
Real-time C Code Generation in Ptolemy II for the
Giotto Model of Computation

Shanna-Shaye Forbes

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-76

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-76.html

May 20, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support from
the National Science Foundation (NSF awards #0720882 (CSR-EHS:
PRET) and #0720841 (CSR-CPS)), the U. S. Army Research Office (ARO
#W911NF-07-2-0019), the U. S. Air Force Office of Scientific Research
(MURI #FA9550-06-0312), the Air Force Research Lab (AFRL), the State
of California Micro Program, and the following companies: Agilent, Bosch,
Lockheed-Martin, National Instruments, and Toyota. It was also supported
in part by the NASA Harriet G. Jenkins Pre-doctoral Fellowship Program
(JPFP).

Real-time C Code Generation in Ptolemy II for the Giotto Model of

Computation

by Shanna-Shaye Forbes

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University of Cal-

ifornia at Berkeley, in partial satisfaction of the requirements for the degree of Master of Science,

Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Edward A. Lee

Research Advisor

Date

* * * * * *

Sanjit Seshia

Second Reader

Date

Abstract

Giotto is a programming model for embedded control systems that is applicable to hard real-

time specifications that are periodic and feature multi-modal behavior. Examples of such systems

include fly-by-wire or brake-by-wire systems where sensor readings must be periodic and there are

multiple modes of operation.

Ptolemy II is a university based open source modeling and simulation framework that supports

model-based design, and facilitates actor oriented and objected oriented programming. It serves

as a laboratory for the modeling and simulation necessary in the design of a real-time embedded

system. Ptolemy also has a C code generation framework that generates code for different targets.

Ptolemy II has an implementation of the Giotto programming model, that allows the simu-

lation of Giotto models in Ptolemy II. In this report we discuss our ability to implement Giotto

semantics using code generation and a real-time operating system. We illustrate these techniques

with Ptolemy II and the FreeRTOS embedded operating system. To illustrate these techniques we

extend the code generation framework within Ptolemy II to generate C code for the Giotto pro-

gramming model. We have implemented a C code generation adapter in Ptolemy II for the Giotto

model of computation targeted to systems capable of running the FreeRTOS operating system. We

present an elevator controller as an example that uses the code generation framework.

2

Contents

1 Introduction 8

2 Background 11

2.1 Giotto . 11

2.1.1 Related Work . 14

2.2 Ptolemy II . 15

2.3 Giotto in Ptolemy II . 16

2.4 FreeRTOS . 19

3 Design 19

3.1 Framework Description . 19

3.2 Giotto C Code Generation . 20

3.3 Scheduling . 22

3.4 Current Design . 26

3.5 Drivers . 27

3.6 Limitations . 28

4 Case Study in Elevator Control 32

5 Future Work 35

3

6 Acknowledgments 36

4

List of Figures

1 Task Invocation . 12

2 Graphical Representation of task communication in a mode 13

3 Simple Giotto Model in Ptolemy II with three actors 18

4 Hierarchy . 18

5 Design Framework . 20

6 Web Interface to the Elevator . 33

7 Top Level of Specification . 33

8 States in the elevator controller . 34

5

List of Algorithms

1 Scheduling Algorithm . 23

2 ActorWCET Algorithm . 24

3 Top Most Giotto Scheduler Algorithm . 24

4 Scheduler Algorithm . 25

6

Listings

1 Actor and Port Variables . 28

2 Driver Methods . 29

3 Actor Methods . 29

4 Scheduler Thread Methods . 29

5 Frequency Thread Methods . 30

6 Initialize Method . 31

7 Main Method . 32

7

1 Introduction

In real-time embedded systems it is important to guarantee timing constraints and correct func-

tionality. This is evident because in many applications such as braking to avoid an oncoming car,

stimulating a person’s heart in an emergency, or a plethora of other control applications, func-

tional correctness and timing accuracy is extremely important. The use of hard real-time systems

has expanded significantly; however, there are very few high-level languages that support precise

timing specifications at the software level that can be mapped directly to hardware. Most popular

high-level programming languages such as C, C++ and Java do not provide a way for the user to

specify precise timing. As a result, the user generally manually counts cycles on their platform.

This practice breaks the portability of their code to other platforms. Clearly timing is of great

importance in the embedded domain and numerous efforts have gone into providing either annota-

tions to existing programming languages, new models of computation with timing semantics built

in, and even hardware with support for precise timing semantics.

Examples of models of computation that support precise timing specifications at a high level

include Esterel [6], Sync Charts [4], Lustre [11], Signal [5], PTIDES [10] and Giotto [14]. Esterel,

Lustre, Signal and Sync Charts are synchronous reactive programming languages, which are used

to program reactive systems. Reactive systems continuously interact with their environment, and

real-time reactive systems are also subject to externally defined timing constraints [3]. In syn-

chronous systems outputs are produced in the same clock tick that the input is received. This is

similar to a synchronous hardware circuit that produces its output after receiving an input, and be-

fore receiving its next input value. PTIDES builds on discrete event semantics and guarantees on

time reading of sensor values and delivery of outputs at actuators. Giotto is aimed at time periodic

real-time systems with different modes of operation and precisely defined mode transitions.

The complexities of including timing specifications in a programming language and the need

to create software concurrently with the physical system with which it interacts are important

factors that lead to the engineering approach initially known as model integrated computing [21]

and later known as model-based design. A model is a representation of a designer’s understanding

of a system that includes the computer-based system and the physical architecture and operating

environment [21]. In model-based design, models specify the tasks to be completed, and the

8

execution of tasks is governed by a model of computation. The designer or engineer can choose

the model of computation to govern how their model should execute [16] and create a model that

is representative of their system.

In model-based design it is important to define a model of computation, and very helpful to

have a simulator for this model of computation. Use of simulation environments has also revealed

the importance of having code generation as an integral part of the framework. Some modeling

and simulation environments include The MathWorks Simulink [2], National Instruments Lab-

VIEW [19] and the Ptolemy II environment. Simulink and LabVIEW are commercial tools, and

Ptolemy II is a university based open source project. Ptolemy II enables heterogeneous model-

ing, and Simulink, LabVIEW, and Ptolemy enable model-based design and simulation, and feature

code generation for different targets. The MathWorks describes Simulink on their website [2] as

“an environment for multi-domain simulation and model-based design for dynamic and embed-

ded systems. It also features real-time workshop that allows you to generate and run C code for

algorithms modeled in simulation.”

It is important to note that this project builds on, yet takes a slightly different approach from [18]

which also explores code generation from Ptolemy II for Giotto. This prior work generates Giotto

code, which uses an ES machine scheduler for the KURT Linux RTOS. It produces function pro-

totypes and leaves it to the designer to write the C code for Giotto tasks to match the function

prototypes. The prior work requires the user specify the types of all ports; however, here the types

of ports are inferred from the actors. [18] produces Giotto code and then requires the user feed the

Giotto file to a Giotto compiler to compile it to E code; as well as the function table to map E code

function calls to driver functions as well as produce the S code. Instead of requiring the designer

write C code for all actors, our project generates C code for actors and allows the designer to also

insert C code in EmbeddedCActors if it is necessary to implement an actor that is not currently

supported. We generate C code directly from the Ptolemy II Giotto model for a platform capable

of running the FreeRTOS embedded operating system.

In this work we step away from the E and S machine specification. This approach to code

generation from a Giotto model is different from [18] but valuable because:

• Giotto only provides semantics about when tasks should be completed;

9

• E code is used for portability to multiple targets and S code because most platforms provide

no direct control over when tasks execute;

• We attain portability by using the Ptolemy II model as our specification;

• E code and S code still require interpreters for your particular target;

• C code or code for a programming language still needs to be generated for the functionality

of tasks as well as for drivers and the execution of the generated code.

Instead of using E code and S code, we use the model specified in Ptolemy II as our portability

mechanism to multiple targets, and generate C code directly from the model specification since

our target RTOS provides direct control over timing. The objectives of this project are to generate

C code that adheres to Giotto semantics, but also to:

• Continue extending the C code generation framework in Ptolemy II for multiple targets;

• Build on existing work which allows the reuse of actors whenever possible;

• Allow the customization of actors to the target when necessary;

• Allow the user to easily create actors or to embed C code in an EmbeddedCActor and still

utilize the code generation facilities in Ptolemy II.

With the use of a scheduler, we generate C code directly from the model and forgo the speci-

fication of the Embedded Machine code since that information is also provided by the Ptolemy II

Giotto model. In our design we incorporate aspects normally handled by the E and S machine by

using the API tools offered by FreeRTOS.

In this report we discuss our ability to implement Giotto semantics using code generation and

a real-time operating system. We illustrate these techniques with Ptolemy II and the FreeRTOS

embedded operating system. To illustrate these techniques we extend the code generation frame-

work within Ptolemy II to generate C code for the Giotto programming model. Giotto, Ptolemy II,

and FreeRTOS are discussed in greater detail in Section 2. Section 3 discusses the extension of the

Ptolemy II code generation framework and the design of the scheduler, Section 3.6 discusses the

10

limitations of the work, Section 4 presents a controller application, and Section 5 discusses future

work.

2 Background

In this section we provide an overview of the Giotto model of computation, introduce the Ptolemy

II framework, present the Giotto implementation in Ptolemy II, and briefly give an overview of

FreeRTOS, the embedded OS target for the Giotto C code generator.

2.1 Giotto

Giotto is a programming model for embedded control systems [14], and is most useful for hard

real-time specifications that are periodic and feature multi-modal behavior. Giotto is useful for

control systems such as fly-by-wire or brake-by-wire where the responses of the system must be

periodic and there are multiple modes of operation. Examples of common modes of operation in

the automobiles include startup, cruise control, normal operation, and a degraded operation mode

in case of partial equipment failure. Giotto serves as a contract between a control engineer and

a software engineer to produce the behavior specified by the Giotto model. In addition, Giotto

allows the control engineer and software engineer to communicate effectively without the need to

get into implementation details. Control systems are generally specified using commercial tools

such as Simulink [2], or control engineers may manipulate differential equations and modal logic

with mathematical tools.

Giotto allows some flexibility in implementation as long the implementation conforms to the

timing specification. In fact Giotto does not specify how a program should be implemented on a

particular platform. Instead, it allows the user to specify the semantics of time-triggered sensor

readings, task invocations, actuator updates, and mode switches independent of the platform used

to implement it [14, 15]. As a result, Giotto tasks can be scheduled on platforms with a single CPU,

which use preemptive priority driven multitasking, or time-slicing, or on a platform with multiple

CPUs.

11

Figure 1: Task Invocation. Reused with permission [14].

One should note that a giotto program is schedulable, or will execute correctly, if there exists

a scheduling policy that will meet the requested deadlines on a particular processor given its re-

sources and time constraints [15]. Before producing a schedule, the Giotto compiler or scheduler

must ensure that the cumulative worst-case execution times of tasks in a mode, or the total time to

execute, is less than or equal to the logical execution time of a mode. The logical execution time

of a mode is the rate of execution specified by the mode’s periodic behavior. The Giotto compiler

just needs to ensure that sensors and actuators are written at the times requested in the Giotto se-

mantics. It is possible to add tasks to a mode without changing the code behavior as long as the

processor can accommodate the additional load [13].

Giotto code is generally executed on virtual execution engines [15] referred to as an Embedded

(E) machine and a Scheduling (S) machine. The virtual execution engines are necessary because

most widely available platforms do not have direct support for precise timing semantics. A Giotto

compiler produces E code for the E machine and S code for the S machine. E code provides

the “deadlines or release times of tasks” [15] and reacts to the platform’s passage of time. At a

deadline, the E code generally calls a function referred to as a driver that reads values at sensors

or writes values to the outside world at actuators. S code specifies a “feasible schedule” of the

deadlines specified by E code. Depending on the scheduling mechanism of a platform, S code may

run a task for a small amount of time and resume the task at a later time, or it may run a task until

completion. Some implementations of a Giotto environment combine the E and S machine; when

combined they are referred to as schedule carrying code [15].

To obtain a better understanding of Giotto it is essential that we explore the basics of the Giotto

programming model. In Giotto, a task, graphically represented in Figure 1, is the basic functional

12

Figure 2: Graphical Representation of task communication in a mode. Reused with permis-

sion [14].

unit. If multiple tasks need to be run concurrently, they are put in a mode, as are t1 and t2 shown

in Figure 2. Each task has a set of ports P , with input ports (In ⊆ P), output ports(Out ⊆ P), and

maintains its state through private ports (Priv ⊆ P). Tasks in a mode, i.e. ti, tj , have distinct input

ports, In(ti)∩In(tj) = ∅ for each two tasks ti and tj of a mode. All input ports are distinct from all

other input ports; however, tasks may share output ports as long as they are not invoked in the same

mode. Task inputs are read only at the beginning of a period and task outputs are written only at

the end of the period. The output can be computed at any time but should only be provided to other

tasks or to the outside world at specified times [14]. The task’s function f specifies what should be

done with the inputs to produce the outputs. If several tasks are to be executed concurrently, they

are included in a mode, and a system can change from one mode of operation to another at multiple

points during the model’s execution. Each mode has a period(π) that specifies how often the action

of the mode should be repeated, and each task has a frequency(ωt) that specifies how many times

the task should be executed within a mode period. In the mode shown in Figure 2, task 1 executes

once every 10ms, and task 2 executes once every 5ms. Each mode also has guards that specify

a mode switch frequency. The mode switch frequency specifies how many times within a period

the possibility of a mode switch should be checked and taken if possible. Since it is possible to

interrupt a task’s execution when switching from one mode to another, one must ensure that a task

that can be interrupted in one mode is present in the next mode so it can continue its execution.

Communication between tasks is done via ports in Giotto. Ports are specific locations in mem-

13

ory or variables dedicated to storing information. Drivers specify which output values should be

copied to specific ports and which port values should be copied from a port to an input. Ports hold

their value over time until they are updated by a driver. Sensor ports are updated by the environ-

ment, and actuator ports and task ports are updated by the program [14]. Task ports communicate

data between concurrent tasks and can also be used to communicate between modes in the event

of a mode switch. Mode ports are given a value every time the mode is entered [14]. In Figure 2,

o1 − o5 are mode ports. o1 is read when the mode begins and o2 − o5 are updated every 10ms and

can be used to pass information from one mode to another in the event of a mode switch. In Fig-

ure 2, fi specifies the actions that should be taken on the inputs to produce outputs, wact specifies

actuation frequency, and di specifies drivers which move information from ports to inputs, or from

outputs to an actuator.

2.1.1 Related Work

Giotto appears to have been influenced by Harel’s state charts [12], which extend state transition

diagrams and add notions of hierarchy, concurrency and communication. Giotto was also influ-

enced by the Time-Triggered Architecture(TTA), since TTA meets hard real-time requirements in

distributed systems and is based on the time-triggered programming model. TTA was intended for

similar applications as Giotto such as brake-by-wire or the control of an airplane. While Giotto

splits things into tasks, TTA splits things up into clusters and nodes. TTA provides a “fault-tolerant

global time base with known precision” [17] at each node. In TTA, all events that occur within a

certain interval of time are interpreted as occurring simultaneously and events that occur outside

the interval can be ordered [17]. Giotto differs from TTA since it comes with a hardware and

protocol independent programming model for time-triggered applications [14].

FlexRay, a bus architecture, has also been influenced by TTA. FlexRay is the latest system

being used for communication between various control devices in automobiles. FlexRay is time-

triggered and employs time division multiple access (TDMA) for arbitration between multiple

nodes on a bus. This communication was traditionally being done with a Control Area Network

(CAN); however, as more of the automotive industry adopts brake-by-wire/X-by-wire, as is done

in many airplanes, error and fault detection needs surpass the feasibility of CAN, and provides

support for the FlexRay protocol.

14

The Timing Definition Language (TDL) is a derivative of Giotto. TDL is a programming model

for concurrent hard real-time software. Like Giotto, in TDL sensor and actuator ports are used to

interact with the environment, a program is in one of many possible modes, every mode consists of

periodic activities, a mode has a fixed period, and timing and interaction of activities follow logical

execution time semantics [24]. Unlike Giotto, TDL provides a top-level structure called a module.

A module consists of actuators, sensors and modes. According to Derler et. al. modules are useful

for distributed applications, where it is possible to break the specification into smaller components

to be executed in parallel on different processors [20]. Giotto limits the number of mode switch

conditions that may evaluate to true to one to provide determinism; however, in TDL “mode switch

guards are evaluated in the textual order from top to bottom and a mode switch is performed for

the condition that evaluates to true [20].” Directors for Giotto and TDL are implemented in the

Ptolemy II simulation framework. An in-depth discussion of the TDL director in Ptolemy II is

in [20] and the Giotto implementation in Ptolemy II is presented in Section 2.3.

2.2 Ptolemy II

Ptolemy II [23] is an open source modeling and simulation framework being developed at the

University of California-Berkeley that supports model-based design. Ptolemy II facilitates actor

oriented and object oriented modeling. Actor oriented modeling is an alternative to the estab-

lished object oriented methodology, where actors allow actions to take place on the evolving data

which flows through them [8]. Ptolemy II facilitates the modeling and simulation of the design

of a real-time embedded system. The design can be concurrent, and a design’s behavior is gov-

erned by models of computation implemented in the Ptolemy II framework. A small subset of the

models of computation relevant to this project include: DE: discrete-event modeling; FSM: finite

state machines and modal models; SDF: synchronous data flow; TDL: timed description language;

and Giotto: periodic time-driven. Ptolemy II also has heterogeneous capabilities which allow the

designer to combine different models of computation.

In Ptolemy II, when an actor fires, its behavior for a particular model of computation is gov-

erned by a director which is specified for the particular model of computation. A designer can

select the director that specifies the desired behavior of a model, and then create and simulate their

15

model. In Ptolemy II actors are governed by an abstract semantics, which are rules that dictate how

an actor should behave. A simplification of the abstract semantics as it applies to Giotto includes

pre-initialization, initialization, firing, and wrap-up. During pre-initialization in simulation, the

Giotto director determines whether the frequencies specified by the actors are permissible. During

initialization the ports and actors are assigned their specified default values. After initialization,

actors are executed in the firing stage.

In addition to being a modeling and simulation framework, Ptolemy II also features an extend-

able C code generation framework for multiple models of computation. Code generation capabili-

ties for multiple targets are provided with many modeling frameworks such as Simulink Real-Time

workshop, and LabVIEW microprocessor SDK.

The Ptolemy II C code generation framework takes a model specified with actors and directors

and generates code for a particular target that maintains the semantics of the original model. The

C code generation framework is based on an adapter-based architecture, where adapters generate

code for specific targets. Each actor has a language-specific (C,VHDL,etc.) adapter file, while

each target has its own target-specific adapter file [9].

2.3 Giotto in Ptolemy II

The Giotto model of computation is implemented as a domain in the Ptolemy II simulation and

modeling environment. A Giotto model is created with a Giotto Director in Ptolemy II. The period

π of the mode is specified as the period parameter to the director and the frequency of each task ωt

is specified as a frequency parameter to each Ptolemy II actor. If no values for the period and actor

frequencies are provided as parameters, default values of 0.1 and 1 are assumed respectively [7].

In [14] a mode in Giotto consists of all tasks to be run concurrently with a particular period. In

Ptolemy II, a mode is slightly different but allows all models expressible in [14]. Ptolemy II allows

the use of hierarchy that proves to be very convenient in the specification of control behavior. In

addition it also reduces the number of distinct mode combination specifications that are necessary

in [14]. A Ptolemy II mode is specified inside a finite state machine modal model and improves

the flattened specification present in [14] with the use of hierarchy. In Ptolemy II tasks, which

16

are referred to as actors, at the same level of hierarchy execute concurrently and a modal model

contains tasks that should be switched when a guard is enabled. If it is desirable to have three

tasks: A, B, and C, where task A is always running and task C should replace task B when a

certain condition is met, a designer could specify that in Ptolemy II as is shown in Figure 4. The

lower portion of Figure 4 shows how the model is specified with Ptolemy II and the upper portion

of the figure shows the logical execution times of each task based on their frequencies, and on the

period parameter π of the Giotto Director.

Ptolemy II allows hierarchy through the use of composite actors. A composite actor contains

actors and in some cases a director. If no director is present inside the composite actor the actor is

transparent. If however there is a director present inside a composite actor the frequencies of the

tasks inside the composite actor are all interpreted to be relative to the frequency of the composite

actor itself. If a composite actor with frequency 2 contains a Giotto Director, and a task with

frequency 3, the interpreted frequency of the task inside a composite actor is 6.

Each Giotto model is expected to specify a period as an attribute to the Giotto Director, the

frequency of each task as an attribute to each actor, as well as initial values for outputs. If Giotto

directors are used inside a composite actor, the period of the top most Giotto director is used, but

the frequencies of the tasks inside the composite actor are relative to the frequency of the composite

actor.

For the purposes of simulation it is also possible to set the number of times you wish to have the

model run. This can be specified as a parameter called iterations to the Giotto director. It should

be noted that since Ptolemy II allows hierarchical models, if another Giotto director is specified

within a composite actor, only the topmost Giotto director’s period parameter is used along with

the frequency parameters of each director and actor. One can run the model in the Ptolemy II

framework, insert a code generation actor to generate E Machine code [18], or insert a C Code

Generation actor to generate C code directly.

17

Figure 3: Simple Giotto Model in Ptolemy II with three actors

Mode 1 Mode 2

Mode 1

Task B Task B

Task A

∏
0.5∏

0

∏

∏
0.5∏0 0.25∏

Mode 2

Task A

Task C Task C Task C Task C

0.75∏

∏

frequency = 1 frequency = 1

frequency = 2 frequency = 4

Figure 4: Hierarchy

18

2.4 FreeRTOS

FreeRTOS was created by Richard Barry and the FreeRTOS team, and it is continually being de-

veloped and released. FreeRTOS is a “portable, open source, mini real-time kernel that can be used

in commercial applications [22].” It has versions available for a number of widely used microcon-

troller architectures, which makes the possibility of extending use and adoption of the Ptolemy

code generation infrastructure more promising. In addition, it “offers a smaller and easier real-

time processing alternative for applications where eCOS, embedded Linux (or Real-Time Linux),

and uCLinux cannot fit, are not appropriate, or are not available [22].”

FreeRTOS uses a prioritized preemptive scheduling policy that ensures that the highest pri-

ority task in the running state is the task given processing time. It has support for cooperative

scheduling and shares processor time equally between tasks of equal priority if they are able to run

simultaneously. As a result, FreeRTOS is a good target for a code generation framework. Some of

FreeRTOS’s features include: preemptive, cooperative, and hybrid configuration options; support

for tasks and coroutines; an execution trace functionality; stack overflow detection; queues; binary,

counting, and recursive semaphores; and mutexes which feature priority inheritance [22]. In addi-

tion to the general thread creation API expected in an RTOS, FreeRTOS also has API support to

set a periodic rate for the execution of a task with the vTaskDelayUntil method. In addition the

API provides methods to suspend and later resume the execution of tasks. These features make

FreeRTOS a very good match for the periodic nature of the Giotto.

3 Design

3.1 Framework Description

This work creates a Giotto adapter for the Ptolemy II C code generation framework [9]. A picture

of the framework applicable to this work is shown in Figure 5. Please note that dashed segments

of the framework have not currently been implemented for FreeRTOS. A user specifies the design

in Ptolemy II. By inserting and double-clicking on a CCodeGeneration actor, the user starts the C

19

Ptolemy II Specification

Giotto Director Ptolemy II

CodeGeneration

Framework

Schedulability

and WCET analysis

C program
Targets

FreeRTOS Win 32

PRET MPI Posix

Figure 5: Design Framework

code generation framework, which can generate C code for different targets.

The generated code creates ports, actor variables, driver methods, task/actor code, as well as

scheduling and coordination code. Scheduling thread(s) as well as threads for each frequency in

the model are created. Scheduling threads mange a global notion of timing and let tasks know

when they can begin executing. Task code implements the behavior of Ptolemy II actors, and the

scheduling thread coordinates the execution of drivers and actor code.

3.2 Giotto C Code Generation

To generate C code for Giotto to run on the FreeRTOS platform, we created a Giotto Domain under

the C code generation folder, and also created a target-specific adapter for the Giotto Director as

well as a board-specific adapter implementation for the Timed Plotter actor. The C code generation

framework follows the pre-initialize, initialize,prefire, fire, and post fire semantics of Ptolemy II

and produces one C file that the user can compile and run on their target.

Each Giotto model is expected to specify a period as an attribute to the Giotto Director, the

frequency of each task as an attribute to each actor, as well as initial values for outputs. If a period

is not specified it defaults to 0.1 seconds, an unspecified frequency defaults to 1, and an unspecified

20

initial output value defaults to zero for integral types and null for other types. If Giotto directors are

used inside a composite actor, the period of the top-most Giotto director is used, but the frequencies

of the tasks inside the composite actor are relative to the frequency of the composite actor.

In the code generated, we attempt to use the facilities of the RTOS such as the fixed pri-

ority execution of threads ,where the processor is given to the thread with highest priority and

shares the processor between equal priority threads that are ready to run. We also utilize the

vTaskDelayUntil method in the FreeRTOS API. The vTaskDelayUntil method allows a task

to wait a specified number of kernel ticks from the last time it was called by the same task. The

vTaskDelayUntil method takes two parameters. We will call parameter 1, which is passed by ref-

erence, xLastWakeT ime and parameter 2 xFrequency. xLastWakeT ime is the value with the

last time the vTaskDelayUntil method was called. Prior to the first call to the vTaskDelayMethod

method the xLastWakeT ime parameter is initialized to the current kernel tick count. The sec-

ond parameter tells the number of kernel ticks since the last delay to yield the processor. In the

vTaskDelayUntil method, if the kernel tick count has passed xLastWakeT ime+xFrequency,

the method returns immediately without waiting. Otherwise it blocks for the necessary number

of kernel ticks to resume execution at xLastWakeT ime + xFrequency. As a result, A constant

value for xFrequency produces periodic execution of a thread.

Giotto code generation for FreeRTOS creates a thread for each distinct frequency specified

in a Giotto model. In addition it also creates a scheduler for each Giotto director. The sched-

uler is responsible for updating the ports of the actors/tasks specified in the Giotto models as

well as setting the initial global start time. Since we use a single thread to set the global start

time, we avoid the non determinism that would be possible with multiple concepts of time in each

thread. Since FreeRTOS is a single-processor fixed-priority RTOS, we benefit from the use of

the vTaskDelayUntil method in FreeRTOS that allows a method to “specify the exact time it

wishes to unblock, and allows cyclic tasks to ensure a constant execution frequency.” We use the

vTaskDelayUntil feature in each scheduler with an initial common start time, and use block-

ing semaphores in each scheduler as well as in task threads. The top most Giotto director in the

model is given it’s own scheduling thread. This scheduling thread is given the highest priority in

the system. Schedulers created for Giotto Directors in lower levels of the hierarchy are given a

priority equal to the priority of the actor that contains the Giotto refinement. threads created for

tasks with high frequencies are given higher priority in the fixed priority scheme than tasks with

21

lower frequency tasks.

In prior work [18], E machine code manages the deadline and releases of tasks. We accomplish

the same mechanism with the use of rate monotonic scheduling. In our approach we create a

scheduler for each Giotto director that calls driver methods at a specified rate. This is possible

because after processing the driver methods, the scheduler yields the processor to the next available

thread.

In some methods of code generated for a Giotto program, the S machine schedules a task to

be completed according to a specified frequency using either rate monotonic or earliest deadline

first scheduling. We use rate monotonic scheduling by assigning threads with higher frequency a

higher priority than lower frequency threads. After completing their tasks, each frequency thread

yields the processor until it is told by the scheduler it can begin execution.

For the very simple Giotto model shown in Figure 3, we generate a scheduling thread with the

highest priority in the system. The thread created to handle tasks with frequency 2 is given the

second highest priority, and the thread to handle tasks with frequency 1 is given the third highest

priority. The main method shown in Listing 7 calls the initialize method shown in Listing 6, which

initializes the necessary variables, and creates the scheduling and frequency threads. The main

method then calls the vTaskStartScheduler() method required to start threads in FreeRTOS. When

the FreeRTOS scheduler starts, it begins executing the thread with the highest priority, in this case

the scheduling thread. In the scheduling thread, we begin executing and set up the periodic exe-

cution of the scheduler. Listings 1, 5, 4, 3, 2 show the respective variable declarations; frequency

methods, the scheduler method; actor methods; and driver methods generated for the Giotto model

show in Figure 3.

3.3 Scheduling

In our design, we assume each actor in the model has a parameter specifying its worst case exe-

cution time. If the parameter is not provided a default value is used. This information is used to

determine if the model can be run on a particular platform in the time requested. If the total WCET

for all actors in the model along with scheduling overhead is unable to complete in the desired

22

time, the Code generation adapter warns the user and does not generate the code. If the schedule is

feasible, the code generation adapter generates code that adheres to the semantics specified in the

model. To determine the scheduling feasibility of the model specified we use Algorithms 1, and

2. Though our schedulabilty analysis determines that the model should run correctly in the time

specified, we also use semaphores to specify when it is safe to proceed with execution in case there

is an overrun. If a task overruns we have the scheduler warn the user of the overrun and block until

the over run task completes. Our warning tells the user that because of the overrun task they will

see correct ordering of execution but the timing constraints may be violated. We plan to allow the

designer to specify what actions should be taken in the event of an overrun in the future, instead of

simply warning the user and blocking progression of the scheduler.

Algorithm 1: Scheduling Algorithm
Input: A = {a1, a2, a3, .., an}, n =total actors in model

Output: Schedulability of model

begin1.1

wcetTotal←− 0;1.2

foreach a ∈ A do1.3

wcetTotal + = WCET(a);1.4

end1.5

wcetTotal + = WCET(scheduler);1.6

if wcetTotal ≤ Period then1.7

return schedulable1.8

else1.9

return not schedulable1.10

end1.11

end1.12

Since Ptolemy II features hierarchy we generate schedulers for composite actors with a notion

of time. Each scheduler for a composite actor uses a sub clock of the global clock. Since the sched-

uler for a composite actor also needs to communicate its completion to the top most scheduler, we

introduce a notion of an iteration of time. The nested scheduler reports that one iteration of itself

has occurred after it has seen a number of ticks on its sub clock equivalent to the least common

multiple of the frequencies seen by the scheduler.

23

Algorithm 2: ActorWCET Algorithm
Input: a ∈ A

Output: WCET(a)

begin2.1

if containsDirector(a) then2.2

return directorWCET(a)2.3

else2.4

return afrequency * executionTime(a)2.5

end2.6

end2.7

Algorithm 3: Top Most Giotto Scheduler Algorithm

begin3.1

setGlobalClock();3.2

takeBeginPermissionFromThreads();3.3

schedTick←− 0;3.4

while true do3.5

outputDrivers(schedTick);3.6

inputDrivers(schedTick);3.7

giveBeginPermissionToThreads(schedTick);3.8

waitfornexttick;3.9

schedTick = incrementAINReset(schedTick);3.10

/* incrementAINReset(..) increments schedTick, resets

schedTick to 0 if schedTick == LCM */

checkWarnBlock(schedTick);3.11

end3.12

end3.13

24

Algorithm 4: Scheduler Algorithm

begin4.1

waituntil beginIterationMessage();4.2

readGlobalClock();4.3

takeBeginPermissionFromThreads();4.4

repeat4.5

outputDrivers(schedTick);4.6

inputDrivers(schedTick);4.7

giveBeginPermissionToThreads(schedTick);4.8

waitfornexttick;4.9

schedTick = incrementAINEIteration(schedTick);4.10

/* incrementAINEIteration(..) increments schedTick, and

says endOfIteration() if schedTick == LCM */

checkWarnBlock(schedTick);4.11

until endOfIteration() ;4.12

sendEndIterationMessage()4.13

end4.14

25

3.4 Current Design

The current Giotto C code generation adapter in Ptolemy II is able to generate code for a subset of

the actors in Ptolemy II; in addition, the adapter framework provides support for the Embedded-

CActor. The EmbeddedCActor allows the user to insert C code for any unimplemented actor on

their target and incorporates the C code into the final generated file. The current design also al-

lows the Synchronous Data Flow(SDF) model of computation to be used with Giotto. Each Giotto

director in a model is expected to have a period, and each actor is expected to have a frequency

specified. The frequency is how often a task should execute within a period. The types of ports

are inferred from the inputs provided or from the type the actor normally accepts or outputs. Also,

task code from each actor refers to its input and output variables. To transfer data from an output

to an input we use double buffering through an actor’s output variable and a port variable. Drivers

determine when values are copied from an output variable to a port and from port to an input

variable.

The scheduling thread is given the highest priority, and frequency threads are assigned a priority

lower than the scheduling thread. Each scheduler is called at the rate of the period divided by the

least common multiple of the frequencies in the mode. Each time it runs, a scheduler checks to

see if a previous run of tasks are complete, calls the driver methods of the actors to be run at

that particular time, sets semaphores indicating which frequency threads are safe to execute, and

releases the processor until the next necessary update. The scheduler then yields the processor to

the task threads and determines whether execution of the task(s) have finished. Currently, we block

until the semaphore is available.

The higher the frequency of the task, the higher the priority of the frequency thread it is assigned

to. Each frequency thread if given the go ahead from the scheduler, then calls the methods of the

tasks/actors to be executed at that frequency. The framework handles mode switches with the

modal model actor in Ptolemy II. The modal model actor is a finite state machine actor whose

states can be refined to contain other models. In this framework, the inner model can be either

SDF or Giotto.

When we generate code for a composite actor without a director, we treat the composite actor

as a transparent actor and generate code for its contents directly. When we generate code for com-

26

posite actors with a director, the frequencies of the actors inside the composite actor are set relative

to the composite actor’s frequency. When we set the frequency for the composite actor scheduler, it

is set equal to the period of the top - director, divided by the least common multiple of the frequen-

cies of the actors inside the composite actor, divided by the frequency of the composite actor. If

you have an example with a Giotto director, a source (constant output 1) with frequency 1, a com-

posite actor with frequency 2, and a timed plotter with frequency 2. The composite actor contains

a Giotto director, and an actor with frequency 3. The frequency for the composite actor sched-

uler xFrequency is (((1000/3)/2)/PortT ickRATEMS), where 1000/PortT ickRATEMS is

the converted period (1s) of the top most director in kernel ticks, 3 is the least common multiple of

the actor frequencies inside the composite actor, and 2 is the frequency of the composite actor.

Inside the scheduler we use a counter schedTick which determines which drivers are to be

executed on this run of the scheduler. The schedTick variable is initially zero, and is incre-

mented by 1 after running the drivers. The schedTick variable is reset to 0 when it is equal

to the least common multiple of the thread frequencies. Drivers are run if (schedT ick mod

(LCMofthreadfrequencies/frequencyoftask) == 0). A general algorithm for each sched-

uler is shown in Algorithm 3 and 4.

Since it is possible for the WCET specified to be too small, or in the case where there is

an overrun of the code being executed, we use semaphores to determine when it is safe to begin

execution of the code. In our scheduler we use a warn and block mechanism that displays a warning

message to the user, and then blocks until the overrun task completes its execution.

3.5 Drivers

Drivers are called by the scheduling thread, which has the highest priority in the system. The

framework currently assumes that task execution is shorter than the LET of the task. If a task

overruns its LET, the scheduling thread waits until the completion of the task before outputting the

value to the port, and reading a value from the port.

In this implementation, ports are written to at the beginning of a driver’s execution and values

are then transferred from the PORT to the desired inputs. This upholds the semantic that new

27

values are not read until the start of a mode period, but allows actuator output to occur as close as

possible to the beginning of a mode period.

3.6 Limitations

If WCET parameters are not provided for each actor we currently use a default value when we

calculate WCET. As a result, though our schedulability check may tell us that the desired schedule

is feasible, our assumption my indeed lead to overruns. If there are overruns we currently warn

the user, and and continue execution when the overrun tasks completes. If there are overruns,

the user will notice correct ordering of execution but will see a delay in outputs. As a result the

current implementation without accurate WCET parameters should not be used in safety critical

applications.

One should also note that there is a limit to the number of distinct frequencies that can be

supported since the thread’s frequency determines its priority; and priorities can only be assigned

values 1 through Scheduler Priority-1. Scheduler Priority is reserved for the scheduler of the top

most Giotto director. One should also note that executing the scheduling thread at a rate relative

to the least common multiple of frequencies of the actors in the model since execution may not be

necessary on every run of the scheduler. One alternative to this, which will be pursued in future

work, is to predetermine which ticks of the scheduler at the LCM frequency will need to execute

drivers and use that as the offset interval of the scheduler. One should also note that we currently

presume that each FreeRTOS thread created will use maximum constant amount of stack space. A

more efficient use of memory would perform an analysis of the content of the C code generated

for each actor to determine the maximum stack size necessary.

Listing 1: Actor and Port Variables
1 /∗ S i m p l e S i m p l e T a s k E ’ s i n p u t v a r i a b l e d e c l a r a t i o n s . ∗ /

2 s t a t i c double S i m p l e S i m p l e T a s k E i n p u t [1] ;

3 /∗ S im p l e S i mp le Ta sk D ’ s i n p u t v a r i a b l e d e c l a r a t i o n s . ∗ /

4 s t a t i c double S i m p l e S i m p l e T a s k D i n p u t [1] ;

5 /∗ S i m p l e S i m p l e T a s k A ’ s r e f e r e n c e d parame te r d e c l a r a t i o n s . ∗ /

6 s t a t i c i n t S i m p l e S i m p l e T a s k A s t e p ;

7 /∗ S i m p l e S i m p l e T a s k A ’ s t y p e c o n v e r t v a r i a b l e d e c l a r a t i o n s . ∗ /

8 s t a t i c i n t S i m p l e S i m p l e T a s k A o u t p u t 0 ;

9 s t a t i c i n t S i m p l e S i m p l e T a s k A o u t p u t ;

10 s t a t i c i n t Simple SimpleTaskA output PORT ;

11 /∗ The p r e i n i t i a l i z a t i o n o f t h e d i r e c t o r . ∗ /

12 /∗ p r e i n i t S i m p l e T a s k E ∗ /

13 s t a t i c i n t S i m p l e S i m p l e T a s k E x v a l u e ;

28

14 /∗ p r e i n i t S i m p l e T a s k D ∗ /

15 s t a t i c i n t S i m p l e S i m p l e T a s k D x v a l u e ;

16 /∗ p r e i n i t S i m p l e T a s k A ∗ /

17 s t a t i c i n t S i m p l e S i m p l e T a s k A s t a t e ;

18 unsigned long g u l S y s t e m C l o c k ;

19 p o r t T i c k T y p e gxLastWakeTime ;

20 # i n c l u d e ” semphr . h ”

21 xTaskHandle S i m p l e G i o t t o D i r e c t o r s c h e d u l e r t a s k ;

22 xTaskHandle S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 1 t a s k ;

23 xSemaphoreHandle S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 1 s t a r t ;

24 xSemaphoreHandle S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 1 d o n e ;

25 xTaskHandle S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 2 t a s k ;

26 xSemaphoreHandle S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 2 s t a r t ;

27 xSemaphoreHandle S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 2 d o n e ;

Listing 2: Driver Methods
1

2 void S i m p l e S i m p l e T a s k E d r i v e r o u t () {
3

4 }
5 void S i m p l e S i m p l e T a s k D d r i v e r o u t () {
6

7 }
8 void S i m p l e S i m p l e T a s k A d r i v e r o u t () {
9 Simple SimpleTaskA output PORT = S i m p l e S i m p l e T a s k A o u t p u t ;

10 }
11 void S i m p l e S i m p l e T a s k E d r i v e r (){
12 S i m p l e S i m p l e T a s k E i n p u t [0] = I n t t o D o u b l e (S imple SimpleTaskA output PORT) ;

13 }
14 void S i m p l e S i m p l e T a s k D d r i v e r (){
15 S i m p l e S i m p l e T a s k D i n p u t [0] = I n t t o D o u b l e (S imple SimpleTaskA output PORT) ;

16 }
17 void S i m p l e S i m p l e T a s k A d r i v e r (){
18 }

Listing 3: Actor Methods
1 void Simple S impleTaskE () {
2 P l o t P o i n t 1 (S i m p l e S i m p l e T a s k E x v a l u e , S i m p l e S i m p l e T a s k E i n p u t [0]) ;

3 S i m p l e S i m p l e T a s k E x v a l u e ++;

4 }
5

6 void Simple SimpleTaskD () {
7 P l o t P o i n t 2 (S im p le S im p le T as k D x va l ue , S i m p l e S i m p l e T a s k D i n p u t [0]) ;

8 S i m p l e S i m p l e T a s k D x v a l u e ++;

9 }
10

11 void Simple SimpleTaskA () {
12 S i m p l e S i m p l e T a s k A o u t p u t = S i m p l e S i m p l e T a s k A s t a t e ;

13 S i m p l e S i m p l e T a s k A s t a t e = a d d I n t I n t (S i m p l e S i m p l e T a s k A s t a t e , S i m p l e S i m p l e T a s k A s t e p) ;

14 }

Listing 4: Scheduler Thread Methods
1 s t a t i c vo id S i m p l e G i o t t o D i r e c t o r s c h e d u l e r (void ∗ p v P a r a m e t e r s){
2 p o r t T i c k T y p e xLastWakeTime ;

3 i n t s c h e d T i c k ;

4 c o n s t p o r t T i c k T y p e xFrequency = (((1 0 0 / 2) / 1) / portTICK RATE MS) ;

5 char warn1 = 0 ;

6 char warn2 = 0 ;

7 xLastWakeTime = xTaskGetTickCount () ;

29

8 gxLastWakeTime = xLastWakeTime ;

9 s c h e d T i c k = 0 ;

10 / / t a k e semaphores

11 xSemaphoreTake (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 1 s t a r t , (p o r t T i c k T y p e) 0) ;

12 xSemaphoreTake (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 2 s t a r t , (p o r t T i c k T y p e) 0) ;

13 xSemaphoreTake (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 1 d o n e , (p o r t T i c k T y p e) 0) ;

14 xSemaphoreTake (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 2 d o n e , (p o r t T i c k T y p e) 0) ;

15 f o r (; ;){
16 i f (s c h e d T i c k %2 == 0){
17 S i m p l e S i m p l e T a s k E d r i v e r o u t () ;

18 S i m p l e S i m p l e T a s k A d r i v e r o u t () ;

19 }
20 i f (s c h e d T i c k %1 == 0){
21 S i m p l e S i m p l e T a s k D d r i v e r o u t () ;

22 }
23 i f (s c h e d T i c k %2 == 0){
24 S i m p l e S i m p l e T a s k E d r i v e r () ;

25 S i m p l e S i m p l e T a s k A d r i v e r () ;

26 xSemaphoreGive (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 1 s t a r t) ;

27 }
28 i f (s c h e d T i c k %1 == 0){
29 S i m p l e S i m p l e T a s k D d r i v e r () ;

30 xSemaphoreGive (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 2 s t a r t) ;

31 }
32 v T a s k D e l a y U n t i l (&xLastWakeTime , xFrequency) ;

33 s c h e d T i c k ++;

34 i f (s c h e d T i c k == 2) {
35 s c h e d T i c k = 0 ;

36 }
37 i f (s c h e d T i c k %2 == 0){
38 i f (xSemaphoreTake (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 1 d o n e , (p o r t T i c k T y p e) 0) == pdFALSE){
39 warn1 = 1 ;

40 Warn (” 1 o v e r r u n ”) ;

41 }
42 }
43 i f (s c h e d T i c k %1 == 0){
44 i f (xSemaphoreTake (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 2 d o n e , (p o r t T i c k T y p e) 0) == pdFALSE){
45 warn2 = 1 ;

46 Warn (” 2 o v e r r u n ”) ;

47 }
48 }
49 i f (s c h e d T i c k %2 == 0){
50 i f (warn1 == 1){
51 xSemaphoreTake (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 1 d o n e , portMAX DELAY) ;

52 warn1 = 0 ;

53 }
54 }
55 i f (s c h e d T i c k %1 == 0){
56 i f (warn2 == 1){
57 xSemaphoreTake (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 2 d o n e , portMAX DELAY) ;

58 warn2 = 0 ;

59 }
60 }
61 }
62 }

Listing 5: Frequency Thread Methods
1 s t a t i c vo id S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 1 (void ∗ p v P a r a m e t e r s){
2 f o r (; ;){
3 i f (xSemaphoreTake (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 1 s t a r t , portMAX DELAY)== pdTRUE){
4 Simple S impleTaskE () ;

5 Simple SimpleTaskA () ;

6 xSemaphoreGive (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 1 d o n e) ;

7 }

30

8 }
9 }

10 s t a t i c vo id S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 2 (void ∗ p v P a r a m e t e r s){
11 f o r (; ;){
12 i f (xSemaphoreTake (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 2 s t a r t , portMAX DELAY)== pdTRUE){
13 Simple SimpleTaskD () ;

14 xSemaphoreGive (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 2 d o n e) ;

15 }
16 }
17 }

Listing 6: Initialize Method
1 void i n i t i a l i z e (void) {
2 /∗ SimpleTaskA ’ s parame te r i n i t i a l i z a t i o n ∗ /

3 S i m p l e S i m p l e T a s k A s t e p = 1 ;

4 # i f n d e f i n i t l c d

5 # d e f i n e i n i t l c d

6 RIT128x96x4In i t (1 0 0 0 0 0 0) ;

7 # e n d i f

8 x T a s k C r e a t e (S i m p l e G i o t t o D i r e c t o r s c h e d u l e r , ” S i m p l e G i o t t o D i r e c t o r s c h e d u l e r ” , 100 ,

9 NULL, tskIDLE PRIORITY + (unsigned portCHAR) 2 5 4 , S i m p l e G i o t t o D i r e c t o r s c h e d u l e r t a s k) ;

10 x T a s k C r e a t e (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 1 , ” S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 1 ” , 100 ,

11 NULL, tskIDLE PRIORITY + (unsigned portCHAR) 1 , S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 1 t a s k) ;

12 vSemaphoreCrea t eB ina ry (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 1 s t a r t) ;

13 vSemaphoreCrea t eB ina ry (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 1 d o n e) ;

14 x T a s k C r e a t e (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 2 , ” S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 2 ” , 100 ,

15 NULL, tskIDLE PRIORITY + (unsigned portCHAR) 2 , S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 2 t a s k) ;

16 vSemaphoreCrea t eB ina ry (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 2 s t a r t) ;

17 vSemaphoreCrea t eB ina ry (S i m p l e G i o t t o D i r e c t o r f r e q u e n c y 2 d o n e) ;

18 / / i n i t i a l i z e a c t o r v a r i a b l e s

19 S i m p l e S i m p l e T a s k A o u t p u t = 0 ;

20 /∗ The i n i t i a l i z a t i o n o f t h e d i r e c t o r . ∗ /

21 /∗ i n i t S i m p l e T a s k E ∗ /

22 S i m p l e S i m p l e T a s k E x v a l u e = 0 ;

23 {
24 i n t mlc , i ;

25 mlc = 0 ;

26 / / RIT128x96x4Str ingDraw (” T i m e d P l o t t e r T e s t ” ,25 , 0 , 1 5) ;

27 f o r (i = 0 ; i < 128 ; i += 5)

28 {
29 RIT128x96x4Str ingDraw (” ” , i , 8 9 , 5) ;

30 }
31 f o r (i = 0 ; i < 9 6 ; i +=8)

32 {
33 RIT128x96x4Str ingDraw (” | ” , 0 , i , 5) ;

34 }
35 f o r (i = 0 ; i < 128 ; i += 5)

36 {
37 RIT128x96x4Str ingDraw (” ” , i , 4 1 , 5) ;

38 }
39 }
40 /∗ i n i t S i m p l e T a s k D ∗ /

41 S i m p l e S i m p l e T a s k D x v a l u e = 0 ;

42 {
43 i n t mlc , i ;

44 mlc = 0 ;

45 / / RIT128x96x4Str ingDraw (” T i m e d P l o t t e r T e s t ” ,25 , 0 , 1 5) ;

46 f o r (i = 0 ; i < 128 ; i += 5)

47 {
48 RIT128x96x4Str ingDraw (” ” , i , 8 9 , 5) ;

49 }
50 f o r (i = 0 ; i < 9 6 ; i +=8)

51 {
52 RIT128x96x4Str ingDraw (” | ” , 0 , i , 5) ;

31

53 }
54 f o r (i = 0 ; i < 128 ; i += 5)

55 {
56 RIT128x96x4Str ingDraw (” ” , i , 4 1 , 5) ;

57 }
58 }
59 /∗ i n i t S i m p l e T a s k A ∗ /

60 S i m p l e S i m p l e T a s k A s t a t e = c o n v e r t I n t I n t (0) ;

61

62 }

Listing 7: Main Method
1 i n t main (i n t argc , char ∗a rgv []) {
2 i n i t i a l i z e () ;

3 g u l S y s t e m C l o c k = S y s C t l C l o c k G e t () ;

4 v T a s k S t a r t S c h e d u l e r () ;

5 e x i t (0) ;

6 }

4 Case Study in Elevator Control

As a demonstration of the use of the Giotto C Code Generator for FreeRTOS, we specify a model

of a simple elevator controller in Ptolemy II, and generate code for FreeRTOS from the model.

This example implements a variant of the Toy Elevator problem specified for the Spin [1] Model

checker. The controls are for a very simple elevator that services four floors of a building. The

elevator is initially on the first floor, and it remains on the last floor requested by the user with its

doors open awaiting user input. This example demonstrates only a subset of the capabilities of

the code generator but effectively demonstrates multi modal behavior, even without refinements.

Interaction with the controller was done via a web page shown in Figure 6 being run on a web

server running on the Luminary Cortex-M3.

The status of the elevator door and floor are shown on the LCD screen. The controller details

are shown in Figures 7 and 8. The input constants for pending up, down, 1,2,3,4 are tied to inputs

from the web interface and the pending status variables are also used in the web server. It is

important to note that the code generation process creates one C file. Since for this application

the controls receive information from the web server, the variables for the input constants to the

controller as well as the status variables are moved to a common header file, seen by both the main

file and the web server.

32

Floor 4

Floor 3

Floor 2

Floor 1

Floor Selection Pannel

Elevator Controller fi le:///C:/Documents%20and%20Settings/Administrator/Desktop/index2....

1 of 1 4/29/2009 4:24 PM

Figure 6: Web Interface to the Elevator

Figure 7: Top Level of Specification

33

Figure 8: States in the elevator controller34

This controller is simply a proof of concept, in fact it does not have the safety precautions

present in modern day elevators such as a bump sensor. It has an alarm, unlike the toy elevator

problem specified for the Spin Model checker, where the elevator stops, and outputs a sound to

indicate the alarm has gone off. One should note that if the alarm button is pressed it preempts all

other inputs.

Please note that we do not have WCET analysis available for the CortexM3 and that we are

also running the web server from the microprocessor. Additionally, we handle audio in the Systick

handler, the same handler used by FreeRTOS to handle the kernel. As a result we see correct

ordering of outputs however as is to be expected, audio is output at varying speeds. This indicates

the we would not be able to successfully play music if we attempted to use the code generator

without WCET analysis tool to play different portions of a song that need to be pieced together at

precise times.

5 Future Work

Current work indicates the potential for the direct use of a real-time operating system with timed

models of computation if the RTOS provides a mechanism for direct control over timing. We plan

to extend the code generation framework to do WCET analysis of a model before generating code

for FreeRTOS specifically for the Luminary board. If the WCET analysis reveals that the WCET of

tasks is longer than the LET, we plan to use utility functions to determine what should occur during

an overrun. Options include stalling until the task completes, resetting the processor if we presume

a fatal error has occurred because of the overrun, or continuing execution of the task if its execution

completes within a certain grace time. This change will step away from the direct mapping between

model time and physical time, which Giotto generally makes equivalent, and allows the exploration

of delays in processing, as long as the outputs to an actuator or a mode port are delivered in time.

This approach is similar to the approach taken in PTIDES, so there is the potential for concurrent

development of both projects. In addition we will explore mappings of Giotto to other systems

such as OSEK, a widely used RTOS in the automotive domain as well as pthreads, as long as they

allow some control over timing as FreeRTOS does. We will also demonstrate that the Software

Architecture of the Ptolemy II code generation framework is modular enough to allow easy re

35

targeting to another RTOS.

6 Acknowledgments

I would like to take the time to acknowledge a few people who have made the completion of

this project possible. I’d like to thank my advisor Professor Edward A. Lee for helping me to

identify the limitations of the work, pointing me in the right direction when my ideas went astray,

suggesting ways to strengthen the work and also for providing suggestions on one of the very first

drafts of this report. Next I would like to thank Professor Sanjit Seshia for his willingness to be my

second reader. I would also like to thank my group mates Ben Lickly and Man-Kit Leung who have

been available for many debugging and idea sessions, as well as patiently taking my questions as I

became familiar with Ptolemy II adapter framework. I would also like to thank group mates Hiren

D. Patel and Slobodan Matic for being willing to read and provide useful comments on drafts of

this report as well as for providing suggestions for possible applications for Giotto. Last but not

least I would like to thank my parents Doreen and Trevor Forbes for their wonderful support and

their continuous encouragement.

References

[1] Spin - Formal Verification. http://spinroot.com/spin/whatispin.html ,accessed May 10, 2009.

[2] The MathWorks website. http://www.mathworks.com/products/simulink/ ,accessed May 3,

2009.

[3] G. B. Albert Benveniste. The synchronous approach to reactive and real-time systems. In

Proceedings of the IEEE, pages 1270–1282, September 1991.

[4] C. ANDRE. Representation and analysis of reactive behaviors: A synchronous approach.

IEEE-SMC (Computational Engineering in Systems Applications, pages 19–29, July 1996.

36

[5] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous programming with events

and relations: the signal language and its semantics. Sci. Comput. Program., 16(2):103–149,

1991.

[6] F. Boussinot and R. de Simone. The ESTEREL language. Proceedings of the IEEE,

79(9):1293–1304, Sep 1991.

[7] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng. Heterogeneous

concurrent modeling and design in java (volume 3: Ptolemy ii domains). Technical Report

UCB/EECS-2008-37, EECS Department, University of California, Berkeley, Apr 2008.

[8] Edward A. Lee. Center for Hybrid and Embedded Software Systems Seminar on Model

Engineering, October 21 2008.

[9] M.-K. L. Gang Zhou and E. A. Lee. A code generation framework for actor-oriented models

with partial evaluation. In International Conference on Embedded Software and Systems,

LNCS 4523, pages pp. 786–799, May 2007.

[10] U. C. Group. Programming temporally integrated distributed embedded systems.

http://chess.eecs.berkeley.edu/ptides/, December 2007.

[11] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow programming

language lustre. Proceedings of the IEEE, 79(9):1305–1320, Sep 1991.

[12] D. Harel. Statecharts: A visual formalism for complex systems. In Science of Computer

Programming, 1987.

[13] T. Henzinger, C. Kirsch, M. Sanvido, and W. Pree. From control models to real-time code

using giotto. IEEE Control Systems Magazine, 23(1):50–64, January 2003.

[14] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A time-triggered language for

embedded programming. volume 91(1) of Proceedings of the IEEE, pages 84–99, 2003.

[15] T. A. Henzinger, C. M. Kirsch, and S. Matic. Schedule-carrying code. In In Proc. EMSOFT,

LNCS 2855, pages 241–256. Springer, 2003.

[16] E. K. Jackson. The software engineering of domain-specific modeling languages: A survey

through examples. Technical Report ISIS-07-807, Vanderbilt Universtiy, March 2007.

37

[17] H. KOPETZ and G. BAUER. The time-triggered architecture. In Proceedings of the IEEE,

volume 91, pages 112–126, January 2003.

[18] N. V. Krishnan. Real-Time Systems Design in Ptolemy II: A Time-Triggered Approach.

Master’s thesis, University of California, Berkeley, Berkeley,CA 94720, July 2004.

[19] National Instruments Corporation. NI LabVIEW The Software that Powers Virtual Instru-

mentation. http://www.ni.com/labview.

[20] P. D. Stefan Resmerita and W. Pree. Timing definition language (tdl) modeling in ptolemy

ii. Technical Report Technical Report 21, Department of Computer Science, University of

Salzburg, June 2008.

[21] J. Sztipanovits and G. Karsai. Model-integrated computing. Computer, 30(4):110–111, Apr

1997.

[22] The FreeRTOS.org Project. Openrtos. http://www.freertos.org.

[23] The Ptolemy Project. http://ptolemy.eecs.berkeley.edu/.

[24] a. J. T. Wolfgang Pree. The Timing Definition Language, October 21 2005.

38

	Introduction
	Background
	Giotto
	Related Work

	Ptolemy II
	Giotto in Ptolemy II
	FreeRTOS

	Design
	Framework Description
	Giotto C Code Generation
	Scheduling
	Current Design
	Drivers
	Limitations

	Case Study in Elevator Control
	Future Work
	Acknowledgments

