarded since camera A would not have been able to use this feature anyway.

5.3.4 Algorithmic summary

We summarize the encoder and decoder operations here. The encoder is described

in Algorithm 1. For the jth descriptor, ~SBj is the vector of coset indices and CBj is the
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computed CRC hash. The encoder takes as input the set of features and descriptors that

are found by camera B and returns their coset indices and CRC hashes.

Algorithm 1 Encodes descriptors from camera B

Input: NB,
{(
xBj , y

B
j

)
, ~DB

j

}NB
j=1

Output:
{(
xBj , y

B
j

)
, ~SBj , C

B
j

}NB
j=1

for j = 1 to NB do

Quantize each coefficient of ~DB
j with step size δ

Compute ~SBj by keeping Lk (see Equation (5.3)) least significant bits of the kth coef-

ficient of quantized ~DB
j

Compute CBj , the CRC of quantized ~DB
j

end for

The decoder is described in Algorithm 2. It takes as input the set of features and

descriptors that are found by camera A and the received coset indices and CRC hashes

of descriptors from camera B. The decoder then returns a list of visual correspondences

between cameras A and B that are found.

5.4 Distance preserving hashes using binarized random pro-

jections

Inspired by work from Roy and Sun, we use coarsely quantized random projections to

build a descriptor hash [110]; the Hamming distance between hash bits can then be used

to determine if two features are in correspondence. For a feature point with descriptor

~D ∈ Rn, we construct a M -bit binary hash, ~d ∈ {0, 1}M , from ~D using random projections

as follows [110]. First, randomly generate a set of M hyperplanes that pass through the

origin, H = {H1, H2, . . . ,HM} and denote the normal vector of the kth hyperplane, Hk, by

~hk ∈ Rn. Next, the kth bit of ~d, d(k) ∈ {0, 1}, is computed based on which side of the kth

hyperplane ~D lies. In other words,

d(k) = I
[
~hk · ~D > 0

]
(5.4)
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Algorithm 2 Decode transmissions from camera B and find visual correspondences between

camera A and camera B

Input: NA,
{(
xAi , y

A
i

)
, ~DA

i

}NA
i=1

Input: NB,
{(
xBj , y

B
j

)
, ~SBj , C

B
j

}NB
j=1
{Received from camera B}

Output: List of visual correspondences between cameras A and B

for j = 1 to NB do

for i = 1 to NA do

Decode ~SBj using ~DA
i as side-information

if CRC of decoded codeword checks out with CBj then

Dequantize decoded codeword to get D̂B
j

if ‖D̂B
j − ~DA

i ‖2 < τ then

Add (i, j) to the list of visual correspondences

end if

end if

end for

end for

The intuition for using such a hash is that if two descriptors are close, then they will be on

the same side of a large number of hyperplanes and hence have a large number of hash bits

in agreement [110]. Therefore, to determine if two descriptors are in correspondence, we

can simply threshold their Hamming distance. This also has the advantage that computing

Hamming distances between descriptor hashes is computationally cheaper than computing

Euclidean distances between descriptors.

5.4.1 Analysis of binarized random projections

To pick a suitable threshold, we need to understand how Hamming distances between

descriptor hashes are related to Euclidean distances between descriptors. In this section,

we assume that descriptors are normalized to unit length. This is not unreasonable; for

example, SIFT descriptors are normalized in the last step of descriptor computation [82]
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(see Section 4.2.2). With this assumption, we can show the following theorem about how

a single hash bit relates to the distance between two descriptors and then use it to show

the relationship between Hamming distance between the binary hashes and the Euclidean

distance between the descriptors. After performing this work, we subsequently found that

a similar theorem was used in similarity estimation (Section 3, [22]) and in approximate

maximum cuts computation (Lemma 3.2, [58]).

Theorem 1. Suppose n-dimensional descriptors ~DA
i and ~DB

j are separated by Euclidean

distance δ, i.e. ‖ ~DA
i − ~DB

j ‖2 = δ. Then, the probability that a randomly (uniformly)

generated hyperplane will separate the descriptors is 2
π sin−1 δ

2 .

Corollary 1. Suppose n-dimensional descriptors ~DA
i and ~DB

j are separated by Euclidean

distance δ, i.e. ‖ ~DA
i − ~DB

j ‖2 = δ. If we generate M -bit binary hashes, ~dAi and ~dBj , from ~DA
i

and ~DB
j respectively, then their Hamming distance, dH(~dAi , ~d

B
j ), has a binomial distribution,

Bi
(
M,pABij

)
, where pABij = 2

π sin−1 δ
2 . Furthermore, the ML estimate of the Euclidean

distance between descriptors is given by δ̂ = 2 sin
(
dH(~dAi ,

~dBj )

M · π2

)
.

Proof of Corollary 1. dH(~dAi , ~d
B
j ) is just the number of times a randomly generated hyper-

plane separates the two descriptors. Since the hyperplanes are generated independently,

the Hamming distance has a binomial distribution with the Bernoulli parameter given by

Theorem 1. The ML estimate can then be found in a straightforward fashion.

Notice that the ML estimate is independent of the dimensionality of the descriptor.

To prove Theorem 1, we need the following lemma.

Lemma 1. Suppose 2-dimensional descriptors ~DA
i and ~DB

j are separated by Euclidean

distance δ, i.e. ‖ ~DA
i − ~DB

j ‖2 = δ. Then, the probability that a randomly (uniformly)

generated hyperplane will separate the descriptors is 2 sin−1 δ
2

π .

Proof. In the simple case of 2 dimensions as illustrated in Figure 5.4, ~DA
i and ~DB

j lies

on a unit circle with center at the origin since descriptors have unit-norm. A randomly

(uniformly) generated hyperplane in this case is just a line passing through the origin with
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θ
O

δ

~DA
i ~DB

j

Figure 5.4. Graphical illustration of proof for Lemma 1. A general multi-dimensional case
can always be reduced to a 2-D case, in the plane formed by ~DA

i , ~DB
j , and the origin. The

angle subtended by the rays from the origin to ~DA
i and ~DB

j in this plane can be found using
simple trigonometry to be θ = 2 sin−1(δ/2). If a hyperplane orientation is chosen uniformly
at random, then the probability of the hyperplane separating ~DA

i and ~DB
j is just θ/π.

equal probability of being in any orientation. Observe that the hyperplane (line) separates

the descriptors (denoted by event E) if and only if it intersects the shorter of the arcs

connecting ~DA
i and ~DB

j . Hence, by simple trigonometry,

P (E) =
Arc length between ~DA

i and ~DB
j

π
=

2 sin−1 δ
2

π

We also need the following lemma to link the relationship between a general n-

dimensional case and the 2-dimensional case.

Lemma 2. Suppose we are given two points, D1 and D2, in n-dimensional space and a

hyperplane H with normal vector ~h. Consider the plane S defined by the origin (denoted

by O), D1 and D2. Then, H separates the two points, D1 and D2, if and only if the line

intersection between H and S also separates the projections of D1 and D2 on S.

Proof. A point, X, lies in H if ~hT ~OX = 0. Also, a point, X, in S can be parametrized as

~OX = α ~OD1 +β ~OD2, for some α, β ∈ R. Then, the line intersection between H and S can
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be found by solving:

~hT
(
α ~OD1 + β ~OD2

)
= 0

⇒ α~hT ~OD1 + β~hT ~OD2 = 0 (5.5)

Let us consider the first part of the lemma. If H separates the two points, then the

projections of the points on ~h has opposite signs, i.e.

(
~hT ~OD1

)(
~hT ~OD2

)
< 0 (5.6)

Now, consider the following two exterior products1. The first is the exterior product of the

vector representing the line intersection and the vector representing D1.

~OX ∧ ~OD1 =
(
α ~OD1 + β ~OD2

)
∧ ~OD1

= β ~OD2 ∧ ~OD1 (5.7)

= −β ~OD1 ∧ ~OD2 (5.8)

where (5.7) follows from the property that ~v ∧ ~v = 0, and (5.8) follows from the anti-

symmetric property that ~v ∧ ~u = −~u ∧ ~v. Similarly, we can compute

~OX ∧ ~OD2 = α ~OD1 ∧ ~OD2 (5.9)

Since X lies on the line intersection, from (5.5), we have that

α~hT ~OD1 = −β~hT ~OD2

⇒ αβ
(
~hT ~OD1

)2
= β2

[
−
(
~hT ~OD1

)(
~hT ~OD2

)]
(5.10)

⇒ αβ > 0 (5.11)

where (5.10) follows by multiplying β
(
~hT ~OD1

)
on both sides, and (5.11) follows from (5.6).

Finally, from (5.8), (5.9) and (5.11), we conclude that the line ~OX separates the point D1

and D2 on S since the bi-vectors ~OX ∧ ~OD1 and ~OX ∧ ~OD2 have opposite orientations.

Thus, if H separates the two points D1 and D2 then the line intersection between H and S

also separates the projections of D1 and D2 on S.
1One can think of it as the analog of cross-product in high (> 3) dimensional spaces.
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Now, for the reverse direction, suppose that H does not separate the two points D1

and D2. Following the above argument, we can show that since
(
~hT ~OD1

)(
~hT ~OD2

)
> 0,

αβ < 0, and so the line ~OX does not separate the point D1 and D2 on S, since the bi-vectors

~OX ∧ ~OD1 and ~OX ∧ ~OD2 have the same orientation. Thus, if H does not separate the

two points D1 and D2 then the line intersection between H and S also does not separate

the projections of D1 and D2 on S.

Now, we can easily prove Theorem 1.

Proof of Theorem 1. We will show the result by reducing to the 2-D case as in Lemma 1.

~DA
i , ~DB

j and the origin defines a plane, S. From Lemma 2, a hyperplane H passing through

the origin separates the descriptors if and only if the line intersection between H and S

also separates the projections of ~DA
i and ~DB

j on S (almost surely). Since this line has equal

probability of being in any orientation, the result follows by applying Lemma 1.

Using Theorem 1, we convert the distance testing problem from a deterministic and

continuous-valued problem to a probabilistic and binary-valued one. Specifically, we can

model dAi (k) and dBj (k) as being related by a binary symmetric channel (BSC) with param-

eter ρ(δ) given by:

ρ(δ) =
2
π

sin−1 δ

2
(5.12)

when ‖ ~DA
i − ~DB

j ‖2 = δ.

5.4.2 Numerical demonstration of Theorem 1

To demonstrate Theorem 1, we ran the following experiment on descriptors obtained

from a separate set of training image pairs. We consider the set of all possible pairs of de-

scriptors, and pick at random equal number of corresponding and non-corresponding pairs.

We then compute the Euclidean distance between the pair, and estimate the probability that

a randomly generated hyperplane separates the two points by performing a Monte-Carlo

simulation with 5× 104 trials.
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A scatter plot of the estimated probability vs Euclidean distance is shown in Figure 5.5.

We also plot the theoretical probabilities as derived in Theorem 1. Figure 5.5 shows that the

simulation results agree with our analysis as expected. Furthermore, the plot also verifies

that good separation between corresponding and non-corresponding pairs can be obtained

with an appropriately chosen Euclidean distance threshold.

Figure 5.5. Simulation results demonstrating Theorem 1. We show the scatter plot of
Euclidean distance between a pair of descriptors and the estimated probability of a randomly
chosen hyperplane separating the pair for a randomly chosen subset of pairs of features.
The x-axis is the actual Euclidean distance between the pair of descriptors, and the y-axis
is the estimated probability of a randomly chosen hyperplane separating the descriptors.
The blue circles represent pairs in correspondence, while green crosses represent pairs not
in correspondence. The theoretical relationship between the two quantities is plotted in
red. Note the close adherence to the theoretical result, and the good separation between
corresponding and non-corresponding pairs.

5.4.3 Choosing the number of hash bits

Denote ~dA and ~dB to be binary-valued M -tuples formed by taking the M -bit binarized

random projections hash of ~DA and ~DB respectively. Note that we have dropped the sub-

scripts for clarity but we will use it when it is necessary to distinguish between various
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features. From Corollary 1, the hamming distance between ~dA and ~dB, dH(~dA, ~dB), fol-

lows the binomial distribution and can be used as a test statistic in a hypothesis testing

framework to decide if ~DA and ~DB satisfy the distance criterion.

Let p denote the probability of a randomly generated hyperplane separating ~DA and

~DB and let pτ = ρ(τ) (see Equation (5.12)). The hypotheses are:

H0 : p > pτ + µ/2 (i.e. ‖ ~DA − ~DB‖ > τ)

H1 : p < pτ − µ/2 (i.e. ‖ ~DA − ~DB‖ < τ)

where µ specifies an “insensitive” region around pτ for which we would not measure per-

formance. Since dH(~dA, ~dB) has a binomial distribution, it is a monotone likelihood ratio

(MLR) statistic [15]. Therefore, we can construct a uniformly most powerful (UMP) test

of level α based on thresholding dH(~dA, ~dB) with the following properties: the probability

of falsely declaring a pair satisfying the distance criterion is always less than α while the

probability of missing a pair satisfying the distance criterion is not more than any other

tests of level α [15]. One reasonable choice for the threshold is:

γM = M · pτ =
2M
π

sin−1 τ

2
(5.13)

To understand how many projections are needed for a test to satisfy a given error bound,

we apply a Chernoff bound on the probability of false detection (declaring H1 given H0)

and missed detection (declaring H0 given H1) of the hypothesis test. For example, given

that p > pτ + µ/2 (i.e. H0),

P (Ĥ1|p,H0) ≤ exp (−MD(pτ ||p)) (5.14)

≤ exp (−MD(pτ ||pτ + µ/2)) (5.15)

where D(p||q) is the Kullback-Leibler divergence between two Bernoulli sources with pa-

rameter p and q, (5.14) follows from applying Chernoff bound and (5.15) follows from

considering the worst case in H0, which is when p = pτ + µ/2. In this analysis, we as-

sume the choice of threshold γM = Mpτ . A similar analysis also shows that P (Ĥ0|H1) ≤

exp (−MD(pτ ||pτ − µ/2)). These bounds can then be used to determine a suitable number

of projections to use given a desired error bound.
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Qualitatively, the above bounds tell us that the less stringent the matching criteria,

i.e. the larger τ and hence pτ is, the larger the number of projections needed to satisfy a

target error, given the same absolute size of the “insensitive” region.

5.4.4 Using linear codes to reduce rate

In a related work, Körner and Marton [73] showed that if ~dA and ~dB are generated

by binary symmetric sources related by a BSC with known cross-over probability p, then

to recover the flip pattern, ~Z = ~dA ⊕ ~dB, with probability of failure less than ε, both

Alice and Bob need to use a rate of at least H(p) bits respectively (asymptotically). The

achievable strategy uses a linear code and is as follows [73]: Let f(~Z) be a linear encoding

function of the binary vector ~Z that returns K output bits from M input bits. Let ψ(·) be

the decoding function of this linear code such that P
(
ψ(f(~Z)) 6= ~Z

)
< ε. Alice and Bob

then construct and transmit f(~dA) and f(~dB) respectively. A receiver can then construct

f(~dA) ⊕ f(~dB) = f(~dA ⊕ ~dB) = f(~Z), since f(·) is a linear code, and reconstruct ~Z with

probability of failure less than ε. Thus, we can use this scheme as a way to obtain rate

savings, using a rate of H(p) instead of 1.

While the above scheme recovers the flip pattern ~Z, Ahlswede and Csiszár showed that

the above rate region in fact holds even if only the hamming distance is desired [4]. This

also suggests that if we want to recover the hamming distance only when p < pτ (but p is

otherwise unknown), the best we can hope to do in a one-shot scenario, i.e. Bob just sends

one message to Alice with no other interaction, is to use a rate of H(pτ ) and the method

described earlier is an achievable strategy. The optimality of this scheme when we just want

to know if the hamming distance is smaller than some threshold is an open question.

For a practical implementation used in this work, we use the parity-check matrix of a

low-density parity-check (LDPC) code [54] as the linear encoding function [81, 86]; thus,

the output f(~dA) is just the LDPC syndrome of ~dA. To decode, we apply belief-propagation

(BP) decoding [109] on the XOR sum of the syndromes of ~dA and ~dB, i.e. f(~dA)⊕ f(~dB).

We choose a code with blocklength M and rate r such that it has a threshold corresponding
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to γM
M [109]. To determine if the distance criterion is satisfied, decoding must converge2 and

the hamming weight of ~Z is less than γM .

5.4.5 Algorithmic summary

To summarize, the procedure for performing distributed distance testing is as follows.

The user parameters are: n, the dimensionality of the real-valued source; M , the number of

projections desired; and τ , the euclidean distance threshold (or equivalently γM = Mρ(τ)).

From these parameters, we generate a suitable LDPC code with K syndrome bits, i.e. with

rate (1 − K
M ), such that it has threshold γM

M , and obtain its parity check matrix H ∈

GF (2)M×K . We also generate a random projection matrix L ∈ Rn×M with the kth column

denoted by ~lk. Both H and L are shared by the encoder and decoder.

The encoder takes a vector ~DA ∈ RN as input and returns a binary vector ~mA ∈

GF (2)K . It performs the following:

1. Compute the binary random projections, ~dA, with the kth element being dA(k) =

I
[
~lk · ~DA > 0

]
.

2. Compute the syndrome of ~dA, ~mA = HT ~dA.

The decoder takes two binary vectors, ~mA, ~mB ∈ GF (2)K (~mB is obtained from ~DB using

the same encoder as described above) and returns H1 if the distance criterion is satisfied

by ~DA and ~DB. Otherwise, it returns H0. The decoding process is:

1. Compute ~mz = ~mA ⊕ ~mB.

2. Perform BP decoding on the syndrome ~mz to obtain reconstruction Ẑ ∈ GF (2)M .

3. If BP decoding converges and dH(Ẑ) ≤ γM then return H1; else return H0.
2We determine that it converges if the reconstruction satisfies the parity check matrix within 50 iterations.
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5.4.6 Simulations

We now present results from a Monte-Carlo simulation of the following scenario

to demonstrate the proposed approach. For each trial, we generate a vector ~DA ∈{
~D ∈ R128|‖ ~D‖ = 1

}
uniformly at random and perturb it by a random amount (∼

unif [0, 0.5]) in a random direction to obtain ~DB (normalized such that ‖ ~DB‖ = 1). The

distance criterion we are interested is whether ‖ ~DA − ~DB‖ < τ = 0.2. The corresponding

probability of a separating hyperplane is ρ(τ) = 0.0638. We evaluate the performance of

three schemes in sending descriptors to determine if the vectors satisfy the given distance

criterion: (i) Random projections (RP); (ii) Random projections with LDPC (RP-LDPC);

and (iii) Scalar quantization (SQ). For each scheme, we perform 10000 trials and compute

the precision, which is the fraction of retrieved pairs that satisfy the distance criterion, and

recall, which is the fraction of all generated pairs satisfying the distance criterion that are

retrieved, over various thresholds used. We also measure the rate used to transmit each

vector. In the RP-LDPC scheme, we used a rate 1
2 LDPC code which has an asymptotic

threshold of 0.11.

Fig. 5.6 shows the ROC curves (precision vs recall) of RP-LDPC using different number

of projections. As expected, as the number of projections increases, the retrieval perfor-

mance of RP-LDPC increases.
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Figure 5.6. ROC over different bit rates for proposed scheme
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Fig. 5.7 shows the ROC curves for RP-LDPC, RP and SQ using 256 bits per vector.

Clearly, at this rate, RP-LDPC has the best performance, followed by RP and SQ. We also

show the ROC curve for RP using 512 projections. Comparing it with RP-LDPC, there is

almost no loss in performance in using RP-LDPC even though the rate required is halved.
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Figure 5.7. Comparison of ROC for various schemes. We show here the ROC for RP-
LDPC, RP and SQ when 256 bits are used per vector. RP-LDPC has the best retrieval
performance, followed by RP and SQ. RP-LDPC uses 512 projections; we show for reference
the performance of RP which also uses 512 projections, but requiring double the rate. These
two schemes have very similar performances.

Fig. 5.8 shows the maximum F1 score over all possible thresholds vs rate for the three

schemes. This plot shows very clearly that at low rates, RP-LDPC and RP are preferable,

while at high rates, SQ would be the right thing to do.

Finally, Fig. 5.9 shows the F1 score for RP and RP-LDPC using different number of

projections when different thresholds are used. The thresholds shown are normalized by

the number of projections used. It is clear that choosing γM as given by Equation (5.13) is

a reasonable thing to do, particularly if we are interested in achieving the highest F1 score.
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Figure 5.8. Comparison of maximum F1 scores for various schemes over different bitrates.
We use the maximum F1 score to capture the best trade-off between recall and precision
for each scheme and choice of parameters. The results here show that at all bit rates, RP-
LDPC out-performs RP, since it is able to use the LDPC layer to reduce rate. On the other
hand, at low rates, RP-LDPC out-performs SQ, while at high rates, SQ does better. This
suggests that the choice of scheme depends on the rate regime.

5.5 Experimental Evaluations

5.5.1 Setup

We evaluate our proposed approaches on a standard benchmark dataset made publicly

available3 by Mikolajczyk and Schmid [91]. In particular, we consider the most challenging

case of viewpoint changes where shots are taken of the same scene from different viewing

angles with a viewpoint change of about 20 degrees between neighboring camera views.

These are the “Graf” and “Wall” scenes, shown in Figure 5.10. Each image has dimensions

of about 840 × 660. In “Graf”, the images are taken of a planar scene, while in “Wall”,

the images are taken by a camera undergoing pure rotation. Due to geometric constraints

in each of these cases, the image views are related by a homography [83]. The dataset also

includes computed ground-truth homography which allows for ground-truth correspondence

pairs to be extracted based on overlap error in the regions of detected features [91]. This

leads naturally to a systematic performance evaluation of the task of establishing visual

correspondences.
3http://www.robots.ox.ac.uk/~vgg/research/affine
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Figure 5.9. F1 scores vs threshold used for RP and RP-LDPC using different number of
projections. We show how the F1 scores vary as the threshold used varies. Empirically, the
results suggest that picking the threshold as γM = Mρ(τ) will give the best recall/precision
trade-off.

Our evaluation procedure is as follows. We first run the Hessian-Affine feature detector

to obtain a list of features in each image and then compute the SIFT descriptor for each

feature. We note here that SIFT descriptors are normalized in the last step of computation

to be robust to illumination changes and thus satisfy the unit-norm assumption used in the

binarized random projections based schemes. We set the feature detector threshold such

that it returns a maximum of 2000 features per image. Using the ground-truth homography

and given the list of detected features in each image, we find the list of Ctotal ground-truth

correspondences between those features. We encode and decode the descriptors from camera

B using the following four procedures:

• Baseline – This consists of using a linear transform to de-correlate the descriptor,

as discussed in Section 5.3.1, and then applying entropy coding on the quantized

coefficients using an arithmetic coder. Decoding simply consists of undoing the above

steps. Matches are found using the target Euclidean matching criterion. Different

rate constraints can be satisfied by varying the quantization step size used.

• DSC – Descriptors are encoded using the encoding procedure outlined in Sec-

tion 5.3.4. The received messages are decoded using descriptors from camera A as
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(a) Graf

(b) Wall

Figure 5.10. Test dataset [91]. The data used for our tests are shown above: (a) “Graf”;
and (b) “Wall”. In “Graf”, the different views are of a mostly planar scene, while in “Wall”,
the views are obtained by rotating the camera about its center. In both cases, the views
are related by a homography [83].

side-information. Recall that matches are found when decoding is successful and

meets the target Euclidean matching criterion. As in the baseline scheme, different

rate constraints can be satisfied by varying the quantization step size used.

• RP – Descriptors are encoded using the binarized random projections discussed in

Section 5.4 but without applying the linear code, i.e. the random projection bits are

sent as is. Matches are found using a hamming distance threshold computed from the

target Euclidean matching criterion using Equation (5.13). Different rate constraints

can be satisfied by varying the number of projections used.

• RP-LDPC – Descriptors are encoded and decoded using the procedure described in

Section 5.4.5. The received messages are decoded using the hashed descriptors from

camera A as side-information. Recall that matches are found when BP decoding is

successful and satisfies the target hamming distance threshold. As in the RP scheme,

different rate constraints can be satisfied by varying the number of projections used.

In all cases, we note the rate, R, that is used. Each approach would return a list of

Cretrieve retrieved correspondences and we compute Ccorrect, the number of correctly re-

trieved correspondences, using the ground-truth correspondence pairs obtained earlier.

From these, we compute both the recall value, Re = Ccorrect/Ctruth, and the precision

value, Pr = Ccorrect/Ctotal, of the scheme. The recall indicates how many of the correspon-
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dences present (given the list of detected features) can be found and the precision indicates

how good the retrieved correspondences are. For example, when performing calibration,

it is important to maintain high precision of the retrieved correspondences to ensure that

outliers do not break the calibration procedure. To jointly quantify recall and precision,

we use the balanced F-score, F1 = 2×Re×Pr
Re+Pr , which is commonly used in the information

retrieval literature [76].

In our experiments, we consider both τ = 0.195 (ρ(τ) = 0.0623) and τ = 0.437 (ρ(τ) =

0.1401). For both the baseline and DSC schemes, we consider quantization step sizes ranging

from 1.95× 10−3 to 6.25× 10−2. In the DSC scheme, we use α = 1.718 and a 24-bit CRC.

For both the RP and RP-LDPC schemes, we vary the number of random projection used

from 64 to 1024 (per descriptor). In the RP-LDPC scheme, we use a rate (1− 0.50) LDPC

code when τ = 0.195 and a rate (1− 0.73) LDPC code when τ = 0.437.

5.5.2 Results

We present results averaged over all 5 pairs of neighboring views for each scene type.

Figure 5.11 shows the rate-recall tradeoffs of the various schemes under consideration for an

Euclidean Distance Criterion of τ = 0.195 and τ = 0.437 respectively. From Figures 5.11(a)

and 5.11(b), at a lower threshold of τ = 0.195, we see that in the baseline and DSC schemes,

the number of correct correspondences retrieved increases with the amount of rate used.

Furthermore, the DSC scheme always require less rate than the baseline scheme to obtain

the same performance since it requires less rate to describe each descriptor. On the other

hand, the number of correctly retrieved correspondences stay relatively stable over a wide

range of rates in the RP and RP-LDPC schemes.

At a larger threshold of τ = 0.437, Figures 5.11(c) and 5.11(d) shows that the baseline

scheme now requires less rate than the DSC scheme. This is due to corresponding descrip-

tors satisfying this larger threshold being less correlated. RP-LDPC still requires slightly

less rate than RP due to the use of the linear code to further compress the binarized ran-

dom projections. However, the baseline scheme outperforms both RP and RP-LDPC. As
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suggested by our analysis in Section 5.4.3, with a larger threshold, we would expect that

more hash bits are needed to satisfy the same error bound.
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(a) Ccorrect vs rate - Graf (τ = 0.195)
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(b) Ccorrect vs rate - Wall (τ = 0.195)
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(c) Ccorrect vs rate - Graf (τ = 0.437)
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(d) Ccorrect vs rate - Wall (τ = 0.437)

Figure 5.11. Rate-Recall tradeoff. The above plots show how the average number of cor-
rectly retrieved correspondences (Ccorrect) varies with rate. The results for “Graf” are
shown in (a) and (c); that of “Wall” are shown in (b) and (d). In (a) and (b), a threshold
of τ = 0.195 is used, while in (c) and (d), a threshold of τ = 0.437 is used.

Figure 5.12 shows how the F1 score, a joint measure of recall and precision, varies with

rate. At a low threshold, the DSC scheme performs better than the baseline scheme in

requiring smaller rate for the same performance but this reverses at a higher threshold. In

addition, the F1 score is relatively stable over a range of rates for both the RP and RP-

LDPC schemes at a low threshold – this implies that when a stricter criterion is necessary,

one can get by with spending as little as 64 bits per descriptor. With a larger threshold,

however, all the schemes appear to have a relatively similar F1 performance over a wide
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range of rates. At very low rates, RP-LDPC still requires slightly less rate than RP for the

same performance.
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(a) F1 vs rate - Graf (τ = 0.195)
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(b) F1 vs rate - Wall (τ = 0.195)
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(c) F1 vs rate - Graf (τ = 0.437)
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Figure 5.12. Rate-F1 tradeoff. The above plots show how the F1 score, a measure that
takes into account both recall and precision performance, varies with rate. The results for
“Graf” are shown in (a) and (c); that of “Wall” are shown in (b) and (d). In (a) and (b),
a threshold of τ = 0.195 is used, while in (c) and (d), a threshold of τ = 0.437 is used.

We have also experimented with using the Portable Network Graphics (PNG) image

format to compress the entire image losslessly prior to sending it. However, the rate used is

much more (about an order of magnitude) than any of our proposed approaches and we do

not show it in our above plots. Thus, all of our proposed approaches do better at utilizing

bandwidth to establish correspondences than simply sending a lossless compressed version

of the captured image.

In addition, recall that feature descriptors are usually high-dimensional. For example,
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the SIFT descriptors used in our experiments are 128-dimensional. Since we use PCA to

estimate the linear decorrelating transform needed in both the baseline and DSC schemes,

the coefficients are already ordered according to their variances. Therefore, a possible way of

further reducing rate is to perform dimensionality reduction by discarding the transformed

descriptors coefficients with lower variance [26]. Since the number of dimensions is changed,

there is a need to adjust the threshold as well. Here, we adjust the threshold proportionally

to the fraction of remaining noise variances, i.e. (τ ′)2 =
∑D′
i=1 σ

2
i∑D

i=1 σ
2
i

τ2, where τ ′ is the adjusted

threshold, D = 128 is the original dimensionality of the descriptor and D′ is the new

dimensionality of the dimensionality reduced descriptor. Figure 5.13 shows results when

we keep only the most dominant 64 coefficients of the transformed descriptor for the case

when τ = 0.195. Using DSC still gives significant performance gains over the baseline

encoding. This suggests that the DSC framework can be successfully used in conjunction

with dimensionality reduction via PCA.

Overall, in retrieving visual correspondences, all our proposed schemes outperform the

baseline approach when a stringent matching criterion is used. Depending on the quanti-

zation used, the DSC scheme achieves a 6% to 30% rate savings over the baseline scheme

with almost the same retrieval performance. Furthermore, the RP and RP-LDPC schemes

respectively use up to 10× and 15× less rate than the baseline scheme. On the other hand,

when a less stringent matching criterion is desired, our experimental results indicate that

the baseline scheme would be the method of choice.

We note here that in comparing the two datasets, “Wall” seems to do better than

“Graf”, probably due to the richer scene texture. However, the relative performances of the

different schemes remain the same. This suggests that regardless of the underlying scene

statistics, the various proposed approaches can be applied successfully.

5.5.3 Effect on homography estimation

While a performance evaluation of visual correspondences retrieval is interesting in its

own right, the retrieved list is typically used for some higher-level computer vision task
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(a) Ccorrect vs rate - Graf (τ = 0.195)

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

400

Rate (bits/descriptor)

N
um

be
r 

of
 c

or
re

ct
 c

or
re

sp
on

de
nc

es

Recall vs rate (wall)

 

 

Baseline
DSC
RP
RP−LDPC

(b) Ccorrect vs rate - Wall (τ = 0.195)
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(c) F1 vs rate - Graf (τ = 0.195)
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Figure 5.13. Rate-Performance tradeoff with dimensionality reduction. We can also apply
the baseline and DSC schemes in conjunction with dimensionality reduction. Here, we keep
only the first 64 coefficients after PCA. The above plots show how the average number of
correctly retrieved correspondences (Ccorrect) varies with rate. The results for “Graf” are
shown in (a) and (c); that of “Wall” are shown in (b) and (d). In (a) and (b), we show
the rate-recall tradeoff, while in (c) and (d), we show the rate-F1 tradeoff. A threshold of
τ = 0.195 is used.
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such as camera calibration. We now briefly consider the performance of various schemes in

homography estimation for two camera views.

The setup is almost the same as above. For each pair of neighboring views, we first find

the list of correspondences between them using each of the methods under consideration.

We then attempt to robustly fit a homography matrix by applying RANSAC4 on the list

of putative correspondences [62]. Using the final list of “good” matches, we first find a

linear minimum mean square error estimate of the homography, followed by a non-linear

optimization of the Sampson distance to arrive at the final estimate [62].

To quantify how good the homography estimate is, one could use the Frobenius norm

of the difference between the estimate and the groundtruth. However, in our preliminary

experiments, we found that it is not always a good indication of the goodness of the ho-

mography estimate. In particular, it does not quite capture how different the mapping of

points between two images is. Instead, we use a measure that is inspired from the compar-

ison of Fundamental matrices [156] and is aimed at capturing the difference between the

homography mappings.

Assume two images, I1 and I2. Denote the groundtruth homography by H and the

estimated homography by Ĥ. The homography is the mapping of points in I1 to points

in I2, i.e. if ~p1 and ~p2 are homogeneous coordinates of corresponding points in I1 and I2

respectively, then ~p2 ∼ H ~p1. The measure between H and Ĥ, dproj(H, Ĥ), is computed as

follows (see Figure 5.14 for an illustration) [156]:

1. Choose a random point p1 in I1.

2. Find the corresponding point p2 in I2 of p1 in I1 based on H. If the point is outside

of the domain of I2, go back to step 1

3. Find the estimated corresponding point p̂2 in I2 of p1 in I1 based on Ĥ and compute

the pixel distance, d2, between p2 and p̂2.

4RANSAC stands for “RANdom SAmple Consensus”, which is an iterative procedure used to robustly
estimate model parameters from a set of observed data that contains outliers [44].
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4. Find the estimated corresponding point p̂1 in I1 of p2 in I2 based on Ĥ and compute

the pixel distance, d1, between p1 and p̂1.

5. Repeat steps 1 to 4 for T times.

6. Compute the measure as the average of the distances (d1 and d2) found above.

Note that the measure has a physical meaning in indicating on average how far apart

mapped points would be using H vs Ĥ. In our experiments, we choose T = 50000.

d1

Image I1 Image I2

p1

p2 ∼ Hp1

p̂1 ∼ Ĥ−1p2

p̂2 ∼ Ĥp1

1

4

3

2

d2

Figure 5.14. Measure of homography difference. A point, p1, is picked at random in
image I1. Its corresponding point, p2 in image I2, is computed according to homography
H. Similarly, its estimated corresponding point, p̂2 in image I2, is computed according to
estimated homography Ĥ. The estimated corresponding point of p2 in image I2, p̂1 in image
I1, is also computed using Ĥ. The distances d1 and d2 are computed between point pairs
(p1, p̂1) and (p2, p̂2) respectively. The measure of homography difference between H and Ĥ
is then computed as the average of distances d1 and d2 over a large number of points.

We measure dproj(H, Ĥ) for all schemes listed in Section 5.5.1. For comparison, we

also use JPEG compression to reduce the rate of images before sending it, where rates are

varied by changing the quality factor of the compression. All schemes use 2000 features

with the highest “corneredness” score to first find visual correspondences before estimating

homography.

Figure 5.15 shows the results when a stringent threshold of τ = 0.195 is used. We see

that both the RP and RP-LDPC schemes achieve smaller projection errors than the other

schemes. In addition, RP-LDPC achieves the same projection errors using a lower rate than

RP. On the other hand, using JPEG, the baseline scheme or the DSC scheme gives similar

homography estimation performance, although at low rates, JPEG does a little worse.

Figure 5.16 shows the results when a threshold of τ = 0.437 is used. In part because
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Figure 5.15. Effect of visual correspondences on homography estimation (using τ = 0.195).
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more correspondences are retrieved, the reprojection errors are on average smaller than

when a more stringent threshold is used. While the JPEG scheme shows significantly worse

performance at very low rates, all other schemes seem to have very similar performance. It

appears that the effectiveness of RANSAC at eliminating outliers has leveled the field for

all the schemes.

5.6 Recapitulation

We have presented two constructive solutions for determining in a distributed fashion

and under severe rate constraints if two normalized real vectors satisfy a given Euclidean

distance criterion. This is an important step in performing camera calibration in a wireless

camera network where communication costs are significant. The transmission of descriptors

instead of compressed images in a distributed setting also prevents redundant computations

since each camera only needs to perform feature extraction for the images that it captures.

While we use a two terminal setup for sake of discussion, both proposed frameworks can be

easily extended to a multiple cameras scenario. Furthermore, they can be generally used

with any combination of feature detector and descriptor.

One approach applies DSC on feature descriptors to determine visual correspondences

between two cameras in a distributed and rate-efficient fashion. Our results are encouraging;

to encode each descriptor, the proposed DSC approach is able to achieve a bit-rate reduction

of 6% to 30%, depending on the target quantization step size used, compared to a baseline

scheme that simply entropy codes the descriptors. To retrieve the same number of correct

correspondences, the proposed DSC scheme also requires less rate than the baseline encoding

scheme.

Another scheme uses binarized random projections to convert the problem into a bi-

nary hypothesis testing problem and then obtain rate savings by applying a linear code to

the computed bits. The rate to use for the code can be easily determined by the desired

Euclidean distance threshold. Our experiments show that in determining visual correspon-

dences, the binarized random projections approach often gives a better rate-performance
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Figure 5.16. Effect of visual correspondences on homography estimation (using τ = 0.437).
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tradeoff than the baseline or DSC scheme. The same also holds when we consider the task

of homography estimation.

Building hashes from binarized random projections has also been used in a video file

synchronization application. Video hashing can be used to first determine which group of

pictures (GOP) are in common between the source and destination videos [154, 155]. For

example, Alice has a video which she gives to Bob who compresses it for storage. Later,

Alice updates her copy of the video and Bob wishes to synchronize his copy. To avoid

sending frames that Bob already has, Alice wishes to know which frames of Bob are within

a target distortion of video frames of her copy — these frames need not be re-transmitted.

Along the lines of the binarized random projections approach, in future work, we would

like to remove the same norm constraints and consider other useful source vector distribu-

tions and distance measures. We have not explored any security properties of our scheme,

but we think that the proposed scheme offers some inherent security, due to the data obfus-

cation performed by both the binarized random projections and the syndrome coding [86].
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Part III

Efficient video analysis for multiple

camera streams
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Chapter 6

Compressed domain video

processing

The use of video cameras has become increasingly common as their costs decrease. In

personal applications, it is common for people to record and store personal videos that

comprise various actions, in part due to the widespread availability of phone cameras and

cheap cameras with video recording capabilities. In security applications, multiple video

cameras record video data across a designated surveillance area. A good example of this is

the large network of surveillance cameras installed in London. Such proliferation of video

data naturally leads to information overload. It would not only be incredibly helpful but

also necessary to be able to perform rudimentary action recognition in order to assist the

users in focusing their attention on actions of interest as well as allowing them to catalog

their recorded videos easily.

In addition, there has been a trend towards instrumenting meeting rooms with multiple

microphones and cameras. Such a setup not only lends itself easily to teleconferencing

applications, but also makes it easy to record meetings for analysis, evaluation and archived

retrieval. It would be desirable to reduce computational complexity in the analysis and

identification of events and trends in meetings so as to reduce processing time for both

on-line applications and batch processing.
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Compressed domain video processing has been developed over the last decade or so

following the advent of compressed video standards like MPEG. However, a survey of this

literature reveals that most work to date focused on (i) synthetic video analysis, such as

video shot detection [150, 139, 89] and text caption extraction [157]; (ii) video indexing,

querying and retrieval [72]; (iii) synthetic video manipulation, such as video resizing [38]

and transcoding applications [135]; and (iv) optical flow estimation [27]. In this part of

the dissertation, we investigate the application of these techniques to new problem domains

such as action recognition and organization and video analysis of meetings.

In the remainder of this chapter, we discuss some of the compressed domain video

features that can be efficiently extracted from compressed videos. This of course relies on

video coding, the background of which we discussed in Chapter 2 (Section 2.1).

6.1 Compressed domain features

Fig. 6.1 shows a preview of the various compressed domain features that can be extracted

cheaply from compressed videos.

(a) Original input frame (b) Motion vectors

(c) Residual coding bit-

rate

(d) Detected skin blocks

Figure 6.1. Example output from compressed domain feature extraction
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6.1.1 DCT coefficients

DCT coefficients are an alternate representation of the actual pixel values in an intra-

encoded block and of the prediction residual in an inter-encoded block. In an intra-encoded

block, the DC term of its DCT represents the average of the block of pixels; these can be

utilized directly to build a spatially sub-sampled version of the frame [139]. However, in

an inter-encoded block, the DC term of its DCT represents the average of the prediction

residual and gives limited information about the actual pixel values. We implement a first-

order approximation approach proposed by Yeo and Liu to build spatially sub-sampled

frames from inter-coded frames, forming a DC image sequence [139]. Suppose that a block

in the current frame overlaps with 4 blocks in the reference frame, S = {a, b, c, d}, as in

Figure 6.2. Let fi, i ∈ S, be the fraction of the block that overlaps with each of the blocks

in S. Furthermore, let Ŷi, i ∈ S, be the reconstructed DC value of each of the blocks, Ŷt

be the DC value of the current block to be reconstructed, and ∆Yt be the DC value of the

prediction residue. Then, Ŷt is estimated as:

Ŷt =

(∑
i∈S

fiŶi

)
+ ∆Yt

This gives reasonable results if the GOP size is kept relatively small (about 9-15).

Figure 6.2. Illustration of how DCT DC terms are updated using motion vectors and
residual. The block to be reconstructed in frame t, shown with a solid fill, is predicted by
a block in frame t− 1, shown with stripes. In general, the predictor overlaps with 4 blocks,
labeled as {a, b, c, d} here. The update is computed by considering the amount of overlap
with each block, with an additional correction term due to the residue.

86



6.1.2 Motion vectors

Motion vectors, shown in Figure 6.1(b), are generated from motion compensation during

video encoding. As explained earlier in Section 2.1 and illustrated in Figure 2.2, for each

source block that is encoded in a predictive fashion, its motion vectors indicate which

predictor block from the reference frame, typically the previous frame in time, is to be

used. Presumably, a predictor block is highly similar to the source block. Therefore, motion

vectors are a good, albeit coarse, approximation of optical flow, which in turn is a proxy for

the underlying motion of objects in the video [27]. However, motion vectors are computed

for the sake of compression and not originally meant for video analysis. Therefore, we would

need to post-process the extracted motion vectors by removing unreliable motion vectors.

We follow the approach outlined by Coimbra and Davies [27] for computing a coarse

estimate and a confidence map of the optical flow. To generate the optical flow estimate,

we use the following rules [27]:

1. Motion vectors are normalized by the temporal distance of the predicted frame to the

reference frame, and their directions are reversed if the motion vectors are forward-

referencing.

2. Macroblocks with no motion vector information (e.g. macroblocks in I-frames and

intra-coded macroblocks) retain the same optical flow estimate as in the previous

temporal frame.

3. Macroblocks with more than one motion vector (e.g. bi-directionally predicted mac-

roblocks in B-frames) take as the estimate a weighted average of the motion vectors,

where the weights are determined by their temporal distance to the respective refer-

ence frames.

It has been recognized that optical flow estimation performance at each image location

depends on the amount of texture in its local neighborhood [12]. In particular, if the local

neighborhood suffers from the aperture problem, then it is likely to have an unreliable

optical flow estimate. By thresholding a confidence measure derived from the DCT AC
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coefficients that measures the amount of texture in the block [27], we can filter out optical

flow estimates that are likely to be unreliable. To compute the confidence measure for

intra-coded blocks, we use [27]:

λ = F (0, 1)2 + F (1, 0)2 (6.1)

where λ is the confidence measure, and F (u, v) is the 2D DCT of the block of pixel luminance

values, f(x, y). Coimbra and Davies have shown that F (1, 0) and F (0, 1) can be interpreted

as a weighted average of spatial gradient in the x and y direction respectively [27]. For

predicted macroblocks, we update the confidence map by taking a weighted average of the

confidence map in the reference frame(s) as indicated by motion vector information; this is

similar to how DC images are formed as described in Section 6.1.1.

By thresholding λ, we then decide whether to keep the optical flow estimate for the

block or to set it to zero.

6.1.3 Residual coding bit-rate

We also investigate an additional feature: residual coding bit-rate. This is the number of

bits used to encode the block residual following motion compensation at the video encoder.

While the motion vector captures gross block translation, it often fails to fully account for

non-rigid motion such as lips moving. On the other hand, the residual coding bit-rate is

able to capture the level of such motion, because a temporal change that is not well-modeled

by the block translational model will result in a residual with higher energy, which in turn

requires a larger number of bits when entropy coded. Hence, this is complementary to the

extracted motion vectors.

6.1.4 Skin-color blocks

By putting together some of the above compressed-domain features, we can then imple-

ment block-level skin detection. The knowledge of skin-color blocks will allow us to consider

activity levels of the face and hands in analysis of meetings, and ignore background clut-

ter such as the motion of clothing. To do this, we implement a Gaussian Mixture Model
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(GMM) based skin-color block detector [88] that can detect head and hand regions. This

works in the compressed domain with chrominance DCT DC coefficients and motion vector

information and produces detected skin-color blocks such as in Figure 6.1(d).

We use a GMM to model the distribution of chrominance coefficients [88] in the YUV

colorspace. Specifically, we model the chrominance coefficients, (U, V ), as a mixture of

gaussians, where each gaussian component is assumed to have a diagonal covariance matrix.

In other words, the probability density function (PDF) is given by:

pU,V |skin(u, v|skin) =
K∑
k=1

1
2πσU,kσV,k

exp

(
−1

2

[
(u− µU,k)2

σ2
U,k

+
(v − µV,k)2

σ2
V,k

])

where K is the number of gaussian components, and (µU,k, µV,k) and

 σ2
U,k 0

0 σ2
V,k

 are

respectively the mean vector and covariance matrix of the kth gaussian component. We

then learn the parameters by applying Expectation Maximization [31] (EM) on a set of

training face images. In our implementation, we chose K = 5.

In the Intra-frames, we compute the likelihood of observed chrominance DCT DC co-

efficients according to the trained GMM and threshold it to determine skin-color blocks.

Specifically, when (u, v) are the actual chrominance DCT DC coefficients of a block, the

block is declared to be a skin-color block if for some pre-determined threshold τ :

pU,V |skin(u, v|skin) > τ (6.2)

Since MPEG-4 uses a YUV colorspace for encoding, there is no need for any additional steps

to perform color-space conversion. Furthermore, because the chrominance DCT coefficients

are quantized during video compression, we can use a look-up table (LUT) approach to

increase computational efficiency.

Skin blocks in the Inter-frames are inferred by using motion vector information to prop-

agate skin-color blocks through the duration of the GOP. This is similar to an approach

for object tracking in the compressed domain [41]. However, in the presence of long GOPs,

accumulated errors could lead to large areas of the frame being falsely detected as skin-

color blocks. To prevent this, we add an additional verification step, performed in the pixel
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domain, to remove blocks that are erroneously tagged as skin-color blocks. This is done by

thresholding the number of pixels in the block that are classified as having skin-color, using

the same criterion as in (6.2). Note that this verification step only has to be done if a block

is suspected to have skin-color.

We can also apply the GMM model to chrominance DCT DC coefficients estimated

using the method described in Section 6.1.1. However, as discussed earlier, the recovered

DCT DC coefficients of predictively-coded blocks are fairly accurate only when the GOP

size is small. For compressed videos with much larger GOP size, the method just described

gives much better performance.
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Chapter 7

Activity recognition and

organization

In this chapter, we present a compressed domain scheme that is able to recognize and

localize actions at high speeds. We formulate the problem of action recognition and local-

ization as follows: given a query video sequence of a particular action, we would like to

detect all occurrences of it in a test video, thereby recognizing an action as taking place at

some specific time and location in the video. The approach should be person independent,

so we want our method to be appearance invariant. In a surveillance setting, it is critical to

be able to respond to events as they happen. Even in a consumer application, it is desirable

to minimize processing time. Therefore, we want a solution that is fast so it can operate in

real-time.

Any practical system that records and stores digital video is likely to employ video

compression such as H.263+ [28] or H.264 [136]. It has long been recognized that some of

the video processing for compression can be reused in video analysis or transcoding; this

has been an area of active research (see for example [20, 135]) in the last decade or so. Our

approach exploits this insight to attain a speed advantage.

It is reasonable to assume that a surveillance application would consist of a front-end

system that records, compresses, stores and transmits videos, as well as a back-end system
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that processes the transmitted video to accomplish various tasks. One focus in this paper

is on the action recognition task that would presumably be performed at the back-end.

However, we recognize that various engineering choices, such as the choice of video coding

method, made at the front-end can have an impact on the action recognition performance in

the back-end. In particular, we would like to understand how various video coding choices

impact the action recognition performance of our approach.

The work presented in this chapter is joint work with Parvez Ahammad, Kannan Ram-

chandran and S Shankar Sastry, and has been presented in part in [143, 144, 3].

7.1 Related work

There has been much prior work in human action recognition; an excellent review of such

methods has been presented by Aggarwal and Cai [2]. We are interested in approaches that

work on video without relying on capturing or labeling body landmark points (see [152, 101]

for recent examples of the latter approach). Efros et al. [40] require the extraction of a sta-

bilized image sequence before using a rectified optical flow based normalized correlation

measure for measuring similarity. This stabilization step required by [40] is a very challeng-

ing pre-processing step and affects the end result significantly. Shechtman and Irani [117]

exhaustively test motion-consistency between small space-time (ST) image intensity patches

to compute a correlation measure between a query video and a test video. While their

method is highly computationally intensive, they are able to detect multiple actions (sim-

ilar or different) in the test video and also perform localization in both space and time.

Ke et al. [71] also use an image intensity based approach, but apply a trained cascade of

classifiers to ST volumetric features computed from image intensity. Schüldt et al. [114]

propose an approach based on local ST features [75] in which Support Vector Machines

(SVM) are used to classify actions in a large database of action videos that they collected.

Dollar et al. [35] adopt a similar approach, but introduce a different spatio-temporal feature

detector which they claim can find more feature points.

There has also been prior work in performing action recognition in the compressed do-
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main. Ozer et al. [100] applied Principal Component Analysis (PCA) on motion vectors

from segmented body parts for dimensionality reduction before classification. They require

that the sequences must have a fixed number of frames and be temporally aligned. Babu

et al. [10] trained a Hidden Markov Model (HMM) to classify each action, where the emis-

sion is a codeword based on the histogram of motion vector components of the whole frame.

In later work [11], they extracted Motion History Image (MHI) and Motion Flow History

(MFH) [30] from compressed domain features, before computing global measures for classi-

fication. In [10, 11], the use of global features precludes the possibility of localizing actions

with these compressed domain methods.

7.2 Contributions

Our proposed method makes use of motion vector information to capture the salient

features of actions which are appearance invariant. It then computes frame-to-frame mo-

tion similarity with a novel measure that takes into account differences in both orientation

and magnitude of motion vectors. The scores for each space-time candidate are then ag-

gregated over time using a method similar to [40]. Our approach is able to localize actions

in space and time by checking all possible ST candidates, much like in [117], except that

it is more computationally tractable since the search space is greatly reduced from the use

of compressed domain features. Our innovation lies in the ability of the proposed method

to perform real-time localization of actions in space and time using a novel combination of

signal processing and computer vision techniques. This approach requires no prior segmen-

tation, no temporal or spatial alignment (unlike [40, 100]) and minimal training. Unlike in

[40, 114, 71, 35], we also do not need to compute features explicitly; features are readily avail-

able in the compressed video data. We have to emphasize the fact that our action similarity

computation is much faster than methods such as in [117], making possible applications

such as content-based video organization for large-scale video databases (see Section 7.6).

We also study how various encoding options affect the performance of our proposed

approach. This aspect is often overlooked in most other compressed domain video analysis
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work, in which results are typically presented only on a single choice of encoding param-

eters. However, we recognize that different encoding options not only affect compression

performance but also influence the performance of compressed domain processing. Hence,

in this work, we undertake a systematic investigation to determine the trade-offs between

compression performance and classification performance. This would be useful in under-

standing how best to choose encoding options to strike a good balance between compression

and classification, and between speed and accuracy.

The rest of the chapter is organized as follows. Section 7.3 outlines our proposed method

and describes each step in detail. The experimental setup and results are discussed in

Section 7.4, and we discuss the effects of different video encoding options in Section 7.5.

We show in Section 7.6 how the action similarity measure that is introduced can be used

in the application of organizing activity videos. We then present concluding remarks in

Section 7.7.

7.3 Approach

Given a query video template and a test video sequence, we propose a compressed do-

main procedure to compute a score for how confident we are that the action presented in the

query video template is happening at each space-time location (to the nearest macroblock

and frame) in the test video. Our working assumption is that similar actions will induce

similar motion fields.

The steps of the algorithm are summarized in the flow chart shown in Figure 7.1. We

will elaborate on each of these steps in the following subsections.

7.3.1 Notation

In this chapter, Xp denotes a video, with p ∈ {test, query} referring to either the test

video or query video. Each video Xp has T p frames, with each frame containing Np ×Mp

macroblocks. We assume that an action induces a motion field that can be observed as
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Figure 7.1. Flow chart of action recognition and localization method. Optical flow in the
query and test videos are first estimated from motion vector information. Next, frame-
to-frame motion similarity is computed between all frames of the query and test videos.
The motion similarities are then aggregated over a series of frames to enforce temporal
consistency. To localize, these steps are repeated over all possible space-time locations.
If an overall similarity score between the query and test videos is desired, a final step is
performed with the confidence scores.

a spatio-temporal pattern; let ~V p be the spatio-temporal pattern (motion field) associated

with video Xp. Furthermore, ~V p
n,m(i) = [V p,u

n,m(i) V p,v
n,m(i)] denotes the motion vector at

location (n,m) in frame i of Xp. We will use (u)+ as a shorthand for max(0,u).

7.3.2 Estimation of coarse optical flow

We use the method described in Section 6.1.2 of Chapter 6 to obtain ~V p from the encoded

motion vectors in the compressed video. In particular, we also threshold the confidence

measure, which is given by Equation (6.1), of the optical flow estimate for each macroblock

to decide whether to keep it or to set it to zero. In our experiments, we use a threshold of
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4096. As we will show later in Section 7.4.2, this thresholding removes unreliable estimates

and greatly improves the classification performance of our proposed algorithm.

7.3.3 Computation of frame-to-frame motion similarity

For the purpose of discussion in this section, both the test frame and query frame are

assumed to have a spatial dimension of N ×M macroblocks (the equal size restriction will

be lifted later). We would like to measure the motion similarity between the motion field

of the ith test frame, ~V test
n,m (i), and that of jth query frame, ~V query

n,m (j).

One way of measuring similarity is to follow the approach taken by Efros et al. [40]. Each

motion field is first split into non-negative motion channels, e.g. (V p,u
n,m(i))+, (−V p,u

n,m(i))+,

(V p,v
n,m(i))+ and (−V p,v

n,m(i))+ using the notation described in Section 7.3.1. We can then

vectorize these channels and stack them into a single vector ~Up(i). The similarity between

frame i of the test frame and frame j of the query frame, S̃(i, j), is then computed as a

normalized correlation:

S̃(i, j) =
〈~U test(i), ~Uquery(j)〉
‖~U test(i)‖‖~Uquery(j)‖

(7.1)

We will refer to this similarity measure as Non-negative Channels Normalized Correlation

(NCNC).

NCNC does not take into account the differences in magnitudes of individual motion

vectors. To address this, we propose a novel measure of similarity:

S̃(i, j) =
1

Z(i, j)

N∑
n=1

M∑
m=1

d(~V test
n,m (i), ~V query

n,m (j)) (7.2)

where if ‖ ~V1‖ > 0 and ‖ ~V2‖ > 0,

d( ~V1, ~V2) =

(
〈 ~V1, ~V2〉

)
+

‖ ~V1‖‖ ~V2‖
·min

(
‖ ~V1‖
‖ ~V2‖

,
‖~V2‖
‖~V1‖

)
(7.3)

=

(
〈 ~V1, ~V2〉

)
+

max
(
‖~V2‖2, ‖~V1‖2

)
and d( ~V1, ~V2) = 0 otherwise. In line (7.3), the first and second terms measure the similarity

in direction and magnitude of corresponding motion vectors respectively. The normalizing
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factor, Z(i, j), in Equation (7.2) is:

Z(i, j) =
N∑
n=1

M∑
m=1

I[‖~V test
n,m (i)‖ > 0 or ‖~V query

n,m (j)‖ > 0]

In other words, we want to ignore macroblocks in both the query and test video which

agree on having no motion. This has the effect of not penalizing corresponding zero-motion

regions in both the query and test video. We term this novel measure Non-Zero Motion

block Similarity (NZMS).

7.3.4 Aggregation of frame-to-frame similarities

Section 7.3.3 describes how to compute S̃(i, j), which tells us how similar the motion

fields of frame i of the test frame and frame j of the query frame are. To take temporal

dependencies into account, we need to perform an aggregation step. We do this by convolv-

ing S̃(i, j) with a T × T filter parametrized by α, Hα(i, j), to get an aggregated similarity

matrix S(i, j) = (S̃ ∗Hα)(i, j) [40]. S(i, j) tells us how similar a T -length sequence centered

at frame i of the test video is to a T -length sequence centered at frame j of the query video.

Hα(i, j) can be interpreted as a bandpass filter that “passes” actions in the test video that

occur at approximately the same rate as in the query video. We use the following filter [40]:

Hα(i, j) =
∑
r∈R

e−α(r−1) (χ(i, rj) + χ(j, ri)) for − T/2 ≤ i, j ≤ T/2

where

χ(u, v) =


1 if u = sign(v) · b|v|c

0 otherwise

R is the set of rates (which has to be greater than one) to allow for and α (α ≥ 1) allows

us to control how tolerant we are to slight differences in rates; the higher α is, the less

tolerant it is to changes in the rates of actions. Figure 7.2(a) shows this kernel graphically

for α = 2.0.

Figure 7.2(b) shows a pre-aggregation similarity matrix, S̃(i, j). Note the presence of

near-diagonal bands, which is a clear indication that the queried action is taking place in
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(a) (b)

(c)

Figure 7.2. An example similarity matrix and the effects of applying aggregation. In these
graphical representations, bright areas indicate a high value. (a) Aggregation kernel, (b)
Similarity matrix before aggregation, (c) Similarity matrix after aggregation. Notice that
the aggregated similarity matrix is less noisy than the original similarity matrix.
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those frames. Figure 7.2(c) shows the post-aggregation similarity matrix, S(i, j), which has

much smoother diagonal bands.

We will show later in Section 7.4.3 that this aggregation step is crucial in performing

action classification. However, the choice of α is not that important; experimental results

show that performance is relatively stable over a range of α.

7.3.5 Space-time localization

Sections 7.3.3 and 7.3.4 tell us how to compute an aggregated similarity between each

frame of a T test-frames test sequence and each frame of a T query-frames query sequence,

both of which are N ×M macroblocks in spatial dimensions. To compute an overall score

on how confident we are that frame i of the test frame is from the query sequence, we use:

C(i) = max
max(i−T

2
,1)≤k≤min(i+T

2
,T test)

1≤j≤T query

S(k, j) (7.4)

Maximizing S(k, j) over j of the query video allows us to pick up the best response that a

particular frame of the test video has to the corresponding frame in the query video. We

also maximize S(k, j) over k in a T -length temporal window centered at i. The rationale

is that if a T -length sequence centered at frame k of the test video matches well with the

query video, then all frames in that T -length sequence should also have at least the same

score.

The above steps can be easily extended to the case where the test video and query

video do not have the same spatial dimensions. In that case, as proposed by Shechtman

and Irani [117], we simply slide the query video template over all possible spatial-temporal

locations (illustrated in Figure 7.3), and compute a score for each space-time location using

Equation (7.4). This results in a action confidence volume, C(n,m, i), which represents the

score for the (n,m) location of the ith frame of the test video. A high value of C(n,m, i)

can then be interpreted as the query action being likely to be occurring at spatial location

(n,m) in the ith frame.
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Figure 7.3. Illustration of space-time localization. The query video space-time patch is
shifted over the entire space-time volume of the input video, and the similarity, C(n,m, i)
is computed for each space-time location.

While this exhaustive search seems to be computationally intensive, operating in the

compressed domain allows for a real-time implementation.

7.3.6 Video action similarity score

Given C(n,m, i), we can compute a non-symmetric similarity, ρ(Xtest, Xquery), of the

test video to the query video by using:

ρ(Xtest, Xquery) =
1
L

Ttest∑
i=1

η(i)
(

max
n,m

C(n,m, i)
)

(7.5)

where the normalization factor L is given by:

L =
Ttest∑
i=1

η(i)

and η(i) is an indicator function which returns one if at least T frames in the (2T + 1)-

length temporal neighborhood centered at frame i have significant motion and returns zero

otherwise:

η(i) = I

 i+T∑
j=i−T

I [Q(j) ≥ δ] ≥ T


and the fraction of significant motion vectors in frame j, Q(j), is given by:

Q(j) =

∑Ntest−1
n=0

∑Mtest−1
m=0 I

[
‖~V test

n,m (j)‖ > ε
]

N test ·M test
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Figure 7.4. Snap-shot of frames from action videos in database [114]. From left to right:
boxing, handclapping, handwaving, running, jogging, walking. From top to bottom: out-
doors environment, outdoors with different clothing environment, indoors environment. The
subjects performing each action is the same across the different environments.

A frame is asserted to have significant motion if at least δ proportion of the macroblocks

have reliable motion vectors (reliable in the sense defined in Section 7.3.2) of magnitude

greater than ε, i.e. Q(j) ≥ δ.

7.4 Experimental results

We evaluate our proposed algorithm on a comprehensive database compiled by Schüldt

et al. [114]1. As illustrated in Figure 7.4, their database captures 6 different actions (boxing,

handclapping, handwaving, running, jogging and walking), performed by 25 people, over

4 different environments (outdoors, outdoors with scale variations, outdoors with different

clothes and indoors). Since our system was not designed to handle scale-varying actions,

we considered only the three environments that do not have significant scale variations.

To evaluate performance, we perform a leave-one-out full-fold cross-validation within

each environment, i.e. to classify each video in the dataset, we use the remaining videos

that are not of the same human subject as the training set. This will improve the statistical

significance of our results given the limited number of videos in the dataset. To perform
1Available for download at http://www.nada.kth.se/cvap/actions/
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classification, we simply use Nearest Neighbor Classification (NNC) by evaluating the video

action similarity score (see Section 7.3.6) with each of the videos in the training set.

In our experiments, we used δ = 1
30 , ε = 0.5 pels/frame, α = 2.0 and T = 17. For

comparison, we also tested both NCNC (Equation (7.1)) and NZMS (Equation (7.2)) when

computing frame-to-frame motion similarity.

7.4.1 Classification performance

The action classification confusion matrix for our algorithm when using NZMS is shown

in Table 7.1, while that using NCNC [40] is shown in Table 7.2. Each entry of the matrix

gives the fraction of videos of the action corresponding to its row that were classified as an

action corresponding to the column. Using the proposed NZMS, our overall percentage of

correct classification is 90%. As a comparison against state-of-the-art methods that work

in the pixel domain, we note here for reference that Schüldt et al. [114], Dollar et al. [35]

and Ke et al. [71] report classification accuracies of 72%, 81% and 63% respectively on the

same dataset. While the methodology and classification methods used in these works differ,

our results compare very favorably, even though we use compressed domain features and a

very simple classifier.

Table 7.1. Confusion matrix using NZMS

Box Hc Hw Run Jog Walk
Boxing 0.86 0.07 0.05 0.00 0.00 0.01

Handclapping 0.03 0.89 0.08 0.00 0.00 0.00
Handwaving 0.00 0.04 0.96 0.00 0.00 0.00

Running 0.00 0.00 0.00 0.79 0.21 0.00
Jogging 0.00 0.00 0.00 0.01 0.97 0.01
Walking 0.00 0.00 0.00 0.00 0.07 0.93

Looking at the confusion matrices, we see that our proposed NZMS measure vastly

outperforms NCNC. This is due to the fact that our measure looks at each corresponding

pair of macroblocks separately instead of looking across all of them. NZMS also considers
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Table 7.2. Confusion matrix using normalized correlation [40]

Box Hc Hw Run Jog Walk
Boxing 0.86 0.00 0.01 0.00 0.00 0.12

Handclapping 0.43 0.32 0.24 0.00 0.00 0.00
Handwaving 0.01 0.01 0.97 0.00 0.00 0.00

Running 0.00 0.00 0.00 0.97 0.03 0.00
Jogging 0.00 0.00 0.00 0.21 0.79 0.00
Walking 0.00 0.00 0.00 0.00 0.61 0.39

both differences in motion vector orientations and norms, and ignores matching zero-motion

macroblocks.

Using NZMS, most of the confusion is between “Running” and “Jogging”, with a sig-

nificant proportion of “Jogging” videos being erroneously classified as “Running”. Looking

at the actual videos visually, we found it hard to distinguish between some “Running” and

“Jogging” actions. In fact, there are certain cases where the speed of one subject in a

“Jogging” video is faster than the speed of another subject in a “Running” video.

7.4.2 Performance gain from thresholding optical flow confidence map

Table 7.3 shows the effects of thresholding on action classification performance using

our proposed approach. By removing noisy estimates of the optical flow, we are able to

achieve a 10% gain in classification performance when using NZMS as the motion similarity

measure.

Table 7.3. Classification performance with and without thresholding confidence map

Method
With

thresholding
Without

thresholding
NZMS 90.0% 81.2%
NCNC 71.7% 72.5%
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7.4.3 Effect of α variation on classification performance

To understand the effect of α on classification, we ran an experiment using NZMS

with varying values of α. Table 7.4 shows the results of this experiment. We see that the

classification performance is relatively stable over a range of α. More importantly, it is also

clear that the aggregation step described in Section 7.3.4 is critical for action classification.

Table 7.4. Classification performance with varying α
α Classification performance

1.0 88.2%
2.0 90.0%
3.0 91.0%
4.0 90.8%

No aggregation 62.5%

7.4.4 Localization performance

Unlike most other methods, with the notable exception of [117, 71], we are able to lo-

calize an action in space and time as well as detect multiple and simultaneous occurring

activities in the test video. Figure 7.5 shows an example (the “beach” test sequence and

walking query sequence from Shechtman and Irani [117]) which demonstrates our algo-

rithm’s ability to detect multiple people walking in the test video. We emphasize that we

only use a single template video of a person walking to localize walking actions in the test

video. Since our algorithm is not appearance based, there is no problem with using a query

video of one person on a test video containing other people.

In the test sequence, there are both static background clutter, such as people sitting and

standing on the beach, and dynamic background clutter, such as sea waves and a fluttering

umbrella. This background is very different from that in the query sequence. Since the

spatio-temporal motion field of background motion such as sea waves is different from that

of walking, it is not picked up by our algorithm. No special handling of the background

motion is necessary.
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(a)

(b) (c)

(d) (e)

Figure 7.5. Action localization results. The highlighting in (d) and (e) denotes detection
responses, with bright areas indicating high responses. (a) A frame from the query video,
(b) An input video frame with one person walking, (c) An input video frame with two
people walking, (d) Detection of one person walking, (e) Detection of two people walking.

7.4.5 Computational costs

On a Pentium-4 2.6 GHz machine with 1 GB of RAM, it took just under 11 seconds

to process a test video of 368 × 184 pixels with 835 frames on a query video that is of

80 × 64 pixels with 23 frames. We extrapolated the timing reported in [117] to this case;

it would have taken about 11 hours. If their multi-grid search was adopted, it would still

have taken about 22 minutes. Our method is able to perform the localization, albeit with a

coarser spatial resolution, up to 3 orders of magnitude faster. On the database compiled in

[114], each video has a spatial resolution of 160 × 120 pixels, and has an average of about

480 frames. For each environment, we would need to perform 22500 cross-comparisons.

Yet, each run took an average of about 8 hours. In contrast, [117] would have taken an

extrapolated run time of 3 years.
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7.5 Effects of video encoding options

In the experiments described in the previous section, we have used input video com-

pressed with MPEG [53], with a group-of-pictures (GOP) size of 15 frames, and a GOP

structure of I-B-B-P-B-B-, where ‘I’ refers to an Intra-frame, ‘P’ refers to a Predicted-frame,

and ‘B’ refers to a Bi-directionally predicted-frame. It would be interesting to see if there is

any discernible difference when different encoding options, such as GOP size, GOP struc-

ture and the use of half-pel or quarter-pel motion estimation, are used. In addition, while

MPEG uses 16×16 pixels macroblock as the basis of motion compensation, newer encoding

standards such as H.263+ and H.264 allow the use of smaller block sizes [28, 136].

These experiments would be useful for a systems engineer in choosing a video encoder

and its encoding options. While storage space and video quality are important considera-

tions, it would be helpful to know if sacrificing a little compression performance would yield

large performance gains in surveillance tasks such as action detection.

In the experiments below, we have used the publicly available “FFMPEG” video en-

coder2. When applicable, we will describe the encoder options and specify the actual flags

used with FFMPEG in parentheses. Unless otherwise mentioned, the encoding options used

are that the MPEG-4 video codec is used (“-vcodec mpeg4”), the output video is of similar

quality to the input video (“-sameq”), and the “AVI” container format is used.

7.5.1 GOP size and structure

We first look at how varying GOP size and structure affects classification performance.

We consider two commonly used GOP structure, I-B-B-P-B-B- (“-bf 2”) and I-P-P-P-P-P-.

We also look at a variety of GOP sizes {9, 12, 15, 18, 30, 60, 120, 240} (“-g [GOP size]”). By

looking at how classification performance varies with compression performance, we can get

an idea of what trade-offs are possible by varying GOP parameters when performing video

encoding. In these experiments, the output video quality is kept relatively similar over all

GOP size and structure.
2Available at http://ffmpeg.mplayerhq.hu/
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Figure 7.6. Effect of varying GOP size on classification performance and compression per-
formance. In general, increasing GOP size results in decreasing classification performance.
Also, having no B frames in the GOP structure offers a better compression-classification
trade-off. The fairly constant performance of the scheme using I-P-P-P-... with no texture
propagation error indicates that the main source of performance degradation with increasing
GOP size is due to propagation errors in computing block texture.

It should be expected, and is in fact the case, that the larger the GOP size, the smaller

the compressed videos, since predicted frames such as P and B frames can be more efficiently

compressed than I frames. The results in Figure 7.6 further shows that in general, increasing

GOP size also results in decreasing classification performance. This could be due to the

fact that the update of the confidence measure computed as in Section 7.3.2 suffers from

error propagation with each P frame. To test out this hypothesis, we also ran experiments

where the confidence measure is computed from the DCT of the actual decoded frame pixels

instead. Looking at the curve for the I-P-P-P-... GOP structure with no texture propagation

error, we see that the classification accuracy is indeed fairly constant over a wide range of

GOP sizes. This confirms that the main source of performance degradation with increasing

GOP size is due to the propagation errors in computing the confidence measure.

Figure 7.6 also shows that for the most part, the I-P-P-P-... GOP structure offers

a better classification-compression trade-off than the I-B-B-P... GOP structure. There

are two possible reasons for this. First, because of the complexity of articulated motion,

B-frames are unable to provide any substantial compression gains over P-frames, while
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suffering from overhead. Hence, the I-B-B-P-... structure, for the same GOP size, actually

performs worse in terms of compression performance. Second, the I-B-B-P-... structure

introduces inaccuracy into the optical flow estimation process. The P frames are spaced 3

frames apart, and hence its estimated motion is actually over 3 temporal frames and not

over 1 frame.

The experiments in this section seem to suggest that if action classification is an im-

portant factor in determining encoding options, then no B frames should be used in the

encoding. This also has other advantages such as simpler encoders and decoders requir-

ing less frame buffer memory. Further, if we used the confidence measure as computed by

Equation 6.1 in Section 6.1.2, the GOP size should not be too large. A GOP size of 12, 15

or 18 seems to offer a good balance between compression and action classification. There

might also be other factors in determining GOP size however, such as ease of random access

and error resilience.

7.5.2 Quarter-pel accuracy motion estimation

In MPEG, motion estimation was carried out to half-pel accuracy. It was found that

better motion compensation is possible with a further increase in accuracy to quarter-

pel [136, 134]. This motivates us to investigate if an increase in motion estimation accuracy

(“-qpel 1”) would also translate into better action classification performance.

Figure 7.7 shows that using quarter-pel accuracy in motion estimation does not actually

improve the classification-compression trade-off. There are two main reasons for this. First,

we observe that on this set of action videos, for the same GOP size, using quarter-pel accu-

racy actually performs worse than half-pel accuracy in terms of compression performance.

This could be due to the storage overhead of motion vectors with increased accuracy. Sec-

ond, quarter-pel accuracy does not translate into better action classification performance.
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Figure 7.7. Effect of quarter-pel accuracy motion estimation on classification perfor-
mance and compression performance. There seems to be no significant improvement in
the compression-classification trade-off by using motion estimation with quarter-pel accu-
racy instead of half-pel accuracy.

7.5.3 Block size in motion compensation

As mentioned earlier, newer encoding standards have the option of allowing smaller

block sizes to be used in motion compensation [28, 136]. We compare the effect of forcing

smaller blocks in motion compensation (“-mv4 1”) on both action classification performance

and compression performance. In this set of experiments, we used a GOP structure of I-B-

B-P-...

Figure 7.8 shows that using smaller blocks in motion compensation does result in a

better performance vs compression trade-off. Smaller blocks allows for a more refined

motion compensation and prediction, hence resulting in better compression performance.

At the same time, with higher resolution motion vectors, action classification performance

also improves. Of course, while using smaller blocks for motion compensation improves the

trade-off, it has to be weighted by the increase in computation time. In our experiments,

increasing the motion estimation resolution by 2 in each dimension resulted in about 5 times

increase in run-time.
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Figure 7.8. Effect of using different block sizes in motion compensation on classification
performance and compression performance. Using a smaller block size results in a better
compression-classification trade-off, but this has to be weighed against the resulting increase
in computational time.

7.6 Organization of activity videos

So far, we have only considered measuring similarities between activity videos using

Equation (7.5). However, this notion of action similarity induces a perceptual hierarchy on

a collection of videos (see Figure 7.9 for example). A system that can efficiently generate

such a hierarchy of the videos based on action similarity would be very useful in facilitating

efficient navigation of the database thus improving its utility. Building such a system is very

challenging if we consider videos containing actions of articulated structures like humans

and animals moving in the visual scenes. It is preferable to assume no metadata (e.g. labels),

no segmentation and no prior alignment for the video collections.

Specifically, given a set of videos and a user-defined space-time scale of actions, we would

like the system to: (a) automatically and efficiently organize the videos into a hierarchy

based on action similarity; (b) estimate clusters; and (c) select one representative exemplar

for each cluster.

There has been some prior works on organizing large databases of videos using tech-

niques that operate directly on compressed domain features to offer a significant speed-up

in processing time. Chang et al. assume that objects can be segmented and tracked easily
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Figure 7.9. A qualitative example of an action hierarchy for the activity video collection ΦX ,
with associated exemplars for the subtree under each node, shown up to 6 clusters. This
was generated using our proposed approach with NCNC as the action similarity measure
and Ward linkage as the neighbor-joining criterion. The 6 clusters from left to right: Jog-
ging, Walking, Running, Boxing, Handclapping, Handwaving. See Section 7.6.2 for further
discussion.

in order to compute features [21]. Some approaches segment a single video into shots and

organize neighboring shots into a hierarchy for browsing the video but they do not build

action based hierarchies across a large collection of videos [151, 97]. Dimitrova et al. make

use of motion vectors to estimate object trajectories and then use the estimated object

trajectories to reason about actions [33].

7.6.1 Method

Let ΦX
.= {Xp}Pp=1 be the given set of videos, where P ∈ Z+ is the cardinality of the

set, and let Ñ × M̃ × T̃ be the user-specified space-time scale of interest. Each video Xp

has an action label yp ∈ {1, ..,K}, where K is the number of actions in the collection.

Reusing the notation described in Section 7.3.1, Xp is a video with T p frames, with each

frame containing Np ×Mp macroblocks. ~V p is the spatio-temporal pattern (motion field)

associated with video Xp. We again assume that an action induces a motion field that can

be observed as a spatio-temporal pattern.

Figure 7.10 shows the flow of our algorithm for organizing the videos (ΦX) with minimal

user input. Using the similarity scores computed using Equation (7.5), we compute the pair-
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Figure 7.10. Data flow for our proposed approach. Given a set of videos ΦX and a
user-defined space-time scale for actions, we compute pair-wise action similarity scores
between all pairs of videos, and then convert them to symmetric action distances, Dsim.
We use Dsim in hierarchical agglomerative clustering to produce a dendrogram, which is
a binary hierarchical tree representing the videos, and the pair-wise cophenetic distances
Dcoph, which are distances computed from the constructed dendrogram. The cophenetic
correlation coefficient, Θ, is the correlation coefficient between Dsim and Dcoph, and can be
used to evaluate the goodness of the hierarchy.

wise symmetric action distances for videos Xp and Xq as follows:

Dsim(Xp, Xq) =
1

max
(

1
2 (ρ(Xp, Xq) + ρ(Xq, Xp)) , β

) (7.6)

where β represents the smallest value of ρ(., .) admissible. In our experiments, we choose

β = 0.01.

We then apply hierarchical agglomerative clustering (HAC) [133] to construct a binary

tree (also called dendrogram) containing all the elements of ΦX as leaf nodes. Divisive

methods (e.g. K-means, K-medoids) for constructing dendrogram are usually sensitive to

initialization [133]. To address this sensitivity with divisive methods, typically one needs to

perform many randomly initialized trials in order to obtain a good clustering solution, thus
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resulting in loss of computational efficiency. In contrast, HAC constructs the dendrogram in

a sequential and deterministic fashion using a neighbor-joining (also called linkage) criterion.

We use four different linkage criteria in our experiments:

• Single linkage. This method uses minimum distance between the clusters as the

merging criterion, where distance between clusters is defined as the distance between

closest pair of elements(one element drawn from each cluster) [60]. Pairs consisting of

one element from each cluster are used in the calculation. The first cluster is formed

by merging the two groups with the shortest distance. Then the next smallest distance

is found between all of the clusters. The two clusters corresponding to the smallest

distance are then merged.

• Complete linkage. The merging process for this method is similar to single linkage,

but the merging criterion is different: the distance between clusters is defined as

the distance between most distant pair of elements(one element drawn from each

cluster) [60].

• Average linkage. The merging process for this method is similar to single or com-

plete linkage, but the merging criterion is the average distance between all pairs, where

one element of the pair comes from each cluster [60].

• Ward’s linkage. The distance between two clusters in this method is defined as the

incremental sum of the squares between two clusters [60].

The user defines a stopping condition for the agglomeration, Lstop, which is the farthest

allowable merging distance between clusters. Lstop is used to cut the dendrogram at an

appropriate level and obtain the clusters. After computing the matrix of pair-wise action

distances Dsim ∈ RP×P as described in Equation (7.6), we apply HAC to obtain the hier-

archy. The cophenetic distance between videos Xp and Xq, Dcoph(Xp, Xq), is their linkage

distance when first merged into the same cluster in the HAC procedure [133].
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7.6.2 Results

We use the same dataset shown in Figure 7.4 [114] to perform our evaluations. From

each action video, we create a query video by cropping out a space-time volume in an

automatic fashion. Since automatic determination of space-time scale is very hard, we let

the user specify the size of an approximate space-time bounding box, Ñ × M̃ macroblocks

by T̃ frames, for the entire collection of videos. This implicitly constrains the system to

consider actions of approximately similar space-time scale. The system then looks in each

action video for a M̃×Ñ×T̃ space-time volume that contains the most number of significant

motion vectors, where ~V is significant if ‖~V ‖ > ε (as defined in Section 7.3.6).

In each cluster, an exemplar is defined as the element that has the minimum pair-wise

distance with respect to all the other elements in the cluster. A meaningful hierarchy would

organize the videos in a way such that each cluster contains elements that are homogeneous

and the exemplar from each cluster would represent a distinct action from the dataset.

In Figure 7.9, we show the estimated action hierarchy constructed using NCNC action

similarity measure with Ward linkage neighbor-joining criterion. Notice that the actions

such as running, walking and jogging were grouped separately compared to actions such as

boxing, handwaving or handclapping. Intuitively, this fits well with what a human operator

would do given the same task. Among the 4 linkage criteria we used, we found qualitatively

that the combination of NCNC and Ward linkage gives the best inference for exemplars of

actions in the database.

7.7 Recapitulation

We have designed, implemented and tested a system for performing action recognition

and localization by making use of compressed domain features such as motion vectors and

DCT coefficients which can be obtained with minimal decoding. The low computational

complexity of feature extraction and the inherent reduction in search space makes real-time

operation feasible. We combined existing tools in a novel way in the compressed domain for

this purpose and also proposed NZMS, a novel frame-to-frame motion similarity measure.
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Our classification results compare favorably with existing techniques [114, 35, 71] on a

publicly available database and the computational efficiency of our approach is significantly

better than existing action localization methods [117].

Our experimental results provide justification for the engineering choices made in our

approach. In particular, we showed the value of filtering motion vectors with low texture

and of aggregating frame-to-frame similarities. We also systematically investigated the

effects of various encoding options on the action classification performance of our proposed

approach. The results showed that for action videos, using a GOP structure with only P

frames results in a better compression-classification trade-off. We also found that while a

larger GOP size might result in a lower classification performance, it is mostly due to the

effects of drift in computing block texturedness. Thus, a simple extension for improving

classification performance in videos with large GOP size, if memory constraints permit, is

to perform full decoding of every frame, and to use the decoded pixels at shorter regular

intervals to update the confidence map. We found that quarter-pel accuracy in motion

estimation does not appear to provide any benefits. While using smaller blocks in motion

compensation does lead to better action classification and compression performance, the

increased computational time of both encoding and action classification should be taken

into account.

In this work, we have used a very simple classifier, i.e. Nearest Neighbor Classification

(NNC), which has given very good performance. For further improvement in classification,

we can use more sophisticated classifiers such as Support Vector Machines (SVM); on the

same dataset, Dollar et al. have shown that using SVMs results in a slight improvement

over NNC [35].

For future work, we plan to extend our system to adopt a hierarchical approach which

would allow us to approach the spatial resolution of existing pixel-domain methods at lower

computational cost. By leveraging the ability of state-of-the-art encoders such as H.264 to

use smaller blocks in motion compensation, motion vectors at resolutions of up to 4 × 4

pixels block can be obtained. The algorithm can first perform action recognition at the

coarsest level, i.e. 16 × 16 pixels macroblock, and then perform a progressively finer level
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search in promising regions. Furthermore, using the motion vectors of 4 × 4 pixels block

as an initial estimate also allows the computation of dense optical flow at lower cost, hence

enabling the progressive search to proceed to pixel level granularity.

One current limitation of our approach is that while it is robust to small variations

in spatial scale, it is not designed to handle large spatial scale variations or differences

in spatial scales between the query and test videos. We would like to explore a truly

scale-invariant approach in future work. A possibility is to apply our method at different

resolutions in parallel; this can be done naturally with the hierarchical extension described

earlier. Parallelizing this scale-space search could lead to significant gains in performance

while being scale-invariant.

While we present results on a benchmark dataset widely used for evaluating activity

recognition algorithms [114, 35, 71], it would be interesting to consider data with other

actions and containing more varied backgrounds as part of future work. For example, the

BEHAVE project, which has the objective of automatically detecting anomalous or criminal

behavior from surveillance videos, has publicly available datasets3. One interesting approach

uses optical flow information to identify such behavior [6]; it would be useful to see how our

method, which uses only motion vectors, compares with the former, which uses optical flow.

While we consider single person actions, detecting multi-party activities such as greeting or

fighting is also a potential area of further investigation [111, 6].

Another interesting angle to consider is the type of motion estimation used at the

encoder. Rate-Distortion (RD) optimization is commonly performed in sophisticated video

encoders to seek an optimum trade-off between compression and reconstruction quality [125].

It has also been used in the motion compensation process to reduce the rate used for coding

motion vectors [124, 23]. This has the effect of smoothing the motion vector field which can

be interpreted as a de-noising process. We hypothesize that this has a positive influence on

the compression-classification trade-off, but this would have to be verified.

We have also demonstrated an efficient unsupervised approach for organizing large col-

lections of videos into a meaningful hierarchy based on the similarity of actions embedded
3http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/

116

http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/


in the videos. This facilitates quick navigation of the database. Using the derived hierarchy,

we showed how to select representative videos (exemplars) from a dataset. The database

can be quickly indexed by assigning a unique action tag to each cluster. For example, a

user can easily label a cluster simply by identifying the cluster exemplar. These derived

action tags can then be combined with other features, such as color and texture, to build

more complex queries or to develop organizational principles for managing video databases.
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Chapter 8

Video analysis of meetings

In this chapter, we present work that aims to reduce computational complexity in the

analysis and identification of events and trends in meetings, so as to reduce processing

time for both on-line applications and batch processing. Specifically, we study the task of

automatically estimating activity levels of participants which are in turn used for estimating

dominance in group interactions. The working hypothesis here is that the more active a

participant is in the meeting, the more dominant he is. In Section 8.2, we briefly describe

the concept of dominance before presenting our method and results.

To provide additional features for estimating visual focus of attention (VFOA), which

in turn can be used for dominance modeling, we also investigate the task of automatically

detecting slide changes. In the meeting dataset, participants make use of a projection

screen for discussion purposes. It has been observed that participants tend to look at the

projection screen when there is a slide transition. Thus, the presence of a slide transition can

be used as a contextual cue for improved VFOA performance. In Section 8.3, we propose a

compressed-domain processing approach to detect slide transitions.

The work presented in this chapter is joint work with Dinesh Jayagopi, Hayley Hung,

Kannan Ramchandran and Daniel Gatica-Perez, and has been presented in part in [147,

63, 69]. We also like to acknowledge the advice and assistance given by Silèye Ba and

Jean-Marc Odobez.
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8.1 AMI meeting data

We use meetings from the publicly available AMI meeting corpus [17]. The meetings

have been recorded in IDIAP’s smart meeting room (see floor plan in Figure 8.1), which

also has a table, a slide screen and a white board. In this dataset, there is a camera taking

a close-up shot of each participant, for a total of four close-up camera views as shown in

the bottom row of Figure 8.2. There are also three other camera views capturing side-views

and a global view, as shown in the top row of Figure 8.2. Each of these video streams

has already been compressed by a MPEG-4 video encoder with a group-of-picture (GOP)

size of 250 frames and a GOP structure of I-P-P-..., where the first frame in the GOP is

Intra-coded, and the rest of the frames are predicted frames.

Figure 8.1. Floor plan of smart meeting room

In each meeting, 4 participants went about the task of designing a remote control.

Each participant was assigned distinct roles, namely “Project Manager”, “User Interface

Specialist”, “Marketing Expert” and “Industrial Designer”. To encourage natural behavior,

the meetings were not scripted. However, teams were required to carry out general tasks

such as presentations and discussions.

8.2 Activity level estimation for dominance classification

A concept that is well studied in social psychology, dominance is one of the basic mech-

anisms of social interaction and has fundamental implications for communications both
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Figure 8.2. All available views in the data set. The top row shows the right, center and left
camera views. The bottom row shows each of the 4 close-up views.

among individuals and within organizations [16]. A good way to understand this concept is

by distinguishing it from power. While power is the “capacity to produce intended effects,

and in particular, the ability to influence the behavior of another person”, dominance is

the set of “expressive, relationally based communicative acts by which power is exerted and

influence achieved” and hence “necessarily manifest” [39].

When there is recorded video data available, for example, in an instrumented meeting

room, automatic dominance estimators using recorded data could be useful in applications

such as self-assessment, training or group collaboration. Studies of dominance in the so-

cial psychology literature has suggested that such an enterprise is worth pursuing. First,

vocalic cues, such as speaking length, speaking energy and vocal control, and kinesic cues,

such as body movement, posture and gestures, have been found to be correlated with dom-

inance [39]. Of particular interest is the finding that dominant people are normally more

active than non-dominant people [16]. Second, both active participants and passive ob-

servers are known to be able to decode dominance [36]. This suggests that reliable data

annotation, which is necessary, and it for evaluating automatic dominance estimators, is

possible and that there is a possibility of designing such estimators.

In this section, we study a set of visual features that can be efficiently extracted from
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compressed video and are justified by the observation that dominant people are normally

more active than non-dominant people [16]. We focus on an unsupervised approach for

dominance modeling and evaluate it on video from the AMI meeting dataset.

8.2.1 Approach

To estimate individual activity level, we turn to the use of motion vector magnitude (see

Figure 6.1(b)) and residual coding bit-rate (see Figure 6.1(c)) as described in Section 6.1.

Specifically, we investigate the use of both motion vector magnitude and residual coding

bit-rate, averaged over the detected skin blocks in each of the close-up camera views (shown

in the bottom row of Figure 8.2). Our rationale for using this is that these features capture

the level of activity for each meeting participant by measuring the amount of movement

they are exhibiting. In particular, we have noticed visually that residual coding bit-rate

also correlates well with high activity levels.

To detect when a participant is not in the close-up view, we threshold the number

of skin-colored blocks (see Figure 6.1(d)) in the close-up view, obtained as described in

Section 6.1.4. In this work, we used a threshold of 2% of the total number of blocks in one

frame. Otherwise, if the participant is visible in the close-up view, we measure his motion

activity by using either or both of motion vector magnitude and residual coding bit-rate.

To compute a normalized motion activity from motion vector magnitude for participant i in

frame t, we first calculate the average motion vector magnitude, vi(t), over the skin-colored

blocks in each frame. For each participant in each meeting chunk, we then find the median

of average motion vector magnitude over all frames where the participant is in the close-up

view. Next, we compute the average of the medians, v̄, of all the participants. The motion

activity level from motion vector for participant i in frame t, vni (t), is then computed by

normalizing as follows:

vni (t) =


vi(t)
2v̄ vi(t) < 2v̄

1 vi(t) ≥ 2v̄

The motion activity level from residual coding bit-rate is also normalized in a similar fashion.
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Note that if a participant is not detected in a frame of the close-up view, he is assumed to

be presenting at the projection screen and is assigned an activity level of 1 for that frame.

The features that we use for our dominance experiments were (i) motion activity level

from motion vector; (ii) motion activity level from residual coding bit-rate; and (iii) average

of motion activity level from motion vector and from residual coding bit-rate. We then sum

up the computed activity levels over any desired segment of a meeting. The sum for each

participant then quantifies how dominant he is; the higher the sum, the more dominant the

participant. This can be done in an unsupervised manner.

8.2.2 Experiments

Annotation

A total of 59 five-minute meeting segments from 11 sessions of the AMI meeting cor-

pus were each annotated by 3 annotators for perceived dominance rankings of the partici-

pants [69]. The segments were chosen to be 5 minutes long to provide more data points for

testing. At the same time, there is evidence to suggest that people need a relatively small

amount of time to make accurate judgments about the behavior of others [5].

For each meeting segment, annotators were asked to rank the participants from 1 (high-

est) to 4 (lowest) according to their level of perceived dominance. Annotators were also

asked to state their confidence in their rankings on a seven-point scale. Note that annota-

tors were given neither a prior definition of dominance nor were told what cues to look out

for.

Evaluation criteria

We target the task of automatically classifying the most dominant person in each meet-

ing segment. To better understand the strengths and weaknesses of our method, we look at

three sets of meetings: (a) 34 meeting segments where every annotator agreed on the most

dominant person; (b) 23 meeting segments where only 2 annotators agreed on the most
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dominant person; and (c) 57 meeting segments where at least 2 annotators agreed on the

most dominant person. In addition, we also investigated the task of automatically classi-

fying the least dominant person, but only for 29 meeting segments where every annotator

agreed on the least dominant person.

We use the percentage of meeting segments where there was agreement between au-

tomatic classification and annotators as the performance metric. We also consider the

computational time of feature extraction.

Baseline comparison

For baseline comparison, we implement a similar scheme that works in the pixel domain.

For each frame, we compute its optical flow1 using the previous temporal frame as reference.

We then warp the previous frame into the current frame using the computed optical flow,

and compute the absolute difference between the two; we will refer to this as the pixel-

domain warped residual. We also classify each pixel as a skin-color pixel or not, using the

same trained skin-color GMM model as in Section 6.1.4.

We then process optical flow in the same way as we do motion vector, and process

pixel-domain warped residual the same way as we do residual coding bit-rate. Averaging is

performed over the skin-color pixels instead of skin-color blocks as is done in the compressed

domain scheme.

The key differences between the baseline and the compressed domain scheme are that

(a) in the compressed domain scheme, the motion field computation is already part of the

video compression process; and (b) there is no need to compute the pixel-domain warped

residual in the compressed domain scheme, since the residual coding bit-rate can be simply

read off from the video bitstream.
1We used the OpenCV library implementation of the Lucas-Kanade optical flow algorithm.
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Results

Tables 8.1 through 8.4 summarizes the results for the various tasks. For all of the tasks,

both pixel-domain and compressed-domain schemes were able to provide discrimination

(random guess would yield only 25% accuracy). It is pleasantly surprising to note that the

compressed-domain features not only do not perform worse than the pixel-domain features,

but in fact outperforms them under some operating conditions. We speculate that this could

be due to the fact that compressed-domain features are not as noisy as the pixel-domain

features.

Table 8.1. Performance for most dominant person with 3 annotators agreement

Features Pixel-domain Compressed-domain % Degradation
Motion 64.7 70.6 -9.1

Residual 70.6 70.6 0.0
Combo 73.5 73.5 0.0

Table 8.2. Performance for most dominant person with 2 annotators agreement

Features Pixel-domain Compressed-domain % Degradation
Motion 47.8 47.8 0.0

Residual 47.8 47.8 0.0
Combo 47.8 47.8 0.0

Table 8.3. Performance for most dominant person with at least 2 annotators agreement

Features Pixel-domain Compressed-domain % Degradation
Motion 57.9 61.4 -6.0

Residual 61.4 61.4 0.0
Combo 63.2 63.2 0.0

Comparing the performance for the task of identifying the most dominant person with

varying degrees of annotator agreement, we see that performance decreases when there is

less annotator agreement. This is to be expected, since meeting segments in which not all

annotators agree on the most dominant participant are intrinsically more ambiguous and

hence more challenging. Further analysis of the results reveals that in most of the meeting
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Table 8.4. Performance for least dominant person with 3 annotators agreement

Features Pixel-domain Compressed-domain % Degradation
Motion 48.3 58.6 -21.3

Residual 44.8 48.3 -7.8
Combo 48.3 48.3 0.0

segments where the features fail to find the most dominant person, either the most active

participant, in terms of body movement, is not the most dominant, or the participant who is

at the projection screen the largest proportion of the time is not the most dominant. Recall

that a participant detected to be not seated is assumed to be at the projection screen and

given a high activity label. Furthermore, due to the position of the cameras, a person who

is presenting at the projection screen is also often visible in other camera views, for example

seat 1 in Figure 8.1. Thus, if a person in seat 1 gets up to present, he might still be visible

from camera 1, and hence estimated as being “seated”. Thus, the high activity label would

not be automatically given to that person. There are also some cases where two participants

exhibit almost equal lengths of visual activity in a meeting segment and the motion activity

feature is unable to find the more active of the two.

We also find that performance in the task of identifying the least dominant participant

is not as good as that for finding the most dominant participant. It is interesting to note

that the average reported annotator confidence for this task is slightly lower than for the

most dominant task.

We next consider the computation run-time of extracting features from the 4 close-up

view cameras from all the meetings. Each close-up video has a spatial dimension of 352x288

pixels, and a frame rate of 25 fps. Our compressed domain feature extraction routines run

on top of a version of Xvid2, an open source video decoder for MPEG-4, which we have

modified for our purposes. No particular care has been taken to optimize it. The pixel

domain baseline scheme is implemented using OpenCV3, a popular open source computer

vision library. Both schemes were evaluated on a Xeon 2.4 GHz Intel processor with 4 GB
2Available at http://www.xvid.org/
3Available at http://sourceforge.net/projects/opencvlibrary/
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of RAM. Table 8.5 shows that a computational time reduction of 94.2% can be achieved

by using the compressed-domain approach instead of the pixel-domain scheme, yet with no

degradation in dominance classification performance.

Table 8.5. Comparison between pixel-domain and compressed domain

Performance Pixel-domain Compressed-domain % Reduction
Runtime 39612 s 2129 s 94.6

Average dominance classification 56.3% 58.3% -3.4
Storage size 281280 MB 2624 MB 99.1

8.3 Slide transition detection - a contextual cue for VFOA

The goal in estimating visual focus of attention (VFOA) is to determine the visual

target that each participant is looking at [9]. Acting as a proxy for eye gaze, VFOA is of

great importance in meetings analysis tasks such as identifying addressees in dialogue acts,

inferring turn taking and modeling conversation structures.

In the AMI meeting corpus, possible visual targets are unfocused, the other meeting

participants and objects in the meeting room (see Figure 8.1) such as the table and the

slide screen [9]. It is possible that the same head pose can be used to focus at different

visual targets; for example, in Figure 8.1, there could be some ambiguity in determining

if the participant in seat 4 is looking at the participant in seat 2 or at the slide screen.

Hence, contextual cues, in addition to estimated head pose, could be used to resolve such

ambiguities [9].

One such contextual cue is the presence of slide transition. When a new slide is dis-

played, it is likely that meeting participants would look at the slide screen instead of other

meeting participants [9]. In this section, we focus on the fast detection of slide transitions

in compressed videos which can be used as a contextual cue for VFOA.
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8.3.1 Approach

Given that the location of the projection screen is known, the problem of determining

slide transitions is very similar to the problem of shot boundary detection in video analysis.

In fact, there has been work on performing shot boundary detection in the compressed

domain [139, 42]. Considering that the AMI meeting compressed videos have long group-

of-picture (GOP) size, which results in estimated DCT DC coefficients exhibiting large drift,

we have decided that the residual coding bit-rate would be more suitable for the task of

detecting slide transitions [42].

The residual coding bit-rate, which is extracted easily from the compressed domain,

captures the temporal changes which are not accounted for by the block translational model.

In the case of slide transitions, there is no translational motion, yet there are very distinct

frame differences. This difference is highly correlated with the residual coding bit-rate. We

thus use the number of blocks with a sufficiently high residual coding bit-rate, Nr(t), as

the signal of interest in detecting slide transitions. Specifically, if r(x, y, t) is the residual

coding bit-rate of the (x, y)th block at frame t, then we have:

Nr(t) =
∑

(x,y)∈projection screen ROC

I [r(x, y, t) > τr]

for some threshold τr.

One key difference between slide transition detection and shot boundary detection is

that here, we also have to deal with the fact that there might be people walking in front

of the projection screen. Therefore, the image area associated with the projection screen

might exhibit large temporal differences due to human motion even when there is no slide

transition. We find that this can be overcome with the use of Nr(t) in our proposed

compressed-domain scheme. First, we can account for as much translational motion as

possible with the use of block translational motion to capture human movement. By looking

at the residual, which is the difference between each block and its predictor in the previous

temporal frame, we will only consider blocks which cannot be well predicted in the previous

frame. Second, by looking for sharp peaks in Nr(t), we can further eliminate cases where

large temporal differences are caused by human motion. This is because when there is a
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person walking in front of the projection screen, there will be a large number of blocks

with significant residue over an extended period of time. In contrast, in a slide transition,

there are a large number of such blocks over only 1-2 frames. This is clearly illustrated in

Figure 8.3.

Figure 8.3. Plot of Nr(t), the number of blocks with high residual coding bit-rate, in
meeting session IS1008b. In the period around 10s-40s when a person is moving in front of
the projection screen, note that while the number of blocks is moderately high, there is no
sharp peak. On the other hand, a slide change at around 78s produces a very sharp peak.

We found that thresholding the number of blocks which has a sufficiently high residual

coding bit-rate gives reasonable performance in detecting slide transitions. In addition,

we also performed non-maximal suppression with a 2 second window length. Using these
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heuristics, we declare there to be a slide transition at frame s if:

Nr(s) ≥ α (8.1)

Nr(s) ≥ Nr(s+ v) ∀ v ∈ [−T/2, T/2] (8.2)

Nr(s) ≥ β + 1
T/2

∑T/2
v=1Nr(s− v) (8.3)

Nr(s) ≥ β + 1
T/2

∑T/2
v=1Nr(s+ v) (8.4)

α and β are thresholds that determine respectively what value of Nr(t) is significant for

a slide transition and how much change it must have from its temporal neighbors to be a

slide transition. T is the window size (in frames) we consider. In our experiments, we keep

α and β the same, and vary them from 5 to 120, and set T = 50. We also use τr=48.

8.3.2 Experiments

Evaluation criteria

We carried out our evaluations on 12 meetings from the AMI meeting corpus [17], which

contains 322 minutes (19343 seconds) of video data. The slide screen is only visible in the

center camera view (see top row of Figure 8.2), so that is the only video stream we used in

the experiments. To obtain ground truth for slide transitions, we look at the center view

videos and record the times of slide transitions. There were a total of 401 slide transitions

that we labeled, an average of about 1.2 slide transitions per minute. In our tests, we

consider slide transitions to be correctly detected with a 0.5 second tolerance.

Baseline comparison

For baseline comparison, we also implement a similar scheme that works in the pixel

domain. For each frame, we compute its optical flow using the previous temporal frame

as reference. We then warp the previous frame into the current frame, and compute the

absolute difference between the two. The result is then thresholded and the number of

pixels above the threshold is counted. The key differences between the baseline and the

compressed domain scheme are that (a) in the compressed domain scheme, the motion
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field computation is already part of the video compression process; (b) there is no need to

compute the residual in the compressed domain scheme, since the residual coding bit-rate

can be simply read off from the video bitstream; and (c) the resolution of the residual is

much finer in the pixel-domain scheme than the compressed domain scheme.

Results

The performance of these two schemes is shown as a ROC plot in Figure 8.4. The

operating points are generated by varying the value of α and β as discussed earlier. Precision

is the fraction of returned slide transitions that correspond to ground truth transitions, while

recall is the fraction of ground truth transitions that were detected. The ROC plot shows us

that neither schemes dominates the other in terms of slide transition detection performance.

In fact, they seem to have relatively similar performance.

We also compute a single figure of merit, the balanced F-score [76], of the schemes.

The balanced F-score is used in the information retrieval literature to measure how good a

particular (precision,recall) operating point is and is defined as:

F1 =
2 · Pr ·Re
Pr +Re

where Pr and Re are the precision and recall figures respectively. We find the maximum

F1 score over all the operating points for each scheme and list those scores in Table 8.6.

Surprisingly, there is no loss in performance going from the pixel domain baseline to the

compressed domain scheme. In the compressed-domain scheme, the best F1 score is obtained

using α = β = 30. Using leave-one-out full-fold cross-validation over the 12 meetings, we

found that this choice of parameters consistently returns the best F1 score.

The total computational time required for each scheme is also shown in Table 8.6. We

also compute the speed-up factor, SUF , defined as:

SUF =
SSD

TPT

where TPT is the total processing time and SSD is the source signal duration. Note that

SUF has units of times-real-time, hence the larger SUF is, the faster processing is. Each
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Figure 8.4. ROC plot for slide transition detection

video has a spatial dimension of 352x288 pixels and runs at 25 fps. The 12 meeting videos

have a total SSD of 19343 seconds. Our compressed domain feature extraction routines runs

on top of Xvid4, an open source video decoder for MPEG-4, but no particular care has been

taken to optimize it. The pixel domain baseline scheme is implemented using OpenCV 5, a

popular open source computer vision library. Both schemes were evaluated on a Xeon 2.4

GHz Intel processor with 4 GB of RAM.

As shown in Table 8.6, we achieve an impressive SUF of 51.2 with the compressed

domain scheme. In comparison, the baseline pixel domain scheme has a SUF of 3.7. With
4Available at http://www.xvid.org/
5Available at http://sourceforge.net/projects/opencvlibrary/
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Table 8.6. Summary of performance figures for slide transition detection

Performance figures
Pixel domain

baseline
Compressed domain

scheme
F1 0.93 0.93

Computation time (s) 5232 378
Speed-up Factor
(times real-time) 3.7 51.2

our compressed domain scheme, we were able to achieve an impressive 93% decrease in

run-time and still manage no loss in slide transition detection performance.

Effect on VFOA estimation

Our slide transition detector has been used in a state-of-the-art VFOA algorithm pro-

posed by Ba and Odobez that relies on both head pose estimation and contextual cues [9].

A full description of their method is outside the scope of this dissertation; instead, we re-

fer interested readers to their excellent description. Briefly, they use a Dynamic Bayesian

Network to jointly infer VFOA, conversational events and model parameters based on ob-

served head pose, speaking activity and slide transition events. In particular, the time since

the last slide transition is used to modify the priors that a participant is looking at the

projection screen, the table or other participants.

It has been found that using the slide transition contextual cue helps to partly resolve

the ambiguities for participants in seat 3 and 4 when they are looking at the participants

in seat 1 or 2 or at the projection screen. Specifically, by just using the slide context, there

is a 5% improvements in VFOA recognition rate [9]. Furthermore, when combined with

additional conversation context, there is a 15% improvement over a baseline that does not

use contextual cues (a 10% improvement was observed when just conversation context is

used) [9].
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8.4 Recapitulation

In this chapter, we have presented our work on extracting compressed domain features

and combining them together to obtain activity level estimates. Our work indicates that

for the task of dominance classification, compressed-domain video features were able to

provide some discrimination. Furthermore, a computational time reduction of 94.2% can

be achieved by using a compressed-domain approach instead of a pixel-domain scheme with

no degradation in dominance classification performance. In the future, we can consider

using the center camera view to obtain an estimate of the motion activity of a person who

is presenting at a front of the meeting room.

We have also presented a simple and computationally efficient approach to detecting

slide transitions in the compressed domain. The method makes use of residual coding bit-

rate that can be easily extracted from the compressed video bit-stream without the need for

full decoding. The experimental results on a subset of the AMI meeting corpus shows that

the compressed domain scheme achieves a 93% decrease in run-time without any loss in slide

transition detection performance with respect to a baseline pixel-domain scheme. In the

future, it would be interesting to investigate how to determine the location of the projection

screen automatically. A previous method used for detecting sub-windows in broadcast news

videos might be a suitable starting point [150]. Furthermore, while we rely on heuristics

in an unsupervised fashion to detect slide transitions, we can adopt a supervised approach

using more powerful classifiers such as Support Vector Machines (SVM) to find such rules

in a more principled fashion.

The compressed domain video features used for the two meetings analysis tasks de-

scribed in this chapter can also be used for a variety of other meetings analysis tasks as

well. For example, it has also been used in multi-party dominance modeling [68], audio-

visual association [64, 65] and audio-visual speaker diarization [52].
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Chapter 9

Conclusions

In this dissertation, we have considered a collection of technical issues, such as video

transmission, camera calibration and video analysis, that needs to be resolved in order to

realize our “Big-Eye” vision – that of emulating a single expensive high-end video camera

with a dense network of cheap low-quality cameras. We will now recapitulate the work that

has been done and summarize avenues for future work.

In Part I of the dissertation, we have considered the problem of compressing and trans-

mitting video from multiple camera sensors in a robust and distributed fashion. To ex-

ploit redundancy between camera views for robustness, we use a distributed source coding

based approach that relies on geometrical constraints in multiple views. Furthermore, our

proposed scheme does not require any cooperation between encoders and is suitable for

platforms with low computational capabilities.

Some possible directions for future work include:

• Investigating how encoders can independently estimate inter-camera correlation based

on intra-camera properties such as edge strength.

• Exploration of low frame rate operating regimes, where inter-camera correlation could

possible dominate intra-camera temporal correlation.

• The possible use of feedback from the back-end server to improve compression perfor-
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mance. In particular, we believe that a hybrid approach combining motion vector feed-

back from the decoder [107] and distributed source coding based video coding [105, 57]

is very promising.

In Part II of this dissertation, we have investigated the problem of establishing visual

correspondences in a distributed and rate-efficient manner. This is especially important in a

network of mobile cameras which need to be calibrated continuously. We pose this problem

as one of “rate-constrained distributed distance testing” and propose two solutions: one

based on distributed source coding exploiting statistical correlation between descriptors of

corresponding features and another based on binarized random projections.

We believe this to be a fruitful area of future research. Possible future directions include:

• The proposed binarized random projections scheme shows a relationship between eu-

clidean distance and hamming distance but require that descriptors be of unit norm.

One straightforward extension is to consider the relationship between angle and ham-

ming distance, in which case there is no need for the unit norm assumption. It would

be interesting to extend this to other metrics or to remove the unit norm assumption.

• The exploration of security properties of the binarized random projections scheme.

• Alshwede and Csiszár showed that the Slepian-Wolf rate region is needed even if only

the hamming distance between two correlated binary vectors is desired [4]. It will be

interesting to determine the rate region in the case where we only want to know if the

hamming distance is less than a threshold.

Finally, in Part III of this dissertation, we have focused on the problem of efficient

video processing for multiple camera networks. Our approach to efficient video analysis

is the use of compressed domain processing to minimize the amount of computations in

feature extraction. We have demonstrated its use and effectiveness in the tasks of human

action recognition, localization and organization. We have also explored its use in meetings

analysis tasks such as dominance modeling and slide change detection.

Possible directions for future work in this part of the dissertation include:
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• The use of more sophisticated classifiers such as Support Vector Machines for action

classification.

• The use of an hierarchical approach to effectively and efficiently use both compressed

domain techniques and pixel domain techniques.

• Extending our action classification scheme to handle larger variations in spatio-

temporal scales.

• An exhaustive study and evaluation of organization techniques, in addition to hi-

erarchical agglomerative clustering, to perform automatic or minimally supervised

organization of action videos. In particular, affinity propagation [51] seems like a

very attractive approach since it performs clustering based on user-defined similarity

between data points.

• Further exploration of compressed domain features for various meetings analysis tasks

such as audio-visual association [64, 65] and audio-visual speaker diarization [52].

Clearly, there remains much work to be done to make the “Big-Eye” vision a reality. In

this dissertation, we hope to have laid down some of the groundwork and to have provided

ideas for future investigations.
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