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Abstract

Wireless Sensor Network Metrics for Real-Time Systems

by

Phoebus Wei-Chih Chen

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor S. Shankar Sastry, Chair

Research in wireless sensor networks (WSNs) is moving from studies of WSNs in isolation

toward studies where the WSN is treated as a component of a larger system. One hot area

of research is the study of how to integrate wireless sensor networks with existing real-time

measurement and control systems, forming what we call a wireless networked system. To

apply the theories for studying real-time systems operating over wireless networks, for in-

stance the theory of Networked Control Systems, we need to develop models of the lossy

wireless communication medium. The models are used to compute network metrics, mea-

sures of network performance such as latency and reliability, that serve as an abstraction of

the network which are used as input to the theoretical tools for analyzing the entire wireless

networked system.

This dissertation focuses on modeling WSNs which use mesh networking with a TDMA

data link layer. Specifically, it focuses on two classes of TDMA mesh networking schemes,

Unicast Path Diversity (UPD) and Directed Staged Flooding (DSF). UPD uses retransmis-

sions to get reliable packet delivery while DSF uses constrained flooding / multicast to

get reliable packet delivery. We derive Markov chain models of UPD and DSF to com-

pute the probability of end-to-end packet delivery as a function of latency, the expected

radio energy consumption on the nodes from relaying packets, and the traffic distribu-
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tion on the network. We also derive metrics based on clearly defined link failure mod-

els and routing models that allow a network designer to compare mesh routing topolo-

gies to determine which is better for reliable packet delivery. One of these network met-

rics leads to a greedy algorithm for constructing a mesh routing topology. Finally, we

study the implications of using distributed scheduling schemes to generate schedules for

WSNs. Particularly, we focus on the impact scheduling has on path diversity, using short

repeating schedules and Greedy Maximal Matching scheduling as examples. A cluster-

based scheduling scheme is proposed which works well on a subclass of network topologies.

Professor S. Shankar Sastry
Dissertation Committee Chair
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Chapter 1

Introduction

Wireless Sensor Networks (WSNs, or sometimes just sensor networks) consist of low-

power embedded devices with sensing, computing, a power source, and a wireless radio.

These devices, called sensor nodes or motes, are often battery powered and placed through-

out an environment to sense and relay processed measurements over a wireless network to

a server. WSNs enable a large variety of applications to gather data from multiple sen-

sors without the high cost of wiring. For instance, WSN applications for monitoring and

surveillance include habitat monitoring [104; 108; 39], monitoring the health of industrial

equipment for maintenance [53], monitoring the stress on large civil structures such as

bridges and buildings [51; 114], and supply-chain tracking of shipping containers [67].

Although these applications form the bulk of WSN applications today, WSNs are not

limited to monitoring and surveillance. In fact, the focus of this dissertation is on how WSNs

can be integrated with other systems that respond to sensed changes in the environment,

forming what we call wireless networked systems. A wireless networked system thus consists

of the wireless sensor network, a decision-making system (e.g., an automatic controller or

a human operator), and the environment that we are sensing and responding to (e.g., a

manufacturing plant, highway traffic, forests under wildfire surveillance). Note that the

distinction between these components in a wireless networked system are conceptual. In

reality, the physical boundaries between the components can be blurred: the decision-
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making entity may be the motes themselves, and the motes may be considered a part of

the environment in scenarios where the motes are physically connected to mobile robots.

1.1 Challenges in Designing Wireless Networked Systems

The integration of wireless sensor networks into wireless networked systems has been

challenging because WSNs have only become mainstream in the last decade and researchers

are still grasping how to use them effectively and efficiently. Research on WSNs covers a

wide array of topics such as energy-efficient communications, network self-organization and

leader election, data aggregation, sensing coverage and placement, security and privacy, and

others [22; 32]. The advances in some of these topics have directly improved the perfor-

mance of real-world WSN deployments, but major challenges remain which have slowed the

commercial adoption of WSNs. Among the biggest challenges are reliable communications

and modeling / characterizing the sensor network so it can tightly interface with other

components in the encompassing wireless networked system.

WSNs must communicate over a time-varying wireless channel that can only be charac-

terized by probabilistic models because the environmental conditions affecting the wireless

channel are difficult to measure exactly. This is a general problem in wireless communica-

tions and as a result we can only get probabilistic guarantees on network performance. In

fact, many WSNs built today (and many wireless communication systems) are “best effort”

systems, meaning they provide little insight and few guarantees to the designers on the

throughput, latency, or reliability of the communication. As a result, systems have to be

built first, then tested and tweaked later. This ad-hoc design methodology does not work

when we scale up the number of nodes in the WSN or when we integrate the WSN into a

complex system.

A more structured design methodology starts by examining the system requirements of

the wireless networked system and then extrapolating these requirements to obtain design

guidelines for the WSN. Where possible, the WSN should run communication algorithms

that are amenable to modeling, particularly models that provide metrics on the perfor-
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mance of the WSN to the rest of the wireless networked system. If we treat the wireless

networked system from a Control Systems perspective, then such models let the decision-

making entity account for network conditions when regulating the system’s behavior, and

allows the designer to predict the entire system’s performance.

One system requirement which will guide the study of wireless networked systems in

this dissertation is the communication timing requirement between the components of the

system. Systems such as traditional wireless sensor networks set up for environmental

monitoring and offline data analysis [104; 108] have loose latency requirements, on the

order of hours to send data to a collection point. Systems such as fire alarm systems in

buildings have tighter latency constraints, less than 90 seconds to report a fire [57] and

preferably an even faster response time to turn off dampers in the ventilation system and

stop the spread of smoke to other parts of the building [100]. Typically, tight latency

constraints are required in systems that are involved in real-time decision making, whether

the decisions are in response to an event / alarm or to help continuously regulate a system.

This dissertation will focus on wireless networked systems with tight timing constraints,

particularly wireless real-time measurement systems and wireless real-time control systems.1

These will be discussed in detail below in Sections 1.1.1 and 1.1.2.

1.1.1 Real-Time Measurement Systems

A real-time measurement system consists of sensors and processors that perform signal

processing, estimation, or inference on the readings from the sensors before delivering it

to the user. The components in the system may be connected by a network, but the

communication delay must be low (Figure 1.1). The user is often a human who needs to

take an action or make a decision given the data from the system.

Wireless sensor networks can be used as real-time measurement systems if they are

designed to ensure data is delivered with low latency. Most current wireless sensor network

deployments do minimal processing to route and aggregate data, and as such can be modeled
1We use the term real-time to mean that low latency is important to our systems. Because we are dealing

with statistical models of networks, we do not provide hard guarantees of meeting real-time constraints, as
is often the goal of research in the area of Real-Time Systems.
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Figure 1.1. A real-time wireless networked measurement system.

as simply a set of sensors connected by a network. This is very similar to the simple model

of real-time control systems covered below in Section 1.1.2. As the sensor node hardware

improves and the algorithms become more complex, we will also need to model the in-

network processing of data by the sensor network.

Fast data collection and reliable data delivery are some of the most critical and chal-

lenging design objectives for building real-time measurement systems with current sensor

networks. These two objectives depend on the networking protocols used in the sensor

network. Furthermore, to characterize application performance, we need good models of

these networking protocols for predicting reliability and latency. This will be the subject

in Chapter 4.

1.1.2 Real-Time Control Systems

From a control systems point of view, a wireless networked system consists of a plant /

system to be controlled, sensors, actuators, and computers connected together by a network

that is wireless or partially wireless (See Figure 1.2). The distinction of real-time control

systems from real-time measurement systems is that computers, instead of humans, make

decisions to regulate the plant. Latency and reliability are still critical network performance

parameters, but at the same time a theory needs to be developed to address how to design

automatic controllers in these systems. This is the theory of Networked Control Systems

presented later in Section 4.1.

The key issue in designing a wireless networked control system is addressing how to

guarantee system performance and stability when the communication medium is lossy and

delivers data with variable delay. In some systems such as distributed heating and ventila-

tion of office buildings, it may be sufficient to guarantee system performance in a statistical

sense — for instance, the system works 99.9% of the time. However, it would be foolish to
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Figure 1.2. A real-time wireless networked control system.

build safety-critical systems over a wireless network without a contingency plan when the

wireless channel between the system components is disconnected. Putting in a redundant,

wired communication channel may be impossible or too costly. However, we may be able

to design a safety-critical control system that continues to perform safely, but with lower

performance, without a connected network and performs better with a wireless connection.

Equivalently, in automated manufacturing, the system can be designed to maintain product

quality but vary the yield depending on the reliability and delay of the wireless network.

Figure 1.3 proposes an abstract scenario and a handshaking protocol for the components

of a wireless networked system to coordinate and maintain safety / product quality while

adapting to wireless network conditions to maximize performance. In this scenario, the

output of system A is being fed as input to system B, with some delay D. While system

B can measure its immediate inputs and perform local feedback control, it can get better

performance with a larger look-ahead horizon by getting direct measurements of the output

of system A. System A can measure its outputs and send it over the wireless network to

system B, and furthermore it can adjust the rate of its output in response to how well it can

coordinate with system B. If it does not hear an end-to-end acknowledgment from system

B, system A will assume that system B did not receive the measurements at the output

of system A, and slow down it’s output accordingly. This way, the stability of the system

or the quality of the output will not be compromised, but the performance or yield can be

tuned based on wireless network conditions.
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Figure 1.3. A sample scenario and handshaking protocol for coordinating the components of a
wireless, networked, safety / quality-critical control system. See text for details.

1.2 Problem Statement and Contributions

Currently, there is a need for a comprehensive metrics-based methodology to design

and validate wireless networked systems. Existing approaches often design the real-time

measurement or real-time control system in isolation from the design of the underlying

wireless network. The theory of Networked Control Systems (NCSs) attempts to bridge

these two design spaces by abstracting the network as a simple point-to-point channel and

studying how packet loss, variable delay, variable sampling, and quantization error affect

the closed-loop control system. In order to apply this theory to wireless networked systems,

we need to develop network models where we can extract the relevant parameters for this

abstraction. We call these parameters the network metrics, and they serve as an interface

for tuning the NCS to network conditions and tuning the network to meet the requirements

of the NCS.

Traditional network metrics such as throughput and fairness are tailored for efficient

delivery of files between users and not tailored for real-time decision making systems. The

main focus of this dissertation is to develop new network metrics and models of WSNs to

use in the design of wireless networked systems. This involves both developing algorithms

to compute the metrics and using the metrics to help identify how to improve the system.

For instance, these metrics may be used to help construct better routing topologies and

schedules. The metrics in this dissertation focus on reliability (i.e., the likelihood that a

packet is delivered to the destination) and latency.
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The contributions of this dissertation are as follows:

• Chapter 2 develops a set of metrics to measure the end-to-end reliability of a routing

topology. It also presents a metrics-based routing topology generation scheme.

• Chapter 3 studies the effects of various scheduling schemes on packet latency and

packet path diversity. It also presents a distributed scheduling scheme designed for

layer-to-layer routing topologies.

• Chapter 4 develops an end-to-end connectivity metric given a routing topology and

TDMA schedule for the wireless network. It also develops Markov chain models for two

classes of TDMA wireless networking protocols: Unicast Path Diversity and Directed

Staged Flooding. These Markov chain models are also used to compute the traffic

distribution throughout the network and estimate the radio energy consumption on

the nodes from relaying packets. The chapter concludes with two in-depth case studies

applying these tools on a simulated real-time measurement system and a simulated

real-time control system.

The new terminology used above will be defined in the respective chapters.

This dissertation models the WSN as a TDMA wireless mesh network. As will be

explained in Section 1.3.3, we focus on TDMA networks for ease of modeling and mesh

networks for better path diversity and reliability. The WSN does not do in-network data

aggregation or processing, so it simply behaves as a self-organizing communication network

(self-organizing in the sense that the WSN constructs its own routing topology and sched-

ule). We focus on the scenario where there are few decision makers (e.g., controllers or

human operators) in the network. This means there are very few sessions or flows in the

network.
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1.3 Background and Related Work on Wireless Networked

Systems

This section presents some examples of wireless networked systems and background

on wireless networking standards and WSN radio hardware specifications to relate the

content of the following chapters to concrete applications and current technologies. Since

the chapters span such a wide range of topics, the related work for the relevant topics will

be reviewed at the beginning of each chapter.

1.3.1 Examples of Real-Time Measurement Systems

There are a large variety of applications for real-time measurement systems. For in-

stance, operators of video surveillance cameras in office buildings and security alarm systems

for banks need to react quickly to intruders, on the order of minutes to dispatch security

personnel or lock down critical areas. There have also been proposals to use sensor networks

to monitor the vital conditions of the injured in large disaster-response scenarios [99] and

to monitor the sick and elderly for assisted living at home [1]. In scenarios where a patient

is losing blood and his heart rate drops or an old man falls down the stairs, we would also

like to respond and dispatch emergency medics on the order of minutes.

There have also been proposals to use sensor networks as real-time measurement systems

to help firefighters navigate through a burning building [112; 101]. The sensor network

would keep track of the location of the firefighters and use smoke and temperature sensors

to identify the location of the fires and safe evacuation routes, relaying all this information

back to the incident commander to coordinate the firefighting efforts. Here, the system

response time should be on the order of seconds to match the speed at which the fire can

spread and the firefighters can move.

Another real-time measurement system is the Supervisory Control and Data Acquisition

(SCADA) system used in industrial control systems [36]. SCADA system architectures are

typically hierarchical, with localized feedback control and wide area monitoring for diag-
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nostics and safety [74], often with a “human in the loop.” The diagnostics network needs

to relay large amounts of data, and is usually not as sensitive to delay as the safety and

control networks. However, diagnostics information can also be used to “close the loop” for

equipment shutdown or continuous process improvement, though the actuation is typically

event-driven as opposed to time-driven continuous actuation. The safety networks require

determinism (guaranteed response time), low delay, and reliable data delivery, though the

traffic load may be lower than diagnostics networks. The response time / delay require-

ments depend on the particular industrial plant, and can range from microseconds to hours,

depending on the task [69].

Finally, real-time measurement systems can be used for battlefield awareness in military

applications. For instance, there is an interest in using sensor networks to track moving

targets [76]. The tolerable delay in such a system depends on the distance of the target to

critical areas, on the order of seconds to tens of seconds. Sensor networks can also be used

to locate snipers from the acoustic trail of bullets and the muzzle blast of guns [56]. Such

systems may need time synchronization between sensor nodes on the order of microseconds

to compute sniper locations, but they can tolerate communication delays to the user on the

order of seconds.

1.3.2 Examples of Real-Time Control Systems

Real-time control systems are often part of SCADA systems for process control and

industrial automation. Traditional applications range from chemical production and

petroleum refinery to waste management. Current research is trying to extend these sys-

tems to reconfigurable manufacturing systems that can change production capacities to

quickly match consumer demands [72; 74]. In these systems, wireless connections between

equipment can reduce the cost of reconfiguration.

A good application of wireless sensor networks to real-time control systems is the con-

trol of lighting and Heating, Ventilation, and Air Conditioning (HVAC) systems. Studies

have shown that 38% of all primary energy use is devoted to conditioning residential and
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commercial buildings, making it the largest sector of energy consumption, even exceeding

transportation and industry [111]. Furthermore, the Department of Energy estimates that

half of the total energy use can be avoided, resulting in considerable savings. Here, the

latency requirements are on the order of seconds and minutes, and slower system response

times only results in less efficiency, not a compromise of safety.

Another real-time control application for wireless sensor networks is active / semi-active

damping of civil structures [33; 95]. Active damping is the actuation of parts of a structure to

dampen vibrations, while semi-active damping changes the dissipation properties of passive

dampers in real-time. This can be useful for reducing the damage to large buildings and

bridges during earthquakes or hurricanes. The latency requirements for such systems are

on the order of hundredths of a second. Wireless sensor networks enable existing structures

to be retrofitted with active / semi-active dampers without the installation of wires, while

simultaneously monitoring them for structural damage [51; 114].

Wireless sensor networks are also well suited to real-time control applications with

mobile components, particularly robotics. Some experiments have shown that wireless

sensor networks can be used to help unmanned ground vehicles navigate through unknown

terrain and follow targets [61; 98]. Here, the timing requirements are on the order of tenths

of a second for obstacle avoidance and seconds for path planning and target following.

1.3.3 Wireless Networking

The type of wireless networks connecting our real-time control and measurement systems

are packet radio networks (PRNs) [6]. In a packet radio network, data is digitized and broken

up into units called packets before being transmitted over a multiaccess channel. Different

subsets of nodes can communicate with each other on this channel and packet transmissions

may collide, causing the packets to be dropped. Most wireless sensor networks today are

packet radio networks.

To compute our wireless network metrics, we will model the packet radio network at the

network and data link (sometimes known as media access, or MAC) layers of the seven layer
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Figure 1.4. The seven layer Open Systems Interconnect (OSI) model of networks. For more details,
see a textbook on communication networks, such as [6].

OSI model (See Figure 1.4). We select implementations of these OSI layers that enable the

wireless network to provide high reliability while being easy to model.

Modeling Assumptions

We make several simplifying modeling assumptions to tailor the wireless network to

real-time control and measurement systems. Some of these assumptions will be mentioned

again in the context of the models they affect later in the dissertation.

While we do not explicitly model the physical layer of the network, the wireless nature

of the links affects our models. First, we assume links are mutually independent and in-

dependent over time. This is a rather strong assumption, but it is necessary for making

our models tractable. It is partially justified by frequency-hopping and distributing link

transmissions over time, as explained in Chapter 4. We do not assume that all the wireless

links are bidirectional (symmetrical), meaning we can have a situation where node i can

transmit to node j but node j cannot transmit to node i. Similarly, we can have asymmetric

interference between nodes, where node i’s transmission interferes with node j’s reception,

but not vice versa. However, our networking algorithms will only select bidirectional links

for transmission so the receiver can send acknowledgment messages to confirm that a packet

was successfully transmitted. We do not use the locations of the nodes to derive the connec-
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tivity and interference graphs for the network.2 Instead, we assume that the connectivity

and interference graphs are provided to us by link estimators running on the network.

We are primarily concerned with continuous data traffic as opposed to bursty data

traffic for real-time control systems. Of course, alarms and event-generated traffic need to

be handled, but we assume these are infrequent and can be provisioned ahead of time. As a

result, we will focus on proactive (as opposed to reactive or on-demand) routing protocols,

meaning that routes are established and maintained before they are used to send data.

Also, some real-time measurement systems may have multiple traffic flows (also called

sessions) with different bandwidth requirements. For instance, wireless networked systems

with camera sensors [17] may have high-bandwidth, single-hop traffic between the nodes to

transfer image features for computing image correspondence on cameras sharing the same

field of view. In addition, there may be low-bandwidth, multi-hop traffic to the user to

report short, high-level descriptions of what is being observed in the environment. The

network must support multiple simultaneous sessions.

Since we are focused on wireless networked systems with few decision makers and many

wireless sensor nodes, we will focus on many-to-one and one-to-many routing for collecting

measurements and disseminating commands. As we shall see in Chapter 2, we will exploit

multiple paths between nodes in the network to provide better end-to-end reliability. We

also assume that the network topology is relatively static and stable, meaning we do not

explicitly model node mobility or the association and disassociation (also known as joining

and leaving) of nodes. The network, because of multi-path routing, should be robust to the

failure of a small number of nodes.
2This means we do not assume a disk communication model (all nodes within a radius of node i can

communicate with node i) and do not assume that signal strength decays over distance depending on a path
loss exponent. These assumptions may be useful in other works for analyzing the computational complexity
of a networking algorithm.
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Physical Layer

The models in this dissertation are mostly agnostic to the details of the physical layer

used in the wireless network. However, the range and magnitudes of the data rates and

packet sizes give a sense of how our models will apply in practice.

Many wireless sensor network radios today conform to the IEEE 802.15.4 standard [55],

which is a PHY and MAC layer specification for personal area networks (PANs). The

standard is targeted at low-power, low-bandwidth, short range (≈ 10 – 100m) radios. The

specification targets three bands of open spectrum operating frequencies:

• 868.3MHz, with 1 frequency channel at 20 kbps (kilobits per second)

• 902-928 MHz, with 10 frequency channels at 40 kbps

• 2.4-2.4835 GHz, with 16 frequency channels at 250 kbps.

The radio can scan the frequency channels to select a channel with low outside interference,

or frequency hop over multiple frequency channels (known as frequency hopping spread

spectrum in the literature). Many WSN radios operate in the 2.4 GHz band because of the

higher data rate (which translates to less power per bit transmitted) and the availability of

more channels. The reported bit rates (e.g., 250 kbps) are the raw bit rates of the radio,

not the payload bit rates.

Table 1.1 summarizes the theoretical data rates and packet sizes when using different

combinations of PHY and MAC headers. The PHY header is 6 Bytes and the MAC header

can range from 9 to 25Bytes. Of course, in reality transmissions need to allocate

• clear channel assessment (CCA) time3 (discussed below),

• turnaround time4 to switch the radio from receiving to transmitting and vice versa,

• (optional) guard times to accommodate for clock drift between the transmitter and

receiver,5 and
3802.15.4 specifies a minimum CCA time of 128 µs at 2.4GHz.
4802.15.4 specifies a maximum turnaround time of 192 µs at 2.4GHz.
5This is necessary if the transmitter and receiver need to coordinate to rendezvous at a TDMA time slot.
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Table 1.1. Theoretical data rates and packet sizes for 802.15.4 radio at 2.4GHz
Packet Type Packet Payload 1 Packet Packet Payload

Size Size Tx Time Rate Rate
(Bytes) (Bytes) (ms) (pkts/sec) (Bytes/sec)

empty payload 6 0 0.192 5208.3 0
min size ACK 11 0 0.352 2840.9 0

max size 133 127 4.256 234.96 29840
(no MAC header)

max size, 133 127 - 9 4.256 234.96 27725
2 Byte addr = 118

in MAC
max size, 133 127 - 25 4.256 234.96 23966

8 Byte addr + = 102
2 Byte PAN ID

in MAC

• (optional) additional time to calculate cyclic redundancy checks (CRCs) and message

integrity codes (MICs).

The 802.15.4 physical layer specification includes useful services for assessing interference

and signal quality on the channel, which can be used for link estimation and assigning link

costs by upper layers. These include the Receiver Energy Detection (ED), or Received Signal

Strength Indicator (RSSI), which estimates the total signal strength in the bandwidth of

the channel and the Link Quality Indicator (LQI) which estimates the quality of a received

packet. Also, the radio performs a clear channel assessment before sending a packet, which

can also be used by upper layers to assess the amount of outside interference and contention

/ congestion in the network.

Data Link Layer

At the data link / MAC layer, we will model time division multiple access (TDMA)

media access schemes, where nodes are scheduled to transmit during time slots. The other

popular media access scheme used by the simple radios in sensor networks, carrier sense

multiple access (CSMA), is not studied here because of the difficulty of accurately modeling

random collisions when multiple nodes simultaneously try to access the medium. The
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variants of TDMA schemes (e.g., LEACH [41], BMA [60], LMAC [110], TRAMA [82],

TSMP [80]), essentially differ in the protocols for scheduling the nodes. There are also

variants that are hybrid CSMA / TDMA schemes to improve performance while avoiding

some of the complexity of optimal scheduling in TDMA, such as Scheduled Channel Polling

(SCP) [117] and Z-MAC [85], but for modeling simplicity we stick to the most basic TDMA

model.

Some commercially available sensor networks follow the 802.15.4 MAC specifications.

802.15.4 specifies both a CSMA and a TDMA mode of operation as well as mechanisms

for nodes to associate and disassociate with the network through a PAN coordinator (a

node responsible for coordinating the network). Some of the MAC layer mechanisms may

be implemented in software and not by the radio chip hardware. For instance, on sensor

network platforms which use the CC2420 radio chip [19] (a popular chip used by many

platforms), the implementation of the backoff and retransmission mechanisms in CSMA

and the allocation of Guaranteed Time Slots (GTS) in TDMA is the responsibility of the

microcontroller controlling the CC2420 radio chip. In fact, some sensor networks do not

implement the full functionality of the 802.15.4 MAC layer. For instance, open source

sensor network operating systems such as TinyOS [109] allow researchers to tinker with the

mechanisms in the MAC protocol while conforming to the general 802.15.4 packet format.

The models in this dissertation can be applied to TDMA protocols implemented on

802.15.4 radios, including ones that do not conform to the details of the 802.15.4 specifica-

tions to allocate guaranteed time slots. At the MAC layer, we only model that

• the network is time synchronized,

• nodes send and receive packets during time slots,

• a node can only receive from one other node in a time slot (one radio per node), and

• there can be acknowledgments and retransmissions on a link.

Specifically, the models do not cover these mechanisms of the 802.15.4 MAC standard:

• generation of network beacons by a PAN coordinator

15



• synchronization to network beacons

• PAN association and disassociation

• encryption and security

• CSMA-CA mechanism for channel access

Wireless Networking Standards for Upper Layers

There are many efforts to define wireless networking standards operating in the layers

above the IEEE 802.15.4 PHY / MAC layer. A large industry consortium was formed

to develop the Zigbee network and application layer standard [119]. Zigbee is initially

targeted at energy management and efficiency, home automation, building automation, and

industrial automation.

A Zigbee network is initially created by a node known as the network coordinator and

each network operates over a single frequency channel (no frequency hopping). A node can

join the network as a router or an end device which does not participate in routing packets

for other nodes. A node joins the network as a child of an existing node, thus forming

an association tree with the network coordinator at the root of the tree. Nodes can be

assigned addresses stochastically, meaning they pick an arbitrary address and then resolve

any addressing conflicts later, or they can be assigned addresses hierarchically, meaning

they are assigned addresses which reflect where they are in the tree (all descendants of a

node reside in a predefined block of addresses). The latter is used to help routing.

Zigbee supports many-to-one routing to a concentrator, one-to-many routing either to

a group (also known as multicast) or the entire network (broadcast), or one-to-one routing

(unicast) between nodes. In one-to-one routing, packets travel down a single path while

in multicast packets travel down a single path until they reach a member of a group, at

which point a packet switches to broadcast to reach the remaining members of the group.

Routes can be built on-demand and stored in the routing tables of the nodes on the routing

path. Route discovery is not necessary if the network uses hierarchical addressing since
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the network can use hierarchical / tree routing to route packets along the edges of the

association tree. Zigbee also supports source routing, where the entire path of a packet is

stored in the packet.

Zigbee also specifies that nodes need to broadcast link status update messages to their

neighbors periodically to ensure good links are used for routing. In fact, a node can only

join the network if the link cost to its intended parent in the association tree is below a

threshold (the default threshold is 3). Zigbee specifies that the (integer) link cost cl ∈ [1, 7]

can be fixed (cl = 7) or can be computed via the formula:

cl = min(7, round(
1
p4

l

)) (1.1)

where pl is the probability of reception on the link. The decision of which link cost to use is

up to the implementer, and the method of measuring pl (e.g., using LQI or estimating the

packet reception rate by tracking sequence numbers of packets) is also up to the implementer.

If the implementer wishes to enforce that links are symmetric, then the cost of the link

l = (i, j) (and l = (j, i)) is max(c(i,j), c(j,i)). The cost of a path is simply the sum of

the costs of the links on the path. The route discovery algorithm selects paths with the

minimum cost.

Zigbee’s use of simple link costs and a single path to route between nodes (except for

broadcasts) raises the concern that routing between nodes may be unreliable. On the other

hand, the WirelessHART [40] standard for process measurement and industrial automation

is based off a multi-path routing protocol. WirelessHART is also a network and application

layer standard built on top of the IEEE 802.15.4 PHY / MAC standard. WirelessHART

uses TDMA, with 100 time slots per second, and frequency hops for each packet transmis-

sion. It supports broadcast, multicast, and unicast transmissions as well as source routing.

WirelessHART also supports different traffic priority levels, reservation of bandwidth for

traffic, simple end-to-end acknowledgment of data delivery, and a TCP-like reliable trans-

port handshaking protocol. WirelessHART is based off of Dust Network’s TSMP protocol,

which we will discuss in more detail in Chapter 4.

ISA100.11a [45] is yet another wireless standard for industrial automation. Release 1 of

17



the standard is built on the PHY layer provided by IEEE 802.15.4, and is currently in the

approval process as of the writing of this dissertation. The standard is meant to incorporate

existing application protocols (originally for wired buses) for process monitoring and control

such as native ISA100, HART, Foundation Fieldbus, DeviceNet, Profibus, Modbus, CIP,

and others. It also features TDMA mesh routing with frequency hopping for greater relia-

bility. The significant efforts of ISA (The International Society of Automation) to develop

this standard shows that the industrial automation community expects wireless real-time

control and measurement systems to play an important role in the future.

1.4 Basic Graph Theory Background and Notation

We will be using some basic concepts from Graph Theory throughout this dissertation.

A summary of the math notation used in the chapters can be found in Appendix A. For a

more thorough treatment of Graph Theory, see [37].

A graph G = (V, E) consists of a set of vertices (nodes) V = {1, . . . , N} and a set of

edges (links) E ⊆ {(i, j) : i, j ∈ V}. In this dissertation, unless stated otherwise, the order

of the nodes in the ordered pair representing an edge is important, i.e., (i, j) 6= (j, i). Thus,

unless stated otherwise, we use G to represent a directed graph with directed edges. In an

undirected graph, (i, j) = (j, i). An undirected graph can be represented by a directed graph

where if (i, j) ∈ E then also (j, i) ∈ E .

We say two nodes i and j are adjacent if there exists an edge (i, j) or (j, i) in E . We say

that a node is incident on an edge if it is one of the edge’s two vertices. The neighbors of

a node i are represented by the set of nodes Ni = {j : ∃ (i, j) or (j, i) ∈ E}. The incoming

links of a node i are the edges (j, i), j ∈ V and the outgoing links of a node i are the edges

(i, j), j ∈ V. The indegree of a node i, denoted as δ−(i), is the number of incoming links,

and similarly the outdegree of a node i, denoted as δ+(i), is the number of outgoing links.

The maximum indegree of a graph is ∆− = maxi∈V δ−(i) and the maximum outdegree of

a graph is ∆+ = maxi∈V δ+(i). In an undirected graph, the degree of a node i is denoted
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δ(i), and δ(i) = δ−(i) = δ+(i). The maximum degree of an undirected graph is denoted ∆,

and ∆ = ∆− = ∆+.

A complete graph is an undirected graph where every pair of nodes is adjacent. A

subgraph of a graph G = (V, E) is a graph where its vertices are a subset of V and its edges

are a subset of E . The set of nodes V ′ ⊂ V induces a subgraph G′ = (V ′, E ′), where the

edges of the induced subgraph E ′ ⊂ E includes all edges between the nodes in V ′. A clique

in an undirected graph G is a subgraph of G that is a complete graph. The size of a clique

is the number of nodes in the clique, and we call a clique with k nodes a k-clique.

We may associate a weight with the edges on the network, which is represented by a

function mapping the set of edges to the set of possible weights. For instance, we can weight

the edges by their probability of success, represented by the function p : E 7→ [0, 1]. We

represent the probability of a link l = (i, j) as pl or pij instead of p(l) for more compact

notation. The resulting weighted graph is represented by G = (V, E , p) (we use G both for

a graph and a weighted graph because the meaning of G should be clear from the context).

A path of length n in a graph is a sequence of vertices (i1, . . . , in+1) such that an edge

exists between each vertex and the next vertex in the sequence. We say two nodes are h

hops apart if the shortest path between the two nodes has length h. A graph is connected

if there exists a path between every vertex in the graph. Similarly, a connected component

(or simply, a component) of a graph is a connected subgraph such that no path exists in the

original graph between nodes in the subgraph and nodes outside the subgraph.6 A cycle is

a path where the first and last vertex in the sequence is the same (in which case any vertex

in the cycle can be considered the first or last vertex). A graph is acyclic if it does not

contain any cycles. We call a Directed Acyclic Graph a DAG.

A tree is a connected, undirected, acyclic graph. We can designate a node in a tree as

the root node, and call the other nodes in the tree its descendants. Let us assume node i

has a shorter path to the root node than node j, and an undirected edge exists between i

and j. Then, i is the parent of node j and j is a child of node i. Note that a node in a
6Another way to state this is to say that the component is “maximal,” meaning it includes all nodes

connected to nodes in the component.
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Figure 1.5. Example of a Directed Acyclic Graph (DAG) used to represent a routing topology. The
yellow nodes are the sources A, the gray nodes are the sinks B, the cyan nodes are the nodes in the
routing topology for routing from A to B, and the light pink nodes are not in the routing topology.
Nodes a1, 3, and 4 are upstream of node 5 while nodes 7, 9, b1, and b2 are downstream of node 5.

tree can only have one parent, but it can have many children. We can construct a directed

tree from a tree by converting all the undirected edges to directed edges such that they are

all oriented from a child to a parent in the undirected tree (or they are all oriented from a

parent to a child, but not both). Not all connected DAGs are directed trees — in fact, the

mesh topologies considered throughout this dissertation are not trees.

In this dissertation, we are interested in DAGs that represent a routing topology (to be

discussed in Chapter 2). Therefore, we will designate a set of nodes A as source nodes (or

a single node a as a source node) and a set of nodes B as sink nodes (or a single node b

as a sink node). Typically, B consists of nodes that only have incoming links. Also, after

selecting A, we will only look at the nodes and edges in the DAG that lie on the paths

between nodes in A and nodes in B. On this subgraph of the DAG, A only has outgoing

links. We say node i is upstream of node j (and node j is downstream of node i) if there

exists a path consisting of directed edges from i to j in this subgraph of the DAG. See

Figure 1.5 for an illustration of these terms for describing DAG routing topologies.
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Chapter 2

Metrics for Constructing Routing

Topologies

In this chapter, we will study how to construct a routing topology given an ad-hoc

deployment of wireless nodes. An ad-hoc deployment means that node placement was not

planned precisely, unlike the site surveys used to help plan the deployment of cellphone

basestations. Initially, each node in the network can determine its neighbors, nodes in the

network within direct transmission range. Thus, the network is represented as an undirected

graph of links, which we call the connectivity graph. The routing topology assigns an

orientation to the edges in the connectivity graph indicating the paths a packet can follow

from its source to its destination (also called a sink). The resulting routing topology is a

directed acyclic graph (DAG) with multiple paths from the source to the sink.

Our goal is to generate a routing topology such that routing a packet from the source

to the sink is likely to succeed. Figure 2.1 gives an example of the choices that need to

be made when constructing a routing topology. To attain this goal, we develop a set of

metrics to measure the reliability of the connection between the source and the sink on a

routing topology under different link failure models and routing models. The “reliability of a

connection”, which we sometimes call the end-to-end connectivity, is the probability that a

packet sent from the source is received by the sink (Note that the actual end-to-end packet
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Figure 2.1. Example of constructing a routing topology (bottom, left and right) from a connectivity
graph (top). Two of the links in the connectivity graph are labeled with their respective link
probabilities. There are two reasonable choices for a routing topology, differing in the orientation of
the link between nodes 1 and 2. The topology on the left is a better choice because more paths pass
through link (1, d) than link (2, d). Link (1, d) has a higher probability of successfully transmitting
the packet to the sink.

delivery probability, which will be covered in Chapter 4, also depends on the schedule used

on the network). Using these routing topology metrics a network designer can estimate

whether the deployed network is reliable enough for his application. If not, he may place

additional relay nodes to add more links and paths to the routing topology. He may also

use these metrics to quickly compare different routing topologies and develop an intuition

of which ad-hoc placement strategies generate good connectivity graphs.

Section 2.1 will provide some general background on single-path and multi-path routing,

with a focus on metrics used to construct routing paths. Then, sections 2.1 and 2.3 will

present some new routing topology metrics, followed by a routing topology construction

algorithm in Section 2.4.

2.1 Background and Related Work on Routing

The initial work on routing in wireless ad-hoc networks focused on route discovery and

maintenance for single-path routing. Wireless ad-hoc networks have intermittent connectiv-

ity and, unlike managed (infrastructure) networks which designate certain nodes as network

traffic coordinators (access points, routers) during the physical deployment of the network,

all or most nodes can route traffic. Networks self-organize into a routing topology, which

may change over time depending on the connectivity of the network.
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2.1.1 Constructing Single-Path Routes

Many single-path routing algorithms for wireless sensor networks find minimum weight

paths using a shortest path algorithm such as Dijkstra’s algorithm or the distributed

Bellman-Ford algorithm [20], where the path weight (sometimes called the path cost) is

a sum of the link costs along the path. Protocols such as MintRoute [113] and Drain [107]

(as well as Zigbee, mentioned in Section 1.3.3) differ in the methods employed to calculate

the link cost. For instance, MintRoute uses WMEWMA (Windowed Mean Exponentially

Weighted Moving Average), defined as

WMEWMA(t, α) =
W∑
i=1

αi nrecv,t

max(nexpect,t, nrecv,t)

where α ∈ [0, 1] is a tuning parameter, t is the time window, nrecv,t is the number of packets

received in t, nexpect,t is the number of packets expected in t, and W is the moving average

history length. Drain uses the inverse of the LQI or RSSI value provided by the 802.15.4

radio as the link cost. Other common link costs used in 802.11 wireless mesh networks in-

clude ETX (Expected Transmission Count), ETT (Expected Transmission Time), and RTT

(Round Trip Time) [12; 88]. Some link costs, such as mETX (modified Expected Trans-

mission Count) and ENT (Effective Number of Transmissions) [52], try to also incorporate

link variability (via the standard deviation) into the cost.

While the link costs mentioned above are summed to get a path cost, there are other

ways to compute the path cost from link costs. For instance, ML (Minimum Loss) [12] and

SPP (Success Probability Product) [88] (two names for the same path cost) both multiply

link probabilities to get a path cost. Weighted Cumulative Expected Transmission Time

(WCETT) [26], designed for balancing channel usage on multi-radio wireless mesh networks,

is a path cost which uses a combination of summation and the max operator on ETT:

WCETT = (1− β)
n∑

i=1

ETTi + β max
1≤j≤k

Xj

Xj =
∑

hop i is on
channel j

ETTi

where β ∈ [0, 1] is a tunable parameter, n is the number of links on the path, and k is the

number of channels. WCETT is not suitable for finding minimum cost paths in a distributed
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fashion. In fact, an important consideration for selecting a path cost is whether finding a

minimum cost path requires global link cost information.

In single-path routing, when a link fails for multiple consecutive packets (the packet

reception rate on the link falls below a threshold), the paths using that link are invalidated

and replaced by new paths. The process of building new paths can take a significant amount

of time, bandwidth, and computing resources. Worst of all, the wireless connectivity may

change by the time the new paths are built.

2.1.2 Constructing Multi-Path Routes

Alternatively, multi-path routing from a single source to a single sink can reduce the

number of times a path needs to be rebuilt, while balancing the load on the network and

improving the end-to-end reliability between the source and the sink. There are many types

of multi-path routing.

• Multi-path Source Routing (e.g., Braided Multi-path [34]) sends packets along multiple

paths, specifying the entire routing path from the source to the sink for each packet.

• Mesh Routing (e.g., Time Synchronized Mesh Protocol [80]) does not specify an end-

to-end path for each packet, but instead sets up a “mesh of paths” (multiple paths

that share links) for the packets that all flow to the sink. A node in the mesh tries to

transmit a packet on its outgoing links in a deterministic order.

• Finally, Flooding or some form of Constrained Flooding (e.g., GRAdient Broadcast

[116], Trickle [59]) sends multiple copies of a packet down multiple paths to the sink

(or to all nodes). Some schemes, such as the scheme described by Dulman et al.

[28], code the data over a set of packets and send them along disjoint or braided

(partially disjoint) paths such that only a subset of the packets needs to be received

to reconstruct the data.1

1Strictly speaking, this would not be considered a flooding scheme.
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The stochastic counterpart to all these multi-path routing schemes select links / paths

for packet transmission following a probability distribution. For instance, Constrained

Random Walk [94] is an example of Stochastic Mesh Routing while ARRIVE [48] is an

example of Stochastic Constrained Flooding (ARRIVE also duplicates packets following a

probability distribution).

Note that even in deterministic routing schemes, the actual path taken by a packet may

not be “deterministic,” or known apriori, because of the stochastic nature of link failures.

The stochastic nature of wireless links also affects the path of packets in Opportunistic

Routing schemes like ExOR [9]. Opportunistic routing takes advantage of overhearing

transmissions and acknowledgments from neighbors to coordinate and select, on the fly,

which nodes should relay packets. If the wireless network channels were not stochastic, the

paths of packets would be deterministic.

Some multi-path routing algorithms do not use link or path costs to help select links for

the routing topology (some single-path algorithms don’t either). For instance, in multi-path

source routing protocols such as SMR (Split Multipath Routing) [58], AOMDV (Ad-hoc

On-demand Multipath Distance Vector) [70], and AODVM (Ad-hoc On-demand Distance

Vector Multipath) [118], the focus is on finding link-disjoint or node-disjoint paths (paths

which do not share links or nodes) from the source to the sink. SMR chooses two paths,

the path with the shortest delay and the next path that is maximally disjoint from the first

path. In case of a tie for the second path, it chooses the one with the shortest hop count

and delay. Similarly, AOMDV and AODVM find link-disjoint and node-disjoint paths that

respond first during the route discovery process or have the shortest hop count. Path costs

can be incorporated into the path selection criteria by looking for disjoint paths with the

minimum aggregate path cost (sum of all path costs). For instance, Bhandari [8] gives two

algorithms to find the minimum aggregate cost link-disjoint and node-disjoint paths, where

an individual path cost is a sum of the link costs.

In mesh routing and constrained flooding protocols, much of the literature either does

not use link costs or uses a sum of link costs to help construct the routing topology. In

M-MPR (Meshed Multipath Routing) [23], the geographic location of the nodes helps the
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initial discovery of routing paths. Nodes are restricted to two forwarding links to reduce

the control overhead of maintaining routes, and the first two routes found are selected for

the routing topology. In GRAB (GRAdient Broadcast) [116], link costs are added to assign

a cost to intermediate routing nodes, which then forms a cost potential field for directing

packets to the sink.

On the other hand, Dubois-Ferriere [27] uses link costs in a similar fashion to the use

of link costs in this dissertation to construct routing topologies. Dubois-Ferriere proposed

Anypath Routing, a class of multi-path opportunistic routing protocols. ERS-best2 Anypath

Routing is a mesh routing protocol whereby a node i transmits a packet to a set of “next-

hop” nodes Ci, and one of the nodes (the one with the minimum node cost) who receives

the packet continues to route the packet forward. The set Ci is selected from the neighbors

of i, Ni, to minimize the cost at node i, Wi. A Bellman-Ford type of algorithm is described

in [27] to simultaneously find Ci and compute Wi on a DAG. Wi is related to Ci by the set

of recursive equations

Wi = wiCi + RiCi , Wb = 0 (2.1)

wiCi =
1

1−
∏

j∈Ci(1− pij)
(2.2)

RiCi = pij1Wj1 +
|Ci|∑
h=2

(
h−1∏
k=1

(1− pijk
)

)
pijh

Wjh
(2.3)

where pij is the probability of link (i, j), b is the destination node id, and for convenience of

notation we assume that the nodes in Ni have node ids j1 < j2 < · · · < j|Ci| assigned such

that Wj1 < Wj2 < · · · < Wj|Ci|
. Here, we chose a particular ETX inspired anypath link cost,

wiCi , from the possible anypath link costs described in [27].3 RiCi stands for the remaining

path cost, which is the expected cost assuming the node with the lowest id who received the

packet is chosen to forward the packet. ERS-all Anypath Routing is a constrained flooding

protocol where all nodes in Ci who receive a copy of the packet forwards the packet. The

set of next-hop nodes Ci minimizes the cost Wi, which can be computed using (2.1), (2.2),
2ERS stands for Effective Relay Selection.
3Note that an anypath “link cost” is between a node i and a set Ci, not just between two nodes i and j.
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and

RiCi =
∑
j∈Ci

Wj . (2.4)

2.1.3 Analysis of Multi-Path Routing

Many papers on multi-path routing use simulations to demonstrate qualitative features

of their routing schemes [34; 48]. A small set of papers try to mathematically model and

analyze the benefits of multi-path routing, but they either model at the level of paths

[28; 75] or assume the networks have a very large number of nodes [35]. In [28], Dulman

et al. perform some simple analysis to get the tradeoff between traffic and reliability, but

the analysis does not consider latency. Furthermore, the calculations use the end-to-end

connection probability of disjoint paths, not individual link probabilities, and hence do not

account for varying path lengths or link probabilities. In [75], Nasipuri et al. propose a

multi-path extension to DSR (Dynamic Source Routing) and the analysis focuses on finding

the statistics of the time between successive route discoveries. Again, the paper builds

on a path model with path lifetimes drawn from a distribution instead of a link model

with individual link probabilities. In [35], the authors use a geometry-based argument on

networks with a very large number of nodes to argue that k-shortest path routing algorithms,

which find the k shortest disjoint paths, only distribute the load evenly through a network

when it uses a very large number of paths.

Of particular interest is the modeling and analysis of SERAN [10] and Breath [78], two

cluster-based routing protocols designed for industrial control over WSN. Cluster-based

routing is a form of constrained flooding, where multiple copies of a packet are passed

between groups of nodes to get higher reliability. SERAN and Breath assume the indepen-

dence of links, node wake up times, and random attempts to access the channel so that

the Central Limit Theorem can be employed to get probabilistic guarantees on end-to-end

latency and end-to-end reliability.

In Chapter 4, we will derive models and analysis tools for Unicast Path Diversity, a

class of TDMA mesh routing protocols, and Directed Staged Flooding, a class of TDMA
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constrained flooding protocols, using link probabilities collected from the network. The

models do not only apply to large networks, and does not employ the Central Limit The-

orem to approximate delay, although links are assumed to be independent over time. The

models are presented in Chapter 4 because they only apply after the routing topologies and

schedules are constructed.

2.2 Flooding Connectivity Metrics

This section presents two routing topology metrics, the path probability metric and the

robustness metric. Both metrics fall under the class of flooding connectivity metrics, which

are metrics that assume multiple copies of a packet are routed on all the paths in the

network. On the other hand, Section 2.3 will present metrics that assume only one copy of

the packet is routed through the network. The robustness metric is an approximation of

the path probability metric that is easier to compute. This will be explained in more detail

in Section 2.2.3. We will use these metrics to show that multiple interleaved paths typically

provide better end-to-end connectivity than disjoint paths.

2.2.1 Routing and Link Failure Models

Both the path probability metric and the robustness metric share the same link failure

model. We assume that the links in the network succeed and fail independently of each

other. In reality, link failure is affected by the quality of the radios in the network, external

interference sources, and multi-path fading from physical obstacles in the environment. We

also assume that each node can estimate the probability that an incoming or outgoing link

fails, perhaps through link estimation techniques at the physical layer such as the ones

described for 802.15.4 in Section 1.3.3.

The routing model for both flooding connectivity metrics is that after a node receives

a packet, it multicasts the packet once on all its outgoing links. The node multicasts the

packet only after hearing from all its upstream neighbors, so there are no retransmissions

on a link even if the node receives multiple copies of the packet. In this manner, copies
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of a packet will attempt to traverse all possible paths through the network. Note that the

primary difference between this routing model and general flooding on a network is that the

multicast must respect the orientation of the edges in the routing topology DAG. Also, the

routing topology restricts the order in which nodes can multicast, unlike general flooding

where nodes broadcast to their neighbors in an ad-hoc order.

Given our routing and link failure models, we can represent the routing topology as a

weighted DAG G = (V, E , p) where each link l is weighted by its link success probability pl

(only one probability is associated with each link and the link probabilities are independent).

The routing metrics are computed from G and the source-destination pair (a, b).

2.2.2 Path Probability Metric

Definition 2.2.1 (Path Probability Metric). Let G = (V, E , p) be a weighted DAG where

all nodes have an outgoing edge except for the destination node b, and let pij represent

the probability of link (i, j). The path probability metric, or simply the path probability,

pa→b ∈ [0, 1] is the probability that a path exists in G between the source a and the sink b.

When there are several graphs, we use the notation pG
a→b to specify pa→b on graph G.

Algorithm 1 calculates pa→b, by enumerating all possible paths. Unfortunately, it is

very computationally expensive, taking O(|E| · 2|E|) to compute where |E| is the number of

edges.

Alternatively, Algorithm 2 computes the path probability between a and b using dynamic

programming and is significantly faster. The state used by the dynamic programming

algorithm is the joint probability distribution of receiving a packet on vertex cuts of the

graph separating a and b. A vertex cut of a and b on a connected graph is a set of nodes

C such that the subgraph induced by V\C does not have a single component that contains

both a and b. This definition allows a and b to be elements of C, which is necessary for the

first and last steps of the algorithm. During most steps of the algorithm, C is chosen such

that removing C partitions the graph into two disconnected components, one containing a

and the other containing b. Let C(k) denote the vertex cut chosen in step k of the algorithm.
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Algorithm 1 Path Prob (Path Probability Algorithm)
Input: G = (V, E , p), a, b

Output: pa→b

pa→b := 0

for all E ′ ∈ 2E do . E ′ is a subset of E .

if E ′ contains a path connecting a and b then

pa→b := pa→b +
∏

l∈E ′ pl
∏

l̄∈E\E ′(1− pl̄)

end if

end for

Return: pa→b

Conceptually, the algorithm is converting the DAG representing the network to a vertex

cut DAG, where each vertex cut C(k) is represented by the set of nodes S(k) = 2C
(k)

. Each

node in S(k) represents the event that a particular subset of the vertex cut received a copy of

the packet. The algorithm computes a probability for each node in S(k), and the collection

of probabilities of all the nodes in S(k) represent the joint probability distribution that

nodes in the vertex cut C(k) can receive a copy of the packet. A link in the vertex cut DAG

represents a valid (nonzero probability) transition from a subset of nodes that have received

a copy of the packet in C(k−1) to a subset of nodes that have received a copy of the packet

in C(k). Figure 2.3 shows an example of this graph conversion using the selection of vertex

cuts depicted in Figure 2.2.

Algorithm 2 invokes Procedure 3 to find an ordering (represented by the queue Q)

for adding nodes to the vertex cut such that the vertex cut stays small throughout the

execution of the algorithm. A node can only be added to the vertex cut if all its incoming

links originate from the vertex cut. When a node is added to the vertex cut, its incoming

links are removed. A node is removed from the vertex cut if all it’s outgoing links have

been removed. Note that Procedure 3 is a greedy algorithm and may not always find an

ordering that minimizes the size of the largest vertex cut, Ĉ, used during the execution of

the algorithm.
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Algorithm 2 Path Prob2 (Optimized Path Probability Algorithm)
Input: G = (V, E , p), a . G is a connected DAG.

Output: {pa→v,∀v ∈ V}

(Q, Ĉ) := Add Node List(G, a) . Q is a queue. Ĉ not used here.

C := {a} . C is the vertex cut.

5: E ′ := E . E ′ is the set of remaining edges.

pC({a}) := 1, pC(∅) := 0 . pC(C′) is the probability C′ ⊆ C all have packets.

while Q 6= ∅ do

[Add node to vertex cut]

v := dequeue(Q)

10: p′C := NIL . Probabilities for next vertex cut C ∪ {v}. NIL means not yet assigned.

for all C′ ∈ 2C do . C′ is a subset of C.

Let L = {(u, v) ∈ E ′ : u ∈ C′} . v’s incoming links from C′.

p′C(C′ ∪ {v}) := pC(C′) ·
(
1−

∏
l∈L(1− pl)

)
p′C(C′) := pC(C′) ·

∏
l∈L(1− pl)

15: end for

E ′ := E ′\{(u, v) ∈ E ′ : u ∈ C} . Remove all of v’s incoming links.

C := C ∪ {v}

[Compute path probability]

Let 2Cv = {C′ ∈ 2C : v ∈ C′} . Subsets of C that contain node v.

20: pa→v :=
∑
C′v∈2Cv

p′C(C′v)

[Remove nodes from vertex cut]

Let D = {i ∈ C : ∀j, (i, j) 6∈ E ′} . Nodes with no outgoing links.

C := C\D

pC := NIL

25: for all C′ ∈ 2C do . Combine probabilities for removed nodes.

pC(C′) :=
∑
D′∈2D p′C(C′ ∪ D′)

end for

end while

Return: {pa→v,∀v ∈ V}
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Procedure 3 Add Node List
Input: G = (V, E , p), a . G is a connected DAG.

Output: Q, Ĉ . Q is a queue. Ĉ is the size of the largest vertex cut.

Q := (a), Ĉ := 1

C := {a} . C is the vertex cut.

5: V ′ := V\a . V ′ is the set of remaining vertices.

E ′ := E . E ′ is the set of remaining links.

u := a . u is the node targeted for removal from C.

while V ′ 6= ∅ do

[Find next node u to remove from vertex cut]

10: if u 6∈ C then

Let J = {j : ∀(i, j) ∈ E ′, i ∈ C} . Nodes with all incoming links from C.

u := arg mini∈C
∣∣{(i, j) ∈ E ′ : j ∈ J }

∣∣ . Node with fewest outgoing links to J .

end if

[Add node(s) to / Remove node(s) from vertex cut]

15: Select a node v ∈ {v ∈ V : (u, v) ∈ E ′} . v is a child of u.

enqueue(Q, v)

C := C ∪ {v}

Ĉ := max(Ĉ, |C|)

V ′ := V ′\v

20: E ′ := E ′\{(i, v) ∈ E ′ : i ∈ C} . Remove all of v’s incoming links.

C := C\{i ∈ C : ∀j, (i, j) 6∈ E ′} . Remove nodes with no outgoing links.

end while

Return: Q, Ĉ
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Figure 2.2. An example of a sequence of vertex cuts that can be used by Algorithm 2. The vertex
cut after adding and removing nodes from each iteration of the outer loop is circled in red.

Figure 2.3. Running Algorithm 2 on the network graph shown on the left when selecting vertex
cuts in the order depicted in Figure 2.2 is equivalent to creating the vertex cut DAG shown on the
right and finding the probability that state a will transition to state b. Each column of nodes S
in the vertex cut DAG represents the joint probability distribution of receiving the packet over a
vertex cut in the network.

Computing the path probability pa→b reduces to computing the joint probability distri-

bution that a packet is received by a subset of the vertex cut in each step of the algorithm.

The joint probability distribution over the vertex cut C(k) is represented by the function

p
(k)
C : S(k) 7→ [0, 1]. Step k of the algorithm computes p

(k)
C from p

(k−1)
C by lines 13, 14, and

26 in Algorithm 2. Notice that the nodes in each S(k) represent disjoint events, which is

why we can combine probabilities in line 26 using summation.

The running time of Algorithm 2 depends on the size of the largest vertex cut used in

the algorithm, Ĉ, computed by Procedure 3.4 The running time of the operations in lines

11–12 of Procedure 3 is O(Ĉ∆+), where ∆+ = maxv∈V δ+(v) is the maximum outdegree of
4It would be preferable to bound the running time by a property of the graph. One candidate is the the

max-cut of the graph when edges are weighted by 1, but computing the max-cut of a graph is NP-hard [49].
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G. Lines 15–21 have constant running time. Therefore, the running time of Procedure 3 is

O(|V|Ĉ∆+). The outer loop of Algorithm 2 (lines 7–28) runs |V| times. The computation

in the outer loop is dominated by the loops over the power set of the vertex cuts C used

by the algorithm (lines 11–15, 19–20, 25–27). In the loop on lines 11–15, the worst case

running time for each iteration of the loop is linear in the maximum indegree of the vertices,

∆− = maxv∈V δ−(v). In the loop on lines 25–27, the number of summation operations times

the number of loops is always less than 2Ĉ , so the running time is O(2Ĉ).5 Therefore, the

running time of the entire algorithm is O
(
|V|(Ĉ∆+ + 2Ĉ∆−)

)
, which is typically much

smaller than O(|E| · 2|E|), the running time of Algorithm 1.

The main drawback with using the path probability as a metric is that it requires global

knowledge of the network topology and link probabilities to compute. Even Algorithm 2

requires knowledge of the outgoing link probabilities of a vertex cut of the network. The

nodes in a vertex cut may not be in communication range of each other, and thus the

communication necessary to run Algorithm 2 in-network will not be local (i.e., between

neighboring nodes). The next section proposes a metric that can be computed with only

local communication.

2.2.3 Robustness Metric

Definition 2.2.2 (Robustness Metric). Let G = (V, E , p) be a weighted DAG where all

nodes have an outgoing edge except for the destination node b, and let pij represent the

probability of link (i, j). The robustness metric ra→b ∈ [0, 1] on G with respect to a source-

destination pair (a, b) can be computed using

ra→a = 1

ra→v = 1−
∏

i

(1− ra→uipuiv)
(2.5)

where ui are the upstream neighbors of node v. When there are several graphs, we use the

notation rG
a→v to specify ra→v on graph G.

5The summation on lines 19–20 are also O(2Ĉ). Actually, it is not necessary to compute pa→v for all v
if we are only interested in pa→b.
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Figure 2.4. The paths from a to each downstream node ui are treated as if they share no links
during the robustness metric calculation.

Figure 2.5. (left) When nodes a and b are connected in series, the path probability is just a
product of the link probabilities p1p2. (right) When nodes a and b are connected in parallel, the
path probability is just 1− (1− p1)(1− p2).

Figure 2.4 illustrates (2.5). The motivation for defining the robustness metric in this

fashion is that it captures how to compute the path probability between two nodes when

there are independent links in series and in parallel, as illustrated in Figure 2.5.

Note that if we reverse the orientation of all the links on a graph G to get
←−
G = (V,

←−
E , p),

where
←−
E = {(i, j) : (j, i) ∈ E}, then r

←−
G
b→a does not equal rG

a→b (See Example 2.2.4 in

Section 2.2.4).6 This is due to the nested, recursive nature of (2.5). On the other hand, the

path probability p
←−
G
b→a is equal to pG

a→b.

The definition of the robustness metric naturally leads to a dynamic programming

algorithm to compute it in O(|V| + |E|) time, Algorithm 4. Algorithm 4 can easily be

modified such that it is distributed across all the nodes in the network. A node v simply

waits for the robustness metric on all its upstream neighbors nodes to be computed before

computing its own robustness metric.

As mentioned earlier, the robustness metric is an approximation of the path probabil-

ity pa→b that requires only local information and is faster to compute. Example 2.2.2 in

Section 2.2.4 gives a routing topology where ra→b 6= pa→b. The robustness metric would

equal the path probability on topologies where all the paths are independent. There is an

6Here we break with the convention where a is the source and b is the sink; Instead, b is the source of
←−
G

while a is the sink of
←−
G .
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Algorithm 4 Robust Metric

Input: G = (V, E , p), a, b

Output: ra→b

∀v ∈ V\a, ra→v := NIL . NIL means not yet assigned.

ra→a := 1

Q := {v : (a, v) ∈ E} . Q is a queue.

while Q 6= ∅ do

v := dequeue(Q)

if ∀ui ∈ {u : (u, v) ∈ E}, ra→ui 6= NIL then

ra→v := 1−
∏

i (1− ra→uipuiv)

for all w ∈ {w ∈ V : (v, w) ∈ E} do

if w 6∈ Q then

enqueue(Q, w)

end if

end for

else

enqueue(Q, v)

end if

end while

Return: ra→b
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implicit assumption in (2.5) that ra→ui is the probability of the event Aa ui that a path

exists between a and ui, and that for all ui, Aa ui are independent events. This leads us

to Conjecture 2.2.1.

Conjecture 2.2.1 (ra→b ≥ pa→b). For any DAG G = (V, E , p) with source a and destina-

tion b

ra→b ≥ pa→b . (2.6)

Conjecture 2.2.1 states that the robustness metric is an upper bound on the path prob-

ability. The intuition behind Conjecture 2.2.1 comes from the following argument. First,

we construct a graph G′ = (V ′, E ′) from graph G such that the path probability pa→b on

G′ is equal to the robustness metric ra→b on G. Recall (2.5), where for each ra→v, we treat

the paths from a to v through each upstream neighbor ui as if they were parallel and did

not share any links (See Figure 2.4). We construct G′ from G by making a duplicate of the

intermediate nodes and links between a and b using the following procedure.

Let G′a ui
be graphs constructed thus far and G′a v be the graph we are constructing in

the current step. First, set G′a a = ({a}, ∅). We will select the nodes v ∈ V to construct G′

in the same order that nodes are taken out of the queue Q in Algorithm 4. Choose a node

v for the current step. For each upstream neighbor ui of v, make a copy of all the nodes

and links in G′a ui
except a, which will be shared by all the graphs. Connect these graphs

G′a ui
with the links from ui to v to form G′a v. Choose the next node v following the

order in Algorithm 4 and repeat until we have G′a b. Finally, set G′ = G′a b and for clarity

relabel a to a′ and b to b′. An example of this is illustrated in Figure 2.6. By construction,

pa′→b′ on G′ is equal to ra→b on G. Note that the final graph is not equivalent to a graph

where all paths from the source to the sink are parallel.

Now, it remains to show that pa′→b′ ≥ pa→b. The intuition is that the paths in G′ share

less links and are “more independent” than the paths in G. Therefore, we expect that the

probability that at least one of the paths in G′ succeeds is larger than the probability that

at least one of the paths in G succeeds. We expect that if our link failure model for G′ is
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Figure 2.6. Example of steps to convert graph G to graph G′. Note that the final graph is not
equivalent to a graph where all paths from the source to the sink are parallel. See text for details.

modified such that the links in each set of duplicated links (links that correspond to one

link in G) fail or succeed together, the path probability on G′ would be the same as the

path probability on G.

To see why we expect pa′→b′ ≥ pa→b, let us consider only two paths. Note that each

path in G is represented in G′ by a path with the same link probabilities. Furthermore, for

any pair of paths (g1, g2) in G, the corresponding pair of paths (g′1, g
′
2) in G′ either shares

the same number of links or shares less links. Let A1 represent the event that path g1 is

successful. Define A2, A
′
1, and A′2 in a similar fashion for their respective paths. Let E1 be

the set of links in path g1, and define E2, E ′1, and E ′2 in a similar fashion. Then,

∏
i∈E1∪E2

pi = P (A1 ∩A2) ≥ P (A′1 ∩A′2) =
∏

j∈E ′1∪E ′2

pj

because we can map each link in (E1 ∪ E2) to a link in (E ′1 ∪ E ′2) with the same probability

and still have leftover links in (E ′1 ∪ E ′2) (we have duplicated links in G′). This means that

P (A1 ∪A2) ≤ P (A′1 ∪A′2)

because P (A1) = P (A′1) and P (A2) = P (A′2) (and in general, P (A ∪B) = P (A) + P (B)−
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Figure 2.7. The two topologies have the same robustness metric. Links are labeled by their
probabilities. Here, the probability subscripts do not correspond to links; Instead, they are used to
denote which links in the two graphs have the same probability. Any probabilities with matching
subscripts have the same value. Link (a, i) on the left topology, is treated as multiple independent
links in the robustness metric calculation.

P (A ∩B)). It is more likely that at least one of g′1 and g′2 succeeds than at least one of g1

and g2 succeeds.

Unfortunately, there exists a graph G such that the difference between the robustness

metric and the path probability is almost 1, i.e., supG |rG
a→b − pG

a→b| = 1. For instance,

we can construct topologies consisting of a link (a, i) in series with many parallel links, as

shown on the left of Figure 2.7. The path probability must be less than p0, the probability

of link (a, i), which we can set to be close to 0. But by adding more parallel links after link

(a, i), we can make the robustness metric between the source and sink arbitrarily close to

1. We will see an example of such a topology in the next section.

Although there exists graphs where the robustness metric is not a good approximation

of the path probability, in practice the robustness metric is still a useful estimate of the

end-to-end connectivity of a routing topology. The robustness metric has the following

desirable properties:

• The value of the metric lies between 0 and 1, roughly corresponding to the probability

that a path exists between the source and the sink.

• When the metric equals 0, no path exists between the source and the sink.

• Adding a link to a graph does not decrease the value of the metric on the graph.

• Adding a link not on the path between the source and the sink does not change the

robustness metric.
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• If we fix the sink b, the metric measured from a source a1 may be larger than the

metric measured from a source a2 that is on a path between a1 and b when a1 has

other paths to reach the sink.

• The metric can be computed efficiently with little communication between the nodes.

We will use a variant of the robustness metric to construct a routing topology from a

connectivity graph in Section 2.4.

2.2.4 Examples and Discussion

In this section, we will examine the difference between the robustness metric and the

path probability metric on several special examples of graph topologies.

Example 2.2.1 (Serial-parallel topology). Figure 2.8 gives an example of a topology where

the robustness metric at the sink is much larger than the path probability at the sink. In

fact, ra→b = 0.878 is much greater than ra→v = 0.7 of the downstream neighbor of the

source, even though all paths from the source to the sink must pass through the source

node’s downstream neighbor.

The next two examples demonstrate that having many interleaved paths in the mesh

can significantly improve connectivity.

Example 2.2.2 (Meshed paths vs. disjoint paths). Figure 2.9 depicts a mesh topology

with many interleaved paths and a topology with parallel, disjoint paths. Both topologies

have links with the same probability, and both topologies have the same number of links

between the columns of nodes in the middle of the graph. However, pa→b of the meshed

paths topology is greater than pa→b of the disjoint paths topology.

Example 2.2.3 (Wide path topologies). This example studies wide path topologies, which

are routing topologies where nodes can be grouped into columns and links are only between
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Figure 2.8. Serial-parallel topology with 5 parallel links, where the robustness metric at the sink
ra→b (top) is significantly greater than the path probability at the sink pa→b (bottom). The source
is circled in red, the sink is circled in black, and each node is labeled with ra→v or pa→v in the
respective plot.

Figure 2.9. Comparison of a mesh topology (left) and a topology with disjoint paths (right) using
the robustness metric ra→b (top) and the path probability pa→b (bottom). The source is circled in
red, the sink is circled in black, and each node is labeled with ra→v or pa→v in the respective plot.

nodes in adjacent columns (typically a node has links to several nodes in the adjacent

columns). We say the topology is a width-k path topology if there are k nodes in each

column except the columns containing the source and the sink.

A comparison of pa→b from Figures 2.10 and 2.11 shows that adding nodes to a topology
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Figure 2.10. Width-2 path topology, every node in a column has an outgoing link to every node
in the column to the right. The robustness metric at the sink ra→b (top) is greater than the path
probability at the sink pa→b (bottom). The source is circled in red, the sink is circled in black, and
each node is labeled with ra→v or pa→v in the respective plot.

to increase the number of interleaved paths is a good strategy for increasing the probability

that a packet flooded from the source reaches the sink. The links in both topologies have an

unusually low probability of pl = 0.6 to show the dramatic difference between the topologies

and to show that a significant gap can exist between pa→b and ra→b on each topology. The

difference between pa→b and ra→b manifests itself more clearly in nodes that are far away

from the source.

Also, notice in Figure 2.11 that the robustness metric of the nodes in each column

appears to increase with the number of hops away from the source, while the path probability

increases and then decreases. In fact, (2.5) on our width-3 path topology where all links

have probability pl simplifies to

ra→a = 1

ra→v = 1− (1− plra→v′)3
(2.7)

where v′ is an upstream neighbor of v. It turns out there are two fixed points if we think
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Figure 2.11. Width-3 path topology, every node in a column has an outgoing link to every node
in the column to the right. The robustness metric at the sink ra→b (top) is greater than the path
probability at the sink pa→b (bottom). The source is circled in red, the sink is circled in black, and
each node is labeled with ra→v or pa→v in the respective plot.

of (2.7) as a continuous mapping from [0, 1] to [0, 1]. These are 0 and 0.9043, the roots

to the equation 1 − (1 − plx)3 − x with variable x (the third root, 4.0957 is not in [0, 1]).

Clearly, ra→v is approaching the fixed point 0.9043 as we look at nodes v farther from the

source. On the other hand, the path probability will decrease toward 0 as we look at nodes

farther away from the source, which is expected. The initial rise in path probability in

the first five columns is a “transient effect” from having a single source which can flood

the packet on three independent links (the path probability would start out higher and

slowly decrease if we had three sources with the packet sending to all the nodes in the first

column). In Chapter 4, after the Directed Staged Flooding model is presented and analyzed

in Section 4.3.4, the reader will gain a better intuition of why this behavior is expected.

In short, the robustness metric does not qualitatively match the characteristics of the path

probability in some routing topologies.

An interesting question is whether routing topologies that conform to a simple set of
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Figure 2.12. Two examples of two-parents-per-node topologies, where every node has two distinct
downstream neighbors. The source is circled in red, the sink is circled in black, and each node is
labeled with ra→v or pa→v in the respective plot.

constraints will have a high path probability from the source to the sink. For instance, the

routing topology formation algorithm may reject any links with probability lower than a

specified threshold and only allow nodes to join the network if it has links to at least two

downstream nodes that have already joined the network. If we know the number of nodes

in the network, can we lower bound the path probability from the source to the sink? What

are some extreme examples of topologies under these constraints?

Example 2.2.4 (Topologies with downstream links constraint). Figure 2.12 depicts two

topologies where each node, except for the sink and one node adjacent to the sink, have

two links to distinct downstream neighbors. All links have probability 0.6, which represents

the “worst case” when the threshold for a link to be used in the network is 0.6. Note that

the topology on the right of Figure 2.12 depicts several nodes in a line for clarity, but you

can think of them as surrounding the sink. If we were to add nodes to the network one by

one, trying to maximize each node’s minimum hop count path to the sink, we would get

the topology on the left of Figure 2.12. If we were to add nodes to the network one by one,

trying to connect to nodes that have the best path probability (or robustness metric) to the

sink, we would get the topology on the right of Figure 2.12. The two topologies have very

different path probabilities pa→b.
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Figure 2.13. Two-children-per-node topology obtained by reversing the links on the topology on
the right of Figure 2.12, where every node has two distinct upstream neighbors. The source is circled
in red, the sink is circled in black, and each node is labeled with ra→v or pa→v in the respective plot.

Finally, to illustrate that rG
a→b 6= r

←−
G
b→a, Figure 2.13 depicts a topology where every node,

except the source and one node adjacent to the source, have two links to distinct upstream

neighbors. This topology
←−
G is obtained by reversing the links of the topology G on the

right of Figure 2.12. Although rG
a→b 6= r

←−
G
b→a, notice that the path probability of the two

topologies are equal.

In Section 2.4.3, we will compare the robustness metric and path probability on ran-

domly generated graphs with routing topologies formed by an algorithm based on the ro-

bustness metric. Also, in Chapter 4 we will discuss how to compute an end-to-end connec-

tivity metric for two types of TDMA routing protocols, Directed Staged Flooding (DSF)

and Unicast Path Diversity (UPD). The connectivity metric for DSF closely resembles the

computation of the path probability in Algorithm 2. In fact, if we set up a DSF schedule

such that nodes transmit packets in the same order as they are selected by Algorithm 2, the

connectivity metric after the last node has transmitted will match the path probability of

the network. In this sense, the path probability of the network matches a communication
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scheme where a node listens to all its parents (closer to the source) for a copy of the packet

and broadcasts copies of the packet to all its children using a single transmission.

2.3 Unicast Flow Metrics

This section presents two unicast flow metrics for routing topologies, the flow metric and

the retransmission flow metric (rtFlow metric, for short). Unlike the flooding connectivity

metrics, these metrics assume unicast routing where only one copy of the packet travels

down one path through the network, making decisions on which link to traverse at each

node. This section will focus on the rtFlow metric, because the link failure model for the

flow metric is less realistic. The flow metric is presented mainly as a motivation for the

rtFlow metric.7

Under the link failure model for the rtFlow metric, it is possible that the packet reaches

a node where all its outgoing links fail, i.e., the packet is “trapped at a node.” Thus,

topologies where a node is likely to receive a packet but has outgoing links with very low

probabilities of success tend to perform poorly under unicast routing (See Example 2.3.2).

Flooding is less affected by the phenomenon of “trapped packets” because other copies of

the packets can still propagate down other paths. The rtFlow metric will thus “penalize”

topologies that have a tendency to trap packets more heavily than the path probability

metric would penalize these topologies. Like the path probability metric, the rtFlow metric

shows that multiple interleaved paths typically provide better end-to-end connectivity than

disjoint paths.

2.3.1 Routing and Link Failure Models

This section presents routing and link failure models for the flow metric and slightly

different routing and link failure models for the retransmission flow metric. As in Sec-

tion 2.2.1, in both link failure models all the links in the network fail independently and
7In fact, it is so simple that it probably has been developed by other researchers before. I didn’t check

the literature for this.
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each link l succeeds with probability pl. Also, in both routing models only one copy of the

packet is routed through the network. The packets are routed following the links of the

DAG describing the routing topology. Packets are routed without prior knowledge of which

links have failed on the network, and cannot “backtrack” from a downstream node to an

upstream node to find an alternate path.

In the flow metric link failure model, a link l succeeds or fails during a transmission

time slot independently of whether it succeeded or failed during any previous time slot. In

other words, at each time slot link l has no memory of its past, so the success or failure of

the link over a sequence of time slots is a Bernoulli process with probability pl of success.

The flow metric routing model assumes that when a packet reaches a node v, the node

will select an outgoing link uniformly at random from all its outgoing links to transmit

the packet. If the link fails, node v will again select an outgoing link uniformly at random

from all its outgoing links, including the link that just failed (in other words, links are

selected “with replacement” over time). Node v will continue to try to transmit on an

outgoing link until it succeeds, which will eventually occur because an individual link’s

success or failure is independent of it’s past successes or failures. Since packets cannot be

lost, all packets transmitted from the source eventually reach the sink(s). The flow metric

described in Section 2.3.2 is a crude measure of traffic distribution across the network under

the described routing and link failure models.

In the retransmission flow metric link failure model, a link either succeeds or fails across

all the time slots when the packet is being routed through the network. One interpretation

is that the packet is routed through a particular realization of the collection of links in

the network, where each link l is either up (success) or down (fail). The realization of the

collection of links in the network for each packet is generated once by making each link l

succeed with probability pl.

The retransmission flow metric routing model assumes that after a packet reaches node

v, the node will select an outgoing link uniformly at random from all its outgoing links to

transmit the packet. If this link fails, node v will select another outgoing link uniformly at
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random from all the outgoing links that have not been selected for transmission before (in

other words, links are selected “without replacement” over time).8 Each time an outgoing

link fails, node v will select another outgoing link that has not been selected for transmission

until either a transmission succeeds or all the outgoing links have been selected and all have

failed. In the latter case, the packet is dropped from the network. Note that in this model

each link is selected once for transmission and all permutations in the order of selecting links

are equally probable. The retransmission flow metric described in Section 2.3.3 measures

the proportion of packets that reach the nodes in the network under the described routing

and link failure models.

2.3.2 Flow Metric

The flow metric fa→v ∈ [0, 1] measures the proportion of packets from node a that

traverse through node v assuming the flow metric routing and link failure models. This

can be computed given the flow weights on the links in the network, where wuv is the flow

weight for link (u, v). The flow weight of a link l = (u, v) is the probability that a packet

which arrived at node u traverses the link. The flow metric fa→v is computed using the

flow weights of node v’s incoming links and the flow metrics of its upstream neighbors.

To compute wuv where l = (u, v), first let Eu = {(u, v) ∈ E : v ∈ V} be the set of

outgoing links of node u and δ+(u) = |Eu| denote the number of outgoing links from node

u. Let A
(k)
e denote the event that node u selected link e ∈ Eu for the k-th attempt at

transmitting the packet, and link e succeeds. Similarly, let Ā
(k)
e denote the event that node

u selected link e ∈ Eu for the k-th attempt at transmitting the packet, but link e fails. Let

B(k) denote the event that the k-th transmission failed.

Because the probability of selecting an outgoing link is uniform and independent of

link success or failure, P(A(k)
e ) = 1

δ+(u)
pe and P(Ā(k)

e ) = 1
δ+(u)

(1 − pe). Since the events

8Given our link failure model, there is actually no difference if we select links with replacement or without
replacement. If node v tries to transmit on a link l that was previously selected for transmission, it will fail
again. This is as if link l was not selected at all. It is more intuitive to view this as selecting links without
replacement.
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A
(k)
e ,∀e ∈ Eu are disjoint,

P(B(k)) = P

( ⋃
e∈Eu

Ā(k)
e

)
=
∑
e∈Eu

P(Ā(k)
e ) =

∑
e∈Eu

1− pe

δ+(u)
.

Notice that the events B(k), k = 1, 2, . . . all have equal probability, and the events A
(k)
l , k =

1, 2, . . . for a fixed l all have equal probability.

The probability that a packet traverses down link l is thus

wuv = P
(
A

(1)
l ∪ (B(1) ∩A

(2)
l ) ∪ (B(1) ∩B(2) ∩A

(3)
l ) ∪ · · ·

)
(a)
= P(A(1)

l ) + P(B(1) ∩A
(2)
l ) + P(B(1) ∩B(2) ∩A

(3)
l ) + · · ·

(b)
= P(A(1)

l ) + P(B(1)) · P(A(2)
l ) + P(B(1)) · P(B(2)) · P(A(3)

l ) + · · ·

where step (a) is because the corresponding events are disjoint and step (b) is because the

corresponding events are independent. Substituting in probabilities, we get

wl =
pl

δ+(u)
+
(∑

e∈Eu(1− pe)
δ+(u)

)
pl

δ+(u)
+
(∑

e∈Eu(1− pe)
δ+(u)

)2
pl

δ+(u)
+ · · ·

which is a geometric series. Recall that if α < 1 then 1 + α + α2 + · · · = 1
1−α , so

wl =
pl

δ+(u)

 1

1−
P

e∈Eu
(1−pe)

δ+(u)

 =
pl∑

e∈Eu pe
.

Definition 2.3.1 (Flow Metric). Let G = (V, E , p) be a weighted DAG where all nodes

have an outgoing edge except for the destination node b, and let pij be the probability of

link (i, j). The flow metric fa→b ∈ [0, 1] on G with respect to a source-destination pair

(a, b) can be computed using

fa→a = 1

fa→v =
∑
uk

fa→uk
wukv

(2.8)

where uk are all the upstream neighbors of node v and wukv is the flow weight of link

l = (uk, v). The flow weight of link l = (u, v) is given by

wuv =
pl∑

e∈Eu pe
(2.9)

where Eu = {(u, v) ∈ E : v ∈ V} denotes the set of outgoing links of node u. When there

are several graphs, we use the notation fG
a→v to specify fa→v on graph G.
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It is easy to see from (2.8) and (2.9) that fa→b = 1 when b is the only sink in the

routing topology DAG. Therefore, fa→b is not a good metric to compare two different

routing topologies to see which is more likely to successfully deliver packets to the sink.

One might be tempted to incorporate packet loss into the flow metric by multiplying the

flow weights wl by the link probability pl and using that as a new flow weight. However,

this approach to incorporate packet loss into the flow metric does not distinguish between

a single link topology from a parallel link topology (Figure 2.5, right) when all links have

probability p.

2.3.3 Retransmission Flow Metric

The retransmission flow metric (rtFlow metric) %a→v ∈ [0, 1] measures the proportion of

packets from node a that traverse through node v assuming the retransmission flow metric

routing and link failure models. Similar to the flow weight, the retransmission flow weight

(rtFlow weight) for link l = (u, v) is the probability that a packet which arrived at node u

traverses link l, and is denoted $l ∈ [0, 1]. %a→v is computed using the rtFlow weights of

node v’s incoming links and the rtFlow metrics of its upstream neighbors.

For more compact notation in our following derivation of the rtFlow metric from the

routing and link failure models, we will use random variables as “indicator functions” of

events. For example, the random variable X will take on the value 1 when the event

associated with X occurs and 0 otherwise. We will use the compact notation PX,Y (x, y)

to denote P (X = x,Y = y), where X,Y are random variables. Because we are using

the random variables as indicator functions, we will sometimes abuse the notation and

terminology by referring to the value taken by a random variable or a set of random variables

(e.g. x in the previous expression) as an event.

Let the random variable Al equal 1 when link l is the first successful link in the sequence

of link transmissions chosen by node u and 0 otherwise. The event associated with Al is

the same as the event that a packet at node u traverses link l, so $l = PAl
(1). To compute

$l, first let L denote the number of outgoing links from node u (L = δ+(u), the outdegree
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of node u) and with abuse of notation let’s refer to u’s outgoing links as 1, . . . , L (in the

following discussion, we will also let link l be a number, l ∈ {1, . . . , L} instead of l = (u, v)).

The order which node u will try to transmit on its outgoing links can be represented by

a permutation of the links 1, . . . , L. Let the random variable P map each permutation

of links 1, . . . , L to a number in {1, . . . , L!} (the actual mapping does not matter in the

following discussion). Let the random variable Bi equal 1 when link i succeeds and 0 when

it fails. Recall that links do not change from “success” to “fail” or vice versa during the

time a packet is routed through the network. Al is a function of the random variables

P ,B1, . . . ,BL. The rtFlow weight is

$l = PAl
(1)

=
∑

π,b1,...,bL

PAl,P ,B1,...,BL
(1, π, b1, . . . , bL)

=
∑

b1,...,bL

∑
π

PAl|P ,B1,...,BL
(1|π, b1, . . . , bL)·

PP |B1,...,BL
(π|b1, . . . , bL) · PB1,...,BL

(b1, . . . , bL)

(c)
=

∑
b1,...,bL

∑
π

PAl|P ,B1,...,BL
(1|π, b1, . . . , bL) · PP (π)·

PB1,...,BL
(b1, . . . , bL)

=
∑

b1,...,bL

(∑
π

(d)︷ ︸︸ ︷
PAl|P ,B1,...,BL

(1|π, b1, . . . , bL) ·PP (π)︸ ︷︷ ︸
(e)

)
·

PB1,...,BL
(b1, . . . , bL)

where step (c) is because the order of transmission attempts on node u’s outgoing links is

independent of the collection of link successes and failures, i.e., P ⊥⊥ (B1, . . . ,BL). The

summations over b1, . . . , bL are for bi ∈ {0, 1},∀i and similarly the summation over π is for

π ∈ {1, . . . , L!}.

The next step is to simplify expression (e). First, let E∗u = {e1, . . . , eE} denote the set

of successful links from the event (b1, . . . , bL), where E = |E∗u|. Expression (d) serves as an

indicator function of whether (π, b1, . . . , bL) is an event where link l is the first successful link

in the permutation π. Therefore, expression (e) is a weighted sum that counts the number
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of permutations where link l is ordered before any other successful link from E∗u, and each

count is weighted by the probability of the permutation. Note that for all e, e′ ∈ E∗u, the

number of permutations where link e is ordered before all the links in E∗u\e is equal to

the number of permutations where link e′ is ordered before all the links in E∗u\e′. Also,

all permutations π have equal probability. Finally, if we let Aej denote the event that

includes all permutations π where link ej is ordered before all the links in E∗u\ej , the events

Ae1 , . . . , AeE partition the sample space of all permutation events. This leads us to conclude

that P(Aej ) = 1
E ,∀ej ∈ E∗u. Using Bl as an indicator function of when link l is successful,

expression (e) simplifies to Bl · P(Aej ) = Bl
E . Since

∑L
k=1 bk = E,

$l =
∑

b1,...,bL

Bl∑L
k=1 bk

· PB1,...,BL
(b1, . . . , bL) .

Recall that the links succeed or fail independently, so

PB1,...,BL
(b1, . . . , bL) = PB1(b1) · · ·PBL

(bL)

where

PBi(bi) =


pi if bi = 1

1− pi if bi = 0
.

We get the following definition of the retransmission flow metric after a change of variables

and expressions used in the derivation (e.g., E ′ = E∗u\l).

Definition 2.3.2 (Retransmission Flow Metric). Let G = (V, E , p) be a weighted DAG

where all nodes have an outgoing edge except for the destination node b, and let pij be the

probability of link (i, j). The retransmission flow metric (rtFlow metric) %a→b ∈ [0, 1] on

G with respect to a source-destination pair (a, b) can be computed using

%a→a = 1

%a→v =
∑
uk

%a→uk
$ukv

(2.10)

where uk are all the upstream neighbors of node v and $ukv ∈ [0, 1] is the retransmission

flow weight (rtFlow weight) of link (uk, v). The rtFlow weight for link l = (u, v) is given by

$uv =
∑

E ′∈2Eu\l

pl

|E ′|+ 1

(∏
e∈E ′

pe

) ∏
ē∈Eu\(E ′∪l)

1− pē

 . (2.11)
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Here, Eu = {(u, v) ∈ E : v ∈ V}, all the outgoing links of node u.

If the links (u, v) ∈ Eu all have probability p, then (2.11) simplifies to

$uv =
δ+(u)∑
k=1

1
k

(
δ+(u)− 1

k − 1

)
pk(1− p)δ+(u)−k (2.12)

where δ+(u) is the outgoing degree of node u.

When there are several graphs, we use the notation %G
a→v to specify %a→v on graph G.

The link retransmission flow metric (link rtFlow metric) %uv ∈ [0, 1] of a link (u, v) gives

the amount of flow down a link and is

%uv = %a→u$uv . (2.13)

2.3.4 Examples and Discussion

The following example shows how to compute flow weights and rtFlow weights and

gives some insights and strategies for modifying the routing topology to improve the rtFlow

metric.

Example 2.3.1 (Unicast flow metrics on width-3 path topologies). Figure 2.14 shows a graph

topology where every node but the sink and its upstream neighbors has three outgoing links.

Using (2.9), the flow weights of a node that has outgoing links 1, 2, 3 with link probabilities

p1, p2, p3 respectively would be

w1 =
p1

p1 + p2 + p3

w2 =
p2

p1 + p2 + p3

w3 =
p3

p1 + p2 + p3
.

(2.14)

Similarly, using (2.11) the rtFlow flow weights are

$1 =
1
3
p1p2p3 +

1
2
(p1p2p̄3 + p1p̄2p3) + p1p̄2p̄3

$2 =
1
3
p1p2p3 +

1
2
(p1p2p̄3 + p̄1p2p3) + p̄1p2p̄3

$3 =
1
3
p1p2p3 +

1
2
(p̄1p2p3 + p1p̄2p3) + p̄1p̄2p3

(2.15)
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where we use the shorthand p̄i = 1 − pi. Note that the formulas for the flow and rtFlow

metric can also be applied to networks with multiple frequency channels, offering multiple

independent channel-links between nodes in the network (in our previous definition of a

graph, at most one link can exist between a pair of nodes). Each channel-link is treated as

an independent link, and the calculations for the flow weight and the flow metric proceed

as before.

Figure 2.14 shows the flow metric and rtFlow metric for each node in a meshed paths

topology. All links have the same probability in the topology on the left while the links

have a range of probabilities in the topology on the right. Both flow and rtFlow metrics for

the topology on the left shows an even packet distribution throughout the network since

the network is symmetric and all the link probabilities are equal. Both metrics for the

topology on the right also shows fairly even packet distribution, despite the variation in

link probabilities.

A quick comparison of Figure 2.15 and the left of Figure 2.14, where both topologies

have the same link probabilities and the same number of links between the intermediate

columns, confirms that meshed topologies tend to have a higher probability of delivering a

unicast packet under the rtFlow metric routing and link failure models than disjoint paths

topologies.

Notice that in the topology on the left of Figure 2.14, the rtFlow metric at the sink is

less than or equal to 0.9. In general, if the upstream neighbors of the sink do not have links

between each other and they all have one link to the sink, the rtFlow metric at the sink

cannot be greater than the largest probability of all its incoming links. This is because the

sum of the rtFlow metric across all the upstream neighbors of the sink is less than or equal

to 1. The rtFlow metric on a node v represents the probability that a packet visits v as it

is routed through the network, and the packet can only visit one of the upstream neighbors

of a sink in any path it traverses through the network (visiting the upstream neighbors are

disjoint events).

These observations point to three strategies at the sink that can increase the rtFlow
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Figure 2.15. rtFlow metric on a parallel disjoint paths topology, for comparison with the topology
on the left of Figure 2.14. The source is circled in red, the sink is circled in black, and nodes are
labeled by %a→v.

metric %a→b. We can add links between the upstream neighbors of the sink such that a

node can try to relay the packet to another upstream neighbor if it fails to transmit to

the sink (Figure 2.16). Also, we can add multiple sinks to the network connected by a

wired backbone (so they behave as one sink with two receivers at two different locations),

such that each upstream neighbor of the sinks has two outgoing links, one to each sink

(Figure 2.17). Otherwise, we can use multiple frequency channels to create multiple inde-

pendent (or approximately independent) channel-links to the sink from each of its upstream

neighbors.

Example 2.3.2 (Adding lossy paths). Figure 2.18 gives a topology where an increase in a

link’s probability actually lowers the rtFlow metric. This illustrates the phenomenon of

“trapped packets” mentioned at the beginning of Section 2.3. In this example, an increase

in the link probability boxed in green reflects that, on average, more packets will arrive at

the intermediate node with a low probability outgoing link. When that outgoing link fails,

it is more likely to trap a packet at the node. In the same fashion, sometimes adding a link

to a topology can decrease %a→b. This is different from the path probability and robustness

metrics, where adding a link to a topology or increasing the probability of a link can never

lower the metric between the source and the sink.

The rtFlow metric is useful during the deployment stage to estimate the likelihood that
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Figure 2.16. rtFlow metric on width-3 path topology with links added between the upstream
neighbors of the sink, where all links have probability pl = 0.9. .

a packet from the source can reach the sink. We consider again the routing topologies from

Example 2.2.4 to compare the rtFlow metric and the path probability metric.

Example 2.3.3 (Topologies with downstream links constraint). Figure 2.19 shows the rtFlow

metric on the topologies in Figure 2.12, and Figure 2.20 shows the rtFlow metric on the

topology in Figure 2.13. Notice that %a→b is lower on the left topology of Figure 2.19 than

the right topology of Figure 2.19, which is consistent with the path probability on the two

topologies. Since the routing model of the rtFlow metric sends one packet through the

network while the routing model of the path probability metric sends multiple copies of the

packet through the network, given a topology G, %G
a→b ≤ pG

a→b. One interpretation is that

the rtFlow metric penalizes trapped packets more heavily than the path probability.

Figure 2.20 and the right of Figure 2.19 together show that, like the robustness metric,

there exist graphs G where %G
a→b 6= %

←−
G
b→a.
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Figure 2.17. rtFlow metric on width-3 path topology with an additional sink, where all links have
probability pl = 0.9. The two sinks are connected by a wired backbone, so the rtFlow metric on the
two sinks is the sum of rtFlow metric on each sink.

Unfortunately, the computation required to compute the rtFlow weights using (2.11)

is exponential in the number of outgoing links of a node. This may not be a problem if

the network restricts the number of outgoing links on each node in the network (e.g., ≤ 10

links). The following example examines a slight variation to the routing model that result

in a more computationally tractable variant of the rtFlow metric.

Example 2.3.4 (Alternate flow weights). One alternate routing model would be for a node

to always attempt transmission on outgoing links in decreasing order of link probabilities.

As before, the node would try each link once and drop the packet when all links fail. This

model leads to the following probability-ordered rtFlow metric (po-rtFlow), %′a→v calculated

in the same fashion as the rtFlow metric except $uv is replaced by

$′li =
i−1∏
k=1

(1− plk)pli (2.16)

where the outgoing links of node u have been sorted from highest to lowest probability into

the list (l1, . . . , lδ+(u)).
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Figure 2.18. Example where increasing the probability of a link l (boxed in green) can decrease
the rtFlow metric. The plots in the same column correspond to topologies with the same pl. In the
plots on the top, the nodes are labeled in black with the rtFlow metric and the links are labeled in
blue (smaller font) with the link probability. In the plots on the bottom, the links are labeled with
the link rtFlow metric.

Figure 2.19. Two examples of two-parents-per-node topologies, where every node has two distinct
downstream neighbors. The source is circled in red, the sink is circled in black, node labels on the
top plots correspond to %a→v, and link labels on the bottom plots correspond to %uv.
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Figure 2.20. Two-children-per-node topology obtained by reversing the links on the topology on
the right of Figure 2.19, where every node has two distinct upstream neighbors. The source is circled
in red, the sink is circled in black, node labels on the top plot correspond to %a→v, and link labels
on the bottom plot correspond to %uv.

When we calculate %′a→v on the same topology (and same link probabilities) from the

right of Figure 2.14 we get Figure 2.21. Notice that the traffic is far less evenly distributed

on the nodes in the network. Also, in this example %′a→v < %a→v, but there are other

examples where %′a→v > %a→v. In other words, from the point of view of the probability

that a packet from the source reaches the destination, one routing model is not better than

the other. However, because the traffic is less evenly distributed if there is a fixed order

of link transmission attempts, we expect the probability-ordered routing model to be more

sensitive to link estimation errors of outgoing links at nodes that carry most of the traffic.

One consideration when proposing routing models for calculating flow weights is whether

it is likely to match the schedule generated by the scheduling algorithm after the routing
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Figure 2.21. Probability-ordered rtFlow metric on a width-3 path topology where all links have
probability pl selected uniformly at random from the range [0.8, 0.95]. The source is circled in red,
the sink is circled in black, node labels on the top plot correspond to %′a→v, link labels on the top
plot correspond to link probabilities, and link labels on the bottom plot correspond to %′uv.

topology has been formed. Typically, a node that has received a packet at time t will want

to transmit the packet on the first outgoing link scheduled to transmit after time t, so as to

reduce the end-to-end packet latency. As we will see in the next chapter, a fixed, repeating

schedule will often route packets down a few paths in networks, but exactly which paths

(and links) are used more frequently may be hard to predict while building the routing

topology. Hence, it is hard to order the outgoing links for computing flow weights, as we

tried to do in the previous example. On the other hand, the rtFlow metric routing model

is meant to match randomized schedules where at any time t, the next scheduled outgoing

link is selected uniformly from all the outgoing links.
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2.4 Generating a Routing Topology

This section describes an algorithm that uses a variant of the robustness metric to

construct a robust routing topology from an undirected connectivity graph. The robust

routing topology is a DAG for routing packets from all the nodes in the network to the

sink. The goal of the algorithm is to generate a routing topology such that packets from

the nodes in the network are likely to reach the sink.

We assume the all the nodes in the connectivity graph are connected and all links

are bi-directional, meaning that a receiver can send acknowledgments to the transmitter.

Any uni-directional links will not be used by our routing algorithm. This is not a big

limitation because studies have shown that high quality links are often bidirectional [14]. In

fact, poor links may be pruned from the connectivity graph before the connectivity graph

is presented to the routing topology construction algorithm. Also, we always assume the

timescale at which the underlying undirected graph changes significantly (enough to warrant

regenerating the routing topology) is much larger than the time it takes to deliver a packet

through the network. Thus, the routing topology is assumed to be static.

In this section, we first review a simple routing topology, the minimum hop DAG, to

motivate the robust DAG routing topology.

2.4.1 Minimum Hop Topology

An important criterion when generating a routing topology is to ensure there are no

routing loops. The routing topology must therefore be a DAG. A commonly used method

(not invented by the author) to generate a DAG is to first generate a routing tree, then label

all the nodes by the number of hops away from the root, then orient all the links on the

graph from nodes with a higher hop count to nodes with a lower hop count, and then orient

the links between nodes with the same hop count such that no routing loops are formed.

The initial routing tree can easily be generated by having the sink serve as the root node

and broadcast a message with hop count 0, then having all nodes that hear that message
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Figure 2.22. A minimum hop DAG routing topology. Nodes are labeled by their minimum hop
count (not encircled). Node 4 would have an alternate path to the root if link (3, 4) were reversed.

broadcast a message with hop count 1, and so forth. Let h = [h1 h2 · · · hN ] be the vector

of hop counts for nodes 1, . . . , N , where node i has hop count hi.

To send a packet from a node to the root (the sink), we would route messages following

the links of the graph, passing messages from nodes with higher hop counts to nodes with

lower hop counts. We call the resulting routing topology a minimum hop DAG. Note that

in such a topology, a node v with a hop count hv can only send messages to nodes with a

hop count of hv or hv − 1. That is, if v could send messages to a node u with a hop count

hu < hv − 1, then v would have a hop count hu + 1. Figure 2.22 shows that a minimum

hop count DAG may not always provide enough paths for a robust connection to the root

for all nodes. This motivates the next section, where we try to construct a robust DAG, or

a robust routing topology.

2.4.2 Robust Topology

As seen above, assigning an ordering to the nodes in a network using hop counts and

enforcing rules based on the hop counts, for instance a node must only route to another node

with a lower hop count, is a useful technique to help ensure that there are no routing loops

in the topology. In fact, we do not have to set a node’s hop count equal to it’s minimum

hop count. The minimum hop count is interesting, however, because the nodes with the

same minimum hop count h form a vertex cut of the network separating the source from

the sink (if the source a has a minimum hop count ha > h). This means that given the

connectivity graph for the network, for all h ∈ {1, . . . , ha− 1} the packet must visit at least
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Figure 2.23. Nodes are labeled by their hop count. In this scenario, node 3 and 4 both decide
simultaneously that they need to demote their hop count and flip one of their incoming links (in
red) so that they can route to their children and increase the number of paths to the sink. Now,
no nodes have a hop count of 1 and we have a routing loop. Let’s assume nodes 1 and 2 increment
their hop count to 4 to ensure they have a larger hop count than their parents. Nodes 3 and 4 will
then do the same. The process repeats and the hop counts will “count to infinity.”

one node with hop count h before the packet can reach the sink, regardless of the actual

routing topology used to route the packet.

Therefore, a natural approach is to start with a minimum hop DAG and modify it to get

a robust routing topology. For instance, we may want to demote a node, meaning increase

its hop count from the minimum, so that it may route a packet to the root through one

of its children (higher hop count) or one of its siblings (same hop count). However, the

process of modifying a minimum hop DAG to get a robust DAG is tricky because a slight

miscoordination between nodes can result in the formation of routing loops in the topology.

Consider the example illustrated in Figure 2.23, which is similar to the well known

count-to-infinity problem in networking. Here, we assume that nodes with hop count h can

only route to nodes with hop count h′ < h. As such, if a node wishes to route to its children

to increase its number of paths to the root, it must increase its hop count. If two such nodes

do this simultaneously, nodes 3 and 4 in the example, we can get inconsistent hop counts

and routing loops.

Instead of trying to form a robust DAG by demoting nodes in a minimum hop count

DAG, we will directly assign nodes a robust count ~i for each node i = 1, . . . , N following

Algorithm 5. ~~~ denotes the vector of assigned hop counts [~1 ~2 · · · ~N ]. The robust hop

count will always be greater than or equal to the minimum hop count of a node, and always

less than or equal to the maximum hop count. Algorithm 5 uses a variant of the robustness

metric, ←−r , to help assign hop counts to nodes, assuming nodes can only route to other

nodes with smaller (or equal) hop counts. Let ui be a downstream neighbor of node v,
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unlike (2.5) where ui are the upstream neighbors of v. Then,

←−r b→b = 1

←−r v→b = 1−
∏

i

(1− pvui

←−r ui→b) .
(2.17)

Note that this definition of←−r is easy to compute during topology formation with very little

communication between nodes. In fact, ←−r v→b on the topology G is equal to rb→v on the

topology
←−
G , formed by reversing the orientations of all the links in G.

Algorithm 5 Robust Hop Count

Input: G = (V, E , p), a, b, τ ,K

Output: ~~~ . Robust hop count.

∀i, ~i = NIL . NIL means not yet assigned.

Select a set of nodes C connected to a with good links, and ∀v ∈ C, ~v := 1.

for k := 1 to K do

for all v ∈ {v ∈ V : ~v = NIL} do

[Run the following simultaneously on all nodes]

for h := 1 to maxi ~i do

Let ui ∈ V be nodes with ~ui < h and a link to v.

←−r v→b := 1−
∏

i (1− pvui

←−r ui→b)

if ←−r v→b ≥ τk−h+1 then

~v := h

Break from innermost For loop.

end if

end for

end for

end for

Return: ~~~

Algorithm 5 joins nodes to the robust routing topology (by assigning them a robust

hop count ~) over rounds 1, . . . ,K, where each round lasts a fixed interval of time. At each

round k, node v has the potential to be assigned one of several robust hop counts. If node
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Figure 2.24. Illustration of how thresholds are used to help assign a node a robust hop count. The
horizontal row of thresholds represent τ , with τE = τ9, which is some value less than the minimum
link probability in G. The shaded vertical column of thresholds are the thresholds tested by a node
at round k. A node v picks the smallest hop count ~ such that ←−r v→b ≥ τe.

v is assigned a robust hop count ~, then ←−r v→b from (2.17) must be greater than or equal

to a threshold τe ∈ [0, 1]. The downstream neighbors ui used to compute ←−r v→b must have

been assigned a robust hop count less than ~ in a round before round k. The value of the

threshold τe corresponding to a particular hop count ~ depends on the epoch e = k− ~ + 1.

Note that to seed the algorithm, a set of nodes with good links to the sink are assigned

~ = 1 before round 1.

In round k, for each possible ~, node v computes the corresponding←−r v→b and compares

it against the corresponding threshold τe. If v can be assigned multiple ~ (there are multiple

~ such that ←−r v→b ≥ τe), v will choose the smallest ~. The robust hop count assigned

to v is denoted ~v, and remains fixed thereafter. The vector of thresholds is denoted

τ = [τ1 · · · τe · · · τE ]. The thresholds decrease with increasing e, with the last threshold

τE less than the minimum link probability in G. This is illustrated in Figure 2.24.

Although Algorithm 5 is written as sequential pseudocode, it is meant to be implemented

in parallel on the nodes in the network. First, all the nodes are time synchronized (by some

sort of broadcast algorithm, for instance [71]) so they share a global time t, used to keep

track of the current round k. Also, all the nodes have the vector of thresholds τ . In each

round, each node v listens for a broadcast of the pair (←−r ui→b, ~ui) from each of its neighbors

ui that have joined the routing topology. After receiving the broadcasts, node v performs
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the computations and comparisons with the thresholds to determine if it can join the routing

topology with some robust hop count ~v. Once v joins the network, it broadcasts its value

of (←−r v→b, ~v).

Algorithm 5 is designed to reduce the chance of forming routing loops despite packet

losses. For instance, nodes can periodically broadcast their own ←−r and ~. If a broadcast

of (←−r u, ~u) from node u is missed by node v, then node v may join the network later or

join with a higher hop count (because of a lower threshold when joining the network later).

Under the rule that nodes must route to nodes with a lower hop count, this should not cause

a routing loop. In fact, we can add edges to E (channel conditions improve between two

nodes) or nodes to V (and their adjacent undirected edges to E) in the middle of assigning

robust hop counts and still not get routing loops in the topology. Problems arise if all edges

from a node to nodes with a lower hop count are removed from the topology, but that

should occur infrequently.

If we orient the edges in E such that nodes with higher hop counts transmit to nodes

with lower hop counts, we get a robust DAG. However, it will not utilize edges between

nodes with the same hop count. The remedy is to use a simple mechanism to create a DAG

on just the nodes with hop count ~ and the edges between them. For instance, you can

assign the node v a robust fractional hop count

~f = ~ + (1−←−r v→b) (2.18)

Similarly, for a minimum hop DAG to use links between nodes with the same hop count h,

you can assign v a fractional hop count

hf = h + (1− pmax) (2.19)

where pmax is the largest link probability between v and nodes with a lower hop count.

Both mechanisms require no communication between nodes. Then, we orient the edges from

nodes with higher (robust) fractional hop counts to nodes with lower (robust) fractional hop

counts. In the rare case of a tie, we can use the node id as the tie breaker.
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Figure 2.25. An example where the minimum hop DAG provides more paths between a and b than
the robust DAG. Nodes are labeled by their hop count (not encircled), where we chose one possible
set of hop assignments for the robust DAG. Let’s assume the nodes join the network in the order of
their node ids and node a joins last. In the robust DAG, node 3 may wish to connect as a child of
node 2 to get more paths to the root for itself (and for node 4), which results in less paths from a

to b.

2.4.3 Example and Discussion

Note that a robust DAG generally tries to maintain a high ←−r between every node and

the sink, not a particular source-destination pair. Therefore, there may be scenarios where

a given source-destination pair has a higher ←−r on a minimum hop DAG than on a robust

DAG, as shown in Figure 2.25.

Example 2.4.1 (Robust topology on random connectivity graphs). This example uses the

robustness metric and path probability metric to compare robust topologies with minimum

hop topologies on randomly generated, undirected connectivity graphs. Both types of rout-

ing topologies are rooted at the sink, and we compare the connectivity of all the nodes

to the sink. The robust topology was generated from the robust fractional hop counts

~f returned by Algorithm 5 and (2.18). The threshold vector used in the algorithm was

τ = [0.99 0.98 · · · 0.6] where thresholds in consecutive epochs differed by 0.01. The maxi-

mum round to join the network was K = 100. The minimum hop topology was generated

from the fractional hop counts hf returned by (2.19).

The undirected connectivity graphs were generated by placing 30 nodes uniformly at

random in a 10 × 10 grid. To prevent extremely dense clusters of nodes from forming

(making it hard to visualize the results), if a node was placed too close (less than 0.5 units)

away from another node it was removed and placed again. To ensure that the graph was

reasonably well connected, we only used randomly generated graphs where the node in the
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Table 2.1. Robust DAG vs. min hop DAG on 50 random graphs
Routing Robustness Metric rv→b Path Prob Metric pv→b

Topology mean median variance mean median variance
Min Hop 0.9126 0.9215 0.0038 0.8544 0.8740 0.0100

Robust 0.9227 0.9275 0.0025 0.8707 0.8870 0.0074

lower left corner was connected by an undirected path to the node in the upper right corner.

The node in the upper right corner was designated as the sink in the network.

Nodes that were less than 2 units apart had a link, nodes more than 3 units apart

did not have a link, while nodes that were between 2 and 3 units apart had a link with

probability 3 − d, where d was the Euclidean distance between the nodes. Links were

then assigned a probability uniformly at random from the range [0.7, 1], independent of the

distance between the nodes.

Figure 2.26 is an example of a randomly generated connectivity graph, the robust and

minimum hop routing topologies constructed on the graph, and the robustness and path

probability metrics rv→b and pv→b on the two routing topologies (NOT the robustness metric

variant ←−r v→b).

Figure 2.27 compares the connectivity of a robust topology with a minimum hop topol-

ogy on 25 randomly generated undirected connectivity graphs. The comparison is made

on nodes that have joined both topologies (e.g., we don’t include nodes that have joined

the minimum hop topology but have not joined the robust topology in our comparisons).

The distribution of connectivity metrics on all nodes in each graph is represented by a box

and whiskers plot. Comparing the respective box and whiskers plot for each run (same

columns in the top and bottom graphs), we see that the robust DAG tends to give more

nodes better connectivity to the sink, whether we measure connectivity by the robustness

metric or the path probability metric. Table 2.1 shows the aggregate results on 50 random

graphs (including the 25 in Figure 2.27). This shows that the robust DAG does tend to

produce better routing topologies when the topology is shared by many source nodes in the

network routing to the sink.

69



Figure 2.26. Path Probability and Robustness Metric comparisons of the Robust DAG and Min
Hop DAG on a randomly generated topology with 30 nodes. The source node is circled in red, The
sink node is circled in black, and links on the path between the source and the sink are magenta
(the remaining links are gray). Note that all nodes can route to the sink in this topology, but a
source was selected to highlight the set of paths to the sink from one node. Nodes are labeled with
the metric pv→b or rv→b on the respective plots. Some metrics are displayed as 1 due to roundoff
errors (only the sink actually has a metric equal to 1).
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Figure 2.27. Comparison of routing topologies generated by the robust DAG and a minimum hop
DAG, using the robustness metric and the path probability metric. The distribution of metrics from
each node to the sink for is represented by a box and whiskers plot. The median is represented by
a circled black dot, the outliers are represented by blue circles, and the interquartile range (IQR) is
1.5. See text for details.
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Chapter 3

Metrics for Scheduling

Transmissions

The problem of scheduling links in a TDMA network for transmission has been studied

extensively and is known to be a hard problem [84; 83]. This chapter is concerned with

finding a tractable, distributed scheduling algorithm for wireless TDMA mesh networks.

Ideally, we would want a schedule that would optimize metrics to better support real-time

control systems over wireless sensor networks. The types of metrics for this will be discussed

in detail in Section 3.2.2.

We are interested in distributed scheduling algorithms primarily because they have the

potential to be more adaptable to changing wireless channel conditions than centralized

scheduling algorithms. A centralized scheduling algorithm needs to collect information

from all the nodes and then distribute a schedule to all the nodes. This means one root

node (or multiple root nodes, if they are connected by a wired backbone) will become a

communication bottleneck just for network control traffic, the traffic that is used to support

the networking algorithms. Recall that wireless communications in WSNs is fairly slow,

which means that the time spent passing information to and disseminating information

from the root node will be a significant fraction of the total time to compute and install a

new schedule in the network. If this root node is also the collection point for data in the
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network (e.g., many-to-one routing), the network control traffic will also reduce the data

throughput in the network.

The tradeoff of using a distributed scheduling algorithm is that it computes less optimal

schedules than a centralized algorithm. However, in practice centralized algorithms may

also compute suboptimal schedules because optimal schedules often require a long time to

compute. We are not as interested in finding optimal schedules as finding schedules that

perform well and can be computed with reasonable costs, i.e., reasonable time and commu-

nication overhead. The next section will first review the relevant literature on scheduling

and the following sections will describe a scheduling algorithm tailored for reliable sensor

networks.

3.1 Background and Related Work on Scheduling

The objective of TDMA scheduling is to find sets of links that can transmit simulta-

neously in a network in order to optimize a metric such as network throughput or latency.

This problem fits under a unified problem framework for TDMA / FDMA / CDMA1 chan-

nel assignment proposed by Ramanathan [84]. Our problem is defined by the constraints

of which transmitters and receivers can be active at any moment in time on a particular

frequency channel.

Two common interference models used to define transmission constraints are the node-

exclusive interference model and the IEEE 802.11 DCF interference model. In the node-

exclusive interference model, a node can only transmit or receive from one other node at a

time. This model applies to networks where each node has only one radio and neighboring

links do not interfere with each other, for example frequency hopping networks such as

Bluetooth and FH-CDMA networks. The 802.11 Distributed Coordination Function (DCF)

interference model has the same constraint as the node-exclusive model plus the additional

constraint that links must be at least two hops apart. This is because any transmission on

a link must undergo a successful Request to Send / Clear to Send (RTS / CTS) handshake,
1Time / Frequency / Code Division Multiple Access.
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Figure 3.1. Illustration of a RTS / CTS handshake for 802.11 DCF, used to prevent the hidden
terminal problem. The transmission range (large circle) is assumed to be the same as the interference
range. A transmitter (node 1) broadcasts an RTS packet designating the intended receiver (node 2),
which preempts all its neighboring nodes from sending (nodes 3, 4, and 7). Upon receiving an RTS
packet, the receiver responds with a CTS packet only if it has not received an RTS or CTS packet
from its neighboring nodes (nodes 5, 6, and 7). This CTS packet preempts neighboring nodes from
sending an RTS packet. The transmitter, upon receiving the CTS packet, can start transmitting the
(longer) data packet. In the illustration, all nodes in the shaded circles do not transmit or receive
during the data packet transmission. RTS / CTS is typically not used in sensor networks because
the data packets are small.

as described in Figure 3.1. The node-exclusive and 802.11 DCF interference models can be

generalized to k-hop interference models.

Definition 3.1.1 (k-hop Interference Model). If link (u1, v1) is scheduled, then any other

link (u2, v2) that is simultaneously scheduled must satisfy

min
x∈{u1,v1}
y∈{u2,v2}

h(x, y) ≥ k , (3.1)

where h(·, ·) measures the minimum number of hops between two nodes.

Thus, the node-exclusive interference model is a 1-hop interference model while an

802.11 DCF interference model is a 2-hop interference model.

Alternatively, the interference constraints between nodes can be defined based on other

measures such as the geometric distance between nodes. The advantage of defining an

interference model based on the hop distance between nodes is that this doesn’t impose

idealized radio propagation models (e.g., disk coverage models) on the nodes in the network
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and this corresponds to information that is readily available to the nodes. For instance,

node i may have difficulty directly estimating which nodes’ transmissions are interfering

with node i’s reception because node i may not be able to decode the contents of the

interfering messages. The drawback is that k-hop interference may not accurately model

the actual interference in the environment.

The scheduling problem is closely related to the graph coloring, independent set, and

matching problems on undirected graphs. The following subsections will introduce these

problems, describe existing solutions to the distributed scheduling problem, and review the

current understanding of how scheduling at the logical / data-link layer affects the network

and transport layers in the network.

3.1.1 Coloring, Independent Sets, and Matching

The usual approach to solving the scheduling problem is to translate it to the graph

coloring, matching, or independent set problem and then apply an algorithm to solve the

new problem. First, let us define some relevant terminology.

Definition 3.1.2 (Graph Coloring [44]). A coloring of a graph G = (V, E) is a map from

V into a finite set of colors such that no two adjacent vertices are assigned the same color

(See Figure 3.2, left). If G can be colored with a set of k colors, then we say that G can be

k-colored. The smallest value of k for which G can be colored is the chromatic number of

G, and is denoted by χG. The set of vertices with a particular color is called a color class

of the coloring.

A color class of a coloring is also an independent set. Note that we often use positive

integers as “colors”, so nodes are labeled by integers when assigned to a color class.

Definition 3.1.3 (Independent Set [44]). An independent set of vertices in a graph is a

set of vertices such that no two vertices in the set are adjacent to each other. A maximal

independent set (MIS) is an independent set that is not a subset of any other independent

set (See Figure 3.2, middle). A maximum independent set is an independent set with the

most number of vertices of all independent sets on the graph.
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Figure 3.2. (left) Nodes in the 4-coloring are labeled by their color. (middle) Nodes in the maximal
independent set are bold. (right) Edges in the maximal matching are bold.

Definition 3.1.4 (Matching [44]). A (2-D) matching M in a graph is a set of edges such

that no two edges have a vertex in common. A maximal matching is a matching that is not

a subset of any other matching (See Figure 3.2, right). A maximum matching is a matching

with the most number of edges of all matchings on the graph.

The problem of scheduling broadcasts can be translated to coloring a graph. The

problem of scheduling links (particularly for the node-exclusive interference model) can be

translated to finding maximal matchings. These problems, as well as the problem of finding

maximal independent sets, are all closely related and will be discussed later.

First, let us walk through a simple example of how to translate a broadcast scheduling

problem to a graph coloring problem. Suppose our problem is to find a minimum length

schedule of broadcasts where every node gets to transmit, because a shorter schedule can give

better network throughput. The constraints are defined by the 2-hop interference model,

meaning that a node can only receive from one other node in a time slot and a node cannot

transmit in the same time slot as another node within two hops away. Our “Minimum

length” objective translates to a “minimum colors” objective in the corresponding graph

coloring problem. First, we create an undirected graph C that embodies the constraints of

the scheduling problem (See Figure 3.3). Start with the routing topology G, and replace

each directed edge with an undirected edge. Then, add edges between nodes that are two

hops away to get C. Next, we color C and assign nodes with the same color to the same

time slot for transmission.
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Figure 3.3. (left) Routing topology G. (right) The conflict graph C associated with G, with colored
nodes. The dashed lines represent 2-hop edges added to the conflict graph.

The general approach for reducing a scheduling problem to a graph problem is to create

a graph C from G such that the edges of C represent transmission-reception constraints

(e.g., a node can only receive from one other node at a time) and interference constraints

(e.g., a nearby node cannot be simultaneously transmitting) on the new problem [83]. In the

example above, the interference constraint was defined by the number of hops separating

two transmitters. The coloring problem with a k-hop separation requirement on G is called

distance-k coloring, so the example above was an example of a distance-2 coloring problem

on G. In general, C can represent arbitrary interference constraints between nodes. For

more examples of constraint graphs for different scheduling problems, see [31].

Unfortunately, the problem of coloring a graph with the minimum number of colors is an

NP-complete problem (for a discussion on NP-completeness, see [20]). Since graph coloring

on arbitrary graphs is NP-complete, one might look into graph coloring on restricted classes

of graphs. Unfortunately, graph coloring on even very restrictive classes such as planar-point

graphs [93] and unit disk graphs [38] have been shown to be NP-hard.

Definition 3.1.5 (Planar-Point Graph and Unit Disk Graph [93; 38]). Given a set of

points {x(1), . . . ,x(N)} in an m-dimensional space, each specified by an m-dimensional

vector [x1 · · ·xm], and a range ri associated with each x(i), the point graph constructed

from this set of points is a graph G = (V, E), where each node vi represents a point x(i)

and there is a directed edge from node vi to vj if ‖x(i) − x(j)‖2 ≤ ri, where ‖x(i) − x(j)‖2

is the Euclidean distance between the points x(i) and x(j). Planar point graphs are point
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Figure 3.4. (left) A planar-point graph. (right) A disk graph. For clarity, we represent two directed
edges (i, j) and (j, i) as one undirected edge.

graphs constructed from the points on a 2-dimensional plane (m = 2). A unit disk graph is

a planar point graph where ∀i, ri = 1. See Figure 3.4 for examples.

On the other hand, the problems of finding a maximal matching and a maximal inde-

pendent set are not NP-complete. In fact, both can be solved by a distributed algorithm

described in the next subsection. A maximal matching on G gives a set of links that can

transmit simultaneously in one time slot under the node-exclusive interference model. A

maximal independent set on G allows us to compute a suboptimal coloring in a random-

ized, distributed manner, as we will see in Section 3.1.2. Also, a maximal matching problem

can be reduced to a maximal independent set problem by converting the graph G to it’s

line graph L(G), where each edge in G is represented by a vertex and two edges in G are

represented by adjacent vertices in L(G) if and only if they are incident (share a node) in

G [44].

The related problems of finding a maximum matching and a maximum independent

set are more difficult. There are algorithms to find a maximum matching on a graph in

polynomial time (O(N3) where N is the number of nodes, [77]). However, the problem

of finding the maximum independent set of a graph is NP-complete [77]. Furthermore,

variations on the maximum matching problem such as the 3-dimensional matching problem

are NP-hard [77]. A variant that is relevant to scheduling is the class of maximum weighted

k-valid matching problems. In these problems, the edges have weights and the objective
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is to find a matching that respects the k-hop interference constraints and maximizes the

sum of the weights of edges in the matching. A matching satisfying the k-hop interference

constraint, called a k-valid matching, does not contain edges that are within k-hops of each

other, as defined by (3.1). The maximum weighted k-valid matching problems are also

NP-hard for k ≥ 2 [97].

Naturally, when problems are NP-hard we look for approximate solutions that are more

computationally tractable. Some NP-hard problems are amenable to polynomial-time ap-

proximation schemes.

Definition 3.1.6 (Polynomial-time Approximation Scheme (PTAS) [77]). An algorithm is

a polynomial-time approximation scheme (PTAS) for an optimization problem A if, when

supplied with an instance of A and an ε > 0, it returns an ε-approximate solution (i.e.,

solution within (1 + ε) times the optimal) within time which is bounded by a polynomial

(depending on ε) in n.

Although such approximation schemes are highly desirable, not all problems are PTAS.

For instance, if P 6= NP, then it has been shown by [2] that the chromatic number χG

can not be computed within a factor of |V|1/7−ε for all ε > 0 in polynomial time. On

the other hand, the maximum weighted k-valid matching problems have a PTAS with an

approximation factor of 1/(1 + ε) if we restrict our attention to unit disk graphs [97]. In

fact, a number of problems such as maximum independent set and vertex coloring have

been shown by [68] to be approximable within a constant factor, but not for all constant

factors ε > 0 (as in a PTAS), on unit disk graphs.

While maximum matchings and minimum coloring help compute schedules that maxi-

mize throughput, the above results show that they may be difficult to implement. In fact,

finding a maximal matching for scheduling may be “good enough” in practice. Also, we

shall see that maximal matching is very suitable for distributed implementation.
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3.1.2 Complexity of Distributed Scheduling

Distributed scheduling tries to exploit the locality of scheduling constraints to reduce

the amount of coordination between nodes and allow computations to happen in parallel.

Under the synchronous model of computation, the nodes share a global clock, the link delays

are bounded, and computation happens in rounds alternating with link transmissions [79].

The challenges in distributed computing include minimizing the amount of information

exchanged between nodes and minimizing the number of rounds of computation, while

computing a “reasonably good” answer. Other concerns are whether the computed solution

is robust to node or link failure.

For comparison with parallel algorithms later, let us consider a simple, sequential (not

parallel), greedy algorithm called Greedy Color which finds a (∆ + 1)-coloring of a

graph for TDMA scheduling in O(|E|) time, where ∆ is the maximum degree of the undi-

rected connectivity graph. Sequential algorithms assume that only one node performs a

computation and transmits the results at a time, so they result in many rounds of com-

putation. Greedy Color selects a node (perhaps through lexicographic ordering of the

node id) and colors the node with the smallest positive integer not in use by its neighbors.

Greedy Color uses at most six times more colors than an optimal coloring when we

restrict ourselves to coloring unit disk graphs [68]. Variants of Greedy Color select the

nodes in different orders. For instance, [84] describes RAND, MNF, and PMNF coloring

where nodes are labeled with an ordering and then colored with Greedy Color in decreas-

ing order of the labels. RAND labels the nodes randomly, while Minimum Neighbors First

(MNF) assigns smaller labels to nodes with fewer neighbors so that nodes with a higher

number of neighbors are colored first. Progressive Minimum Neighbors First (PMNF) also

assigns smaller labels to nodes with fewer neighbors, except that as a node is labeled (nodes

with fewer neighbors are labeled first), the node and its incident edges are removed from the

graph. Ramanathan showed that in practice, these variants have different performances.

If we wish to limit the number of rounds of computation, we will need to run the

algorithm in parallel on multiple nodes. If we are given a maximal independent set L in the
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network, we can use the nodes in L as the leaders of local clusters to coordinate parallel

computations. An MIS gives a set of cluster leaders that are not adjacent to each other

and ensures that each node in the network is adjacent to at least one cluster leader. This

stage of the algorithm needs to use CSMA/CD to exchange information between nodes

because we do not yet have a TDMA schedule (a bootstrapping problem). Herman et al.

[42] give a distributed algorithm which uses a maximal independent set L as the leader

nodes to perform a (suboptimal) distance-2 coloring of the network. A brief description of

the algorithm, which is run in parallel on the nodes, is provided in Algorithm 6.

Algorithm 6 Distributed MIS-based Coloring Algorithm [42]
Let Ni be the set of nodes adjacent to i, and N 2

i be the set of nodes within two hops of

i. (similarly for Nj ,N 2
j )

Code for i ∈ L

In Round 1 do:

i assigns a minimum number of unique colors to all the nodes in Ni ∪ i and broadcasts

this color assignment to Ni.

On receiving color-leader pairs for N 2
i (Rounds 2, 3,. . . ) do:

i reassigns colors to nodes in Ni ∪ i assuming that the color assignments to nodes in

N 2
i by leaders with a lower node id have priority and will not be changed. This new

color assignment will use a minimum number of colors and follow the constraints of

distance-2 coloring on the nodes in Ni ∪ i and nodes in N 2
i colored by higher priority

leaders.

i broadcasts this color assignment to Ni.

Code for j 6∈ L

After j receives its color assignments from neighboring leader nodes i, it accepts the color

assignment cj from the leader node with the lowest node id, imin.

j broadcasts the color-leader pair (cj , imin) to nodes in Nj

After hearing from all nodes in Nj , node j broadcasts the set of color-leader pairs from

Nj to node j’s leader nodes i. Node i now has all the color-leader pairs from its two

hop neighborhood, N 2
i .
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In practice, we expect this algorithm to run much faster than a serial algorithm on

most networks, although the number of communication rounds before the network converges

depends on how long it takes to propagate a message across the network. Also, we may

be able to use the partially computed coloring before the algorithm converges to create a

broadcast schedule with a small number of collisions.

A simple, parallel, randomized algorithm for computing an MIS was given in [66] with

polylogarithmic expected running time EO(log2 N). At each round, a node i decides

whether to include itself in the MIS with a given probability pi = 1
2δ(i) , where δ(i) is

the degree of node i. If one of its neighboring nodes with higher degree also decides to

join the MIS in the same round, node i will remove itself from the MIS. The choice of pi is

critical to the analysis of the running time for this algorithm.

Using a distributed algorithm to compute an MIS, we can also compute a (∆ + 1)-

coloring of the network in a distributed manner by using a reduction of the (∆+1)-coloring

problem to the MIS problem [64; 54]. Given a graph G, we first construct a graph G′ as

follows. For each node i, create ∆ + 1 copies i0, . . . , i∆ and connect these nodes to form

a (∆ + 1)-clique. Next, for each x ∈ {0, . . . ,∆}, connect two nodes ix and jx (note the

same subscript x) if G contains an edge (i, j). If we find the MIS on G′, we can convert

the solution to a (∆ + 1)-coloring on G by just coloring the node i with the color x if ix is

in the MIS. Recall that it is impossible for two nodes ix and iy to be in the MIS if x 6= y

because they are both in the clique representing node i. Note that the MIS problem on G′

can be solved using a distributed algorithm on the nodes in G by “simulating” on node i

each clique of nodes representing node i.

We close this subsection by noting that just as the (∆ + 1)-coloring problem can be

reduced to an MIS problem, we can also use the Distributed Color2MIS algorithm, Al-

gorithm 7, to quickly find the MIS given a graph coloring.
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Algorithm 7 Distributed Color2MIS [79]
Input: G = (V, E), {Cc}c=1,...,m . Cc is a color class.

Output: L . L is the MIS.

for c := 1 to m do . One round of computation.

[Run the following simultaneously on all nodes v]

if v ∈ Cc then

if none of neighbors Nv joined L then

L := L ∪ {v}

Broadcast v ∈ L to all neighbors Nv.

else

Decide that v 6∈ L.

end if

end if

end for

3.2 The Scheduling Problem Description

The scheduling problem on wireless sensor networks has the same objectives and con-

straints as the scheduling problem on packet radio networks, with the addition of resource

constraints on each node in the network. Nodes have limited memory, computational power,

energy supply, and bandwidth. Instead of solving for an optimal schedule to use on the

network, which can be both computationally expensive and difficult to implement on the

resource constrained nodes, the scheduling algorithm described in Section 3.3 employs dis-

tributed mechanisms that tend to benefit our objectives (whether by increasing or decreasing

them), but may not attain the optimal values for our objectives.

Our scheduling algorithm will generate a schedule for Unicast Path Diversity (UPD,

described in Section 4.2.1), meaning a single copy of a packet will be delivered through the

network. This section presents the scheduling objectives and constraints, and motivates

their importance through examples of schedules that do not take them into consideration.
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We first introduce the interference model since this, more than the objectives, is what

defines a wireless scheduling problem.

3.2.1 Scheduling Interference Model

As mentioned in Section 3.1.1, the interference model has a large effect on the complexity

of the scheduling problem. We will use the 1-hop (node-exclusive) interference model and

assume that nodes have one radio which cannot simultaneously receive and transmit. This

model is valid on 802.15.4 networks if interfering nodes transmit on different frequencies and

there are enough frequency channels (16 channels in the 2.4 GHz band) for all interfering

nodes to get a unique channel. The latter is satisfied if the network density is low or if

nodes in the network are selected to sleep and not transmit if the density is too high. In

effect, we have split the scheduling problem into two subproblems: finding a (maximal)

matching and then coloring the links with frequencies, assuming the link interference graph

is 16-colorable.

One difficulty is that the interference graph is not always known to the network, even

with global information from all the nodes. This is because the transmission from node a

can interfere with the reception at node b, but node b may not be able to decode the packet

from node a to know that node a is interfering, or even that the interference is not from

a source outside the network. It is well known that the wireless interference range can be

larger than the transmission range. There is no easy solution to this problem. Preferably,

any interference from nodes in the network whose source cannot be identified will happen at

random intervals and can be treated as random outside interference. This, along with other

considerations described below, supports the use of some randomization in our scheduling

algorithm.

3.2.2 Scheduling Objectives

The objectives of our scheduling algorithm are to

• reduce the latency of end-to-end packet delivery,
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• increase the reliability of end-to-end packet delivery, and

• reduce the association (correlation) of consecutive packet delivery events (reduce the

number of consecutive packet drops).

Reducing the queuing of packets in the network will reduce latency. Reliability is partially

addressed by using a good routing topology, but also depends on how the links are scheduled

and whether packets are likely to be trapped at nodes in the network whose outgoing links

have low probability (see Section 2.3). The association between consecutive packet delivery

events is lowered if the paths traversed by consecutive packets share very few links and nodes.

Lowering this will reduce the likelihood of having many consecutive packet drops, which

are especially detrimental to the stability and performance of real-time control systems.

The three objectives of reducing latency, increasing reliability, and reducing the association

between consecutive packet delivery events all improve with increasing path diversity. Path

diversity is the use of many paths to deliver packets from the source to the sink. Spreading

consecutive packets through different routes on the network depends on the scheduling of

links in the network and the routing topology.

Other common objectives for scheduling algorithms are to increase the throughput of

the network and to ensure fairness for different sessions in the network. We will not be

focusing on these objectives in our scheduling algorithm.

Aside from the general scheduling objectives mentioned above, we also have operational

objectives (or constraints) which are concerned with the implementation of the distributed

scheduling algorithm. These are to

• reduce the communication overhead for computing a schedule, and

• reduce the memory and processing on each node necessary to compute and operate

the schedule.

The communication overhead is measured in packets. Since we assume only one packet can

be sent per node in each time slot, we can also measure the communication overhead by

the number of rounds of coordination needed to compute the schedule, where one round
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corresponds to a fixed number of time slots. The memory usage of the scheduling algo-

rithm depends both on the algorithm’s space complexity and whether we need to save the

computed schedule for use later.

3.2.3 Scheduling Objectives on Basic Schedules

In the following subsections, we will evaluate the packet latency, the packet path diver-

sity, and the communication and computational complexity of repeating schedules, Greedy

Maximal Matching (GMM) schedules, and modified Greedy Maximal Matching (GMM2)

schedules.2 These schedules are for Unicast Path Diversity (UPD) and not for flooding

algorithms since they only have unicast link transmissions. All of our simulation examples

will be on the width-3 path topology. Unless specified otherwise, all the links have prob-

abilities equal to 0.9. Link success or failure during a time slot is independent of whether

the link succeeded or failed in previous time slots. This matches the link failure model of

the flow metric in Section 2.3.1.

A repeating schedule consists of a superframe that is repeated over time. A superframe

is a block of consecutive scheduled time slots, where each scheduled time slot specifies the

links in the network that are simultaneously transmitting during the time slot. In this

dissertation, we will refer to any schedule that does not explicitly repeat superframes as a

non-repeating schedule, including schedules that may “unintentionally” generate a scheduled

time slot that was used earlier in the schedule. The examples in the following subsections

use the short repeating schedule depicted in Figure 3.5.

A greedy maximal matching schedule is a non-repeating schedule generated by a ran-

domized Greedy Maximal Matching (GMM) algorithm.3 The algorithm randomly selects a

link (u, v) from the connectivity graph G to add to the matching and removes all links that

are incident on u or v to get the graph G′. The algorithm repeats this on the new graph G′

until there are no more links in the remaining graph. All the links that have been selected
2The author does not claim to have invented these scheduling algorithms, even though they were not

presented in the literature review in Section 3.1.
3Name clarification: Note that [63] calls the Greedy Maximal Weighted Matching (GMWM) algorithm

the Greedy Maximal Matching algorithm. There, links with a larger weight are selected first. The GMM
algorithm is the same as the GMWM algorithm when all links have equal weights.

86



Figure 3.5. UPD repeating schedule for routing on a width-3 path topology used in Examples 3.2.1
and 3.2.2 to generate Figures 3.7 and 3.8. This is the same UPD schedule depicted in Figure 4.13.

are part of the maximal matching for the current time slot, and the algorithm is repeated

for the next time slot. On the other hand, a GMM repeating schedule is a repeating schedule

which uses the GMM algorithm to generate the scheduled time slots for its superframe. If

we use GMM scheduling to generate an infinite length non-repeating schedule, each node

in the network will be scheduled an equal number of times to transmit packets on each of

its outgoing links. This matches the assumption of the flow metric routing model.

The GMM algorithm is not suited for generating a short block of time slots for repeating

over time because it may not schedule all the links in the topology. In fact, the GMM

schedule generated for our examples in the following subsections took 23 time slots before

it scheduled each link at least once. We modified the GMM algorithm to keep track of the

set of links Ẽ that have not been selected by previous time slots so that the links from Ẽ can
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be selected to transmit in the current time slot before the other links in E\Ẽ . When Ẽ = ∅,

we reset Ẽ to E . We call this modified greedy maximal matching algorithm the GMM2

algorithm. The GMM2 schedule generated for our examples in the following subsections

took only 7 time slots to schedule each link at least once.

Both the GMM and GMM2 schedules use randomization to generate scheduled time

slots. Therefore, they are also referred to as randomized schedules. On the other hand, the

short repeating schedule in Figure 3.5 was manually created for our topology to schedule

all links in the network at least once in the superframe.

All the simulations in the following examples have 1000 runs, where each run simulates

the end-to-end delivery of one packet with no queuing of other packets in the network. The

source generates packets on every odd time slot. For the repeating schedule, these are the

time slots when the source is scheduled to transmit to a downstream node.

Latency

Scheduling in TDMA networks has a large impact on the delay of packets through the

network. The two largest sources of end-to-end delay are transmission delay and queuing

delay. We define the transmission delay as the delay from the number of hops a packet

takes to reach the sink (routing path), the wait at a node for the next outgoing transmission

(schedule), and the number of link retransmissions while routing the packet. We define the

queuing delay as the delay at a node while waiting for other packets queued at the node

to be transmitted first before the packet can be transmitted. Even in networks where the

sources generate packets at a fixed rate below the capacity of the network, queuing can still

occur because of link retransmissions, packets traveling along different length paths, and

the sharing of relay nodes between multiple sessions.

Transmission delay can be reduced by selecting schedules which reduce the waiting time

between transmitting on consecutive hops, as shown in the simple example of Figure 3.6.

Note that the transmission delay is actually highly dependent on the link probabilities. The

tools presented in Chapter 4 can be used to show that the average transmission delay may
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Figure 3.6. Transmission delay depends on the schedule. The transmitting links at each time slot
are indicated, and the group of time slots (a superframe) are repeated over time. Schedule A has
a lower transmission delay than Schedule B because nodes 1 and 2 need to wait longer between
receiving a packet and sending the packet.

be lower if you schedule a poor link to transmit multiple times on consecutive time slots

than if you schedule the poor link to transmit only once, assuming each link transmission is

independent of past link transmissions. For instance, in Schedule A of Figure 3.6 if all the

links had probability 0.1, a schedule repeating the block of time slots (1, 1, 2, 2, 3, 3) instead

of (1, 2, 3) would yield a lower transmission delay.

Example 3.2.1 (Packet latency for basic schedules). Figure 3.7 shows the packet latency from

simulations under the three different basic scheduling schemes. Our repeating schedule was

designed to reduce latency in networks with high link probabilities by scheduling the nodes

in the even and odd columns to transmit on alternate time slots. The repeating schedule

has the lowest expected packet latency, while the GMM schedule has the highest expected

packet latency.

Example 3.2.1 clearly shows that careful scheduling can significantly reduce the latency

in a network. The algorithm described in Section 3.3 will use the concept of “alternating

transmissions from even and odd columns” to generate schedules with low packet latency.

Spreading Packet Paths

We would like a schedule that spreads packets evenly over the different paths in the

network in order to reduce the chance of queuing packets in the network, increase reliability,
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Figure 3.7. Packet delay on a width-3 path topology from simulations using the repeating schedule
depicted in Figure 3.5 and the GMM and GMM2 schedules. Packets with a delay over 30 time slots
were dropped.
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and reduce the association of delivery events. As mentioned in Section 2.3, many packets

may be trapped at a node that is shared by many paths if the all the node’s outgoing links

fail. Also, utilizing fewer paths may lead to more queuing of packets in the network because

some links will be used close to their capacity (nodes receive packets very close to the rate

that they can relay them).

Short, repeating schedules often do not spread packets throughout the different paths

in the network evenly. The next example shows that many packets may converge on certain

relay nodes in a network under short, repeating schedules.

Example 3.2.2 (Packet paths for short repeating schedules). Simulations of end-to-end

packet delivery for a width-3 path topology using the short repeating schedule of Figure 3.5

show that packets may not utilize all the links in the network equally. In fact, packets

generated at the source on the same time slot of the superframe tend to follow similar

paths. Since there are six time slots in the superframe of the repeating schedule, the source

generates a packet on the same time slot of the superframe on every third simulation run.

For example, the source generates packets on time slot 1 of the superframe for runs 1, 4,

and 7.

The left of Figure 3.8 shows the fraction of packets that traverse each link from all

the simulation runs where a packet was generated for transmission on the first time slot of

the superframe. Notice that there is a clear preference for a particular path through the

network. This was also observed on the simulation runs where the packet was generated at

the third and fifth time slots (not shown), mostly because we have high link probabilities for

all the links in this routing topology. In fact, if the link probabilities were equal to 1, there

would be one preferred path through the network for packets generated in the same time

slot of the superframe. The right of the figure shows the fraction of packets that traverse a

particular link from all 1000 simulation runs. Here, also, some links are underutilized while

others carry the bulk of the traffic.

One approach to get more even path utilization in Example 3.2.2 is to carefully design
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Figure 3.8. Link usage on a width-3 path topology from a simulation using the schedule from
Figure 3.5. The source is circled in red, the sink is circled in black, and each link is labeled with the
fraction of packets that traversed the link. The red lines overlaid on the links have widths that are
directly proportional to the fraction of packets that traverse that link. See text for details.

more scheduled time slots to add to the superframe. However, we would need fairly long

superframes to get even path utilization, particularly in networks with high link probabili-

ties. A trivial scenario to show this is a routing topology where all the links in the network

have probability equal to 1. In this topology, the runs where the source generates a packet

on the same superframe time slot would all send packets down one path. The length of

the superframe would need to grow linearly with the number of unique paths we wish the

packets to traverse through the network.

The next example demonstrates that we can get even path utilization with longer sched-

ules, even without carefully scheduled time slots (i.e., random, greedily generated schedule

time slots).

Example 3.2.3 (Packet paths for randomized schedules). This example examines the perfor-

mance of non-repeating, randomized schedules. We use the randomized Greedy Maximal

Matching (GMM) algorithm to choose the set of transmitting links in each time slot. Over

a long time horizon, each node in the network is scheduled to transmit packets an equal

number of times on each of its outgoing links. This matches the assumption of the flow

metric routing model.

The left of Figure 3.9 shows that the path utilization of the network is fairly even after

92



Figure 3.9. Link usage on a width-3 path topology from a simulation using GMM schedules. The
source is circled in red, the sink is circled in black, and each link is labeled with the fraction of
packets that traversed the link. The red lines overlaid on the links have widths that are directly
proportional to the fraction of packets that traverse that link. See text for details.

using the GMM schedule over a long time horizon. However, if we were to use the GMM

algorithm to generate 50 time slots for a superframe in a repeating schedule, we would

again get fairly uneven path utilization in the network, as shown on the right of Figure 3.9.

The path utilization is more even if we use a longer block of time slots from our randomly

generated schedule for repetition. For comparison, there are 36 = 729 unique paths through

this network.

Figure 3.10 shows the path utilization from the GMM2 algorithm. As with the GMM

schedule, the path utilization of the GMM2 schedule after a long time horizon is fairly even,

but if we generate 50 time slots using the GMM2 schedule and repeat it, the path utilization

is noticeably less even.

Cluster-Based Scheduling

As mentioned at the beginning of the chapter, there are tradeoffs between using cen-

tralized and distributed scheduling. Centralized scheduling requires collecting information

about the routing topology from the network and distributing the computed schedule back
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Figure 3.10. Link usage on a width-3 path topology from a simulation using GMM2 schedules.
The source is circled in red, the sink is circled in black, and each link is labeled with the fraction
of packets that traversed the link. The red lines overlaid on the links have widths that are directly
proportional to the fraction of packets that traverse that link. See text for details.

to the nodes, which can have significant bandwidth overhead. Distributed scheduling may

be suboptimal in meeting our scheduling objectives because it relies on local (not global)

information, and may take several rounds of communication to compute.

Both the GMM and GMM2 algorithms presented earlier are centralized, particularly

GMM2 which needs to keep track of links that have been scheduled in previous time slots

from all parts of the network. GMM may be implemented by randomized, distributed algo-

rithms similar to the MIS algorithm presented in [66], but there is significant communication

overhead to generate the matchings for each time slot.

The communication overhead for both centralized and distributed scheduling can be

reduced by using repeating schedules. The superframes can be computed using any dis-

tributed or centralized scheduling algorithm (GMM, GMM2, or others) and stored on the

nodes so that the network only needs to compute it once. However, the length of the su-

perframe may need to be fairly large in some networks to have even path utilization, as was

shown in Example 3.2.3. It may be difficult to store long schedules on resource constrained

nodes (and for centralized algorithms, difficult to disseminate the schedule throughout the

network).

An alternative is to try to generate the time slots for the schedule on the nodes in the
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network “just-in-time” for use rather than precomputing and storing the entire schedule.

The challenge lies in devising algorithms to compute these schedules with minimal or no

communication between the nodes, except possibly during an initial set up period. Instead of

precomputing schedules, the network will form local clusters that will exchange information

in the initial set up period and then generate local schedules with minimal communication

thereafter.

Cluster-based scheduling takes advantage of the local nature of sub-optimal scheduling.

By grouping nodes into clusters that share local routing topology information, the global

scheduling problem is broken into smaller, tractable subproblems that can be solved in

parallel. Furthermore, each of the nodes in the cluster can run the exact same scheduling

algorithm in parallel, meaning that they will not need to exchange any information after the

initial information exchange (except to occasionally synchronize when the routing topology

has changed). We say a cluster is scheduled in a time slot if we use the cluster to constrain

the scheduling problem in the time slot such that links between the nodes in the cluster

are scheduled. The set of clusters to be scheduled in each time slot form a partition of

the network, where every node belongs to a cluster and each cluster is disjoint. Formally,

a partition Ξ is a set of clusters {C1, . . . , CM}, where each cluster C is a subset of V and

the clusters in a partition satisfy the properties ∀m,n ∈ {1, . . . ,M}, Cm ∩ Cn = ∅ and⋃
m Cm = V. A partition is scheduled in a time slot if the clusters in the partition are

scheduled in the time slot. The partitions for different time slots may be different, meaning

that a node may belong to different clusters on different time slots. If we only had one

partition of the network for all time slots, none of the links between the clusters would ever

be scheduled.

The performance of a cluster-based scheduling algorithm depends heavily on the criteria

used to form clusters. Larger clusters allow for better scheduling of links within the cluster,

but are also harder to coordinate (more state, more information exchanged between nodes).

Nodes are formed into clusters based on whether they share links and whether they have

overlapping interference regions. For instance, we can select a leader node and form a cluster
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with all its 2-hop neighbors. The hop count assignments used to form the routing topology

may also be employed to help group nodes into clusters, as we will see in Section 3.3.

3.3 Alternating Partition Local Matching

This section describes the Alternating Partition Local Matching (APLM) algorithm,

which was designed with the scheduling objectives of the previous section in mind. APLM

operates using two primary mechanisms: alternate partitions are selected for scheduling

over time and, given the partition for a time slot, a pseudorandom generator is used to

coordinate and generate randomized matchings within the clusters to be scheduled. As we

shall see in Section 3.3.1, APLM was designed to work well for a class of routing topologies

called layer-to-layer topologies.

The scheduling algorithm works in two phases. In the initial setup phase the algorithm

forms multiple partitions on the network and the nodes within each cluster of each partition

exchange information. In the schedule generation phase a partition is selected for scheduling

the next time slot and the scheduled time slot is generated without communication between

the nodes. The schedule generation phase runs simultaneously with the delivery of data

through the network. Notice that the initial setup phase requires loose global coordination

between the nodes while the the schedule generation phase does not. The input to the

scheduling algorithm is the routing topology.

The 2-hop neighbor clustering algorithm for the initial setup phase of APLM is given

in Algorithm 8, written as a centralized algorithm for ease of reading. It assumes that the

routing topology assigns each node a hop count (e.g., minimum hop count or robust hop

count). The hop count is used as a partial ordering of the nodes to help in the construction

of the partitions and the construction of clusters within each partition. The inputs are the

graph G = (V, E) and the integer hop count vector ~~~ = b~~~fc, which are obtained from the

routing topology. The output is an ordered sequence of partitions of the network (Ξ1,Ξ2)

(in general, there could be more partitions). Notice that the random leader election scheme

to help construct each cluster can be implemented in a distributed manner similar to the
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method used by Luby to get an MIS [66]. We constrain nodes within a cluster to be within

a 2-hop communication range in addition to the constraint that nodes within a cluster must

have integer hop counts that differ by 1 or 0 because the latter constraint alone does not

guarantee that nodes within a cluster are within close communication range of each other.

For instance, there are nodes which are separated by many hops but have the same hop

count in a topology with a sink in the middle of the network and two paths branching out

in opposite directions.

Algorithm 8 APLM Clustering (Initial Setup Phase)
Input: G = (V, E), ~~~

Output: (Ξ1,Ξ2)

Ξ1 := ∅,Ξ2 := ∅

for k := 1 to 2 do

for h := k to maxi ~i, h incrementing by 2 do

H :=
{
i ∈ V : ~i ∈ {h, h− 1}

}
while H 6= ∅ do

Randomly select a leader node ` ∈ H.

Let NH,2
` be the set of 2-hop neighbors of ` on the subgraph induced by H.

Ξk := Ξk ∪ {NH,2
` }

H := H\NH,2
`

end while

end for

end for

After forming clusters, the nodes in each cluster exchange a list of their links and each

cluster leader node selects a pseudorandom seed sC and disseminates it to all the nodes in

the cluster. This occurs for both clusters in Ξ1 and clusters in Ξ2, so each node will have

two sets of cluster information.

The schedule generation phase of APLM is given in Algorithm 9, again written as a

centralized algorithm for ease of reading. It assumes that all nodes in a cluster C know

the other nodes in the cluster, the links between nodes in the cluster, and a shared seed
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sC for a pseudorandom number generator. Each node runs the same schedule generation

algorithm on the same input, so they agree on the scheduling of the cluster for the current

time slot without any communication. The pseudorandom generator is used to “randomize”

the matchings generated in each time slot to get better path utilization, and uses the same

seed across the nodes in C so the nodes compute the same schedule. The output of the

algorithm, M, is the sequence of matchings representing the scheduled links at each time

slot.

Most of the complexity in APLM happens in the initial setup phase, while forming

partitions of the network. We have imposed the restriction that each cluster contain only

nodes whose hop counts differ by 1 or 0, which limits the size of clusters. When a node

selects itself as a leader, it makes a 2-hop broadcast to those nodes that have not yet joined

a cluster. These nodes respond with their 1-hop neighbor list (representing all the links used

by the node). The leader collects all these 1-hop neighbor lists and makes a 2-hop broadcast

to all the nodes in the cluster sharing all the links between the nodes in the cluster and a

pseudorandom seed for the schedule generation phase. Thus, each node keeps track of all

the nodes and links in the cluster as well as the random seed, which take O(|V ′+ E ′|) space

if there are V ′ nodes in the cluster and E ′ links between them.

The schedule generation phase uses greedy maximal matching without replacement

(GMM2) on the subgraph induced by the nodes in a cluster. A cluster with E ′ edges

between nodes in the subgraph takes O(|E ′|) time and O(|E ′|) space to generate the local

greedy maximal matching.

3.3.1 Examples and Discussion

Our first example shows that APLM works well on layer-to-layer topologies. A layer-

to-layer topology is a topology where nodes with a hop count ~ only have outgoing links to

nodes with a hop count ~ − 1 and incoming links from nodes with a hop count ~ + 1. A

“layer” is a set of nodes that share the same hop count. The width-3 path topology is an

example of a layer-to-layer topology.
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Algorithm 9 APLM Sched Gen (Schedule Generation Phase, uses GMM2)
Input: G = (V, E), (Ξ1,Ξ2), s . s is a vector of pseudorandom seeds.

Output: M = {Mt}∞t=1 . Mt is the set of active links at time slot t.

for k := 1 to 2 do . Initialization.

for all C ∈ Ξk do

E∗C := {(u, v) : u, v ∈ C} . E∗C are edges not scheduled recently.

end for

end for

for t := 1 to ∞ do

Mt := ∅

Let k = t mod 2

for all C ∈ Ξk do . Run simultaneously on all clusters in Ξk.

[Run the following simultaneously on all nodes in cluster]

E ′ := {(u, v) : u, v ∈ C}

while E∗C ∩ E ′ 6= ∅ do

Select a (pseudo)random e = (i, j) ∈ E∗C ∩ E ′ using sC .

E∗C := E∗C\{e}

E ′ := E ′\{(u, v) : u = i or v = j}

Mt :=Mt ∪ {e}

end while

while E ′ 6= ∅ do

Select a (pseudo)random e = (i, j) ∈ E ′ using sC .

E ′ := E ′\{(u, v) : u = i or v = j}

Mt :=Mt ∪ {e}

end while

if E∗C = ∅ then

E∗C := {(u, v) : u, v ∈ C}

end if

end for

end for
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Figure 3.11. Packet delay on a width-3 path topology from simulations using APLM schedules.
Packets with a delay over 30 time slots were dropped.

Example 3.3.1 (APLM on a width-3 path topology). This example runs the APLM schedul-

ing algorithm on the same routing topology and simulation setup described for the basic

schedules in Section 3.2.3. A comparison of Figure 3.11 with Figure 3.7 suggests that the

packet delays from APLM schedules are slightly better than the packet delays from GMM2

schedules, but not as good as the packet delays from the repeating schedule in Figure 3.5.

This is expected, as the latter schedule was designed to reduce latency on the topology

when the links have high success probabilities.

Similarly, a comparison of Figure 3.12 with Figures 3.9 and 3.8 shows that the APLM

schedule has comparable path utilization with the GMM and GMM2 schedules, and better

path utilization than a short repeating schedule.

Unfortunately, the APLM algorithm in its current form does not work well on some

randomly generated topologies.

Example 3.3.2 (APLM on a randomly generated topology). We randomly generated a con-

nectivity graph and constructed a robust routing topology using the setup of Example 2.4.1

(30 nodes in 10 × 10 grid, K = 100, etc.), and then ran the APLM algorithm to generate

a schedule. The scheduled time slot depicted on the left of Figure 3.13 shows that because
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Figure 3.12. Link usage on a width-3 path topology from a simulation using an APLM schedule.
The source is circled in red, the sink is circled in black, and each link is labeled with the fraction
of packets that traversed the link. The red lines overlaid on the links have widths that are directly
proportional to the fraction of packets that traverse that link.

APLM has restrictive clustering rules, it may schedule far less links than a maximal match-

ing. For reference, the clusters in the partition used to schedule the time slot is depicted on

the right of Figure 3.13, where nodes in the same layer are assigned the same color. Many

links are not scheduled because they are between nodes with hop counts that differ by more

than 1.

Figure 3.14 compares the packet delay from using APLM and GMM2 scheduling on the

same random topology used in Figure 3.13. APLM drops significantly more packets because

it tends to have a higher packet delay (packets with a delay over 30 are considered to have

been dropped). Figure 3.15 compares the path utilization from using APLM and GMM2

on this random topology. Notice that there are links used by the GMM2 schedule which

are not used by the APLM schedule. More research needs to be done on how to improve

APLM’s path utilization.

APLM, as described in Section 3.3, needs a better clustering mechanism in the initial

setup phase to get better performance on random topologies. Certainly, using larger clusters

(instead of restricting clusters to adjacent layers) can result in schedules with better path
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Figure 3.13. On random topologies APLM does not schedule many links in a time slot, far fewer
links than a maximal matching. (left) The active links in a sample time slot from an APLM schedule,
labeled by their link probabilities. (right) The clusters used to schedule the links in the time slot.
Nodes in the same layer are circled in the same color and cluster leader nodes are marked by a red
square. The links within a cluster are drawn in the same color (blue, black, or red), to differentiate
them from the links in nearby clusters.

Figure 3.14. Packet delay on the same random topology used in Figure 3.13 from simulations using
APLM and GMM2 schedules. Packets with a delay over 30 time slots were dropped.

utilization and lower packet delays because of better local matchings, at the expense of

more state and more coordination between nodes. Directions for further exploration will

be presented in Chapter 5. The evaluation of APLM on the width-3 path topology shows

that it may be useful in wireless networks with layer-to-layer routing topologies.
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Figure 3.15. Link usage on the same random topology used in Figure 3.13 from simulations using
APLM and GMM2 schedules. The source is circled in red, the sink is circled in black, and each link
is labeled with the fraction of packets that traversed the link. The red lines overlaid on the links
have widths that are directly proportional to the fraction of packets that traverse that link.
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Chapter 4

Metrics for Real-Time Wireless

Networked Systems

This chapter is concerned with modeling the end-to-end delivery of packets through

a TDMA wireless mesh network. The primary objective of the models developed in this

chapter is to compute the end-to-end connectivity of the network as a function of latency,

p
(td)
net ∈ [0, 1]. The end-to-end connectivity is the probability of receiving a packet td time

units after it was sent, and serves as an abstraction of the network that is presented to the

rest of the wireless networked system.

For instance, the end-to-end connectivity metric p
(td)
net can be used to help design con-

trollers or prove stability properties of Networked Control Systems (NCSs). Section 4.1 gives

some background on the theory of Networked Control Systems.1 The end-to-end connectiv-

ity metric can also be used to check the feasibility of running a wireless networked system

over the network. If the network is under-provisioned for the task, the system designer may

choose to add more nodes to the wireless network or use different networking algorithms

that better match the requirements of the wireless networked system. Section 4.5 gives

examples of how to use the connectivity metric for system feasibility analysis.
1This section stands alone from the rest of the dissertation. Because we are running out of good un-

used symbols, this section sometimes reuses math notation in a manner inconsistent with the rest of the
dissertation.
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We propose Markov chain models for two classes of networking protocols, Unicast Path

Diversity (UPD) and Directed Staged Flooding (DSF). These models are constructed given

the routing topology, link probabilities, and schedule on the network. They model the end-

to-end delivery of one packet for one session, and do not model queuing in the network.

Furthermore, they do not model the association / correlation of consecutive packet delivery

events. The models assume the topology and schedule are static for the duration of packet

delivery, and therefore do not model network maintenance mechanisms common to ad-hoc

networking protocols such as route discovery, routing loop detection, beaconing for time

synchronization, etc.

In addition to computing the end-to-end connectivity metric, the models will be used to

find the sensitivity of the calculations to link probability estimation error, identify hot spots

in the network where traffic is concentrated, and estimate the radio energy consumption on

the nodes from relaying packets.

4.1 Background on Networked Control Systems

The theory of Networked Control Systems (NCS) can be used to aid the design and

performance evaluation of wireless networked systems. A networked control system is de-

fined to be a spatially distributed system of controllers, sensors, and actuators that share

a band-limited digital communication network [43] (See Figure 4.1). The study of NCSs

focuses on the impact a shared, lossy communication network with variable delay has on

the performance of the closed loop control system. The literature in this area has largely

focused on packet networks, especially since many wired SCADA and Distributed Control

systems are migrating to TCP/IP networks for cost and interoperability [74].

This section will highlight some important contributions to the theory of networked

control systems to give a sense of how network conditions translate to system performance.

Although there often can be multiple interacting control loops in a networked control sys-

tem, for clarity this exposition will focus on single-loop NCSs (See Figure 4.2). A more

comprehensive overview of NCSs can be found in [43].
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Figure 4.1. The components of a Networked Control System (NCS). There can be many control
loops running over the same network, and multiple controllers per plant or multiple plants per
controller.

Figure 4.2. (left) One channel, single-loop NCS. Note that although the network is depicted between
the sensor and the controller, it can also be between the actuator and the controller. This latter
situation is less common in practice. (right) Two channel, single-loop NCS. (Figure after [43].)

The current literature on networked control systems focuses on system stability / perfor-

mance analysis and controller synthesis, where the network introduces packet drops, variable

sampling, variable delay, and measurement / control quantization error. The literature does

not cover these areas equally — for instance, there is a heavier emphasis on studying system

stability under packet drops and delay — but NCSs is still an active area of research. Also,

much of the current literature analyzes control of a simple plant, such as a discrete-time LTI

(linear time-invariant) plant with Gaussian noise and disturbance, to focus on the control

issues introduced by using a network.

There are two types of system stability and performance guarantees: deterministic and

stochastic. Deterministic system guarantees often rely on absolute guarantees on network

performance — for instance, packets in the network have a bounded delay, or that no more

than a fixed number of consecutive packets can be dropped. These network guarantees

may be impossible to enforce on a wireless network. The alternative is to use a stochastic

characterization of the network to provide stochastic system guarantees. For instance, if xk

is a random process representing the state of the system at time k, one can say the system

is
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• almost surely stable if

P(supk∈N‖xk‖ <∞) = 1

• stable in the 2m-th moment if

supk∈N E[‖xk‖2m] <∞

• asymptotically stable in the 2m-th moment if

limk→∞ E[‖xk‖2m] = 0

• exponentially stable in the 2m-th moment if

∃α, β > 0 s.t. E[‖xk‖2m] < α E[‖x0‖2m]e−βk,∀k ∈ N.

If m = 1, one can also say the system is (exponentially / asymptotically) mean-square stable.

Thus, system guarantees can be made for average performance or the probability of system

failure, akin to the usage of “outage probability” (e.g., 99.999% uptime) to characterize

telephone communication networks.

The synthesis of controllers for networked control systems that can meet system sta-

bility and performance requirements is a hard problem. For tractability, many approaches

often restrict the controllers to a certain form — for instance memoryless controllers, linear

controllers, or controllers that switch between static control gains. Using simple controllers

such as those switching between static control gains may not yield the best system per-

formance, but it can reduce the complexity and computation required to implement the

controllers.

The current literature on NCSs often use a point-to-point channel model as an abstrac-

tion for the network to study the impact of channel characteristics (packet drops, variable

sampling, variable delay, and measurement / control quantization error) on the closed loop

system. The way we quantify / measure these channel characteristics, the problem of com-

puting network metrics, is studied later in this chapter.

The architecture of a networked control system depends on whether it is a single channel

network or a two channel network, and where the network is placed relative the the con-

troller, sensors, actuators, and plant (See Figure 4.2). For instance, if the system has smart
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sensors that include some computational capabilities with the sensor [115], the sensor can

transmit a state estimate over the network instead of a raw measurement. This effectively

connects part of the controller — the estimator — to the sensor directly without a network,

and results in better system performance [90].

The following two examples consider two networked control systems with stochastic

packet drops but no variable delay, no variable sampling, and no quantization error on

the transmitted data. Although delays are common in networks and are important for

control, these simplified systems match a network architecture where packets arriving after

a deadline are dropped. The techniques for dealing with time-delayed systems modeled as

delayed differential equations (DDE) are covered in the references of [43]. The examples

below follow the notation and exposition from [43].

4.1.1 Estimator Stability under Bernoulli Packet Drops

In [89], Schenato et al. give stochastic guarantees on the stability of optimal estima-

tors for a discrete-time LTI system connected by two-channel feedback where packet drops

are modeled as a Bernoulli process (Figure 4.2, right). Particularly, there is a threshold

probability pc such that if the probability of dropping a packet p > pc, then the estimation

error covariance of the optimal estimator is unbounded. Furthermore, they show that if the

controller receives an acknowledgment of whether the previous control packet reached the

actuator, what they term “TCP-like protocols”, then the separation principle holds. This

means that the optimal estimator and the optimal controller can be designed separately.

In fact, the optimal controller is a linear function of the state. On the other hand, if the

network does not have acknowledgments, what they term “UDP-like protocols”, then the

separation principle fails and the optimal controller is in general nonlinear. In [90], Schen-

ato extends this problem to considering estimators that can buffer past measurements to

account for out of order packet delivery.

For simplicity, consider just the estimation problem for a discrete-time LTI plant driven
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by white Gaussian noise:

xk+1 = Axk + wk

yk+1 = Cxk + vk

 ∀k ∈ N, xk,wk ∈ Rn, yk,vk ∈ Rp (4.1)

The initial state is x0 ∼ N (0,Σ) (i.e., x0 has a Gaussian distribution with mean 0 and covari-

ance Σ) and the Gaussian white noises wk ∼ N (0, Rw), Rw ≥ 0 and vk ∼ N (0, Rv), Rv ≥ 0

are independent. Let (C,A) be detectable and (A,Rw) be stabilizable.

The plant and the estimator is connected by an erasure channel, meaning the receiver

knows when a packet is corrupted and can discard it. The lossy channel is modeled by a

stochastic process θk ∈ {0, 1},∀k ∈ N which is independent of x0,wk, and vk. Here, θk = 1

means a measurement packet reached the sink and θk = 0 means it did not.

The goal is to compute the optimal estimate of xk given all the measurements success-

fully transmitted up to time j ≤ k, which is

x̂k|j = E[xk | yl,∀l ≤ j s.t. θl = 1]. (4.2)

This is computed recursively using the following Time-Varying Kalman Filter (TVKF):

x̂0|−1 = 0

x̂k|k = x̂k|k−1 + θkFk(yk − Cx̂k|k−1)

x̂k+1|k = Ax̂k|k


∀k ∈ N (4.3)

where the matrix gain Fk is computed by

P0 = Σ

Fk = θkPkC
T(CPkC

T + Rv)−1

Pk+1 = APkA
T + Rw −AFk(CPkC

T + Rv)FT
k AT


∀k ∈ N. (4.4)

Here, Pk is the estimation error covariance, or simply

Pk = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
T], ∀k ∈ N. (4.5)

The main result of [89] is stated in the following theorem.
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Theorem 4.1.1 (From [89]). Assume that the packet drop process θk is a Bernoulli process

with packet drop probability

p , P(θk = 0) ∈ [0, 1), ∀k ∈ N. (4.6)

Then, there exists a critical value pc ∈ (0, 1] such that:

• For all p ≥ pc, there is exists some P0 ≥ 0 for which the sequence (E[Pk])k computed

from the TVKF (4.3) is unbounded.

• For all p ≤ pc and every P0 ≥ 0, the sequence (E[Pk])k computed from the TVKF

(4.3) is uniformly bounded.

In general, the critical probability pc cannot be computed explicitly but p ≤ pc ≤ p̄ where

p̄ =
1

(max |λ(A)|)2
(4.7)

and

p = max{p ≥ 0 : Ψp(Y, Z) > 0, 0 ≤ Y ≤ I for some Y, Z} where

Ψp(Y, Z) =

[
Y

√
1−p(Y A+ZC)

√
pY A√

1−p(ATY +CTZT) Y 0
√

pATY 0 Y

]
, ∀Y, Z ∈ Rn×n.

(4.8)

In the special case where C is invertible, we have pc = p̄.

4.1.2 H∞ Controller Synthesis for MJLS

In [92], Seiler and Sengupta study how to synthesize an H∞ controller for a one-channel

feedback NCS with a discrete-time LTI plant (See Figure 4.2, left). They also derive stability

conditions for the closed loop system when the channel can be modeled by the Gilbert-Elliot

channel model. In the Gilbert-Elliot channel model packet losses are modeled by a two-

state Markov chain (See Figure 4.3), unlike the previous example where packet losses are

independent. This is a simple approximation of wireless channel fading where consecutive

packets are dropped with high probability. As a result of this channel model, the NCS

is modeled as a Markov Jump Linear System (MJLS). Seiler and Sengupta formulate a

semidefinite programming problem using the MJLS model to synthesize an H∞ controller
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Figure 4.3. The Gilbert-Elliot communication model uses a 2-state Markov chain to model corre-
lated packet losses. Note that if we set p11 = p21, and p12 = p22, we get back the Bernoulli packet
loss model.

that makes the closed loop system exponentially mean-square stable (but for synthesizing

the controller they also assume the Bernoulli packet loss model). We will be focusing on

the synthesis of the H∞ controller in this section.

First, let the discrete-time LTI plant P be a Markov jump linear system of the form
xk+1

zk

yk

 =


A1,θk

B1,θk
B2,θk

C1,θk
D11,θk

D12,θk

C2,θk
D21,θk

0




xk

dk

uk

 (4.9)

Here,

xk ∈ Rnx is the state,

dk ∈ Rnd is the disturbance,

uk ∈ Rnu is the control input,

zk ∈ Rnz is the error, and

yk ∈ Rny is the measurement.

The state matrices are functions of a finite-state discrete-time Markov chain switching at

time k to a mode θk ∈ M = {1, . . . ,M} with transition probabilities pij between modes

i and j.2 In our notation, each mode θk is associated with the set of matrices with θk in

the second subscript (e.g., A1,θk
). The switching between modes is governed by whether a

2The term mode is used interchangeably with the term state to describe θk in the Markov chain. This is
to avoid confusion with the term state used to describe xk.
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packet is delivered through the network (θk = 2) or a packet is dropped (θk = 1).3 Hence,

there are two modes in our single loop MJLS, meaning M = {1, 2}.

It was shown in [47] that for MJLSs, mean-square stability, asymptotic mean-square

stability, and exponential mean-square stability are all equivalent, so the term “exponen-

tially mean-square stable” is used to mean all three. Moreover, exponentially mean-square

stability implies almost-sure stability in MJLSs, but not the other way around.

Seiler and Sengupta choose to synthesize an H∞ controller because the synthesized

controller not only guarantees exponential mean-square stability but also bounds the gain

between the disturbance dk and the closed-loop system error zk. This H∞-gain of the system

is a measure of system performance. A precise definition of the H∞-gain / H∞-norm of a

MJLS follows from these definitions:

Definition 4.1.1 (Square Summable Sequences). Let x , {xk}∞k=0 and Θk , {θ1, . . . ,θk}.

Then `n
2 is defined as the space of square summable (stochastic) sequences

`n
2 ,

{
{xk}∞k=0 : ∀k, xk ∈ Rn is a random variable

depending on Θk and ‖x‖2 <∞
} (4.10)

where the `2-norm ‖·‖2 is defined by

‖x‖22 , xT
0 x0 +

∞∑
k=1

E
Θk

[xT
k xk] (4.11)

and E
Θk

[·] denotes taking the expectation over the set of random variables Θk.

Definition 4.1.2 (H∞-norm). Let P be an exponentially mean-square stable system and

let the initial state x0 = 0. Then the H∞-norm, denoted as ‖P‖∞, is defined as

‖P‖∞ , sup
θ0∈M

sup
0 6=d∈`

nd
2

‖z‖2
‖d‖2

(4.12)

Seiler and Sengupta synthesize an H∞ controller K of the formxC,k+1

uk

 =

AC,θk
BC,θk

CC,θk
0


xC,k

yk

 . (4.13)

3Note the slight variation in the usage of θk from Section 4.1.1.
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Figure 4.4. Closing the loop for the H∞ control problem. Here, P is the plant and K is the
controller and the closed loop system is FL(P,K). (Figure after [92].)

Note here that the first subscript C is used to distinguish the controller matrices from the

plant matrices. The closed loop system is denoted FL(P,K) and depicted in Figure 4.4.

The main result is stated in the following theorem, where pij = pj for all i, j ∈ N1

(Bernoulli packet loss model).

Theorem 4.1.2 (From [92]). There exists matrices

0 < Z = ZT ∈ R(nx+nc)×(nx+nc) and

AC,i ∈ Rnc×nc

BC,i ∈ Rnc×ny

CC,i ∈ Rnu×nc


i ∈ {1, 2}

such that the closed loop system is exponentially mean-square stable and has H∞-gain less

than a user-specified threshold γ if and only if there exists matrices

Y = Y T ∈ Rnx×nx

X = XT ∈ Rnx×nx

and

Li ∈ Rnx×ny

Fi ∈ Rnu×nx

Wi ∈ Rnx×nx


i ∈ {1, 2}

such that 
R11 RT

21 RT
31

R21 R22 0

R31 0 R22

 > 0 (4.14)

where

R11 ,

[
Y I 0
I X 0
0 0 γ2I

]
R22 ,

[
Y I 0
I X 0
0 0 I

]
R21 ,

√
p1

[
Y A1+L1C2,1 W1 Y B1,1+L1D21,1

A1 A1X+B2,1F1 B1,1

C1,1 C1,1X+D12,1F1 D11,1

]
R31 ,

√
p2

[
Y A2+L2C2,2 W2 Y B1,2+L2D21,2

A2 A2X+B2,2F2 B1,2

C1,2 C1,2X+D12,2F2 D11,2

]
.
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Note that (4.14) is a Linear Matrix Inequality (LMI) involving the scalar γ, chosen by

the user, and the matrices Y, X,Li, Fi, and Wi. Checking the condition in Theorem 4.1.2

is equivalent to solving the semidefinite programming problem

min γ

subject to (4.14) . (4.15)

This problem can be solved efficiently by interior-point methods [11] using freely available

software [103]. Using the solution to the semidefinite programming problem (4.15), we can

construct the controller from the equations

BC,i , Y −1Li

CC,i , Fi(Y −1 −X)−1

AC,i , −Y −1[Y AiX + Y B2,iFi + LiC2,iX −Wi](Y −1 −X)−1 .

(4.16)

4.2 Modeling Unicast Path Diversity

Dust Networks, Inc. designed a networking protocol called the Time Synchronized Mesh

Protocol (TSMP) [80] for reliable networking in sensor networks. The protocol exploits

frequency, time, and space diversity to achieve what they claim is over 99.9% typical network

reliability [29]. TSMP includes a class of protocols which I call Unicast Path Diversity

(UPD). We propose a Unicast Path Diversity Markov Chain (UPDMC) model to analyze

the performance of UPD.4

4.2.1 Modeling Characteristics

UPD is a class of frequency-hopping, TDMA, multi-path networking protocols. UPD

uses many-to-one routing, i.e., there is one sink in the network. Each node in the network

has multiple downstream nodes and the routing topology has no cycles (i.e., is a DAG).

The links selected for routing are bidirectional, and hence every link transmission can be

acknowledged. If a packet transmission is not acknowledged, it is queued in the node for
4The UPDMC model was called the Mesh TDMA Markov Chain (MTMC) model in [15; 16].
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Figure 4.5. Example of a UPD schedule with superframes and time slots. Here, only 8 of the 16
available frequency channels are used.

retransmission. As for scheduling, time is divided into time slots, and grouped into super-

frames (See Figure 4.5). At each time slot, pairs of nodes are scheduled for transmitting a

packet on different frequencies if the links are within range to interfere with each other. The

superframe containing the schedule of transmissions is repeated over time. Our model uses

frequency hopping to justify the assumption that links are independent over retransmissions.

To construct the UPDMC model, we assume knowledge of the routing topology, sched-

ule, and all the link probabilities. Furthermore, we model a single packet transmission in

the network and do not analyze the effects of queuing.

4.2.2 Unicast Path Diversity Markov Chain Model

Let us represent the routing topology as a graph G = (V, E), and denote a node in the

network as i ∈ V = {1, . . . , N}, and a link in the network as l ∈ E ⊆ {(i, j) : i, j ∈ V},

where l = (i, j) is a link for transmitting packets from node i to node j. Time t will be

measured in units of time slots, and let T denote the number of time slots in a superframe.

The link success probability for link l = (i, j) at time slot t is denoted p
(t)
l , or p

(t)
ij . We set

p
(t)
l = 0 when link l is not scheduled to transmit at time t.

For a packet originating from a source node a routed to a sink node b, we wish to

compute p
(td)
net , the probability the packet reaches b at or before time td has elapsed. This is

done by a time-varying, discrete-time Markov chain.

Definition 4.2.1 (Unicast Path Diversity Markov Chain Model). Let the set of states in the

115



Markov chain be the nodes in the network, V. The transition probability from state i to state

j at time t is simply p
(t)
ij , with p

(t)
ii = 1−

∑
j 6=i p

(t)
ij . Let P (t) = [p(t)

ij ]T ∈ [0, 1]N×N be the col-

umn stochastic transition probability matrix for a time slot and P (T ) = P (T )P (T−1) · · ·P (1)

be the transition probability matrix for a repeating superframe.5 Assume

P (T+h) = P (cT+h), ∀c ∈ N, h ∈ N1 (4.17)

meaning that the link probabilities in a time slot do not vary over superframes.

A packet originating at node a is represented by p(0) = e[a], where e[a] is an elementary

vector with the a-th element equal to 1 and all other elements equal to 0. Then,

p(td) = P (td) · · ·P (2T+1) P (2T )P (2T−1) · · ·P (T+1)︸ ︷︷ ︸
P (T )

·

P (T )P (T−1) · · ·P (1)︸ ︷︷ ︸
P (T )

p(0)

(4.18)

represents the probability distribution of the packet over the nodes at time td.

The sink node b is an absorbing state in the Markov chain, meaning there are no

transitions out of that state. This means p
(td)
net = p

(td)
b , the b-th element of the vector p(td).

One of the characteristics of a good schedule is that p
(td)
net

td→∞−−−−→ 1, meaning the packet will

eventually reach the sink. This condition is satisfied when the UPDMC model has only one

recurrent class consisting of the sink (See [7] for an explanation and background on Markov

chains).

5[0, 1] denotes the closed interval between 0 and 1. [ · ]T denotes the transpose of a matrix while P (T )

denotes the transition matrix at time T .
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Figure 4.6. Multi-path routing example corresponding to (4.19).

4.2.3 UPDMC Example and Discussion

Example 4.2.1 (UPDMC on a UPD network). An example of a small UPD schedule is given

in Figure 4.6, where pij is the link probability for link (i, j) and p̄ij = 1 − pij . We get the

transition probability matrices,

P (1) =



p̄12 0 0 0

p12 1 0 0

0 0 p̄34 0

0 0 p34 1


P (2) =



p̄14 0 0 0

0 p̄23 0 0

0 p23 1 0

p14 0 0 1



P (3) =



p̄13 0 0 0

0 p̄24 0 0

p13 0 1 0

0 p24 0 1


p(0) =

[
1 0 0 0

]T

P (3) = P (3)P (2)P (1)

(4.19)

The UPDMC model can be modified to represent unconventional routing topologies and

schedules. For instance, the UPDMC model can be extended to represent mesh networks

with multiple sink nodes (e.g., two Internet gateways to a sensor network). In this case,
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if we let B be the set of sinks, p
(td)
net =

∑
i∈B p

(td)
i . Also, the UPDMC model can be used

without modification to represent routing topologies with cycles. Typically, a good routing

topology will not have cycles but routing cycles may form when the network malfunctions.

The UPDMC model can be used to calculate p
(td)
net , where we still have p

(td)
net

td→∞−−−−→ 1 if no

recurrent classes besides the sink are added to the Markov chain. Finally, if we wish to model

schedules that never retransmit packets, we simply remove the requirement in our UPDMC

model that p
(t)
ii = 1 −

∑
j 6=i p

(t)
ij , instead replacing it with p

(t)
ii = 0. To ensure that the

transition probability matrix P (t) is a column stochastic matrix, we add a dummy state N+1

to represent a packet being lost after transmission. Now, P (t) = [p(t)
ij ]T ∈ [0, 1](N+1)×(N+1),

where p
(t)
i(N+1) = 1−

∑
j 6=i p

(t)
ij , p

(t)
(N+1)i = 0 for all i 6= N + 1, and p

(t)
(N+1)(N+1) = 1.

4.2.4 UPDMC Analysis

Network-wide Rate of Convergence for p
(td)
net

Besides calculating p
(td)
net for one node transmitting to the sink, we would like to calculate

the rate of convergence of p
(td)
net → 1 for the entire network from P (T ). This may be a

better metric for comparing routing topologies and schedules when the network has multiple

sessions sharing the same topology and schedule.

Theorem 4.2.1 (UPDMC p
(td)
net converges exponentially to 1). Let P (T ) ∈ [0, 1]N×N be

a diagonalizable, column stochastic matrix with limk→∞(P (T ))kp = e[b] for all probability

vectors p. Here, e[b] is an elementary vector with the b-th element equal to 1 and all other

elements equal to 0, meaning that the routing topology has a unique sink node b which is the

unique recurrent state in the Markov chain. Then,

p
(td)
net ≥ 1− C(ρ∗)k, k =

⌊
td
T

⌋
(4.20)

for some constant C dependent on the initial distribution p(0) and ρ∗ = max{|λ| :

λ is an eigenvalue of P (T ) and |λ| < 1}.

Therefore, p
(td)
net converges to 1 exponentially with a rate ρ∗. The proof of this can

be found in Appendix C.1. The rate ρ∗ gives a sense of how the end-to-end connection
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Figure 4.7. Illustration of how to create absorbing states in the Markov chain to calculate the
probability that a packet sent from node 1 to node 4 passes through node 2 by time t, using the
routing topology of Figure 4.6.

probability to the sink varies as a function of delay in the worst case over all nodes In the

network.

Traffic Distribution

To identify “hot spots” in the network, we compute the probability that the packet

visits a node i at or before time t. This can be done by making i an absorbing state in the

UPDMC model and finding p
(t)
i on the new model.

In other words, ∀t ∈ N1,∀j ∈ V, let

P̃
(t)
ji = 0

P̃
(t)
ii = 1

P̃ (t)
uv = P (t)

uv ∀u, v ∈ V, v 6= i

(See Figure 4.7). The resulting model has two absorbing states, b and i. α
(t)
i = p̃

(t)
i =

P̃ (t) · · · P̃ (1)p(0) is the probability that the packet visits node i in the original model at or

before time t, while α
(t)
b = p̃

(t)
b is the probability that the packet arrives at the sink at or

before time t through an alternate path not containing node i.

To find αi = limt→∞ p̃
(t)
i , the probability the packet ever visits node i, we solve a system

of equations for the probability that the Markov chain reaches and stays at state i assuming

it started from state j 6= i.

Theorem 4.2.2 (Absorption probability equations [7]). For a given Markov chain, choose

an absorbing state i. Then, the probabilities αji of reaching state i starting from j are the
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unique solution to the equations

αii = 1

αji = 0 for all absorbing j 6= i

αji =
N∑

k=1

pjkαki for all transient j .

(4.21)

If a packet is transmitted from a source node a, then αi = αai.

Sensitivity to Link Estimation Error

Sometimes, we only know that the actual probability of a link, p̂
(t)
ij , lies within an

interval (p(t)
ij +ε, p

(t)
ij −ε), and estimate it as p

(t)
ij . Unfortunately, we cannot bound the range

of the actual end-to-end connectivity p̂
(td)
net by simply recomputing p

(td)
net using the endpoints

p
(t)
ij + ε and p

(t)
ij − ε. This is because our routing scheme retransmits a packet when a link

transmission fails, causing p
(td)
net to be a polynomial function of the link probability. As a

result, p
(td)
net does not vary monotonically with p

(t)
ij , meaning that p

(td)
net may not be maximized

or minimized by using p
(t)
ij ± ε in its calculation.

To see this, let the actual link probability of a link at time slot t be p̂
(t)
ij = p

(t)
ij + δ,

where δ is unknown to the user but the user knows that |δ| < ε. We can write the actual

end-to-end transition probability matrix as

P̂ (T ) = P (T ) · · ·P (t+1)(P (t) + δE(t))P (t−1) · · ·P (1)

= P (T ) + δ P (T ) · · ·P (t+1)E(t)P (t−1) · · ·P (1)︸ ︷︷ ︸
F

(4.22)

where E(t) is a matrix with −1 at E
(t)
ii , 1 at E

(t)
ji , and 0 elsewhere. Here, for simplicity, we

assume that a link is used only once in a superframe. Define p̂(t) as the actual probability

distribution at time t. Then,

p̂(T ) − p(T ) = (P̂ (T ) − P (T ))p(0)

= δFp(0) (4.23)
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and

p̂(2T ) − p(2T ) = (P̂ (2T ) − P (2T ))p(0)

= (δ(P (T )F + FP (T )) + δ2F 2)p(0) (4.24)

Note that Equation 4.24 is a quadratic function of δ. Thus, because of retransmissions on

links (manifested by repeating superframes), it is not clear that the actual p
(td)
net would vary

monotonically with p
(t)
ij .

The alternative is to try bounding the distance of the eigenvalues λ̂ of the actual transi-

tion probability matrix P̂ (T ) from the eigenvalues λ of our estimated transition probability

matrix P (T ), a standard problem in matrix perturbation analysis. In other words, if λ̂x is

an eigenvalue of P̂ (T ) = P (T ) + δF, δ ∈ (−ε,+ε) and F is a matrix corresponding to the

perturbed link (Fii = −1, Fji = 1, and all other entries are 0), then there is some eigenvalue

λy of P (T ) such that |λ̂x − λy| < C, where C ∈ R+ is a constant that depends only on

F and ε. There are several standard techniques to do this, some that require P (T ) to be

diagonalizable or P (T ) to be normal (A∗A = AA∗), which may not always hold. These

techniques are applicable on a case by case basis. For more details, see [44].

Energy Consumption

The UPDMC model can also be used to calculate the weighted, expected number of

transmissions and receptions up to time t made by a node in the network to transmit a

single packet. If we weight the transmit (receive) count by the energy consumption per

transmission (reception), UTx (URx), we get the expected radio energy consumption by

node i up to time t to relay packets, θ
(t)
i . This, together with the baseline energy con-

sumption of the node (energy for sensing and routine operations), will be the overall energy

consumption of the node. In fact, in current sensor network platforms the energy spent by

the radio is several orders of magnitude greater than the energy spent by the microprocessor

(e.g., comparing the CC2420 radio chip and the MSP430 microprocessor when they have

the same supply voltage, the ratio of energy consumption is 18.8 mA/330 µA ≈ 57 if the
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microprocessor is active and 18.8 mA/1.1 µA ≈ 17000 if the microprocessor is on standby

[19; 105]).

To compute θ(t) ∈ Rn
+, the vector of θ

(t)
i , we construct a vector υ(t) ∈ R2n

+ and a matrix

U (t) ∈ R2n×2n
+ .

υ(t) =

 θ(t)

p(t)

 U (t) =

 I I̊(t)

0 P (t)

 (4.25)

where I̊(t) is a matrix with

I̊
(t)
ii =


UTx : ∃j 6= i s.t. P

(t)
ji 6= 0 (i transmitted at time t)

0 : otherwise

I̊
(t)
ij =


URx : ∃j 6= i s.t. P

(t)
ij 6= 0 (i received at time t)

0 : otherwise
.

(4.26)

θ(t) can be obtained from υ(t), which in turn is computed from

υ(t) = U (t) · · ·U (2)U (1)υ(0)

υ(0) =

 0

p(t)

 .
(4.27)

4.3 Modeling Directed Staged Flooding

We define a class of TDMA, constrained flooding protocols called Directed Staged Flood-

ing (DSF) for one-to-many and one-to-one routing, focusing on the latter. Unlike UPD,

DSF provides increased end-to-end connectivity with less latency by multicasting packets

instead of using acknowledgments and retransmissions. We use a Directed Staged Flooding

Markov Chain (DSFMC) model to analyze the performance of DSF.

4.3.1 Modeling Characteristics

Like UPD, DSF assumes the routing topology is a DAG and the nodes follow a TDMA

schedule. The schedule specifies a transmitting set of nodes for each time slot, where each
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node in the transmitting set multicasts to a subset of its downstream neighbors. Multicast-

ing means there will be multiple copies of a packet in the network, so we make a distinction

between a session packet, which is a packet from the point of view of a session, and network

packets, which are copies of a session packet sent through the underlying network. In DSF,

each node only keeps one copy of a session packet even if it receives the same packet mul-

tiple times from upstream nodes. Thus, there can only be multiple network packets when

multiple nodes have a copy of the session packet. We assume each node has only one radio,

so although a node can multicast to multiple downstream nodes in one time slot, it can only

receive from one upstream node in one time slot. A pair of nodes is schedule to transmit

on different frequencies in a time slot when the transmission of one node interferes with the

reception of the other node’s receiving nodes.

DSF does not use acknowledgments to signal a node to retransmit a network packet on a

failed link. A network packet is erased from a node after it has been transmitted, regardless

of whether the transmission was successful. Thus, with careful scheduling, consecutive

session packets will not queue in the network if there is only a single source transmitting to

a single sink (but queuing can still happen when there are multiple sessions).

Our DSFMC model groups the nodes along a session’s end-to-end transmission paths

into groups of nodes called stages. Instead of modeling at the level of network packets and

nodes, the DSFMC model models a session packet being relayed between stages. Figure 4.8

illustrates this on a wide path topology between a source and sink where the nodes lie on a

regular grid and each stage, except the first and last, consists of a column of 3 nodes. Each

stage also has a transmitting subset, which is a subset of nodes in the stage that transmit

to the next stage. The transmitting subset of a stage is the set containing all the nodes in

a stage unless nodes are shared between stages, which will be discussed later below.

For simplicity, our DSFMC model assumes that a node receives from all its upstream

neighbors before it is scheduled to transmit.6 Given a DSF schedule, one can group the

nodes into stages and their transmitting subsets such that all the nodes in the transmitting
6This assumption was not in the original DSF model proposed in [15; 16]. Therefore, the stage grouping

of the example described by (4.31) and Figure 4.9 has changed.
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Figure 4.8. Directed Staged Flooding example on a wide path topology with a path width of 3.
This example is discussed in more detail in Section 4.3.3.

Figure 4.9. Directed Staged Flooding example corresponding to (4.31).

subset of a stage are scheduled to transmit before any nodes in the next stage are scheduled

to transmit. This last property is necessary for our DSFMC model. The DSF schedule and

the grouping of nodes into stages should be carefully designed to keep the size of the stages

from becoming too large. The size of the stages affects the size of the model’s state space.

In fact, if we are given the transmitting subsets for each stage, we can determine the

nodes in each stage. The nodes in stage k consist of the nodes that have received a network

packet from the transmitting subsets of stages 0, . . . , k − 1 and which have not yet trans-

mitted. Stage 0 consists of the source node. Therefore, nodes are shared between stages

k and k + 1 if they have received a network packet after stage k − 1 has transmitted and

are not in the transmitting subset of stage k. Figure 4.9 gives an example of nodes shared

between stages.

Our DSFMC model does not preclude a node i from receiving network packets from

other nodes in the same stage, so long as node i is not in the transmitting subset of the

stage. The stages in our DSFMC model must be defined such that a node i in stage k

can only transmit a network packet if node i received the packet before any other nodes in

stage k are scheduled to transmit. If this condition is violated by node i in stage k, we can
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replace stage k with multiple stages (which share node i) such that node i transmits in a

different stage from the stage when the other nodes transmit to node i.

Our DSFMC model requires the set of link transmissions within a pair of stages (k1, k1+

1) and the set of link transmissions within a pair of stages (k2, k2 + 1) to be independent.

Like UPD, DSF uses frequency hopping over time to help justify this assumption. However,

the model allows the individual link transmissions within a single pair of stages (k, k + 1)

to be correlated. This mirrors reality because on any single multicast transmission, all the

receiving nodes are listening on the same frequency channel.7

As with UPD, we construct the DSFMC model assuming we are provided with a routing

topology, schedule, the way nodes are grouped into stages, and all the link probabilities.

Note that we do not discuss algorithms for grouping nodes into stages in this dissertation,

but algorithms for grouping nodes for routing have been proposed in the literature. For

example, an algorithm for grouping nodes into stages was proposed by Dubois-Ferriere in

[27] for a class of similar routing protocols, Anypath Routing, where a packet is routed by

multicasting from each node on the path.

4.3.2 Directed Staged Flooding Markov Chain Model

As before, we represent the routing topology as a graph G = (V, E) and denote a node

in the network as i ∈ V = {1, . . . , N} and a link in the network as l ∈ E ⊂ {(i, j) : i, j ∈ V},

where l = (i, j) is a link for transmitting packets from node i to node j. Because each link

is used only once when transmitting a single packet, the link success probability for link

l = (i, j) is treated as being time-invariant and is denoted pl, or pij .

Unlike the UPDMC model, in the DSFMC model a state in the Markov chain at a stage

represents the set of nodes in the stage that successfully received a copy of the packet. The

transition probabilities between the states depend on the joint probability of successful link

transmissions between stages. We state the DSFMC model for the special case where the

links are all independent. For the general model, see B.

7Estimating how the links between a pair of stages is correlated, however, can be challenging.
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Figure 4.10. Mapping of states to nodes that received a packet in the DSFMC model. On the left
is an example of a state σ(k) and on the right is the state ω(k) where no packets have been received.

Definition 4.3.1 (Directed Staged Flooding Markov Chain Model). Let’s assume we have

a routing topology with K + 1 stages 0, . . . ,K. Each stage k has Nk nodes, and the set of

2Nk possible states in stage k is represented by the set of numbers S(k) = {0, . . . , 2Nk − 1}.

Let K(k) be the set of nodes in stage k and for each state σ(k) ∈ S(k), let R(k)
σ ⊂ K(k) be

the set of nodes that have received a copy of the packet and U (k)
σ = K(k)\R(k)

σ be the set of

nodes that have not received a copy of the packet (See Figure 4.10). Let ω(k) denote the

state where no nodes received a copy of the packet in stage k.

The conditional probability of the next state X(k+1) being state σ(k+1) given that the

current state X(k) is σ(k) can be expressed as

P(X(k+1) = σ(k+1)|X(k) = ω(k)) =


1 : σ(k+1) = ω(k+1)

0 : otherwise

if σ(k) 6= ω(k)

P(X(k+1) = σ(k+1)|X(k) = σ(k)) =
∏

u∈U(k+1)
σ

i∈R(k)
σ

(1− piu)


∏

r∈R(k+1)
σ

1−
∏

i∈R(k)
σ

(1− pir)



(4.28)

The transition probability matrices between stage k and k + 1 are P (k+1) ∈ [0, 1]Nk+1×Nk ,

where the entry Pσ(k+1)σ(k) of the matrix is P(X(k+1) = σ(k+1)|X(k) = σ(k)).

The initial state X(0) is the state σ(0) corresponding to R(0)
σ = {a}, where a is the
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source node. Then, the probability distribution p(k) ∈ [0, 1]Nk of the state at stage k is

p(k) = P (k) · · ·P (2)P (1)︸ ︷︷ ︸
P (k)

p(0) (4.29)

If we assume only one node in a stage transmits in a time slot and the transmitting

subset of each stage is all the nodes in the stage, we can obtain the probability that a copy

of the packet is at a node i at time t directly from our model by translating t to k from the

relation t =
∑k−1

j=0 Nj and looking at
∑
{σ(k):i∈R(k)

σ }
P(X(k) = σ(k)). In the case where the

last stage contains only the sink node and only the nodes in stage K − 1 transmit to the

sink, if b is the state in stage K where the sink receives a copy of the packet, we have

p
(td)
net =


0 : td ≤

∑K−2
i=0 Ni

p
(K)
b : td ≥

∑K−1
i=0 Ni

(4.30)

and 0 ≤ p
(td)
net ≤ p

(K)
b when

∑K−2
i=0 Ni < td <

∑K−1
i=0 Ni.

Finally, note that except in the special case where there exists a path from the source

to the sink with all link probabilities equal to 1, p
(td)
net < 1 for all td. All copies of a packet

can be lost in the network because we do not use acknowledgments and retransmissions to

guarantee a copy of the packet has been delivered.

4.3.3 DSFMC Examples and Discussion

Example 4.3.1 (DSFMC on a wide path topology). As an example, let’s consider the stages

with 3 nodes in Figure 4.8. Assume the links are independent, that each link has the same

transmission success probability p, and let p̄ = 1− p. Then, the probability that a node in

stage k + 1 receives a copy of the packet, given the state of stage k, is 1 minus the product

of incoming link failure probabilities, as shown in Figure 4.11. The transition probability

between states can be obtained by applying (4.28). Figure 4.12 illustrates the transitions

out of state 7. The full 8× 8 transition matrix is provided in Appendix D.
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Figure 4.11. Markov chain states for stages with 3 nodes in the routing topology in Figure 4.8.

Figure 4.12. Markov chain transition diagram for a stage with 3 nodes in the routing topology in
Figure 4.8. Here, only the outgoing transitions and associated transition probabilities from state 7
are shown.

Example 4.3.2 (DSFMC on a topology with shared stages). In the example in Figure 4.9,

the dimensions of the state probability distribution vector vary with time, and also some

of the nodes are shared between stages. To represent the state at each stage k, we first

order the nodes in each stage from smallest to largest node id and re-index them from

0, . . . , Nk − 1. Then, for each node with a new index n we define in = 1 if the node has
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a copy of the packet and in = 0 otherwise. The state is then just σ(k) =
∑Nk−1

n=0 in2n.

Assuming the links are independent, the equations that describe the DSFMC model are

P (1) =



1 p̄12p̄13

0 p12p̄13

0 p̄12p13

0 p12p13


P (2) =



1 p̄23p̄24 0 0

0 p23p̄24 1 p̄24

0 p̄23p24 0 0

0 p23p24 0 p24



P (3) =

1 p̄34 0 0

0 p34 1 1

 P (4) =

1 p̄45

0 p45


p(0) =

[
0 1

]T

P (4) = P (4)P (3)P (2)P (1)

(4.31)

where pij is indexed by the original node ids and again p̄ij = 1− pij . As mentioned in

Section 4.3.1, we assume that if a node i in stage k has a copy of the packet and node i is

also in stage k+1, then node i will have a copy of the packet in stage k+1 with probability

1.

4.3.4 DSFMC Analysis

p
(td)
net for Wide Paths with Repeated Stages

For the purposes of choosing a network topology before deployment, it is useful to get

a grasp of how p
(td)
net scales as we extend the length K of a wide path topology without

having to calculate p
(td)
net for each new network explicitly. We consider the case of a wide

path with repeated stages containing a constant number of nodes Nstage per stage and the

same transition probability matrix P (k) = P between all stages, like the middle stages in

the example in Figure 4.8. For simplicity, the discussion below will ignore the first stage

containing the source and the last stage containing the sink.

A good characterization of how end-to-end connectivity scales with the number of stages

K comes from the eigenvalues of P .

Theorem 4.3.1 (DSFMC p
(td)
net converges exponentially to 0). Let P be diagonalizable and
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limK→∞ PKp(0) = e[ω], where ω is the state where no nodes received a copy of the packet.

Then

p
(td)
net ≤ C(ρ∗)K , td = KNstage (4.32)

for some constant C dependent on the initial distribution p(0) and ρ∗ = max{|λ| :

λ is an eigenvalue of P and |λ| < 1}.

The proof of this can be found in Appendix C.2. While this relation is an upper bound,

ρ∗ is the dominant decay rate for large K because all the eigenvectors of P with eigenvalue

magnitudes less than 1 decay exponentially with K. In practice, a good routing topology

has ρ∗ very close to 1. When choosing a routing topology for wide paths, one can use ρ∗ for

wide paths with repeated stages of different sizes to quickly compare the gain in reliability

at the cost of extra latency.

Traffic Distribution

To calculate the probability that a copy of the packet visits a node i at or before

time t, α
(t)
i , we first remove all the outgoing edges of i, and add a “self transmission”

link of probability 1 from node i to itself over all time slots. Then, we compute α
(t)
i =∑

{σ(k):i∈R(k)
σ }

P(p̃(k) = σ(k)), where p̃(k) is the state probability distribution on the modified

schedule and topology.

Sensitivity to Link Estimation Error

As with UPD, our DSFMC model is constructed from estimated link probabilities pl,

and the user does not know the actual link probability p̂l = pl + δ. In DSF, where each

node transmits only once per packet and all links are independent, if the user knows that

the actual probability of a link p̂l = pl + δ lies in an interval (pl + ε, pl − ε) he can bound

the actual end-to-end connectivity p̂
(td)
net by simply recomputing p̂

(td)
net using the endpoints of

the interval pl ± ε. This is because unlike UPD, there are no link retransmissions in DSF,

which implies that p
(td)
net is a linear function of the single-link estimation error δ.
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To see this, note that in (4.28) the transition probabilities between states in adjacent

stages are a linear function of the individual link probabilities (the probability associated

with a link appears in the expression once). This means that the transition matrices P (k)

are a linear function of each link probability pl. Also, each link probability pl appears in

only one matrix P (k) because each link is used only once to transmit a packet. This is

because each node only transmits once when routing a single packet through the network.

As a result, P (K) is also a linear function of pl. Finally, p
(td)
net is a linear function of P (K)

and hence also a linear function of pl, meaning it is a linear function of δ.

Energy Consumption

As noted in Section 4.2.4, the weighted expected number of transmissions and receptions

up to time t by node i for routing a single session packet (and its copies) through the

network, θ
(t)
i , can be interpreted as the expected radio energy consumption up to time t

to relay a session packet. In DSF on topologies with disjoint stages, the expected number

of transmissions is simply the probability that a packet reaches node i because there are

no acknowledgments and retransmissions. The expected number of receptions at node i

is the sum of the probabilities that a packet reaches the nodes that can transmit to node

i. The following formulation is still useful for seeing how to formally calculate the energy

consumption.

To simplify calculations, we will compute θ
(k)
i , the weighted expected number of trans-

missions at node i and receptions up to the completion of the transmission interval between

stage k−1 and stage k (The transmission interval is the time interval over which the trans-

mitting subset in stage k − 1 transmits). Let θ(k) ∈ Rn
+ be the vector of θ

(k)
i where k is

the current transmitting stage. Let UTx be the energy consumed per transmission and URx

be the energy consumed per reception (these are the weighting factors). Define the vector

υ(k) ∈ Rn+Nk
+ and the matrix U (k) ∈ R(n+Nk)×(n+Nk−1)

+ to be

υ(k) =

 θ(k)

p(k)

 U (k) =

 I I̊(k)

0 P (k)

 (4.33)
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where I̊(k) ∈ Rn×Nk−1
+ has entries defined by

I̊
(k)

iσ(k−1) =



UTx : ∃Pσ(k)σ(k−1) 6= 0 s.t. (i ∈ R(k−1)
σ and

∃j ∈ R(k)
σ , j 6= i)

(i transmitted during

stage k − 1’s transmission interval.)

m · URx : ∃Pσ(k)σ(k−1) 6= 0 s.t. i ∈ R(k)
σ

m ,
∣∣∣R(k−1)

σ

∣∣∣− 1I(i ∈ R(k−1)
σ )

(i received m times during

stage k − 1’s transmission interval.)

0 : otherwise

. (4.34)

Note that the expression

∃j ∈ R(k)
σ , j 6= i

and the definition

m ,
∣∣∣R(k−1)

σ

∣∣∣− 1I(i ∈ R(k−1)
σ ) ,

where 1I is the indicator function, are to ensure that we are not counting transmissions from

node i to itself.

θ(k) can be obtained from υ(k), which in turn is computed from

υ(k) = U (k) · · ·U (2)U (1)υ(0) (4.35)

υ(0) =

 0

p(k)

 . (4.36)

4.4 UPD and DSF Tradeoffs

This section uses the connectivity metric p
(td)
net to compare UPD and DSF on the same

routing topology to explain some of the tradeoffs between the two networking protocols.

The real-time measurement system case study in Section 4.5.1 will use the tools developed
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Figure 4.13. (left) UPD and (right) DSF schedules for routing on a width-3 path topology, used in
the calculations for Figures 4.14, 4.15, and 4.16.

in this chapter to compare UPD and DSF in a more complex scenario. Recall that UPD

uses retransmissions to increase reliability while DSF uses multicast and multiple copies of

packets to increase reliability.

We chose the example of routing on a wide path topology, where the width of the path

is the number of rows and the length of the path is the number of columns. Here, every

node in one column (a stage in DSF) can route to every other node in the next column with

equal, independent link probabilities pl. The schedules for Directed Staged Flooding and

Unicast Path Diversity is depicted in Figure 4.13 for a width-3 path topology. Also, in all

our comparisons, we assume that the time to send an acknowledgment (ACK) for UPD is

negligible and ACKs can be sent back in the same time slot as the original transmission.

Figure 4.14 compares p
(td)
net of UPD and DSF, calculated using the UPDMC and DSFMC

models, under a range of different link probabilities.8 UPD has the potential to deliver
8Note that in this and subsequent plots, we perform the DSFMC calculations at the time granularity of

time slots, not stages, unlike the description of (4.30) in Section 4.3.2.

133



Figure 4.14. End-to-end connectivity as a function of latency for varying link probabilities using
the schedules described in Figure 4.13.

packets from the source to the sink in a shorter period of time, but the packet delivery

time has a larger variance. The packet delivery time for DSF spans a short, fixed range

because the DSF schedule of Figure 4.13 was designed to keep the copies of a packet within

a small set of nodes (at most two adjacent columns at any time) such that a node receives

copies of the packet from all its upstream neighbors before it transmits. This means that

each upstream neighbor of the sink will only transmit the packet once. Since DSF allows

us to keep copies of a packet within a small set of nodes, DSF can also avoid queuing in the

network (e.g., in our example, if the source generates a new packet every 6 time slots). Also,

because p
(td)
net

td→∞−−−−→ 1 for UPD and pnet for DSF is a fixed value less than 1 after the last

stage transmits (assuming pl 6= 1), UPD can always provide better end-to-end connectivity

at high latencies td.

Figure 4.15 shows that the final end-to-end connectivity pnet for DSF is higher for

wider paths at the cost of larger latency. Also, the figure illustrates the limitations of our

UPDMC model—the model is unable to capture the benefit of diversity from using multiple

paths instead of a single path because it assumes that all links are independent. Hence,

retransmission on the same link is just as good as transmitting on a different link. What
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Figure 4.15. Calculated end-to-end connectivity as a function of latency for varying path widths
using the schedules described in Figure 4.13, with magnification of the plot for pnet near 1.

is modeled is that wider paths require more time slots to schedule transmissions from the

nodes in the last column to the sink, explaining why Figure 4.15 shows that UPD on wide

paths with a smaller width tend to perform better than UPD on wide paths with a larger

width.

Since it is common for routing topology formation algorithms to only use links with

probabilities higher than a threshold in their routing topology, it is tempting to use the

plots in Figure 4.14 for high link probabilities to conclude that UPD always has better end-

to-end connectivity than DSF on wide path topologies even for short latencies td . However,

wireless channels may exhibit fading, causing the link probability on some links to suddenly

drop to a very low value. In the scenario where all the outgoing links on a relay node happen

to have a low probability because of fading, then a packet can get trapped at the node, as

discussed earlier in Section 2.3. In this scenario the link probabilities in the topology will
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Figure 4.16. Example of a topology with unequal link probabilities, where at short latencies
19 ≤ td < 48 it is preferable to use the DSF schedule rather than the UPD schedule in Figure 4.13.
(left) Routing topology, links labeled by their link probabilities, which were drawn uniformly at
random from the interval [0.5, 1]. (right) End-to-end connectivity for UPD and DSF.

not all be equal and DSF may provide a better end-to-end connectivity than UPD at short

latencies td. Figure 4.15 gives an example where the link probabilities in the width-3 path

topology are drawn uniformly at random from the interval [0.5, 1] to simulate a mixture of

good and bad links in the network. When 19 ≤ td < 48, it is preferable to use DSF.
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4.5 Case Studies on Wireless Networked Systems

This section will demonstrate how the models and tools presented in this chapter can be

used to help design wireless networked systems. The calculations from the models are used

in the design iterations to quickly check the schedules and other network parameter choices

and guide the design. It must be stressed, however, that simulations and experiments on

real platforms still play an important role in the final design phase to confirm that the

assumptions made in our models are reasonable. For instance, our models do not account

for queuing in the network, so we tried to reduce queuing effects by staggering the times

when packets are sent into the network. We use simulations to confirm that queuing occurs

infrequently in the network.

The case studies below are more complex than the previous examples used to illustrate

our Markov chain models because they involve multiple sessions and sources that periodi-

cally generate data over time. Thus, we will need to define some new terminology for our

discussions below. Recall that a session s ∈ {1, . . . , S} is an end-to-end connection between

a pair of users. In our scenarios below, each session has one source node a and one sink

node b. We say session s has source node as, and the vector a ∈ NS
1 represents the collection

of session to source node mappings. Different sessions may share a routing topology if they

have the same sink node. However, all sessions share the same schedule.

We say that a session injects a packet into the network when it places the packet into

a queue at the source node for transmission through the network. Let the session send

time for a packet be the time the packet is injected into the network. Each packet has a

Time-to-Live (TTL) counter to keep track of how long the packet has been in the network

so it can be removed when it is too old. We say a packet has a TTL of tTTL time slots

when we set the initial value of the TTL counter to tTTL. Starting from the packet’s session

send time, the counter is decremented on each time slot (regardless of whether the packet

is transmitted on a link9) until it reaches 0, at which point the packet is removed from the
9The packets on the Internet (IPv4) also have TTL counters, but the counters are decremented on each

hop and not decremented with time, i.e., counters are not decremented as the packet sits in a queue in the
network. In IPv6, the TTL counter is renamed the hop limit counter.
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network. We will also refer to tTTL as the packet simulation time, the number of time slots

we simulate a packet in the network.

In DSF, we make a distinction between a session packet and network packets, because

the network may have multiple copies of the same packet injected into the network. The

term “session packet” refers to the (unique) packet as seen by the users of the session, while

the term “network packet” refers to the (possibly many) copies of the packet being routed

through the network. Naturally, we assume that the networking protocols will eliminate

duplicate received network packets to present a single session packet to the users. We say

a session packet is cleared from the network when all of its network packets are removed

from the network either because they have been received by the sink or their TTL counter

has expired.

The packet latency td of a session packet is the sum of its packet wait time tw and its

packet relay time tr. The packet wait time is the number of time slots the packet waits in

the queue at the source node before the source node is scheduled to transmit (regardless

of whether the transmission is successful). The maximum packet wait time depends on the

schedule and depends on when a session can inject packets into the network. The packet

relay time (for DSF, this is also called the minimum packet relay time) is the number of

time slots between when the source is scheduled to transmit and when the first network

packet is received at a sink node. In DSF, we define the maximum packet relay time as the

number of time slots between when the source is scheduled to transmit and when the last

network packet is received at a sink node. Figure 4.17 illustrates these concepts and how

they are used to calculate the maximum packet latency for DSF.

In our case studies, the schedules are described by repeating a superframe of time slots

over time. Let Fs be a set whose elements are the time slots in the superframe when session

s can inject a packet into the network, and call Fs the superframe send times of session s.

Let ϑs be the superframe send time of the first packet of session s, and ϑ be the vector

of ϑs for all the sessions. We can calculate Fs if session s generates packets periodically.

Let ζs ∈ N1 be the packet generation period of session s, which is the number of time slots

between session packets. If the packet generation period is the same for all sessions, we use
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Figure 4.17. Illustration of how to calculate maximum packet latency using DSF session 2 in the
real-time measurement system case study (case study 1) as an example. Copies of the packet are
received over 5 time slots at the sink node. See Section 4.5.1 for details.

ζ to denote the packet generation period. In our real-time control case study (case study

2), the packet generation period is simply the system sampling time, the number of time

slots in a sampling period of our networked control system. Then,

Fs =
{(

(ϑs − 1) + k · ζs (mod T )
)

+ 1, k = 1, . . . , T − 1
}

(4.37)

where T is the length of a superframe.

Many of the preceding terms and concepts will be used in our discussions below to

compare and choose schedules.

We will use time constants from WirelessHART [40] and the performance characteristics

of the TelosB platform [21] to relate our simulations and calculations to real protocols and

platforms. We assume there are 100 time slots per second, like in WirelessHART. Using

the voltage and current consumption characteristics of the TelosB during transmission and

reception, and assuming (to a rough approximation) that a packet transmission or reception

takes the full time slot (10 ms), the energy usage is

(3 V)(21 mA)(
1

100
sec) = 630µJ

per packet transmission and

(3 V)(23 mA)(
1

100
sec) = 690µJ

per packet reception.
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We will use simulations to verify the calculations of p
(td)
net and our assumption that

queuing in the network has a small impact on packet delivery in our scenarios. In our

simulations, each node has one queue to hold the packets from all the sessions. When an

outgoing link on a node is scheduled to transmit, we look for the packet closest to the top

of the queue that can be transmitted on that link (i.e., the routing topology associated

with a packet contains that link). In this manner, packets in the queue are not blocked

from transmission because the packet at the top of the queue cannot transmit on the link

scheduled in the current time slot.

4.5.1 Case Study 1: Real-Time Measurement System

The tools developed in this dissertation can be used to plan and design WSNs for real-

time measurement systems before deployment. The designer can quickly check the feasibility

of a particular network routing topology and schedule given reasonable assumptions on the

link probabilities. Furthermore, the tools can be used for online estimation of network

performance if link statistics are collected online to estimate the link probabilities. This

section will use our analysis tools to check whether a particular wireless camera network

deployment is feasible for building surveillance.

Video Surveillance

Our real-time measurement system case study is building surveillance using wireless

camera embedded platforms with significant on-board processing capabilities, such as the

CITRIC mote [17]. The CITRIC mote can communicate with other wireless sensor net-

work platforms using IEEE 802.15.4. Furthermore, developers have the flexibility to code

or install different networking protocols on the mote, including TDMA mesh-networking

protocols that fit the Markov chain models in this dissertation.

In our building surveillance scenario, we will be tracking intruders (targets) that break

into a building after-hours using a wireless camera network. As this is not a dissertation

on computer vision, we will make several simplifying assumptions on the problem. First,
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Figure 4.18. Layout of camera nodes to monitor the hallways on a floor of the building. Node
1, the sink node, has a wired connection to a centralized server which serves as the estimator in
Figure 1.1 and the interface to the user. The target (in red) is visible by nodes 19, 21, 23, 25, 26,
28, 31 (highlighted in yellow). Each camera has a field-of-view (FOV) of roughly 60◦, represented
by the gray shaded triangle. The FOV extends out to infinity until hitting an obstruction but is not
drawn this way for clarity.

let’s assume there is only one target in the building. Second, this case study will focus on

monitoring the hallways of a single floor in the building. Third, the cameras are placed such

that all locations in the hallway are covered by two or more cameras (See Figure 4.18). This

assumption simplifies the handoff of target-tracking information between cameras. Fourth,

we assume that the cameras are calibrated beforehand to share a global frame of reference

(i.e., we know the Fundamental matrix for each pair of cameras).

141



Our goal is to check the feasibility of a sample wireless camera network deployment in

a building. Under reasonable assumptions of the wireless network conditions, we would like

to compute the end-to-end connectivity as a function of latency, the traffic distribution, and

the expected energy usage of the nodes in the network.

Wireless Network

Our wireless camera nodes do not stream images over the wireless network. Instead, each

camera performs local computations to track the target and pass this tracking information

back to a centralized server for global reconstruction of the track (wired node in Figure 4.18).

In general, clusters of cameras may communicate locally to extract more information from

the scene, but we will not consider this in our case study.10 In our calculations below, we

will assume that each camera sends one packet with tracking information per image (packets

have a maximum payload of 118Bytes in 802.15.4, See Table 1.1).

We consider a “worst case” scenario for our network, where a target is visible by 7

cameras that are located far away from the camera node wired to the centralized server, as

depicted in Figure 4.18. Here, we have 7 sessions, one routing from each of these camera

nodes to the wired camera node (the sink node). The mapping from session to source node

id is a = [31 28 26 25 23 21 19]. The cameras capture and process images at the same frame

rate, so the packet generation period for all the cameras is the same and is denoted as ζ.

Let’s assume each node can communicate with most other nodes within a 35 m range.

The exceptions to this rule are communication from nodes 1, 4, and 3 to nodes 12, 13,

16, and 17, because to be within range they must communicate through thick walls and

rooms. Most of the edges in the connectivity graph is depicted in the routing topology of

Figure 4.19. Edges between nodes in the same column in Figure 4.19 are missing, because

they are not used in the routing topology. The routing topology for our network simply
10To give an idea of the bandwidth requirements if we communicate image features between cameras,

consider SIFT features, which are used in many computer vision algorithms. In [65], Lowe mentions that a
typical “500×500 pixel image can give on the order of 2000 features.” A typical SIFT descriptor represented
by a 128-element vector of 2Byte numbers is 256Bytes. A compact representation of SIFT, called PCA-SIFT,
with 20-element vectors of 2Byte numbers is 40Bytes [50]. If we näıvely sent all the PCA-SIFT features
from one camera to another camera for correspondence, we would need to send ≈ 2000× 40Bytes = 80 kB
of data per image.
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Figure 4.19. Routing topology for the camera network layout in Figure 4.18. For clarity, the
position of the nodes have been rearranged and the arrowheads have been removed from the edges.
Assume all links are oriented from right to left. Generally, nodes can route to other nodes that are
1 or 2 columns to its left.

orients the edges in Figure 4.19 from right to left. In our scenario, all sessions share this

same routing topology. The links between nodes with direct line-of-sight have probability

0.9,11 and all other links have probability 0.6.

The UPD schedule is a repeating superframe with T = 14 time slots, given in Ap-

pendix E.1. The links scheduled to transmit during each time slot comprise a maximal

matching. Each link is scheduled to transmit at least once during the superframe. We

sidestep the frequency assignment problem by allocating a unique frequency to each link

transmitting in a time slot (we have 16 frequency channels in the 2.4GHz band in 802.15.4

and no more than 15 links per time slot).

Likewise, the DSF schedule is a repeating superframe, this time with T = 11 time slots

and given in Appendix E.2. Each column of nodes in the routing topology is a transmitting

subset of a stage, as shown in Figure 4.20. The set of nodes that have a nonzero probability of

receiving a network packet before the transmitting subset of stage k is scheduled to transmit

is designated as the nodes in stage k. Each node is scheduled to multicast to its downstream
11Exceptions: we treat the links (7,3), (8,3), and (9,3) as having line-of-sight.
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Figure 4.20. Stages in DSF for the camera network routing topology depicted in Figure 4.19. (left)
Nodes in each stage are grouped by colored, rounded rectangles. (right) The transmitting subset of
each stage are grouped by rectangles.

neighbors exactly once during the superframe. Again, we sidestep the frequency assignment

problem by allocating a unique frequency to each link transmitting during a time slot.

Calculations and Simulations

First, we use the UPDMC model to calculate how many time slots it would take for

the packets in each session to reach the sink node under UPD. This depends on which

time slot the packet is first injected into the network. For our calculations, we set the first

superframe send time for session s, ϑs, to time slot 2s− 1 so the time that different session

packets enter the network are staggered. This is to reduce the amount of queuing in the

network, which is not modeled by the UPDMC model. In our UPDMC model (4.18), this

means the transition probability matrices for the first session packet are shifted over by

2s − 2 time slots, e.g., P (1) would be replaced by P (2s−1). Figure 4.21 shows that using

ϑs as the superframe send time for each session s, over 97% of the packets of each session

reach the sink node with a latency less than or equal to 20 time slots (a network designer

should calculate and plot p
(td)
net using all possible superframe send times, but only one plot

is displayed here). We will set the packet TTL counter tTTL = 30 time slots to have a large

margin over the 20 time slots needed for over 97% connectivity.

We would like each camera node in the network to process 5 frames per second, which
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Figure 4.21. Calculated end-to-end connectivity for UPD on the camera network routing topology
of Figure 4.19. Links have probability 0.9 or 0.6, as explained in the text of Section 4.5.1. The
superframe send time is ϑs = 2s− 1 for these plots.

suggests that if there are 100 time slots per second (e.g., WirelessHART) each session will

generate and inject a new packet into the network every 20 time slots, i.e., ζ = 20. Therefore,

the superframe send times for each session are all the odd time slots,

Fs =
{(

(ϑs − 1) + k · 20 (mod 14)
)

+ 1, ∀k = 1, . . . , 13
}

= {1, 3, 5, . . . , 13} (since ϑs is odd for all sessions) .

(4.38)

Hereafter, when we refer to “all superframe send times” we mean Fs calculated from (4.37),

like (4.38), and not all the slots in the superframe.

The UPDMC model also allows us to calculate the traffic distribution in the network.

Figure 4.22 shows the probabilities p̃(t) that a packet from session 1 visits the nodes in

the network before its TTL counter expires. Note from the figure on the top left that if

all the packets for the session have the same superframe send time, the traffic distribution

on the network is very unbalanced, especially since we have high link probabilities in the

network. Packets will tend to choose the same path through the network. The figure on

the top right assumes Fs is given by (4.38) and shows that the traffic distribution can be
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Figure 4.22. Node Visit Probability for UPD on the camera network routing topology of Figure 4.19.
The size and darkness of the circles superimposed on the nodes correspond to the probability of
visiting the node (also labeled next to the node). ’X’ denotes source(s), ’O’ denotes sink(s).

much better when each session s has multiple superframe send times. The bottom figure

shows the traffic distribution averaged over all 7 sessions, where the traffic distribution of

each session s in turn is averaged over all superframe send times Fs.

Next, we use the UPDMC model to calculate the expected Tx / Rx energy usage (used

synonymously with “energy usage” below) on the nodes in the network when we route

a single UPD packet. The Tx / Rx energy usage per packet is calculated by weighting

the expected Tx / Rx count to route the packet by the energy usage per transmission or

reception. The top plot in Figure 4.23 shows the energy usage of each node when we route

a packet for session 1. Sending all packets with the same superframe send time results

in unbalanced energy usage throughout the nodes in the network. However, using all the
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superframe send times in F1 gives more balanced energy usage, with all nodes using on

average less than 767 µJ per packet.

The bottom plot of Figure 4.23 shows that even though each of sessions 2–7 uses many

superframe send times (all the odd time slots), many nodes do not use any energy because

they do not relay the packet. Only a subset of the nodes in the network are on a routing

path from each of these sessions’ source nodes to the sink. For instance, sessions 6 and

7 route packets through less than half of the nodes because the other nodes are either in

another hallway across the middle of the building or have a higher minimum hop count to

the sink. After averaging the energy usage over all the sessions, the energy usage across

the network is more balanced. Node 1, the sink node, has the highest energy usage, but

still uses less than 767 µJ of energy per packet. This is close to the theoretical minimum of

690 µJ, which assumes that the sink node only turns on the receiver once for each packet.

To verify that queuing does not impact the packet latency too much, we simulated

the network for 6000 time slots. Recall that ζ = 20 so we are simulating 300 packets per

session and that Fs for all the sessions are the same and is the set of all the odd time slots.

Figure 4.24 shows that for all sessions, fewer than 1% of the packets were dropped, given

tTTL = 30. In fact, for each session, over 75% of the packets (sometimes up to 88%) had a

latency of less than 15 time slots. We conclude that the network can reliably support the

camera nodes if each camera processes images at 5 frames per second.

Next, we use the DSFMC model to evaluate DSF and compare it with UPD on the

camera network routing topology. In our example, the packet generation rate 1/ζ for DSF

must be lower than the packet generation rate for UPD. This is because DSF has multiple

network packets, which takes up more network bandwidth. For instance, at the last stage

before the sink, each node in the stage may contain a network packet, so they all must be

scheduled to transmit to the sink before the corresponding session packet can be cleared

from the network. In fact, since each node is scheduled to transmit once per superframe, all

the sessions together cannot generate and inject packets into the network faster than rate
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Figure 4.23. Raster plot of the calculated Tx / Rx energy usage for UPD on the camera network
routing topology of Figure 4.19. Each point in the raster plot (marked by a circle) represents the
expected Tx / Rx energy usage for a node, with points ordered from left to right by ascending node
ids. (top) Each column represents one of session 1’s possible superframe send times. The last column
plots the energy usage of each node averaged over all of session 1’s possible superframe send times.
(bottom) Each session’s column plots the energy usage average over all of that session’s possible
superframe send times. The last column plots the energy usage of each node averaged over all the
sessions.
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Figure 4.24. Raster plot of each sessions’ packet latencies for UPD on the camera network routing
topology of Figure 4.19. A black ’X’ on the x-axis represents a packet drop. A dropped packet for
the last simulation run (largest packet id) may be a result of the simulation time running out, i.e.,
the packet’s TTL counter has not yet expired.

1/T , i.e.,
S∑

s=1

ζs = S · ζ ≤ T

where S = 7 and T = 11 in our scenario. Thus, the DSF schedule described in Section 4.5.1

cannot support the packet generation rate ζ = 1/20 used in our UPD simulation above.

Figure 4.25 shows a high packet drop rate when we run DSF with ζ = 1/20 — sessions 2,

3, 4, and 5 drop > 92% of their packets. The packets queue in the network and then their

TTL counter expire (assuming tTTL = 42, as will be explained below).

If ζ ≥ 77 time slots, then the queues on the nodes in the network will be bounded

even if we do not drop old packets from the network. We set ζ = 100 time slots in our

simulations, which corresponds to each session (camera node) generating 1 packet per second

if the network has 100 time slots per second. To reduce packet latencies, we space apart
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Figure 4.25. Raster plot of each sessions’ packet latencies for DSF on the camera network routing
topology of Figure 4.19 under an excessively high traffic load (each session generates a new packet
every 20 time slots). A black ’X’ on the x-axis represents a packet drop. A dropped packet for the
last simulation run (largest packet id) may be a result of the simulation time running out, i.e., the
packet’s TTL counter has not yet expired.

the session send times for each session by at least 11 time slots to reduce queuing in the

network. We set ϑ = [1 16 26 40 51 66 77] so that in the first 100 time slots each session

generates a packet when its source node is scheduled to transmit.

As mentioned in Section 4.4, because DSF does not have retransmissions, packets are

delivered to the sink within a bounded time window. Therefore, we will set the TTL of

each packet to the maximum packet latency, which can be determined from the schedule as

shown in Figure 4.17. In our example, the superframe send times are

Fs =
{(

(ϑs − 1) + k · 100 (mod 11)
)

+ 1, k = 0, 1, . . . , 10
}

= {1, . . . , 11}

which is depicted as the light gray boxes in Figure 4.17. Therefore, the maximum packet

wait time is 10 time slots. We can calculate from the schedule that the minimum and
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Figure 4.26. Calculated end-to-end connectivity for DSF on the camera network routing topology
of Figure 4.19. Links have probability 0.9 or 0.6, as explained in the text of Section 4.5.1. The
x-axis of the plot is the packet relay time, as explained in Figure 4.17.

maximum packet relay time for session 1 is 26 and 32 respectively, so the maximum packet

latency is 42 time slots for session 1. It turns out that the maximum packet latency for

session 1 is greater than or equal to the maximum packet latency for the other sessions, so

we set tTTL = 42.

Figure 4.26 shows the end-to-end connectivity of DSF as a function of the packet relay

time tr.12 The values of p
(tTTL)
net for all the sessions are all greater than 99.9981%.

Figure 4.27 shows the traffic distribution under DSF for session 1 and the average traffic

distribution over all sessions. Note that none of the nodes have a packet visit probability of

1, but some visit probabilities are displayed as 1 due to roundoff errors. Unlike UPD, the

traffic distribution in DSF is not dependent on the packet’s session send time. The DSF

network traffic is more even than the UPD network traffic.
12We chose not to plot p

(td)
net (using td on the x-axis) like in Figure 4.21 because the graphs for each session

would look like they overlap if we use the same superframe send times. For example, if we set Fs = {1} for

all the sessions, then for any td, p
(td)
net for any pair of sessions differ by less than 0.002. If instead we use ϑ

as the superframe send time, the plot would be too wide.
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Figure 4.27. Probability that a packet visits a node at or before time t for DSF on the camera
network routing topology of Figure 4.19. The size and darkness of the circles superimposed on the
nodes correspond to the probability of visiting the node (also labeled next to the node). ’X’ denotes
source(s), ’O’ denotes sink(s). Note that none of the nodes have a visit probability equal to 1, but
some probabilities are displayed as 1 due to roundoff errors.

Figure 4.28 shows the energy usage of the nodes when transmitting a single packet for

all the sessions.13 Naturally, the nodes with the most number of incoming links (nodes 7,

8, 9) have the highest Tx / Rx energy usage.

To verify that we properly designed our schedule to reduce the effects of queuing in

the network, we simulated the network and plotted the results in Figure 4.29. None of the

packets are dropped, and in fact over 78% of the packets for sessions 2 – 7 have latencies

td ≤ 30 time slots. Note that the packet latencies for each session vary in a periodic fashion

over the packet ids. This is because the superframe send times for session packets vary in

a periodic fashion over packet ids. The range of packet latencies for each session is due to

the range of possible packet wait times tw for each session packet.

In our choice of schedules for DSF and UPD, DSF has much lower network bandwidth

than UPD because multiple copies of a packet are present in the network. To utilize the

bandwidth more efficiently in DSF, we would need to modify the schedule and use less nodes

per stage to relay packets, at a cost of lower reliability. Also, Figures 4.21 and 4.26 show

that UPD tends to have lower packet latencies. Figures 4.23 and 4.28 show that UPD also

tends to have lower energy usage per session packet. However, Figures 4.22 and 4.27 show
13We didn’t need to use (4.33) in this scenario because it was easy to directly count the number of

transmissions and receptions given the traffic distribution.
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Figure 4.28. Raster plot of the calculated Tx / Rx energy usage for all sessions with DSF on the
camera network routing topology of Figure 4.19. Each point in the raster plot (marked by a circle)
represents the expected Tx / Rx energy usage for a node, with points ordered from left to right by
ascending node ids. Each session’s column plots the energy usage average over all of that session’s
possible superframe send times. The last column plots the energy usage of each node averaged over
all the sessions.

that DSF has more even traffic distribution and Figures 4.24 and 4.29 show that DSF tends

to have more predictable packet latencies when packets are injected into the network at

regular intervals. After using the modeling tools and simulations presented in this section,

a network designer would likely choose our UPD schedule over our DSF schedule for this

network.

Note that we have simplified this case study by only considering 7 sessions. To fully

evaluate the protocols, routing topologies, and schedules for our camera network scenario,

we need to consider how all 31 sessions (one per camera) may interact. For instance, we

need to stagger the superframe send times of the sessions more carefully if we want to avoid

queuing in the network. We may still be able to take advantage of the assumption that only

certain cameras can view a target simultaneously, so that a single target cannot trigger all

the cameras to send packets back to the wired node. Therefore, some pairs of sessions will

never simultaneously have packets to send.
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Figure 4.29. Raster plot of each sessions’ packet latencies for DSF on the camera network routing
topology of Figure 4.19, where each session generates a new packet every 100 time slots. No packets
were dropped in these simulations.
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4.5.2 Case Study 2: Real-Time Control System

The control applications that can benefit from integration with the wireless sensor net-

works modeled in this dissertation are ones where the plant (system to be controlled) has

interacting dynamics physically distributed over a large area that can be monitored by sen-

sors and controlled by actuators from fixed locations. The reason the sensors and actuators

need to be at fixed locations is because the WSNs studied here have a static network topol-

ogy. An exception, where the actuators can move, is a particular setup of pursuit-evasion

games between robots [76]. Here, a WSN measures and estimates the position of evader

robots and relays it to a basestation, which then computes the evaders’ trajectories and uses

a reliable, high-power, wireless link to send this information to a group of pursuer robots.

Motivation to Study Chemical Processing

Chemical process control is a large class of applications that can benefit from WSNs.

A high-level survey of the literature [4; 5] reveals that the steps for creating chemical

products often involve multiple interacting process loops across the plant, not just a simple

linear progression from raw materials to final product. For instance, in the pulp and paper

industry the chemicals used to break down wood chips are recovered from the byproducts

through a multi-step chemical recovery process before they are fed back into the wood chip

digester (See Figure 4.30) [73].

Control across a large plant is often coordinated in a hierarchical fashion, with supervi-

sory controllers issuing setpoints across the plant to local control loops. Model Predictive

Control (MPC) is popular for supervisory control while PID Control is popular for local

unit control. A multi-hop WSN would integrate well with supervisory control because it

can span the coverage of a factory. Mercangöz and Doyle noted in [73] that a paper machine

alone can be up to 200 m in length and 10 m in height, well within the range of a multihop

802.15.4 network. Furthermore, supervisory control can operate at a slower time scale than

local control, meaning that a WSN node can transmit less frequently and sleep for longer

periods of time, prolonging network lifetime.
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Figure 4.30. Pulp mill to process wood chips into washed pulp for making paper. The “white
liquor” (NaOH and Na2S) is recovered from the “black liquor” coming out of the wood chip digester
through a series of chemical recovery loops. (Figure courtesy of [73].)

The benefits of wireless control in a factory include lower cost of installation, no repair

of worn cables, and safety from not having cables [91]. In fact, technology is being developed

to harness waste heat from industrial processes to power WSN nodes such that the batteries

will not have to be replaced, saving even more on maintenance costs [91]. The potential

to add extra sensors and actuators at lower cost in more locations can yield more fine-

grained control of the plant. In the future, wireless sensors and actuators may also make

factories easier to reconfigure to make different types or grades of products because wireless

components are easier to reposition on the production line.

Better plant-wide control of chemical processing may yield a bigger return on investment

than other types of industrial automation such as car assembly because of the variability
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in the inputs and the volume of the production. Many chemical processing plants such as

oil refineries and pulp and paper mills consume raw natural resources of varying grades

but need to produce products with specific grades. Also, poorer plant-wide control of the

processing units means that larger intermediate surge tanks are needed between the units

to isolate the dynamics of the different processes. Mercangöz and Doyle point out in [73]

that pulp and paper mills can have a production capacity on the order of 105 tons per

year and that surge tanks in these plants can increase capital costs and inventories while

reducing the agility to switch between different paper product grades. They also point out

that a 600,000-ton annual capacity pulp and paper mill can consume up to 300,000 kg/h of

process steam and over 40MW of electricity, so there is significant room for energy savings

by using better control.

For these reasons, our case study of real-time wireless networked systems will be on

a chemical processing control system running over a WSN. Specifically, we’ll be looking

at a subsection of a pulp and paper mill. Typically, the sampling times for local control

loops are on the order of seconds to tens of seconds and the sampling times for supervisory

control are on the order of tens of seconds to minutes [13]. At these time scales, even CSMA

media access with low-power listening [81] can meet the latency requirements of a single

control loop. However, the traffic load would be greater if the plant has multiple control

loops and TDMA scheduling would utilize bandwidth more efficiently. Besides, frequency

hopping is often necessary in a cluttered factory environment to avoid multi-path fading

[96], and is not compatible with CSMA on 802.15.4 radios because these radios can only

listen to one radio channel at a time. The TDMA mesh networking protocols modeled in

this dissertation are a good fit for wireless control in chemical processing plants.

Pulp Mill Plant Model

Large models of industrial chemical processing plants [25; 86] and even wastewater

treatment plants [46] are available on the web as benchmarks to test control strategies.

However, since this is not a dissertation on chemical process control, we adopt a simple

model provided by the Model Predictive Control Toolbox in MATLAB R© for our case study.
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The case study is titled “MPC Supervisory Control of a Two Stage Thermo-Mechanical

Pulping Process” and is documented in [3; 106].

Figure 4.31 shows the process by which pulp is diluted and pressed to the proper con-

sistency (defined as the ratio of dry mass flow rate to overall mass flow rate) for making

newsprint further down the production line. The goal is to regulate the pulp consistency

and reduce energy costs while meeting operational constraints. These constraints include:

• keeping the power usage on each refiner under maximum rated values,

• keeping the vibration level on the refiners under a threshold to prevent the refiner

plates from clashing,

• keeping the pulp consistency within a tolerance band to prevent fiber damage and the

blow line from plugging up, and

• keeping the inputs within physical limits.

There are five inputs and six outputs to this plant. The inputs / manipulated variables

are the setpoints for the two gap controllers regulating the distance between the refiner

plates, the dilution flow rates to the two refiners, and the rpm of the pulp screw feeder.

The outputs are the motor loads, output pulp consistency, and refiner vibration of the two

refiners. The details of the plant dynamics are described by the Simulink R© diagram in

[106].

Model Predictive Controller

A discrete time model predictive controller uses an internal model of the plant and the

measured outputs from the plant to predict the behavior of the plant during a finite time

prediction horizon Tp. It simultaneously computes the optimal control over a finite time

control horizon Tc. The MPC controller then applies the computed control input for the

first time step to the plant and discards the remaining control inputs. At the next time

step, a new measurement is taken from the plant and this process of computing the next
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Figure 4.31. MPC Supervisory Control of a Two Stage Thermo-Mechanical Pulping Process. See
text for details. (Figure courtesy of [106].)

Figure 4.32. General setup of a model predictive control (MPC) control loop in MATLAB. See
text for details. (Figure courtesy of [106].)

control input is repeated. The general setup of a MPC control loop for a SISO (single input

single output) plant is shown in Figure 4.32.

Our problem is MIMO (multiple input multiple output) and does not have any measured
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disturbances v or unmeasured disturbances d in the model maintained by the controller,

although there is white noise in the model of the plant used in the simulations. Let u ∈ R5

be the manipulated variable (control input) to the plant, y ∈ R6 be the measured plant

output, and r ∈ R6 be the setpoint. The mapping of plant inputs and outputs to these

vectors is given in Table 4.1. The system sampling time is 0.5 minutes, Tp = 20 min, and

Tc = 5min. After converting time to discrete time steps k, the optimization problem solved

by the model predictive controller at each time step is

min
{u(k),...,u(k+9)}

k+39∑
κ=k

(y(κ)− r(κ))T Q (y(κ)− r(κ))+

k+9∑
κ=k

(u(κ)− u(κ− 1))T R (u(κ)− u(κ− 1))

s.t. at all time steps

0 ≤ u1 ≤ 35 y1 ≤ 1

0 ≤ u2 ≤ 1 y2 ≤ 0.45

70 ≤ u3 ≤ 250 y3 ≤ 1

0 ≤ u4 ≤ 1 y4 ≤ 9

70 ≤ u5 ≤ 250 y5 ≤ 0.4

y6 ≤ 9

where

Q = diag(0, 10, 0, 1, 10, 1) R = diag(0.1, 10, 0.1, 10, 0.1)

r =
[
0 0.4 0 8.5 0.3 6

]T

.

(4.39)

The MPC controller uses an internal model of the plant and the past observations to predict

the future state of the plant x(k), . . . ,x(k+39) and the future output y(k+1), . . . ,y(k+39).

In this case study, we do not modify the MPC controller provided by the MATLAB MPC

toolbox in any manner to account for the lossy, delayed wireless communication channel.

Our goal is to evaluate how the lossy, delayed wireless communication channel impacts the

performance of the control system.
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Table 4.1. Mapping of inputs / outputs to variables in MPC optimization problem
variable value

u1 feeder (rpm)
u2 primary gap set point
u3 primary dilution flow set point (gallons per minute)
u4 secondary gap set point
u5 secondary dilution flow set point (gallons per minute)
y1 primary motor vibration
y2 primary output pulp consistency
y3 secondary motor vibration
y4 primary motor load (MegaWatts)
y5 secondary output pulp consistency
y6 secondary motor load (MegaWatts)

Wireless Network

The wireless network used to relay control and observation packets is depicted in Fig-

ure 4.33. We assume the sensors for the vibration, consistency, and motor load for the

primary refiner are all wired to a single wireless sensor node, and similarly for the sec-

ondary refiner. There is also a single supervisory controller located at one end of the plant,

4 hops away from the pulp processing equipment. There are 5 sessions, numbered 1 to 5:

1. controller to feeder,

2. controller to primary refiner,

3. controller to secondary refiner,

4. primary refiner to controller, and

5. secondary refiner to controller.

Sessions 1, 2, and 3 use topologies 1, 2, and 3 respectively, while sessions 4 and 5 share the

same routing topology (topology 4 described in the caption of Figure 4.33). All the links

in our network have transmission success probability pl = 0.9.

We will use UPD to send packets over this network. The schedule depicted in Figure 4.34

includes links from all the routing topologies and is shared by all the sessions.
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Figure 4.33. The 4 pulp mill network routing topologies. Topology 1 (solid black and solid red
links) routes packets from the controller (C ) to the feeder (F ). Topology 2 (solid black and dashed
blue links) routes from the controller to the primary refiner (P). Topology 3 (solid black and dotted
black links) routes from the controller to the secondary refiner (S ). Finally, topology 4 (all links
depicted but with directions reversed) routes packets from the primary and secondary refiner to the
controller. All links have success probability pl = 0.9.

Figure 4.34. Schedule indicating active links for each time slot on pulp mill network. This schedule
is shared by all the routing topologies. C stands for controller, F stands for feeder, P stands for
primary refiner, and S stands for secondary refiner.
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Let us assume that we have 10ms time slots, like in WirelessHART [40]. The system

sampling time is 30 sec, or 3000 time slots. If we wish to have all the nodes in the network

operate with a 0.5% duty cycle (nodes sleep for 199 time slots and wake up 1 time slot to

transmit), a node would wake up to send or receive a packet every 2 seconds. Let us assume

the nodes are powered by AA batteries with 2500 mAh of charge (reasonable for alkaline

batteries, [30]) and the current consumption is less than 25mA when the mote is on and

less than 10 µA when the mote is sleeping (reasonable for the TelosB platform, [21]). The

sleep current is negligible given a 0.5% duty cycle, so the calculated expected lifetime of a

node is approximately

(200)(2500mAh)
(25 mA)(24 h/day)(365 day/year)

≈ 2.3 years (4.40)

if the node transmits on every time slot that it is awake. This means batteries can be

replaced using a once-a-year maintenance schedule. Let the network lifetime be defined

to be the expected time until the first node runs out of energy. In the next section, we

will calculate the network lifetime assuming that nodes only generate or relay packets (no

baseline energy usage from sensing or extra processing), nodes can sense the channel to see

if they need to receive a packet and quickly go back to sleep, and nodes consume negligible

energy when sleeping or when sensing the channel for packet reception. The network lifetime

will be higher than (4.40) because each node will not be transmitting or receiving a packet

on every time slot it is awake.

Furthermore, if we discard packets with an end-to-end delay of more than 2 system

sampling times, then tTTL for each packet should be set to 6000 time slots. At a 0.5% duty

cycle this would be 30 time slots when the network is awake. In reality, the TTL counter

on the packet should be set to 30 since we can only decrement counters when the nodes are

not sleeping.

In this and following discussions, we will assume that the duty cycle of all the nodes

in the network are synchronized, meaning all nodes sleep and wake up at the same time.

This allows us to frame our discussion around network-awake time slots instead of actual

time slots. Hereafter and unless otherwise noted, time is counted in network-awake time

slots, where we assume the nodes have a 0.5% duty cycle and 1 network-awake time slot =
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200 actual time slots. Thus, 1 system sampling time = 15 time slots (network-awake time

slots), meaning each session generates a new packet every ζ = 15 time slots.

Calculations and Simulations

To check whether the choices for the duty-cycle and initial packet TTL counter discussed

in the previous section are reasonable, we used the UPDMC model to calculate the end-to-

end connectivity as a function of latency, p
(td)
net , and plotted it in Figure 4.35. As noted in

the previous section, time is counted in network-awake time slots, meaning we do not count

time slots when the network is sleeping. Again, we staggered the superframe send times of

the sessions to reduce the queuing in the network. Using ϑ = [1 5 9 2 6] so the first session

packet is generated when the session’s source is scheduled to transmit and

Fs =
{(

(ϑs − 1) + k · 15 (mod 12)
)

+ 1, k = 1, . . . , 29
}

we get

F1 = {1, 4, 7, 10}, F2 = {2, 5, 8, 11}, F3 = {3, 6, 9, 12},

F4 = {2, 5, 8, 11}, F5 = {3, 6, 9, 12} .

Figure 4.35 uses ϑ as the superframe send times. The figure shows that all the sessions

have 97.96% of the packets reach the sink under 30 network-awake time slots, i.e., a delay

under 2 system sampling times (assumes no queuing).

Next, we used the UPDMC model to calculate the traffic distribution on the network,

shown in Figure 4.36. Notice on the left picture that a lot of traffic passes through node

7, the node to the left of the node representing the feeder in Figure 4.33. In fact, the right

picture shows that much of the traffic of session 1 passes through node 7 despite using

all the different superframe send times in F1. We cannot assume traffic will always be

evenly spread throughout the network just because packets are injected into the network at

different superframe send times.

Figure 4.37 plots the calculated energy usage using the UPDMC model and confirms

that node 7 consumes the most energy from relaying the most traffic. In fact, sessions 1, 2,
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Figure 4.35. Calculated end-to-end connectivity as a function of delay for the 5 sessions on the
pulp mill network. Assumes sessions 1 to 5 each have a superframe send time of 1, 5, 9, 2, and 6
respectively. Note that the plots for sessions 3, 4, and 5 lie on top of each other.

Figure 4.36. Probability that a packet visits a node at or before time t for UPD on the pulp mill
network routing topology of Figure 4.33. The size and darkness of the circles superimposed on the
nodes correspond to the probability of visiting the node (also labeled next to the node). ’X’ denotes
source(s), ’O’ denotes sink(s).

and 3 all relay a lot of traffic through node 7. Thus, the network lifetime should equal node

7’s lifetime. However, at our low packet generation rate of 1 session packet every 3000 time

slots, the Tx / Rx energy usage has negligible impact on the node lifetime. Let us make the

same assumptions for calculating a node’s expected lifetime earlier: 2500 mAh batteries, the
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nodes only relay packets (no baseline energy usage from sensing or processing), the nodes

consume negligible energy while sleeping, and the nodes consume negligible energy when

they wake up to sense the channel for receiving packets and quickly go back to sleep. The

formula to convert from energy usage to lifetime is

Node i’s lifetime (in years) =

(3 V)(2.5 Ah)(200 · ζ time slots per session packet)

(θ(tTTL)
i J per session packet)(24 h/day)(365 day/year)(S sessions)

(4.41)

Using this formula, the expected network lifetime (node 7’s lifetime) is ≈ 552 years, which

is much higher than expected (usually, a node’s battery is expected to last less than 10

years). Clearly, the baseline energy usage is no longer negligible in scenarios with very low

traffic, so the calculated lifetime will be wrong. However, a real chemical processing plant

will likely have much more than 5 sessions, meaning more data traffic. In that scenario, the

network lifetime calculations may more closely match reality. If a network designer wishes

to improve the traffic distribution and lower the Tx / Rx energy usage of the nodes in the

network, he would have to tinker with the schedule or the superframe send times of the

sessions.

After using the UPDMC model to plan and evaluate our network, we verified the perfor-

mance of the entire closed loop networked control system by simulating it over a simulation

time interval of 1 hour (time in simulation model, not time to run simulations). This corre-

sponds to 1800 network-awake time slots (360,000 actual 10ms time slots). The results of

the wireless network simulation is depicted in Figure 4.38. Very few packets are dropped,

and in each of the sessions roughly 37-48% of the packets have a system sample time delay

of 1 (≤ 15 time slots) and roughly 46-58% have a system sample time delay of 2.

Figure 4.39 plots the ability of the networked control system to track the reference set-

points for the motor loads and the final pulp consistency. The simulations show significantly

worse tracking even with low packet drop rates and packet delays of 1 or 2 system sam-

pling times. In fact, the plant violates the primary motor load constraint y4 ≤ 9 from the

optimization problem described by (4.39), with the motor load peaking at ≈ 11.9 MW.14

14Both the ideal channel NCS and the wireless channel NCS briefly violate the constraint y5 ≤ 0.4. This
is because the initial output of the plant is close to this operating constraint.
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Figure 4.37. Raster plot of the calculated Tx / Rx energy usage for all sessions with UPD on the
pulp mill network routing topology of Figure 4.33. Each point in the raster plot (marked by a circle)
represents the expected Tx / Rx energy usage for a node, with points ordered from left to right by
ascending node ids. Each session’s column plots the energy usage average over all of that session’s
possible superframe send times. The last column plots the energy usage of each node averaged over
all the sessions.

Table 4.2 compares the performance of the NCS using ideal communication channels

(no packet loss or delay) with the performance using the lossy, delayed communication

channels from our wireless mesh network. We compare the performance using the Integral

of Absolute Error (IAE) and the Integral of Time and Absolute Error (ITAE) [62]. They

can be computed as

IAE =
kf∑

k=ko

∣∣ error(k)
∣∣ (4.42)

ITAE =
kf∑

k=ko

tk ·
∣∣ error(k)

∣∣ (4.43)

where error is the difference between the output variable and the reference set point and

tk is the time in minutes at discrete time step k. Clearly, blindly substituting a wireless

network, even with low packet loss rates and delays, can result in significantly worse system

performance. This case study illustrates the magnitude of loss in efficiency (on the order of
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Figure 4.38. Raster plot of individual packet delays from simulations on the pulp mill network.
A black ’X’ on the x-axis represents a packet drop. A dropped packet for the last simulation run
(largest packet id) may be a result of the simulation time running out, i.e., the packet’s TTL counter
has not yet expired. The plots are annotated with the percentage of packets that were dropped.

Figure 4.39. Difference between paper pulp mill output and reference setpoints under (left) ideal
network conditions with no packet drops and no delay, and (right) a wireless network with the packet
drop and delay statistics depicted in Figure 4.38.
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Table 4.2. Pulp paper mill IAE and ITAE with and without packet losses + delay
Perfect Lossy, Delayed

output variable Channel Channel
IAE ITAE IAE ITAE

y4, primary motor load (MegaWatts) 14.55 413.55 29.88 563.83
y5, secondary output pulp consistency 0.96 17.89 1.68 25.57

y6, secondary motor load (MegaWatts) 22.99 419.03 32.52 637.45

MegaWatts) and lower pulp consistency in a paper pulp mill. Fortunately, the performance

of the wireless NCS gets better over time, but only after severely violating the primary

motor load operational constraint.
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Chapter 5

Conclusions and Future Work

Wireless Networked Systems will become more prevalent in the upcoming years as wire-

less sensor networks become integrated with real-time control and measurement systems to

provide more points for sensing and actuation to interact with the environment. To manage

the complexity of these systems, which may consist of hundreds or thousands of compo-

nents connected by a lossy wireless communication medium, we need to develop a generic

design methodology that can be applied across many similar systems. A key component of

any design methodology is the definition of network abstractions to obtain network metrics,

which in turn can be translated into measures of system performance using analysis tools

such as the existing Networked Control System Theory.

5.1 Summary of Contributions

This dissertation provided a framework for analyzing the performance of real-time wire-

less networked systems. In particular, Chapter 4 develops the UPDMC and DSFMC mod-

els of two classes of networking protocols, UPD and DSF, given the routing topology and

schedule. These models are used to compute the end-to-end connectivity metric, p
(td)
net , as

an abstraction of the network for use in the design of the real-time measurement or control

system. The UPDMC and DSFMC models also provide other useful metrics for charac-
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terizing the network, such as the expected node energy consumption from relaying packets

and the traffic distribution throughout the network.

Chapters 2 and 3 focus on the design of routing topologies and schedules that improve

the reliability of packet delivery through the network. Directly optimizing the end-to-

end connectivity metric p
(td)
net by jointly designing the routing topology and schedule is

difficult, so the routing topology and the schedule were designed separately. Both chapters

studied how to increase the reliability of the network using path diversity, which is the

use of multiple paths to route packets to the destination. Chapter 2 defined metrics to

assess and compare mesh routing topologies and proposed a lightweight greedy algorithm to

construct a routing topology from an undirected connectivity graph. Chapter 3 highlighted

the difficulties in getting good path diversity with low latencies using repeating schedules

and Greedy Maximal Matching scheduling. The APLM scheduling algorithm was proposed

to generate the link matchings in the schedule at each time slot in a distributed manner.

The mechanisms of the algorithm need improvement for general topologies but work well

for layer-to-layer topologies.

5.2 Directions to Extend the Models and Algorithms

This section discusses the limitations of the models and algorithms presented in this

dissertation, as well as how to extend or improve them.

Chapter 2 introduced the the robustness metric as a low computational complexity ap-

proximation of the path probability metric. Section 2.2.3 showed that there exist topologies

where the difference between the robustness metric and the path probability is arbitrarily

close to 1. A useful extension would be to derive a non-trivial bound (i.e., not 1) on the

difference between the path probability metric and the robustness metric for a given routing

topology G. It would also be useful to know what classes of DAGs have ra→b close to pa→b.

Chapter 2 also introduced the robust minimum hop algorithm for constructing a routing

topology that attempts to maximize, in a greedy fashion, a variant of the robustness metric

from all nodes in the network to the sink. Section 2.4.3 pointed out that this may not
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maximize the robustness metric between a particular node and the sink. Since there may

be times when only be a few sources need to communicate to the sink, a useful extension is to

modify the robust minimum hop algorithm to construct a routing topology that maximizes

the robustness metric only between a pair of nodes. In fact, it would also be interesting to

develop an algorithm that utilizes the rtFlow metric, or a variant of the metric, to construct

a routing topology.

Chapter 3 demonstrated that short, repeating schedules often do not utilize all the

paths in the network. It would be useful to develop a computationally tractable metric to

measure path diversity. This will help us compare and generate good schedules. Preferably,

this would be a metric that is well grounded in a link failure and routing model.

Chapter 3 also developed APLM, which used a simple 2-hop neighbor clustering heuristic

to help partition the network and distribute the computation of the schedule. However,

the throughput of the schedule was low because of the low number of links that were

simultaneously scheduled in a time slot. In fact, the simple clustering technique throws

away many links between nodes whose robust hop count differ by more than 1. Other

clustering schemes should be evaluated, keeping in mind that larger clusters require more

state and coordination between nodes. Ideally, one would be able to formalize the clustering

and partitioning phase of a scheduling algorithm like APLM as an optimization problem

that is negotiated by nodes in a distributed manner through “prices.” If the clustering

and partitioning phase is repeated over time to accommodate changes in the interference or

topology, such a formulation would allow us to study the stability and rate of convergence

of the scheduling algorithm as it adapts to the changing wireless conditions.

Scheduling also has a large affect on the queuing of packets on relay nodes in the network.

In UPD, we want schedules that minimize the probability that packets queue at nodes in

the middle of the network, since little can be done through scheduling to reduce queuing

on nodes near the source and the sink. The source and sink will always be bottlenecks in

the network. If a source is sending packets at a constant rate, a good direction for future

work is to design a schedule that tends to spread consecutive packets along different paths

through the network so that a link failure downstream does not back up the traffic.
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While the effect of link estimation error on our UPDMC and DSFMC models is briefly

covered in Chapter 4, this dissertation has not directly addressed how link estimation error

affects the formation of routing topologies and schedules. A good direction for future

research is how to formulate sensitivity to link estimation errors into the objectives of our

routing topology and scheduling formation algorithms.

As pointed out in Section 4.4, the UPDMC model in Chapter 4 does not capture the

benefits of having path diversity because the link transmission events are assumed to be

independent from one time slot to the next. In reality, the quality of wireless links are

often correlated over time because of short-term channel fading or interference [24]. If we

have enough independent frequency channels between the nodes and the schedule is designed

such that consecutive transmissions from a node to its downstream neighbor are on different

frequency channels, the UPDMC model may be sufficient. However, it is worth exploring

how we can extend the UPDMC model to better approximate the links in real wireless

network deployment while remaining computationally tractable (i.e., the state space does

not become too large). For instance, while exact modeling of the association / correlation

between links is difficult, there may be a way to augment or combine the UPDMC model

with the Gilbert-Elliot channel model for a point-to-point link such that the resulting model

is a closer match to the conditions in a real wireless network deployment.

Finally, the UPDMC model only models the transmission of a single packet through

the network. Thus, it implicitly assumes that consecutive packets are spaced far enough

apart in time that they do not queue on relay nodes in the network. Another direction for

further research is to incorporate queuing into our models, perhaps by borrowing results

from Queuing Theory to apply to WSNs.

5.2.1 Flow Control and QoS

This dissertation focused on routing and scheduling, which are related to the network

and data link layers of the OSI model. Another interesting area for research is to get a

better understanding of when it makes sense to add flow control mechanisms, which are
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part of the transport layer, to sensor networks. There is an extensive body of literature on

modeling flow control in the Internet as a decentralized optimization problem (See [18] and

references within). The objective is usually to maximize the total throughput while allowing

for fairness amongst the users and low amounts of queuing in the network. Latency and

reliability are usually not directly addressed in this formulation. Furthermore, flow control

on the Internet is meant to address fluctuations in the demand for network bandwidth by

the user, e.g., when the user wants to download a file. In this dissertation, we have only

considered wireless networked systems that generate data packets at a fixed rate.

A slightly different direction for further study is to define metrics that measure the

likelihood of packets queuing in the network given a set of independent flows (sessions) with

different fixed packet generation rates. These metrics would allow a network designer to

determine the maximum number of independent flows and data rates that can be supported

by the network.

If a wireless network is shared by multiple applications, there may be a need to provide a

Quality of Service (QoS) mechanism to prioritize traffic in the network. Such a mechanism

would affect models of queuing and latency in the network. For instance, a simple QoS

policy for a network supporting a real-time control system would be to discard older packets

containing older measurements when the network is congested. Given newer packets, the

older packets are less useful for estimating the state of the physical process we are measuring.

Further study is needed on how to evaluate different QoS policies and relate it to the

performance and stability of the entire wireless networked system.

5.2.2 Network Metrics for Adaptive Control

Thus far, the discussions in this dissertation revolved around using network metrics

to adjust the network so it can better support the wireless networked system. When the

wireless networked system is a real-time control system, it also makes sense to use the

network metrics to tune the controller to varying network conditions. For instance, we

can monitor the packet latency and success rate to estimate the network conditions and
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Figure 5.1. An example of a switching controller that adapts to varying network conditions. The
Network Estimator is part of the full system controller. The dashed lines indicate the monitoring of
network conditions, e.g., indirectly through checking timestamps and sequence numbers of delivered
packets.

determine when to switch between controllers (See Figure 5.1), using a more aggressive

controller when the network has a high packet delivery success rate with low latency. If we

generalize this to switching among a “continuum” of controllers, this is effectively the same

as designing a single controller which takes the network metrics as additional inputs. The

challenge here is to develop the proper formulation to incorporate the network metrics into

an optimal control framework.

Finally, it may be interesting to combine flow control with the design of controllers

for NCSs over wireless sensor networks. A direction for further research is how to design

a variable rate controller which adjusts the control commands and rate of sending these

control commands to network conditions.
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Appendix A

Math Notation Convention

This dissertation tries to follow the mathematical notation described below in all the
chapters. Due to the large number of symbols, some symbols are reused in different sections
of the text, but their meanings should be clear from the context. Occasionally, we will abuse
the notation and use one symbol to denote two similar concepts.

• variables of one dimension are in lowercase, e.g., a

• numerical constants are in capital letters, e.g., N

• events from a sample space are also in capital letters, e.g., A

• matrices are also in capital letters, e.g., A

• vectors are in bold or have an arrow on top, e.g., ~a, a

• random variables are also in bold, e.g., θ

• sets are in calligraphic letters, e.g., A

We often use superscripts and subscripts to label our variables. To avoid confusion with
exponentiation, we sometimes use parentheses around superscripts when we use them for
labeling. Note that we have both single subscripts (e.g., pl) and double subscripts (e.g., pij)
for labels, and in the latter we do not separate the subscripts with commas. When a double
subscript involves an expression, we use parentheses around the expression for a subscript
to separate the two subscripts (e.g., p(N+1)i).

(a, b) ordered pair (can represent a link, position in a matrix)
open interval between a and b

(a, b, . . .) ordered list, sequences
[a, b] closed interval between a and b

[a b · · · ] vector
[aij ] matrix with element aij at position (i, j)

{a, b, . . .} set
2A power set of set A (set of all subsets of A)
∀a for all a
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∃a there exists a
: or s.t. such that

a ∈ A a is an element in the set A
A ⊆ B A is a subset of B
A ∪ B the union of sets A and B
A ∩ B the intersection of sets A and B
A\B set difference, set with elements in A not in B
|A| the cardinality of set A (number of elements in A)

N natural numbers including 0, namely {0, 1, 2, . . .}
N1 positive integers, namely {1, 2, . . .}
Z integers
R real numbers

R+ nonnegative real numbers
C complex numbers

Rn set of n-tuples (n-dimensional vectors) with elements in R
Rm×n set of m× n arrays with entries in R

f : A 7→ B function f mapping domain A into codomain B
AT transpose of matrix A
A∗ complex conjugate transpose of matrix A
‖A‖ norm of matrix A
‖a‖ norm of vector a
‖a‖1 `1-norm of a vector a,

∑
i |ai|

diag(a) matrix consisting of the elements of a
on the main diagonal and 0 everywhere else

E[·] expectation
P(·) probability
1I(·) indicator function
O(·) big-O notation for computational complexity

EO(·) expected computational complexity is O(·)
x , y x is defined to be y
x := y x is assigned the value of y

The notation above may sometimes be combined to form expressions that look noncon-
ventional. For instance, [0, 1]N×N is a set of N ×N arrays with elements that lie within the
interval [0, 1], while {0, 1}N is a set of N -dimensional vectors with elements that are either
0 or 1.
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Appendix B

Full DSFMC Model

The following is the DSFMC model without the assumption that links within a pair of
stages (k, k + 1) are independent.

Definition B.0.1 (Directed Staged Flooding Markov Chain Model). Let’s assume we have
a routing topology with K + 1 stages 0, . . . ,K. Each stage k has Nk nodes, and the set of
2Nk possible states in stage k is represented by the set of numbers S(k) = {0, . . . , 2Nk − 1}.
Let K(k) be the set of nodes in stage k and for each state σ(k) ∈ S(k), let R(k)

σ ⊂ K(k) be
the set of nodes that have received a copy of the packet and U (k)

σ = K(k)\R(k)
σ be the set of

nodes that have not received a copy of the packet (See Figure 4.10). Let ω(k) denote the
state where no nodes received a copy of the packet in stage k.

Let R
(k)
σ denote the event that only the nodes in R(k)

σ received a copy of the packet,
S(i,j) denote the event a packet was at node i and link (i, j) successfully transmitted the
packet, and S̄(i,j) denote the event that a packet was at node i but link (i, j) failed.1 The
conditional probability of the next state X(k+1) being in state σ(k+1) given that the current
state X(k) is σ(k) can be expressed in terms of these events as

P(X(k+1) = σ(k+1)|X(k) = ω(k)) =

{
1 : σ(k+1) = ω(k+1)

0 : otherwise

if σ(k) 6= ω(k)

P(X(k+1) = σ(k+1)|X(k) = σ(k)) =

P

 ⋂
u(k+1)∈U(k+1)

σ

 ⋂
r(k)∈R(k)

σ

S̄(r(k),u(k+1))

∩
⋂

r(k+1)∈R(k+1)
σ

 ⋂
r(k)∈R(k)

σ

S̄(r(k),r(k+1))


∣∣∣∣∣∣∣R(k)

σ



(B.1)

where the overbar denotes taking the complement of an event. The transition probability
matrices between stage k and k + 1 are P (k+1) ∈ [0, 1]Nk+1×Nk , where the entry in position
(σ(k+1), σ(k)) of the matrix is P(X(k+1) = σ(k+1)|X(k) = σ(k)).

1The event S(i,j) is empty (and occurs with probability 0) if link (i, j) does not exist.
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The initial state X(0) is the state σ(0) corresponding to R(0)
σ = {a}, where a is the

source node. Then, the probability distribution p(k) ∈ [0, 1]Nk of the state at stage k is

p(k) = P (k) · · ·P (2)P (1)︸ ︷︷ ︸
P (k)

p(0) (B.2)
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Appendix C

Proofs of Theorems 4.2.1 and 4.3.1

The proofs of Theorems 4.2.1 and 4.3.1 rely heavily on the following theorem:

Theorem C.0.1 (ρ∗ determines convergence rate of p(t)). Let P ∈ [0, 1]N×N be a column
stochastic matrix (meaning all the entries in the matrix are nonnegative and all the columns
sum to 1) with limk→∞ P kp = e[b] for all probability vectors p ∈ [0, 1]N ,

∑
i pi = 1. Here,

e[b] is an elementary vector with the b-th element equal to 1 and all other elements equal to
0. Let ρ∗ = max{|λ| : λ is an eigenvalue of P and |λ| < 1}. Then,∥∥∥P kp− e[b]

∥∥∥
1
≤ CkJ−1(ρ∗)k−J+1, ∀k ∈ N1 (C.1)

where C is a constant dependent on p, and J ∈ N1 is the size of the largest Jordan block of
P .

The proof of this theorem is given later in Appendix C.3.

C.1 Proof of Theorem 4.2.1

Proof. ∥∥∥(P (T ))kp(0) − e[b]
∥∥∥

1
=

∑
j 6=b

∣∣∣p(Tk)
j

∣∣∣
+

∣∣∣p(Tk)
b − 1

∣∣∣
(a)
=

∑
j 6=b

∣∣∣p(Tk)
j

∣∣∣+
∣∣∣∣∣∣−
∑
j 6=b

p
(Tk)
j

∣∣∣∣∣∣
(b)
= 2

∑
j 6=b

p
(Tk)
j

where step (a) uses the relationship p
(td)
b = 1 −

∑
j 6=b p

(td)
j and step (b) uses the fact that

the p
(Tk)
j are nonnegative.

By applying Theorem C.0.1 to P (T ) we see that∥∥∥(P (T ))kp(0) − e[b]
∥∥∥

1
≤ CkJ−1(ρ∗)k−J+1, ∀k ∈ N1 .
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If we let k = b tdT c, we can combine the steps above to get

p
(td)
net = p

(td)
b

(c)

≥ p
(Tk)
b = 1−

∑
j 6=b

p
(Tk)
j

= 1− 1
2

∥∥∥(P (T ))kp(0) − e[b]
∥∥∥

1

≥ 1− 1
2
CkJ−1(ρ∗)k−J+1

where step (c) comes from the fact that b is an absorbing state in the Markov chain.

To summarize,

p
(td)
net ≥ 1− CkJ−1(ρ∗)k−J+1, k =

⌊
td
T

⌋
(C.2)

for some constant C dependent on the initial distribution p(0) and J ∈ N1 the size of the
largest Jordan block of P (T ). Therefore, p

(td)
net converges to 1 exponentially with a rate

ρ∗.

C.2 Proof of Theorem 4.3.1

The steps in this proof are similar to the steps in the proof of Theorem 4.2.1.

Proof.

∥∥∥PKp(0) − e[ω]
∥∥∥

1
=

∑
j 6=ω

∣∣∣p(K)
j

∣∣∣
+

∣∣∣p(K)
ω − 1

∣∣∣
=

∑
j 6=ω

∣∣∣p(K)
j

∣∣∣+
∣∣∣∣∣∣−
∑
j 6=ω

p
(K)
j

∣∣∣∣∣∣
= 2

∑
j 6=ω

p
(K)
j

By applying Theorem C.0.1 to P we see that∥∥∥PKp(0) − e[ω]
∥∥∥

1
≤ CKJ−1(ρ∗)K−J+1, ∀K ∈ N1 .

Letting td = KNstage and combining the steps above, we get

p
(td)
net = 1− p(K)

ω =
∑
j 6=ω

p
(K)
j

=
1
2

∥∥∥PKp(0) − e[ω]
∥∥∥

1

≤ 1
2
CKJ−1(ρ∗)K−J+1

To summarize,
p
(td)
net ≤ CKJ−1(ρ∗)K−J+1, td = KNstage (C.3)
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for some constant C dependent on the initial distribution p(0) and J ∈ N1 the size of the
largest Jordan block of P . Therefore, p

(td)
net converges to 0 exponentially with a rate ρ∗.

C.3 Proof of Theorem C.0.1

C.3.1 Statement of Theorems and Lemmas Used in Proof

First, we state some theorems and definitions used in the proof, with the notation
modified from their original sources to stay consistent with the notation used throughout
this dissertation. Theorems C.3.1 and C.3.2 are not used explicitly in the proof, but are
stated for the reader to better grasp Theorem C.3.3.

Theorem C.3.1 (Theorem 5.6.9 from [44]). If ‖ · ‖ is any matrix norm and if A ∈ CN×N ,
then ρ(A) ≤ ‖A‖, where ρ(A) , max{|λ| : λ is an eigenvalue of A} is the spectral radius of
A.

Theorem C.3.2 (Spectral radius of a stochastic matrix). The spectral radius (magnitude
of the maximum eigenvalue) of a column stochastic matrix P is 1.

Proof. A proof of this can be be found in [102], and is reproduced here.

Since P is a column stochastic matrix,
∑N

i=1 Pij = 1 for all j. This means

‖P‖1 , max
j

N∑
i=1

|Pij | = max
j

N∑
i=1

Pij = 1

where ‖ · ‖1 is the maximum column sum norm, and the first equality holds because Pij ≥ 0
for all i and j. Combining this with Theorem C.3.1, we see that ρ(P ) ≤ 1.

Definition C.3.1 (Periodic Markov chains, from [7]). A Markov chain is periodic if its
states can be grouped into K > 1 disjoint subsets S1, . . . , SK so that

if i ∈ Sk and pij > 0,

then
{

j ∈ Sk+1, if k = 1, . . . ,K − 1
j ∈ S1, if k = K

.

A Markov chain is aperiodic if it is not periodic.

Definition C.3.2 (Decomposable Markov chains, from [87]). A Markov chain is decom-
posable if the state space S contains two non-empty disjoint subsets S1 and S2 which are
closed, i.e., such that the probability that i ∈ S1 transitions to another node in S1 is 1 and
the probability that j ∈ S2 transitions to another node in S2 is 1.

For the theorem below from Rosenthal, let λ0 = 1 (the trivial eigenvalue of P ) and
ρ∗ = max1≤j≤n−1 |λj |, the largest absolute value of the nontrivial eigenvalues of P . From
the theorem, we can also say that ρ∗ = max{|λ| : λ is an eigenvalue of P and |λ| < 1},
which is used in the statement of the theorems of this dissertation. Other papers often refer
to ρ∗ as the second largest eigenvalue of the transition probability matrix.
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Theorem C.3.3 (Fact 4 from [87]). A finite Markov chain satisfies ρ∗ < 1 if and only if
it is both indecomposable and aperiodic.

For the theorem below from Rosenthal, let the total variation distance between proba-
bility measures v1 and v2 be defined as ‖v1 − v2‖var , supA⊂S |v1(A) − v2(A)|. Then, if S
is finite, ‖v1 − v2‖var = 1

2

∑
i∈S |v1(i)− v2(i)|.

Theorem C.3.4 (Part of Fact 3 from [87]). Suppose P satisfies ρ∗ < 1 and the state space
S is finite. Then, there is a unique stationary distribution π on S and, given an initial
distribution p(0) and point i ∈ S, there is a constant Ci > 0 such that

|p(k)
i − πi| ≤ Cik

J−1(ρ∗)k−J+1

where J is the size of the largest Jordan block of P . It follows immediately that

‖p(k) − π‖var ≤ CkJ−1(ρ∗)k−J+1 (C.4)

where C = 1
2

∑
Ci. In particular, if P is diagonalizable (so that J = 1) then

‖p(k)
i − πi‖var ≤

n−1∑
m=1

|amvm(i)||λm|k

≤

(
n−1∑
m=1

|amvm(i)|

)
(ρ∗)k

where v0, . . . ,vn−1 are a basis of right eigenvectors corresponding to λ0, . . . , λn−1 respec-
tively, and where am are the (unique) complex coefficients satisfying

p(0) = a0v0 + a1v1 + · · ·+ an−1vn−1 .

Here, vm(i) denotes the i-th coordinate of the vector vm.

For finite S, we can relate the 1-norm to the total variation distance by

‖v1 − v2‖var =
1
2

∑
i

|v1(i)− v2(i)| =
1
2
‖v1 − v2‖1 . (C.5)

This means that (C.4) can be restated as

‖p(k) − π‖1 ≤ CkJ−1(ρ∗)k−J+1 (C.6)

where C =
∑

Ci.

C.3.2 Proof of Theorem C.0.1

Proof. A column stochastic matrix P ∈ [0, 1]N×N with limk→∞ P kp = e[b] for all probability
vectors p ∈ [0, 1]N ,

∑
i pi = 1, describes the transition probability matrix for a Markov

chain that is both indecomposable and aperiodic. The Markov chain is not decomposable
because a decomposable Markov chain has more than one stationary distribution, whereas
the Markov chain described by P has a unique stationary distribution e[b]. For instance, a
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decomposable Markov chain would have a stationary probability distribution with nonzero
entries over only the states in S1, and another stationary probability distribution with
nonzero entries over only the states in S2. The Markov chain described by P is aperiodic
because all probability distributions converge to a unique stationary distribution, meaning
that there is no distribution that transitions in a periodic manner over time.

Since the Markov chain described by P is both indecomposable and aperiodic, we can
apply Theorem C.3.3 and Theorem C.3.4 to get the desired result, where p(k) corresponds
to P kp and π corresponds to e[b].

C.3.3 Discussion

The proof of Theorem C.0.1 appears to rely heavily on the assumption limk→∞ P kp =
e[b] for all probability vectors p ∈ [0, 1]N ,

∑
i pi = 1. For the UPDMC model, this cor-

responds to modeling a routing topology with a unique sink node where all packets are
eventually routed to this sink. If we wish to apply this theorem to mesh networks with
multiple collection points (sink nodes), as mentioned in Section 4.2.3, we need to make
some simple modifications to the Markov chain model.

First, we would combine the states i ∈ B representing the sink nodes into one state iB
in the UPDMC model. The transition probabilities to this new state iB would be piiB =∑

j∈B pij while the transition probabilities piBj out of iB would be

piBj =
{

1 : j = iB
0 : j 6= iB

meaning iB is a recurrent state. We can now apply Theorem C.0.1 to this new Markov chain
model to show that the model converges to iB at rate ρ∗. This means that the packet will
eventually reach one of the sink nodes at rate ρ∗, although the packet arrival probability
distribution over the nodes in B may depend on which node originally sent the packet.
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Appendix D

Full-sized Transition Matrix for
Figure 4.8



1 p̄2 p̄3 p̄5 p̄2 p̄4 p̄5 p̄7

0 pp̄ pp̄2 (1−p̄2)p̄3 0 pp̄3 pp̄4 (1−p̄2)p̄5

0 pp̄ pp̄2 (1−p̄2)p̄3 pp̄ (1−p̄2)p̄2 (1−p̄2)p̄3 (1−p̄3)p̄4

0 p2 p2p̄ (1−p̄2)2p̄ 0 p(1−p̄2)p̄ p(1−p̄2)p̄2 (1−p̄2)(1−p̄3)p̄2

0 0 pp̄2 pp̄4 pp̄ pp̄3 (1−p̄2)p̄3 (1−p̄2)p̄5

0 0 p2p̄ p(1−p̄2)p̄2 0 p2p̄2 p(1−p̄2)p̄2 (1−p̄2)2p̄3

0 0 p2p̄ p(1−p̄2)p̄2 p2 p(1−p̄2)p̄ (1−p̄2)2p̄ (1−p̄2)(1−p̄3)p̄2

0 0 p3 p(1−p̄2)2 0 p2(1−p̄2) p(1−p̄2)2 (1−p̄2)2(1−p̄3)


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Appendix E

Case Study Schedules and Models

E.1 UPD schedule for Camera Network

Figure E.1. UPD schedule time slots 1–2 for the Building Surveillance Case Study in Section 4.5.1.
Nodes are laid out in the same position as the nodes in Figure 4.19 (node labels are omitted for
clarity). Light gray arrows indicate links in the routing topology and all other arrows indicate links
scheduled in the time slot. Links are labeled with their link probability.
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Figure E.2. UPD schedule time slots 3–8 for the Building Surveillance Case Study in Section 4.5.1.
Nodes are laid out in the same position as the nodes in Figure 4.19 (node labels are omitted for
clarity). Light gray arrows indicate links in the routing topology and all other arrows indicate links
scheduled in the time slot. Links are labeled with their link probability.
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Figure E.3. UPD schedule time slots 9–14 for the Building Surveillance Case Study in Section 4.5.1.
Nodes are laid out in the same position as the nodes in Figure 4.19 (node labels are omitted for
clarity). Light gray arrows indicate links in the routing topology and all other arrows indicate links
scheduled in the time slot. Links are labeled with their link probability.
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E.2 DSF Schedule for Camera Network

Figure E.4. DSF schedule time slots 1–6 for the Building Surveillance Case Study in Section 4.5.1.
Nodes are laid out in the same position as the nodes in Figure 4.19 (node labels are omitted for
clarity). Light gray arrows indicate links in the routing topology and all other arrows indicate links
scheduled in the time slot. Links are labeled with their link probability.
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Figure E.5. DSF schedule time slots 7–11 for the Building Surveillance Case Study in Section 4.5.1.
Nodes are laid out in the same position as the nodes in Figure 4.19 (node labels are omitted for
clarity). Light gray arrows indicate links in the routing topology and all other arrows indicate links
scheduled in the time slot. Links are labeled with their link probability.
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E.3 Simulink Model for Pulp Mill NCS

Figure E.6. Simulink diagram of the Pulp Mill Plant and MPC controller described in Section 4.5.2
connected with five lossy, delayed channels (one for each session). The packet drops and delays used
by the Network blocks come from the MATLAB workspace. They come from a simulation of the
wireless network using the topologies shown in Figure 4.33 and schedule shown in Figure 4.34.
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