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Abstract

Practical Fault Tolerance for Quantum Circuits

by

Mark Gregory Whitney

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John D. Kubiatowicz, Chair

Due to very high projected error rates, large scale quantum computers will require

substantial fault tolerance just to maintain a minimum level of reliability. We present tools

to better analyze the performance of large, fault tolerant quantum computer designs. We

find that current uses of quantum error correction are overly conservative in mitigating the

impact of gate errors and negligent of other error sources in quantum data communication

and memory.

We have developed circuit layout heuristics to generate detailed designs in trapped

ion quantum computing technology. From these designs, we can extract much more accu-

rate error models for a given application, including all gate, movement and idle errors on

qubits. Using these extracted models, our flexible error simulation environment determines

the overall failure probability of the design. Included in this simulation environment is

a bit-parallel Monte Carlo technique that is 10 times faster than previous fault propaga-

tion simulations. This allows us to evaluate the reliability of designs that are an order of

magnitude larger, in the same amount of time.

Using this analysis framework to verify reliability, we have developed a linear

programming-based optimization for error correction which decreases overall circuit re-

sources by an order of magnitude. In some cases, our optimization actually improves overall

system reliability by removing error correction. We combine this optimization with judi-

cious quantum error correcting code selection to provide efficient designs for large quantum

arithmetic kernels used in Shor’s factorization algorithm. We show our optimized designs

perform 2x to 100x better than previous works in terms of probabilistic area-delay product.
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Additionally, the area of our layout of a 1024-bit factoring using Shor’s algorithm is 64cm2,

a substantial improvement compared to the 0.9m2 state-of-the-art design from prior work.

A design size reduction by this amount will make fabricating such an application feasible

much sooner.

Professor John D. Kubiatowicz
Dissertation Committee Chair
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Chapter 1

Introduction

Quantum computers will be able to solve a number of important physics and

mathematical problems with interesting asymptotic improvements [105, 3, 84, 41]. The

most cited potential use for quantum computing is to factor large numbers based on Shor’s

algorithm [84]. In order for quantum computers to solve these difficult and interesting

problems, they will need to support a larger number of quantum data bits (qubits) and

quantum circuit elements. In order to sufficiently scale a quantum computer, there are a

number of challenges to overcome, one of these being the control of quantum decoherence

of the data under computation.

Previous estimates of the proportion of quantum computing resources that would

need to be dedicated to quantum error control is approximately 95%. This substantial

amount of overhead has led to proposed quantum computer designs that measure 0.9m2 in

area [64]. In most cases it is infeasible to fabricate a design with this area. It is almost

certainly the case that a design for an algorithm that uses fewer resources (gates, qubits,

instructions, etc.) will be able to be built in the lab sooner as technologies improve.

Past research done on quantum error control has focused on the concatenation of

error correcting codes, which is essentially recursive application of error correction circuits

to the base logical circuit [2]. Much attention has been given to analytical and numerical

thresholds for elementary gate errors [5, 76]. These thresholds give the maximum gate error

rate tolerable by a particular concatenated code, in order to still have a working circuit.

These thresholds are based on the threshold theorem [2] which states that as long as gate

error is below the threshold, the failure probability of the circuit decreases asymptotically

to zero as more and more error correction is concatenated on top of it. There are a number
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Figure 1.1: Evaluating the affect of communication costs on quantum circuit fault tolerance

can be done through an iterative process of fault tolerant synthesis, circuit layout, failure

model extraction, and analysis and optimization of the layout and circuit.

of deficiencies with this approach:

• Threshold techniques focus on the reliability of a single logical circuit element. It

does not necessarily give a prescription for how to distribute error control procedures

throughout a more complex application circuit, like a circuit implementation of Shor’s

algorithm.

• Most threshold derivations must be pessimistic to account for variation in error cor-

rection code properties, or they rely on careful analysis of a single code. Neither

of these approaches allow for a fair comparison of the performance of different error

correction schemes.

• Communication and memory errors are largely ignored in most threshold evaluations.

Work in [37, 97, 96, 56] are the exceptions to this, but these studies based on particular

error models for a single choice of error correcting code. Different error models and

codes will have a different impact on overall circuit reliability.

• While these thresholding techniques provide a guarantee that a circuit could be con-

structed, they do not provide recipe for how to create a physical representation of the

circuit.

While threshold analysis is invaluable for determining overall feasibility of building reliable

quantum gates. It will not give much guidance on how to build, optimize, or evaluate
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Figure 1.2: Our quantum circuit design flow. It takes as input a quantum circuit and

outputs a layout and various metrics on the layout.

a particular quantum circuit. One key result of this work is that current schemes for

fault tolerant quantum error correction waste resources and can make errors more probable

in some cases. Through automated fault analysis and circuit optimization we tailor error

correction procedures to improve both reliability and resource utilization.

Even though past work on quantum computing architectures [8, 64, 98] has sug-

gested that the primary activity in any quantum circuit will be error correction. We show

in Chapter 7 that this is not always the case, especially when special care is taken to reduce

these overheads.

Our recipe for circuit design and optimization presented in this work, shown in

Figure 1.2, is as follows:

Optimized Correction We analyze the fault paths through a circuit and determine where

error correction sub-circuits are most needed. This technique is in contrast the cur-

rent common technique of putting error correction “everywhere” in the circuit. This

technique is discussed in Chapter 6.

Circuit Error Correction Encoding Starting with a logical application circuit, we au-

tomatically insert error correction procedures corresponding to a selection out of our

library of QECCs. This is discussed further in Section 2.2.

Datapath Map Several previous works have suggested tiled dataflow architectures for

high-level quantum computer design [64, 98]. We introduce methods to map to these

tiled datapaths in Section 3.4.1.
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Trap-level Layout We use a variety of heuristics to place physical gate and communica-

tion elements down on a substrate to give us a physical layout. The techniques we

use to do this are given in Sections 3.2.1, 3.2.2, and 3.2.4.

Fault Extraction From a layout, we can identify sources of all types of errors: gate,

communication, and memory. We discuss how we model faults in a layout in Sections

4.2 and 4.9.

Fault Probability Estimator We verify that our design meets some prescription for de-

fect tolerance by simulating error propagation through the extracted fault model.

These simulation techniques are discussed in Sections 4.1, 4.5, 4.6, and 4.7.

Through this design flow, we improve on the state of the art in quantum fault

tolerance in the following ways:

Communication and memory in quantum circuits Due to the high-level view of cir-

cuits in existing quantum circuit evaluations, the extent to which qubit communication

and memory affects the fault tolerance, latency, and area of a circuit is unknown. We

present the first comparative evaluation of quantum error correcting codes that takes

into account factors like communication and memory errors.

Constructive physical designs Our tool flow provides the first automated system for

creating complete physical designs for given application circuit. This allows us to

perform much more detailed estimates of area and resources required to a particular

application.

Circuit Reliability & Efficiency Our error correction optimization techniques both re-

duce the amount of resources needed to implement a given logical circuit as well as

reduce the number of fault points in the circuit. This has the effect of reducing both

area and failure probability of the resulting design.

For the remainder of this chapter, we will review the basics of fault tolerant quan-

tum computing as well as classical computer aided design flows. Chapter 2 will give an

overview of our quantum computer aided design flow. This will give the framework into

which all our main contributions fit. Chapter 3 will describe the methods in which we esti-

mate communication in quantum circuits in order to account for non-gate errors. Chapter
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|1> |1>

|1>|0>
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a) classical XOR b) classical-like CNOT c) entangling CNOT

Figure 1.3: A comparison between a classical XOR and its quantum analog: the controlled

not or CNOT. The CNOT gate is reversible, thus the additional output. Figure b) outputs

the XOR result to the bottom bit. Figure c) shows the same CNOT when the input is a

quantum superposition. In this case the output is an entangled qubit state, not representable

as independent qubit values for the two outputs.

4 describes how we extract fault models from a circuit and how we simulate failure propa-

gation given these models. Chapter 5 ties these two pieces together to analyze the errors in

a high-level teleportation network and a low-level QEC code comparison. Chapter 6 talks

about our fault tolerance optimization methods. The final chapter, 7 looks at the results of

our tool flow on large quantum circuits such as adders and Shor’s factorization algorithm.

1.1 Quantum Circuits

We will later talk about how to automatically synthesize, optimize, and layout

quantum circuits. First we must understand what a quantum circuit is, and how it differs

from the classical circuit model.

Classical computers in CMOS technology have spent a lot of time fighting “quan-

tum effects” as feature sizes shrink into the 10s of nanometers range. A quantum computer,

on the other hand, strives to amplify and utilize quantum effects such as entanglement

and superposition as much as possible. The basic abstraction of a quantum circuit is a

collection of quantum gates connected by wires. This model is similar to a classical circuit

specification but there are two main differences:

• Quantum gates are unitary and therefore reversible [9]. This introduces the notion of

scratch bits called ancilla qubits or simply ancillae in order to have the same number

of inputs and outputs for each gate when simulating the behavior of non-reversible

circuits.
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• Due to the no-cloning theorem [104] qubits cannot be duplicated. This prevents any

fan-out of wires in a quantum circuit.

Figure 1.3a shows quantum and classical XOR gates, the quantum version is known

as a controlled-not (CNOT) gate as shown in Figure 1.3b. If the quantum inputs are not in

a superposition state, the output of the gate is the same as the classical version (with the

addition of another output for reversibility). If the “control” input to the CNOT gate is

allowed to be a superposition, as in Figure 1.3c, things get more interesting. The resulting

output state is an entangled state and has no classical analog. A confusing way to look at

this is that both qubits are in both the 1 and 0 states but always the same.

Quantum circuits operate on these entangled superposition states and this is where

the power of quantum algorithms comes from. In the end, the data cannot stay in a

superposition though, in order to read out an answer from the quantum computer, the

qubits must be measured so that the data can be presented to the classical world. The

process of measurement collapses a superposition state into just one definite bit vector.

Measurement also helps us understand the output state from Figure 1.3c. The entangled

state |00 > +|11 > means that when we measure, the resulting classical bit vector will be

00 or 11 (with equal probability).

1.1.1 Universal Gates

Due to the more complicated structure of quantum superpositions, there is no

single 2-bit universal gates as in the case of the NAND gate in classical logic. Instead, one

can use the reversible 3-bit toffoli gate as a universal gate. Since many quantum circuit

technologies are practically limited to 1 and 2 bit interactions, we can construct a universal

set of 1 and 2 qubit gates as shown in [9]. A standard universal set of 1 and 2 qubit quantum

gates comes from [15] and is the CNOT (shown above as a reversible XOR), the Hadamard

or H gate (which converts a bit value to a phase value and vice versa), the π
4 rotation

gate, also known as the T gate, and the phase gate. These gates are shown in Figure

1.4 along with some additional gates we will use in the circuits throughout the paper. In

reality, different elementary gates are easier or harder depending on which technology one

is using. One more “gate” type is needed: measurement. In order to read out data from

a quantum computer, it must be measured, measurement is also instrumental in another

useful primitive, known as teleportation, which is discussed Section 1.2.4. Measurement is
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Figure 1.4: Basic gates for quantum circuits: this is a set of gates which supports a universal

quantum computing model. The Hadamard gate converts bit values to phase values and vice

versa. The phase, T and Z gates rotate the phase of the “1” qubit value by different angles.

The CNOT gate is the same as shown in Figure 1.3 and performs the XOR functionality.

The measurement “gate” measures a quantum state, returning a 1 or 0 and collapses any

superposition to that value as well. The X is a bit flip, Z a phase flip, and Y a combination

of both. The X, Y, Z, and phase gates can be generated by the other gates shown here but

we include them since they are often included as physical primitives.

not a unitary gate which is why we do not include it in the universal set, but it is still a

necessary quantum operation.

1.1.2 Quantum Decoherence

While the power of quantum superposition enables a lot of interesting computing,

it comes at a cost. The sensitivity of a quantum superposition state lacks the dynamic

feedback that stabilizes bits in digital logic. We have to allow a continuum of possible

quantum states per qubit instead of 2. For this reason, the error rates of all operations

on quantum data are much higher than operations in classical logic. Errors to quantum

states cause what is called quantum state decoherence. Error rates to do anything in any

quantum computing technology in the lab right now are in the range of 10−2 − 0.1 errors

per operation, this includes having qubits wait around, not doing anything. “Realistic”

estimates for error rates in the foreseeable future are said to be around 10−5 − 10−2 errors

per operation [91]. Compare this to CMOS transistor error rates which range from 10−20

to 10−15 errors per gate [83].

The gap is very wide so we would expect to have to pay more attention to errors

in quantum circuits than in classical circuits. Indeed, as we mentioned earlier, we have

shown that in many cases 95% of quantum circuits will be made up of error correction and
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Figure 1.5: Above is a simple independent gate error model. After each gate, qubits

involved in the gate acquire an error with probability p1g for 1 qubit gates and p2g for 2

qubit gates.

fault tolerance modules [48]. With error control circuitry imposing such a large overhead

in a quantum circuit, it has not even been conclusively proven that the algorithmic gains

promised by quantum computations will not be swallowed up by error correction overhead.

The methodical synthesis of circuits with fault tolerance will help us better understand

trade-offs between circuit performance and fault tolerance. We will show later in Chapter

6, that this overhead can also be reduced substantially, if we are more careful about our

fault tolerance architecture.

Some physical sources of quantum operation errors will be covered in Section 1.3.5,

but first we look at some of the general, technology-independent models currently used to

classify errors and the error control techniques used to combat them.

1.2 Quantum Errors and Error Control

As we mentioned before, quantum error control is a dominant component to all

quantum computer designs. We will now give an overview of where these errors come from

and how previous works have built up fault tolerant architectures.

A quantum noise process can be viewed as a combination of application of random

gates and measurement to qubits [70]. Figure 1.5 shows an example of a simple quantum

circuit error model, widely used in many analyses. In this example, errors only happen after

gate operations. Error probabilities are parameterized into single qubit and double qubit

error probabilities. This simple model has no errors for inter-gate movement, there is also

no temporal or spatial correlations introduced between errors in qubits.

In all quantum computing technologies, errors are abstracted into 3 different
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sources:

Gate errors Depending on the physical technology, gates could involve complex sequences

of applications of electrical and/or magnetic fields, current, and/or EM radiation

applied to one or more co-located qubits. These gate processes can introduce errors

from apparatus imprecision or tunneling effects between qubits. The abstraction of

this error type is that each qubit involved in a gate has some probability of an error

being introduced immediately after the gate is finished. Additionally, multi-qubit

gates can propagate existing errors from one qubit to another. This point is discussed

more in Section 1.2.2.

Movement/communication errors Qubit communication can involve either physical

movement of coherent particles or gate-like operations to transfer state across fixed

physical resources. In the former case, kinetic motion of particles can introduce mo-

tional heating and even particle loss. The abstraction often used is some amount of

distance moved introduces a single qubit error with some probability.

Memory/idle errors Even when a qubit is sitting stationary, interaction with the envi-

ronment, either through coupling with stray EM fields or contact with stray particles,

can cause errors. Since there is no physical action the qubit is performing, memory

errors are abstracted to a probability of error per unit of time it is stationary.

In studies of the effects of quantum noise, including threshold analyses (discussed

in Section 1.2.3), quantum noise is usually categorized under the following characteristics:

(Non-)Local A local gate model accounts for the spatial distance that a qubit has to travel

to perform successive gates. This communication overhead can introduce errors from

the movement and also increase circuit latency and introduce additional memory

errors.

(Non-)Markovian One can assume the environment with which the computational system

undesirably interacts with has memory or no memory.

(Non-)Leakage Errors can take the computational system out of the computational basis.

This type of error is called a leakage error and is very similar to data erasure errors

in classical coding theory.
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Figure 1.5 depicts a non-local, Markovian, non-leakage fault model.

A more general formulation for errors introduced into quantum state, known as

decoherence, comes from [20]. In this formulation, a fundamental split is made between

the “computational” space and the “environment”. In general, any interaction with then

environment leads to errors as it means uncontrolled coupling with stray quantum systems.

Therefore, noise is modeled as interaction between the Hilbert space (space of all possible

quantum states) of the computation, HC , and the Hilbert space of the environment, HE .

A “superoperator”, or a positive linear map over the computation Hilbert space, gives us a

mathematical formulation of decoherence:

A(ρ) ≡ trE(PEU(ρC ⊗ ρE)U †) (1.1)

=
∑

k,l

√

λl〈gk|U |φl〉ρ〈φl|U
†|gk〉

√

λl (1.2)

where ρC represents a probability distribution over possible quantum states in the

computational basis, and ρE represents a distribution over all the states in the environment

(i.e. “everything else”). The idea behind this general equation is that when computing

errors, we look at the interactions between the computational states and the environment

and then ignore the state of the environment to see how badly the computational states are

messed up.

In general, the majority of work on error correcting codes and thresholds analyzes

the simplest type of error: independent, non-Markovian, non-leakage errors. They then

show how it can be extended in some cases to handle limited cases of some of the other,

more difficult, error types. Our work assumes a simple, Markovian, local fault model.

Chapter 4 discusses more details on the fault model we assume for our studies.

1.2.1 Error Correcting Codes

Qubit state coherence can quickly decline to unacceptable levels resulting in data

loss if this data is unprotected. As in classical computing, redundancy may be used to

combat high error rates. This can be done by way of Quantum Error Correction Codes

(QECC) [70]. A QECC encodes a data or logical qubit, into an encoded block of qubits,

similar to a classical error correcting code. It was mentioned before that quantum circuits

must preserve a continuum of superposition states, so does this mean that QECC must
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Figure 1.6: Types of errors corrected by quantum error correcting codes: The X error (EX)

flips the bit value, the Z error (EZ) flips the phase difference between 1 and 0 by π radians,

the Y error does both these things, flipping the bit and phase of the qubit.

correct a continuum of errors? Fortunately, the answer is no. These quantum codes are

designed such that the error can be measured in the correction process without measuring

the data superposition (which would corrupting the data). This means that the continuum

of errors is collapsed to a choice of 3 different error types (vs. one error in the classical

situation, the bit flip) and the correction process then looks a lot like its classical coun-

terpart. The 3 error types are a bit flip, a phase flip, and both a bit and phase flip as

shown in Figure 1.6. The bit flip (EX) is the same as the classical bit flip error, the phase

flip (EZ)has no classical analog and is similar to flipping the relative phase between two

interfering EM waves.

Encoded blocks can be hierarchically composed so we refer to the level of concate-

nation as the number of times that a code is recursively applied to the data. Figure 1.7

show a simple recursive encoding scheme using a 7 bit CSS code (explained later in this

section). We refer to the lowest order bits in this encoding scheme as physical qubits, since

these are the bits that correspond to physical two-level quantum systems in the circuit. The

“Level 1 Encoder” from the top of Figure 1.7 takes a single physical data qubit and encodes

it into 7 physical qubits, making a level 1 logical qubit. Assuming that each gate in this

encoder has an analog for operating on a level 1 logical qubit (7 qubit encoded block), we

can recursively encode to get a “Level 2 Encoder”, shown on the bottom of Figure 1.7. This

generates a level 2 logical qubit. The majority of studies into the error correcting abilities

of concatenated codes have focused on the asymptotic properties of concatenation of this

very 7 bit CSS code.

So now we have an encoded qubit which offers us some protection as long as the
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Figure 1.7: On the top, we are encoding a single data qubit into a 7 qubit block code (the

[[7,1,3]] CSS code). The boxes with zeros indicate a preparation of a new qubit in the |0 >

state, if the input qubit is a single physical qubit, this is a level 1 encoder, producing a

level 1 logical qubit. The bottom figure is a level 2 encoder, using a level one encoder as a

building block to produce a level 1 logical zero valued qubit.

qubit does not need to be acted upon by a gate. Since many consider gate operations to

be the most error prone operations in a quantum circuit [103], decoding the qubit to do a

gate is not feasible. This means that all gates in our quantum circuit must act on encoded

data. We refer to these gates acting on encoded data as encoded gates. A single encoded or

logical gate becomes a set of physical gate operations, dependent on which QECC is used.

Popular QECCs have the property that most encoded gates are implemented as

“transversal” gates, as shown in Figure 1.8. Transversal gates are nice because they are

simple and have good fault tolerance properties which we will discuss in Section 1.2.2. Un-

fortunately, it has been proven that additive quantum codes cannot have a fully transversal
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Figure 1.9: Steane-style error correction schemes have the following form: generate two

encoded zero states then perform sequential Z and X correction operations.

universal gate set [106]. Thus, more complicated gate procedures must be devised for at

least one of the encoded elementary gates we will want to perform, this will be discussed

in Section 1.2.2. In practice, for many codes, the non-transversal gate is the π
8 or T gate.

This gate will be used extensively in the adder circuits we will talk about more in Chapter

7.

Using quantum error correcting codes requires that errors are periodically cor-

rected. In classical ECCs correction involves computing an error syndrome based on the
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Figure 1.10: Classical error correcting codes use a [n, k, d] notation to describe code param-

eters. n is the number of bits in the resulting encoded states, k is the number of source

bits it encodes, d is the minimum distance between any two different encoded values for the

code. For the 3 bit repetition code, the minimum distance is 3 (000 and 111 differ in 3 bit

positions).

data values and then flipping the bit(s) which the syndrome identifies as erroneous. In

the QECC case, the correction process is complicated by the fact that we cannot directly

measure the data qubits to obtain their values or we will collapse the superposition and

invalidate the computation. Instead, the correction process uses extra ancilla qubits that

interact with the data qubits, the error information is distilled in these ancilla without

transferring any information about the logical data value. Then, the ancilla is measured to

get the error syndrome and bit and phase flip corrections (X and Z gates respectively) are

applied to the data. Figure 1.9 shows this process.

The standard notation for quantum error correcting codes is similar to classical

ECCs, Figure 1.10 explains the [n, k, d] notation, a quantum code is described the same

way but with an extra pair of brackets ([[n, k, d]]). The most popular code in quantum

computing analyses today is Steane’s [[7, 1, 3]] code, which corrects a single error [85]. This

code is often concatenated to correct more errors in bigger blocks.

Although, the number of QECCs constructed so far is much less than the number

of classical ECCs, there still is already a large selection of codes to choose from when

designing an error corrected circuit. Here is a sampling of (non-disjoint) classes of QECCs

that people have come up with so far:

Stabilizer codes Originally formulated by Gottesman [35], these codes are specified by

giving a generating set of operators which “stabilize” certain quantum states, meaning

these operators do not change the states. These states are used to represent logical
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bit values. Correctable errors move states out of the stabilized space, which can then

be detected. It has been shown that a fault tolerant universal set of gates is possible

for any stabilizer code [36], although they might be complicated.

CSS codes From Calderbank, Shor, and Steane [85, 18], this was one of the first code

classes discovered. A CSS code is made up of two linear classical codes, on of them

being a Hamming code. When using any CSS code, CNOT and H gates are transversal,

which makes them attractive for encoding gates. The popular [[7, 1, 3]] is the smallest

CSS code. CSS codes are a subset of stabilizer codes.

Error-detecting codes While most focus has been on error correcting codes, error de-

tecting codes play a central role in Knill’s postselection fault tolerance technique [55].

The key idea here is that we are trading off overhead of encoding and storing larger

qubit blocks for the cost of retrying every time an error is detected in a computation.

Decoherence free subspaces Instead of active correction operations based on measured

syndromes, decoherence free subspaces (DFSs) take advantage of specific properties

of the predominant noise present in the system and encode the data such that all the

data values are in the eigenspace of the noise processes. Thus the data is invariant

under some noise [61]. It is unlikely that data can be encoded in a state that is

fully immune to noise, therefore proposals have been made to concatenate DFSs with

QECCs to protect against more errors [60].

Operator/Subsystem codes Most codes are based on restricting the code space to a

subspace of the total computational vector space. Subsystem codes reside in a subsys-

tem of the computational vector space and correspond to a code space with different

gauge possibilities [7, 4]. The claim is that correction is simpler than in subspace

codes. Subsystem codes such the Bacon-Shor codes [7] are also CSS codes.

Entanglement-Assisted codes Most other types of codes do not make use of any exter-

nal resources. These codes are used for communication and require the sender and

receiver to have shared entanglement for the correction process [17].

In addition to these classes of codes, there are many codes that have been indi-

vidually mentioned in the literature: quantum Golay codes [90], quantum BCH codes [38],

quantum Reed-Solomon codes [39], quantum Reed-Muller codes [88], Bacon-Shor codes [4],
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Figure 1.11: Performing a T gate involves preparing an encoded ancilla in the state |0 >

+eiπ/4|1 > (in the dashed box) and then interacting this ancilla block with the encoded

data at the end of the gate operation sequence.

etc. In short, there are many codes to choose from. To date, the two studies to compare

more than a couple codes in a common framework were Steane in [90] and Cross et al. in

[25]. The focus on CSS codes.

In Chapter 5, we will provide another comprehensive code comparison, including

a more complete error model. Like previous studies, we will focus on the CSS codes. Future

work would involve a more inclusive comparison.

1.2.2 Fault Tolerance

It turns out that merely encoding data and gates is not enough to sufficiently limit

errors in quantum circuits. You must also limit the propagation of errors when 2 qubits

interact in a gate. This has led to a general theory of fault tolerant quantum computation

[75]. The basic idea behind this is that a qubit in an encoded block of data can only be

allowed to interact with a limited number of other qubits in the same block. The idea is

that if a code corrects t bits, there should be clusters of no bigger than t qubits that interact

in the block. In the case of the [[7, 1, 3]] code, the code corrects t = ⌊d2⌋ = 1 error so there

should be no direct intra-block interactions (cluster size 1). Now we see another reason why

transversal encoded gates are attractive: they are automatically fault tolerant for any code.

In the case of necessary non-transversal gates, intra-block interactions may need to occur,

therefore in this case, we use ancilla qubits to act as fault tolerant intermediaries in data

qubit interactions.

An example of an ancilla-assisted gate is the fault tolerant T gate, shown in Figure
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Figure 1.12: Fault tolerant π/2k gates can be performed recursively with a cascade of

π/2i|i = 3...k ancilla factories and k−2 CX and X gates. Each measure gate output controls

both the single qubit X gate and the compound gate involving more ancilla factories. Each

measurement has a equal chance of giving the “correct” state, in which the remaining circuit

is skipped or a “wrong” state in which a larger rotation has to be done to adjust the state.

The actual output data from the circuit connects to the first quantum bit line associated

with a correct measurement.

1.11. Notice that a majority of the work is performed in the ancilla preparation stage of the

gate. In the case of a general rotation, the ancilla demand is even more extreme, as shown

in Figure 1.12. In this case, to rotate by 2π/n, we need on the order of log n encoded ancilla

generated. All this ancilla can be done at any time before the actually gate is scheduled to

be performed on the data. We analyzed this optimization in [48].

We mentioned the use of ancilla to perform error correction procedures. This

must be done carefully because we cannot allow “dirty” ancilla to interact with data and

allow ancilla to data error propagation. Fortunately, producing ancilla with very low error

probabilities is much easier than reducing error in data because the ancilla is in a known

state. Thus we can perform a process known as purification which takes some ancilla bits

and produces fewer ancilla bits with less error probability (also referred to as higher fidelity).

Also, we typically want to avoid interacting multiple data qubits with a single ancilla qubit

because error can then propagate through the ancilla.

There are a number of different ancilla preparation and correction procedures

from the literature, and very few comprehensive comparisons have been made between

different techniques. Our automated circuit layout and error simulation tool allows a detail
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Figure 1.13: A comparison of two popular error correction strategies, the first, proposed

by Steane, just CNOTs two encoded zero states with the data, the second, proposed by

Knill, actually teleports the data qubit into one half of an EPR pair. Note that the set of

operations performed are very similar.

comparison of failure probabilities, area resources for the gate network, and latency/time

overhead of the different procedures. Results of this comparison are given in Chapter 5.

Reichardt has a nice qualitative summary of the different fault tolerant correction

procedures in [77]. He identifies two of the most successful but different procedures (there

are many variations on both):

Steane correction From [90], shown in Figure 1.13a, the procedure uses ancilla bits en-

coded in the same code as the data. CNOT gates are then applied between the

encoded data and encoded ancilla in such a way that errors are copied to the ancilla

but the logical data is not. The ancilla is measured and the error information used to

apply bit or phase flips to the encoded data.

Knill correction From [55], shown in Figure 1.13b, the procedure effectively teleports

data into a cleaner ancilla and the teleportation procedure itself eliminates errors.

In our study in Chapter 5, we focus on Steane correction in order to better compare

to previous studies [90, 25]. Since the sequence of operations for both techniques is very

similar, we do not consider this to be much of a limitation on our code study. The key dif-

ference is that Knill correction could be combined with teleportation-based communication

to fold in some of the QEC overhead in some cases.
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1.2.3 Noise Threshold Theorems

Much of the study of quantum fault tolerance and quantum error correction is

focused on establishing thresholds. Threshold theorems rely on concatenated codes, and

try to prove that concatenating various QECCs will lead to an asymptotic elimination of

error in a quantum circuit. The original work was done by Aharonov and Ben-Or [2], and

Kitaev [54].

In Aharonov and Ben-Or’s work, they bound the number of errors possible in

an single error correction block or “rectangle” before the rectangle fails, then recursively

replace elementary gates in that rectangle with encoded, corrected gates. This recursive

application of encoding leads to a exponential decrease in error with each successive recur-

sion. While they set up the analytical framework that would later be followed by other

threshold analyses, they do not go into very much detail on how blocks are composed or

where the “worst” error paths are, thus they must produce very conservative upper bounds

on tolerable gate errors ( 10−6). Aliferis et al. [5] did a substantially more detailed analysis

of the composition of concatenated blocks and critical error paths through these blocks to

produce a more aggressive threshold of 2.73×10−5. Besides these works, considerable effort

has been put forth to find numerical [55, 95] and analytical [5, 77] thresholds for various

codes, under assumptions of various noise models, different locality/communication models,

correction techniques, etc.

With the exception of [97, 8, 95, 56], little attention as been placed on gate locality

and qubit communication costs. I believe that communication failure rates could have

significant influence on a threshold estimates. [95] showed that movement error does not

eliminate the possibility of an error threshold for the concatenated [[7, 1, 3]] code. There

have been no results of the relative affect of movement errors and latency compared across

a variety of code architectures.

In Chapter 5, we will extend the numerical threshold results from Svore et al.

[96, 95]. In this work, there is a detailed study of a hand-optimized abstract layout of qubit

gates implementing an encoded, concatenated version of each gate type from a universal

set, using the [[7, 1, 3]] code. Svore’s work focused on the particular code with a particular

correction and ancilla preparation strategy. We believe that choices in all these factors can

lead to vastly different resource requirements and performances in the circuit, including

different threshold estimates. In fact, Svore’s final comment in [95] says that exploring the
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Figure 1.14: Teleporting data qubit D to the target location requires (1) a high-fidelity

EPR pair (E1/E2), (2) local operations at the source, (3) transmission of classical bits, and

(4) correction operations to recreate D from E2 at the target.

space of different codes is a crucial next step in these numerical threshold studies.

1.2.4 Communication

In order to perform any two-qubit quantum gate, the two qubits must be physically

adjacent. Similar to any other quantum operation, qubit movement could be affected by

high error rates. Drawing on our work in [49], we make a distinction between short range

movement, performed by whatever physical movement primitive is available, and long range

movement performed by teleportation.

Teleportation

A useful circuit primitive for communication is a teleportation unit. Figure 1.14

gives an abstract view of teleportation [10]. We wish to transmit the state of physical

data qubit D from the source location to some distant target location without physically

moving the data qubit (since that would result in too much decoherence). Figure 1.15 shows

the circuit representation for this operation (note that E1 and E2 still must be physically

separated after the CNOT).

We start by interacting a pair of qubits (E1 and E2) to produce a joint quantum

state called an EPR pair. Qubits E1 and E2 are generated together and then sent to

either endpoint. Next, local operations are performed at the source location, resulting in

two classical bits and the destruction of the state of qubits D and E1. Through quantum

entanglement, qubit E2 ends up in one of four transformations of qubit D’s original state.
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Figure 1.15: Circuit representation for the teleportation operation: The first Hadamard

and CNOT gates prepare qubits E1 and E2 in the EPR state. One half of the EPR pair

is CNOTed with the data followed by a Hadamard and measurements. The measurement

results (classical information represented by double bit lines) are used to apply X and Z

gates to adjust the final state.

Once the two classical bits are transmitted to the destination, local correction operations

can transform E2 into an exact replica of qubit D’s original state 1. The only non-local

operations in teleportation are the transport of an EPR pair to source and destination and

the later transmission of classical bits from source to destination (which requires a classical

communication network).

We can view the delivery of the EPR pair as the process of constructing a quantum

channel between source and destination. This EPR pair must be of high fidelity to perform

reliable communication. As was discussed in Section 1.2.2, purification permits a trade-off

between channel setup time and fidelity. Since EPR pair distribution can be performed in

advance, qubit communication time can approach the latency of classical communication;

of course, channel setup time grows with distance as well as fidelity.

In order to perform teleportation, two adjacent ancilla qubits are interacted to

enter an entangled state, making them an EPR pair [70]. Each qubit is shuttled to one

endpoint of the teleportation. After some local operations at either endpoint and some

classical communication between the two, it is possible to transfer the unknown state of

some qubit at the source to the EPR qubit at the destination. The trade-off includes extra

work to set up the teleportation, but for the benefit of minimal noise on the data qubit

being teleported (since most of the work was done on the EPR qubits).

As discussed in our work in [47], qubits were clustered into regions in which we

used physical transportation for data qubits and then inter-cluster data movement was

1Notice that the no-cloning theorem is not violated since the state of qubit D is destroyed in the process
of creating E2’s state.
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done via teleportation. Dedicated teleportation units were used for each cluster and EPR

distribution channels that provided the needed ancilla were set up between the units. These

EPR channels were structured to use only physical movement or a combination of physical

movement and chained teleportation across shorter distances. Section 5.4 investigates a

number of different resource trade-offs in terms of the amount purification performed on

EPR pairs going through these distribution channels.

1.3 Quantum Computing Technologies

Many technologies have been proposed to implement the quantum circuit model

we just presented. Far fewer, only a handful, have been experimentally demonstrated to

coherently manipulate quantum state. Optical quantum computing systems suffer from

decoherence through spontaneous emission of photons, superconducting systems from ex-

ternal field fluctuations and 1/f noise from trapped electric charges, solid state techniques

from similar 1/f noise attributed to stray charges near the qubits. The technology I will

be focusing on in this work will be trapped ion quantum computing, the details of the

technology and the quantum noise processes involved will be given in Section 1.3.1, but

essentially, the main noise processes relate to applying lasers to perform gates, including

thermal fluctuations and spontaneous emission and heating during data communication.

The substrate technology we choose for our study is based on trapped ions [23, 67].

In this section, we will discuss the basic operation of an ion trap quantum computer and

allude to the various issues that arise when trying to control the system. We highlight

aspects of the system that will require novel architectural decisions to control.

1.3.1 Ion Traps at a Glance

The target technology for our toolset will be ion traps, which has shown potential

for scalability [51]. In this technology, a physical qubit is an ion, and a gate is a location

wherein an ion is trapped so it may be operated upon. The ion is both trapped and

ballistically moved by applying pulse sequences to discrete electrodes which line the edges

of ion traps (see the left of Figure 1.16). The ion moves along in a potential well created

by the control electrodes.

Gate operations are performed by precise laser pulses aimed at trapped ions. Mea-

surement of a qubit is performed by exciting the target ion with a different frequency laser
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Error Error Latency

Physical Operation Set 1 [32] Set 2 [91] in (µs) [73]

One-Qubit Gate 10−6 10−4 10

Two-Qubit Gate 10−6 10−4 100

Measurement 10−6 10−4 500

Zero Prepare 10−6 10−4 510

Straight Move (∼30 µm) 10−8 10−6 10

90 Degree Turn 10−8 10−6 100

Idle (per µs) 10−10 10−8 N/A

Table 1.1: Error probabilities and latency values used by our CAD flow for basic physical

operations

Figure 1.16: Simplified ion trap technology view. Ions (qubits) are trapped between elec-

trodes in the trap regions. Ballistic movement of ions is performed by changing the voltages

of the electrodes. A laser is routed to the location of the ions to perform a gate.

pulse and then detecting fluorescence using a CCD. Laser beams can be split and routed by

an array of MEMS mirrors to simultaneously fire on multiple gate locations, thus allowing

SIMD gate operation [52] (Figure 1.16 from [74]). A working ion trap quantum computer

will require coordinated control of trap electrodes, lasers, CCDs, and micro-mirrors to per-

form the proper concurrent operations to implement quantum gates. Here is a break down

of these components.
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1.3.2 Trap Electrodes

In order to properly confine a qubit (ion) in a trap, the electrodes around the

qubit must be precisely controlled to ensure that the ion does not unexpectedly move into

adjacent traps, fly out of the top of the trap channel into the vacuum, or adhere to the

electrode surfaces. Ballistic movement of qubit ions between traps is likewise achieved by

coordinated application of changing voltages to all the electrodes near the ion being moved

to generate the precise electrostatic attractive and repulsive forces necessary.

To get an idea of the type of electrode control necessary to move and confine ions,

[45] has the details of an experimental demonstration of a qubit turning around a corner.

This procedure can be broken down into sequences of 5 pulses with at least 4 discrete voltage

levels on about 15 different electrodes. Coordinating a large number of of physical ion qubits

necessary to do a useful computation (at least in the 100,000s) would require concurrent

control of a million electrodes. As we just mentioned, control of each electrode will be more

complicated than just turning it on and off, as it will have more than two voltage levels.

Due to the need for a million trap electrode controllers to drive the appropriate voltages,

these structures can benefit greatly from logic reuse.

Fortunately, there is substantial regularity in both the trap layouts we use to

design the computer and the ion qubit movement through these regularly laid out blocks.

We could imagine grouping adjacent sets of traps into blocks, similar to the layout proposed

in [8]. Trap blocks with the same geometry could be controlled by the same replicated logic

block. The block controller could then accept directives like “turn qubit around corner” or

“hold qubit”. Adjacent blocks would then have a simple handshake that would enable local

decisions on when one trap block is done confining a qubit ion and when its neighbor takes

control. In addition to simplifying global control of electrodes, this could also also eliminate

potential skew problems in a monolithic controller, which could result in qubit ion errors

or even total loss of a qubit.

Finally, it is worth mentioning that the voltage pulse sequences required to move

ions are highly dependent on the exact geometry of the fabricated electrodes [79]. Thus, it

may make sense to have a firm abstraction layer between the higher level control architecture

and the lowest level trap electrode controller.
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1.3.3 Gate Lasers

While trap electrodes are all that are needed to move qubit ions, quantum gates

are performed by moving qubit ions to designated traps and then applying laser pulses to

them. [80] and [81] have detailed listings of the laser pulses used in an experiment to apply

a set of one and two qubit gates. From this listing, we note that each gate could take about

3 or 10 separate consecutive laser pulses, depending on whether it is a single or double

qubit gate. Each of these pulses must be applied for a reasonably precise amount of time.

[42] and [81] show the qubit ion energy state transition curves under laser application. The

important thing to note here is that qubit values are oscillatory in the time evolution under

laser application, thus the amount of time the laser pulse is applied is critical in performing

the correct gate. The approximate oscillation frequency of the ions used in many of these

experiments is around 200µs, thus in order to maintain a gate error of less than 10−4 or so,

we would need to control laser pulse length to a resolution of roughly 200µs×10−4 = 20ns.

In addition to precise laser pulse length, substantial optics are necessary to suffi-

ciently focus the laser to a narrow enough beam width in order to address individual ions

within the trap. As mentioned in [69], two qubit gates require qubit ions to be adjacent in

a single ion trap with a distance between them around 7-20µm, leading to a requirement

of a beam width of around 5µm. In this particular experiment, obtaining such a resolution

was achieved with a rather large Nikon lens. Also mentioned in [69] is the need for a laser

with a very stable frequency, one that is within 1-kHz of the precise transition frequency

between qubit ion energy levels. This precludes the use of miniaturized semiconductor laser

diodes from any current fabrication technology. 2

Due to the large size (and probably expense) of the gate lasers and focusing optics,

we see a strict resource limitation on the number of laser beams we can produce for our

quantum computer. Additionally, double qubit gates require up to 4 different frequencies

of laser light, so in order to perform a single gate, we may need 4 large laser apparatuses.

The one thing we can miniaturize is an optical system to divert and split the already

focused and stabilized laser beam to deliver them to the particular trap locations. The

technology of electro-mechanical micro mirrors has already been applied on a large scale to

2Semiconductor lasers have beams consisting of multiple frequencies due to a large number of available
modes just above and below the band gap where the electrons and holes recombine. Additionally, the band
structure is highly sensitive to local temperature and current fluctuations, meaning that even if a single
mode could be isolated, that particular mode would fluctuate by an unacceptable amount [43].
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commercial optical routing technologies [14] and is capable of deflecting beams with over

1000 individually addressed micro mirrors.

For the above reasons, we assume a small number of lasers and a very large and

flexible system for routing and aiming the limited number of actual lasers. This naturally

lends itself to a SIMD design with individual laser beams being split and routed to many

trap locations, allowing a single gate type to be applied at many locations simultaneously

using one laser. This imposes a globally synchronous model of operation at the lowest level

where large numbers of physical gates require synchronization to be performed by a limited

number of lasers.

1.3.4 Measurement

A measurement operation consists of the application of another laser frequency,

separate from those needed for gates, and the collection of light fluoresced from the ion with

a CCD camera. If an ion is measured in the one state, it fluoresces, if it is in the zero state,

it does not. Thus we must observe whether a particular ion trap location is emitting light

when the measurement laser is applied.

[69] shows an apparatus set up to perform this collection via CCD. Following the

SIMD model for all our operations on qubits due to laser scarcity, we plan to use a single

large, high-resolution CCD camera positioned above the entire ion trap computer, with a

lens between them to resolve the micrometer scale distances between fluorescing ions. All

the measurement lasers are applied synchronously, and once enough time has passed to

collect sufficient photons, we read out the image on the CCD and process it to determine

which sites were fluorescing.

1.3.5 Noise model

As mentioned in Section 1.2, we categorize error sources in a quantum circuit as

being from gates, movement, and memory. Here is a break down of ion trap specific error

processes for all three categories:

Ion interaction gates Since gates are performed in trapped ion QC using the interactions

between the ions and laser light, there are a number of laser related things that could

go wrong. [72] details many of the problems. They can be separated into classical

and quantum effects. The classical effects being that the if laser alignment or laser
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power is not as one expects, the duration of the gate will be incorrect. Thus, if one

is applying a rotation gate with a misaligned or under-powered laser, a qubit will

be “under-rotated” if the laser is switched off after the calculated gate time. These

problems are not viewed as fundamentally difficult in the case of a single gate, since

it is simply a calibration issue, but in the case of systems with many gate locations,

this calibration issue could become significant.

The second source of errors comes from quantum fluctuations of the laser field, which

causes spontaneous photon emission. A spontaneously emitted photon can couple

with the ion-qubit state, which effectively measures the state because the photon

then leaves the quantum circuit and it must be counted as measured. The work by

Ozeri et al. [72] estimates that all these gate errors can be reduced down to yield a

global error probability of 10−4.

Ballistic movement Movement errors come from the ion accumulation of vibrational en-

ergy as it is pulled between the trap electrodes in its potential well. Some of this

vibrational energy is removed by different cooling techniques, including Doppler laser

cooling (using a blue-shifted laser to absorb kinetic energy from ions in motion) and

sideband cooling [103] (using a sympathetic ion to dampen the motion of the target

ion).

Ion idling Even when an ion is sitting stationary, there are error effects that can corrupt

data. Fluctuations in electrical and magnetic fields as well as stray photons from lasers

applied to nearby gate locations could all interact uncontrollably with the qubit state.

With this knowledge about ion traps in hand, we can look at how we would build

these physical structures into larger quantum circuits.

1.4 Classical Computer Aided Design Flows

The studies built upon in this work rely on techniques from computer aided design

(CAD) tools for classical circuits [27, 82]. Before we discuss our quantum design flow, we

review some of the parts of a classical CAD flow. A vastly simplified version of a typical

classical circuit CAD flow is shown in Figure 1.17. The purpose of the flow is to take in

some sort of abstract circuit specification and produce a physical design that can then be
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Figure 1.17: Simplified view of a classical computer-aided design flow. A user-specified

application circuit specification is first synthesized into some sort of gate network, then

physical components are geometrically mapped to a substrate to make physical design.

Verification steps ensure equivalence between stages.

fabricated. The abstract spec is usually given in languages like Verilog [99], VHDL [62], or

higher level languages like SystemC [40]. The physical design depends on the underlying

technology but usually consists of some sort of geometric specification of gate-like and wire-

like configurations.

1.4.1 Logic Synthesis and Optimization

The logic synthesis step of a CAD flow is to take a high level specification of

the circuit’s behavior and create a network of basic logic gates and connections between

them that faithfully implements the high level specification. The resulting gate network is

typically loosely tied to the basic operations available on the technology we are synthesizing

for.

Since the high level constructs could potentially have many functionally equivalent

translations to a gate network, the synthesis and optimization stage can iterate through

many different networks, trying to minimize circuit latency, gate count, etc.
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1.4.2 Functional Verification

Due to the potentially complex interactions from different synthesis and optimiza-

tion methods in the previous step, it is desirable verify that the synthesized gate network

works the same way as the user specification. This step can consist of a variety of methods

including formal verification, where a mathematical models of the two designs are compared

or logic simulation where the designs are simulated with identical test inputs to make sure

they produce the same output.

1.4.3 Placement and Routing

The individual gates in the synthesized network are mapped into physical elements

that are geometrically onto a substrate. The goals of this placement stage is to convert each

gate element into a physical element in the given technology and to place gates that are

directly connected in the network in close proximity to each other. After this, wires are

routed between the physical gates. Since both wires and gates take up physical space, the

placement and routing stages are iterative and converge on a design where everything fits

onto the substrate.

1.4.4 Physical Verification

Next, this physical design must be verified that it meets requirements imposed

by the fabrication technology. This is typically done through ‘design rule checking against

a detailed set of rules of allowable element geometries. It also must match the function-

ality of the gate network from the previous stage. This is typically done by extracting a

more abstract circuit representation from the physical design and comparing it to the gate

network.

1.4.5 Metrics

Finally, there needs to be some set of measurements to be used by the classical

CAD flow to decide how good a job it is doing. Typically, we are interested in evaluating

the quality of circuit optimization and layout.

In terms of circuit optimization, we are interested in the following:
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Gate count Reducing the total number of gates can help improve the area of layouts, as

well as total resources needed, including total delay and power as well.

Critical path length Reducing the length of the longest chain of dependent gates (the

critical path) can help minimize the total circuit delay.

The final layout of an optimized circuit is what determines the cost and perfor-

mance of a device. The metrics to consider here are:

Area The overall size of a layout directly impacts ease and cost of fabrication. Also,

smaller layouts can contribute to lower power usage and less communication delay

due to shorter wires.

Delay In many cases, runtime performance is the most important measure of a design.

Getting more work done in less time is often the driving factor for new designs and

optimizations.

Reliability Device reliability is becoming more of a concern as transistor feature sizes get

closer to atomic scales, since quantum effects as well as fabrication equipment precision

become more of an issue. There are a broad array of techniques to improve reliability,

at all different levels of granularity in the design. In the end, we are interested in

the overall probability that a permanent or transient fault will corrupt data such that

incorrect output is obtained from the device.

We will see in the next chapter that we consider many of the same metrics when

evaluating a quantum circuit. However, we will see reliability take a much larger role in

determining the fitness of a design in the quantum realm.
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Chapter 2

Overview of Computer Aided

Design for Quantum Circuits

We will show how the process of taking a quantum circuit description and creating

a physical layout is similar to the classical case. We will start by discussing some of the

differences between classical and quantum circuits:

Fault frequency Errors are many orders of magnitude more likely in quantum logic than

in classical, this places an additional requirement on a quantum circuit for very strong

fault tolerance.

Classical control Implicit in everything mentioned so far is a network for controlling qubit

motion and gate operation. We address some of the problems of classical control

synthesis in this CAD flow. Along with any physical layout of a circuit, we also

generate a control schedule to implement the movement and gate operations on the

qubits.

Synchronicity Related to the previous item, since a classical control network is available,

all quantum gates can be essentially synchronous. This means that we can reuse

physical gate locations in a layout to perform more than one gate in the circuit spec-

ification. This will reduce movement (reducing movement error) and reduce the area,

making fabrication easier.

Reversibility The reversibility constraint on quantum logic requires the use of many more

ancillary qubits to be created and tracked throughout the course of the computation.
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In addition to the differences in the quantum and classical circuit models, there

are differences in the underlying technology used to lay out our circuits. As mentioned in

Section 1.3.1, we focus on ion trap quantum computing in this study and so to compare ion

traps with classical CMOS:

Bit persistence In ion traps, qubits are physical entities that cannot simply be created

or dissipated after the value on them is no longer useful. Dead physical qubits must

be disposed of or recycled, and new qubit values must be allocated a new physical

ion. The requirement for having many ancilla qubits to implement reversibility has a

large impact on this requirement because many qubits are created and destroyed in a

quantum circuit.

Planar wiring Qubit ions are suspended in a vacuum above the electrodes and must have

space to float along surface channels, therefore it is unlikely there will be more than

one layer of ion trap “wiring” on the fabricated chip. Thus, all wiring crossings are

actual 4-way intersections where only one direction can be operational at a time.

This impacts the area used to place dedicated channels for ion movement, as well as

scheduling of ions along potentially shared channels.

Multiplexing resources Since qubits have a physical extent, different qubit values can

share a channel/wire in a circuit as long as they are spaced far enough apart to limit

unanticipated interactions. Thus, wires can be multiplexed rather easily, which is

important since the number of wires is limited to what we can fit in the plane.

Communication cost metrics Strict Manhattan distance is not an accurate measure of

wire length because preliminary studies have shown that turning corners and travers-

ing intersections will be more time consuming and acquire more vibrational heating

(and errors) than moving straight through a one-way channel [74, 45].

The quantum EDA system we have developed is modeled after a classical EDA

tool flow, but accounts for many of these differences between quantum and classical circuits.

Figure 2.1 shows the currently available components in our CAD flow. As mentioned earlier,

our tools rely on a relatively simple input specification and do not currently do much circuit

synthesis from higher level descriptions. Our toolset is “bottom heavy” in that we are

interested in getting a detailed physical design that implements simple gate-level circuits.
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Figure 2.1: A high level view of our computer-aided design flow for quantum circuits. The

highlighted blocks denote the contributions focused on in this work.
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Correct X

H
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cx q1, q0;
cx q1, q2;
correct q1;
h q2;
cx q3, q4;
zmeasure q3, c3;
correct q4;
(@c3==1) x q4;

Figure 2.2: A quantum circuit and the equivalent QASM instruction stream representing

it.

The components highlighted in grey are the focus of this work and will be covered

in great detail, but for now, we will give a brief description of all the components.

2.1 Application Circuit Specification and Representation

The primary method for input of application circuits into the CAD flow is the use

of the QASM description language. The original QASM was first introduced by Balensiefer

et al. in [8]. QASM is similar to the classical MIPS assembly language [44]. Basic quantum

operations and qubit operands, similar to classical registers, are listed in the order in which

they are supposed to be executed.

The full QASM instruction set that we use is shown in Table 2.1. The instructions

that do not introduce errors are virtual instructions used for bookkeeping of qubit states or

classical information and do not correspond to actual physical quantum operations. We note

that the x/zcorrect operations are not error prone because they are only virtual instructions

that do qubit error state updates. They do not correspond to the entire error correction

process which contains many error-prone physical gates. We discuss the x/zcorrect and

x/zverify instructions in more detail in Section 4.3.

Figure 2.2 shows an example of a quantum circuit and its QASM specification. In

this example gates/instructions are read from top to bottom in order, thus gates dependent

on the output of earlier gates appear later in the instruction stream. Two qubit gates

like the CNOT or “cx” (controlled-X) take the names of 2 qubit registers, the first one
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Category Name Errors? # of (cla/qu)bits Description

Pure Quantum h yes 1 Hadamard gate, translates be-
tween X and Z basis

x yes 1 Bit flip
y yes 1 Bit and phase flip
z yes 1 Phase flip
s yes 1 Phase gate: phase rotation by

π/2
t yes 1 T gate: Phase rotation by π/4

cx yes 2 CNOT gate: controlled-X
gate, bit flip on target based on
control

cz yes 2 controlled-Z gate, phase flip on
target based on control

cphase yes 2 controlled-phase gate, phase
rotation by π/2 based on con-
trol

xprepare yes 1 prepare input qubit in a partic-
ular state in the X basis

zprepare yes 1 prepare input qubit in a partic-
ular state in the Z basis

correct no 1 logical-only operation repre-
senting a correction step, en-
coded gate implementation is
code dependent

Pure Classical or no variable Set output bits based on logical
or over all input bits

xverify no variable Verify that there are no X er-
rors on the classical syndrome
bits, sets output bit if there
are errors that are not unde-
tectable by the code. Exact
syndrome check is code depen-
dent.

zverify no variable Verify that there are no Z er-
rors on the classical syndrome
bits, sets output bit if there
are errors that are not unde-
tectable by the code. Exact
syndrome check is code depen-

dent.

Quantum-Classical xmeasure yes 2 Sets classical bit based on
quantum bit value in the X ba-
sis

zmeasure yes 2 Sets classical bit based on
quantum bit value in the Z ba-
sis

xcorrect no variable Corrects bit flip (X) errors on
input qubits based on the val-
ues of input classical bits

zcorrect no variable Corrects phase flip (Z) errors
on input qubits based on the
values of input classical bits

(predicate) no variable execute given quantum or clas-
sical operation if list of predi-
cates are all satisfied

Table 2.1: Summary of all the quantum instructions we use.
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being the control and the second, the target. Correction gates operate on a single logical

qubit. A measurement gate takes in a qubit and outputs a classical bit; classical bit register

names typically starting with a “c”. In this example “c3” is a classical bit measurement

outcome which then predicates the execution of the last “x” gate. Predicates only compare

classical bits to a constant value (no quantum bits) and determine whether the gate they

are guarding is executed. So in this example, if the zmeasure outcome sets “c3” to 1, then

the “x” gate will be applied to “q4” later.

We have augmented the basic QASM language to handle large scale, modular

designs. Modules can be defined hierarchically, composing larger modules from sub-modules.

In a QASM definition of a circuit we explicitly declare qubit state and quantum gates. Here

is an example of a 1-bit quantum adder in QASM:

1 qubit c in ;

2 qubit cout ;

3 qubit a ;

4 qubit b ;

5

6 input c in ;

7 input a ;

8 input b ;

9 t o f f o l i cout , a , b ;

10 cx b , a ;

11 t o f f o l i cout , c in , b ;

12 cx b , c in ;

13 output a ;

14 output b ;

15 output cout ;

The program starts with a declaration of qubit states or “registers” declared with

the qubit keyword. These states will later be mapped to a physical element that can

represent a 2-level quantum system. The qubit declarations are followed by a sequence of

gate operations on the qubit states. In this example, we use 3 qubit toffoli gates and 2

qubit cx (CNOT) gates. This circuit takes a carry-in bit, cin and two input bits, a and b.

The sum output is in b and the carry-out is in cout. We also use the special purpose virtual

instructions input and output to specify which qubits would be set as input/output for the

circuit

In addition to simple sequences of gates, we can specify hierarchically structured
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programs through use of our added support of modules. We can define a sequence of qubits

and gates as a module and instantiate it in multiple places throughout the program. For

example, here is a circuit for a 4-bit adder made out of 1-bit adders:

1 module car ry cin , a , b , cout {

2 t o f f o l i cout , a , b ;

3 cx b , a ;

4 t o f f o l i cout , c in , b ;

5 } ;

6

7 module car ry inv cin , a , b , cout {

8 t o f f o l i cout , c in , b ;

9 cx b , a ;

10 t o f f o l i cout , a , b ;

11 } ;

12

13 module sum cin , a , b {

14 cx b , a ;

15 cx b , c in ;

16 } ;

17

18 qubit cin0 , cin1 , cin2 , cin3 , cout ;

19 qubit a0 , a1 , a2 , a3 ;

20 qubit b0 , b1 , b2 , b3 , b4 ;

21

22 car ry cin0 , a0 , b0 , c in1 ;

23 car ry cin1 , a1 , b1 , c in2 ;

24 car ry cin2 , a2 , b2 , c in3 ;

25 car ry cin3 , a3 , b3 , b4 ;

26 cx b3 , a3 ;

27 sum cin3 , a3 , b3 ;

28 car ry cin2 , a2 , b2 , c in3 ;

29 sum cin2 , a2 , b2 ;

30 car ry cin1 , a1 , b1 , c in2 ;

31 sum cin1 , a1 , b1 ;

32 car ry cin0 , a0 , b0 , c in1 ;

33 sum cin0 , a0 , b0 ;

Note that when calling modules, the register names must effectively be renamed

so the physical element with the qubit state of b3 must be renamed b in the sum module.
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Figure 2.3: Gate networks are represented as linked, modular dataflow graphs. In this

example, the top level graph consists of two nodes that each correspond to a 1-bit full

adder. They both refer to the 1-bit full adder module dataflow graph.

We will discuss this issue later when we discuss tracking qubit error state.

Application Dataflow Graph

Our core data structure representing the input application logic is a hierarchical,

annotated dataflow graph. Figure 2.3 shows an example of such a graph. In this example,

the top level graph that consists of a 2-bit ripple carry adder is implemented with 2 nodes

that both point to the same full adder graph. We have made improvements on the QASM
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cx h

hcx

Application level graph

 Level 2 code gate graphs

 Level 1 code gate graphs

Figure 2.4: Hierarchical dataflow graphs are used to represented different levels of QEC

encodings. In this example we have the 2 gate application circuit encoded in 2 levels of

codes. Each code has a library of graphs, each graph implementing an encoded version of

one gate type.

[8] programming language to support modular design so the user of our tool flow can write

modular QASM and a modular dataflow graph will be used to represent it.

We continue to use the hierarchical nature of the dataflow graph all the way

down the CAD flow. When we are synthesizing encoding gates for a QECed version of the

application, each logical application gate is represented by a module pointing to a graph that

represents a specific encoded version of that gate type. If we are concatenating several codes

together to yield more reliability, there might be multiple levels in the hierarchy for gate

implementations in different codes, as shown in Figure 2.4. The modular representation of a

QECed circuit is especially beneficial since fault tolerant subcircuit substitution introduces

orders of magnitude more gates (about 500x for a one level [[7,1,3]] code, for example).

However, most of the subcircuits are the same so mapping all our logical gates of a particular

type to a single graph for the FT version makes our design representation tractable for large

circuits.
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Method Description

init(dataflowGraph, copy?) Initialize iterator with dataflow graph and specify

whether to keep a running copy of the graph.

boolean isEmpty() Are there still any unprocessed nodes?

vertex getNext() Get the next vertex in the hierarchical traversal

iterator getCurrentPosition() Returns an iterator to the current position. This iter-

ator can be used to add nodes at the current position

of the dataflow graph copy that will be returned (must

have been initialized with copy? flag set).

replace(vertex) Replace the current vertex our iterator points to with

a new vertex.

graph getGraphCopy() Return copy of graph iterated through so far.

Table 2.2: Basic DataflowGraphIterator methods. All the basic operations available for

graph traversal and modification through the iterator.

Additionally, we may have different elementary gates that can be performed phys-

ically depending on the implementing technology. We enable the technology-specific trans-

lation by providing technology gate libraries to translate logical level gates into physically

implementable gates. Our technology translation currently converts single logical gates to

groups of technology-dependent gates so we utilize the hierarchical nature of our dataflow

graph again to maintain a modular mapping mechanism.

Note that even though only a single instance of a module is created and stored

for a particular graph. When we traverse the graph, we must re-traverse the single module

dataflow graph for all the nodes of a particular module type. This add some complexity to

the traversal of our modular graphs.

Iterators The majority of all our transformations on the dataflow graph require us to

traverse it in dataflow order. Since some of our operations on the dataflow graph are

destructive or modify different levels in the hierarchy instead of just adding addition layers,

we want our new graph to not modify the original but instead, create a new copy. We have

implemented a flexible, iterator that can traverse our graph in dataflow order, hierarchically,

optionally producing a copy in which nodes can be added or removed.
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DataflowGraphIterator works by performing a combined breadth-first depth-first

traversal starting at the top level dataflow graph. Within a particular level, the graph is

traversed in dataflow order, i.e. breadth-first, but each node is not considered “finished”

until all submodules implementing that node have been traversed (i.e. depth first). Table

2.2 outlines all the basic operations for DataflowGraphIterator. The two methods used to

modify the resulting graph copy are getCurrentPosition and replace. Replace is used when

we do not want the currently traversed vertex to appear in the graph copy. Replace is useful

in creating another level of hierarchy; if a particular node is have a level of hierarchy added

beneath it, we actually replace the original node with a new module node that points to

the underlying graph. If we only want to augment the graph, getCurrentPosition is used

instead. getCurrentPosition is most useful in adding additional gates at the same level

of the dataflow graph. Right now we only add correction gates at the same level in the

hierarchy.

The breadth first traversal at a given level in the graph is accomplished by keeping

a token counter for each node. Whenever a node is completed, the token counters for all

nodes that it outputs to are incremented. When a node’s counter equals the number of

inputs, it is appended to the ready queue for traversal. When a non-primitive node is

traversed, the current ready queue and token counter structure is pushed onto a stack of

module activation frames and a new frame is initialized for the subgraph. When we exhaust

all the nodes in a particular frame’s ready queue, that frame is popped off the stack and we

mark the vertex corresponding to that subgraph as finished. An example of how the data

structure is modified during traversal is shown in Figure 2.5.

We note that when copying the graph, the same structure of singly defined module

graphs is maintained. This is essential to maintain a manageable size for our representations

of the graph as we add more layers to the hierarchy.

2.2 Quantum Logic Synthesis

As mentioned in Section 1.4, the primary goal of logic synthesis in classical CAD

flows is to derive a technology dependent gate network from a high level circuit specification.

In addition to this goal, our quantum logic synthesizer also must add additional circuitry

to ensure that our circuit is fault tolerant.
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Figure 2.5: An example of a hierarchical traversal through a 2 level dataflow graph. The

sequence of module stacks show changes in the DataflowGraphIterator over time as we

traverse the hierarchical graph.

2.2.1 Technology Dependent Gates

Since we allow the superset of all interesting quantum gates from quantum com-

puting literature to be used in our QASM definitions, we have a synthesis stage in which we

convert QASM gate operations into gate operations that are supported natively by the type

of quantum computing technology we are designing for. We specify technology libraries to

map abstract QASM gates to physically implementable gates for each technology our CAD

flow can target. For example, since we limit the number of qubits in an ion trap to 1 or 2

per interaction, we cannot physically implement a toffoli operation, so instead we translate

toffolis into a sequence of 1 and 2 qubit gates from the ion trap technology library.
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2.2.2 Fault Tolerant Gate Constructions

Once we have a set of physically implementable gates to work with, we must next

make them fault tolerant. As shown in Section 1.2.2, we can apply quantum error correcting

codes to the problem, transforming each logical gate from the technology-dependent network

into an encoded subcircuit implementing the same operation fault tolerantly. For each code

our CAD flow supports, we have a library of encoded gates that can be substituted into the

circuit. These libraries are generated automatically using Andrew Cross’s ftqctools [24].

The selection of QECC to be used in the synthesized circuit is current user-selected.

2.2.3 Random Circuit Generation

We have a number of real application benchmarks with which we will test various

components of our tool flow, which are discussed in Sections 7.1.1 and 7.2.1. In addition to

these, it is convenient to have benchmark circuits in which we can exert more control over

various properties, such as the number of qubits, gates, or overall communication structure.

For this reason, we also introduce a method for synthesizing random quantum circuits to

test various portions of our tool flow. The generated random circuits have the following

parameters:

Gate count Number of total gates that are in this circuit.

Gate type Types of gates included in the random circuit. Typically, we focus on the

gates that appear most often in our applications, CNOT, Hadamard, and some non-

transversal gate like T are common choices.

Qubit count Number of data qubits that are operated upon in the circuit.

Splitting fraction We will discuss a related concept, known as Rent’s exponent in more

detail in Section 3.1.1, but the basic idea is that it is an approximate measure of

the locality of communication in a circuit. The splitting fraction tells us how to

group gates when we are determining what gates should connect to each other when

generating the circuit. A fraction of 0.5 will generate a circuit by successively breaking

it into 2 equal sized parts and adding connections within each part, then recursively

dividing each sub-part in half. A fraction of 0.9 will divide the circuit into one with

10% of the gates and another with 90% of the gates and follow the same recursive

procedure.
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2.3 Error Correction Circuit Optimization

In the previous section, we discussed the placement of error correction steps in a

quantum circuit. The ratio of the number of gates present in an error correction step for

a common 7-bit Steane code to the number of gates in an encoded CNOT gate is about

500/7. Thus, the majority of the gates being performed in any given circuit are for error

correction instead of performing the actual computation. A few other works have addressed

this apparent inefficiency:

Compressed Quantum Logic Array Thaker et. al. [98] proposed converting encoded

qubits between different codes depending on the frequency of operations performed on

it. This led to a memory-CPU structure, where qubits that were idle in memory were

stored in a stronger code and qubits undergoing computation were stored in a mixture

of the same strong code and a weak code. Their reasoning was that qubits in memory

required fewer corrections since they were not subject to error prone gate operations so it

was less expensive to store these qubits in this code in terms of gate count. Some qubits

undergoing computation would then be switched to a more lightweight code to facilitate

faster computation, since both the encoded gates and the correction steps would be faster.

The authors did not investigate the opposite configuration: put the qubits undergoing

computation in a stronger code because they are more prone to errors while performing

gates and put the qubits in memory in a weaker code because their error rates are lower.

Ancilla Factories Our work in [48] focused on identifying the large, data-independent

portion of a quantum error correcting step, the fault tolerant ancilla generation, in order

to move this circuitry off the critical path. This ancilla generation was then aggregated in

ancilla factories which then distributed ancilla to multiple error correction steps throughout

a circuit. By batch processing error correction ancilla, we found we could drastically reduce

the amount of resources necessary for a given computation.

This work will focus on a third type of fault tolerance optimization that could

conceivably be used in conjunction with either or both optimization techniques mentioned

above.
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2.3.1 Retiming Based Optimization

If we follow the error model presented in Section 1.2, we have a well defined set

of rules for how errors are generated and propagated through a circuit. We also note

that for any non-trivial circuit, some qubits will undergo more gates, movement, of idling

than others. Thus, different qubits will have different probabilities of error at different time

throughout their life in the circuit. The previous conservative approaches to error correction

call for the assumption that each logical qubit be corrected after every logical gate. Thus, it

is effectively treating all qubits in the circuit as if they have the same probability of having

an error at all times. This is not the case and therefore the treatment is overly conservative.

Our approach effectively analyzes each qubit at each gate and applies error correc-

tions only when necessary. We draw an analog between minimizing latency in synchronous

classical circuits and minimizing failures in our quantum circuits. We use the technique

of circuit retiming [59] to “recorrect” the given circuit. Based on an approximation of

how error propagate in a circuit, we can more effectively distribute error correction steps

throughout our circuit.

2.4 Datapath Microarchitectures

The first step in specifying overall spatial placement of computation elements for

a quantum circuit is to have a high level organization of the different quantum computer

elements. For this, our work builds on several previous works that focused on tiled-dataflow

architectures for a quantum computer.

Proposed architectures, including ours, have consisted of computation regions con-

nected by an interconnection network using quantum teleportation [64, 47]. High fault rates

in quantum computing necessitate the widespread use of quantum error correction (QEC).

Further, ancilla state generation is important to aid in the correction process [89] and as

an integral part of quantum algorithms, as we showed in [48].

2.4.1 Three Major Organizations

Figure 2.6 shows three major datapath organizations that represent the “state

of the art” in quantum computing1. They are QLA [64], CQLA [98], and our work,

1Since circuits are mapped to these datapaths, they are not quite “architectures” but rather raw material
for constructing architectures.
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Figure 2.6: Quantum Datapath Organizations: a) Quantum Logic Array (QLA): An FPGA-

style sea of quantum two-bit gates (compute tiles), where each gate has dedicated ancilla

resources. b) Compressed QLA (CQLA): QLA compute tiles surrounded by denser memory

tiles. c) Qalypso: Variable sized compute and memory tiles with shared ancilla resources

for each tile; teleportation network can have variable bandwidth links.

Qalypso [48], and can be viewed as a spectrum from inflexible to flexible ancilla distri-

bution. They differ in their configuration of compute regions, ancilla generation areas,

memory regions (for idle qubits), and teleportation network resources (for longer-distance

communication)[47, 64].

The QLA architecture is most like a classical FPGA, in that all elements are

identical: each element contains enough resources to perform a two-bit quantum gate. Each

such compute region contains dedicated ancilla generation resources, space for two encoded

quantum bits, and a dedicated teleportation router for communication.

CQLA improves upon QLA by allowing two different types of data regions: com-

pute regions (identical to those in QLA) and memory regions (which store eight quantum

bits) [98]. To account for different failure modes (idle errors vs interaction errors), data in

memory regions are encoded differently from data in compute regions.

Finally, Qalypso improves upon CQLA by further relaxing the strict assignment of

ancilla generation resources. It allows optimized, pipelined ancilla generators to feed regions

of data bits (compute regions) that can perform more than just two-bit gates. The sizing

of ancilla generators and data regions can be customized based on circuit requirements.

Qalypso requires analysis (Section 2.4.3) to balance ancilla consumption with ancilla gen-
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Datapath Description

QLA
Original Quantum Logic Array [64], compute regions only, no special-

ization

LQLA QLA with an optimized ancilla generator from [56]

CQLA
Compressed QLA [98], compute and memory regions specialization, orig-

inal ancilla generator

CQLA+ CQLA with a better performing ancilla generator from [90]

Qalypso

Our architecture [48]. Variable sized compute and memory regions, vari-

able resources in ancilla generators and teleport network. “Pipelined”

ancilla factory optimized from design in [90].

Table 2.3: Taxonomy of the quantum computer datapath organizations from the literature

and our work.

eration. Such analysis can automatically adjust the amount of ancilla bandwidth required

in memory regions based on the residency time of qubits.

In all three organizations, each compute or memory region is placed adjacent to

a teleport router. Qubits are moved ballistically within regions and teleported between

regions.

Proper design of the datapath elements (such as teleportation routers or ancilla

generators) is an important factor. Our previous work on ancilla generators from [48] is

detailed in 3.2.4. In all these microarchitectures, we also pay careful attention to the tele-

portation network [47, 64]. We have produced layouts for the routers and EPR generators

and utilize these in computing area, latency, and error probability of circuits. Sections

4.9 and 3.2.4 discuss how these numbers are derived and integrated with our evaluation

methodology.

2.4.2 An Organizational Zoo

Table 2.3 shows the datapath organizations that we will use in this paper. Three

of these, namely QLA, CQLA, and Qalypso come directly from their original papers. LQLA

is a variant of QLA utilizing the new ancilla generator and cell layout proposed by Kreger-

Stickles. Finally, CQLA+ is a version of CQLA utilizing an improved ancilla generator



48

from our work in [48].

Evaluating such a disparate set of architectures is always challenging. When pos-

sible, we have adapted the exact qubit scheduling provided by authors (such as in LQLA,

where the authors provided us with scheduling of qubits for their ancilla generator). To

evaluate larger circuits, we have developed a hybrid evaluation methodology (described in

Section 4.9) that permits us to stitch together modules.

Out of the prior work architectures, QLA, CQLA, CQLA+, and LQLA, we single

out LQLA as the most logical prior work to focus our analyses on. LQLA is our invention,

produced by inserting the optimal ancilla factory from [56] into QLA; this was necessary

because the authors of [56] did not take a stand on long-distance communication or memory

regions. It is specially designed for minimizing sources of faults by careful design of QEC

modules. Providing good fault tolerance properties is in line with our goals for all our

techniques described here.

2.4.3 Coarse-Grained Mapping and Floorplanning

In light of these tiles datapaths, we must have a method to map groups of circuit

elements from our application onto compute regions. The heuristics used for this mapping

are not the focus of this work but are briefly explained in Section 3.4.1. Once we have

this mapping, we can apply macroblock-level layout heuristics we will introduce in the

next section in order to get detailed layouts. As mentioned above, we have a hybrid error

simulation model, described in Sections 2.6 and 4.9, for unifying the error model for this

piecewise layout.

2.5 Ion Trap Layout

We abstract away much of the ion trap intricacies of laser positioning and elec-

trode shape and spacing by building our ion trap layouts from a set of segments we call

macroblocks, shown in Figure 2.7. The idea is that while many of the details of a ion trap

will change, we will still most likely have designated positions for gates, and channels for

moving qubits around with 90 degree turns. Since our heuristics use this abstracted view

of communication and gate blocks, we could use these techniques on other technologies as

well.
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Figure 2.7: The basic building blocks of our ion trap layouts. Each macroblock consists of

3x3 electrodes or spaces to provide functionality as a straight channel, a gate, a turn, or an

intersection.

The next step is to take our optimized circuit and create a layout of physical

components. Not only does this give us a design that can then be fabricated, but it also

allows us to create a precise schedule of qubit movement and qubit idling in addition to

gates. The schedule of all the qubits’ operations can then be extracted to an error model

that accounts for all error sources.

Our layout generation flow is broken into two components: a coarse-grained map-

ping of high-level modules from the original circuit specification to regions on a substrate

and then fine-grained layout of actual computation elements within these regions.

2.5.1 Fine-Grained Element Place and Route

Using a library of basic layout building blocks that we call macroblocks, we piece

together the physical level detailed layout. An example of the macroblocks we use for a

layout in ion trap technology is shown in Figure 2.7. The macroblocks abstract away some

of the most gory details of the underlying implementation but are easy to translate to the

physical technology.

We investigate a number of different heuristics for our fine-grained place and route

tool but the most successful combines an adaptation of the classical FPGA tool VPR [13]

and our own dataflow graph style layout. We will discuss these heuristics in more detail in

Section 3.2.

2.5.2 Layout Graph Representation

Our layouts are represented by a layout graph which contains macroblock nodes (as

mentioned in Section 2.5) that are linked together with QNets. The QNets hold information

on how connected macroblocks are oriented with respect to one another. Figure 2.8 shows an
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Figure 2.8: A layout and its associated graph. The nodes correspond to macroblocks and the

edges correspond to “qnets” which do not have any associated physical entity but determine

how macroblocks are oriented with respect to each other.
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example of a layout graph structure. Macroblock nodes specify their location and orientation

on the substrate. They also contain additional information to be used by the scheduler to

track ion movement through the macroblocks.

Layout graphs can have a similar modular structure as our dataflow graphs have.

An abstract layout module can refer to a single macroblock or another layout graph. The

embedding of a complex layout module is not as simple as in the dataflow case since the

sublayout must be spatially fit into the higher level design, but layout modularity again

gives us considerable savings in representing the full layout since many structures are of-

ten repeated. Some examples of repeated sublayouts are teleportation routers and ancilla

factories.

Layout Specification

Our layout specification consists of a sequence of layout module instances, all

parameterized by location and a rotation angle, in an XML format. At the lowest level,

everything is made up of macroblocks for the underlying technology, like those shown in

Figure 2.7. Additionally, we can define higher level modules, made out of macroblocks,

which can then have instances placed in the layout. Higher level modules must define ports

where they connect up to adjacent modules so that the qubit movement scheduler can

track movements across module boundaries. Figure 2.9 show an example of such a modular

layout.

2.5.3 Layout Metrics

Similar to the case of classical CMOS metrics for layouts mentioned in Section

1.4.5, we are also interested in area and delay for layouts of quantum circuits as well.

Design area is an important consideration especially in light of the fact that previous work

has estimated a design for Shor’s factorization of a 1024-bit number to be 0.9m2 in area.

Since the technology under consideration uses a silicon substrate, fabrication considerations

dictate more area-efficiency in our designs.

Delay is another important consideration, since quantum computers promise to

perform certain tasks asymptotically faster than classical computers. It is important that

the constants involved do not swallow up asymptotic gains.
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<de�ne_module>

    <type>horseshoe</type>

    <module>

        <type>straight_channel</type>

        <location>0,0</location>

        <rotation>0</rotation>

    </module>

    <module>

        <type>turn</type>

        <location>30,0</location>

        <rotation>0</rotation>

    </module>

    <module>

        <type>turn</type>

        <location>30,30</location>

        <rotation>90</rotation>

    </module>

    <module>

        <type>straight_channel</type>

        <location>0,30</location>

        <rotation>0</rotation>

    </module>

</de�ne_module>

<module>

    <type>horseshoe</type>

    <location>0,0</location>

    <rotation>0</rotation>

</module>

<module>

    <type>horseshoe</type>

    <location>60,0</location>

    <rotation>180</rotation>

</module>

Figure 2.9: Layouts can consist of placements of single macroblocks or definition and then

instantiation of larger layout blocks. In this example, we define a larger “horseshoe” block

made up of macroblocks and then instantiate two of them in different positions and orien-

tations.
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2.6 Fault Tolerance Verification

The goal of the fault tolerance verification tool is to determine the probability of an

unrecoverable error on the qubits that would yield an incorrect answer to our computation.

Furthermore, we would like to know at which points in the design are data most likely to

incur errors.

2.6.1 Determining Failure Probability

We will discuss several methods for computing the probability of failure of a circuit.

A circuit is considered to have failed if:

• The circuit is not encoded in an error correction code and one of the output data

qubits incurs an error.

• The circuit is encoded and an encoded output qubit incurs more errors than the code

can correct.

We can either track errors at the circuit level, accounting only for gate errors or at the

layout level, accounting for gate, idle and movement errors.

2.6.2 Hybrid Fault Point Extraction

A key part of our tool is the extraction of a set of possible failure points in a

circuit or layout that can then be processed by some estimator of overall failure probability.

As mentioned in Section 2.4 and 2.5, the layouts we produce are not completely detailed

macroblock-level descriptions of the entire layout. Instead we have a piecewise-detailed

layout from which we must extract all the gate, movement and idle errors, which we detail

in Section 4.9. We can also opt to extract only a subset of the possible error events and

simulate those.

2.6.3 Accuracy-Time Tradeoffs

We are forced to trade off accuracy and time in our probability estimations. The

full simulation of a quantum mechanical system is exponential in the number of qubits

simulated due to the need to track all linear superpositions of bit strings. Therefore, per-

forming a brute force simulation of all possible physical processes, even if they could all be
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modeled, is prohibitively expensive. We instead must rely on simpler models of quantum

errors and simulate only the error incidence and propagation that impacts the overall failure

probability the most. We will now give an overview of the different approximations we will

use in our fault tolerance verifier.

Once approach to partitioning the problem is to simulate various levels of detail:

Architecture level Abstracting an error model from a high level quantum computer

architecture is one way of getting a rough idea of resource usage and reliability. In Section

4.1, we track the fidelity of a block of qubits between functional units, over a teleportation-

based communication network. In this simulation, we are essentially scaling the failure

probability of logical qubits in the computer as a function of distance and teleportation

operations.

Circuit level We simulate error propagation through gate networks using CHP rules

mentioned in Section 1.2. Since gate errors are typically the most probable, this gives us

a quick estimate of the reliability of a circuit without needing to run the place and route

tool. It also involves the tracking of less errors total since we are not simulating movement

and idle errors.

Layout level Movement and qubit idle errors are extracted from the layout according

to models we develop in Section 4.2. Movement errors are parameterized to have different

failure probabilities and Pauli error types based on different geometrical moves. Idle errors

are parameterized based on the time the qubit idles for.

Secondly, we can attack problems at the same level of detail with different methods:

Monte Carlo methods Performing Monte Carlo sampling of errors in quantum circuits

gives a simple way to simulate error occurrence. Monte Carlo methods can be costly since

we need to perform large numbers of simulation in order to extrapolate accurate error rates.

This technique can be used to track errors on any of the three design levels, architectural,

circuit, and layout, and is discussed in Section 4.6. However, the simulation time depends

linearly on the number of discrete error events, which make the layout level simulation

costly for large designs. We present a technique to amortize out some of the overhead from

the basic Monte Carlo simulation in Section 4.7.
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Direct Probability Calculation Monte Carlo methods seem somewhat wasteful in that

they throw away all the error probability information in favor of a single sample. We ex-

plore options of directly calculating the error probabilities of all possible combinations of

errors on entangled sets of qubits. It turns out that a naive calculation of these probabilities

requires exponential resources to track all error vectors but we also investigate approxima-

tion methods to determine whether this exponential can be managed. These computation

options are discussed in Section 4.5.

2.6.4 Fault Tolerance Metrics

Due to the very high prevalence of errors in quantum circuits, overall probability of

success will be one of the most important metrics in the foreseeable future. While reliability

is only beginning to become important in classical CMOS circuits, it must be addressed as

an integral design parameter from the very beginning for quantum circuits. This is why we

focus on evaluation of this metric to drive many of our design decisions.

Since the proposed applications for a quantum computer are all currently in the

complexity class NP, we can verify whether the answer produced is correct or not fairly

easily with a classical computer. This means that in we have data corrupting errors in a

run of our computation, we can just run it over again until we get a correct answer. For

this reason, probability of success is closely connected to the layout delay metric. We will

revisit this when we talk about our aggregate metric, ADCR in Section 2.7.

2.6.5 Feedback for Further Optimization

Our QEC optimization uses feedback with the failure probability estimator to

determine whether it has produced a fault tolerantly functional design. This requires the

estimator to provide feedback on how well an optimized design has performed compared to

the original, unoptimized one.

In addition to computing the output failure probability, we would like to compute

failure probabilities of qubits throughout the circuit to allow targeted optimization of the

error correction routines we insert. For example, our initial pass of error correction insertion

only looks at the gate-level network. We discuss this limitation in Section 6.3.7 and point

out possible future work could be to use feedback on movement and idle errors. We could

then place error correction steps after long moves or idles as well as long sequences of gates.
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2.7 ADCR: An Aggregate Metric for Probabilistic Compu-

tation

As mentioned earlier, delay and success probability are closely connected in the

evaluation of any quantum circuit, this is because we are not simply interested in a single

run of a circuit on a layout if it does not produce the correct answer. We would instead like

to know the expected time to get a correct answer:

E(Delay) = Delaysinglerun ×E(runs for correct result) (2.1)

= Delaysinglerun ×
∞

∑

n=1

n

Psuccess(1− Psuccess)n−1
(2.2)

= Delaysinglerun ×
1

Psuccess
(2.3)

Prior work has focused on maximizing the overall success probability Psuccess at all

costs. This might be a suitable sacrifice if we are always on the verge of a catastrophic decline

in success probability for a design (probably the case in all current laboratory setups). As

the technology matures, it will be more important to evaluate all the design considerations;

if we can reduce a layout’s delay by 10x with only a 10% reduction in success probability,

this is probably a good trade-off. Critical to this evaluation is a comprehensive evaluation of

the overall probability of success of a design. If we overestimate this probability, we could

end up making trade-offs to get a design that does not work at all. We will investigate

this trade-off in detail later in Chapter 6, when we talk about optimization to reduce QEC

overhead.

To evaluate the quality of quantum layouts with a single number, we propose a

composite metric called Area-Delay-to-Correct-Result (ADCR). ADCR is the probabilistic

equivalent of the Area-Delay product from classical circuit evaluations:

ADCR = Area× E(Latencytotal) (2.4)

= Area×
∞

∑

n=1

n · Latencysingle · Psuccess(1− Psuccess)
n−1 (2.5)

= Area×
Latencysingle

Psuccess
(2.6)

For ADCR, lower is better. By incorporating potential for circuit failure, ADCR provides

a useful metric to evaluate the area efficiency of probabilistic circuits. It highlights, for
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instance, layouts that use less area for the same latency and success probability. Or, layouts

that use the same area for lower latency or higher success probability.

2.7.1 ADCR-optimal

With the definition of ADCR, we can now talk about designs that are ADCR-

optimal, or the set of design parameters the yields the lowest ADCR. Since ADCR is meant

to be a comprehensive metric for all the stages in our CAD flow, finding the design with

the best ADCR takes some amount of iteration and feedback.

In order to get an ADCR-optimal layout for an application circuit we must search

over these parameters:

Error correcting code selection Different codes impact area, latency and success prob-

ability, due to encoder size, complexity and errors corrected. Thus we must iterate

through different encodings in the QEC synthesis phase, optimizing, laying out the

encoded circuit, and simulate for failures.

QEC optimization level We will see later in Chapter 6 that we can tune the degree of

QEC optimization in order to trade-off success probability for area and/or latency.

Thus, we must iterate over different optimization settings, lay out the resulting circuit,

and simulate for failures to find a design with a good ADCR value.

Tiled datapath configuration We will talk more about the possible datapath parameter

settings in Section 3.4.1, but datapath type, as well as, varying the number and size

of compute and memory regions impact area, delay and success probability. Thus

we must iterate through different designs in the datapath space, then lay out and

simulate for failures.

All these choices gives us a multi-parameter optimization problem. We currently

binary search through many of these parameter spaces to find ADCR-optimal designs, but

future work includes using better heuristics to narrow the set of candidate parameter settings

to converge on a good design faster. We will investigate ADCR sensitivity to these various

parameters throughout this work and discuss the multi-parameter optimization search again

in Section 7.3.

We will now talk about each tool in more detail, discussing the algorithms and

some micro-benchmark results for each. The first topic is placement and routing tools.



58

Chapter 3

Communication in Quantum

Circuits

We are interested in creating a complete design for a quantum circuit. This means

we must have a mapping from the input application circuit to a physical substrate. Ad-

ditionally, in order to perform a complete analysis of all the errors in our physical design,

we must account for not only gate errors but movement and idle errors as well. In this

Chapter, we will look at different ways to model communication to derive both movement

and idle errors. Generating a layout accomplishes both goals, we get a physical design we

can then fabricate, and we can extract a complete set of errors, which we will describe later

in Section 4.9.

We would also like to use this complete error specification to make some observa-

tions on the intrinsic properties of quantum error correction circuits. The drawback to using

layouts to do this is that we must choose heuristics for mapping our circuit elements to a

substrate. The resulting error estimates from these mappings might not necessarily reflect

intrinsic properties of the circuits but instead peculiarities of our layout heuristics. In or-

der to partially mitigate this problem, we develop an abstract communication model based

only on circuit structure. We then use this layout-independent method of communication

estimation to validate that the layouts are good.

The application of error correction codes come at the cost of increased design size

and complexity. In fact, much of the work done in quantum fault tolerance has been either

to identify new codes [4, 16, 85], or to prove the tractability of the circuit with the added
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Figure 3.1: Layout and communication estimation portion of CAD flow.

overhead [2]. Little work has been done on fully characterizing the impact of all error

sources on a larger fault tolerant design. Past complete error model studies have focused on

detailed studies of a single encoded gate with a correction stage appended to it for a single

code [37, 97, 95]. Other studies have compared various codes on single encoded gates [25]

or larger circuits [90], but have not included all error sources.

Our work is the first to provide general methods for analyzing the impact of com-

munication overhead on error thresholds of QECC-encoded circuits. In order to quantify

communication effects, we will introduce various components of our CAD flow (Figure 3.1

that estimate wire length or synthesize full layouts of circuits. Communication overhead

in the form of qubit movement error has been demonstrated as a real error source in ex-

perimental work [45] and therefore ignoring it gives us only an incomplete picture of the

performance of particular QECCs.

As a preliminary example of the impact of movement error on QEC performance,

Figure 3.2 shows the overall failure probability of a simple circuit encoded with a 23 bit

Golay code [77] and a 25 bit Bacon-Shor code [4]. Previous studies have indicated that the

23 bit Golay code performs “well” in that it is estimated to have a high threshold compared

to many other codes [90, 25]. In Figure 3.2, on the far left, we see that the 23 bit code has

a better failure probability than the 25 bit code. However, as we introduce stronger qubit

movement errors from left to right, the 25 bit code ends up doing considerably better than

the 23 bit code. This chapter will detail how we account for this movement error, Chapter

4 explains how we actually derive the final failure probability, and Chapter 5 gives results

on a comprehensive code comparison using these tools. The central point is that as we

further refine our estimates on QECC performance, we must take into account not only the
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Figure 3.2: Comparing the overall failure probability of an encoded CNOT circuit as a

function of communication error for two different QECCs. All numbers are multiples of a

base error probability of γ = 0.0025 (pseudo-threshold of this 23 bit code implementation).

Each point on this graph is a failure probability simulation given a particular gate and

movement error probability. In this example, the gate error rate is set to γ and the movement

error rate is varied over the x axis is in multiples of γ. The “logical error multiplier” is also

a multiple of γ and refers to the probability that our data is corrupted (lower is better).

Note that a multiplier of 400 is equivalent to complete failure (probability 1). Note that we

reach this total failure point before movement error rate becomes equal to gate error rate

(multiplier 1 on the x axis).

overhead from gate errors but also from qubit movement.

In our work, we leverage circuit analysis and synthesis techniques from classical

computer aided design to make explicit the necessary qubit communication in a given gate

network. Using our derived communication estimate or schedule, we can apply a move-

ment error model, combine this with a gate error model, and estimate the overall failure

probability for a given quantum circuit. We introduce our adaptation of Rent’s rule from

classical circuit connectivity analysis [58] and the related Donath’s technique for wire length

estimation [28]. These distances give us an idea of how much communication overhead that

qubits are likely to incur. We also build upon our previous results in quantum circuit layout
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[101] to produce physical level designs in segmented ion trap technology [51] which allow

us to get an exact schedule of qubit movement for a circuit. We compare the average com-

munication distance between our scheduled layout and Donath’s estimation and find them

in agreement for a large number of circuits. This agreement gives us confidence that these

communication patterns are intrinsic to the circuit itself and not artifacts of our layout

heuristics.

Both the estimates and exact schedules of communication are then integrated into

our Monte Carlo simulation of an entire quantum gate and communication network. We use

these Monte Carlo simulations to evaluate the effectiveness of a variety of QECCs in the face

of gate and qubit movement error. Our two main techniques for estimating communication

in a gate network are complimentary to each other. Donath’s wire length estimation is

analytical and gives a rapid estimate whereas our layout and scheduling tool flow leads to

a constructive estimate from a fully functional design.

3.1 Analytical Estimation of Communication

We are interested in quantifying the communication overhead for a given QECC

encoded quantum circuit. We would first like to get a high-level estimate of the intrinsic

communication complexity due to the circuit topology, agnostic of the physical technology

used in implementation. Classical circuit analysis has had the same interest in intercon-

nection complexity, although for different reasons like communication latency and power.

We introduce two related techniques for estimating overall communication complexity and

communication distances for a given circuit. We will later use these techniques to validate

the quality of the layouts we produce in the second half of this chapter.

3.1.1 Rent’s Rule

Work done by E. F. Rent identified a common trend among circuit designs he

studied in which the number of input/output connections T for a design could be fit to a

power law relation T = tgp, where g is the number of gates in the circuit. t is a constant

equal to the average number of inputs and outputs per gate, and p is referred to as “Rent’s

exponent”. It was later shown by Landman and Russo [58] that in general, if one hierarchi-

cally partitions a circuit into smaller and smaller blocks of gates, the power-law relationship

generally holds for the subsets of gates in the partitions.
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Rent’s rule has been shown to apply to large numbers of classical circuit designs

since it was first formulated, and the Rent’s exponent for a circuit has been established as

a measure of the complexity of that circuit’s interconnect topology [71]. Since the quantum

circuit model is modeled after classical circuits and both consist of logic elements connected

with some sort of interconnection network, we have developed a tool to compute Rent’s

exponent for a given quantum circuit.

The algorithm we use to derive a circuit’s Rent’s exponent is given in Algorithm 1.

The algorithm works as follows, we construct a dataflow graph out of a given circuit, with G

gates. We go through and repeatedly partition the dataflow graph in successively more and

more partitions. For each partition, we note the number of connections crossing the each

partition boundary (c) and store this based on the number of gates in that partition (g). C

is the array that stores this list of inter-partition connections for each gate count. Once we

have all these counts, we compute the average number of boundary crossings within each

gate count g list, and store these averages in T (indexed by g). Finally, we fit a power law

function to T and g. The parameter r is the Rent’s parameter.

Algorithm 1 Rent’s exponent calculation

Extract circuit into netlist of gate nodes and connections

T ⇐ 0

for n = 2 to G do

Generate partitioning P of netlist into n partitions

g[i]⇐ number of gates in partition i

c[i]⇐ number of netlist connections exiting partition i

for i = 1 to n do

Append c[i] to C[g[i]]

end for

end for

for Each entry S in C do

T [g[S]]⇐ average over all c in S

end for

Fit T = tgr using nonlinear least-squares (solving for t and r)

Figure 3.3 shows this same process in graphical form.

To produce a “good” partitioning P of the circuit netlist, we use the METIS
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Figure 3.3: Computation of Rent’s exponent. First, transform the circuit into a dependency

graph, each node representing a gate and each edge representing wires between gates. Next,

we recursively partition the graph and count the number of edges crossing the partition

boundary each step. Finally, we plot the number of edges cut as a function of partition size

and fit a power-law function to it.

graph partitioning library [50] to generate partitions that are roughly the same size and

still minimize the number of communication links cut between partitions. While this is

an NP complete problem, this library produces reasonably good results in practice. The

nonlinear least-squares fit is done using gnuplot [102] which implements the Marquardt-

Levenberg algorithm [68].

Rent Exponent Results

Figure 3.4 shows the Rent exponents for the codes listed in Table 3.1. The exact

circuit used in this analysis was a single encoded CNOT circuit, with a correction step on

each qubit before and after the gate (shown in Figure 3.19). This captures the associated

communication complexity of the correction step as well as the encoded gate. It is also the

circuit chosen as the test input for a number of other fault tolerant evaluations, such as

[95, 25, 5, 97].

These exponents were computed by the method outlined in Section 3.1.1. We see

that there is a clear bimodal distribution of Rent exponent values. The bottom codes are all

the Bacon-Shor codes and the top codes are the rest that we analyzed. To review, a smaller

Rent exponent corresponds to a less connected gate network, giving us an intuitive metric

for communication structure simplicity. This result matches previous work showing that

Bacon-Shor codes are indeed very simple in structure, compared to many other quantum
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[[n, k, d]] Code description Rent exponent r

[[7, 1, 3]] Steane code 0.45

[[9, 1, 3]] Shor code 0.42

[[13, 1, 3]] Surface code:3 0.58

[[15, 1, 3]] Reed-Muller code 0.59

[[23, 1, 7]] Golay code 0.62

[[25, 1, 5]] Bacon-Shor code:5 0.44

[[41, 1, 5]] Surface code:5 0.63

[[47, 1, 11]] Quadratic-residue code 0.64

[[49, 1, 7]] Bacon-Shor code:7 0.47

[[49, 1, 9]] Concatenated Steane code 0.64

[[81, 1, 9]] Bacon-Shor code:9 0.48

[[121, 1, 11]] Bacon-Shor code:11 0.49

Table 3.1: List of quantum error correcting codes we compare in this study and their Rent

exponents computed by Algorithm 1.
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Figure 3.4: Rent exponent for a number of quantum error correcting codes. There was only
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represented. The line of codes with the lowest Rent exponent are the Bacon-Shor codes.
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Figure 3.5: Computing the average wire length with Donath’s technique. After computing

Rent’s exponent, we do the following: count the number of gates in the circuit, recursively

divide that number into fourths, use Rent’s rule to estimate the number of connections

crossing fourths at each level and estimate a wire length for those crossings, stop when we

have one gate per partition.

codes [4].

We have already mentioned randomly generating circuits with a given clustered

structure in Section 2.2.3. The above approach is analytical whereas our random circuit gen-

eration is a constructive process, but the Rent exponent and our splitting factor parameter

are still positively correlated.

3.1.2 Donath’s Wire Length Estimation

Rent’s exponent gives us a unitless, relative measure of communication complexity

in a circuit. This communication complexity is nice for comparisons between circuits but we

could really like a more concrete estimation of the amount of communication taking place in

a circuit. Donath’s wire length estimation is an established technique from classical CAD

work that gives us just such an estimate [28]. We will use this estimate to validate the

quality of our own layouts by comparing average “wire length” or communication distance

for encoded, laid out circuits in Section 3.3.2.

Donath’s estimate for wire lengths on a 2-dimensional substrate uses a recursive

quartering of the plane (K = log4 G recursions), computes the number of connections cross-

ing quarter boundaries (Nk), and averages the distance between gates in different partitions

at each level of recursion (ℓ̄k). Higher levels in the recursive partitioning (fewer, larger par-

titions) correspond to large average distances, ēllk. Figure 3.5 shows this partitioning and
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Communication option A Communication option D

Figure 3.6: The two possible inter-partition communication scenarios for a spatially quar-

tered circuit layout.

counting process.

ℓ̄ =

∑K−1
k=0 Nk ℓ̄k

∑K−1
k=0 Nk

(3.1)

Equation (3.1) shows the main computation we must do to get the total average

wire length, ℓ̄. Given a recursive partitioning P , k counts through each level. At each level

k, we have Nk, which is the number of connections crossing partitions at this level:

Nk = 4kN0
k −Nk−1 (3.2)

N0
k is the number of connections crossed for one partition at level k and 4k is the

number of partitions at that level. Last, we must subtract out the number of connections

from the previous level of partitioning. One way to compute N0
k is to use result of the

Rent exponent fitting from Algorithm 1, N0
k = tgr

k. Thus, we would first compute r and

t, then plug them back into this formula to get the number of connections per level. This

technique is typically used when the calculation of r is done in isolation of ℓ̄. If we are

doing the partitioning P to compute r just to be used in Donath’s estimate, we can instead

directly take the averages, T [gk], for each level for a more accurate estimate of N0
k , which

is our approach.

To compute ℓ̄k, we use a stochastic approximation of the distribution of source

and destination gates for links crossing the boundaries of the 4 partitions at each of the

recursive levels. More details can be found in [92, 93], but we reproduce the result here:
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ℓ̄k =
4ℓ̄k,a + 2ℓ̄k,d

6
(3.3)

This equation is the result of looking at the possible inter-partition communica-

tions that can take place at a given level. Figure 3.6 shows the possible communications.

There are 2 possible D-type communications and 4 possible A-type communications, which

explains the coefficients in Equation 3.3. The calculations for ℓ̄k,a and ℓ̄k,d come from [28]

and are as follows:

ℓ̄k,a =
4µ

3
−

1

3µ
(3.4)

ℓ̄k,d = 2µ (3.5)

µ is the level-dependent scale factor of 2k. The derivations of these two values is

rather complicated so we refer to [28] for the full treatment. The basic idea is that they are

the result of an average over the distances between all possible pairs of points on a grid in

the adjacent and diagonal cases.

The description of the above techniques are an introduction to the techniques we

will use in Section 3.3.2 to estimate the communication complexity of QECC encoded cir-

cuits. These techniques are largely technology-independent, so we will use them to validate

our technology-dependent layouts in the next section.

3.2 Macroblock Layout Heuristics and Designs

Now that we have introduced our circuit level communication analyses, we are

ready to introduce our constructive layout heuristics. We will then determine the good-

ness of these layouts in Section 3.3.2 by comparing the average wire length estimates from

Donath’s estimator with the average wire lengths in some of our heuristically generated

layouts. We will first focus on small QECC encoded circuits since we are interested in

validating movement profiles of the code structure not application characteristics.

3.2.1 Greedy Place and Route

Our first attempt at placing macroblocks on a substrate is to sequentially go

through the gates in the circuit and place them “on demand”, then to route wire elements
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Figure 3.7: Step by step construction of a layout using the greedy heuristic to execute the

circuit described by the QASM in the upper left box.

between only the gates that need to be connected each time. The intention here is to place

gates that directly connect to one another, next to each other and place wires only where

necessary.

The heuristic is a simple greedy algorithm that starts with only as many gate

locations as qubits (because we assume that qubits only rest in storage/gate locations)

and no channels connecting the gates. It iterates with a circuit scheduler, connecting gate

locations until the qubits can communicate sufficiently to perform the specified circuit. The

scheduler schedules gates prioritized by critical path, paths between connected gates are

determined by a shortest path search on the layout graph. The current layout is fed into

the circuit scheduler which tries to schedule until it finds qubits in gate locations that cannot

communicate to perform a gate. The place and router then connects the problematic gate

locations and tries scheduling on the layout again. The iteration finishes once the circuit can
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be successfully completed. Our algorithm bears some similarity to the iterative procedure

in adaptive cluster growth placement [57] in classical CAD. Gate locations are placed from

the center outward as the circuit grows to fit a rectilinear boundary.

The placer can move gate locations that have to be connected if they are not

already connected to something else. The router connects gate locations by making a direct

path in the x and y directions between them and placing a new channel, shifting existing

channels out of the way. Since channels are allowed to overlap, intersections are inserted

where the new channels cut across existing ones. An example is shown in Figure 3.7.

This technique has the advantage that, since the circuit scheduler prioritizes gates

based on gate delay critical path, potentially critical gates are mapped to gate locations and

connected early in the process. Thus critical gates tend to be initially placed close together

to shorten the circuit critical path. Additionally, gate locations that need to communicate

can be connected directly instead of using a general shared grid channel network, where

congestion can occur and cause qubits to be routed along unnecessarily long paths.

A disadvantage of this heuristic is that gate placement is done to optimize critical

path, not to minimize channel intersections. This means that the layout could end up

having many 4-way channel intersections and turns, both of which have more delay than

2-way straight channels. Additionally, even though critical gates are mapped and placed

near each other, the channel routing algorithm tends to spread these gate locations apart as

more channels cut through the center of the circuit. We see this spreading effect in Figure

3.7 as gates h q0 and cx q1, q0 are separated by more intersections and channels as more

gates are connected. We discuss our experimental evaluation of this heuristic in Section 3.3.

3.2.2 Dataflow-Based Layouts

Generally, the greedy layout heuristic performs poorly because every new gate

must try to connect itself to other gates as well as it can with little information as to how

the qubit traffic its connections generate will affect the rest of the circuit. This optimization

is highly localized and does not use enough available data on the global circuit structure.

Assuming we start by again placing a single gate location for each gate in a circuit,

what would be the “optimal” placement of gate locations. Our primary goal is to have a

circuit induce as little qubit movement, so we want to minimize the total distance all qubits

must travel between gate locations. Additionally, since qubits may share communication
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Figure 3.8: a) A QASM instruction sequence. b) A quantum circuit equivalent to the

instruction sequence in (a). c) A dataflow graph equivalent to the instruction sequence in

(a). Each node represents an instruction, as labeled in (a). Each arc represents a qubit

dependency.

A B C D

E F

I

A B C D

F

A B C D

E F

G

H

I

NG1

NG9

NG8
NG7

NG6
NG5

NG4NG3NG2

(b) (c)(a)

8

11 4

5
1

2

6

41

NG1

NG9

NG10

NG6
NG5

NG4NG3NG2

8

11 4

1

2

6

16?

G

H

NG1

NG10

NG6

NG4NG3NG2

11 4

1

6?

6

16?

G

H

E

I
NG11

Figure 3.9: a) Each node (instruction) is initialized in its own node group (NG, outlined by

the dotted lines), which corresponds to a physical gate location in a layout. Once placed,

we extract physical distances between the nodes (the edge labels). b) We find the longest

edge weight on the longest critical path (the length 5 edge on the path C-F-G-H-I; solid

bold arrows) and merge its two node groups to eliminate that latency.

c) We recompute the critical path (A-E-I; dashed bold arrows) and merge its node groups,

and so on.
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channels between gates, it would be nice if we could minimize the amount on congestion on

the shared channels. This leads us to the overall design decision of minimizing the distance

between dependent gate locations in the layout. Short paths between gates minimize qubit

movement and reduce the chance that there will be many shared connections over long

distances.

To achieve this goal, we would like to find an approximate 2 dimensional embedding

for a dataflow graph that minimizes edge length and edge crossings. Of course, for most

dataflow graphs, an exact 2-D embedding is impossible, which precludes use of polynomial

time algorithms like [66], which performs such an embedding if possible. Additionally,

the time to produce this embedding is polynomial but still O(n6), which is expensive for

larger circuits. Additionally, the problem of finding the minimum number of crossings in a

graph embedding that does not fit into a plane is NP-Complete [34]. Thus we must take a

heuristic approach to solving this problem. We instead create an approximate embedding

by breaking the graph up into sets of dataflow nodes based on their “depth” in the dataflow

graph. We lay out gate locations for the gates in each set so that they are close to each

other and neighboring sets in the graph are also neighboring in the layout.

Dataflow Graph Analysis

Figure 3.8a shows a QASM instruction sequence consisting of Hadamard gates (H)

and controlled bit-flips (CX) operating on qubits Q0, Q1, Q2 and Q3, with each instruction

labeled by a letter. Figure 3.8b shows the equivalent sequence of operations in standard

quantum circuit format. Either of these may be translated into the dataflow graph shown

in Figure 3.8c, where each node represents a QASM instruction (as labeled in Figure 3.8a)

and each arc represents a qubit dependency. With this dataflow graph, we may perform

some analyses to help us place and route a layout for our quantum circuit.

The general idea is that we shall create node groups in the dataflow graph which

correspond to distinct gate locations that may then be placed and routed on a layout.

All instructions within a single node group are guaranteed to be executed at a single gate

location. To begin with, we create a node group for each instruction, giving us a dataflow

group graph, as shown in Figure 3.9a. If we lay out this group graph with a distinct

designated gate for each instruction, we get a layout in which the starting location of each

qubit is specified implicitly by its first gate location, so no additional initial placement
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heuristic is needed.

From this layout we can extract movement latency between nodes and label the

edges with weights (as in Figure 3.9a). We now find the longest critical path by qubit. The

critical path A-E-I of qubit Q0 has length 14 (the dashed bold arrows), while the critical

path C-F-G-H-I of qubit Q2 has length 15 (the solid bold arrows). We select the longest

edge on the longest critical path, which is the edge G-H with weight 5. We merge these two

node groups to eliminate this latency, in effect specifying that these two instructions should

occur at the same gate location (Figure 3.9b). We then update the layout and recompute

distances. Assuming we merged these two node groups to the location of H (NG8), then

the weight of edge F-G changes to 1 (to match the weight of edge F-H) and the weight of

edge E-G probably changes to 6 (former E-G plus former G-H), but the exact change really

depends on layout decisions. The new critical path is now A-E-I, so if we do this again, we

merge node groups NG5 and NG9 to eliminate the edge of weight 8, and we get the group

graph in Figure 3.9c.

In merging nodes, there is the possibility that two qubit starting locations get

merged, complicating the assignment of initial placement. For this reason, we add a dummy

input node for each qubit before its first instruction. The merging heuristic doesn’t allow

more than one input node in any single node group, so we maintain the benefit of having

an intelligent initial qubit placement without extra work.

There is an important trade-off to consider when taking this merging approach.

A tiled grid layout provides plenty of gate location reuse but is unlikely to provide any

pipelinability without great effort. A layout of the group graph in Figure 3.9a (with each

instruction assigned to a distinct gate location) provides no gate location reuse at all but

high potential pipelinability. This raises the question of whether we wish to minimize

area and time (for critical data qubits), maximize throughput of a pipeline (for ancilla

generation), or compromise at some middle ground where small sets of nearby nodes are

merged in order to exploit locality while still retaining some pipelinability.

Gate Location Placement

Taking the group graph from the dataflow analysis heuristic, the placement algo-

rithm takes advantage of the fanout-limited gate output imposed by the No-Cloning The-

orem [104] to lay out the dataflow-ordered gate locations in a roughly rectangular block.
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Figure 3.10: In order to avoid dramatic mismatches in dataflow column heights, we can fold

tall columns into short ones.

We adopt a gate array-style design, where gate locations are laid out in columns according

to the graph, with space left between each pair of columns for necessary channels. This

can lead to wasted space due to a linear layout of uneven column sizes, so we may also

perform a folding operation (shown in Figure 3.10, wherein a short column may be folded

in (joined) with the previous column, thus filling out the rectangular bounding box of the

layout as much as possible and decreasing area. Note that this technique will inevitably

misalign some of the gates that were sorted before since we are potentially moving gates

between different columns. In most cases this is a tradeoff between area and performance.

The columns are then sorted to position gate locations that need to be connected

roughly horizontal to one another. This further minimizes channel distance between con-

nected gate locations and reduces the number of high-latency turns. The column dataflow

heuristic starts by finding the maximum path length in terms of gate count, through the

circuit graph to be laid out. We get this by finding the longest path through the acyclic

graph. The maximum depth determines the number of gate columns that will be in our

layout. The columns are populated with the gates based on their depth in the circuit graph.

Once we know which column each gate is in, we have to sort the gates within each column.

We want them positioned so that gates that are dependent on one another are roughly in
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the same row.

The sorting algorithm is relatively simple, we start with the first, leftmost column

(the “input nodes”). We group the gates in this column such that gates that have the same

output dependency are together in the column. We fix the leftmost column and group the

gates in the next column to the right so that gates with the same input dependencies are

together. Finally, we put these groups in roughly the same order as their input dependencies

are in. Algorithm 2 gives more details on this algorithm.

Once gate locations are placed, we use a grid-based model in which we first route

local wire channels between gate locations that are in adjacent or the same columns. These

channels tend to be only a few macroblocks long each. One or more global channels are

then inserted between each pair of rows and between each pair of columns of gate locations.

These global channels stretch the full length of the layout.

Routing Channels and Route Determination

We call the global macroblock channels that we insert, the “global routing grid”.

The idea is that for qubits that have to move between non-adjacent columns, this grid

connects everything to everything, although there would not be enough bandwidth for all

connections at once. We then add additional local channels to connect gates in adjacent

columns to allow these shorter movements without using the global grid.

There are no real routing constraints in our simple model since channels are allowed

to overlap and turn into 3- or 4-way intersections. We depend on the dataflow column sorting

in the placement phase to reduce the number of intersections and shared local channels.

While local channels could technically be used for global routing and vice versa, we’ve found

that this division in routing tends to divide the traffic and separate local from long-distance

congestion.

With these basic placement and routing schemes, we may now iterate upon the lay-

out, as shown in Figure 3.11. The technology-dependent netlist is translated into a dataflow

group graph with a separate gate location for each instruction (Figure 3.9a). This group

graph is then placed, routed and scheduled to get latency and identify the runtime critical

path (as opposed to the critical path in the group graph, which fails to take congestion into

account). The longest latency move on the runtime critical path (between two node groups)

is merged into one node group, thus eliminating the move since a node group represents a
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Algorithm 2 Column sorting for dataflow layout

traverse acyclic dataflow graph in topological order and store each vertex by level in

array Columns[][]

firstColumn = Columns[0]

for vertex in firstColumn do

nextNeighbors = vertex.outNeighbors

for neighbor in nextNeighbors do

firstGroup = neighbor.inNeighbors

for groupedVertex in firstGroup do

if groupedVertex is below vertex in firstColumn then

remove groupedVertex from firstColumn

insert groupedVertex back into firstColumn next to vertex

end if

end for

end for

end for

for column in Columns do

for vertex in column do

nextNeighbors = vertex.outNeighbors

for neighbor in nextNeighbors do

neighborColumn = Columns.find(neighbor)

if neighbor is horizontally lower than vertex then

remove neighbor from neighborColumn

insert neighbor back into neighborColumn at same horizontal position as vertex

end if

end for

end for

end for
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Figure 3.11: The dataflow placement and routing heuristic takes a technology-dependent

netlist and translates it into a geometry-aware netlist through an iterative process involving

dataflow analysis and placement and routing techniques.

single gate location. This new group graph is then placed, routed and scheduled again to

find the next pair of node groups to merge.

Once this process has iterated enough times, we reach a point where congestion at

some heavily merged node group is actually hurting the latency with each further merge.

We alleviate this congestion by adding storage nodes (essentially gate locations that don’t

actually perform gates) near the congested node group. This increases the area slightly but

maintains the locality exploited by the merging heuristic. If congestion persists, we halt

the algorithm, back up a few merging steps and output the geometry-aware netlist.

Drawbacks

The dataflow placement heuristics work reasonably well for small circuits but as

the circuit size gets bigger, we run into several problems:

• The difference between the widest and narrowest dataflow level increases, leading to
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more wasted space in a column placement layout and more spreading of an original

column across multiple folded columns.

• Even though we do a rough sorting to group gates with the same output dependency

closer, this sorting cannot place everything together, thus the spread within a column

between two gate locations that feed a single location in the next column increases on

average.

• With greater circuit depth, the average number of columns between two dependent

locations increases. We assume that qubits use the global routing grid for non-adjacent

column communication so this increased distance puts more pressure on the global

network.

Since this heuristic suffers from numerous issues in scaling to large circuits, we use

it only to lay out small, low-level modules. We continue hierarchically, using a different

heuristic for the high level module placement problem.

3.2.3 Simulated Annealing Module Placement

It turns out that the dataflow-style techniques work well for small circuits on the

order of 100s of gates. For larger circuits, our simple column sorting heuristic is not sufficient

to co-locate data-dependent gates. As each independent column gets taller, the clustering

of gates within a column becomes more important and our greedy way of handling the

problem is insufficient.

Instead, we opt to lay out larger circuits with a hierarchical approach. Our design

flow takes advantage of implicit partitioning from our definition of different circuit modules.

In practice, our fault tolerant circuits are typically broken down into error correction steps

and encoded gates. Our larger circuit are also typically decomposed into submodules.

For example, in Section 7.1.1 we discuss decomposing large 1024-bit adders into smaller

subadder building blocks. Additionally, we can decompose circuits into submodules using

Donath’s partitioning method, introduced in Section 3.1.2.

We could then put these building blocks together with the same dataflow layout

heuristic. This does not work as well however, since the more complex, higher-level blocks

are typically connected to many more other blocks. This makes matching up frequently

communicating blocks horizontally more difficult. Again, scalability concerns limit the
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VPR option Description

-place algorithm=path timing driven With this placement heuristic, VPR tries to

minimize both average and critical path wire

length by co-locating modules to be con-

nected.

-router algorithm=timing driven Do not try to minimize only the number of

routing tracks, also take into account time

taken for qubits to reach destinations.

Table 3.2: Parameters we use for our runs of the VPR place and route tool. More details

on these options are in [12]

simple dataflow heuristic to small circuit layouts. At higher levels, we turn to a placement

technique that is well established in the classical realm, simulated annealing.

Drawing an analogy between quantum and classical circuits, we choose to treat

our hierarchical submodules that compose a larger design as programmable blocks in a data

routing grid. This view looks a lot like field programmable logic arrays (FPGAs) [19] in

classical computation fabrics. Continuing this analogy, we turn to a flexible classical FPGA

placement and routing tool to do the initial placement and routing of our higher level

blocks. This tool, VPR [13], places functional blocks using simulated annealing [53]. The

optimization process tries to minimize the amount space necessary to route all the connec-

tions between blocks. Secondary optimization goals include minimizing average wirelength

and critical path delay. These goals coincide with our own design goals of minimizing the

distance qubits must travel between gates and minimizing area. Our additional goal of

minimizing wire turns is not really accounted for in this model but in practice, we observe

that simple low-turn-count paths are easier to work with and therefore preferred by VPR

in the track based routing system it uses. Table 3.2 shows the various options we pass to

VPR and their affects.

Since VPR is designed to place FPGA lookup table blocks and not our modules

of quantum gates, we must export our existing circuit topology and dataflow layout to a

format that is compatible with VPR. The existing layout information is exported to the

architecture file and the circuit topology is output to a netlist file.
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Architecture file This file contains information on the types of modules being placed.

Each module has some number of possible input and output ports. For our purposes, we

tell VPR that all modules are the same, thus we define a single module type and set the

number of inputs and outputs to the maximums over all possible modules laid out with the

dataflow heuristic.

Netlist file This instantiates and links together the modules declared in the architecture

file, according to the circuit topology. So if we have a sum module feeding a carry module

like in a ripple carry adder, this would have a netlist like this:

.input cin

.pinlist wirecin1

.input a

.pinlist wirea1

.input b

.pinlist wireb1

.input cout

.pinlist wirecout1

.clb sum

.pinlist wirecin1 wirea1 wireb1 open wirecin2 wirea2 wireb2 open

.subblock: blah0 0 1 2 open 4 open

.subblock: blah1 0 1 2 open 5 open

.subblock: blah2 0 1 2 open 6 open

.clb carry

.pinlist wirecin2 wirea2 wireb2 wirecout1 wirecin3 wirea3 \

wireb3 wirecout2

.subblock: blah3 0 1 2 3 4 open

.subblock: blah4 0 1 2 3 5 open

.subblock: blah5 0 1 2 3 6 open

.subblock: blah6 0 1 2 3 7 open

.output out0

.pinlist wirecin3

.output out1

.pinlist wirea3
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Figure 3.12: Grid of clbs/modules and the routing channels between them. Each clb is

indexed by x and y coordinates. Channels are labeled with an x or y indicator and the x,y

coordinates of the closes clb in the grid. Reproduced from VPR manual [12].

.output out2

.pinlist wireb3

.output out3

.pinlist wirecout2

Input and output edges from the module graph are declared as .inputs and .out-

puts. Each module in the circuit is translated to a .clb element with connections corre-

sponding to the unique edge names for inter-modular communication. VPR assumes each

.subblock has only a single output, so for each .clb, we need a .subblock for each output

wire.

Once these configuration files are passed into VPR, it performs its optimization

and creates a placement file and routing file. Using these, we construct the final layout for
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the circuit. First, we must explain VPR’s view of the layout. Figure 3.12 shows the gridlike

structure that VPR follows to place modules and communication channels.

Placement file This file determines the positioning of each module in the grid. For the

example of our carry-sum circuit, the format is as follows:

Array size: 2 x 2 logic blocks

#block name x y subblk

cin 0 1 0

a 0 2 0

b 1 0 0

cout 2 0 0

sum 1 1 0

sum 1 1 1

sum 1 1 2

carry 2 1 0

carry 2 1 1

carry 2 1 2

carry 2 1 3

out0 3 1 0

out1 3 2 0

out2 1 3 0

out3 2 3 0

Input and output blocks are placed on the edge of the grid (either at x/y = 0 or x/y

= 3) and all modules/clbs are placed in internal grid squares. Taking this grid specification,

we place the layouts generated by the dataflow heuristic for each module and place them

at their respective macro-grid locations. Each macro-grid square must be large enough to

accommodate the largest dataflow layout. This could lead to empty space if module layouts

have variable sizes. We must also leave room between neighboring modules for a “channel”

that consists of multiple “tracks” that are made up of actual channel macroblocks. The

number of tracks that go in a channel is determined by the routing file.

Routing file The routing file specifies which channel tracks connect to what. For each

channel space between modules, it specifies for each channel, whether there should be a

wire or macroblock channel horizontally or vertically. It also specifies which pins on the

module inputs and outputs connect to which routing track. Here is an example file:

SOURCE (0,1) Class: 0
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OPIN (0,1) Pad:0

CHANY (0,1) Track: 0

IPIN (1,1) Pin:0

SINK (1,1) Class: 0

SOURCE (0,2) Class: 0

OPIN (0,2) Pad: 0

CHANY (0,2) Track: 1

CHANY (0,1) Track: 1

IPIN (1,1) Pin: 1

SINK (1,1) Class: 0

SOURCE (1,0) Class: 0

OPIN (1,0) Pad: 0

CHANX (1,0) Track: 1

CHANY (0,1) Track: 2

IPIN (1,1) Pin: 2

SINK (1,1) Class: 0

In the routing file, a particular net/wire/communication link is defined as a se-

quence of channel and track specifications between a source and sink statement. Nets

connect to modules through OPINs and IPINs.

We allocate a single channel per routing track when we lay down macroblocks. We

route all encoded qubits down the same inter-block channel since they all have the same

source and destination and travel together.

3.2.4 Manual Layouts

In addition to automated macroblock layout heuristics, we can also manually spec-

ify macroblock layouts that can then be tied to specific circuits. We will discuss which

circuits we choose to lay out manually and why.

Quantum error correction circuits feature complex communication patterns and

are particularly sensitive to error. This is because qubits in the encoding and verification

circuits are not encoded yet and thus cannot be corrected so easily. Additionally, since

previous estimates have estimated 95% of resources will go toward error correction, it makes

sense to ensure underlying layouts are area and latency efficient.

There have also been prior efforts to lay out quantum circuits. Svore et al [95] laid

out cells of a swap-based quantum computing technology in order to calculate local pseudo-

thresholds for the Steane [[7, 1, 3]] code. Kreger-Stickles et al [56] investigated several layouts

for the same code in an effort to determine the best one in terms of latency, area, and some
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Figure 3.13: On the left is a figure from Svore’s work on pseudo-thresholds for the [[7, 1, 3]]

code. On the right is our adapted ancilla factory in ion trap macroblocks, based on her

design. This design consists of 2 ancilla factories and correction stages, as well as space for

an encoded CNOT gate.

measurement of errors. We have integrated both resulting hand layouts into our own tool

flow and have also laid out several other circuits.

Ancilla Factories

Steane originally introduced the notion of an ancilla factory in [89]. As we showed

in Figure 1.9, the actual correction of data takes clean encoded zero ancilla. The idea is

that specialized modules produce this ancilla. We can optimize these factories for high

throughput ancilla production and that is indeed what several works have done.

Our first ancilla factory is an adapted Svore factory for the [[7, 1, 3]] code from

[95]. The design shown in 3.13 actually consists of 2 ancilla factories with correction and

an encoded CNOT. This factory was designed to minimize movement and idle errors, so it

is not particularly area efficient. We will later compare this ancilla factory’s performance

with layouts of the same circuit done using our heuristics.

Another ancilla factory from the literature is Kreger-Stickles 4-bit Linear Offset

factory for producing [[7, 1, 3]] ancilla for correction. This design is shown in 3.14 and is the

best performing ancilla factory from [56] in terms of fault point count as well as latency. It

also has a pretty compact area.

In our work in [48], we developed our own pipelined ancilla factory for the [[7, 1, 3]]

that emphasized ancilla throughput per unit area. That design is shown in Figure 3.15, and
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Figure 3.14: “Linear Offset” [[7, 1, 3]] ancilla factory from Kreger-Stickles work on area/error

optimal ancilla factories for the Steane code. The 7 bits on the top are the ancilla to be

encoded and verified, the rest of the bit are for the verification process.

Figure 3.15: Our own pipelined [[7, 1, 3]] ancilla factory. Ancilla move through the gate

locations from top to bottom.

is the only design that can prepare multiple ancilla states in parallel out of the factories

mentioned here. This pipelined ancilla approach is particularly fitting since the Qalypso

microarchitecture, to be discussed in Section 3.4.2 allows for flexible resource allocation to

achieve high utilization of its ancilla production resources.

Teleportation Units

As we mentioned in Section 2.4, teleportation is a key component to the large scale

tiled dataflow architectures. In order to fully analyze all the errors in the system, we have

laid out a teleportation router in macroblocks, in order to accurately extract all the errors

involved in our communication network and to get an accurate area estimate.

A high-level floorplan of a network router is shown in Figure 3.16, from our work
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Figure 3.16: Network Router. Dark gray areas support single hop links between neighboring

routers. Light gray regions handle connections that terminate locally. The size of the End

Point Buffer is dictated by the size of the logical qubit being teleported.

in [63]. The area of the router consists of purifiers (P) for EPR purification, teleporters (T)

for connections that span multiple routers, and buffers to store qubits while waiting for the

connection establishment. The area dedicated to each of these components is dependent on

the maximum load the router sees, as determined by the mapping phase. Our tools cannot

yet construct a detailed layout of arbitrarily sized routers. Instead, in an effort to obtain

realistic network area estimates, we utilize a detailed layout of a specific sized router to

extrapolate the sizes of larger routers.
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Figure 3.17: QPOS grid structure constructed by tiling the highlighted 2 × 2 macroblock

cell.

(b)(a)

Figure 3.18: Comparison of the best 3 × 2 cell for two different circuits. (a) The best cell

for the [[23, 1, 7]] Golay encode circuit. (b) The best cell for the [[7, 1, 3]] L1 correct circuit.

3.2.5 Grid-based Layouts

In order to additionally validate our layout heuristics we consider grid-based lay-

outs that are from previous work or exhaustively searched. In all grid-layout works, a layout

is constructed by first designing a primitive cell and then tiling this cell into a larger physical

layout. For example, the authors of [64, 65] manually design a single cell, and for any given
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quantum circuit, they use that cell to construct an appropriately sized layout. In [94], the

authors automate the generation of an H-Tree based layout constructed from a single cell

pattern. Similarly, [8] uses a cell such as in [94] but also provides some tools to evaluate the

performance of a circuit when the number of communication channels and gate locations

within the cell is varied. We use a combination of these methods to implement a tool that

automatically creates a grid-based physical layout for a given quantum circuit.

The grid-based physical layouts generated by our tools are constructed by first

creating a primitive cell out of the macroblocks and then tiling the cell to fill up the desired

area. For example, Figure 3.17 shows how a 2×2 sized cell can be tiled to create the layout

used in [65] (referred to henceforth as the QPOS grid). These types of simple structures are

easy to automatically generate given only the number of qubits and gate operations in the

quantum circuit. Furthermore, grid-based structures are very appealing to consider because,

apart from selecting the number of cells in the layout and the initial qubit placement, no

other customization is required in order to map a quantum circuit onto the layout. The

regular pattern also makes it easy to determine how qubits move through the system, as

simple schemes such as dimension-ordered routing can be used.

The approach we use to generate the grid-based layout for a given quantum circuit

is as follows:

1. Given the cell size, create a valid cell structure out of macroblocks.

2. Create a layout by tiling the cell to fill up the desired area.

3. Assign initial qubit locations.

4. Simulate the quantum circuit on the layout to determine the execution time.

The first step finds a valid cell structure. A cell is valid if all the macroblocks

that open to the perimeter of the cell have an open macroblock to connect to when the

cell is tiled. Also, a cell cannot have an isolated macroblock within it that is unreachable.

Once we tile this valid cell to create a larger layout, we must decide on how to assign initial

qubit locations. The two methods we utilize are: a systematic left to right, one qubit per

cell approach, and a randomized placement. The systematic placement allows us to fairly

compare different layouts. However, since the initial placement of the qubits can affect the

performance of the circuit, the tool also tries a number of random placements in an effort

to determine if the systematic placement unfairly handicapped the circuit.



88

This layout generation and evaluation procedure is iterated upon until all valid

cell configurations of the given size are searched. We then repeat this process for different

cell sizes. The cell structure that results in the minimum simulated time for the circuit is

used to create the final layout.

Figure 3.18 shows the best cell structure found by conducting a search of all 2×2,

2× 3, and 3× 2 sized cells for two different circuits. The main result of this search is that

the best cell structure used to create the grid-based layout is dependent on what circuit will

be run upon it. By varying the location of gates and communication channels, we tailor the

structure of the layout to match the circuit requirements.

While this type of exhaustive search of physical layouts is capable of finding an

optimal layout for a quantum circuit, it suffers from a number of drawbacks. Namely, as

the size of the cell increases, the number of possible cell configurations grows exponentially.

Searching for a good layout for anything but the smallest cell sizes is not a realistic option.

Furthermore, while small circuits may be able to take advantage of primitive cell based

grids, larger circuits will require a less homogeneous layout. One approach to doing this is to

construct a large layout out of smaller grid-based pieces, all with different cell configurations.

While this approach is interesting, we feel a more promising approach is one that resembles

a classical CAD flow, where information extracted from the circuit is used to construct the

layout.

3.3 Layout Performance

Given all these choices of layouts and layout heuristics, we are ready to make some

comparisons to see under what conditions which ones perform well. One goal of this section

is to determine whether the layouts generated by our heuristics are “good” in the sense

that they do not detrimentally impact latency or area, or introduce an unnecessary amount

of errors. To ensure this goodness, we will compare layouts produced by our heuristics

with hand-tuned layouts from the literature, layouts from exhaustive searches of the design

space, and estimations from Donath’s wire length estimation from Section 3.1.

3.3.1 Latency and Area Comparison

We will start by evaluating the area and latency of all the heuristics and layout

searches on some benchmark QECC modules. We will also compare these to the results
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Qubit Gate

Circuit name count count

[[7, 1, 3]] L1 encode [85] 7 21

[[23, 1, 7]] L1 encode [90] 23 116

[[7, 1, 3]] L1 correction [5] 21 136

[[7, 1, 3]] L2 encode [85] 49 245

Table 3.3: List of our QECC benchmarks, with quantum gate count and number of qubits

processed in the circuit.

from some other layouts from prior work.

Benchmarks

Relatively high error rates of operations in a quantum computer necessitate heavy

encodings of qubits. As such, we focus on encoding circuits (useful for both data and

ancillae) and error correction circuits to experiment with circuit layout techniques. We

lay out a number of error correction and encoding circuits to evaluate the effectiveness of

the heuristics used in our CAD flow in terms of circuit area and latency, as determined

by our scheduler. Our circuit benchmarks are shown in Table 3.3. We use two level 1

(L1) encoding circuits, a level 2 (L2) recursive encoding circuit and a fault-tolerant level 1

correction circuit.

For these encoding and correcting circuits, throughput is a more important mea-

sure than latency, implying that they would benefit greatly from pipelining. Nonetheless, a

high latency circuit could introduce non-trivial error due to increased qubit idle time. On

the other hand, correction circuits are much more latency dependent, since they are on the

critical path for the processing of data qubit blocks.

Evaluation

We have evaluated a variety of layout design heuristics on the four benchmarks

shown in Table 3.3. The results are in Table 3.5. “QPOS Grid” refers to the best scheduled

macroblock-level layout heuristic from the literature [65]. “Optimal Grid” refers to the

best grid with an area matching the QPOS Grid used that was found by the exhaustive
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Category Layout Heuristic or
Design

Description

Exhaustive Optimal Grid From Section 3.2.5. Our work on exhaustive search over different
grid structures from [101]. Searches all possible grid sizes and grid
“building blocks” up to a certain size. Designed to minimize latency.

Manual Svore Mentioned in Section 3.2.4, from previous work in [95]. Hand laid out
and scheduled grid structure for the [[7, 1, 3]] code, which was used
to prove a threshold exists for this code even with movement errors
accounted for. Designed to minimize movement and idle error, so has
good area/latency tradeoff.

Kreger-Stickles Mentioned in Section 3.2.4, from previous work in [56]. From this
work, we use the “linear offset” layout, which one of the best per-
forming layouts in their study. They investigated a number of area-
minimal designs to find the ones that have the fewest points where
errors may occur, including movement, idle and gate errors. Designed

to have minimal qubit gate, movement and idle events.

Heuristic QPOS Grid From Section 3.2.5. Quantum Physical Operations Scheduler [65]:
Arranged as a grid of gate locations. Gate sequencing is done based
on priorities assigned based on critical paths through the program
dataflow graph. Designed to minimize latency.

Greedy channel and
gate location place-
ment

Heuristic from Section 3.2.1, also in our work in [101]. Layout is
constructed by going through dataflow graph, adding gate locations
for gates and channels only when a scheduler cannot make further
progress. Designed to be minimal area.

Non-folded DF, 2
global channels, criti-
cal combining

Dataflow heuristic from Section 3.2.2, also in our work in [101].
Columns of gate locations are laid out in dataflow order with routing
channels added between the columns. For this version of the heuristic,
columns are not folded over to normalized column height. Two verti-
cal channels are allocated for “global” routing (between non-adjacent
columns). Critical combining means we are using our dataflow group
graph analysis.

Folded DF, 1 global,
critical comb.

Similar to the non-folded DF case above but long columns are folded
into short columns to get a more compact layout, where every column
is nearly the same height. Also, only a single vertical global routing
channel is inserted between columns.

Folded DF, 2 global,
critical comb.

Similar to above but with 2 vertical global routing channels.

Table 3.4: Description of the different layout types compared in Table 3.5

search over a uniform grid layout. This is our best performing heuristic but is prohibitive

in runtime. “Greedy” refers to the heuristic described in Section 3.2.1. “DF” refers to

the dataflow-based approach from Section 3.2.2. “Non-folded” means the dataflow graph

is laid out with varying column widths; “folded” means the layout has been made more

rectangular by stacking columns. The number of global channels is between each pair of

rows and columns of gate locations. “Critical combining” refers to our dataflow group graph

merging heuristic from Section 3.2.2.

To start by comparing the top performing layouts in terms of latency, we notice

that the Svore hand layout of the [[7, 1, 3]] encoder has the best latency out of all layouts.

We expect this layout to do well since it is optimized to minimize movement and idle errors,
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Circuit Layout Heuristic or Design Latency (µs) Area

[[7, 1, 3]] L1 encode QPOS Grid 548.0 49
Optimal Grid 509.0 49
Svore hand layout 310 56
Kreger-Stickles hand layout 520 14
Greedy channel and gate location placement 648.0 36
Non-folded DF, 2 global channels, critical combining 768.2 231
Folded DF, 1 global channel, critical combining 795.4 126
Folded DF, 2 global channels, critical combining 712.4 182

[[23, 1, 7]] Golay L1 encode QPOS Grid 2268.0 575
Optimal Grid 1801.0 575
Greedy channel and gate location placement 2457.0 168
Non-folded DF, 2 global channels, critical combining 2169.2 3880
Folded DF, 1 global channel, critical combining 2264.0 713
Folded DF, 2 global channels, critical combining 2248.2 1394

[[7, 1, 3]] L1 correction QPOS Grid 1300.0 1271
Optimal Grid 771.0 1271
Svore hand layout 990 156
Kreger-Stickles hand layout 1430 30
Greedy channel and gate location placement 1932.0 756
Non-folded DF, 2 global channels, critical combining 999.8 2378
Folded DF, 1 global channel, critical combining 1501.2 690
Folded DF, 2 global channels, critical combining 1121.2 1496

[[7, 1, 3]] L2 encode QPOS Grid 2411.0 1365
Optimal Grid 1367.0 1365
Greedy channel and gate location placement 4791.0 936
Non-folded DF, 2 global channels, critical combining 1582.4 4087
Folded DF, 1 global channel, critical combining 1828.6 1617
Folded DF, 2 global channels, critical combining 1944.8 3381

Table 3.5: Latency results for a variety of ECC circuits with different placement and routing

heuristics.

which should yield low overall latency. Even more interesting is if we compare the latency of

the Svore layout with our optimal grid search. In this case, the optimal grid search actually

does better. We consider this indicative of the fact that as circuits get more complex, a

designer becomes less effective at intuitively laying out a good circuit.

Considering the best area layouts, the Kreger-Stickles design wins. This is not

surprising, since it is also optimized to minimize some combination of possible fault points

as well as area. Both Kreger-Stickles layouts have higher latency than the optimal grid and

Svore layouts.

The exhaustive search over grids yields the best latency for all benchmarks, which

is not surprising. This kind of search becomes intractable quickly as circuit size grows, and

additionally, it is based on the unproven assumption that a regular layout pattern is the

best approach. We include this data point as something to keep in mind as a target latency.

Among the non-exhaustive search layouts, we first note that no single heuristic
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or hand layout is optimal for all four benchmarks and that, in fact, no single heuristic

optimizes both latency and area for any single circuit. Dataflow-based place and route

techniques in general produce the lowest latency circuits. We find that the optimal global

channel count per column (1 or 2) depends on the circuit being laid out. This is an artifact

of the lack of maturity in our routing methodology. We intend to explore more adaptive

routing optimization in our ongoing work.

The dataflow approach and the QPOS Grid tend to trade off between latency

and area. However, we expect that the dataflow approach will show greater potential for

pipelining, thus allowing us to target circuits such as an encoded ancilla generation factory,

for which throughput is of greater importance than latency. We also observe that non-

folded dataflow layouts are likely to have even greater pipelinability than folded ones, but

at the likely cost of greater area. Although, we should note that the area estimates for the

non-folded DF-based layouts are in fact overestimates due to our use of a liberal bounding

box for these calculations.

We find that the greedy heuristic tends to find the best design area-wise for small

circuits, but the latency penalty increases with circuit complexity. This is expected, as

greedy is unable to handle congestion problems, so it works best for small circuits where

congestion is not an issue. It is for the opposite reason that the DF heuristics fail on the

[[7, 1, 3]] L1 encode. They insert too much complexity into an otherwise simple problem.

Prior work has tended to assume a specific regular grid structure and to schedule

operations within this structure. Our investigation into a variety of grid structures and

showed a performance variance of a factor of four as we varied grid structure and initial

qubit placement. For the small encoder circuits ([[7, 1, 3]] and [[23, 1, 7]] L1 encoders),

both the greedy and dataflow heuristics are within 50% of the exhaustive grid search and

prior work in QPOS in terms of latency. The hand layouts show good area and latency

performance in general, being comparable or better than the optimal grid layout.

As we scale up in size, we see the latency of the greedy layouts increase markedly.

The single channel folded dataflow layouts give a good area-latency performance tradeoff for

larger circuits, yielding a better area than the optimal grid in one case and within 20% in

another. The latency of the dataflow layouts is also good for larger circuits, coming within

30% of the optimal grid layouts in this case too. For this reason, we opt to go forward in

our study using the folded dataflow layout heuristic as our chosen macroblock-level layout

technique.
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Figure 3.19: In this circuit, each qubit line represents a logical encoded qubit and the gates

are logical, encoded gates. The correct blocks correspond to a Steane-type error correction

step [87].

3.3.2 Validating Layouts with Donath’s Estimate

Now that we have looked at the performance of our heuristics as compared to

one another and also to hand laid out circuits, we will compare them to the results of our

analytical Donath technique from Section 3.1. We have already seen the dataflow heuristic

beat some of the hand optimized layouts in terms of latency for particular circuits, we will

now do a more systematic comparison of the folded dataflow heuristic to Donath’s wire

length estimation for all the quantum error correcting codes we will later compare.

Since the error correction encoding and verification operation is particularly sensi-

tive to errors, we want to ensure that the number of additional, non-gate errors introduced

by the layouts of these circuits is kept at a minimum. In order to further validate the quality

of our layouts, we want to ensure that qubits are not traveling excessive distances to get

from one gate location to the next.

We start our validation by looking at communication patterns in QECC encoders.

The purpose of this analysis is to provide validation that the dataflow layout heuristic we

use for laying out the code blocks in this chapter do not introduce unreasonable amounts

of communication for any of the codes. We use Donath’s wire length estimation technique

described in Section 3.1.2 on the encoded cnot circuit shown in Figure 3.19, which is the

same as the circuit used for Figure 3.4. Using Donath’s estimates as reference values, we

compare the folded dataflow layout from Section 3.2.2 for the same circuits.

More specifically, for every code, we compute an average wire length for using Do-

nath’s estimation. To compare with this, we lay out the circuit with the dataflow heuristic.

Given the layout, we go through each route for a gate-to-gate communication specified in

the circuit, and compute the length in macroblocks. We take the average over these route

lengths and compare the actual average with the estimated average.
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Figure 3.20: Comparing average communication distance estimates from Donath’s estima-

tion to real distances in an ion trap layout with the folded dataflow heuristic.

Figure 3.20 shows average wire lengths for the codes listed in 3.1. In this graph,

points should be compared vertically to determine the difference in the two estimates. The

“actual from layout” numbers are macroblock-accurate averages from the dataflow heuristic.

We see that in most cases, the dataflow heuristic yields average distances that are substan-

tially better than those estimated by Donath’s rule. One explanation for this, besides the

fact that our heuristic is good, is that Donath’s estimation assumes a uniform distribution

of starting and ending points, for cross partition connections. Our dataflow heuristic tries

to align communicating gates in the same horizontal line, which would decrease the average

distance from what the uniform distribution would yield, at every level of the partitioning.

We do not expect these two techniques to match exactly, only that our layout

heuristics do not introduce extra movement that is way off the expected value or that the

layouts unfairly penalize particular codes with extra movement. We see that in fact, the

only codes in which our heuristic yields worst average lengths than the validating estimator

are the [[9, 1, 3]] code (< 5% difference) and the [[49, 1, 7]] code (12% difference).
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Data Regions Memory Regions Ancilla Non-Trans
Datapath Total Qubits Gens Total Qubits Gens Generator Gates Interconnect

LQLA D 2 2 none [56] anywhere fixed-size
routers,
one per
data/memory
region

Qalypso D Dq Dag M Mq Mag [48] placed with
custom
ancilla

variable
sized routers
adapted to
design

Table 3.6: Details of various datapath organizations. A datapath consists of a number of

Data Regions and in some cases Memory Regions. Each Data/Memory region is sized to

hold a specific number of Qubits and Ancilla Generators (Gens) and regions are connected

via an Interconnection Network. The D and M variables in the table signify values that

are only determined after a quantum circuit is mapped onto the datapath.

3.4 Coarse Grained Mapping and Routing

Our macroblock-level heuristics are not well suited for gate counts in the millions,

even with the VPR-based simulated annealing approach, so must yet again try to organize

things hierarchically in order to handle the scales of circuits we are interested in.

3.4.1 Tiled Microarchitectures

As we mentioned in Section 2.4, we build upon work on tiled microarchitectures

for quantum computers in [64, 98, 56] for our high level organization.

The parallelism of these tiled datapaths are in part convenient because apparently

ubiquitous quantum error correction must be done in parallel to keep up with potential idle

error sources. We have already discussed the structure of the various microarchitectures so

we will now only discuss the two datapaths we will be using going forward for our large

scale circuit mappings. If we refer back to Figure 2.6, we see that each tile can contain

area dedicated to compute, memory, and ancilla resources. Table 3.6 shows a comparison

of various microarchitectural parameters that determine relative sizings of these regions.

3.4.2 Qalypso and LQLA

The “LQLA” datapath consists of the non-specialized tiled datapath of QLA [64],

except that the ancilla generation unit for error correction in each tile is replaced with
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the “Linear Offset” ancilla factory from [56], also discussed in Section 3.2.4. In this work

they showed that this particular ancilla generator layout has good error, latency and area

properties. Since these goals match with ours as well, we opt to use this ancilla cell in QLA

as our baseline datapath.

Qalypso refers to our own datapath, introduced in [48]. Qalypso provides complete

flexibility in the number of Qubits (Dq) and Ancilla Generators (Dag) per data region as

well as number of Qubits (Mq) and Ancilla Generators (Mag) per memory region. In order

to provide this flexibility, we must have a good method by which to map computation to

these elements.

3.4.3 Partitioning the Circuit

During the mapping process, the mapper must determine the total number of

data regions (D) and memory regions (M) required. For LQLA, M = 0 which makes it

easy to determine D as it is simply sized to accommodate the number of qubits used in

the quantum circuit. The addition of memory regions introduces trade-offs in area and

exploitable parallelism (latency). A datapath with a single compute region and a sea of

memory can only perform one operation at a time — resulting in longer latency with a

minimal area. A datapath such as QLA with all compute regions and no memory can

exploit all possible parallelism in the circuit but with extremely high cost in area.

The mapper determines where each data qubit will reside during the course of

the execution as well as when and where each quantum gate will execute. It starts with a

coarse-grained partitioning of modules to compute-regions that minimizes communication.

Next, the mapper attempts to schedule each gate operation so that it occurs as late as

possible, while prioritizing operations on the critical path. The mapper relocates qubits

into memory regions (if available) to free up compute regions for subsequent operations.

As the mapper progresses, it tracks the location and times of all gate operations, error

corrections, and network connections needed to perform the quantum circuit. The mapper

discourages imbalanced mappings, such as those that over utilize network links or ancilla

generation resources.

If the target datapath has fixed ancilla generation resources, the mapper attempts

to map operations to regions with unused ancilla bandwidth. In datapaths with flexible

ancilla generation, like Qalypso, the mapper assumes that operations will never wait for
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ancilla, while still attempting to balance ancilla usage. A later phase (described below)

matches ancilla generation resources to demand.

In Chapter 7, show results comparing our own Qalypso microarchitecture with the

previous state-of-the-art QLA-based approach from the literature, LQLA. We will see that

Qalypso offers substantial benefits in terms of reduced area and latency due to its more

flexible and efficient ancilla generation infrastructure. For further evaluation of different

tiled dataflow microarchitectures, we refer the reader to our work in [63].

In this Chapter, we have discussed the spatial layout of gates on a substrate both

to get a fabricatible design and also to determine the impact of communication. We combine

macroblock-level layouts of individual compute regions in a tiled dataflow microarchitec-

ture to get a full computer design. We also make use of technology agnostic wire length

estimation techniques from classical CAD in order to evaluate the fitness of our macroblock

layout heuristics.

Going forward, we will now look at how errors are extracted from these layouts

and microarchitectures and how they can be simulated to yield overall system reliability

measures.
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Chapter 4

Fault Tolerance Verification

To perform a detailed analysis of the error probability of circuits, we need a way

to model the incidence of errors and their propagation through the circuit. There have been

a number of works that have analyzed the fault tolerance of circuits with varying degrees

of generality and accuracy. The initial ground-breaking work done by Aharonov et al[2]

established the existence of a threshold for quantum error correcting codes. The threshold

being the maximum gate error rate that can be corrected with unlimited error correction.

This work analyzed CSS codes of distance greater than or equal to 5 and provided a very

conservative estimate the maximum correctable physical gate error rate. These rigorous

bounds on the maximum gate error rate were subsequently improved with different codes

and more sophisticated analyses [5, 78]. All of these works focused only on establishing a

threshold for circuits with only gate errors. Additional work has been done to establish the

continued existence of a threshold in the face of qubit idle and movement errors [37, 97, 96].

Through these works, we know it is possible, at least in principle, to build a fault tolerant
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quantum computer using error correcting codes.

The next question we must ask is: what is the best way to proceed? The rigorous

threshold bounds establish the existence of properly fault tolerant quantum computers but

do not analyze tradeoffs in code architecture to find a design that has low latency or small

area. There are other, more heuristic analyses that compare different fault tolerant archi-

tectures in an effort to find the “best”. Code comparisons in [90] and [25] have suggested

that the Steane [[7, 1, 3]] code and the Golay [[23, 1, 7]] code have the highest thresholds,

although neither of these took movement or idle error sources into account. Higher-level

studies have addressed how different memory/compute architectures impact computer per-

formance, including fault tolerance [56, 98]. None of these works provide a systematic study

of all the resources involved in choosing a particular fault tolerance architecture.

We have already introduced tools to automatically synthesize and lay out QECC

encoded circuits such that area, latency, and qubit movement are minimized. This enables

us to do a detailed study of the area and latency costs of different encodings. Our next

step is to present our fault tolerance verification tools, so that we can evaluate whether

these circuits and layouts can be used to build larger systems with a low probability of data

corruption.

We have developed a number of fault tolerance verification methods with differing

accuracy and runtime tradeoffs. We will talk about how to compose these methods in order

to build a flexible toolkit for analyzing the errors in circuits and layouts from the small to

the large scale. The intention is to combine these tools to accomplish two complimentary

tasks:

• Provide a comprehensive comparison of error correcting codes with all error overhead

to help determine a resource efficient fault tolerant architecture.

• Enable the fault tolerance verification of large scale application circuits, incorporating

as many error sources as possible while still maintaining a reasonable runtime.

In this chapter we will first present a high level model of error propagation in

quantum circuits and layouts, then talk about some ways to use this model to simulate

errors through an entire design. Next we will talk about some ion-trap specific refinements

on the earlier error model and then discuss a strategy for simulating errors on very large

designs.
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4.1 Fidelity-Based Error Estimates

To begin our exploration of fault simulations, we introduce an important measure

called fidelity for quantifying the difference between two quantum states. This is the simplest

measure we use for evaluating error propagation in our quantum computer. We will then

give an overview of how our fidelity calculation was used to estimate a communication

network failure probability in [47]. We choose to start with a communication network, since

the error generation and propagation is relatively simple compared to arbitrary circuits

that use error correction. While this method of error probability calculation is limited to a

specific set of cases that have minimal qubit entanglement, it is useful for quickly calculating

error probability for communication. This method will be used in conjunction with other,

more versatile methods explained later in this chapter.

4.1.1 Overview

Fidelity is a measure of the difference between two quantum bit vectors. Because of

quantum entanglement, each of the 2n combinations of bits in a vector of size n are physically

separate states. For a given problem, one particular vector is considered a reference state

that other vectors are compared against. For example, if we start with a superposition of bit

vector [0000 + 1111], and we send the bits through a noisy channel in which bit 3 is flipped

with probability p, we will end up with a probabilistic vector of ((1 − p)[0000 + 1111] +

p[0010+ 1101]). The fidelity of the final state in relation to the starting (“error-free”) state

is just 1 − p. So, in the case of an operational state vs. a reference ”correct” state, the

fidelity describes the amount of error introduced by the system on the operational state [70].

A fidelity of 1 indicates that the system is definitely in the reference state. A fidelity of 0

indicates that the system has no overlap with the reference state.

We characterize errors by calculating the fidelity of qubits traversing the various

quantum channels and gates necessary to move qubits around a communication network

and apply gate operations. We will combine models of the individual communication and

gate components so that we get an overall complete communication fidelity as a function of

distance and architecture.

In general, we estimate the fidelity of a quantum state as it evolves through a fault
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filled operation sequence by this basic equation:

Ffinal =
∏

e

(1− pe)F0 (4.1)

where pe is the probability of an error for each possible faulty event in the circuit .

4.1.2 Communication Fidelity Model

In ballistic movement, the fidelity of a bit after going through the ballistic channel

over D segments is:

Fnew = Fold

D
∏

i=1

(1− pi (4.2)

pi is the probability of movement error along segment i. We will discuss D and pi later in

Section 4.8.

The fidelity of a qubit teleportation is more complicated because it involves a

combination of single (p1q) and double qubit gates (p2q) and qubit measurement (pms) [31]:

Fnew =
1

4

(

1 + 3(1− p1q)(1 − p2q)
(4(1 − pms)

2 − 1)

3

×
(4Fold − 1)(4FEPR − 1)

9

)

(4.3)

The fidelity after a teleportation involves the fidelity of the data before teleporta-

tion (Fold) and the fidelity of the EPR pair used to perform the teleportation (FEPR).

Although ballistic movement error does not appear in this formula, it should be

mentioned that the fidelity of the EPR pair will be degraded while being distributed to the

endpoints of the teleportation channel. Thus, even though the qubit undergoing teleporta-

tion incurs no error from direct ballistic movement, there is still fidelity degradation due to

EPR pair distribution.

We produce EPR pairs from two qubits initialized to the zero state using a few

single and double qubit gates. The fidelity of an EPR pair immediately after generation is:

Fgen ∝ (1− p1q)(1− p2q)Fzero (4.4)

Fzero is the fidelity of the starting zeroed qubits. Generation time involves one single and

one double qubit gate.

Since we must also account for errors in idle qubits, if we assume that EPR pairs

are already located at the endpoints of our channel, the teleportation time has the form:

tteleport = 2t1q + t2q + tms + tclassical bit mv ×D (4.5)
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4.2 General Pauli Error Model

As mentioned in Section 1.2, we conceptually divide quantum circuit and layout

errors into three types:

Gate errors occur on qubits undergoing a gate operation. Gate errors can be based on

quantum operation type or physical location. Additionally, gates are the only places

where we model qubit interaction, where an error on one qubit could affect another

qubit.

Movement errors occur on qubits that are moved ballistically between gate locations.

Idle errors occur on qubits that are not doing anything due to decoherence through relax-

ation.

We choose not to model errors from inter-qubit coupling except in the case of

multi-qubit gates, thus movement and idle errors only occur on single qubits, and gate

errors only occur on either one or two qubits. For all the simulations and failure probability

estimates in the rest of this work, we assume all errors are uniformly depolarizing. This is

consistent with other studies and is also conservative compared to biased error models [6].

A depolarizing error introduces X, Y , and Z errors with equal probability, so if perror is

the probability that some error occurs on a qubit ρq:

E1qubit(ρq) = (1− perror)ρq +
perror

3
(XρqX + Y ρqY + ZρqZ) (4.6)

Where E is an error operator on the qubit state ρq and each error (X,Y,Z) is

equally likely with probability perror/3. In the coupled 2 qubit error case for gate operations

like CNOTs, the operator is as follows:

E2qubit(ρq12) = (1− perror)ρq12+

perror

15
(XIρq12XI + Y Iρq12Y I + ZIρq12ZI+

IXρq12IX + XXρq12XX + Y Xρq12Y X + ZXρq12ZX+

IY ρq12IY + XY ρq12XY + Y Y ρq12Y Y + ZY ρq12ZY +

IZρq12IZ + XZρq12XZ + Y Zρq12Y Z + ZZρq12ZZ) (4.7)
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Gate name Fault propagation rule

h Transforms an X error to Z and vice versa

phase and T Transform an X error to a Y error, no effect on Z errors

cx (CNOT) Z Pauli errors propagate from target to source, X Pauli er-

rors propagate from source to target.

cz X errors on either qubit propagate to Z errors on the other

qubit, Z errors do not propagate.

Table 4.1: Effect of gates on qubit errors

ρq12 represents the joint error state of both qubits subjected to the error. perror

does not need to be constant across all error types; in most cases throughout this work,

the basic movement, idle and gate error rates will all be different. We denote these as

pgate, pmove and pidle and will discuss in Section 4.8 more details on actual values of these

probabilities. In some cases we allow qubit gate errors to be parameterized with 3 different

probabilities: pmeasure (for measurement gates), p1gate (for non-measurement single qubit

gates), and p2gate (for 2 qubit gates). Previous work has pointed out that measurement

gates may have different error rates due to different physical processes [91].

4.2.1 Gate Error Propagation Model

In addition to introducing new errors on qubits, we must also propagate existing

errors between qubits in a 2 qubit gate interaction. This is important since quantum

error correcting codes are designed to handle independent errors on the physical qubits

making up an encoding. Any qubit that interacts with a qubit that experienced a fault is

now dependent on that erroneous state and therefore must also be counted as erroneous.

Additionally, certain gates actually transform Pauli errors of one type to another type.

For example, the Hadamard (H) gate transforms phase (Z) information to bit value (X)

information and vice versa.

From [1], we know how different types of errors flow from one qubit to another

depending on the gate type. Table 4.2.1 summarizes these rules. For a review of the QASM

instruction set in general, Section 2.1 has a detailed listing of all instructions. Any gates

that are not listed in Table 4.2.1 are assumed to directly pass all error types from input to
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Figure 4.2: This circuit shows a single X error on the target qubit operated on by the first

CNOT gate. That X error propagates from the control to the target qubit in the second

CNOT gate. Next, the X error is transformed into a Z gate by the Hadamard gate. Finally,

the Z error propagates from the target to the source in the last CNOT gate.

output unmodified.

In some cases only certain errors are propagated in certain directions. Figure 4.2

shows an example propagation through a circuit. We will obey these fault propagation rules

in the simulation techniques we will present later in this chapter.

4.3 Errors and Classical Information

The incidence and propagation of faults in the typical set of quantum gates was

handled in Section 4.2, but there are more operations we must handle. There are a number

of gate-like operations done in a fault tolerant quantum computer that do not fit under

the category of purely-quantum gates. These involve classical information in one manner

or another. We specifically note 3 types of classical-bit-involving operations that we must

handle specially in our models: qubit measurement, predicated quantum operations, and

qubit corrections. We now present our own modeling techniques for tracking correlations

between classical bits and the error states on qubits.

To present the mechanics of these specially handled instructions, we will be using

the QASM notation presented earlier in Section 2.1.

4.3.1 Qubit Measurement

Measurement is essentially a transfer of quantum to classical information. In order

to properly model a faulty classical result, we should have the probability distribution over

the qubit values as well as the associated error probability distribution. Then, we can
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simulate the collapse of the qubit state superposition and transfer the “measured” value to

the classical bit. Since we are tracking only the error distribution and not the full quantum

state space, we cannot do this and instead approximate.

If we look closer at where classical data is used in all the circuits we are interested

in, we note that they are only used as error syndromes in fault tolerant verification and

correction procedures. This means that the error information is more important than

quantum state for transferral to the classical bits. This is ideal because the error state is

the only thing we are tracking. Here is an example of a QASM measurement instruction:

xmeasure c0, q0;

zmeasure c1, q1;

So in our model, a Z error on qubit q0 would set c0 to 1 and a X error on qubit q1 would

set c1 to 1.

Additionally, we can model errors in the measurement operation by correctly trans-

ferring error from the qubit to the classical bit with some probability and flipping the clas-

sical bit with an error probability. So in the above example, if q0 has a Z error, the error

information transfers to c0 with a probability of (1 − pgate) and sets the opposite value

with a probability pgate. This action corresponds to the measurement process producing a

mistaken reading of the qubit state, thus giving the opposite classical bit value.

4.3.2 Qubit Corrections

Figure 4.3 shows the error correction procedure we use for all of our fault tolerant

circuits in our simulations. There are two separate phases, Z error correction and X error

correction.

In the first CNOT gate, Z errors flow from the target (data) to the control (az).

The xmeasure operation measures the Z error syndrome and then the classical syndrome

outcome is sent to the zcorrect block. This block is made up of two parts, a physical

model of the actual phase flipping based on the classical syndrome and a virtual zcorrect

instruction that tells the error simulator to update the internal error state of the data qubit:

# virtual instruction

zcorrect cz_1, ..., cz_n, data_1, ..., data_n : t;

# physical gates

(@cz_1 == 1) z data_1;
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Figure 4.3: Schematic of the error correction procedure operation. Each logical “correct”

operation is replaced with the above circuit. Correction of X and Z errors are done in two

separate phases.

(@cz_2 == 1) z data_2;

...

(@cz_n == 1) z data_n;

Where ax, az, cx, cz, and data are all encoded blocks of physical qubits or classical bits,

each addressed by the above notation “encodedname bitindex”.

The X error correction case is very similar. In the second CNOT, X errors flow

from control (data) to target (ax) and the zmeasure gate then measures the X errors and

produces the classical syndrome. This is passed to the xcorrect block that looks like:

# virtual instruction

xcorrect cx_1, ..., cx_n, data_1, ..., data_n : t;

# physical gates

(@cx_1 == 1) x data_1;

(@cx_2 == 1) x data_2;

...

(@cx_n == 1) x data_n;

In order to correct a logical block of qubits, we effectively reset the errors on them

as long as there are not more errors than the code we are using can handle. Our correction

operations take equal numbers of qubits and classical bits as input. Each classical bit

corresponds to the error on the qubit in order, so in this example cx_1 indicates a X

error on qubit data_1 and cz_1 indicates a Z error on data_1. The t at the end of the

instructions indicate that each instruction can correct up to 1 error of each type in this code.
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Correction type Qubit errors Clabit value Count error?

xcorrect X: no Z: don’t care 0 no

X: yes Z: don’t care 0 yes

X: no Z: don’t care 1 yes

X: yes Z: don’t care 1 yes

zcorrect X: don’t care Z: no 0 no

X: don’t care Z: yes 0 yes

X: don’t care Z: no 1 yes

X: don’t care Z: yes 1 yes

Table 4.2: All the possible error conditions for X and Z correction virtual instructions. Each

qubit maintains whether it is in an X and/or Z error state. In some of the above cases, the

error state of one of these types does not matter since the operation only accounts for the

other type.

The x/zcorrect operations effectively count the number of “errors” of that type that are

present in the given qubits. If that number exceeds the number of correctable errors, then

no action is taken (no correction). Table 4.2 lists all possible combinations of a qubit error

state and its associated classical syndrome bit, and what is counted as an error.

The actual predicated physical bit or phase flips are separate from the operations

performed by the virtual instructions described in Table 4.2 and will be explained further in

the next section. Rules we have defined in this table are conservative because we consider

either a qubit having an error or an error in syndrome measurement as a total failure on

that qubit. Second, we assume t is the maximum number of errors correctable regardless

of the pattern of errors on the qubits, in some cases, some codes may be able to correct

certain error patterns of more than t errors.

4.3.3 Predicated Quantum Operations

As noted above, we only used classical predication for error correction and verifi-

cation operations. Therefore, it is sufficient that the classical bit only signals the existence

of the measured type of error on the qubit. To revisit the example of the physical xcorrect

operation above, the physical correction operations would look like this:
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Figure 4.4: Producing a fault point stream. The schedule, layout and circuit produce a

series of movement, idle and gate events. The fault point extractor produces a stream of

error probabilities on specific qubits.

(@cx_1==1) x data_1;

(@cx_2==1) x data_2;

(@cx_3==1) x data_3;

As mentioned in Section 2.1, the (@bit1,0)= notation is a predicate, so the instruction is

only executed when the classical bit bit has the designated value. In this case, the x and z

instructions are conditionally fixing the error on that qubit in the encoding. This models the

physical quantum operation that would actually correct the error. Even though we do all

the work in updating the error state on the qubit in our virtual x/zcorrect instructions,

these bit/phase flip instructions are necessary to model errors which could occur in the

correction procedure itself.

4.4 Fault Point Streams

So far we have discussed types of errors and introduced how errors propagate

through a given circuit or layout. Before we discuss simulation of these errors we need a

more concrete description of what exactly our simulations are simulating. The basic process

for producing a fault point stream is shown in Figure 4.4.
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Event type Description

generate: q1 . . . qn p Error is generated on qubit(s) q1 through

qn with probability p

transform:gate q Transform errors on q according to rules

for gate gate

propagate:gate q1 q2 Propagate and transform errors between

qubits q1 and q2 based on the error prop-

agation rules for gate gate

transfer:gate q c Transfer errors on q to the classical value

on c according to rules for gate gate

xcorrect: q1 . . . qn, c1 . . . cn, t Correct X errors on encoded qubit block

q1 − qn based on syndrome bits c1 − cn

and number of correctable errors t

zcorrect: q1 . . . qn, c1 . . . cn, t Correct Z errors on encoded qubit block

q1 − qn based on syndrome bits c1 − cn

and number of correctable errors t

Table 4.3: Error events produced by fault point extractor.

Using a combination of layout, scheduling, and circuit specifications, we get a list

of events in the run of the circuit on the layout where errors could occur. The fault point

extraction step takes these events and produces a simple stream of error-centric events upon

which errors are produced and propagated. Table 4.3 summarizes these events.

The actual error extraction procedure is discussed in more detail later in Sections

4.8 and 4.9, but for now we will assume this fault point stream is available. The remaining

error simulation methods in this chapter will all use this fault point stream in order to track

and generate error throughout the run of the circuit.

With our assumed underlying fault model explained, we now move on to ways of

efficiently simulating fault events and propagation through a circuit.
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Operation Description

applyErrorMap(QubitSet qs, ErrorMap e) Transform error states in qs using error map e. The error
map specifies new error events that occur on a subset of
qubits in qs and the probabilities of each new event.

applyCorrectMap(QubitSet qs, CorrectionMap e) Transform error states in qs to a corrected state as dictated
by the correction map.

merge(QubitSet qs1, QubitSet qs2) Take two QubitSets and create a merged QubitSet consist-
ing of a Cartesian product of the two probability spaces.

split(QubitSet qs,Qubit q) Split qubit q off of qs, computing the marginal probabilities
of qubit states in qs without q.

Table 4.4: List of operations in Chi’s QubitSet [21] failure probability model.

4.5 Joint and Marginal Probabilities of Failure

Using the error event stream defined in Section 4.4, we will directly compute the

joint probability distribution of all the qubit errors in the system. We will review the

work already done on this by Chi et al [21] and discuss the time and space limitations to

the original proposal. To address these limitations, suggest performance improvements and

why we eventually abandoned this technique as a whole due to a poor accuracy-performance

tradeoff.

4.5.1 Previous Work: QubitSets

As a starting point for a deterministic probability model, we look at the notion

of QubitSets by Chi et al [21]. The idea behind this data structure is to track the joint

probabilities over the possible error combinations in a group of qubits. This is potentially

much more accurate than tracking only individual qubit fidelities, as done in Section 4.1,

since it captures important qubit correlations. In fact, proper fault tolerant error correction

procedures cannot be simulated at all with the simple fidelity model, since the procedures

rely on the correlated error transfer from the data to be corrected onto ancilla bits. The

fidelity-only model does not account for any correlations. This is why we only investi-

gated the fidelity model for simple error processes in communication and EPR creation and

purification.

We now summarize the rest of Chi’s QubitSet model, before presenting it on a more

rigorous footing and discussing extensions. A QubitSet represents all the error probabilities

on a set of qubits. Table 4.4 summarizes the basic operations used to track errors through

a circuit with a QubitSet. For each new operation in a circuit, the QubitSet model first
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merges together the disjoint sets containing all the qubits involved in the operation (if they

are in separate sets), to create a new joint set. It then applies either applyErrorMap

if the operation is a normal error-inducing one, or applyCorrectMap if the operation is a

correction. They additionally propose a few optimizations to reduce the state space tracked.

• If the operation is a measurement, split is applied to remove the measured qubits,

since we will no longer use their state.

• When qubits are merged, if a merged error state has a probability below a constant

threshold, it is excluded from the merged set.

The split operation offers some modest savings in resources by effectively providing garbage

collection to the QubitSet scheme, but the physical qubits that make up logical data qubits

have long running state that is never measured until the end of the circuit. The resources

used by these states will still dominate with an exponential space and time requirement.

The second optimization, which prunes out low probability events works pretty well in Chi’s

empirical results, but their test circuits had relatively shallow depth. With a longer run-

ning circuit, their method of discarding low probability events will, in many cases, lead to

a QubitSet with no probability. Additionally, Chi’s “preservation” method could underes-

timate the failure probability by an unbounded amount, a problem previously mentioned

in [77].

4.5.2 Joint Probability Evolution

Chi et al gave a general algorithmic description of his QubitSet technique but did

not provide a description in a mathematical context. We have done so here to aid in better

specifying our own implementation of this technique.

To define the joint probability distribution of errors over all qubits we start with

Ei ∈ {X,Y,Z, I}, which we define to be the random variable representing the error on

qubit qi. The set of all errors sampled at a particular time step t would be {E1, E2, ..., En}t

where n is the total number of qubits in the system at that time. Thus, the set of errors

due to gate, movement and idle qubit operations that occur throughout the circuit is the

time series:

E = {{E1, E2, ..., En}t, t ∈ T} (4.8)
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Figure 4.5: Computing the probability over a 3 qubit cat state (p(e = X) = 0.1, p(e =

I) = 0.9, only accounting for gate errors): At time step t = 0, there are no errors on any

qubits so p(fi = I) = 1.0. At t = 1: p(f1 = I) = 0.9, p(f1 = X) = 0.1, p(f2 = I) =

1.0, p(f3 = I) = 1.0. The first CNOT propagates the error from qubit 1 to qubit 2 so they

are not independent anymore. At t = 2: p(f1 = I, f2 = I) = 0.81, p(IX) = 0.030, p(XI) =

0.030, p(XX) = 0.13, p(f3 = I) = 1.0. Finally, at t = 3, the error probability must be

expressed as the joint over all qubits: p(III) = 0.73, ..., p(XXX) = 0.16. Note that even

though q1 and q3 did not directly interact, they are both conditional on q2.

Where the probability p(Ei = ei) at time t is defined by the operation error probabilities

from Section 4.2. We can also track the current set of faults on each qubit at time t as

F = {{F1, F2, ..., Fn}t, t ∈ T}. While E is a stationary process, F is not. As mentioned in

Section 4.2, inter-operation correlations that are not mediated by the qubit state itself and

therefore model it as a Markov process with probability distribution:

P (F(t)) = p(f1, f2, ..., fn, t) (4.9)

i.e. the probability at time t that qubit q1 has the error f1, q2 has f2, etc. This is a Markov

process since P (F(t)) is only dependent on P (F(t− 1)) and P (E(t)).

The distribution P (F) becomes difficult to compute as the number of qubits and

depth of the circuit increases. The reason is that while the probability that each qubit has

an error is initially independent of all other qubits, they become increasing conditional on

one another.

At the beginning of a given circuit, the number of probabilities we must keep track

of is O(4n) for n qubits. If we assume that every qubit is indirectly affected by every other
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qubit in a given circuit, the number of probabilities we need to track balloons to O(4n) for

the joint probability distribution over all qubits. This is if we want the exact probability of

error over all qubits at the end, but what if we are willing to accept an approximation?

4.5.3 Approximating Joint Probability

Calculating the full joint probability state over all the qubits in a non-trivial circuit

requires space and time exponential in the number of qubits. We now focus on some of our

own methods to reduce both the space and time resources we need to estimate the overall

failure probabilities. We will find that while these methods seem attractive, they inevitably

lead to unacceptable loss of accuracy.

Cached QubitSets

We call our first modification cached QubitSets. Many quantum circuits possess

a significant amount of redundancy, especially in fault tolerant subcircuits. For example,

preparing the verified ancillary state that is then interacted with data for error correction

is always the same for a given code (at least each verified round). Instead of recomputing

the QubitSets for the identical ancilla states each time, we can just cache the QubitSets

that are output from the ancilla subcircuits. This approach is easily implementable in the

context of the Quadence CAD flow since we represent our quantum circuits in as a modular

hierarchy as described in Section 2.1. We can substitute the simulation of a circuit module

with the cached QubitSet.

There are several ways we can perform this caching:

Explicit We can explicitly mark a module as “cached” in the qasm specification and the

program then will compute the QubitSet on the first invocation and use it throughout

the rest of the program.

Source-Only If we have a module that is a source in the dataflow graph, i.e. an ancilla

factory, we can automatically cache the resulting QubitSet(s), since there is no input

QubitSets that could affect the output.

Conditional For non-source modules, we can cache QubitSets predicated on the Qubit-

Set(s) of the input qubits to the module.
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The third method for caching sets would require an even more prohibitive amount of memory

needed to cache both the input and output QubitSets for modules. We consider only the

first two as viable options.

Low Probability Hamming Distance

Instead of using the techniques outlined in Section 4.5.1 to throw out low proba-

bility events, we can make a more conservative approximation and merge low probability

error events with the event of the closest Hamming distance. Additionally, we can prefer to

merge with events with a larger Hamming weight to make our estimate pessimistic.

In practice, we find that this method does not sufficiently combat the exponential

increase in the state space without spending exponential time to investigate and merge error

events based on Hamming distance.

Big Set Splitting

Instead of allowing the joint error probability model to grow as more qubits interact

and become dependent on one another, we periodically factor large joint distributions into

several marginal distributions. We decide the sets of qubits to factor into based on an LRU

policy, grouping qubits that have interacted most recently into the same set.

Cached Hierarchical Fidelities

The last approach potentially lacks the most accuracy. Instead of computing

QubitSets for all the physical qubits in a system, we can compute QubitSets for lower level

modules but instead of caching the output as QubitSets, we can compute a simple fidelity of

the operation and then just compute QubitSets of logical qubits using the module fidelities

to compute logical gate errors at a higher level.

This particular approach has the problem in that a correction operation in a fault

tolerant circuit effectively has a fidelity greater than 1. Setting the fidelity to such a value,

give us some sort of approximation although it is not immediately obvious how much accu-

racy is sacrificed since the amount that a correction operation reduces an encoded qubits

failure probability is not necessary linear as a greater-than-one fidelity implies.

In practice, the use of QubitSets can only be confined to use in situations of small

numbers of qubits. We have implemented a very efficient bit vector based version of the
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QubitSet calculation with the promising Big set splitting optimization and have witnessed

the following problem: the number of qubit dependencies that must be preserved for the

bare minimum level of accuracy is greater than the space available in most cases.

Consider the follow case: a single logical cnot gate encoded in the [[7,1,3]] Steane

code, followed by an error correction on the two logical qubits. First, the two QubitSets

for the logical qubits are merged due to the interacting encoded cnot, this gives us a set

of size 14. Next, we perform error correction on each logical qubit, requiring at least one

encoded ancilla qubit to become dependent on each of the logical qubits to be corrected.

This comes out to 28 qubits. Since each operation introduces some amount of error to all

qubits involved, it is not unreasonable to expect the number of error vectors to approach

228. In addition to the 28 × 2 bits (7 bytes) needed to represent error state, we also need

a 8 byte floating point number for the probability. This comes out to about 232 bytes,

already a gigabyte to represent 2 entangled, corrected, logical bits. This means we are

extremely limited in representing multiple logical entangled qubits. Also, this example used

a code that is almost the smallest, if we were to calculate the joint probability for a qubit

encoded in the [[81,1,9]] code, it would be prohibitive to represent even one encoded qubit.

Additionally, more than one encoded ancilla qubit is used in the correction steps, thus the

above minimal estimate is probably too conservative. In one measurement, our exact joint

probability calculation revealed an error probability of 0.75, whereas, with big-set splitting,

the error probability was approximately 10−20! Another possible argument is that our

splitting heuristic is not optimal, but in light of the previous example, we believe that any

splitting technique aggressive enough to combat the exponential state space growth will

sacrifice too much accuracy and not be a very useful estimate.

For this reason, we opt to use only the exact QubitSets without our investigated

optimizations, and then only to validate our other error simulation methods for correctness

on small example circuits. Later in this chapter we will investigate other improvements in

error simulation runtime that do not sacrifice as much accuracy.

4.6 Monte Carlo Simulation

Using our error event stream from Section 4.4, another failure probability estima-

tion technique is to perform a Monte Carlo simulation over this event stream. Figure 4.6

shows an example simulation process through a circuit. We run through the error event
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Figure 4.6: Simulating error propagation in quantum circuits. Our Monte Carlo simulation

method traverses the circuit n times in order to measure n successes or failures to compute

overall success probability.

stream n times, sampling errors at all fault points. For each iteration, we check the output

encoded qubits for a set of errors that cannot be corrected by the error correcting code

used. If such a set is detected, we have a failure, if not, a success. The final probability

of success the then just: psuccess = successes/(failures + successes). For each generate

event, we sample errors on qubits. Errors are propagated and removed as well from their

respective events. The basic algorithm our Monte Carlo simulator takes is the following:

We assume our errors to be all of the unbiased depolarizing channel type, as

outlined in Section 4.2. Random numbers are sampled with a Mersenne prime random

number generator rngpack from the Colt Java library [46] which is known for its long period

and thus makes it good for sampling large numbers or errors when simulating a large circuit.

Error propagate through a circuit according to the rules for simulating circuits given in [1]

and from Section 4.2.

Table 4.5 give a summary of the necessary actions our Monte Carlo simulator must

take for each error event type. In our implementation, each qubit in the system maintains

state as to whether it has an X and/or Z error or not. The Monte Carlo simulator just

updates these qubit states according to Table 4.5. While this simulation method is not
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Algorithm 3 Monte Carlo error simulation

events⇐ extracted error operators from layout

initialize qubitStates to no errors

failures⇐ 0

successes⇐ 0

while not enough runs for statistical significance do

for event in events do

if event is gate then

check to see if errors need propagating

else if event is correction then

if encoded qubit can be corrected then

update qubitStates to remove errors from correct qubits

else if qubit is output data then

failures + +

halt iteration

end if

end if

error← randomly select error (or no error)

if error indicates an error then

add error to qubit(s)

end if

end for

if finished all events then

successes + +

end if

end while

return failures/(failures + successes)
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Event type Action

generate: q1 . . . qn p Use a random number generator to sam-

ple whether any error occurs on qubit q,

according to error probability p. If so, use

another random number to determine the

Pauli error type(s) on the qubit(s).

transform:gate q Transfer X error state to Z and vice versa,

based on gate type

transfer:gate q c If X or Z error state on q is positive, set

the classical value on c to one, according

to rules for gate gate (zmeasure transfers

X errors, xmeasure transfers Z errors)

propagate:gate q1 q2 Propagate and transform X and Z error

states between qubits q1 and q2 based on

the error propagation rules for gate gate

xcorrect: q1 . . . qn, c1 . . . cn, t Reset X error state on each qubit q1 −

qn based on its associated syndrome bit

c1 − cn as long as there are fewer than t

X errors on all the qubit/syndrome pairs

zcorrect: q1 . . . qn, c1 . . . cn, t Reset X error state on each qubit q1 −

qn based on its associated syndrome bit

c1− cn as long as there are fewer than t Z

errors on all the qubit/syndrome pairs

Table 4.5: Actions taken by Monte Carlo simulator for each error event type.
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Figure 4.7: Comparison of success probability estimates from the Monte Carlo simulation

and the full joint probability calculation estimation methods. 95% confidence intervals are

included for the non-deterministic MC simulation. Each random circuit is encoded with

the 7 bit Steane code.

novel in itself, we have used it to more completely compare a set of quantum error correcting

codes than the studies in [90] and [25]. Using the communication estimation techniques in

Chapter 3, we sample not only gate errors but also qubit movement and idle from various

communication scenarios. We will also discuss in Section 4.7 our novel enhancements on

this technique.

4.6.1 Performance

Having two very different ways of modeling errors allows us to validate them

against each other to give us more confidence the results are correct.

Figure 4.7 shows that the estimated success probabilities for the two methods

closely match for a variety of random circuits. The Monte Carlo method used 100, 200,

and 300 iterations respectively for each point to generate the probability estimates. There

are no confidence intervals for the joint probability calculations since the calculation is

deterministic.

Implementing these two error estimation techniques exposed mistakes in both im-
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Figure 4.8: Runtime comparison of our Monte Carlo simulation and full joint probability

calculation estimation methods. Each random circuit is encoded with the 7 bit Steane code.

plementations. As these bugs were fixed, the two techniques converged on the same prob-

ability. We have also compared the estimates generated from our Monte Carlo simulation

to the results in Cross et al. [25] and found our pseudo-threshold estimates to be within

2x of theirs for a variety of codes. This is an especially appropriate comparison since we

use Cross’ ftqctools suite [24] to generate our encoding and correction circuits. We are

not expecting to exactly match their estimates, since their use an adversarial noise model

but the relative error pseudo-thresholds from our Monte Carlo simulator have very similar

relative differences between codes as their results report.

Figure 4.8 shows the exponential time complexity in the number of gates/qubits

simulated 1 of our implementation of the QubitSet joint probability calculation. We compare

this to our relatively efficient Monte Carlo simulator which shows only a polynomial runtime

increase. Due to the prohibitive runtimes of the QubitSet method, we opt to focus on using

and comparing Monte Carlo methods for the rest of this work.

1Qubits increase proportionately to gates in these random circuits
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Figure 4.9: Simulating error propagation in quantum circuits. Our regular Monte Carlo

simulation method traverses the circuit n times in order to measure n successes or failures

to compute overall success probability. Vector Monte Carlo traverses the circuit once but

for each error event, it generates a vector of n error scenarios.

4.7 Vectorized Monte Carlo

In profiling our Monte Carlo implementation from Section 4.6, we notice that the

majority of the time spent simulating fault incidence and propagation is on traversal of

the error event list and accessing qubit error state. Sampling random numbers takes up

about 0.7% of the runtime and the actual error calculation logic is approximately 5% of

the runtime. So about 95% of the runtime is “wasted” on traversal of the error event list,

retrieving error information on qubits, etc.

Furthermore, we note that since our control flow model is just predicated execution,

we evaluate each instruction in the same sequence. Instead of repeated traversal of the same

instruction sequence, we can traverse it once and do all the sampling of error events in one

pass.

We call this technique vector Monte Carlo or vectorMC. Figure 4.9 illustrates the

differences between our two different Monte Carlo simulation methods. Instead of keeping

information of a single occurrence of X and Z errors for each qubit, we keep a vector of

error occurrences. Each error type is represented by a bit vector and each gate, move, and
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Event type Operation Operator

Generate

(Pred)Err(Q1)
XQ1 = (XQ1 · ¯Pred) + ((XQ1 + ErrX) · Pred)
ZQ1 = (ZQ1 · ¯Pred) + ((ZQ1 + ErrZ) · Pred)

(Pred)Err(Q1, Q2)
(ErrX , ErrZ) ∈ (I, X, Y, Z ⊗ I, X, Y, Z) − II
XQ1 = (XQ1 · ¯Pred) + ((XQ1 + ErrX) · Pred)
ZQ1 = (ZQ1 · ¯Pred) + ((ZQ1 + ErrZ) · Pred)

Propagate

(Pred)CX(QC, QT)
XQT = XQT + (XQC · Pred)
ZQC = ZQC + (ZQT · Pred)

(Pred)CZ(QC, QT)
ZQT = ZQT + (XQC · Pred)
ZQC = ZQC + (XQT · Pred)

(Pred)H(Q1)
ZQ1 = (ZQ1 · ¯Pred) + (XQ1 · Pred)
XQ1 = (XQ1 · ¯Pred) + (ZQ1 · Pred)

Transfer
(Pred)XMEASURE(Q1,C1) DC1 = (ZQ1xorErrZ) · Pred
(Pred)ZMEASURE(Q1,C1) DC1 = (XQ1xorErrX) · Pred

Correct

(Pred)XCORRECT(C1, ...,
CN, Q1, ..., QN)

XQi = (XQi · ¯Pred) + ((Ci · (Count(XQ1...XQN ) <
⌊dist/2⌋)) · Pred)

(Pred)ZCORRECT(C1, ...,
CN, Q1, ..., QN)

ZQi = (ZQi · ¯Pred) + ((Ci · (Count(ZQ1...ZQN) <
⌊dist/2⌋)) · Pred)

Table 4.6: Boolean arithmetic rules over data and error vectors in the vectorMC error

simulator. Note that the CORRECT operations are not strictly boolean arithmetic but

instead require the counting of the number of true bits over a set and checking the sum

against the distance of the code.

idle error incidence or propagation is implemented by bit vector logical operations. Table

4.7 shows a listing of all the necessary operations to implement the Monte Carlo simulation

and the logical bit vector operations we use to implement them.

Figure 4.10 shows the accuracy and runtime for the vectorMC and standard Monte

Carlo simulation methods as a function of the number of effective circuit simulation trials

performed. Accuracy is plotted in terms of the confidence interval for the circuit success

probability for a simulation with the given number of trials. The smaller the confidence

interval, the more accurate the simulation is. As expected, the more trials we do for either

method, the more accurate the result. In fact, the accuracy for a given number of trials

is approximately the same for either method. This matches our intuition, since the error

propagation and sampling rules for MC and vectorMC are identical.

If we look at the runtime, vectorMC is substantially faster than the standard Monte

Carlo method of simulation for any number of iterations. For example, to simulate a circuit

made up of 6 million gates, the our standard Monte Carlo technique takes 405 minutes while

our vector simulation technique takes 32 minutes, more than a 10x improvement. This is

as expected since the overhead of the circuit traversal is amortized as only one traversal is

now needed. Looking at the output of a profiler, we see that doing a simulation with 1000
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Figure 4.10: Runtime and accuracy of the vectorMC versus regular MC success probability

estimation techniques. Accuracy is measured in terms of the average confidence interval for

10 random circuits simulated 20 times with n trials (n on the x-axis). The last two data

points for the Monte Carlo simulation were not completed due to the runtime limit on the

shared compute cluster used.

simultaneous trials, about 45% of the runtime is spent in the random number generator,

compared to the less than 1% of the time used by the regular Monte Carlo method.

We can also look at the performance of the two Monte Carlo methods as a function

of the number of error events processed. Figure 4.11 uses a constant number of trials to show

accuracy and runtime variation with problem size. As expected, the confidence intervals

increase for larger circuits, indicating decreasing accuracy as the number of different fault

paths increases.

4.8 Ion Trap Movement and Idle Error Models

We discussed a fault point generator in Section 4.4 and defined a set of possible

error events but did not specify how we determine those events from the layout and circuit

information that is input to the fault simulator. Since we already introduced our gate error

model in Sections 4.2 and 4.3, we do not need to add much more on this. We assume a
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Figure 4.11: Runtime of the vector Monte Carlo error propagation simulation versus the

original Monte Carlo implementation. The last two data points for the Monte Carlo simu-

lation were not completed due to the runtime limit on the shared compute cluster used.

particular probability of a gate error, pgate and that is all we need to specify for the generate

events. The rules for error propagation, transformation and transfer in gates in also detailed

in the same sections. Correction operations are also specified there. The remaining details

we need to specify now concern the error probabilities for the generate events from qubit

movement and idling. Our qubit movement error model is ion trap-dependent because there

are many geometric specific details that impact ion trap movement.

4.8.1 Movement Error

In the case of communication (movement) error, we derive an error probability for

each path an ion must travel between two successive gate locations. As shown in Figure

4.12, we break up probability events based on path segment. Segments are parts of the path

in which the ion goes straight, though the same type of trap, or changes direction through

a turn or intersection trap. The total path error probability is an aggregate of all the error

probabilities along these segments. These probabilities are aggregated similar to what was

done in Section 4.1.2:
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Figure 4.12: This shows a path of ion movement through ion traps that is broken into

segments. We get the probability of error of the whole path, ppath by aggregating error

probabilities along each segment.

(1− ppath) =
N
∏

i=1

(1− pi) (4.10)

Where ppath is the error probability for the entire path and pi is the error proba-

bility for just segment i.

(1− ppath) = (1− pstart)(1− pstop)(1− pmemory)
t(0)(1− pmemory)

t(S) (4.11a)

×
S−1
∏

i=1

((1− pstart)(1− pstop)(1− pmemory))
t(i) (4.11b)

× (1− c̄(i)pstraight(w(i), d(i), v(i), v(i + 1))) (4.11c)

× (1− c(i)pturn(w(i))) (4.11d)

(4.11a) corresponds to the starting and stopping of the ion at the source and desti-

nation gate locations, as well as the time they spend waiting around to do their operations.

The product is then over the remaining segments. (4.11b) covers the intermediate starts

and stops along the movement path. (4.11c) accounts for the movement of the ion along

straight channels and (4.11d) accounts for ion turns. Note that the use of c and c̄ assures

that, for each segment, we only count error from either straight line or turn movement.
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Variable name Description

ppath error probability along the whole path of movement

pstart error probability when a qubit starts moving

pstop error probability when a qubit stops moving

pmemory error probability of a stationary ion per unit time

pturn(w) error probability during an ion turning through a

w-way intersection

pstraight(w, d, vi, vf ) error probability for an ion moving straight through

d w-way intersections with a starting velocity of vi and

final velocity of vf

S number of segments in the ion path

w(i) number of openings in segment i

d(i) length of segment i

t(i) time the ion is stationary in segment i, note that this

time is in the same units as pmemory.

v(i) velocity of the ion entering segment i

c(i), c̄(i) c is 1 or 0 depending on whether the ion changes

direction or not in segment i. c̄ is the opposite

Table 4.7: Description of all the parameters in Equation (4.11)

Assumptions:

• This model assumes that for a given segment, the ion acceleration is constant so the

initial and final velocities completely describe the ion dynamics.

• We assume that memory errors from stationary ions are independent of the ion trap

geometrical configuration.

• We assume that the ion always has the same velocity magnitude moving into and out

of a turn.

• ppath is the probability that any error happens, so we could pick one of {X,Y,Z}

errors with some other probability distribution.
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Additionally, we do not need to account for any additional memory errors that

what was already mentioned for the movement path because it covers all the memory error

during the waiting times before and after gates as well as in the middle of a qubit movement.

4.8.2 Idle Error

All qubit idling that is during movement along a path is already specified in the

above movement model. We must next consider the idle error of qubits that are sitting

around in memory or awaiting another qubit at a gate location in order to perform a gate.

To get this information, we can look at the schedule of gate and movement events for each

qubit, for any period it is not undergoing either of these operations, we assume it is subject

to idle errors. Therefore we just have to go through the dependency graph of movement

and gate operations and then extract an idle event for each time period between a source’s

end time and a sink’s start time:

tidle = tstart
sink − tstop

source (4.12)

The idle error probabilities are defined similarly to the path movement error:

(1− pidle) = (1− pidle per µs)
t (4.13)

pidle is the total idle error probability for that time, pidle per µs is the probability

of idle error per microsecond and t is the time in microseconds.

4.8.3 Example Movement/Idle Models

The above model is intended to provide maximum flexibility in describing varia-

tion in error probabilities during ion motion. There are a number of specific error model

parameters that correspond to previous work:

Distance based

pstraight(w, d, vi, vf ) = dpbase move

pturn(w) = pbase move

pmemory = pstart = pstop = 0
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Error Error Latency

Physical Operation Set 1 [32] Set 2 [91] in (µs) [73]

One-Qubit Gate 10−6 10−4 10

Two-Qubit Gate 10−6 10−4 100

Measurement 10−6 10−4 500

Zero Prepare 10−6 10−4 510

Straight Move (∼30 µm) 10−8 10−6 10

90 Degree Turn 10−8 10−6 100

Idle (per µs) 10−10 10−8 N/A

Table 4.8: Error probabilities and latency values used by our CAD flow for basic physical

operations. This table is a reproduction of Table 1.1.

In this model, error probability is linearly proportionate to distance and distance only.

This is arguably the simplest model and is the basis of analysis in [37, 96, 97]. This

model was particularly suitable for these analysis because they all assumed a isotropic

swap-based movement model.

Turn based

pstraight = pmemory = 0

pturn(w) = pstart = pstop = pbase move

This model is more specifically targeted for trapped ion technologies since it is gen-

erally believed that it is easier to move an ion in a controlled manner in a straight

line rather than a accelerating it through a corner turning trajectory. This is the

assumption made in [48].

Memory-centric

pturn(w) = pbase move

pstraight(w, d, vi, vf ) = dpbase move/2

pstart = pbase move/200

pmemory = pbase move/140
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where t(i) is in units of single qubit operation latencies. Even though the base pmemory

is relatively low, t(i) can potentially be very high in realistic circuit schedules. This

model is featured in [56, 8].

4.9 Hybrid Error Modeling

In many cases, it is not necessary to have a fully-specified, detailed layout for

the entire design to check properties or optimize. For a large design, it is not practical to

construct a full, hierarchically flattened layout specification, all at the lowest macroblock

level. Instead, we may extract error properties of reused modules once and apply them

throughout the circuit simulation. We may estimate qubit movement in some situations

instead of computing exact macroblock distance, like for long wires between modules at

the coarse-mapping level. These all require a hybrid error model in which exact gate and

movement errors from portions of the layout with macroblock-level detail are combined with

inter-block communication estimates.

4.9.1 Error Streams from Layout Pieces

The basic behavior of a qubit in a layout is the following:

Pre-gate wait Wait in current location until time to do move to a gate location

Pre-gate move Move to a gate location to perform a gate

Operand wait Wait for additional operand qubits if gate operates on more than one qubit

Gate Perform gate operation

Post-gate move Move to another location, possibly memory, to wait for next gate

This process is repeated over and over again for each qubit throughout the run

of the circuit. Our hybrid error stream generator extracts gate, movement and idle errors

in different ways depending on the type of qubit and the type of communication. We will

break down the error components on a qubit type basis and how they are derived for each

situation. For all operations, we will separately specify the physical processes that qubit

undergoes and the mechanism by which we estimate the error for each process. In the

most general case of a LQLA or Qalypso datapath from Section 3.4.2 with macroblock-level

layouts of compute, memory, and teleportation regions, we only have three real cases.
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Figure 4.13: Simple sequence of 2 gates within the same compute region.

Intra-Region Gates

The simplest case of the above qubit behavior is shown in Figure 4.13. A qubit

has finished a gate at one gate location and is scheduled to be used in another gate. Since

everything happens within the same macroblock detailed layout, we can get precise numbers

for all associated error events. All the possible stages are as follows:

1. Wait for ballistic channel: Our qubit may have to wait for the next gate to be sched-

uled or for the ballistic channel it will use to clear. Since we have exact scheduling

information for gate and movements, we know how long the qubit must idle, thus we

can get an exact idle error probability.

2. Ballistic movement to next gate: Once it is time, our qubit moves to the destination

gate location. Since this is a macroblock layout we can apply the model in 4.8.1 to

get the movement error probability.

3. Wait for operands: If our qubit is not the last one to arrive for a particular gate, it

must idle there for some time. Since we know the exact arrival time of our qubit and

the last qubit in the interaction, we can compute an exact idle error probability.

4. Perform gate: Once all the operands have arrived, the gate can be performed. We

can apply the basic gate error operations detailed in Section 4.2.1.

All these macroblock level specified events can be directly input to our general

error event simulators (joint probability or Monte Carlos).
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Figure 4.14: Life-cycle of an EPR qubit used in the teleportation based interconnect.

EPR Qubits for Teleportation

The path an EPR qubit takes when setting up a teleportation link for communi-

cation is rather complex. Section 1.2.4 gives an overview of the teleportation mechanism

itself. Figure 4.14 shows all the error-prone stages that an EPR qubit undergoes when

setting up this link. For EPR qubit distribution, we use the simpler teleportation fidelity

model that we introduced in Section 4.1. Since our EPR qubits are not encoded and do not

undergo complicated error correction procedures, we do not have to worry about correlated

errors in these qubits. We extract error probabilities from each of these stages as follows:

1. Ballistic movement through generator: Since we have a macroblock detailed layout of

the generator, we can get the precise movement error probability using the model we

developed in Section 4.8.1.

2. Ballistic movement to router: We do not explicitly lay out the EPR distribution chan-

nels but given the sizing of a compute region and generator, we know how far a qubit

moves to get to the router. Therefore we estimate the movement error probability as

a function of this straight move distance.

3. Ballistic movement within router: Since we have a macroblock detailed layout of the

router (schematic in Section 3.2.4, we know all the ballistic movement that must take

place to get from the router input to the gate location used for chained teleportation.
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4. Gates for chained teleportation: If our EPR qubit is involved in a multi-hop dis-

tribution to the location of the data qubit it will teleport, it must perform chained

teleportation to get there. This involves several gates with other EPR qubits. Equa-

tion 4.3 gives the formula for our EPR qubit’s fidelity after the chaining teleportation.

We assume Fold is the fidelity of the qubit before the gates were applied and FEPR is

the fidelity of the chaining qubit.

5. Ballistic movement into purification region: After teleportation, the EPR qubit un-

dergoes purification before it is interacted with the data qubit. Since we again have

a macroblock detailed layout of the router, we know precisely what movement must

happen and use that to compute the error probability.

6. Wait for purification: Since we must accumulate a number of identical EPR qubits

first in order to do purification, our EPR qubit may have to wait for more to arrive.

This is the only point in the whole process that our EPR qubit may idle. Based on

which qubit this out of the total number needed to purify, we can compute the idle

time and thus the idle error.

7. Gates for purification: We know what sequence of gates must occur to perform pu-

rification using the DEJMPS protocol from Section 5.4. Thus we can compute the

resulting fidelity from this sequence of gates.

At the end of all this, we end up with an EPR qubit with some fidelity FEPR.

Inter-Region Gates

Another complicated scenario is if our data qubit must move from a one gate in

one compute region to the next gate in a different compute region. Figure 4.15 shows this

case and the actions are as follows:

1. Wait for ballistic channel: The qubit first waits in its original location for the schedul-

ing of the next gate and for the ballistic channel within the compute region to clear.

Since we have detailed scheduling information on this, we can compute an exact idle

error probability.

2. Ballistic movement out of compute region: To get to the interconnection router, we
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Figure 4.15: More complicated case of 2 gates in different compute regions.

must first move out of the compute region, this movement error can be derived exactly

from the compute region macroblock layout and the model 4.8.1.

3. Ballistic movement to router: We do not have macroblock detailed layouts the router-

compute region boundary but they are designed to adjoin each other, so the typical

movement estimate is just a few straight macroblock moves and a turn macroblock

move.

4. Ballistic movement inside router: Using the macroblock router layout and the detailed

movement error model, we can derive the exact movement error for this event.

5. Teleportation gates: We must perform a gate with an EPR qubit and additional single

qubit gates. The EPR qubit has errors calculated using the previous hybrid model

and the gate errors can be calculated using the basic model in 4.2.1. The next section

discusses the combination of our general depolarizing error model with the fidelity

model.

6. Ballistic movement to router output: After teleportation, our data qubit must move

out of the teleported-to router. The movement error is obtained using the macroblock

router layout and the movement model in 4.8.1.

7. Ballistic movement to the compute region input: This is essentially the same as step

3 except in reverse.
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8. Ballistic movement inside compute region: Same as step 2 in reverse.

9. Wait for operands: Similar to the intra-region case, we may need to wait for additional

operands. We can get the wait time from the schedule and compute the idle error.

10. Perform gate: Once all operands have arrived, perform the gate. Errors come from

4.2.1.

In all these steps the data qubit error events are computed using the general error

model presented in Sections 4.2 and 4.8. While the above description focused on moving

into and out of compute regions, the same exact sequence of error events applies to ancilla

qubits moving out of factories to be used in QEC procedures and non-transversal gates.

Also, moving a data qubit into and out of a memory region is the same.

4.9.2 Putting the Pieces Together

We use several different types of error models in the above error events for the

components of a qubit movement-idle-gate scenario: the gate error model is used from

Section 4.2.1, the ion trap specific movement/idle model from Section 4.8.1 and the fidelity

communication model from 4.1.2. The general gate and ion-trap specific movement/idle

error models are already compatible with one another, since they both rely on the same

depolarizing channel error assumption.

The fidelity based EPR error analysis has a different set of assumptions but we

can conservatively convert our EPR qubit fidelity to a depolarizing error probability. Since

fidelity is a measure of how much the given state varies from some reference state, namely

the error-free state, we can take the inverse to get an overall probability of error.

pEPR error = 1− FEPR (4.14)

We use then propagate this aggregate error probability to the data qubit as dis-

cussed in Section 4.2.1. Thus, this final fidelity gets integrated into one of the more general

joint or Monte Carlo simulators. With all these error events now compatible, we obtain the

error event stream that we introduced in Section 4.4.

With these failure modeling techniques in hand, we are now ready to evaluate

circuits, using gate, movement and communication errors that can be extracted from the

layout and mapping techniques from Chapter 3. The composition of the various error
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models presented in this chapter will allow us to do detailed analysis of circuits that are

much larger than have been analyzed before.
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Chapter 5

Error Analysis for Codes and

Communication

The aim of this chapter is to analyze the error properties of some critical subsys-

tems that will be used in a quantum computer. The error correcting subsystem and the

teleportation network present interesting case studies for the tools we have developed so

far.

One goal of this section is to identify codes that are particularly well suited for use

in the large circuits we will investigate in Chapter 7. “Well suited” can mean a number of

things, it could mean the code that delivers the absolute best success probability or the best

in an aggregate metric such as expected total latency or ADCR. This is the first comparison

of its kind in that it includes exact movement and idle errors in addition to gate errors for

many codes. The error correcting code analysis is the first of its kind in that it includes

exact idle and movement errors from layouts.

The teleportation network analysis shows off our fidelity based communication

error analysis and is useful in not only calculating error probabilities, but also to determine

the network resources needed to transport data over a given distance when it must stay

below a given error threshold.

5.1 Comparison of Failures in Codes

The relative reliability of quantum error correcting codes has been discussed pre-

viously in [90, 25]. Both of these techniques ignored some or all of the impact of commu-
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Figure 5.1: The basic error correction circuit for correcting a logical data qubit. Clean

encoded ancilla qubits are used to extract the X and Z error syndromes from the data. “+

ancilla” refers to the equivalent zero state in the X-basis.

nication and idle errors. Cross et al [25] attempted to estimate the time during which a

qubit was not in a gate and apply a memory error but this technique was inexact since

it did not use an explicit schedule and did not include communication distance and time.

Using the set of tools we have developed so far, combined with our error model and error

simulation techniques, we can provide the first comprehensive study of the 3 error sources:

gate, movement and idle errors.

5.1.1 QECC Choices and Benchmark Circuits

Table 3.1 shows the CSS codes we chose to analyze. Among them are the very

popular [[7,1,3]] Steane code, the [[23,1,7]] Golay code (which was shown to be one of the

best performing in a number of previous studies [25, 90]), the Bacon-Shor codes [4], and

surface codes [16].

We generate encoders for the codes under consideration using Andrew Cross’s

qasm-tools [25]. Following the conventions in many other works [5, 95, 25], we start by

encoding a single CNOT gate in the different codes under analysis. The test circuit we use

is shown in Figure 5.2. We must now fully specify the correct steps in this figure: the ancilla

verification and correction procedures are outlined in [90, 77]. Figure 5.1 shows a high level

view of the error correction circuit we use for all fault tolerant designs in this work. The



138

xprep

zprep

correct

correct correct

correct

Figure 5.2: In this circuit, each qubit line represents a logical encoded qubit and the gates

are logical, encoded gates. The correct blocks correspond to a Steane-type error correction
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the same except the CNOT that transfers errors between the encoded data and encoded

ancilla is reversed. This circuit only works for CSS codes, or codes that have a transversal

implementation of encoded cnot gates. All the codes we investigate here are CSS codes.

key resources in this process are clean encoded ancillae.

Figure 5.3 shows how syndromes are extracted from data for both X and Z errors.

The basic idea behind this procedure is that X and Z errors are allowed to flow from data

to ancilla qubits through the CNOT gates. The syndromes are then measured from the

ancilla to determine which data bits have errors. X errors are corrected with X gates and Z

errors with Z gates. Since the ancilla are prepared in states that do not entangle with the

data through the cnot, only the errors are entangled. Measurement collapses the potential
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encoded in the given code. Three of the four generated encoded ancilla are used to check

for errors and the other ancilla is output as clean if all the checks succeed. The bottom

ancilla is used to verify the verification ancilla. Multiple rounds may be necessary.

superposition of errors to a single error corresponding to the syndrome. The syndromes are

the same as those from the code’s check matrix in classical error correcting code terminology.

Clean zero ancilla production is shown in Figure 5.4 and follows the work of Steane

[90] and Cross et al [25]. The entire circuit is repeated up to r times or until the verify check

passes. The verify checks measure syndromes for error detection in order to determine if

there are any errors that could corrupt data if this ancilla was used for correction. If all r

rounds fail verification, the last prepared ancilla is passed on for correction anyway. r is set

statically on circuit synthesis in our system. Since the probability that there will not be an

error-free ancilla decreases exponentially with r, this is an acceptable trade-off, provided r

is large enough.

Cross et al cataloged threshold estimates for the above codes in the single encoded

CNOT circuit. Their estimates are a function of number of verification rounds [25], so

we use these estimates as a starting point for our own search. In general, we choose the

minimum number of verification rounds that gets us within 1% of the maximum achievable

threshold for each code. By doing this we are looking for the “knee in the curve” where

we can get a good threshold without requiring too many gates and qubits. In general,

codes with larger block sizes require more verification rounds since there are more qubits
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interacting with one another to encode the block, thus more possibilities for error.

At the end of our analysis of the encoded, corrected CNOT circuit, we will have

identified a set of “good” codes with low failure probabilities over a wide range of physical

error probabilities. Once we have completed our analysis of the CNOT circuit, we will take

the top performing codes and turn our attention to analyze code performance on the random

circuits we developed in Section 2.2.3. We point out that the only other comparative code

study on large (more than one logical gate) circuits was by Steane in [90] and large scale

circuit results were computed by his analytical model, not through actual simulation of

error propagation.

5.1.2 Evaluation Flow

To determine the probability of failure for each code, we layout the CNOT circuit,

then the random circuits using our tools introduced so far. Figure 5.5 shows the tool flow

used to do this analysis. Once the library file for the associated code is created using

ftqctools, it is used by the QEC synthesis tool to encode the test circuit. It is laid out in

the mapping/place and route phase, followed by extraction of error events and then the

verification via error simulation using the vectorMC simulation from Section 4.7. We use

two different movement error models, mentioned in Section 4.8.3: distance based and turn

based.
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Figure 5.6: Turn based movement error: Logical failure probability as a function of the

error probability of each qubit turn movement for the single encoded cnot circuit in Figure

3.19. The gate error probability is fixed at pgate = 10−3 and idle error was set to zero.

5.2 Comparing Code Pseudo-Thresholds

We begin our comparative study by looking that the probability of failure for each

code when we lay out an encoded version of the circuit shown in Figure 3.19. This is the

same circuit used in [25] for his code comparison. Since these circuits are small enough,

we can lay them out in their entirety using just the macroblock level layout and directly

extracting the error events.

Figure 5.6 shows code performance with the turn based error model as we vary the

base movement error rate. In this case, the [[23, 1, 7]] Golay code is consistently the best

code, regardless of the movement error rate. The low movement error case is consistent

with the results in [25, 90], since they do not account for movement. Since the turn based

model imposes less total error compared to the distance model, it makes sense that these

results match those for gate-only errors. The next best in performance is the [[25, 1, 5]]

Bacon-Shor code, which has been previously been shown to perform well due to its simple
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Figure 5.7: Distance based movement error: Logical failure probability as a function of the

error probability of each macroblock movement. Just as in Figure 5.7, gate error probability

is constant, pgate = 10−3, and idle error is set to zero.

encoder structure [7, 4]. Another perennial favorite, the Steane [[7, 1, 3]] code begins only

as 5th best but as the movement errors increase, it moves up to the number 3 slot, due to

the fact that it as well has a simple encoding structure because the code itself is relatively

small.

The curves for all the codes are relatively flat, at least compared to the distance

based model we will show next. This is due to the fact that our dataflow heuristic explicitly

tries to locate dependent gates in the same horizontal positions in different columns to make

qubits movement just a straight shot through the gate locations, without turns.

Figure 5.7 shows code performance under distance based movement errors. While

the [[23, 1, 7]] Golay code again does well for low error rates, it is quickly overtaken by a

number of other codes as movement error becomes more significant. Both the [[25, 1, 5]]

Bacon-Shor and [[7, 1, 3]] Steane codes have lower failure probability by 3x and 10x respec-

tively. In fact, in the high error case pmove = 10−4 per macroblock, [[7, 1, 3]] is the only

code that keeps its head above water, with a failure probability under 0.2 while the rest of
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the codes converge to total failure (near 1.0 probability). The [[7, 1, 3]] code fares better

because it is more compact so the qubits simply do not have to move as far in the encoder

to get to the logical cnot gate. The Golay code’s gate-error efficient structure work to its

advantage at first but finally the larger block size overcome any gate error efficiencies. The

[[25, 1, 5]] code overcomes [[23, 1, 7]] in the mid-level error range, despite the slightly larger

code size, because it has a simpler encoder. Thus there are fewer stages in the encoder

dataflow graph that qubits must flow through.

Given the relative success of the [[7, 1, 3]] code with more movement error, it is

surprising that the 2 level concatenated version of this code, [[49, 1, 9]], does not perform

better than it does. It quickly rises to the top in failure probability. At a movement

error probability of 10−5, this code is already near the top of the worst performers. One

explanation for this is that our layout or circuit does not take advantage of the locality

available in the concatenated structure and introduces unnecessary movement. Future work

will be to more closely investigate this issue.

In terms of how well these codes will perform on a real ion-trap based system,

we consider 10−5 a reasonable target error rate. We are interested in the relative error

rates between gate and movement errors. Projected error rates from [91] indicate a gate

to movement error ratio of 100x so movement error of 10−5 vs. gate error of 10−3 is

consistent. In the case of ion traps, the actual error rates will probably be somewhere

between the distance and turn-based models, since changing momentum of the ions when

moving around the corner will probably be more complex and noisy than straight line

movement. Since our movement error model is fully parameterizable, we can perform new

comparisons as physical data about the error processes becomes more plentiful.

5.2.1 Code Performance on Random Circuits

From these analyses, we single out the [[23, 1, 7]], [[25, 1, 5]], and [[7, 1, 3]] codes as

the promising ones. [[23, 1, 7]] for its usefulness when movement error is low, and [[25, 1, 5]]

and [[7, 1, 3]] for their relative robustness against movement error, especially in the 10−5

error rate region and beyond. We move on to study the performance of these codes under

various error scenarios with a larger circuit. Our next set of benchmarks are from the

random circuit generator introduced in Section 2.2.3. We have generated 5 random circuits

with an average of 500 logical gates, using a splitting fraction of 0.5. This circuit size has
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Figure 5.8: Error surface plots for 3 good codes. The z-axis is the final success probability

and the x and y axes are the movement and idle error probability. The movement error

probability is per macroblock moved (distance-based model from Section 4.8.3) and the idle

error rates is per CNOT gate latency. The gate error rate in this example is fixed at 10−3.

enough gates for non-trivial amounts of logical gate communication but still is small enough

to allow extensive simulation with a variety of error parameters.

We encode each random circuit in each of the 3 QECCs, Each circuit is mapped

to the Qalypso layout from Section 3.4.2. We extract error event streams for each using our

hybrid error model from Section 4.9.

Since we are down to only 3 codes, we choose to map out a more complete picture

of the associated error spaces of each code. We again fix the gate error rate at 10−3 and

vary the movement and idle error rates across a range of values. For each error rate set,

we apply the vectorMC success probability estimator from Section 4.7. The result is the

set of error surfaces shown in Figures 5.8a-c. While the actual error values are difficult to

compare on these graphs, they give us a global view of general sensitivities to error across

the codes.

From the surfaces, we again verify some of the points mentioned before: the

[[23, 1, 7]] code exhibits the best performance with low movement and idle error, exhib-

ited by it having the highest success probability in the back corner of the surfaces. All

the codes are more sensitive to idle errors compared to movement errors, evidenced by a

lesser slope in the success probability surface as movement error increases compared to the

idle error slope. The [[25, 1, 5]] code shows the lowest overall success probabilities for all

the base error rates, including the minimal error case (back corner) and the maximal error

edges in the front. Although we do not compute the exact amount, it appears that the

[[23, 1, 7]] code encloses the greatest volume out of the three, leading us to believe it is the
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Figure 5.9: Success probability as a function of movement and idle errors.

most versatile code over a wide range of error rates.

The error surfaces give us some insight into a particular code’s behavior over a

range of error rates but they also make it difficult to compare codes to determine the best

one in a given error scenario. Figures 5.9a and b give us a better opportunity to compare

codes, plotting the same data as shown in the error surface series. These comparisons are

similar to what we did for the single encoded CNOT circuit but it is interesting to see if

anything changes when we start to deal with issues such as longer range communication and

increased idle times in larger circuits. We see once again that all the success probabilities

fall off faster with increasing idle error compared to movement error. All the observations

made above are confirmed by these figures but we also notice that in the high idle error

regime in Figure 5.9b, the [[23, 1, 7]] code success probability falls off faster than the others

and the [[7, 1, 3]] ends up being a better performing code 10−4 to 10−3 error rate range.

5.2.2 Which code is best?

From our initial comparison of 11 quantum error correcting codes, we picked out 3

codes that seemed to have the best success probability over a wide range of error rates. The

[[7, 1, 3]], [[23, 1, 7]], and [[25, 1, 5]] codes were then subjected to further analysis on larger

random circuits. We found that the [[23, 1, 7]] code is a top performer for many different

error rates due to its relatively good distance to block size ratio. [[7, 1, 3]] outperforms the

other two codes in the high idle error regime.

Now that we have identified some good codes for use in the quantum error cor-
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rection subsystem of a fault tolerant architecture, we are going to switch gears and talk

about another important component: the error analysis of the long-distance teleportation

interconnect.

5.3 Analysis of Teleportation Interconnect

The teleportation-based interconnect plays an integral part in our tiled microar-

chitectures. Since this communication is so ubiquitous, we must carefully track the amount

of error that EPR qubits used for teleportation can introduce in the data. As mentioned

in Section 4.1 we leverage a simple fidelity based analysis of errors in the EPR transport

and purification processes. We translate this conservative estimate of error to real fault

probabilities when interacting with the data in a more detailed error simulation.

5.4 EPR Purification Model

As shown by Equation 4.3, the fidelity of the EPR pairs utilized in teleportation

(FEPR) has a direct impact on the fidelity of information transmitted through the tele-

portation channel. Since EPR pairs accrue errors during ballistic movement, teleportation

by itself is not an improvement over direct ballistic movement of data qubits unless some

method can be utilized to improve the fidelity of EPR pairs.

Purification combines two lower-fidelity EPR pairs with local operations at either

endpoint to produce one pair of higher fidelity; the remaining pair is discarded after being

measured. Figure 5.10 illustrates this process, which must be synchronized between the two

endpoints since classical information is exchanged between them. On occasion both qubits

will be discarded (with low probability).

The purification process can be repeated in a tree structure to obtain higher fi-

delity EPR pairs. Each round of purification corresponds to a level of the tree in which

all EPR pairs have the same fidelity. Since one round consumes slightly more than half

of the remaining pairs, resource usage is exponential in the number of rounds. There are

two similar tree purification protocols, the DEJMPS protocol [26] and the BBPSSW pro-

tocol [11]. The analysis of the DEJMPS protocol provides tighter bounds which assures

faster, higher fidelity-producing operation compared to the BBPSSW protocol. The effects
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are significant, implying that purification mechanisms must be considered carefully1.

Figure 5.11 shows error rate as a function of number of purification rounds. The

BBPSSW protocol takes 5-10 times more rounds to converge to its maximum value as the

1Dur also proposes a linear approach to purification [31]; unfortunately, it appears to be sensitive to the
error profile. We will not analyze it here.
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the midpoint generator are successively teleported until they reach the endpoint teleporter

nodes before being ballistically moved to corrector nodes and then purifier nodes.

DEJMPS protocol. Since EPR pair consumption is exponential in number of rounds, the

purification protocol has a large impact on total EPR resources needed for communication.

Other features of Figure 5.11 to note are that DEJMPS has higher maximum fidelity and

converges to maximum fidelity faster than BBPSSW (possibly because BBPSSW partially

randomizes its state after every round).

Finally, the time to purify a set of EPR qubits is dependent on the initial and

desired fidelity. The time to complete one round of purification is 1210µs from Table 4.8:

tpurify round = t2q + tms + tclassical bit (5.1)

5.5 Teleportation Network Fidelity Analysis

All of the tiled microarchitectures from Section 3.4.1 and 3.4.2 use teleportation

based interconnect for long range qubit communication. In long range communication,

the preservation of data qubit fidelity, is our highest priority. Therefore, we choose to

transport all data by way of single teleports, since this introduces the minimum error from

ballistic movement. This necessitates the distribution of EPR pair qubits to communication

endpoints. Since data qubits interact with these EPR pairs, the above threshold must be

imposed on them to avoid tainting the data.

Two options present themselves for distributing high-quality EPR pairs to chan-

nel endpoints. First, one could ballistically move the EPR pairs to the endpoints, which

is preferable to moving data ballistically because EPR pairs can be sacrificed if they accu-

mulate too much error. Second, one could route EPR pairs through a series of teleporters,

as shown in Figure 5.12. While preserving fidelity of our data states is top priority, when

dealing with less precious EPR pairs, we do not have to adhere to strict maximal fidelity
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preserving distribution methods. In the rest of this section, we will investigate the tradeoffs

between ballistic distribution and chained teleportation distribution of EPR pairs.

Fidelity Difference The final fidelity of these two techniques is approximately the same.

Conceptually, the final EPR pair either directly accumulates movement error (through bal-

listic movement) or is interacted with several other EPR pairs to teleport it to the endpoints

and these intermediate EPR pairs have accumulated the same distance ballistically. By in-

teracting with intermediate pairs, the final pair accumulates all this error. This statement

assumes that the fidelity loss from gate error is much less than the loss due to ballistic

movement, which is the case for ion traps, as shown in Table 4.8 (for two teleporters spaced

100 cells apart, ballistic movement error equals 1− (1− 10−6)100 ≈ 10−4 compared to 10−7

for a two-qubit gate error).

Long-distance distribution of EPR pairs can severely reduce the fidelity of the

EPR pairs arriving at a functional unit for data teleportation, as shown in Figure 5.13. In

order to process 1024 qubits, we could imagine arranging them on a square 32x32 grid, in

which the longest possible Manhattan distance is 64 logical qubit lengths. If we assume

that we have teleporter units at every logical qubit, EPR pair distribution could require up

to 64 teleports. From the figure, teleporting 64 times could increase EPR pair qubit error

by a factor of 100. The dotted line represents the threshold at which the EPR pairs must

be in order to not corrupt the data qubit when teleporting it. In order to preserve data

fidelity, we must use EPR pair purification. One way to think about this process is to stitch

Figures 5.11 and 5.13 side-by-side, so that EPR pairs accumulate error (degrade in fidelity)

as they are teleported and then purified back to a higher fidelity at the endpoints before

being used with data.

Latency Difference If teleportation is considered performed in near constant time, then

we would like to know the distance crossover point where teleportation becomes faster than

the equivalent ballistic transport. From Table 4.8, teleportation takes about 122µs while

ballistic movement takes 0.2µs per ion trap cell. Thus for a distance of about 600 cells,

teleportation is faster than ballistic movement. We assume our communications fabric to

be a 2-D mesh of teleporter nodes and use 600 cells as the distance that each teleportation

“hop” travels. Allowing teleportations of longer distances would further reduce communi-

cation latency in some cases but would then require more local ballistic movement to get
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formed, for various initial EPR fidelities. The horizontal line represents the minimum fi-

delity the EPR pair must be at to be suitable for teleportation of data qubits, 1−7.5∗10−5

an EPR pair from the nearest teleporter to its final destination.

5.5.1 Purification Resources

Earlier in this section, we noted that when we purify a set of EPR pairs, we

measure and discard at least half of them for every iteration. This means that to perform

x rounds, we need more than 2x EPR pairs to produce a single good pair.

To measure EPR resource usage, we count the total number of pairs used over time

to move a level 2 [86] error corrected logical data qubit between endpoints. This means we

are transporting 49 physical data qubits some distance by way of teleportation. We find

that the total number of EPR qubits necessary to move a datum critically affects the data

bandwidth that our network can support. This metric differs from that used in a number

of proposals for quantum repeaters which focus on the layout of a quantum teleporter and

are most concerned with spatial EPR resources, i.e. how much buffering is necessary for a

particular teleporter in the network [22]. We will show that our design is fully pipelined,
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and therefore only a small number of qubits must be stored at any place in the network at

any time.

We saw in Figure 5.11 that if we start at a relatively low fidelity and try to obtain

a relatively high fidelity, we could need more than a million EPR pairs to produce a single

high fidelity pair using the BBPSSW protocol. Therefore we use the DEJMPS protocol in

all further analysis. Even though the DEJMPS protocol converges to good fidelity values

much quicker, the exponential increase in resources for each additional round performed

means we must be careful about how much error we accumulate when distributing EPR

pairs. We will also show that the point in the datapath at which purification is performed

can have a dramatic impact on total EPR pairs consumed. We have 3 options:

Endpoints only: Purify only at the endpoints, immediately before using EPR pairs to

teleport data.

Virtual wire: Purify EPR pairs which create the links between teleporters, namely the

constant stream of pairs from a G node to adjacent T’ nodes. The result is higher

fidelity qubits used for chained teleportation.

Between teleports: Purify EPR pairs after every teleportation; this purifies qubits that

are being chain teleported rather than qubits assisting the chained teleportation.

We now model the error present in our entire communication path. Assuming the

EPR pairs at the logical qubit endpoints must be of fidelity above some given threshold, we

determine the number of EPR pairs needed to move through different parts of the network

per logical qubit communication.

Total EPR Resources Figure 5.14 shows that the Endpoints Only scheme uses the

fewest total EPR resources. This conclusion is evident if we refer back to Figure 5.11,

where purification efficiency asymptotes at high fidelity; thus, purifying EPR pairs of lower

fidelity shows a larger percentage gain in fidelity than purifying EPR pairs of high fidelity.

From this, we can see that to minimize total EPR pairs used in the whole system, it makes

sense to correct all the fidelity degradation in one shot, just before use.

Non-local EPR Pairs Another metric of interest is to focus only on those EPR pairs that

are transmitted to endpoints during channel setup (i.e. those that are teleported through

the path). This resource usage is critical for several reasons: First, every EPR pair moved
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Figure 5.14: Total EPR pairs consumed as a function of distance and point at which

purification scheme DEJMPS is performed.

through the network consumes the slow and potentially scarce resource of teleporters; in

contrast, the EPR pairs consumed in the process of producing virtual wires are purely local

and thus less costly. Second, because of contention in the network, EPR pairs communicated

over longer distances (multiple hops) place a greater strain on the network than those that

are transmitted only one hop. The channel setup process can be considered to consume

bandwidth on every virtual wire that it traverses. Third, the total EPR pairs transmitted

to endpoints during channel setup consumes purification resources at the endpoints—a

potentially slow, serial process.

Figure 5.15 shows that purifying EPR pairs after each teleport transmits many

more EPR pairs than purifying at the endpoints (either with or without purifying the vir-

tual wires). From this figure, we see that over-purifying bits leads to additional exponential

resource requirements without providing improved final EPR fidelity2. Virtual wire purifica-

tion improves the underlying channel fidelity for everything moving through the teleporters,

thereby allowing less error to be introduced into qubits traveling through the channel. For

2The authors of [22] claim that this nested purification technique (after every teleport) has small resource
requirements; however, they count spatial resources rather than total resources over time.
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a given target fidelity at the endpoints, virtual wire purification reduces the number of EPR

pairs that need to move through the teleporters and also reduces the strain on the endpoint

purifiers.

To summarize, we have made the following design decisions based on fidelity and

latency concerns:

Teleport data always: Data qubits sent to destination with single teleportation to min-

imize ballistic error.

Teleport EPR pairs: EPR pairs distributed to endpoints with teleportation, allowing

pre-purification to increase the overall fidelity of the network.

Purification before teleport and at endpoints: Purify intermediate EPR pairs before

they are used for teleportation as well as EPR pairs at the channel endpoints.

Finally, Figure 5.16 shows the sensitivity of the EPR resources necessary to sustain

our previous error threshold goals as a function of the error of the individual operations

like quantum gates, ballistic movement, and quantum measurement. The first thing to
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note are the abrupt ends of all the plots near 10−5. This is the point at which our whole

distribution network breaks down, and purification can no longer give us EPR pairs that are

of suitably high fidelity (above 1−7.5∗10−5). The fact that all the purification configurations

stop working for the same error rate is due to the fact that the purification schemes we

investigated are limited in maximum achievable fidelity by operation error rate and not the

fidelity of incoming EPR pairs (unless the fidelity is really bad). Throughout the regime at

which our system does work however, the total network resources only differ by a factor of

up to 100 for a 10,000 times difference in operation error rate.

In this chapter, we have applied the tools developed in Chapter 3 and 4 to provide

new analyses of some key components of any fault tolerant quantum computer design. The

work done in this chapter will be used to make important design decisions later on for the

support infrastructure of large circuits.

Our analysis is enabled by the tools described in earlier chapters. From the layout

that we designed using methods in Chapter 3, a stream of error events can be extracted

using the process described in Section 4.2. This event stream is then fed into the accelerated
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vector Monte Carlo error simulator described in Section 4.7.
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Chapter 6

Optimization of Fault Tolerant

Circuits

We mentioned earlier that quantum error correction has been estimated to con-

tribute a very large amount of overhead to a fault tolerant circuit. Previous rough estimates

have been that 95% of all the resource will go towards quantum error correction. In order

to verify this, we took 3 application circuits and encoded them in the [[7, 1, 3]] code using

our QEC synthesis tool and looked at the breakdown in gate count for the encoded and

unencoded circuits. We look at a randomly generated circuit from the generator described

in Section 2.2.3, a quantum carry-lookahead adder (to be described in Section 7.1.1), and a

Shor’s factorization implementation from Section 7.2.1. Table 6.1 shows the breakdown in

gate counts of these circuits. We note that all 3 circuits experience a thousand-fold increase

in gates from the logical circuit to the encoded, corrected version. This is because all the

logical gates are being expanded to many physical gates to implement the encoded version,

and we have added correction stages after every gate. If we look at the fraction of all these

Application Logical gates Total gate operations Percent QEC

Random 4.7× 103 5.73× 106 99.3%

Adder 6.75 × 104 7.98× 107 95%

Shor’s 2.14 × 1012 1.12 × 1015 95%

Table 6.1: Gate counts for 3 circuits encoded in the Steane [[7, 1, 3]] code.



157

Simple

Fault

Propagation

Input

Circuit

Optimized

Correction

Insertion

Encoding

Selection &

Insertion

Trap-level

Layout

Circuit

w/ Fault

Paths

Circuit

w/ Correction

Steps

Datapath

Map

Encoded

Circuit

Fault

Probability

Estimator

Fault

Extraction and

Modeling

Too many failures

Circuit

Mapped

to FUs

Ion Trap

Layout

Area

Latency

Full

Layout

Circuit Synthesis Layout to Ion Traps

Veri!cation

Success Probability

Extracted
Faults

Success Probability

Figure 6.1: The optimization stage in our design flow takes in a circuit with encoding

information and outputs an encoded circuit with correction stages inserted.

physical gates in the encoded circuit that go towards the correction stages, it is between

95% and 99%. This verifies the earlier estimates from others that quantum error correction

will take up 95% of all quantum circuits.

The purpose of this chapter is to devise a method to reduce this prohibitive over-

head, without sacrificing the necessary gains in reliability that error correction provides.

6.1 Error Correction Placement

Quantum error correction is a critical component to any quantum circuit due to

high qubit operation error rates. Figure 6.1 shows the process we use to create a fault

tolerant design. To produce there fault tolerant quantum circuits, we automatically syn-

thesize circuits with error correction procedures inserted. We introduce a novel technique

for optimizing the insertion of these error correction procedures. We then validate the fault

tolerance of the final design to make sure the error correction used adequately protects the

data.

Figure 6.2 shows our basic approach to reducing error correction overhead. Using

the standard correct-after-every-gate scheme as a starting point, we would like to remove the

correction stages that have the “least impact” on overall circuit reliability. The question

becomes: which correction stages are the least important? We assume that any circuit

of interest will not have a completely homogeneous topology with respect to each qubit.

Thus, some qubits are likely to be subjected to more error opportunities than other qubits

at certain points. We reason that it makes sense to correct these qubits more often. We

call these points in the circuit error critical and the circuit structure determines a error
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before, our technique only places error correction circuits where they are most needed.

criticality spectrum across all the qubits at all points in the circuit. A qubit undergoing a

lot of operations at one point in the circuit might be error critical but later when the qubit

is no longer used in the computation and is just idling, it would not longer be error critical.

With respect to the fault propagation modeling techniques developed in Chapter

4, we consider the error critical parts of the circuit to be the ones that are most likely to

have an unrecoverable error. For each modeling technique, the points that are most likely

to have unrecoverable errors are:

• Communication with the lowest qubit fidelity in the case of the fidelity based network

reliability analysis.

• Highest error probabilities in the joint probability model.

• Sampled unrecoverable errors in the case of the Monte Carlo methods.

We must estimate the effect of various fault paths through a circuit, We propose to do this in

the simplest manner to start with: model the gate networks as a error generating/passing

network. Each gate contributes one error unit to each qubit and it also propagates the

maximum error on the input qubits to all output qubits.

6.2 Fault Counting Model

Figure 6.3 shows an example of a circuit and how our fault counting model works

on it. This model assumes that each gate contributes one fault unit to each qubit in the
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Figure 6.3: This simple model is used to estimate error propagation on the circuit to be

optimized. Each gate effectively takes the maximum current error count out of all the input

qubits, adds one count for the gate error itself, then sets the output qubits to this value.

This models the fact that in general, the fault tolerance of a gate is limited by the most

error prone input qubit.

interaction and that errors are propagated from qubits with higher counts to qubits with

lower counts. Furthermore, we assume that a correction operation zeros this count. This

model tries to balance reality and simplicity, it exhibits some realism because:

• Gates are believed to be the primary source of errors on qubits so their role as gener-

ators of error units is appropriate.

• While different 2-qubit gates have different rules for propagating different errors be-

tween the qubits interacted, they all pass some types of errors between them. This

model assumes that all errors propagate to all qubits, which is pessimistic.

• Correction stages correct errors, so we would expect them to remove error units from

the qubits.

We will use this model to drive the optimization technique we will introduce in

the next section. However, it is good to be aware of this model’s limitations:

• No differentiation between phase (Z) and bit (X) errors in error propagation. For

example, a CNOT should propagate X errors from control to target and Z errors the

opposite way.

• The real combination of errors on qubit inputs to a gate is a more complicated function

than a simple maximum.
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• Each bit line in represents an encoded qubit so there are potentially complex interac-

tions between qubits in the encoded block not encoded by this counter.

• Correction operation success is not really dependent on such a simple logical-level

counter, but a complicated error distribution over the qubits that make up the encoded

logical qubit.

• We take the maximum of all the input error counts instead of some other aggregate,

such as minimum or sum. The max is not necessarily the most accurate way to model

real error propagation but we choose it out of convenience, since it is the easiest to

optimize.

Figure 6.4 shows an example of applying the rules from Figure 6.3 to a circuit.

We call the error counts on the qubits the “error distance” or EDist. For a given circuit,

we define the EDistmax to be the largest EDist in the circuit.

One reason why this particular model is interesting is that it closely matches the

model for estimating the latency of a classical circuit. In a classical circuit a gate’s output

is not stable or usable until the latest classical bit value reaches it. Thus, the total circuit

latency could be calculated as finding the global maximum of the output bit times as a

function of this local maximum calculation. We will discuss this more in the next section.

This global max is the same as the EDistmax we just defined.
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this circuit, we move the extra register from the left to the point where the subcircuits on

either side of the partition have equal latency.

6.3 Retiming for EC Placement in Circuits

In our optimized process, we try to add error correction steps only after the qubits

with the highest error counts, as long as we keep all qubits below a correctable threshold.

As mentioned before, this has an analog to minimizing the critical path latency of a circuit

and we have formulated this problem as a case of circuit retiming [59] from the classical

CAD literature. In this section, we will review classical retiming and give a formal definition

of our own quantum recorrection process.

6.3.1 Classical Circuit Retiming

Figure 6.5 shows an example of a classical CAD technique called circuit retiming, as

presented by Leiserson and Saxe [59]. Through this technique, we redistribute the registers

in a synchronous circuit in order to balance the latency of the between-register circuit stages.
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The idea is that the overall clock period of the circuit is determined by the maximum latency

stage, so we want to minimize the maximum latency stage.

This technique is performed by framing the register moving problem as a linear

program. A simplified version of the solution from [59] is given in Algorithm 4.

Algorithm 4 Retiming: Input: circuit graph G with vertices V and edges E

Compute minimum register counts between all vertex pairs in V

Compute maximum delay for all minimum register paths for all vertex pairs in V

Solve for a retiming r (a system of equations operating on register placements) so that

registers are not created or deleted from the circuit and so high delay paths include at

least one register

Modify register placements based on original positions and retiming r

Many interesting details are left out of this algorithm, they can be found in [59].

The intention of the above is to show the key portions of the algorithm. The first two

steps consist of running two all-pairs shortest-path algorithms, one for the paths with edge

weights and one for the paths with vertex weights. The next step involves solving a system

of linear equations to find a retiming, if one exists. The last step takes this retiming and

moves the registers around in the circuit. This simple version of their retiming algorithm

takes O(|V |3 log |V |) time, due to the time it takes to solve for r. A more complex but

faster algorithm can complete the task in O(|V ||E| log |V |) time [59]. We will go over many

of these details in Section 6.3.3.

6.3.2 Transforming Latency Retiming to Error Recorrecting

We want our circuit have enough correction steps to have a high output success

probability, but not too many steps so as to incur prohibitive overhead. We therefore have

two constraints if we would like to place error correction steps in our quantum circuit:

• Placing too many error correction steps does not necessarily protect our data better.

If the encoded qubits have a very low probability of any error, it is more resource

efficient to put off correction until it is more likely there are errors to correct.

• Placing too few error correction steps can be much worse because qubits will ac-

cumulate more errors and encoded blocks will have a higher probability of having

uncorrectable errors which will ultimately lead to corrupted output.
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Figure 6.6: The top circuit shows a simple model of counting errors introduced to qubits

through gates. Each gate adds one error unit to each qubit involved. Additionally, when

qubits interact, they propagate their error counts to each other. The left circuit shows the

same circuit with the standard conservative placement of error correction procedures (one

after every gate).

Furthermore, the gates in the error correction procedure itself also contribute error,

so if our encoded qubits have zero error on input to the error correction step, they could

come out with more error than they went in with. Over-corrected qubits might have a higher

fault probability than “optimally” corrected qubits. We will return to this hypothesis later

in the section.

In the end, our goal is the following: minimize the number of resources used for

error correction in a quantum circuit while minimizing the probability of errors on the

output.

In order to minimize errors in our circuit overall, we would like to make sure all

the qubits going into error correction steps have not already acquired an uncorrectable

number of errors. Under our fault counting model from Section 6.2, our goal of minimizing
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the maximum error count (EDistmax) is very similar to minimizing classical circuit stage

latency. If we assume that an error correction step resets a qubit’s error count to zero,

much like a register resets a classical bit latency to zero, we just have to exchange register

placement with error correction step placement. We call our correction step placement

optimization “recorrection” and will now show its close relationship to retiming.

6.3.3 Formal Definition of Recorrection

To be precise we now present the formal framework for our recorrection optimiza-

tion. We start with an algorithm that takes a circuit with some correction steps already

placed in it (not after every gate) and positions them to minimize the maximum error count,

or EDistmax. The next step is to determine how many correction steps should be placed.

To do this, we define an input parameter: EDistthreshold to be the maximum tolerable

EDistmax for the circuit. We continue by showing how to determine the minimal number

of corrections necessary to satisfy a given EDistthreshold. Since the recorrection technique

very closely mirrors classical circuit retiming, we will follow the derivation of retiming given

by Leiserson and Saxe [59] and point out how our optimization differs. We stress that most

of the reasoning in this derivation is from the previous work and that our focus is on the

connection between latency in classical circuits and error propagation in quantum circuits.

We preserve the labels of the algorithms and theorems from [59] and omit the proofs except

where the recorrection case differs.

To restate the problem, we are given as input to our recorrection algorithm an

EDistthreshold and a corrected or uncorrected, encoded circuit. Compared to the retiming

case, this is solving the reverse problem: we may initially not have any correction steps in

our circuit and will have to insert some to meet the required EDistthreshold. In the retiming

case, the number of registers is fixed and they are just moved to achieve some initially

unknown optimal clock period. We represent our input circuit as a weighted multigraph:

G = (V,E, d,w) (6.1)

V is the set of vertices and E is the set of edges. Each vertex represents a gate in

the circuit and each edge e : u
e
−→ v represents a qubit communication from gate u to gate

v. If v ∈ V , d(v) is the error unit count on the gate v. If e ∈ E, w(e) is the number of

correction steps along that qubit communication link. An initial uncorrected circuit input
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edges are labeled with weights w(e) and the vertices with d(v).

will have w(e) = 0,∀e ∈ E. An example of such a equivalence is shown in Figure 6.7. Here,

vertices are labeled by d and edges by w. We can define a path through this graph from v0

to vk as:

v0
p
−→ vk = v0

e0−→ v1
e1−→ . . .

ek−1

−−−→ vk (6.2)

w and d can be defined over this path p:

w(p) =
k−1
∑

i=0

w(ei) (6.3)

d(p) =

k
∑

i=0

d(vi) (6.4)

Furthermore, we can define the set P of all paths in G as:

p ∈ P : u
p
−→ v,∀(u, v) ∈ V × V where u, v are connected (6.5)

There are 2 constraints that are placed on this representation:

D1: d(v) ≥ 0,∀v ∈ V , this means each gate must contribute 0 or more error units

W1: w(e) ≥ 0,∀e ∈ E, this means each edge cannot have a negative number of correction

steps

Missing from this list is the original retiming constraint W2, which states that for

any cyclical path p ∈ P,w(p) > 0 (i.e. all cycles must be “broken” by registers). We can

ignore this constraint because we assume all the quantum circuits we optimize are acyclic.
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We make this assumption because we unroll all logical circuits with loops in them. All of our

quantum circuits that have perceived loops (Figure 7.2 for example), actually use classical

values to determine the number of times looped. We assume that a circuit is re-synthesized

for each new set of classical loop parameters.

We define a function over G that is equivalent to EDistmax:

Φ(G) = max
p∈P

(d(p) : w(p) = 0) = EDistmax (6.6)

Algorithm 5 gives a method for computing Φ(G).

Algorithm 5 CP

G0 is a subgraph of G with only edges e ∈ E such that w(e) = 0

Go through all v ∈ V in topological order

if v has no input edges then

Set ∆(v) = d(v)

else

Set ∆(v) = d(v) + maxu∈V

(

∆(u) : u
e
−→ v,w(e) = 0

)

end if

Φ(G) is maxv∈V ∆(v)

Note that ∆(v) is the EDist for the qubits output from v.

Next, we introduce a recorrection, r : V → Z on the graph G as:

Gr = (V,E, d,wr) (6.7)

wr(e) = w(e) + r(v)− r(u),∀e ∈ E and u
e
−→ v (6.8)

Intuitively, the recorrection (r) map determines how correction steps move through

the circuit. r(u) = n means that n corrections move from an output edge to an input edge

from the original circuit. We can extend this to paths:

Lemma 1. wr(p) = w(p) + r(v)− r(u),∀p ∈ P and u
p
−→ v

Corollary 2 from the retiming work is unnecessary, since our circuits do not have

cycles. The corollary states that for any cycle p in G, wr(p) = w(p).

We define a recorrection r as legal if Gr satisfies constraint W1 and D1 (W2 does

not apply). The next step is to show the minimal sufficient conditions to r being legal.
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Corollary 3. Let r be a recorrection of G, such that Gr satisfies condition W1, then r is a

legal recorrection.

This is true because condition D1 is invariant over recorrections and condition W2

does not apply.

It is not necessary to prove G is equivalent to Gr as is done in the retiming case,

since correction steps do not change the functionality of a circuit.

Our goal now is to find a recorrection r of G that minimizes Φ(Gr). The next step

is to define the pairwise aggregates:

W (u, v) = min
p∈P

(

w(p) : u
p
−→ v

)

(6.9)

D(u, v) = max
p∈P

(

d(p) : u
p
−→ v,w(p) = W (u, v)

)

(6.10)

The next step is to relate Φ and D:

Lemma 4. The two are equivalent for any integer c:

Φ(G) < c (6.11)

∀u, v ∈ V, if D(u, v) > c, then W (u, v) ≥ 1 (6.12)

Algorithm 6 gives a method for computing W and D.

Algorithm 6 WD: compute W (u, v) and D(u, v) for connected verts u, v ∈ V

Weight edge e with source u with the ordered pair: (w(e),−d(u))

Compute the all-pairs shortest paths over weighted edges

for Each shortest path (x, y) for (u, v) do

W (u, v) set to x

D(u, v) set to d(v) − y

end for

Next, we note W and D are useful under recorrection:

Lemma 5. Given W and D for G, if r is a legal recorrection of G, and if Wr and Dr are

analogous for Gr, then:

1. The critical paths of Gr and G are the same
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2. Wr(u, v) = W (u, v) + r(v)− r(u),∀u, v ∈ V

3. Dr(u, v) = D(u, v),∀u, v ∈ V

Since D is invariant under recorrection, we can make the following observation:

Corollary 6. If r is a recorrection of G, the EDistthreshold, Φ(Gr), is D(u, v) for some

u, v ∈ V .

Next we give the conditions under which a recorrection produces a circuit whose

Φ(Gr) ≤ c

Theorem 7. r is a legal recorrection of G such that Φ(Gr) ≤ c iff

1. r(u)− r(v) ≤ w(e),∀e ∈ E

2. r(u)− r(v) ≤W (u, v) − 1,∀u, v ∈ V such that D(u, v) > c

Algorithm 7 FEAS: given G and EDistthreshold c

for v ∈ V do

Set r(v) = 0

end for

for |V | − 1 times do

Compute Gr for the current r

Run Algorithm CP on Gr to get ∆(v),∀v ∈ V

∀v : ∆(v) > c, set r(v) = r(v) + 1

end for

Run Algorithm CP again to make sure EDistmax ≤ EDistthreshold, otherwise r is not

legal

The constraints above are solvable by a Bellman-Ford shortest path algorithm.

One solution to find the best recorrection is to binary search D(u, v)s for a minimal Φ(Gr),

using Bellman-Ford to check each D(u, v) for a legal r. Instead of using Bellman-Ford to

test D(u, v), however, we use a more efficient method, given by Algorithm 7.

Satisfying EDistthreshold

So far, we have followed the derivation in [59] to get information about a corrected

circuits EDistmax (or in the classical case, clock period). We will now depart from this to

figure out how to insert correction steps to satisfy a EDistmax ≤ EDistthreshold.
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edge esuper. w(esuper) with then be the number of correction steps on esuper.

We first need a place to insert our new correction steps so they have the flexibility

to go anywhere in the circuit. We create a new multigraph that we will call a rooted graph

and designate a place to put the corrections. We define S to be the set of all source vertices

in V (vertices with no input edges). We add a new vertex that we call a supernode, vsuper,

and connect this vertex to each of the source vertices. For each v ∈ S, we add an edge e,

such that:

vsuper
e
−→ v, and w(e) = 0 (6.13)

Next we add an additional vertex, vroot that connects to vsuper with edge esuper :

vroot
esuper
−−−−→ vsuper. Figure 6.8 shows this augmented graph. esuper is the starting point for

all the correction steps we will insert into the circuit, specified by w(esuper). The idea is

to binary search the settings to w(esuper) until we get the minimal w(esuper) that gives us

the desired EDistthreshold. We are now in a position to extend Algorithm OPT2 from the

original work to do this reverse mapping in Algorithm 8.

We call this process RECORRECT. The derivation very closely follows that of

[59]. The key insight was simply that the w(e) counters could be mapped to the correction

steps on qubits between gates and that d(v) could correspond to gate error instead of delay.

From this, the r map moves correction steps around the same way it moved synchronous

registers. Equation 6.8 guarantees that the number of correction steps in the system stays

constant. The relaxation algorithm, 7, shifts corrections in order to redistribute and mini-

mize EDistmax.

Since Algorithm OPT2INV has a similar structure to Algorithm OPT2 from [59],

the runtime is similar as well. We note that we added an extra binary search for the

number of correction stages inserted (w(esuper)), so the runtime increases by a factor of
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Algorithm 8 OPT2INV: Input: Graph G and EDistthreshold

Create rooted graph H from G

while Binary searching w(esuper) in H for min that satisfies EDistmax ≤ EDistthreshold

do

Compute W and D with Algorithm WD

while Binary searching D(u, v) do

Test D(u, v) for feasibility using Algorithm FEAS

end while

Minimal feasible D is EDistmax

Save r in R[w(esuper)]

end while

Minimal w(esuper) that produces EDistmax ≤ EDistthreshold is number of corrections

necessary

R[w(esuper)] is the optimal recorrection

log |E|, giving us a total runtime of O(|V ||E| log |V | log |E|).

6.3.4 Recorrection and Real Error Probability

There are still a few unknowns in this inner optimization loop that we do not know

a priori:

• What final probability of a unrecoverable error on the output do we want?

• There is no exact mapping between the maximum allowed error count EDistthreshold,

and the target failure probability. We could reason that it is more than 1 − (1 −

errgate)
c, but there is no reliable mapping.

Since different circuits have different reliability requirements, we rely on the user

of our flow to specify the expected output success probability, pfinal. It is assumed that

pfinal is an achievable value. One way to guarantee this is to set pfinal to be equal to or

less than psuccess for the unoptimized, correction version of the design. pfinal determines

EDistthreshold but due to a complex non-linear relationship, we rely on a full error simulation

like one of the methods described in Chapter 4 to pick the EDistthreshold that yields the

proper pfinal. Figure 6.9 shows this entire flow. Figure 6.10 shows an example of this
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process of an “outer loop” selecting a target success probability or fatal error probability

and searching for the best EDistthreshold. The “inner loop” searches for the minimal number

of correction steps to achieve that threshold.

The complexity of our flow consists of a binary search over the EDistthreshold

parameter, doing a run of the RECORRECT algorithm each time. Furthermore, for each

EDistthreshold, we perform a full error simulation. If the number of gates in the circuit is

d, this gives us a computational complexity of:

O(log d× (O(RECORRECT ) + O(simulate))) (6.14)

The log d factors correspond to binary searches for the right EDistthreshold.

6.3.5 Results for Random Networks

To test out the effectiveness of our optimization flow, we use both random circuits

and some real quantum applications. We discuss the results of our tools on applications

like adders and Shor’s algorithm later in Chapter 7, but for now we look at performance

on random circuits encoded with one level of Steane’s [[7,1,3]] code. Our random circuit

generation technique used is summarized in Section 2.2.3.

In Figure 6.11 and 6.12, we compare the number of physical gates and success

probability in encoded random circuits of varying sizes and 2 circuit splitting fractions.

The “unopt” lines are for circuits in which we correct after every logical gate, and for “opt”

lines we perform recorrection with an EDistthreshold of 3. We see that for larger circuits, the

recorrection optimization gives us a factor of 3x in encoded operation reduction for circuits

with both Rent’s parameters. The probability of error degrades by 2% for the circuits with

a Rent’s parameter of 0.1 and 4% for the circuit with a Rent’s parameter of 0.5.

The results above do not actually show the recorrection performed at the optimal

EDist parameter (which sets the distances between error corrections). We simply chose

an EDistthreshold of 3, which is pretty good for these types of random circuits. Figure

6.13 shows quality of the optimization as a function of EDist for an average of 5 different

1500 logical gate random circuits. In this figure, EDistthreshold = 1 corresponds to the

unoptimized circuit in which we correct after every gate. The success probability degrades

minimally at an EDistthreshold = 3, and then falls off after that. Even though this EDist

is relatively small, we see that the number of operations falls off most dramatically going
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Figure 6.11: Circuit element count and success probability for random circuits with splitting

fraction 0.5, with and without recorrection. Each point corresponds to the average number

of physical operations in the circuit over 5 random circuits. We set EDistthreshold = 3 for

this optimization.

from 1 to 3. This means that even if we are not willing to sacrifice success probability, we

can still achieve a large amount of operation count savings.

6.3.6 Effect of Non-Gate Errors

The next question we ask is: what happens if we include errors from other sources

that are not accounted for by our error counting model? It turns out that we can still do

pretty well. In Figures 6.14 and 6.15, we plot the success probability of some ≈ 1500 logical

gate circuits as a function of movement and idle error strength. In both figures, we see

that the recorrection optimized version’s success probability closely tracks the unoptimized

version from the regions of high probability down to zero.

The recorrected success probability diverges by 10% at one point in the idle er-

ror curve in Figure 6.15, as both configurations roll off at 10−5. Most of the rest of the

points show less probability variation between the optimized and unoptimized versions of

the circuit. This indicates that even though recorrection does not account for idle and

movement error in its fault model, it still tracks the unoptimized version closely. One pos-
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Figure 6.12: Circuit element count and success probability for random circuits with splitting

fraction 0.9, with and without recorrection. Each point corresponds to the average number

of physical operations in the circuit over 5 random circuits. We set EDistthreshold = 3 for

this optimization.

sible explanation for this is that both correction placement techniques do not account for

idle and movement error so there is no reason why one should be better than the other. We

still might expect the unoptimized version to have a more noticeable improvement over the

optimized one since having extra corrections might correct large movement and idle errors

unintentionally. The flip side to this is that additional corrections could increase both area

and latency of the design and introduce more movement and idle error sources.

6.3.7 Limitations

This optimization technique is rather simple. First of all, EDistthreshold and n

are simply determined by brute force search and trials of candidate values against a full

simulation. Ideally, we would derive these values from circuit structure or at least get a

good first estimate from the structure. Second, EDistthreshold is set to be constant across

the entire circuit so even if the structure varies radically in different circuit regions, it will

be chosen so as to be the best overall fit that provides the minimum success probability.

We made the assumption a while back that the best thing to optimize in this model
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Figure 6.13: Circuit element count and success probability for random circuits with ap-

proximately 1500 logical gates, under recorrecting optimization. The maximum error count

parameter EDist is being varied and each point is an average over 10 random circuits.

The correct-after-every-gate points for success probability and gate count correspond to the

points on the left edge. The point for the success probability with no correction or encoding

is also shown on the far right as EDistthreshold = 1.

was the maximum EDist in the circuit, or EDistthreshold. We tried to develop some intuition

earlier in the last chapter as to why this is a good thing to optimize, but it is not clear that

another metric might not do even better. There are other optimization fitness functions,

such as the overall sum of all the error counts in the circuit of the sum of all error counts

going into a correction stage. We will continue with our minimization of the EDistthreshold

since it matches our intuition and naturally lends itself to the retiming solution, but future

work may be to try other fitness functions.

We mentioned in Section 6.3.4 that we were optimizing our circuit for a particular

pfinal target. The outer loop of our optimization is producing a layout, delay estimate

in order to produce our final success probability, pfinal. We could instead opt to use a

different metric such as ADCR to drive our search for a good EDistthreshold. Since this

chapter was mostly about establishing our optimization as a good way to reduce operation

count without impacting success probability. In Chapter 7 we will discuss using ADCR as
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Figure 6.16: We can attain similar levels of fault tolerance by either correcting often with

a weaker code, or correcting less often with a stronger code.

a driver for our ADCR− optimal optimization levels.

Finally, as we mentioned above, none of the error correction placement techniques

are sensitive to non-gate error sources in the design. We have shown that this is not a big

problem for cases in which the gate error rate is dominant, but we might be able to get

better success probability if we were to account for these added factors.

6.4 Code Selection and Optimization

Besides the variation of parameters in the optimization phase we have additional

flexibility in trading off area/operations used for fault tolerance. The QEC synthesis phase

allows us to select different codes to insert into a design as we showed in Section 5.2.

Combining our optimization step with the code synthesis step gives us additional freedom

to decide how many gates are used in the error correction subsystem.

Figure 6.16 gives an example of this trade-off. In general, we would expect data

encoded in a stronger code to be able to go for longer and still be successfully corrected

since more errors can be tolerated. Revisiting Figure 6.6, one would expect a [[25, 1, 5]] code

to tolerate twice the error count as a [[7, 1, 3]] code, since it can correct 2 errors instead of

one.

Revisiting the graphs in Figures 5.9, 6.15, and 6.14, we are now in a position

to compare the performance of unoptimized and recorrected versions of the 3 codes we

identified as most promising in Chapter 5.

Figures 6.17 and 6.18, show how our 3 top performing codes perform as a function

of idle and movement error, with and without recorrection. In terms of movement impact,
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Figure 6.17 shows us that the success probability for optimized and unoptimized versions of

all the codes falls off at an error rate around 10−5. The optimized version of the [[25, 1, 5]]

code is the worst performing fault tolerant design for all movement rates. Additionally,

the optimized version of [[25, 1, 5]] diverges the most from the unoptimized version. This

indicates that the [[25, 1, 5]] code is a poor candidate for recorrection. The [[7, 1, 3]] code

has the closest tracking optimized and unoptimized versions in general.

We have introduced our recorrection optimization, which is based on classical cir-

cuit retiming and have shown how it substantially reduces the number of resources necessary

for a fault tolerant architecture with minimal sacrifice of error probability. We show that

a [[7, 1, 3]] encoded architecture can maintain essentially the same success probability on a

set of random circuits while cutting the total number of operations by 4x. We also showed

that none of the recorrected versions of circuit encoded in different codes are substantially

more sensitive to different idle and movement error parameters, compared to unoptimized

versions. The recorrected [[25, 1, 5]] encoded circuits had the worst performance. From

this analysis, we conclude that recorrecting [[7, 1, 3]] and [[23, 1, 7]] encoded circuits are a

good way to substantially reduce error correction overhead while minimally affecting success

probability. Additionally, we find that modest levels of recorrection are all that is necessary

to substantially reduce the QEC resources.
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Chapter 7

Fault Tolerant Optimization and

Analysis for Large Circuits

In previous chapters, we developed tools to automatically synthesize QEC encoded

circuits, optimize the inserted QEC modules, verify their fault tolerant properties, and

place and route gates to generate layouts. We are now ready to put all this together to

analyze the performance of large circuits. Figure 7.1 shows the our target application:

Shor’s factorization algorithm. The predominant component of this algorithm is modular

exponentiation, and our implementation of modular exponentiation consists of repeated

additions. Therefore, to start our study of large circuits we will focus on the main kernel

used to perform Shor’s algorithm: a quantum adder. Once we decide on a good adder

design, we will use this to build the full Shor’s factorization application. Therefore, the

n-bit

Adder

QFT

Modular Exponentiation

Multiply mod N
Adder mod N

n-bit Number

to Factor

Figure 7.1: Shor’s factoring architecture.
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Figure 7.2: Quantum ripple carry adder with “subadder” serialization

goals of this chapter are to find the best adder circuit implementations, optimization levels,

encodings, and datapaths for good ADCR-efficient designs.

7.1 Quantum Addition Circuits

The quantum adder is a fundamental component of Shor’s factorization. Conse-

quently, this section will apply the machinery that we developed in previous sections to

produce optimized adder circuits. Since we are targeting 1024-bit factorization, we will

examine 1024-bit adders. Further, for non-random circuits, we will switch to the more

realistic Error Set 1 from Table 1.1.

7.1.1 Adder Implementation

We evaluate the quantum ripple-carry adder (QRCA) [29] and the quantum carry

look-ahead adder (QCLA) [30], constructing larger adders from smaller adder modules,

similar to what is done with classical bit-serial adders. Figure 7.2 shows how an n-bit QRCA

is constructed with multiple passes through a single m-bit sub-adder. The registers can

map to memory regions and the adder block to compute regions such that data is shuttled

between memory and compute when it uses the sub-adder. Similarly, Figure 7.3 shows how

an n-bit QCLA is constructed with smaller modules. The modular approach allows us to
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Figure 7.3: Quantum carry-lookahead adder

trade area for parallelism thus allowing us to construct optimal adder configurations.

All the following results on the QRCA and QCLA are for 1024-bit sized adders,

unless otherwise indicated.

7.1.2 Adder Performance

We begin by observing how our recorrection optimization affects success probabil-

ity and physical operation counts for the QCLA and QRCA adders. Figure 7.4 shows this

relationship as EDistthreshold is varied. We first note that the QRCA exhibits a uniformly

higher success probability. This is due to the fact that there is really just a single main fault

path through the circuit: the ripple carry chain. All the other qubits experience limited

activity in terms of both gate and movement error. The number of fault paths are limited to

mainly to those along the ripple carry chain. The QCLA, on the other hand, exhibits much

more parallelism, performing gates and movement on a much wider variety of qubits. This

leads to may more possible fault paths, thus decreasing the overall probability of success.

In this particular error model, the extra idle time due to the higher latency of the QRCA

does not counteract the success probability savings due to fewer fault paths.

If we look at the error events operating on the failing encoded qubit blocks, idle

errors are 20000 times more likely than other types of errors! As in many of our examples,
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Figure 7.4: Success probability and operation count for QCLA and QRCA adders as a

function of EDistthreshold. The underlying architecture is Qalypso and the [[7, 1, 3]] code

was used.

we assume that gate errors are 100 times more likely than idle errors, so therefore the overall

idle error probability is 200x more than the gate error. This also highlights the importance

of error correction insertion techniques that are sensitive to other error types.

Note also that the success probability for the QCLA with the highest level of

optimization (EDistthreshold = 12) drops rapidly to near zero. This is because at this

point, all correction steps have been removed from the entire circuit. Since the QRCA has

a much longer critical path of gates, there are still error correction steps along the most

error prone part of the circuit for this threshold. This is why the success probability for

QRCA with EDistthreshold = 12 stays relatively high.

If we look at the reduction in operation counts between the two adder types, we see

that the QCLA initially does more work and as more correction steps are removed, the two

adders settle to an approximately equal number of operations. This is because the majority

of the operations performed are correction steps, so when the majority of correction steps

are removed, the two adders have approximately the same number of physical gates.
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Figure 7.5: Ripple carry (QRCA) and carry-lookahead (QCLA) adders implemented on Qa-

lypso and LQLA datapaths. The QEC used was the Steane [[7, 1, 3]] code. The parameters

searched to find the ADCR-optimal values were recorrection EDistthreshold and the number

of compute regions.

Impact of Datapaths on Adders

The above analysis shows that QRCA has a better success probability and an

equal number of operations that needs to be performed. From these two metrics, we would

conclude that it is the better adder to use for Shor’s factorization. There is still the issue

of latency, however, and we will see that operation count does not always directly translate

to area.

Thus, we study the ADCR of different adder designs, QEC optimization levels,

encodings, and microarchitectures. First, since there are a number of parameters that must

be set in all these models, we introduce the notion of ADCR-optimal. This is simply the

best ADCR we could find over all free parameter combinations. In the following graphs we

indicate what free parameters we searched in order to find the ADCR-optimal values.

Figure 7.5 compares the QRCA and the QCLA from Section 7.1.1 on the two

different quantum computer datapaths introduced in Section 3.4.1. We see that “Qalypso

QCLA” is the best performing choice, in terms of ADCR, for all the sub-adder configurations

considered. Furthermore, we see that the QCLA always outperforms the QRCA on the same
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recorrection optimized to the ADCR-optimal EDistthreshold. In both cases we picked the
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metric and Qalypso always outperforms LQLA. In all these cases, the success probability

stays relatively high and therefore does not have that much impact on the different ADCRs,

the main impact is from area and latency.

When compared to LQLA, Qalypso’s ADCR for both adders is better since, as

mentioned in Section 3.4.2, it has much more flexibility in distributing ancilla resources

throughout compute regions. The gain in ADCR for Qalypso is predominantly due to a

decrease in area, since Qalypso cuts out much of the unused ancilla generation area built

into the more static LQLA design.

Finally, we notice the sub-adder structure of the our adder circuit has little effect

in this case on the overall ADCR. We reason this is because the majority of the time

difference between ballistic movement within a larger sub-adder and teleportation between

smaller sub-adders is not a significant component of the overall latency. The 16-bit sub-

adder version does marginally better for Qalypso QCLA, so we will use that structure

moving forward.

The next question is: what is the impact of our recorrection optimization in re-
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lation to these different microarchitectures? Figure 7.6 shows a 5x ADCR improvement in

ADCR for Qalypso and a 10x improvement for LQLA in at the 16-bit sub-adder config-

uration. For LQLA, the gains are predominantly in latency. Since ancillae are generated

on demand, the QEC ancilla generation is in the critical path, and recorrection removes

much of this QEC ancilla need dramatically shortening the critical path. If we look at the

increases in ADCR for the unoptimized LQLA design, this further confirms this reasoning.

The latency increases as we go from 4 to 64-bit subadders. While the increase in latency

is only a factor of 2, the success probability drops dramatically to near 0 for the 64-bit

sub-adder size. This increased latency leads to a critical effective idle error point, as we saw

in Figure 5.9b, where the success probability falls off dramatically with small additional

increases in idle errors. From this, we see another advantage of recorrection, in cases where

it can substantially reduce latency, it can substantially improve success probability, espe-

cially for long running circuits. In the cases of LQLA, recorrection yields a 2%, 5%, and

> 90% improvement for the 4, 16, and 64-bit subadder structures. This makes sense, since

doing unnecessary corrections can cause waiting qubits to lay idle, accumulating error. As

mentioned before, an idle-sensitive placement of error correction stages would also work

well to combat this problem.

The ADCR gains for Qalypso are more modest, since the baseline unoptimized

version already does a better job of managing its ancilla resources. In this case, the gains

are more evenly split between latency and area. Additionally, as in the case of LQLA, the

success probabilities of the recorrected Qalypso runs are better than the unoptimized case,

albeit by a small amount (2-4%).

Optimizing to Improve Reliability

We now turn our attention to interactions between recorrections and other facets

of the datapath design. Figure 7.7 shows the overall success probabilities of Qalypso and

LQLA as a function of compute regions. The idea is that as more compute regions are

added, more parallelism is possible, leading to less qubit idling. In the 1-64 compute region

range, Qalypso is idle error bound and therefore, adding more compute regions reduces

qubit idle errors and improves the success probability. The 64-256 compute region range

corresponds to saturation of the available parallelism in the QCLA and there are no further

gains in success probability. When we have 1024 compute regions, the overall area of the
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Figure 7.7: Overall success probability for the QCLA adder with and without recorrection,

as a function of the number of datapath compute regions. Note that the number of compute

regions for LQLA is statically set by the number qubits in the system, so we cannot vary the

number of compute regions for that microarchitecture. The recorrected points correspond

to the EDistthresholds with the highest success probability.

design becomes significant and qubit movement error becomes a factor that degrades success

probability. If we were to have as many compute regions as logical qubits, we would meet

the LQLA points on the right.

In all these cases, the unoptimized versions of Qalypso and LQLA have lower

success probabilities than the recorrected ones. In the idle bound range, this is due to the

latency that recorrection eliminates. In the movement-bound range, recorrection reduces

the size of the compute regions (by reducing necessary QEC ancilla) and therefore reduces

movement error.

Code Selection for Optimized Adders

We can also analyze our adders with different error correcting codes. Figure 7.8

shows the ADCR for the QCLA with different encodings. Since LQLA was only specified for

the Steane [[7, 1, 3]] code in the original work and the ancilla generator is specially designed

for that code, it only supports that single encoding. If we compare between Qalypso and
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Figure 7.8: ADCR for the QCLA using 3 different codes, with and without recorrection op-

timization on a 128 bit QCLA adder. The ADCR-optimal values chosen over EDistthreshold

and the number of compute regions.

LQLA for this code, we see that Qalypso has a better ADCR for both the recorrected and

unoptimized versions. This is again due to Qalypso’s flexible ancilla provisioning. Within

Qalypso, the [[7, 1, 3]] code has the best ADCR. Since it has a more compact structure, it

wins in terms of area (the unoptimized [[7, 1, 3]] adder is about 3x smaller than [[25, 1, 5]]

and [[23, 1, 7]] encoded adders).

Next we can compare the performance of recorrection for all these cases. The

biggest ADCR improvement is for the [[7, 1, 3]] encoded LQLA design. This is not surprising,

since the unoptimized LQLA inefficiently uses QEC ancilla generators, so again, there is

more room for improvement.

7.1.3 Which adder design to use?

Using our fault tolerance synthesis, optimization, layout and analysis tools, we have

provided a survey of the different adder design parameters with respect to an interesting

metric, ADCR. We conclude the best design is a [[7, 1, 3]] encoded, recorrected QCLA using

the Qalypso datapath. The result is interesting, because if we base our results on just which

code provides the most nominal protection from errors, we would probably want to pick the

[[23, 1, 7]] encoded version.
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7.2 Shor’s Factorization Algorithm

Using the insight we gained from analyzing the adder designs in the last section,

we are now ready to look at potential designs for Shor’s factorization algorithm.

7.2.1 Implementation of Shor’s

Figure 7.9 shows a block-diagram of our target circuit. It consists of two main

components: modular exponentiation and the quantum Fourier transform (QFT). For the

modular exponentiation circuit, we rely on the work done in [100] and for the QFT, [33].

Since addition is a key component of the modular exponentiation circuit, we use our best

adder designs from Section 7.1.1.

7.2.2 Performance of Shor’s Factorization

A previous estimate of the area required to implement Shor’s was approximately

1mm2 in area [64], in ion trap technology. One goal we have is to improve on this estimate,

so that we have candidate implementations that would be more easily implementable.

We start by investigating the aggregate effect of recorrection on full Shor’s factor-

ization circuits. Figure 7.10 shows the number of physical operations needed for factoring

various sized numbers. We see that recorrection has reduced the number of operations in

the QCLA based Shor’s by a factor of 2.5 and in the QRCA based Shor’s by a factor of 4.
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Figure 7.10: Physical operation count of Shor’s factorization algorithm using the Steane

[[7, 1, 3]] code and either the QCLA or QRCA adders.

In Figure 7.11, we see that recorrection reduces the area of the QCLA based Shor’s

by a factor of 2.5 and for the QRCA by a factor of 4. We note that these area reductions

are in line with the reduction in operation counts from Figure 7.10.

The improvements in latency that recorrection gives us is more modest compared

to area. Recorrection reduces the latency of the QRCA based Shor’s by a factor of 1.5 and

the QCLA version by almost a factor of 2.

We also point out that the QCLA based factoring has consistently better latency

over the QRCA version and catches up in area as well for the large circuits.

7.3 Future Work

The simulation, optimization and layout techniques developed in this work get us

closer to building large scale, fault tolerant designs for applications like Shor’s factoriza-

tion algorithm. However, there are still many points that require more investigation and
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development.

7.3.1 Faster, Bigger Simulations

We found that our error simulation improvements can handle hundreds of millions

of gates (as in the case of 1024 bit adders). However, it is still too slow to scale up to many

billions of gates and get results in a reasonable amount of time. After running our vector

Monte Carlo simulation on a 1024 bit Shor’s factorization algorithm for a week, we opted

to stop simulation since it still was not finished. We believe that there is not much room

for improvement in the time per simulated instruction, therefore, additional improvements

will have to come from simulating fewer overall instructions. The most logical choice is

to compute error statistics for each module in our hierarchical specification once and then

reuse these statistics for each instance of the module.

Section 4.5 on the joint probability calculation indicates that getting useful er-

ror statistics is challenging. If we compute marginal probabilities of error on each qubit
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independently in a module with error correction, we lose critical qubit error dependencies

that enable proper error correction simulation. On the other hand, computing a full joint

probability over all qubit errors, the problem rapidly becomes intractable for any module

with more than a trivial number of qubits. One solution might be a mixed fidelity/Monte

Carlo method, similar to what we do now with EPR fidelities for the teleportation network

which then interacts with the data in a Monte Carlo simulation. We could push more of

the circuit into the simple fidelity model and combine this with the more time consuming

Monte Carlo method only at error dependency critical points like during error correction.

7.3.2 Error Model Refinements

Our physical error models could always be improved as well. As more information

comes out experimental ion trap work, we can further refine our error parameters and the

movement model. We have tried to make our ion trap movement error model as flexible as

possible but there are additional improvements that may make sense. So far we have only
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considered qubit/ion movement errors in isolation of one another, but if ions are in close

proximity, ions could interact with one another in undesirable ways. Through tunneling,

they could swap states, for example.

7.3.3 Layout and Mapping to Qalypso

Our circuit layout techniques currently rely on a particular set of heuristics for

mapping computation to computation regions and scheduling the times at which everything

happens in Qalypso. At this point, our heuristics are relatively simple and could always

be improved. This could improve both our overall area and latency, as well as indirectly

affecting reliability, by reducing movement and idle errors with a more efficient schedule of

qubit movements.

Since our macroblock level layout techniques are already abstracted away some-

what from ion trap technology, it might make sense to look at other quantum computing

technologies with all our CAD tools. Not only would this affect the layout heuristics but

would also require new error models.

7.3.4 Expanding Code Comparisons

Our code comparison focused on the same CSS codes that were analyzed in pre-

vious studies by both Steane and Cross et al. In Section 1.2 we listed many other code

categories, many of these codes have only been presented and analyzed in isolation.

One interesting comparison would be to compare CSS codes with Steane-style

error correction with Knill’s method of postselection with error detecting codes, to really

determine accurate overheads of each in terms of area and latency. Post-selection has been

shown to yield a higher threshold value than the standard correction method but it also

requires a tremendous amount of overhead. It would be interesting to see if these reliability

gains remain after all errors are accounted for.

Entanglement-assisted codes might be a natural match to our tiled microarchitec-

ture with teleportation interconnect. The entanglement resources for error correction could

be combined with the EPR entanglement resources for the network.
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7.3.5 Recorrection Flexibility

Our initial attempt at optimizing error correction step placement in fault tolerant

circuits leaves plenty of room for improvement. We currently optimize a hierarchical circuit

design by taking a particular global EDistthreshold and optimize each module with the same

parameter. We would really like to let each module have separate EDistthresholds and then

try to pick the set of EDistthresholds that give us the best ADCR or failure probability.

When we looked at adder circuits, we compared different codes with recorrection to

see which optimized encoding has the best overall ADCR performance. The next step would

be to allow multiple code domains within the same design. We could imagine that regions

with a lot of qubits sitting around idling would be encoded in a code that is particularly

good under high relative idle errors (like the [[7, 1, 3]] code). Regions undergoing dense

computation would be encoded using a code that works better under high gate error (such

as the [[23, 1, 7]] Golay code. Transcoding data within the circuit could be performed using

the code teleportation technique used by Thaker et al [98].

When developing the recorrection model, we assumed a simplified error propaga-

tion model where gates propagate the maximum input EDist to all outputs (Section 6.2).

Additionally, we assumed that the goal of our optimization should be minimize EDistmax

over the entire circuit. While this strategy makes some intuitive sense, it is not the only so-

lution to this problem. For example, we could imagine a goal of trying to minimize the sum

of all EDist values everywhere in the circuit. It would be interesting to see how different

optimization strategies affect the overall failure probability.

The results on large adders in Section 7.1.2 are the result of a multi-parameter

search over possible Qalypso and LQLA datapath configurations (# of compute regions,

region sizes, # of ancilla factories, etc.), different EDistthreshold values, and different codes.

All these parameters have a non-linear relationship with respect to one another. In general,

found good sets of parameter combinations through trial and error. A substantial improve-

ment would be to have a more intelligent way to search this complex space to optimize the

parameter of interest.
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7.4 Conclusion

We have presented the first full computer aided design flow that is capable of syn-

thesizing, optimizing, laying out, and verifying circuits at the 1024 logical bit scale. Using

our design flow, we have designed the first 1024-bit Shor’s factorization implementation

that has an area substantially less than the previous state-of-the-art design of 0.9m2 [64];

our design is only 64cm2. This dramatic improvement was made possible by our compre-

hensive set of tools. Tools that account for all error sources, analyze their impact on overall

application failure, and optimize for reliability and resource efficiency.

Our scalable, hierarchical layout techniques provide the first detailed layouts of

large scale circuit designs. These layout techniques enable flexible, efficient extraction of

error models over millions of qubits. We exploit multiple levels of granularity to simulate

“commodity resources” like EPR qubits with aggregate error probabilities and only provide

detailed qubit-level error simulations for more critical data qubits.

To use these error models of large circuits, we introduced a bit-parallel Monte

Carlo technique that allows the detailed simulation of error in a design 10x faster than the

standard Monte Carlo simulation method from other works.

Detailed error models and fast simulation have allowed us to perform the first

comparison of error correcting codes using a comprehensive error model consisting of all

movement, idle, and gate errors in the encoding and correction circuits. Through this

detailed simulation, we have made a few interesting observations. First, in cases of higher

movement error probability, concatenating a code does not always bring benefits, as is the

case of the level 1 and level 2 [[7, 1, 3]] codes. We showed that for more than minimal

movement error the L2 encoded circuit appears to perform substantially worse. Second,

while stronger codes like the [[23, 1, 7]] Golay code appear to have clear advantages when

considering gate dominant error models, idle intensive error models favor the L1 [[7, 1, 3]]

encoded circuits as having the fewest overall failures.

To better evaluate all the important factors that go into building a large quantum

application, we introduce a new metric: area-delay product to correct result (ADCR) which

gives us an idea of total space and time resources needed to build a reliable system.

To deal with the high overhead of quantum error correction in large circuits, we

developed a new optimization technique that positions error correction steps in the optimal

positions in a circuit to minimize overall failure probability. This optimization reduces cir-
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cuit gate count by 4x while reducing success probability by only a few percent. Furthermore,

ADCR is reduced by anywhere between 2 and 1000 times.

We also address QEC resource efficiency at the layout level by providing a new

microarchitecture called Qalypso which effectively load-balances ancilla production from

factories so that we can devote less layout area to fewer but more heavily utilized ancilla

factories.

We have presented a comprehensive set of techniques and results for selecting the

best fault tolerant architecture for a given application circuit. We can chose to focus on

minimize overall failure probability or our holistic ADCR metric. Either way, our lay-

out, optimization, and error analysis techniques produce smaller, faster designs that still

guarantee comparable reliability to the slower, larger designs from the literature.
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