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Abstract

Analysis of Goal-directed Human Actions using Optimal Control Models

by

Sumitra Ganesh

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Ruzena Bajcsy, Chair

In this thesis, we address the problem of analyzing goal-directed human actions using the

optimal control framework to model these actions. In an optimal control framework, the

goals of the action are specified as a cost function whose terms represent the different,

often competing, objectives that need to be realized in the course of the action. The

relative weight given to the different terms will determine how these objectives are traded

off when the human sensorimotor system minimizes the cost function. The cost functions

corresponding to different actions are the basic building blocks in our representation. We

view the human motor system as a hybrid nonlinear system that switches between different

cost functions in response to changing goals and preferences.

In the context of this model, we address two problems. The first problem is the estima-

tion of the unknown weighting parameters of a cost function from a segmented and labeled

data set for an action. We show that the estimation of these parameters can be cast as a

least squares optimization problem and present results for arm motions such as reaching

and punching using motion capture data collected from different subjects.

The second problem is that of action recognition in which a stream of data is segmented

into different actions, where the set of actions to be identified is pre-determined. We show

that the problem of action recognition is similar to that of mode estimation in a hybrid
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system and can be solved using a particle filter if a receding horizon formulation of the

optimal controller is adopted. We use the proposed approach to recognize different reaching

actions from the 3D hand trajectory of subjects.
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Chapter 1

Introduction

In this thesis, we address the problem of anaylzing goal-directed human actions. Cam-

eras, motion capture systems and sensors such as accelerometers can provide us data about

human actions - joint angle trajectories, positions and velocities of body segments. We use

the term analysis to mean any systematic process that can extract a conceptual understand-

ing of the executed action from this data.

One of the most studied analysis problems, particularly in the fields of computer vision

and machine learning, is that of action recognition which maps the data to one of several

pre-determined action categories.

Perhaps the most fascinating aspect of human motion is its variability - not only do

different people excecute the same action differently, the same person could well perform the

action differently on repetition. While neuroscientists have grappled with understanding

the causes for the variability [van Beers et al., 2004], researchers in computer animation

[Safonova et al., 2004] have been trying to simulate this variability to make their animations

more “human”.

In the field of robotics and humanoid robotics, the goal of the analysis task is imitation of

human actions ([Jenkins and Mataric, 2003], [Fod et al., 2002], [Drumwright et al., 2004]).

This requires the extraction of a representation that can be used to devise a control strategy

to drive the robot to perform the same action. Much like the recognition problem, it requires
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that the analysis procedure peel away the variability from the essence of the action being

executed.

Experimental evidence suggests that in humans the mechanisms for learning and gener-

ating actions are closely linked to the mechanism used for action recognition and understand-

ing. Experiments have identified mirror systems in humans [Rizzolatti and Craighero, 2004]

and mirror neurons in macaques [Fogassi et al., 2005] that are activated both by execution

of an action and observation of the same action. These mirror systems are believed to be

important for action understanding, intention attribution and imitation learning. While

the exact functional role played by the mirror system is a matter of much debate, from an

engineering perspective, the idea of a shared representation of action that lends itself to

learning, execution and recognition of actions is very appealing.

The challenge lies in finding a mathematical model that can connect the high-level goals

and intentions of a human subject to the low-level movement details captured by any data

collection system. In this thesis, it is our contention that a representation of human actions

based on optimal control principles is a powerful and flexible mathematical structure that

can connect the intent of the action to the movement details we observe.

Optimal control models quantify the goals of the action as a performance criterion or cost

function which the human sensorimotor system minimizes by picking the control strategy

that achieves the best possible performance, within the constraints imposed by dynamics

of the body. The cost function penalizes deviation from the goals of the action. Even a

simple action could have multiple goals; besides achieving the goals related to the task, the

sensorimotor system may also have additional goals such as minimizing energy consumption

and maintaining balance. The structure of the cost function (i.e. the different terms in it)

reflects these multiple goals associated with the action. The relative weights attached to

these different goals (terms) reflect the preferences regarding their accomplishment and

will determine the trade-offs made in arriving at the optimal trajectory for the action.

The cost functions corresponding to different actions are the basic building blocks in our

representation. We view the human motor system as a hybrid system that switches between

different cost function primitives, in response to changing goals and preferences.
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In this chapter, we begin by providing an overview of the optimal-control based repre-

sentation of human action we use and a brief description of the problems addressed. We then

present relevant literature, highlighting the difference of our approach and the contributions

of this thesis.

1.1 Overview of the Optimal Control Based Representation

The human body can be approximately modeled as a structure of rigid links connected

by joints. Such a model allows us to use the mathematical machinery of robot dynamics

[Murray et al., 1994] to build a dynamical model of the human body. The configuration

of a model with n degrees of freedom, at time t, can be described by the n-vector of joint

angles q(t). The joint torques at time t, denoted by u(t) ∈ ℜn are related to the joint

angles q(t) and the angular velocities q̇(t) by the equations of motion, which are of the

form [Murray et al., 1994]

M(q)q̈ + C(q, q̇)q̇ + N(q) = u. (1.1)

The matrices M(·), C(·, ·) and N(·) represent the configuration dependent inertia, coriolis

and gravitational terms. The matrices depend on the physical characteristics of the person

being modeled.

The nonlinear differential equations in Eq. (1.1) can be rewritten as

ẋ(t) = f(x(t),u(t)) =






q̇

−M−1(q)(C(q, q̇)q̇ + N(q))




+






0

M−1(q)




u(t), (1.2)

where ẋ(t) = [q(t), q̇(t)] is the vector of joint angles and angular velocities. Note that the

dynamics are linear in the control and can be written as

ẋ(t) = A(x(t)) + B(x(t))u(t). (1.3)

The dynamics of the body relates the state of the system, x(t), to the applied control

(torque), u(t), and hence constrains the values that these quantities might simultaneously

assume. We assume that the height and weight of the person engaged in the action, and

hence the functions f(·), A(·) and B(·), are known to us.
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We focus our attention on goal-oriented movements of the human body. Even in low-

level tasks such as reaching for an object or getting up from a chair, the body trades off

between competing concerns. For example when we reach for an object, we are trading off

between moving our hand to the object location in a precise manner, bringing our hand

to rest as we reach the object location, and consuming as little energy as possible in the

process. We might not be aware of our underlying preferences as to how these competing

concerns should be weighed relative to each other, but the manner in which we move reflects

our preferences.

In our model the goals of the action are encapsulated as a scalar function of the state

and the control trajectory during the course of the action. Let x[0,tf ] := {x(t), t ∈ [0, tf ]}

denote the joint angles and velocities over a time interval [0, tf ] where tf is a free vari-

able, and u[0,tf ] := {u(t), t ∈ [0, tf ]} denote the control torques applied during this period.

The goals and preferences of an action can be represented as a parametrized cost function

Jψ(x[0,tf ],u[0,tf ], tf), where the set of parameters, ψ, determines the relative weight given to

different terms in the cost function.

In minimizing the cost function, we need to ensure that the trajectories (x[0,tf ],u[0,tf ])

satisfy the constraints imposed by the body dynamics in Eq. (1.2). Thus the optimal

trajectory (x∗

[0,tf ]
,u∗

[0,tf ]
) for the action is the solution to the optimal control problem

min
x[0,tf ]

,u[0,tf ]
,tf

Jψ(x[0,tf ],u[0,tf ], tf)

s.t. ẋ(t) = f(x(t),u(t)), t ∈ [0, tf ] (1.4)

x(0) = x̄0, (1.5)

where the initial state x̄0, is assumed to be known.

In this thesis we consider cost functions of the form

Jψ(x[0,tf ],u[0,tf ], tf) = hψ(x(tf)) +
1

2

∫ tf

0
u(t)T Ru(t) dt, (1.6)

where R > 0 and hψ(·) is a final cost parameterized by the cost function weighting param-

eters.

In specifying the necessary conditions for a trajectory to be optimal, it is convenient to
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use a function H, called the Hamiltonian, and defined as

H(x(t),u(t),λ(t)) =
1

2
u(t)T Ru(t) + λT (t)f(x(t),u(t)), (1.7)

where λ is referred to as the costate vector in optimal control literature and is the equivalent

of the Lagrange multiplier in optimization. For the free-final time optimal control problem

in Eq. (1.5), and for cost functions of the form given in Eq. (1.6), the necessary conditions

(See [Kirk, 2004] for derivation using variational calculus methods) can be written as

ẋ(t) =
∂H

∂λ
(x(t),u(t),λ(t)) ∀t ∈ [0, tf ] (1.8)

λ̇(t) = −
∂H

∂x
(x(t),u(t),λ(t)) ∀t ∈ [0, tf ] (1.9)

0 =
∂H

∂u
(x(t),u(t),λ(t)) ∀t ∈ [0, tf ] (1.10)

∂hψ
∂x

(x(tf)) − λ(tf) = 0 (1.11)

H(x(tf),u(tf),λ(tf), tf) = 0. (1.12)

Equations (1.8), (1.9) and (1.10) are referred to as the state, costate and control equations

respectively. Equations (1.11) and (1.12), alongwith the initial condition x(0) = x̄0 provide

the boundary conditions. The control variable can eliminated by analytically minimizing

the Hamiltonian with respect to the control, and substituting u(t) = −R−1BT (x(t))λ(t)

in Equations (1.8) and (1.9). This reduces the necessary conditions to a boundary value

problem.

1.2 Our Contribution and Related Work

In this thesis we address three main issues :

1. In an optimal control model, as described above, the optimal trajectory is produced

through the optimization of the cost function under the constraints of the system

dynamics. In Chapter 2 we study this interaction by numerically solving a time-

discretized version of the optimal control problem described in Eq. (1.5), for different

cost function parameter values.
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2. In Chapter 3, we show how the cost function parameters ψ can be estimated from data

for a known cost function structure. The solution involves solving a time-discretized

version of the necessary conditions in Eq. (1.12) as a least squares optimization

problem for the Lagrange multipliers λ and the cost function parameters.

3. In Chapter 4, we address the problem of action recognition in our framework. Action

recognition is shown to be equivalent to mode estimation in a hybrid system.

1.2.1 Computer Vision

The problem of recognizing actions from visual data has been extensively studied in

Computer Vision. Visual data, however, is a generic term that embraces everything from

low-resolution monocular video to motion capture data at 120 Hz. Important considerations

are whether the data is from a single view (camera) or multiple views, whether the multiple

views are calibrated (allowing 3D reconstruction) and whether body parts are segmented

and tracked.

There has been much work on human motion analysis over the past two decades

and detailed reviews can be found in [Gavrila, 1999], [Cedras and Shah, 1995] and

[Wang et al., 2003]. There have been two broad approaches to the problem of recognizing

human actions - spatio-temporal template based approaches and state-space approaches.

A third approach based on application of ideas from natural language processing has also

received attention recently.

Spatio-temporal Approaches

In the former approach, spatio-temporal features extracted from the raw visual

data are used to learn a representation (template) for the action. Methods used to

learn the representation vary from unsupervised approaches [Weinland et al., 2006],

to Support Vector Machines [Kellokumpu et al., 2005] and discriminative conditional

random fields [Sminchisescu et al., 2006]. During recognition, features extracted

from the data are compared to prestored action prototypes using methods such as
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nearest-neighbour [Wang and Suter, 2007] and discrete Hidden Markov Models (HMMs)

[Kellokumpu et al., 2005].

Examples of features extracted from monocular video include optical flow

([Polana and Nelson, 1997], [Rui and Anandan, 2000] ) and view-specific temporal tem-

plates [Bobick and Davis, 1996]. With multiple view data becoming more common, several

3D features have also been proposed in literature. Recently, sequences of human silhou-

ettes, which encode spatial information about body poses and shape change over time,

have been used by several researchers ([Weinland et al., 2006], [Wang and Suter, 2007],

[Kellokumpu et al., 2005], [Bobick and Davis, 2001], [Carlsson and Sullivan, 2001]). In

[Weinland et al., 2006] a novel view-independent silhouette-based descriptor is extracted

from calibrated multiple-view data, and clustered into a hierarchy of action classes. In

[Wang and Suter, 2007], silhouettes extracted from low-resolution video are regarded as

points in very high-dimensional space and locality preserving projections are used for

dimensionality reduction. While the data and methods used to construct these silhouettes

vary, a common feature is that they are essentially volumetric shape-based reconstructions

without any knowledge of body parts.

3D spatio-temporal features extracted from motion capture data also tend to be high-

dimensional and inherently include information about body parts. The expectation is

that these points lie on a low-dimensional manifold embeddeded in this feature space

and dimensionality reduction techniques are used to extract a lower-dimensional repre-

sentation. Dimensionality reduction techniques used include principal component analysis

([Fod et al., 2002] ,[Safonova et al., 2004]) and Isomap [Jenkins and Mataric, 2003].

The belief underlying all the data-driven representation approaches outlined above is

best summed up by the authors in [Weinland et al., 2006] who declare : “From a compu-

tational perspective, actions are best defined as four-dimensional patterns in space and in

time”. In sharp contrast, our optimal control model-based representation of human motion

uses a scalar function to encapsulate the goals of the action, while the movement details,

patterns and variations, arise naturally as a consequence of these goals.
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State-space Approaches

In state-space approaches the features extracted at each time instant are regarded as the

state of the system at that time, and a probabilistic model is used to capture the temporal

dependencies between these states.

In [Yamato et al., 1992] features (motion, color, texture) of 2D blobs were used to train

a Hidden Markov Model (HMM) and learn symbolic patterns for each action class. In

[Bregler, 1997] linear dynamical systems were used to model the coherent motion of regions

corresponding to body parts, and a HMM was used to represent complex motions which

switched between these dynamical systems. Dynamical systems were also used to model

drawing tasks in [Del Vecchio et al., 2003] and non-linear dynamical systems were used for

gait recognition in [Bissacco et al., 2001]. Layered structures of Hidden Markov Models

[Oliver et al., 2004], coupled Hidden Markov Models [Brand et al., 1997] and Hierarchical

Bayesian Networks [Park and Aggarwal, 2004] have been used to model multiple-levels of

abstraction.

Silhouette based features have been used in conjunction with HMMs in

[Weinland et al., 2007] and [Brand and Kettnaker, 2000]. In [Brand and Kettnaker, 2000],

the authors use unsupervised HMMs to perform simultaneous segmentation and clustering

of actions from sequences of human silhouettes extracted from monocular video.

Semantic Approaches

Generation of semantic descriptions of human behaviors has recently received consider-

able attention. The goal of this approach is to select a group of words or natural language

expressions to describe an action. In [Intille and Bobick, 1998], the authors developed an

automated annotation system for sports scenes using belief networks based on visual evi-

dences and temporal constraints. In [Kojima et al., 2002], a natural language description of

video was generated from 3D pose and position features using machine translation technol-

ogy. In [Ogale et al., 2005], silhouettes from multiple-view data were used to automatically

construct a Probabilistic Context-free Grammar (PCFG).
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Comparison of our Approach to Action Recognition Literature

The spirit of our approach is similar to the state-based approaches described above.

However, there are several important differences. In the state-space approaches described

above, the symbolic sequence of hidden states traversed in the course of an action is learnt

from a training data set and may not have any intuitive interpretation. In our model,

the symbolic hidden states correspond to different cost functions and lend themselves to

intuitive interpretation.

In this thesis, we primarily focus on modeling simple actions which can be described by

a single cost function. While we do not build layered probabilistic structures or grammars

to model complex actions at this stage, our model can be extended to include higher-levels

of abstraction.

In a typical HMM model, the dynamics of the system are not modeled at all. In

[Bregler, 1997] linear dynamical systems (with no control input) were used to model simple

movements; these dynamical systems were also learnt from data. Our model is physically

more realistic and includes both the nonlinear dynamics of the biomechanical system and

the control input required to drive the system. The system dynamics are derived from

an assumed biomechanical model and knowledge of two inertial parameters - the subject’s

height and mass.

While our model is definitely more complex, it has several advantages. Its detailed

structure is transparent and allows us to understand in an intuitive manner, the interactions

between the constraints imposed by the system dynamics, the goals of the action which

might place competing demands on the system, and the optimization procedure which

reconciles these. A similar understanding cannot be gained by looking at kinematic spatio-

temporal templates which are the end-product of this process, or by approximating the

process by a linear dynamical system.

Though our model is complex, our representation of the action by a scalar cost function

is both compact and easy to understand. The cost function based representation of an

action cuts to the core of action recognition - inferring the intent of the action. Moreover,
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the parameterized form of the cost function used in our model allows us to capture variations

in the manner in which the action is executed and understand them in the context of varying

preferences regarding the trade-offs that have to be made.

1.2.2 Robotics and Imitation Learning

Recent advances in imitation learning (also referred to as Programming by Demon-

stration) for robots have taken inspiration from biological mechanisms of imitation (see

[Schaal et al., 2003] for a review). The approaches in imitation learning fall under two cat-

egories - approaches where the imitation seeks to produce an exact reproduction of the

trajectories, and approaches where only a set of predefined goals is reproduced.

Exact Reproduction Approaches

In seeking to produce an exact reproduction of observed trajectories, several parame-

terizations of trajectories have been used. In [Fod et al., 2002], [Jenkins and Mataric, 2003]

and [Jenkins et al., 2007] the authors use dimensionality reduction methods such as Spatio-

temporal Isomap to embed motion trajectories into a lower dimensional space, and cluster

to obtain primitives. Similarly, the primitives extracted in [Drumwright et al., 2004] are

essentially exemplar kinematic trajectories.

In [Schaal et al., 2004] parameterized autonomous nonlinear differential equations are

used to generate a kinematic trajectory plan, which can be converted to motor commands

by standard controllers. The parameters of the nonlinear dynamical system are learnt

from demonstration data. The attractive and limit cycle behavior of nonlinear systems are

used to code discrete and rhythmic movements, respectively. The authors also propose a

reinforcement learning technique to allow refinement of the dynamical primitive through

trial-and error.

In approaches that seek to exactly reproduce the demonstrated trajectory, there is no

need for the robot to know the task goal. However, that also means that the primitives

extracted cannot be re-used for a slightly modified behavioral goal. For instance, if reaching
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for a specific target location was learnt by such an approach, the motor commands issues

by the primitive would be wrong for any new target location. Our approach, on the other

hand, extracts the underlying cost function which encapsulates the preferences and goals of

the agent, rather than a prototypical trajectory to be followed. This allows us to learn the

intent of the action rather than mimic the action itself.

Goal-oriented Approaches

Among the approaches that seek to only reproduce the task relevant aspects of the

demonstrated movement are [Calinon et al., 2007], [Calinon et al., 2005] and the inverse

reinforcement learning approaches of [Ng and Russell, 2000], [Abbeel and Ng, 2004] and

[Ramachandran and Amir, 2007].

The two core issues of of imitation learning,“what to imitate” and “how to imitate”, have

been addressed in [Calinon et al., 2007], [Calinon et al., 2005] and [Guenter et al., 2007]. In

[Calinon et al., 2007], the “what to imitate” issue is addressed by computing the spatio-

temporal variations and correlations among the variables observed in multiple demonstra-

tions of the same task. The basic idea is that if the variance of a particular variable is high

i.e. it shows no consistency across demonstrations, it is unlikely to have any bearing on the

task. Consistent correlations between variables are indicative of task relevant constraints.

The observed kinematic data is reduced using Principal Component Analysis and prob-

abilistically encoded using mixture models. The probabilistic structure of the data is used

to extract relevant features (constraints) of the task such as the relationship between hand

position and objects in the scene (important for manipulation tasks), invariant patterns in

hand trajectories and joint angle trajectories (relevant for exact gesture reproduction).

To solve the “how to imitate” issue, the robot has to be able to generalize the extracted

kinematic task constraints to different contexts and might have to find a very different

joint angle trajectory than the one demonstrated. In [Calinon et al., 2007], this is accom-

plished by computing a trajectory which gives the optimal trade-off between satisfying the

constraints of the task (spatio-temporal correlations across the variables), its own body
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constraints and the environmental constraints such as locations of objects. It should be

noted that this optimization is essentially an inverse kinematics procedure and the dynam-

ics of the robot are not modeled. In fact, the authors implicitly assume that kinematic

information is sufficient to describe the task.

The process of extracting task relevant constraints from data in [Calinon et al., 2007]

could be used to construct task relevant terms for the cost function in our model. For

instance in the reaching task, it could be used to identify the location of the target the

person is trying to reach. Our work in estimating the weighting parameters for the cost

function is complementary. We assume that the structure of the task relevant term is known,

and focus on understanding how the person trades off between task accomplishment and

other concerns such as energy consumption, in the context of the constraints imposed by

his body dynamics.

In the area of reinforcement learning, the problem of learning the reward func-

tion of an expert through observations has been addressed in [Abbeel and Ng, 2004],

[Ramachandran and Amir, 2007] and [Ng and Russell, 2000], for finite-state Markov deci-

sion processes. In [Ng and Russell, 2000] the key issue of degeneracy is identified - the

existence of a large set of reward functions for which the observed behavior is optimal. The

authors use natural heuristics to pick a reward function in a linear programming formula-

tion of the problem. In [Abbeel and Ng, 2004] the reward function is assumed to be a linear

combination of known features and is recovered from observations of an expert’s behavior

by solving a quadratic program. In [Ramachandran and Amir, 2007], the authors tackle

the problem from a Bayesian perspective learning a posterior probability density over the

space of reward functions. In all these works, reward functions are learnt for higher level

behaviors such as driving.

1.2.3 Optimal Control for Synthesis of Human Actions

Optimal control models have been used in robotics [Nori and Frezza, 2005],

[Li and Todorov, 2004] for synthesis of motion and in the field of computational neu-
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roscience as a model for the human motor system. Excellent surveys on the use of

optimal control models in this field can be found in [Todorov, 2004], [Scott, 2004],

[Wolpert and Ghahramani, 2000] and [Flash and Sejnowski, 2001]. Numerical simula-

tions of optimal control models of the human sensorimotor system have been successful in

predicting empirical observations for motions such as arm movements [Uno et al., 1989],

jumping [Anderson and Pandy, 1999], rising from a chair [Pandy et al., 1995], postural

balance [Kuo, 1995] and walking [Anderson and Pandy, 2001]. More detailed discussions of

relevant literature from this field are provided in Chapter 2.

The use of optimal control in neuroscience has been primarily in a synthesis setting -

cost functions are proposed and simulated optimal trajectories are compared to experimental

data to verify if they exhibit similar patterns. Generally, a detailed neuro-musculo-skeletal

model of the human body is used since the purpose is also to understand phenomena such

as co-ordination and sequence of muscle activations.

In our skeletal model, the control input is in the form of joint torques. However, in

the human body these torques are generated by the activation of muscles, which are in

turn controlled by neural signals. The neuro-musculo-skeletal system has a large number

of degrees of freedom and the problem of selecting the control at the muscular or neu-

ral level is highly redundant. It has been proposed ([Bernstein, 1967], [Bizzi et al., 1991],

[Mussa-Ivaldi and Bizzi, 2000]) that the body resolves this degrees-of-freedom problem by

using synergies, i.e. patterns of muscle activations which essentially restrict the controls to

a parameterized family.

A large component of learning skilled motor behavior such as riding a bike, swimming

or diving [Crawford, 1998] is learning the required synergies. However, the higher-level

goals of the behavior drive the search for appropriate synergies as the skill is refined. For

instance, in [Berthier et al., 2005], approximate motor control and reinforcement learning

are used to study the development of reaching behavior in infants. In fact, the motor

system can be viewed as a hierarchical control system where lower-level controllers use

stereotypical controls to drive the body, while the higher-level controllers focus on the goals

of the behavior ([Crawford, 1998], [Todorov et al., 2005]).
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In this thesis, we focus on goal-directed behaviors such as reaching and punching, in

adults who have considerable experience in arm movements. Thus, it can be assumed the

lower-level synergies in arm movement are fairly stable. The variation in movement then

arises from the subject’s preferences regarding the higher-level goals, rather than errors

made in the process of learning.
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Chapter 2

Numerical Solution of the Optimal

Control Problem

Our model for any human action consists of two parts: the dynamical model of the

human body, and the cost function which describes the goals and preferences of the action.

The interplay of these two parts is instrumental in producing the optimal trajectory for

the action. In this chapter, we demonstrate the use of numerical solutions of the optimal

control problem to understand the interplay of these two parts and answer the following

questions.

• What ranges of cost function parameter values are relevant?

• How much does the optimal trajectory change as the cost function parameter values

are varied?

• How do the inertial parameters (height and weight of the body) affect the optimal

trajectory?

• For two different sets of inertial parameters (height and weight of the body), does

application of the same cost function parameter values result in similar optimal tra-

jectories?
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2.1 Numerical Methods

Numerical methods for solving nonlinear optimal control problems fall into two main

categories - direct and indirect methods. Direct methods construct a sequence of points in

the variable space such that the objective value decreases at each step and the cost function

(or Lagrangian function) is minimized. Indirect methods, on the other hand, attempt to

find the root of the first order necessary conditions. In the case of optimal control this

implies that indirect methods have to solve a nonlinear two-point boundary value problem.

Detailed descriptions of the indirect methods can be found in standard texts on optimal

control including [Kirk, 2004] and [Bryson and Ho, 1975]. The direct method is described in

detail in [Betts, 2001] and [Canon et al., 1970], and a historical survey of the development

of both direct and indirect methods can be found in [Polak, 1973] and [Sargent, 2000]. In

this section we discuss the relative merits of the methods that were considered, the rationale

behind our choice, and the problem formulation and methods we used in finding numerical

solutions to the optimal control problems of interest to us.

Indirect methods typically use an initial guess to solve a problem in which only some

subset of the necessary conditions are satisfied. The solution is then used to adjust the

initial guess in an attempt to bring it closer to satisfying all the necessary conditions.

For instance, in the shooting method ([Bryson and Ross, 1958], [Breakwell, 1959]) a

guess of the initial (t = 0) costate variable is used to integrate both the state and costate

equations forward; the control variable is eliminated by substitution. The guess is adjusted

using the residuals in the boundary condition. Thus the procedure produces a sequence

of trajectories that satisfy the state, costate and control equations. If the procedure con-

verges, the boundary conditions will be satisfied as well. The multiple-shooting technique

[Stoer and Bulirsch, 2002] is an extension of this approach which subdivides the time inter-

val and re-estimates starting values for each subinterval from the mismatches.

The first difficulty with this method is it requires a guess for the costate variables to get

started. Since the costate variables are not physical quantities this can be non-intuitive. The

method is not robust with respect to the initial guess; a poor choice can lead to divergence.
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The main reason for this instability is that the extremal solutions are often very sensitive

to small changes in the boundary conditions. Even with a reasonable guess for the costate

variables, the numerical solution of the costate equations can be ill-conditioned. However, if

a good first guess is available the method will generally converge very rapidly and produce

results of high accuracy.

In the gradient method [Kelley, 1960], another indirect method, the control values

are guessed on a closely spaced fixed grid and used to integrate the state equations forward,

and the costate equations backward. The solution is used to evaluate the gradient of the

Hamiltonian with respect to the control values and correct the guess so that it satisfies the

control equations better. The method is easy to start since the initial guess for the control

is usually not crucial. Of course steepest descent methods have slow final convergence rate,

and to speed this up methods based on second variations ([Jacobson and Mayne, 1970],

[Kelley et al., 1963]), conjugate gradients [Lasdon et al., 1967] and quasi-newton approxi-

mations [Sargent and Pollard, 1970] have been proposed.

The direct method (also referred to as transcription or collocation [Tsang et al., 1975]

method) proceeds by discretizing the cost function, state equations, and the state and con-

trol variables and solving the optimal control problem as a nonlinear program (NLP). Essen-

tially the Karush-Kuhn-Tucker necessary conditions for the discretized NLP approach the

optimal control necessary conditions as the number of variables grows. With the advances

made in nonlinear optimization, the direct method has become more feasible and robust

even for large optimal control problems. We chose the direct method for its robustness,

speed and the ease with which it can handle free final time problems and problems with

state and control constraints.

2.1.1 Problem Formulation

In our simulations of various actions we wish to minimize a cost function of the form

Jψ(x[0,tf ],u[0,tf ], tf) = hψ(x(tf)) +
1

2

∫ tf

0
u(t)T Ru(t) dt, (2.1)
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where x[0,tf ] and u[0,tf ] denote the state and control trajectory over the time interval of

interest [0, tf ]. The final time tf is a free variable. The cost function consists of two terms.

The first is a final cost which only depends on the final state x(tf) and is parameterized by

the cost function weighting parameters ψ. The second term is the control energy consumed

in the task, weighted by the matrix R > 0. The state and control trajectories and the final

time are the free variables which can be selected to minimize the cost function.

The cost function has to be minimized under the constraints imposed by the body

dynamics which are in the form of nonlinear differential equations:

ẋ(t) = f(x(t),u(t)) t ∈ [0, tf ], (2.2)

where the initial state x(0) is assumed to be a known, fixed value x̄0.

Consider the M equally spaced points t1 = 0 < t2 < t3 . . . < tM = tf in the time

interval of interest. The state and control at these points are denoted by x1, . . . ,xM and

u1, . . . ,uM , respectively. In a free-final time formulation the number of grid points M is

fixed and the value of the variable tf determines the spacing between the grid points.

We consider a discretized form of the cost function in Eq. (2.1):

Jψ(x1, . . . ,xM ,u1, . . . ,uM , tf) = hψ(xM ) +
∆

4
uT

1 Ru1 +

M−1∑

k=2

∆

2
uT

k Ruk +
∆

4
uT

MRuM , (2.3)

where ∆ = tf/(M−1) is the spacing between the grid points. The dynamical constraints can

also be discretized to create equality constraints that are sometimes referred to as defects.

Under a trapezoidal (implicit) discretization scheme the constraints are of the form

xk − xk−1 −
∆

2
(f(xk,uk) + f(xk−1,uk−1)) = 0, k = 2, . . . ,M. (2.4)

Thus, the variables (x1, . . . ,xM , u1, . . . ,uM , tf) could be considered as the NLP variables

for the problem of minimizing the objective in Eq. (2.3) with respect to the constraints in

Eq. (2.4). To reduce the number of NLP variables, we instead parameterized each joint

angle trajectory as a cubic polynomial. Thus the variables x1, . . . ,xM ,u1, . . . ,uM can

be analytically determined from a small set of polynomial coefficients and the constraints
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imposed by body dynamics are satisfied by construction. In addition, loose lower and upper

bounds on the value of state (x1, . . . ,xM ) and control (u1, . . . ,uM ) are imposed and the

free final time variable tf is constrained to be strictly positive.

The medium scale algorithm (a Sequential Quadratic Programming procedure) in Mat-

lab’s fmincon function was used to solve the optimization problem described above. Since

all the actions we considered are typically of the order of one second in duration, a grid of

101 points was considered. The optimization algorithm was started from 20 − 40 random

initializations of the NLP parameters. The converged solution with the lowest objective

(cost function) value was chosen as the optimal solution to the NLP problem.

2.2 Simulation of Reaching

Arm movements, in particular reaching, have been the most extensively studied move-

ments under the optimal control framework. In early works such as [Morasso, 1981]

and [Abend et al., 1982], the common kinematic features and the stereotyped pat-

terns of muscle activation characterizing multi-joint human and monkey arm move-

ments were identified. The invariant features of point-to-point human arm movements

identified in [Bernstein, 1967], [Morasso, 1981], [Abend et al., 1982], [Uno et al., 1989],

[Flash and Hogan, 1985] and [Harris and Wolpert, 1998] are as follows.

• The hand trajectory is gently curved and smooth.

• The tangential velocity of the hand is bell-shaped and single-peaked.

• The above two features (smooth hand trajectories and bell-shaped velocity profiles)

are independent of the hand’s initial and final position within the workspace.

• The hand trajectory and velocity profile are invariant to large changes in the dynamics

of the arm.

While the invariant features are all observed in the hand trajectories, the joint angle and

angular velocity trajectories show considerable variation [Morasso, 1981], depending on the
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hand’s initial and final positions. This is a strong indication that the movement is planned

in terms of hand trajectories rather than joint rotations.

2.2.1 Arm Dynamics

In [Flash and Hogan, 1985], the authors proposed a purely kinematic optimiza-

tion approach that could predict these stereotypical patterns under the assumption

that there were no active constraints on the kinematic variables from the neuro-

musculoskeletal system. Subsequent works modeled the dynamics of the arm in

various ways. In [Uno et al., 1989], the authors used a skeletal two-joint planar

model of the arm moving in the horizontal plane and actuated by joint torques. In

more recent works ([Harris and Wolpert, 1998], [Todorov, 2002], [Li and Todorov, 2004],

[Miyamoto et al., 2004], [Taniai and Nishii, 2008]), neuro-musculo-skeletal models of the

arm have been more commonly used. For example, in [Harris and Wolpert, 1998], the

authors used a two-joint planar model moving in the horizontal plane and actuated by the

neural command signal that activates the muscles. The muscles, varying in number from 2

([Harris and Wolpert, 1998]) to 6 ([Li and Todorov, 2004]), are typically modeled as linear

second-order systems and the neural control signals are assumed to be corrupted by noise

whose variance increases with the size of the control signal.

Our model of the human arm is a purely skeletal two-link model with the upper and

lower arms modeled as uniform cylinders. The mass and dimensions of each segment were

calculated as a fraction of the body mass and height, respectively, using anthropometric

tables in [Winter, 1990]. The model has three degrees of freedom at the shoulder and

one degree of freedom at the elbow and is actuated by joint torques. The details of the

equations of motion can be found in Appendix A. Almost all the simulation models in

literature use a planar model of the arm since their goal is to compare the simulations

to experiments conducted in a constrained laboratory setting. On the other hand, we are

interested in modeling natural reaching movements, not restricted a-priori to any one plane,

and a planar model would hardly afford us that flexibility.
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Figure 2.1. Arm model. Our model of the human arm has three degrees of freedom at the
shoulder (rotation about the three axes) and one degree of rotation, about the axis marked
θe, at the elbow. The origin of the coordinate system is placed at the shoulder joint. The
pose shown is the reference pose, the pose at which all joint angles are zero. The x − z
plane is referred to as the sagittal plane and the y− z plane is referred to as the transversal
plane.

2.2.2 Cost Function for Reaching

Three different cost functions for reaching have been proposed in literature - the

minimum jerk model ([Hogan, 1984], [Flash and Hogan, 1985]), the minimum torque

change model ([Uno et al., 1989], [Nakano et al., 1999]) and the minimum variance model

([Harris and Wolpert, 1998]). The minimum jerk model, first proposed by [Hogan, 1984]

for single-joint forearm movements and [Flash and Hogan, 1985] for multi-joint arm move-

ments, states that the cost to be minimized is the derivative of the hand acceleration or

“jerk”. It is a purely kinematic optimization that does not model the arm dynamics at all.

For planar movements the cost function is

1

2

∫ T

0

(

(
d3x

dt3
)2 + (

d3y

dt3
)2
)

dt, (2.5)
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where T is the fixed duration of the movement and (x, y) is the hand’s position at time t.

In the minimum torque change model proposed by [Uno et al., 1989] the cost function

for the planar two-joint arm is of the form

1

2

∫ T

0

(

(
dτ1

dt
)2 + (

dτ2

dt
)2
)

dt, (2.6)

where T is the fixed duration of the movement and τ1 and τ2 are the shoulder and elbow

torques, respectively, at time t. Both models force the hand to reach the target location by

imposing terminal constraints on the hand position and velocity. Thus, both the amplitude

(total distance travelled by the hand) and duration of the movemement is pre-determined.

The cost functions in Eq. (2.5) and Eq. (2.6) were both primarily engineered to produce

the smooth hand trajectories and bell-shaped hand velocity profiles observed in experiments

([Morasso, 1981], [Abend et al., 1982]). However, there is no principled explanation as to

why the central nervous system should have evolved to optimize these quantities.

In the minimum variance model proposed in [Harris and Wolpert, 1998], the shape

of the hand trajectory, parameterized as a cubic spline, is selected to minimize the variance

of the final hand position in the presence of signal-dependent noise in the neural control

signal. In this model smoothness of the hand trajectory arises naturally from the biological

fact of noisy neural signals - non-smooth movements require abrupt changes of muscle force

and large neural signals, which lead to increased control-dependent noise and poor accuracy

in the task.

Note that all three models have been successful in predicting the main characteris-

tics of point-to-point reaching movements, even though the minimum jerk model is purely

kinematic, the minimum torque change model uses a purely skeletal arm model actuated

by joint torques, and the minimum variance model uses a detailed neuro-musculo-skeletal

model of the arm. There have been critiques of the minimum jerk and minimum torque

change models. The minimum jerk model, since it ignores the nonlinear arm dynamics,

is inconsistent with the lack of symmetry observed in via-point tasks ([Uno et al., 1989],

[Nakano et al., 1999]) where the hand has to pass through multiple targets. On the other

hand, adaptation studies such as [Wolpert et al., 1995] have concluded that the cost function

for reaching is specified, at least in part, in kinematic coordinates, and that the adapta-
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tions seen are incompatible with purely dynamic cost functions such as minimum torque

change. The strong kinematic component to trajectory planning is further supported by

the minimum variance model.

Energy minimization as a cost function has had limited success in explaining the invari-

ant features observed in reaching. In [Alexander, 1997] and [Nishii and Murakami, 2002] a

minimum energy cost criterion was tested and found to be successful in predicting hand

trajectories for reaching. However, the velocity profiles for the hand movements were con-

vex rather than bell-shaped. In both works the muscle dynamics and the noisy neural

control inputs to them were not modeled. In [Taniai and Nishii, 2008], the authors studied

the energy minimization criterion under the neuro-musculo-skeletal model used in the min-

imum variance approach described above and found both the hand trajectories and speed

profiles to be in agreement with experimental observations of reaching. However, energy

minimization as a criterion for arm trajectory planning is yet to be tested as extensively as

the minimum jerk, minimum torque change or minimum variance models.

At the same time, it is clear that energetics is an important factor in studying activation

patterns of individual muscles of the arm. A cost function combining accuracy and energy

was used to predict activation of individual arm muscles in [Todorov, 2002], and energy

minimization was used to predict activation patterns of wrist muscles in [Fagg et al., 2002].

In [Soechting et al., 1995] the authors reported that the final posture of the arm in three

dimensions could be predicted by the hypothesis that the final posture minimizes the amount

of work that must be done to transport the arm from the starting location.

More recent works such [Todorov, 2001] and [Miyamoto et al., 2004], as have taken the

view that the true performance criterion is likely a mix of cost terms combining accuracy and

energy. In [Miyamoto et al., 2004], the authors have proposed a criterion which is a weighted

sum of task achievement and energy consumption, where “task achievement” can be broadly

defined to include movements other than point-to-point reaching. The proposed model does

not require the pre-specification of the terminal boundary conditions for hand position and

velocity, though the duration of the movement is pre-specified. The performance criterion

was able to predict movement trajectories from a psychophysical experiment conducted
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by the authors, but was less successful in predicting the velocity profiles. Interestingly,

the authors found that the trajectories were curved differently depending on the subject,

and by (manually) adjusting the weight in the optimization criterion combining the task

achievement and energy consumption terms, the shape of the trajectory could be reproduced

for all subjects.

Our cost function for reaching for a target location c ∈ ℜ3 in 3-D cartesian space is a

combination of three terms :

Jψ(x[0,tf ],u[0,tf ], tf) =
wp

2
‖e(x(tf)) − c‖

2 +
wv

2
‖ [04 I4]x(tf)‖

2 +
1

2

∫ tf

0
u(t)T Ru(t) dt,

(2.7)

where e(·) ∈ ℜ3 maps the state of the system (joint angles and velocities) to the location

of the end-effector or the hand (See Appendix A for details). The second term in the

cost function minimizes the final joint angular velocities (04 and I4 denote a 4 × 4 zero

and identity matrix respectively). The final joint angular velocities are minimized rather

than the hand (end-effector) velocity to avoid internal motion, that is situations where

the location of the hand remains unchanged even while the joint angles are changing. The

cost function parameters, ψ = {wp, wv}, determine the tradeoff between reaching the target

location (position error), bringing the hand to rest (terminal velocity) and the control energy

consumed in the movement.

Unlike other models in literature where both the duration and amplitude of movement

are pre-determined, in our model the final hand position and velocity, and the duration of

the movement tf are both free parameters determined by the optimization. However, our

model is limited by the fact that it models neither the muscle dynamics nor its noisy neural

inputs which are thought to be important factors [Harris and Wolpert, 1998] in trajectory

planning. Our choice of the energy cost term was dictated by our ultimate goal of estimating

the cost function parameters from data using first order optimality conditions. In this, the

quadratic energy cost term offers attractive numerical properties when R > 0 - absence of

singular intervals, a Hamiltonian quadratic in the control, and numerical stability.

24



2.2.3 Simulation of Reaching

We solved the optimal control problem specified by the cost function in Eq. (2.7) and

the dynamical model described in Sec. 2.2.1 for different initial and target locations of the

hand, and for body masses in the range 65−85 kg and body heights in the range 1.6−1.8 m.

When the hand location is expressed in meters, the angular velocities in radians/second and

the joint torques in Newton-meters, the different terms in the cost function in Eq. (2.7) are

approximately in the same range. Therefore, for a given initial and target hand location,

body mass and height, we fixed the weight for the energy cost to be identity, i.e. R = I,

and varied the weights for position error (wp) and terminal velocity (wv). In this section

we discuss the trends and features observed in our simulations and compare them to those

observed in literature. All the trends and features discussed below were invariant to changes

in the initial and target locations of the hand and the body mass and height (See Figures

2.9 and 2.10).
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Figure 2.2. Scaled position error vs. weight for position error. The position error,
scaled by the distance between the initial and target hand locations, is plotted against
the logarithm of the weight for position error wp (see Eq. (2.7)). The different line plots
correspond to different values for the weight for terminal velocity wv.

For values of wp less than 1, the optimal movement was no movement at all since the

energy cost dominates the cost function. The position error decreased (see Fig. 2.2) from
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Figure 2.3. Final hand velocity vs. weight for terminal velocity. The terminal hand
velocity is plotted against the logarithm of the weight for terminal velocity wv (see Eq.
(2.7)). The different line plots correspond to different values for the weight for position
error wp.

80 − 90 percent of the distance between the initial and target hand location at wp = 1 to

less than 2.5 percent at wp = 104. As seen in Fig. 2.2 the decline is almost identical for

different values of the weight for terminal velocity wv. This suggests that the amplitude of

the optimal movement, i.e. the total distance travelled by the hand, is determined mainly

by the weight for position error wp. This can also be observed in the hand trajectories

plotted in Fig. 2.4, which are slightly curved and smooth in agreement with the empirical

observations in literature.

Overall, the final hand velocity declines much more rapidly as wv is increased (see Fig.

2.3), but the trend is more uneven across different values of wp, the weight for position error.

At low values of wp (< 101.5), the final hand velocity was only a few centimeters/second

regardless of the value of wv since the total amplitude of the movement is small. At larger

values of wp, when the amplitude of the movement is large, increasing wv has a dramatic

impact on the final hand velocity which declines from 0.05 meters/sec at wv = 1 to less

than 0.002 meters/sec at wv = 100. This would imply that though the hand trajectories for
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Figure 2.4. Hand trajectories. Hand trajectories are shown for different values of wp.
In each plot the cartesian space is marked in meters and the hand trajectories for different
values of wv (not shown) are plotted as black solid lines with the final hand position marked
by a gray dot. The target location for the reaching action is marked by a black circle with
gray fill. The origin of the coordinate system is located at the shoulder joint. Some of the
arm postures corresponding to these hand trajectories are shown in Fig. 2.8.

different values for wv in Fig. 2.4 look remarkably similar for wp > 10, they actually differ

considerably in their velocity profiles.

The scaled velocity profiles of the hand trajectories are presented in Fig. 2.5. The

peak velocities range from 0.2 − 1.3 m/s and the duration of the movement tf varies from

0.6 − 1.2 sec for hand movements toward a target 60 − 70 cm from its initial position. For

a comparison, the peak velocities and durations reported in literature are 1.2 − 1.4 m/s

and 0.9 − 1.3 sec respectively [Uno et al., 1989] for ideal reaching movements (equivalent

to high wp and wv values) of amplitude 70 cm. The velocity profiles in our simulations are

convex (see Fig. 2.5), rather than bell-shaped. Similar convex profiles have been noted in

27



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ca

le
d 

V
el

oc
ity

Scaled Time

Figure 2.5. Scaled velocity profiles. The hand velocity scaled by the peak velocity of
the movement is plotted against the final time scaled to 1, for all wp-wv values, wp ranging
from 1 to 104 and wv ranging from 1 to 103.

[Alexander, 1997] and [Nishii and Murakami, 2002], both of which used a skeletal model in

conjunction with a minimum energy cost. It is not clear, however, whether the profiles are a

consequence of the lack of muscle dynamics in our model or the energy cost term used in our

cost function. The low initial and final gradients of the typical bell shaped velocity profile

reported in Literature is most likely due to the impossibility of activating and deactivating

muscles instantaneously, which can be captured by modeling the muscle dynamics.

We applied the K-means clustering algorithm to a dataset containing the optimal hand

trajectories for reaching a fixed target, for different wp −wv values and inertial parameters.

As shown in Fig. 2.7 the within-cluster variance declined very little beyond 6 clusters,

indicating that very little was to be gained by considering more than 6 clusters.

Optimal trajectories that shared the same cost function parameter values but differed

in the inertial parameters always fell into the same cluster. The six clusters are therefore

marked on the wp − wv grid in Fig. 2.6. The clustering helps us understand how similar

different parameter values are in terms of the similarity of the corresponding optimal trajec-

tories. As we have seen, the optimal trajectory can remain unchanged over large ranges of

parameter values, while changing very rapidly in certain ranges. By clustering the optimal
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trajectories, we can compare two different parameter values in terms of whether they lie in

the same cluster or not.
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Figure 2.6. Clustering of simulated reaching trajectories. Six clusters are indicated
on the wp − wv grid by different markers.
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variance of the dataset; the within-cluster variance for two or more clusters is normalized
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Figure 2.10. Different initial and target hand locations. The figure on the left shows
the hand trajectories for different initial and final hand locations, plotted in a cartesian
space marked in meters and with origin fixed at the shoulder. The figure on the right plots
the corresponding hand velocities. The total amplitude of the movements are 66 cm, 37 cm
and 62 cm respectively for the trajectories marked a, b and c. The values of the cost function
parameters are wp = 104, wv = 103 in all cases.
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2.3 Simulation of Punching

Unlike the action of reaching, punching is an arm motion that has not been stud-

ied much in literature. The closely related action of throwing has been studied in

[Todorov and Jordan, 2002]. In [Todorov and Jordan, 2002], the authors use a 2-D point

mass linear dynamical model for the hand and simulate the task of throwing a ball to hit a

specific target. The hand is constrained to be at a specific location at a fixed time, at which

point the ball is released with a velocity that matches that of the hand. The cost function

used for the action was a combination of a task error term (which specified that the ball

had to be at the target at a particular time) and energy cost. The authors observed that

the strategy of moving the hand back and reversing emerged naturally from the optimal

control solution to the problem. The tasks of punching and throwing are similar in that

both arm movements typically involve a countermovement.

Figure 2.11. Planar arm model. The x and z axes shown here correspond to the x and
z axes of Fig. 2.1 and define the sagittal plane. The masses and moments of inertia of the
upper and lower arm segments are m1, I1 and m2, I2 respectively.

We use a planar dynamical model of the hand for simulating the task of punching

since the movement is largely confined to the sagittal plane. The model has two degrees of

freedom, one at the shoulder and another at the elbow as indicated in Fig. 2.11. The origin

of the coordinate frame is placed at the shoulder; the x-axis is perpendicular to the plane of

the body and points forward while the z-axis is the upward vertical. The masses, lengths,
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centers of mass and moments of inertia of the two links were obtained as a fraction of the

total body height and mass using the anthropometric tables in [Winter, 1990]. The details

of the equations of motion can be found in Appendix B. Our cost function for punching a

target at location c ∈ ℜ2 in 2-D cartesian space is a combination of three terms:

Jψ(x[0,tf ],u[0,tf ], tf) =
wp

2
‖e(x(tf)) − c‖

2 −
wv

2
sgn(ėx(x(tf))) ‖ėx(x(tf))‖

2

+
1

2

∫ tf

0
u(t)T Ru(t) dt, (2.8)

where e(·) ∈ ℜ2 maps the state of the system (joint angles and velocities) to the location

of the end-effector i.e. the hand in the sagittal plane (See Appendix B for details). The

function ėx(·) maps the state of the system to the final velocity of the hand along the x-

axis. The cost function parameters ψ = {wp, wv} determine the tradeoff between reaching

the target location (position error), maximizing the final hand velocity along the positive

x-axis and the control energy consumed in the movement. The final hand position and

velocity, and the duration of the movement tf are both free parameters determined by the

optimization. The task of throwing could be similarly modeled by maximizing the final

hand velocity in a particular direction.

We solved the optimal control problem specified by the cost function in Eq. (2.8) and

the dynamical model described above, for different initial and target locations of the hand,

and for body masses in the range 65− 85 kg and body heights in the range 1.6− 1.8 m. For

a given initial and target hand location, body mass and height, we fixed the weight for the

energy cost to be identity, i.e. R = I, and varied the weights for position error (wp) and

terminal velocity (wv) in the range 1 to 106. The results discussed below are for a body

height of 1.65 m and mass of 60 kg, but as shown in Fig. 2.15 the variation of inertial

parameters has negligible effect on the optimal trajectory.
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log10(wv)
log10(wp) -1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 6

0 1.00 1.49 1.52

1 1.00 1.45 1.52

2 0.20 0.21 0.27 1.50 1.52

3 0.03 0.03 0.08 0.11 1.36 1.52

4 0.00 0.00 0.01 0.02 0.04 1.05 1.52

5 0.00 0.00 0.00 0.00 0.00 0.01 0.04 1.05 1.52

6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.08 1.35 1.51

Table 2.1. Final position error of the hand scaled by the initial distance between
the hand and the target.

log10(wv)
log10(wp) -1 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 6

0 -0.06 5.30 5.54

1 -0.03 5.28 5.54

2 0.03 0.49 1.79 5.42 5.54

3 0.03 0.58 1.77 1.78 5.47 5.54 5.54

4 0.03 0.59 1.62 1.75 1.76 5.25 5.54

5 0.03 0.59 1.59 1.74 1.74 1.74 1.75 5.25 5.54

6 -0.05 0.89 1.37 1.74 1.74 1.74 1.74 1.74 1.75 1.77 5.50 5.54

Table 2.2. Final hand velocity in the x-direction in meters/sec.

For values of wv < 1, the cost function in Eq. (2.8) produces results similar to reaching

(see Fig. 2.12)- the position error decreases as wp increases, with final hand velocities that

are relatively low (0.03 − 0.05 m/s as enumerated in Table 2.2) in the context of punching,

but relatively high in the context of reaching (see Fig. 2.3). As wv is increased the optimal

solution involves a countermovement with final hand velocities of 0.5−1.75 m/s in the desired

direction, the velocities increasing as the countermovement becomes more pronounced. As

shown in Table 2.1, for any given value of wp the final position error increases as wv is

increased and the demand to maximize the final velocity of the hand gains weight.

When the value of wv is large enough to overwhelm the position error term weighted

by wp the optimal movement changes to a swinging countermovement (like an underarm

throw). In this movement the arm mainly rotates backward and then forward around the

shoulder joint resulting in final hand velocities of 5 − 5.5 m/s in the x-direction. The goal

of reaching the target location is abandoned resulting in scaled position errors greater than

one which implies that the final hand position is further away from the target than its initial
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Figure 2.12. Optimal solutions for low values of wv. For low values of wp the optimal
movement is no movement at all. As wp is increased the movement resembles reaching with
relatively high final hand velocity. The figures show the two-link planar arm at six equally
spaced intervals in the movement. The horizontal and vertical axes correspond to the x and
z axes respectively in the planar model and are marked in meters.

position at the start of the movement. In Tables 2.1 and 2.2, the scaled position error and

final hand velocity in the x-direction are not shown beyond this point because the variation

thereafter is relatively small.
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Figure 2.13. Optimal solutions for increasing values of wv. The first two figures show
the progression of countermovement punching as wv is increased. The bottom figure shows
the swinging countermovement that is optimal at high values of wv. The figures show the
two-link planar arm at six equally spaced intervals in the movement. The durations of the
movements are 0.70 − 0.8sec. The horizontal and vertical axes correspond to the x and z
axes in the planar model and are marked in meters.
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Figure 2.14. Clustering of optimal trajectories for different wp, wv values. The grid
is marked on a log10 scale. Different clusters are indicated on the grid by different types
of markers. The clusters were obtained by using the K-means clustering algorithm on the
data set of optimal trajectories for different wp, wv values.

The progression of countermovement punching and the switch to the swinging motion

described above is illustrated in Fig. 2.13. Clustering the optimal trajectories for different

wp, wv settings yields clusters that correspond to the different optimal movements discussed

above. The clusters are marked in Fig. 2.14.

The simulation of punching using the optimal control framework demonstrates the de-

scriptive power of this approach. A range of movements can be elegantly captured by a single

cost function structure by varying the cost function parameters, in this case the weights

wp and wv. The cost function parameters can also be interpreted as a choice of preferences

between the different, often competing goals of the task. In the case of punching, the cost

function we propose in Eq. (2.8) naturally gives rise to the strategy of countermovement -

moving the hand backwards and then forwards to maximize the final velocity.
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Figure 2.15. Effect of inertial parameters. Variation of inertial parameters has negligible
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2.4 Conclusion

An advantage of using the optimal control framework to model human actions is that the

cost function can be constructed from our intuitive understanding of the task definition.

However the interaction between the cost function and the nonlinear body dynamics is

complex. By using numerical methods to solve the optimal control problem for different

parameter settings and inertial parameters we can get a better sense of the range of motions

that can be produced by the cost function we have proposed.

While numerical methods have been used to simulate optimal trajectories which are

then compared to experimental data, the cost function parameter values in these studies

are fixed by trial-and-error to calibrate the model to data. The objective is to study an

ideal average prototypical motion. On the other hand, our goal is to explore the full range

of motions that can be produced by a single cost function.

Our simulations of two arm motions - reaching and punching - indicate that the optimal

trajectory can vary very little over some parameter ranges while changing rapidly in others.

This implies that the euclidean distance between two parameter values is a poor indicator

of how “close” they are, since the most natural measure of the “closeness” of two parameter

values would be the similarity of the optimal trajectories they produce. A better way to

make a judgement on whether two parameter values are close would be to check whether

they lie in the same cluster or not.

Our simulations of arm motions also show that variation of inertial parameters has

negligible effect on the optimal trajectory, especially when compared to the impact of pa-

rameter variation. This indicates that for some actions it is possible to have a common

interpretation of cost function parameters for different people; that is we can compare the

cost function parameter values of two people directly without referencing their body heights

and masses. However, this feature might not hold for all human actions.
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Chapter 3

Estimation of Cost Function

Parameters

To apply the optimal control framework in the analysis of human actions, we need to be

able to estimate the cost function parameters automatically from data. The need for such

a method has been noted in neuroscience literature. In a review paper on the application

of optimal control models [Todorov, 2004] the authors note that “It would be very useful

to have a general data analysis procedure that infers the cost function given experimental

data and a biomechanical model”.

In the absence of such a procedure, researchers have experimented with cost functions

and adjusted cost function parameters by trial and error to calibrate the model to the

average trajectory observed in experiments. In [Miyamoto et al., 2004], the authors in in-

vestigating generalized reaching motions, found that by manually adjusting the weights in

the optimization criterion the shape of the optimal trajectory could be reproduced for all

subjects.

In Literature, the inverse problem of optimal control ([Kalman, 1979], [Boyd et al., 1982],

[Larin, 2003], [Moylan and Anderson, 1973], [Rekasius and Hsia, 1964]) has been consid-

ered in the context of linear system dynamics and quadratic cost functions, where the

system matrices and the linear feedback control law is assumed to be known. The
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problem then is to determine the weighting matrices in the quadratic cost function,

such that the given control law is optimal with respect to it. The problem was first

proposed in [Kalman, 1979], and several methods have been proposed ([Larin, 2003],

[Moylan and Anderson, 1973],[Rekasius and Hsia, 1964]), including the use of Linear Ma-

trix Inequalities (LMI) [Boyd et al., 1982], to solve the problem. Given the nonlinearity

of our biomechanical models and cost functions (which are quadratic only in the control),

these solutions are not applicable in the problems we consider.

In the related field of reinforcement learning the problem of learning the reward function

from observed optimal behavior has been addressed in [Ng and Russell, 2000], where it

is solved as linear program, and in [Ramachandran and Amir, 2007] where a probability

distribution over the space of reward functions is determined. In [Ng and Russell, 2000] the

authors identify degeneracy - the existence of a large set of reward functions for which the

observed behavior is optimal - as the key issue, and address it by using heuristics to pick a

reward function.

In its most general form the problem definition would be as follows: given an optimal

trajectory and a known system dynamics, can we determine the cost function with respect

to which the trajectory is optimal? We address this problem in a more limited setting,

where the structure of the cost function is known, while certain parameters are considered

unknown. In this chapter we propose a method to estimate the unknown cost function

parameters from data and demonstrate the use of the method on two tasks: reaching and

punching.

3.1 Methods

Consider the time-discretized form of the free-final time optimal control problem pre-

sented in Eq. (2.3) and Eq. (2.4):

min
x1,...,xM ,u1,...,uM ,tf

Jψ(x1, . . . ,xM ,u1, . . . ,uM , tf)

s.t. gk = 0 k = 1, . . . ,M. (3.1)
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where

Jψ = hψ(xM )
︸ ︷︷ ︸

F inal cost

+
tf

2(M − 1)

(

1

2
uT

1 Ru1 +

M−1∑

k=2

uT
k Ruk +

1

2
uT

MRuM

)

︸ ︷︷ ︸

Energy Cost

(3.2)

and

g1 = x1 − x̄0

gk = xk − xk−1 −
tf

2(M − 1)
(f(xk,uk) + f(xk−1,uk−1)) , k = 2, . . . ,M. (3.3)

The subscript ψ in the cost function J and the final cost h(·) indicate that these functions

are parameterized by the cost function parameters ψ which we wish to estimate. The energy

cost R is held at a fixed value while other parameters (weights) are estimated relative to it.

In Eq. (3.3), x̄0 is the known initial state of the biomechanical system, whose continuous-

time dynamics are described the nonlinear differential equations ẋ(t) = f(x(t),u(t)).

Any solution to the optimization problem in Eq. (3.1) will satisfy the following first

order necessary conditions:

∂Jψ
∂xk

+ λT
1

∂g1

∂xk

+ . . . + λT
M

∂gM

∂xk

= 0 (3.4)

∂Jψ
∂uk

+ λT
1

∂g1

∂uk

+ . . . + λT
M

∂gM

∂uk

= 0 (3.5)

∂Jψ
∂tf

+ λT
1

∂g1

∂tf
+ . . . + λT

M

∂gM

∂tf
= 0 (3.6)

for k = 1, . . . ,M , that is the gradient of the objective has to be orthogonal to the constraint

surface. In addition to the above conditions the optimal trajectory also has to lie on the

constraint surface and satisfy the constraints in Eq. (3.3). These are the time-discretized

version of the necessary conditions (two-point boundary value problem) in Eq. (1.12). The

Lagrange multipliers λ1, . . . ,λM are the discrete-time equivalent of the costate trajectory.

The Equations (3.3), (3.4), (3.5) and (3.6) are the discrete-time equivalents of the state,

costate, control and terminal (boundary) conditions respectively. Since our system dynamics

are linear in the control and the cost function is quadratic in the control with Huu =

R > 0 by construction, the Hessian of the Hamiltonian with respect to the control will be

positive-definite everywhere. Therefore, the strengthened Legendre-Clebsch [Stengel, 1994]
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(or convexity) condition (Huu > 0), the sufficient condition for optimality, will be satisfied

for any trajectory which satisfies the necessary conditions.

Let x1:M denote the set of variables {x1,x2, . . . ,xM}. We shall use the notation

(x1:M ,u1:M ,λ1:M , tf) to denote a set of state, control, Lagrange multiplier and final time

values which may or may not satisfy the necessary conditions described above; optimal

values are denoted by (x∗

1:M ,u∗

1:M ,λ∗

1:M , t∗f ) and will satisfy the conditions. In estimating

cost function parameters from data, we assume that the trajectory we observe is optimal

for some set of parameters. Thus the optimal state trajectory x∗

1:M and the final time t∗f is

known to us. We also assume that the biomechanical model and its dynamics are known

to us. As we saw in the previous chapter, given the body height and mass of the subject

performing the action, we can obtain all the required inertial values for the biomechanical

model. We do not require detailed limb measurements of our subjects. Since the body

dynamics are known, the optimal control (torques) trajectory u∗

1:M can also be obtained

directly from the data. Further details on these data processing steps are given in Sec. 3.2.

For the fixed (x∗

1:M ,u∗

1:M , t∗f ) values obtained from data, if we can find a set of cost func-

tion parameters ψ and Lagrange multipliers λ∗

1:M , such that Eq. (3.4)-(3.6) are satisfied, we

can be rest assured that the observed trajectory is at optimal for the obtained cost function

parameters. Since the number of cost function parameters is usually small, this problem is

overdetermined. We therefore treat Eq. (3.4)-(3.6) as a least squares optimization problem

and solve for cost function parameters and Lagrange multiplier values that satisfy these

equations approximately.

For the biomechanical system models we consider the dynamics are of the form

f(xk,uk) = A(xk) + B(xk)uk. (3.7)

Therefore Eq. (3.4)-(3.6) are of the form stated below where ∆ = tf/(M − 1), I denotes an

identity matrix of the appropriate dimensions, and fx is the partial derivative of the system
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dynamics with respect to the state.

λ1 − (I +
∆

2
fx(xk,uk))

Tλ2 = 0

(I −
∆

2
fx(xk,uk))

Tλk − (I +
∆

2
fx(xk,uk))

Tλk+1 = 0 k = 2, . . . ,M − 1

∂hψ
∂x

(xM ) + (I −
∆

2
fx(xM ,uM ))TλM = 0 (3.8)

B(x1)
Tλ2 − Ru1 = 0

B(xk)
Tλk + B(xk)

Tλk+1 = 2Ruk k = 2, . . . ,M − 1

B(xM )TλM − RuM = 0 (3.9)

M∑

k=2

(f(xk,uk) + f(xk−1,uk−1))
Tλk =

1

2
uT

1 Ru1 +

M−1∑

k=2

uT
k Ruk +

1

2
uT

MRuM

(3.10)

All partial derivatives of the constraint equations can be computed (through finite dif-

ferences) along the optimal state and control trajectory we observe and are constants in the

least squares optimization to find the cost function parameters and Lagrange multipliers.

In our formulation we do not consider inequality constraints on joint angles, velocities

(state) or torques (control). Firstly, precise lower and upper bounds for these are difficult to

determine. Secondly, for everyday movements we can reasonably assume that the subjects

do not operate near the limits and that the constraints are inactive.

As we observed in the previous chapter, in the simulation of reaching and punching

actions, entire ranges of parameter values could give rise to very similar optimal trajectories.

Therefore in comparing parameter estimates to actual values, or to each other, we use the

clustering of the simulated optimal trajectories - parameter values that lie in the same

cluster are evaluated as being close.
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3.2 Processing of Motion Capture Data and Experimental

Setup

We tested our parameter estimation methods on motion capture data obtained from a

PhaseSpace motion capture system at 480 Hz. The motion capture system provides the 3D

marker location of 37 markers placed on a fitting suit worn by the subject.

The marker locations are with respect to a fixed coordinate system whose z axis coincides

with the upward vertical. Using the markers on the back (Fig. 3.1), we transformed the

coordinate system (and marker locations) such that the x axis points forward and the y axis

is in the plane of the body from right to left. For arm motions, the origin of the coordinate

system was shifted to the shoulder joint (see Fig. 2.1).

Figure 3.1. New co-ordinate system. The x-axis points into the plane. The markers on
the back are also shown.

After extracting the relevant joint angles from the marker locations, the joint angle tra-

jectories were smoothed using cubic spline interpolation. The fitted spline was functionally

differentiated and evaluated at the sampling instants to obtain the trajectories for angular

velocity and acceleration. The joint angles, velocities and accelerations were plugged into

the equations of motion of the biomechanical model to obtain the joint torques.
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Figure 3.2. Smoothing and differentiation of joint angles. The processing for the
elbow angle θe trajectory in a reaching experiment is shown. In the top figure the blue
trajectory indicates the joint angles extracted from motion capture data and the red tra-
jectory marks the smoothed trajectory. The angular velocity and accelerations are shown
in the next two plots.

The subjects in our experiments were fellow-researchers from the Tele-Immersion Lab-

oratory at the University of California, Berkeley. The body heights and masses of the

subjects in each experiment are indicated in Tables 3.2, 3.3 and 3.7. The heights of the

male subjects varied between 1.60−1.72 m, below the average of 1.76 m for American adult

males [M. A. McDowell, 2008]; for comparison the 25-th percentile for the American adult

male population above 20 years of age is 1.71 m. The masses of the male subjects varied

between 58 − 72.5 kg, well below the 25-th percentile value of 75.2 kg for American adult

males. On the other hand, the heights of the female subjects varied between 1.65− 1.75 m,

above the average height of 1.62 m for American adult females [M. A. McDowell, 2008].

The masses of the female subjects varied between 57 − 68 kg, and lay between the 15-th

percentile value of 56.1 kg and the median value of 70.7 kg for this demographic.
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3.3 Reaching

3.3.1 Tests on Simulated Data

The optimal trajectories obtained by the numerical methods described in Sec. 2.2 were

used as a test bed to verify the parameter estimation methodology. To recapitulate, our

cost function for reaching for a target location c ∈ ℜ3 in 3-D cartesian space is:

Jψ(x[0,tf ],u[0,tf ], tf) =
wp

2
‖e(x(tf)) − c‖

2 +
wv

2
‖ [04 I4]x(tf)‖

2 +
1

2

∫ tf

0
u(t)T Ru(t) dt,

(3.11)

where e(·) ∈ ℜ3 maps the state of the system (joint angles and velocities) to the location

of the end-effector or hand. The second term in the cost function minimizes the final

joint angular velocities (04 and I4 denote a 4 × 4 zero and identity matrix respectively).

The cost function parameters, ψ = {wp, wv}, determine the tradeoff between reaching the

target location (position error), bringing the hand to rest (terminal velocity) and the control

energy consumed in the movement. We fixed the weight for the energy cost to be identity,

i.e. R = I, and estimated the weights for position error (wp) and terminal velocity (wv)

from the optimal trajectory.

Actual Values Estimates Residual Values

log10 wp log10 wv log10 wp log10 wv State Co-state Control Terminal

0.500 2.000 0.207 1.996 8.599e-008 0.001 0.000 5.623e-005

0.000 1.000 0.000 0.926 5.483e-008 0.001 0.000 1.674e-004

3.000 0.000 2.714 0.000 3.565e-007 0.021 0.006 1.461e-002

3.000 2.000 2.712 1.352 4.021e-007 0.022 0.007 2.294e-002

1.000 1.000 0.703 0.428 1.930e-007 0.004 0.001 7.302e-005

2.000 1.500 1.675 0.619 2.849e-007 0.015 0.004 9.205e-003

3.000 0.500 2.712 0.612 3.784e-007 0.021 0.006 1.884e-002

3.500 3.000 3.182 1.948 4.153e-007 0.027 0.008 4.591e-002

2.000 2.500 1.675 2.011 2.861e-007 0.015 0.004 9.267e-003

3.000 1.000 2.712 0.352 3.934e-007 0.022 0.006 2.144e-002

Table 3.1. Estimates of cost function parameters for simulated reaching data.
The residuals of Eq. (3.3)-(3.6) are presented under the headings state, co-state, control
and terminal respectively.

The actual parameter values used for the generation of the optimal trajectory are com-

pared with the estimates in Table 3.1 and Fig. 3.3. The estimates lie within the same
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cluster as the actual parameter value, even if they do, in some cases, tend to move to the

edge of the cluster (See the bottom two figures in Fig. 3.3).
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Figure 3.3. Actual values and estimates of cost function parameters. The actual
value is circled in blue and the estimate is marked by red cross. They are plotted over
the clusters of optimal trajectories on the wp − wv grid, with different markers indicating
different clusters.
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3.3.2 Description of Motion Capture Data Set: Experiment 1

We collected motion capture data for two different reaching tasks. In the first reaching

task the subjects were asked to stand facing the target with their hands at their sides,

and reach for the target with their right hand. The subjects were instructed to stand at

a comfortable distance from the target so they would not have to lean forward or extend

themselves in reaching the target. They were also advised to move in a manner that felt

natural and comfortable for them. Each subject was asked to repeat the action multiple

(4− 6) times. A visualization of the motion capture data in Maya (an animation software)

is shown in Fig. 3.4. The body heights and masses of the subjects were recorded during

the experiment and are presented in Table 3.2.

Subject Height Weight
(in meters) (in kg)

1 1.67 68
2 1.60 65
3 1.72 58
4 1.75 67
5 1.65 57
6 1.67 61
7 1.72 72.5

Table 3.2. Heights and masses of subjects participating in the first reaching
experiment.

Figure 3.4. Visualization of the first reaching task. The target is marked by a black
square.

The typical bell-shaped hand velocity trajectory observed during the course of this

action is plotted in Fig. 3.5. It is interesting that the action of bringing the hand back from

the target to the side also has a roughly bell-shaped velocity profile. While the shape of the
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hand velocity trajectory was roughly the same across subjects and repetitions, the duration

of the action, the peak hand velocity and the final hand velocity were not (See Fig. 3.7).
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Figure 3.5. First reaching action: Hand velocity The start and end of the action is
indicated by a green square and a red solid square respectively. Multiple repetitions of the
action by the subject are shown.

The joint angle and velocity trajectories for three different subjects are shown in Fig. 3.6.

The joint angle trajectory for the action varied between subjects, but remained fairly stable

across different repetitions by a single subject. For instance, while subject 1 straightened

the arm at the elbow before bending it slightly, and subject 2 simply straightened at the

elbow as the action proceeded, subject 3 preferred to bend up to 50 deg at the elbow before

straightening.

As shown in Fig. 3.7, the position error for each subject remained in a relatively small

range across different repetitions. However, the average position error varied from 1.7 cm

for subject 6 to 6.5 cm for subject 7. This range resulted from differences in the manner

in which the subjects chose to interpret the “target” location; some subjects touched the

target marker while others chose to stop short of it.

We did not try to enforce that the subjects necessarily touch the target because the aim

of the experiment was to study natural reaching movements where the subjects were given

minimal instructions about the nature of the task and were free to execute in a manner

of their choosing. The fact that every subject maintained the final position error in some
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Figure 3.6. First reaching action: Joint angle and velocity trajectories for dif-
ferent subjects. The joint angle and velocity trajectories for subjects 1, 2, and 3 are
plotted in black, red and blue respectively. The angles correspond to the degrees of freedom
described in Fig. 2.1: θy and θx are the rotations about the Y and X axes, respectively, at
the shoulder joint; θe is the rotation about the elbow joint. Negative values of θy indicate
that the arm is being rotated forwards and θx = 90 deg indicates that the arm is in the
sagittal plane.

limited range suggests that they maintained a consistent interpretation of the reaching task

in terms of position error. The same could not be said of the subjects’ perception of the

need to maintain a low final hand velocity. While subjects 1, 6 and 7 also consistently

controlled the final hand velocity to be at low values (Fig. 3.7), subjects 2, 3, 4 and 5 did

not.

The variations in final and peak hand velocities, and the duration of movement, even

between different repetitions of the task by the same subject, indicates the range of move-

ments associated with a single task. At the same time, the consistency of the position

error achieved by a particular subject and the invariance of hand velocity profiles across

subjects, suggests certain commonalities about how the task is executed. Our approach of

representing the reaching action by a cost function (Eq. (3.11)) captures the commonalities

of the task in the structure of the cost function, while allowing variations by allowing the

cost function parameters (wp and wv) to be varied.
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Figure 3.7. First reaching action: Position error (actual and normalized), final
and peak velocities and duration of movement for different subjects. In the top
right figure the position error is normalized by the initial distance between the hand and
the target. The value for each trial is marked by a circle.
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3.3.3 Description of Motion Capture Data Set: Experiment 2

In the second reaching task the subjects were asked to stand facing right angles to

the target and reach for the target with their right hand without turning to look at the

target. The subjects were instructed to stand at a comfortable distance from the target so

they would not have to lean sideways or extend themselves in reaching the target. They

were allowed to use their peripheral vision but not allowed to turn their body or head to

look at the target. Each subject was asked to repeat the action multiple (4 − 6) times. A

visualization of the motion capture data in Maya (an animation software) is shown in Fig.

3.8. The body heights and masses of the subjects were recorded during the experiment and

are presented in Table 3.3.

Figure 3.8. Visualization of the second reaching task. The target is marked by a
black square.

Subject Height Weight
(in meters) (in kg)

1 1.67 68
2 1.60 65
3 1.72 58
4 1.75 67
5 1.65 57
6 1.67 61

Table 3.3. Heights and masses of subjects participating in the second reaching
experiment.

The second reaching action also exhibited a consistent bell-shaped velocity profile (Fig.

3.9) across subjects and repetitions. But much like the first reaching action, the final and

peak hand velocities and the durations of the movements varied even between repetitions

by the same subject (See Fig. 3.12).
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Figure 3.9. Second reaching action: Hand velocity. The start and end of the action
is indicated by a green square and a red solid square respectively. Multiple repetitions of
the action by the subject are shown.

As in the first reaching action, the joint angle trajectories vary from subject to subject

(see Fig. 3.10).
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Figure 3.10. Second reaching action: Joint angle and velocity trajectories. The
joint angle and velocity trajectories for subjects 2, 3, and 5 are plotted in black, blue and
red respectively. The angles correspond to the degrees of freedom described in Fig. 2.1: θy

and θx are the rotations about the Y and X axes, respectively, at the shoulder joint; θe is
the rotation about the elbow joint.

The position errors were much larger than in the first reaching action (see Fig. 3.11),

with only one subject being able to achieve an average position error of less than 10 cm across

repetitions. This is to be expected since the subjects’ visual inputs to determine the target

location were limited in this experiment. As shown in Fig 3.11, the final and peak hand

velocities for the second experiment are not significantly different from the observations in
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the first reaching experiment, while the duration of movement was slightly lower (0.07 sec)

on average.
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Figure 3.11. Comparison of reaching actions: Position error, final hand velocity,
peak hand velocity and duration of movement. The box plot has lines at the lower
quartile, median (marked in red), and upper quartile values. The notches represent a robust
estimate of the uncertainty about the medians for box-to-box comparison. If the notches
in the boxplot do not overlap, you can conclude, with 95 percent confidence, that the true
medians do differ.
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Figure 3.12. Second reaching action: Position error (actual and normalized), final
and peak velocities and duration of movement for different subjects. In the top
right figure the position error is normalized by the initial distance between the hand and
the target. The value for each trial is marked by a circle.
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3.3.4 Estimation of Cost Function Parameters for Experiment 1

We fixed the weight for the energy cost to be identity, i.e. R = I, and estimated the

weights for position error (wp) and terminal velocity (wv) from the joint angle trajectory

extracted from motion capture data.

The cost function parameter estimates for different subjects are tabulated in Table 3.4

and plotted in Figures 3.14 and 3.15 over the clusters of optimal trajectories. Reflecting

the fact that the final position errors are in a relatively small range for this action, the wp

estimates for different subjects and repetitions lie between 2.5 − 3.5 on a log scale.

Overall, the parameter estimates fall into two different clusters differentiated mainly by

the value of the wv estimate. The estimates for different repetitions by the same subject

can also lie in different clusters (eg. subjects 3, 4, and 5), as the final velocity for these

subjects varies considerably. Movements with final hand velocities of 0.02 m/s or lower

tend to lie in the cluster to the right, while those with higher final hand velocities tend to

drift into the cluster on the right. These two clusters are quite distinct since they are also

differentiated when the clustering algorithm is applied with a lower number of total clusters

(see Fig. 3.13). The relation of wv estimates to final hand velocities is also roughly in line

with the trends noted during simulation of reaching movements in Fig. 2.3.
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Figure 3.13. Clustering of simulated optimal trajectories for reaching, into 5
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Estimates Residual Values
log10 wp log10 wv State Costate Control Terminal

Subject 1

1 3.403 0.101 2.45e-005 0.216 0.018 6.04e-006

2 3.632 0.234 2.15e-005 0.211 0.019 6.35e-006

3 3.580 0.229 3.92e-005 0.174 0.019 6.36e-006

4 3.325 0.103 4.44e-005 0.149 0.023 4.21e-006

5 3.148 0.223 5.58e-005 0.139 0.014 3.80e-006

Subject 2

1 2.903 1.508 4.05e-005 0.139 0.056 7.03e-006

2 3.222 1.694 2.47e-005 0.116 0.092 3.53e-006

3 3.072 1.097 3.30e-005 0.132 0.063 3.51e-006

4 2.893 1.812 3.80e-005 0.132 0.071 3.57e-006

5 2.663 0.723 2.79e-005 0.131 0.094 3.83e-006

Subject 3

1 2.554 0.000 3.53e-005 0.274 0.359 1.93e-006

2 2.801 0.000 1.08e-005 0.278 0.299 4.88e-006

3 3.079 0.005 1.68e-005 0.422 0.536 3.86e-006

4 3.171 2.368 1.54e-005 0.248 0.308 3.64e-006

5 2.775 0.000 3.19e-005 0.262 0.381 4.39e-006

Subject 4

1 2.972 0.000 2.51e-005 0.239 0.201 5.52e-006

2 2.681 1.745 2.00e-005 0.226 0.300 7.71e-006

3 2.790 0.003 2.76e-005 0.301 0.321 4.28e-006

4 2.832 0.000 2.09e-005 0.331 0.364 4.78e-006

5 2.781 0.000 1.68e-005 0.271 0.294 5.17e-006

Subject 5

1 2.410 1.923 1.09e-005 0.217 0.024 1.18e-005

2 2.452 1.876 1.39e-005 0.221 0.030 1.09e-005

3 2.403 0.000 1.62e-005 0.219 0.026 1.12e-005

4 2.424 0.612 1.59e-005 0.211 0.021 1.04e-005

5 2.363 0.000 1.94e-005 0.233 0.024 8.75e-006

6 2.529 2.625 2.19e-005 0.237 0.081 9.75e-006

Subject 6

1 2.991 1.848 3.26e-005 0.158 0.042 5.23e-006

2 2.645 1.193 2.40e-005 0.135 0.051 4.83e-006

3 2.991 0.899 3.40e-005 0.136 0.068 4.11e-006

4 2.688 0.773 2.36e-005 0.124 0.030 3.74e-006

Subject 7

1 2.936 1.626 1.26e-005 0.233 0.030 8.35e-006

2 3.187 1.732 2.01e-005 0.231 0.061 6.20e-006

3 3.293 2.166 2.24e-005 0.191 0.132 4.08e-006

4 3.261 1.604 4.36e-005 0.162 0.058 9.58e-006

5 3.165 2.175 3.15e-005 0.209 0.118 7.48e-006

Table 3.4. First reaching Action: Estimates of cost function parameters.
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Figure 3.14. First reaching action: Cost function parameter estimates for subjects
1 to 4. The estimates of cost function parameters in different repetitions of the task are
plotted as red crosses. They are plotted over the clusters found in the set of simulated
optimal trajectories for reaching, which are indicated by different markers.
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Figure 3.15. First reaching action: Cost function parameter estimates for subjects
5 to 7. Estimates for all subjects plotted in last figure. The estimates of cost function
parameters for subjects 5 to 7 are plotted as red crosses in figures (a)-(c). The estimates for
all subjects and repetitions are plotted as red crosses in Fig. (d). All estimates are plotted
over the clusters found in the set of simulated optimal trajectories for reaching, which are
indicated by different markers.
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3.3.5 Estimation of Cost Function Parameters for Experiment 2

We fixed the weight for the energy cost to be identity, i.e. R = I, and estimated the

weights for position error (wp) and terminal velocity (wv) from the joint angle trajectory

extracted from motion capture data.

The cost function parameter estimates for different subjects are tabulated in Table 3.5

and plotted in Figures 3.17, 3.18 and 3.16 over the clusters of optimal trajectories. In

accordance with the higher position errors achieved on this task, the wp estimates tended

to be lower than those for the first experiment, and ranged from 1 to 3 on the log scale.

Overall, the parameter estimates fell into three different clusters - two of which were common

with the first experiment, and a third cluster with lower weights for position error. Three

out of six subjects had parameter estimates in two adjacent clusters, differentiated mainly

by the estimated wv values. All in all, the parameter estimates showed greater spread than

in the first experiment.
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Figure 3.16. Second reaching action: Cost function parameter estimates for all
subjects. The estimates are plotted over the clusters found in the set of simulated optimal
trajectories for reaching, which are indicated by different markers.
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Figure 3.17. Second reaching action: Cost function parameter estimates for sub-
jects 1 to 4. The estimates of cost function parameters in different repetitions of the task
are plotted as red crosses. They are plotted over the clusters found in the set of simulated
optimal trajectories for reaching, which are indicated by different markers.
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Estimates Residual Values
log10 wp log10 wv State Costate Control Terminal

Subject 1

1 2.953 1.492 3.99e-005 0.153 0.008 5.17e-006

2 2.680 0.000 2.54e-005 0.154 0.014 5.44e-006

3 2.519 0.000 2.38e-005 0.153 0.014 5.41e-006

4 2.741 1.049 1.98e-005 0.149 0.012 4.84e-006

5 2.769 0.000 3.00e-005 0.141 0.014 4.32e-006

Subject 2

1 2.366 2.009 2.88e-005 0.091 0.013 4.19e-006

2 2.445 1.808 3.23e-005 0.075 0.010 2.80e-006

3 2.350 1.415 2.00e-005 0.086 0.011 2.73e-006

4 2.289 1.704 1.95e-005 0.089 0.010 3.24e-006

5 2.350 1.415 2.00e-005 0.095 0.010 5.00e-006

Subject 3

1 1.726 1.455 2.00e-005 0.124 0.007 3.19e-006

2 1.504 1.730 1.95e-005 0.119 0.007 3.16e-006

3 1.310 0.000 1.91e-005 0.112 0.011 2.83e-006

4 1.384 -0.053 1.95e-005 0.105 0.012 2.63e-006

5 1.069 3.000 3.59e-005 0.104 0.006 2.48e-006

Subject 4

1 2.046 -0.089 4.78e-005 0.105 0.012 2.07e-006

2 1.757 2.013 6.74e-005 0.099 0.013 2.01e-006

3 0.917 1.852 9.17e-005 0.067 0.003 1.31e-006

4 1.073 1.340 9.39e-005 0.075 0.004 1.62e-006

5 1.643 -0.090 8.42e-005 0.086 0.012 1.42e-006

Subject 5

1 2.452 0.000 5.18e-005 0.190 0.023 2.12e-005

2 2.704 2.165 3.79e-005 0.246 0.021 1.26e-005

3 2.538 1.553 5.70e-005 0.200 0.017 1.08e-005

4 2.059 2.298 5.27e-005 0.119 0.009 7.43e-006

5 1.928 0.000 4.89e-005 0.137 0.016 7.55e-006

Subject 6

1 2.632 2.153 1.33e-005 0.207 0.019 9.96e-006

2 2.769 2.609 1.53e-005 0.207 0.010 8.17e-006

3 2.898 2.951 1.84e-005 0.186 0.014 6.61e-006

4 2.853 2.165 1.56e-005 0.220 0.013 7.80e-006

5 2.793 2.365 1.54e-005 0.199 0.011 7.42e-006

6 2.623 2.240 3.19e-005 0.175 0.018 8.19e-006

Table 3.5. Second reaching Action: Estimates of cost function parameters.
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Figure 3.18. Second reaching action: Cost function parameter estimates for sub-
jects 5 and 6. The estimates of cost function parameters in different repetitions of the task
are plotted as red crosses. They are plotted over the clusters found in the set of simulated
optimal trajectories for reaching, which are indicated by different markers.
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3.3.6 Conclusion

In both reaching experiments, the parameter estimates for some subjects lay in two

adjacent clusters, differentiated by the estimated wv values, while the wp values showed

relatively less variation. This suggests that subjects tend to interpret a reaching task more

in terms of the position error and place varying, and typically less, emphasis on bringing

the hand to rest at the target location. The estimates for the reaching tasks lay in 2 − 3

clusters, sometimes even for the same subject, suggesting that there might not be a typical

set preference structure for a particular subject.

3.4 Punching

3.4.1 Tests on Simulated Data

We used the method proposed in Sec. 3.1 to estimate the parameters of the cost

function for punching using simulated data (see Sec. 2.3) as a test bed. Our cost function

for punching a target at location c ∈ ℜ2 in 2-D carterian space is a combination of three

terms:

Jψ(x[0,tf ],u[0,tf ], tf) =
wp

2
‖e(x(tf)) − c‖

2 −
wv

2
sgn(ėx(x(tf))) ‖ėx(x(tf))‖

2

+
1

2

∫ tf

0
u(t)T Ru(t) dt, (3.12)

where e(·) ∈ ℜ2 maps the state of the system (joint angles and velocities) to the location

of the end-effector or the hand in the sagittal plane. The function ėx(·) maps the state of

the system to the final velocity of the hand along the x-axis. The cost function parameters

ψ = {wp, wv} determine the tradeoff between reaching the target location (position error),

maximizing the final hand velocity along the positive x-axis and the control energy consumed

in the movement. We fixed the weight for the energy cost to be identity, i.e. R = I, and

estimated the weights for position error (wp) and terminal velocity (wv) from the optimal

trajectory.

The actual values of the cost function parameters used in the simulation, the estimates
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obtained and the residuals for the state, costate, control and terminal equations are sum-

marized in Table 3.6. The actual values and estimates for some of test examples are also

plotted on the wp − wv grid (on a log10 scale) in Fig. 3.19. Some test cases with large

actual parameter values showed a tendency to converge to lower parameter values within

the same cluster.

Actual Values Estimates Equation Residuals

log10 wp log10 wv log10 wp log10 wv State Costate Control Terminal

1.000 1.000 0.936 -0.344 1.516e-006 0.039 0.008 2.155e-001

2.000 0.500 1.546 0.300 1.302e-006 0.019 0.004 3.335e-003

2.000 2.000 1.500 1.816 1.010e-006 0.082 0.001 2.399e-002

3.000 -1.000 2.673 -0.785 7.760e-007 0.005 0.001 1.533e-003

3.000 0.000 2.587 0.091 4.992e-007 0.005 0.001 1.102e-003

3.000 0.500 2.702 0.403 1.297e-006 0.032 0.005 1.225e-002

4.000 1.000 3.437 0.406 1.302e-006 0.039 0.006 1.010e-002

4.000 3.000 3.827 2.633 9.521e-007 0.047 0.010 4.886e-001

5.000 0.000 4.576 0.077 5.055e-007 0.005 0.001 1.351e-003

5.000 1.000 4.436 0.396 1.305e-006 0.041 0.006 1.079e-002

6.000 1.500 5.016 0.395 1.337e-006 0.041 0.006 1.202e-002

Table 3.6. Estimates of cost function parameters for simulated punching data.

67



−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

5

6

log w
v

lo
g 

w
p

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

5

6

log w
v

lo
g 

w
p

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

5

6

log w
v

lo
g 

w
p

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

5

6

log w
v

lo
g 

w
p

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

5

6

log w
v

lo
g 

w
p

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

5

6

log w
v

lo
g 

w
p

Figure 3.19. Actual values and estimates of cost function parameters for punch-
ing. The actual value is circled in blue and the estimate is marked by red cross. They are
plotted over the clusters of optimal trajectories on the wp −wv grid, with different markers
indicating different clusters.
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3.4.2 Description of Motion Capture Data Set

For the punching task, subjects were instructed to stand facing the target, with their

hands at their sides, and punch the air 5 cm above a target marker with their right hand.

As in the reaching task, the subjects were instructed to stand at a comfortable distance

from the target so they would not have to lean forward or extend themselves in the course of

the action. Each subject was asked to repeat the action multiple times. The body heights

and masses of the subjects were recorded during the experiment and are presented in Table

3.7.

Subject Height Weight
(in meters) (in kg)

1 1.67 68
2 1.60 65
3 1.72 58
4 1.75 67
5 1.67 61

Table 3.7. Heights and masses of subjects participating in the punching experi-
ment.

The joint angle and velocity trajectories for subjects 1, 2 and 4 are shown in Fig. 3.20.

All subjects showed very little to no countermovement rotation at the shoulder and varying

degrees of countermovement at the elbow, bending the arm at the elbow joint and then

straightening as they hit the target.

The final velocities in the x-direction were relatively low (see Fig. 3.22) (0.2−1.2 m/s),

probably due to the lack of countermovement at the shoulder joint. In Fig. 3.20, subject 2

(shown in blue) with about 6 deg of countermovement at the shoulder achieves higher final

velocities than subject 4 (shown in red) with 30 deg of countermovement at the elbow.
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Figure 3.20. Punching action: Joint angle and velocity trajectories for different
subjects. The joint angle trajectories for subjects 1, 2, and 4 are plotted in black,blue and
red respectively. The angles correspond to the degrees of freedom described in Fig. 2.11 :
θ1 is the angle the upper arm makes with the negative x-axis, while θ2 is the amount by
which the forearm is rotated relative to the upper arm.
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Figure 3.21. Punching action: Hand velocity in the x-direction.
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Some typical hand trajectories are shown in Fig. 3.23 to demonstrate the different kinds

of movements seen in the data set. These hand trajectories are comparable to the simulated

trajectories in Fig. 2.16.

The hand velocity in the x-direction (Fig. 3.21) also follows a typical profile with

negative values during the countermovement when the hand moves backwards and a swing

back into positive values when it reverses direction to move towards the target. The hand

velocity trajectory is similar to that observed in our simulations (Fig. 2.15), except that in

our experiments the subjects tended to slow down slightly as they approached the target.
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Figure 3.22. Punching action: Position error, normalized position error, final
velocity in x-direction and duration of movement for different subjects.. The
value for each trial is marked by a circle. The normalized position error is the position error
normalized by the initial distance between the hand and the target.
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Figure 3.23. Punching action: Hand trajectories for different subjects. Different
hand trajectories are marked on the x− z plane (in meters). The final position of the hand
is marked by a circle.

3.4.3 Results on Motion Capture Data

The estimates obtained for different subjects, and the residuals for the state, costate,

control and terminal equations, are summarized in Table 3.8. The estimates are also plotted

on the wp − wv grid in figures 3.24 and 3.25.

The estimates for subjects 1, 3 and 4, all of whom showed final hand velocities lower

than 0.6 m/s, lay in a single cluster (marked by gray diamonds). The wv estimates for

these subjects are close to 1 (0 on a log10 scale), which in our simulations yielded final hand

velocities of the order of 0.5 m/s in the x-direction.

The wv estimates for subjects 2 and 5 (final hand velocities of 0.7 − 1.2 m/s) were

slightly higher. As our simulations show, the optimal trajectories change rapidly from

log10 wv = 0 to log10 wv = 0.5, with the final hand velocity in the x-direction increasing

from approximately 0.5 m/s to 1.7 m/s.

None of the subjects interpreted the punching action to mean an underarm swinging

motion, represented by the cluster marked with circles in Fig. 3.24. This cluster and the

corresponding range of parameter values clearly represent a different action altogether.
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Figure 3.24. Punching action: Cost function parameter estimates for subjects 1
to 4. The estimates of cost function parameters for subjects 1 to 4 are plotted as red crosses
in figures (a)-(d). All estimates are plotted over the clusters found in the set of simulated
optimal trajectories for punching, which are indicated by different markers.
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Estimates Residual Values
log10 wp log10 wv State Costate Control Terminal

Subject 1

1 2.838 0.003 2.52e-005 0.149 0.015 3.85e-006

2 3.852 0.001 2.47e-005 0.081 0.011 1.96e-007

3 3.190 0.001 9.19e-006 0.126 0.012 1.62e-006

4 3.062 0.001 1.77e-005 0.076 0.009 4.43e-007

5 3.123 0.001 1.75e-005 0.080 0.010 3.34e-007

6 3.743 0.002 1.38e-005 0.135 0.010 6.54e-006

Subject 2

1 1.500 0.095 2.13e-005 0.182 0.011 5.20e-006

2 1.635 0.185 1.64e-005 0.081 0.007 3.26e-007

3 2.826 0.320 1.68e-005 0.084 0.007 5.35e-007

4 1.700 0.319 1.34e-005 0.091 0.007 1.04e-008

5 1.559 0.173 2.53e-005 0.181 0.013 2.88e-006

Subject 3

1 2.881 0.001 2.93e-005 0.048 0.001 1.03e-006

2 3.080 0.001 2.69e-005 0.037 0.001 4.61e-007

3 2.910 0.000 2.96e-005 0.034 0.001 4.10e-007

4 2.997 0.000 2.77e-005 0.035 0.002 4.65e-007

5 3.130 0.001 3.23e-005 0.056 0.002 8.81e-007

Subject 4

1 2.514 0.009 9.63e-005 0.111 0.010 1.85e-007

2 3.002 0.100 7.87e-005 0.121 0.018 3.58e-006

3 2.740 0.004 5.59e-005 0.150 0.009 3.55e-006

4 2.628 0.100 5.94e-005 0.139 0.008 3.94e-006

5 1.543 0.047 6.97e-005 0.111 0.012 3.33e-006

Subject 5

1 1.951 0.321 2.84e-005 0.069 0.016 1.28e-007

2 2.533 0.120 3.57e-005 0.073 0.018 6.78e-008

3 2.813 0.336 4.99e-005 0.117 0.027 1.17e-006

4 2.592 0.189 3.50e-005 0.091 0.021 7.97e-008

5 1.500 0.322 4.46e-005 0.109 0.026 7.67e-007

Table 3.8. Punching action: Estimates of cost function parameters.
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Figure 3.25. Punching action: Cost function parameter estimates for subject 5
and all subjects. The estimates of cost function parameters for subject 5 are plotted
as red crosses in Figure (a). The estimates for all subjects and repetitions are plotted as
red crosses in Figure (b). All estimates are plotted over the clusters found in the set of
simulated optimal trajectories for punching, which are indicated by different markers.
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Chapter 4

Recognition in an Optimal Control

Framework

Recognition of human actions is an important application that any representation of

human actions should be able to address. In this section we demonstrate how different

actions can be recognized and segmented within the framework of optimal control that we

outlined in the previous chapters.

Different cost functions, corresponding to different goal-directed tasks, are the basic

building blocks in our representation. The cost function captures two levels of detail about

the action: the goal of the action or what the person is doing, and the preferences expressed

in the execution of the action or how the person is executing the action. The goal of the

action is encoded in the structure of the cost function, while the preferences are captured

by the cost function parameters or weights.

In the previous chapters we focussed on a single cost function structure at a time and

estimated from observations the preferences, that is the cost function parameters. We found

that while the preferences varied even between different repetitions of the task by a single

subject, overall there were only 2-3 significantly different clusters of preferences for the arm

movements we studied. This suggests that for these movements 2-3 cost function primitives

could be constructed to capture the variation.
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While in the previous chapter we were focussed on teasing apart the differences in how

subjects performed the same task, in this section we shall focus on segmenting different tasks

i.e. movements that correspond to different cost functions. Let us assume that we are given

a library of cost functions corresponding to the different tasks we wish to recognize and

segment from a stream of observations. The parameters of these cost functions are fixed,

estimated by methods described in the previous chapter. We refer to the cost functions in

this library as cost function primitives.

We view the human motor system as a hybrid system that switches between different

cost function primitives, in response to changing high-level goals. The problem of action

recognition is to infer the hidden goal of the motion from the observed movement trajectory.

Complex actions can be modeled as the comsposition of simpler goals. For example, the

goal of lifting an object can be viewed as the composition of two goal-directed actions -

reaching for it and then lifting it.

4.1 Models

Given noisy kinematic observations of a motion (eg. 3D hand trajectory for an arm mo-

tion), we wish to estimate the underlying sequence of cost function primitives that produced

the motion. Thus there are four different variables in our model : a discrete mode variable

mk which indicates which of the cost function primitives is active at the k-th instant, a

state vector xk of joint angles and velocities, a control vector uk of joint torques, and an

observation vector yk. The dependencies between these variables are shown in the form of

a graphical model in Fig. 4.1.

We assume that the observations yk available to us are of the form

yk = g(xk) + nk, (4.1)

where the function g(·) is known to us and the noise nk is i.i.d. zero mean Gaussian with

known covariance Σn.

We also assume that all the cost function primitives (modes) in the library are equally
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likely a-priori and that from a given primitive the model is equally likely to switch to any

other primitive (excluding itself) i.e.

P (mk = i|mk−1 = i) = Sii

P (mk = i|mk−1 = j) = (1 − Sii)/(N − 1), ∀j 6= i, (4.2)

where N is the total number of primitives in the library and Sii is a constant that reflects the

average time spent in the i-th primitive. While we assume a very simple switching model,

the methods we describe are applicable to any markov switching model. For the methods

section below we will assume the more general notation that Sij = P (mk = i|mk−1 = j).

Figure 4.1. Graphical model for action recognition.

The dependencies between the state and control vectors are described by the time-

discretized optimal control model in Eq. (2.3)-(2.4), for which the cost function is deter-

mined by the value of the mode variable. However, in our simulation setup the optimization

would find the entire optimal state and control trajectory given the cost function, the sys-

tem dynamics, and the initial state. Thus the entire optimal state and control trajectory

depends only on the initial state of the system. We modify this formulation in the following

way. Let us assume that at the k-th instant the relevant mode variable mk+1 = i, that is

we wish to minimize the i-th cost function primitive Ji, starting from the known current
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state of the system xk. We solve the free-final time optimal control problem

min
xk+1,...,xk+M−1,uk,...,uk+M−1,tf

Ji(xk+1, . . . ,xk+M−1,uk, . . . ,uk+M−1, tf)

s.t. xt − xt−1 −−
∆

2
(f(xt,ut) + f(xt−1,ut−1)) = 0

t = k + 1, . . . , k + M − 1. (4.3)

where M is fixed and can be chosen to ensure that the discretization interval ∆ = tf/(M−1)

is sufficiently small. This will yield, among other things, the optimal control uk that must

be applied at the k-th instant. We discard the rest of the optimal variable values found,

and apply the optimal control uk to obtain the next state of the system xk+1 and proceed

similarly.

Thus in this receding horizon optimization, at each time instant, the optimal control

problem is solved for the current cost function, starting from the current state of the system

to yield the optimal control that needs to be applied to advance the system to its next state.

Assuming that the system dynamics f(.) are known and fixed, the control variable uk can

thus be determined from the mode variable mk+1 and the state xk. Hence, the state

evolution described above can also be written in a compact form

xk+1 = F (xk,mk+1). (4.4)

We assume that the state xk+1 is further corrupted by i.i.d. zero mean Gaussian noise of

known covariance Σw.

Thus the probabilistic model can summarized as follows :

P (mk = j|mk−1 = i) = Sij (4.5)

p(xk|xk−1,mk) = N (F (xk−1,mk),Σw) (4.6)

p(yk|xk) = N (g(xk),Σn), (4.7)

where N (p,Σ) indicates a Gaussian density with mean p and covariance Σ.
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4.2 Methods

The recognition problem can be stated as follows: given observations {y1:T} ,

{y1, ...,yT }, estimate the state (joint angles and velocities) trajectory {x1:T } and the

task primitive or mode trajectory {m2:T }. The problem requires simultaneous es-

timation of the continuous state and the mode of the system. The control se-

quence {u1:T−1} is not an independent sequence - it is determined by the state and

the mode. Thus defined, the problem of action recognition is one of mode estima-

tion in a hybrid system. Similar problems have been addressed in the tracking of

a maneouvering targets ([McGinnity and Irwin, 2000], [Karlsson and Bergman, 2000] and

[Boers and Driessen, 2003]) and fault detection ([de Freitas, 2002]) in systems.

As in the single model case the optimal Bayesian minimum variance estimate of the

state at instant k is the expected value of its posterior density

p(xk|y1:k) =

N∑

i=1

p(xk|mk = i,y1:k) · p(mk = i|y1:k). (4.8)

Thus the optimal Bayesian estimate is the weighted sum of mode-conditioned estimates

with the weightings determined by the posterior probability of each mode. However, at time

k+1, there are N2 possible candidate hypotheses for the mode trajectory. This exponential

growth with time makes the optimal approach impractical for even linear Gaussian models.

Sub-optimal approaches involve either pruning ([Andersson, 1985]) or merging

([Ackerson and Fu, 1970], [Bruckner et al., 1973]) the hypotheses about the mode tra-

jectories. Of these sub-optimal algorithms the Interacting Multiple Model (IMM)

[Blom and Bar-Shalom, 1988] algorithm has been successful in reducing the computa-

tional load by merging the hypotheses and has been widely used in the area of target

tracking [Mazor et al., 1998]. The IMM merges the branched densities into N mode

conditioned prior densities:

p(xk|mk+1 = i,y1:k) =

∑N
j=1 Sij · p(xk|mk = j,y1:k) · p(mk = j|y1:k)

p(mk+1 = i|y1:k)
. (4.9)

The IMM, which was developed for linear Gaussian models, further approximates

this merged density by a single Gaussian of matched first and second moments
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to enable the use of Kalman filters for updates. The IMM algorithm’s tech-

nique of merging the branched densities has been carried over to the particle filter

based approaches proposed ([McGinnity and Irwin, 2000], [Boers and Driessen, 2003],

[Karlsson and Bergman, 2000],[de Freitas, 2002]) for tackling nonlinear systems or systems

with non-Gaussian disturbances.

We use a particle filter method combining the IMM-like hypotheses merging strategy

(similar to [McGinnity and Irwin, 2000]) and a resampling strategy based on the auxiliary

variable method described in [Pitt and Shephard, 2001]. In this approach the posterior

densities at time k are represented by a set of Ns samples: {x
(p)
k ,m

(p)
k } and associated

weights {w
(p)
k } for p = 1, . . . , Ns. These sample values are referred to as particles. The

state estimate at time k is approximated by

Ns∑

p=1

w
(p)
k · x

(p)
k . (4.10)

The posterior mode probabilities are approximated as

P (mk = i|y1:k) ≈

∑

p∈Ai
w

(p)
k

∑Ns

p=1 w
(p)
k

, (4.11)

where Ai is the set of particles for which m
(p)
k = i.

Given a set of particles {x
(p)
k ,m

(p)
k } and associated weights {w

(p)
k } representing the

posterior at time k, a new set of particles and weights for time k +1 is generated as follows.

Prediction Stage:

1. For each particle, generate a value for the mode variable at the next time step, m̂
(p)
k+1 by

applying the mode-switching markov chain. If m
(p)
k = j, m̂

(p)
k+1 = i with probability

Sij .

2. Generate the optimal control for time k conditioned on this generated value of the

mode for k + 1 (i.e. for the cost function primitive corresponding to m̂
(p)
k+1), and for a

current state value of x
(p)
k . Apply the control to the system dynamics to obtain the

conditional expected value of the state at k + 1 denoted by x̂
(p)
k+1. In the compressed
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notation of Eq. (4.4)

x̂
(p)
k+1 = F (x

(p)
k , m̂

(p)
k+1). (4.12)

Each branched prior density is p(xk|mk = j,mk+1 = i,y1:k) is approximated by the

samples

{x
(p)
k ,m

(p)
k , m̂

(p)
k+1 | m

(p)
k = j, m̂

(p)
k+1 = i}. (4.13)

The merged prior densities p(xk|mk+1 = i,y1:k), i = 1, . . . , N in Eq. (4.9) are approxi-

mated by the sets

{x
(p)
k , m̂

(p)
k+1 | m̂

(p)
k+1 = i}. (4.14)

The conditional prior expected value of the state x̂
(p)
k+1 obtained in the second

step is used to implement the resampling strategy of the Auxiliary Particle Filter

([Pitt and Shephard, 1999], [Pitt and Shephard, 2001]).

Update /Resampling Stage:

1. Resample from the set of Ns particles with probabilities

γp
k+1 ∝ w

(p)
k · p(yk+1|x̂

(p)
k+1), (4.15)

i.e the p-th particle will be picked (with replacement) with a probability γp
k+1. The

probability can be evaluated using Eq. (4.7). We will use the index r to refer to the

resampled particles.

2. Generate particles x
(r)
k+1 for the posterior at time k + 1 by sampling from the density

N (x̂
(r)
k+1,Σw).

3. Update the weights:

w
(r)
k ∝

p(yk+1|x
(r)
k+1)

p(yk+1|x̂
(r)
k+1)

. (4.16)

By resampling as described above we simulate from particles associated with large pre-

dictive likelihoods. A large value of γp
k+1 in Eq. (4.15) indicates that the p-th particle at

time k, when evolving to k + 1, is highly likely to be consistent with the actual observation

yk+1. If the process noise is small, as in our case, the resampling strategy of the Auxiliary
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Particle Filter is not sensitive to outliers and produces samples with even weights avoiding

the problem of degeneracy [Arulampalam et al., 2002].

4.3 Results

We tested our methods on 3D motion data sampled at 7 frames/sec, collected from

a tele-immersion setup of 12 camera clusters. The tele-immersion setup produces a 3D

reconstruction using the data from the camera clusters. We used the algorithm proposed

in [Lien et al., 2007] for segmentation and tracking of the body segments. The tracking

algorithm segments the 3D data from the tele-immersion setup into body segments and

extracts limb lengths and joint locations.

Our test set consisted of four reaching motions with different target locations as shown

in Fig. 4.2. For estimating the mode and state, we only use the 3D position trajectory of the

hand with respect to the shoulder as observations (y1:T ). The limb lengths obtained from

the tracking algorithm were used to construct the observation function g(.) - the kinematic

map between the joint angles xk and the hand position (See the forward kinematic map in

Appendix A). The details of the dynamical model of the arm can be found in Sec. 2.2.1

and the cost function for reaching is described in Eq. (2.7). Though the system dynamics

depend on the body mass of the subject, as discussed in Sec. 2.2 inertial parameters have

very little impact on the optimal trajectory for reaching. The body mass was therefore held

at a fixed value of 70 kg.

Since the typical duration for a reaching action was found to be around 1 − 2 sec both

in simulations (Sec. 2.2) and in experiments (Sec. 3.3), the average time τ spent in a mode

was fixed at 10 sampling steps. Thus in Eq. (4.2), Sii = 1− (1/τ) for each of the 4 modes.

The performance was not very sensitive to the value of τ , and any value in the range 7− 20

worked equally well.

We used the particle filter method described in Sec. 4.2 with 1000 particles to estimate

the state (joint angles and velocities) and mode trajectory from the 3D hand trajectory.

The mode estimates were compared to the manual segmentation of the data - mode was
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correctly estimated 86 percent of the time. The errors are almost entirely confined to the

segmentation boundaries as can be seen in Figures 4.3 and 4.4. At other times, the mode

is usually correctly estimated with a high degree of confidence as indicated by the posterior

probabilities of the modes. Figures 4.5 and 4.6 compare the estimated joint angles with the

ground truth obtained from the tracking algorithm [Lien et al., 2007].
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Figure 4.2. Four modes. The four reaching actions are shown, one in each row. The last
figure in each row shows the desired target pose. The mode variable value corresponding
to these four reaching actions are 1 to 4 respectively.
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Figure 4.3. Mode estimation: Example 1. In this example, the actual mode variable
switches between 1 and 2, as indicated by the blue line. The other lines indicate the posterior
probability of each mode at each instant as computed by Eq. (4.11).
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Figure 4.4. Mode estimation: Example 2. In this example, the actual mode variable
switches between 3 and 4, as indicated by the blue line. The other lines indicate the posterior
probability of each mode at each instant as computed by Eq. (4.11).
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Figure 4.5. State estimation: Example 1. Legend: black line is the ground truth from
the tracking algorithm, red line is the estimate of the state as computed by Eq. (4.10).
From top to bottom: the first two plots show two joint angles at the shoulder, and the last
plot shows the rotation at the elbow.
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Figure 4.6. State Estimation: Example 2. Legend: black line is the ground truth from
the tracking algorithm, red line is the estimate of the state as computed by Eq. (4.10).
From top to bottom: the first two plots show two joint angles at the shoulder, and the last
plot shows the rotation at the elbow.
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Chapter 5

Conclusion

In this thesis we have shown how an optimal control based representation of human

actions could be used to understand differences in the manner in which people move, and

recognize actions from a library of learnt cost function primitives.

As our simulations in Chapter 2 show, a range of movements can be elegantly captured

by a single cost function structure by varying the cost function weighting parameters. The

optimal control model can automatically generate complex strategies such as countermove-

ments, which are observed in human motion. The effect of body dynamics and variations

in weighting parameters can be studied by simulation.

In the case of the arm movements we studied, we found that the optimal control tra-

jectory changed very slowly in certain parameter ranges, and very rapidly in others. We,

therefore, clustered the optimal trajectories and compared parameter values in terms of

whether they lie in the same cluster or not. We also found that the inertial parameters,

body height and mass, had negligible effect on the optimal arm trajectory.

It is both easy and intuitive to construct a cost function structure for an action since they

represent high-level goals of the action. There is also a vast body of neuroscience literature

proposing and testing different cost function structures for different actions. However, it is

not easy to determine how the different terms of a cost function should be traded off, since

in practice, people do not have a set preference.
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We proposed a method (Chapter 3) for estimating the weighting parameters of a cost

function from a segmented and labeled data set for an action. We assumed that the structure

of the cost function is known and estimated the unknown weighting parameters by solving

a least squares optimization problem. For simulated data, we found that the parameter

estimates lay in the same cluster as the actual parameter values.

We also tested our method on motion capture data of different subjects performing

reaching and punching actions. We found that subjects did not have a set preference

structure: the parameter estimates for a single subject could show significant variation from

one trial to the next. However, overall, the parameter estimates lay in only in a limited range

of parameter values indicating commonalities in the manner in which subjects interpreted

the task. For instance, in the reaching experiments, the subjects tended to place greater

weight on minimizing the position error than bringing the hand to rest at the target.

We believe this method of constructing cost function primitives and then using them

for estimation can find application in the construction of interactive interfaces, gaming and

imitation learning for robots. Our approach is particularly suited for applications where it

is important to identify, quantify and differentiate the manner in which a particular action

is performed. For instance, our approach could be used to understand how the context in

which an action is performed influences the manner in which it is performed. We suggest

here certain future directions of research related to the work presented in this thesis.

• In estimating cost function parameters from data, we have assumed a purely de-

terministic model. An interesting extension would be to consider models with

noisy control since signal-dependent noise in neural control signals has been found

to play an important role in movement planning ([Harris and Wolpert, 1998] and

[Todorov and Jordan, 2002]).

• We have assumed in our work that the structure of the cost function is known to us.

In actions such as gestures the structure might not be obvious and methods such as

via-point extraction [Wada and Kawato, 2004] could be investigated for extraction of

task constraints.
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• The model could be extended to include perception processes. In our analysis we

assume that the information required for task definition is noise-free and reliably

available. For instance, in a reaching task the target location is assumed to be known

without any uncertainty. In an actual sensorimotor system, the target location is

procured through visual perception which interacts with the motor system to pro-

vide the required input and if necessary, undertake exploratory measures to procure

information.

The confluence of ideas in neuroscience, robotics and machine learning, combined with

the vast sources of data provided by cameras and sensors, can open up new ways of thinking

about analysis of human actions, that are cognizant of the underlying processes that we use

in producing actions.
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Appendix A

Equations of motion for 3D Arm

Model

A.1 Notation

θx Rotation about x axis at the shoulder
θy Rotation about y axis at the shoulder
θz Rotation about z axis at the shoulder
θe Rotation at the elbow
L1 Length of upper arm
L2 Length of lower arm
l1 Location of center of mass of upper arm from proximal end
l2 Location of center of mass of lower arm from proximal end
m1 Mass of upper arm
m2 Mass of lower arm

Table A.1. Notation.

The inertial (base) co-ordinate frame and reference pose are shown in Fig. 2.1. The
configuration of the system q(t) at any time instant is given by the vector of joint angles

q(t) = [ θz(t) θy(t) θx(t) θe(t) ]T , (A.1)

and the state at any time instant is the vector of joint angles and velocities

x(t) = [ θz(t) θy(t) θx(t) θe(t) θ̇z(t) θ̇y(t) θ̇x(t) θ̇e(t) ]T . (A.2)

In the discussion that follows, to simplify the notation, the dependence on time is not
explicitly indicated.
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A.2 Forward Kinematics

The twists corresponding to the four degrees of freedom of this model are

ξx = [ 0 0 0 1 0 0 ]T

ξy = [ 0 0 0 0 1 0 ]T

ξz = [ 0 0 0 0 0 1 ]T

ξe = [ − L1 0 0 0 0 1 ]T (A.3)

The forward kinematic map that computes the location of the end-effector (hand) from the
joint angle configuration of the arm can be found using the product of exponentials formula
(see Chapter 2 of [Murray et al., 1994] for details). The location of the hand, e ∈ ℜ3 is
given by

e = eξ̂zθzeξ̂yθyeξ̂xθxeξ̂eθe [ 0 − (L1 + L2) 0 1]T (A.4)

where eξ̂zθz is the exponential of the twist ξz and can be computed in closed form from the
definition of the twist and the value of joint angle (see page 42 [Murray et al., 1994] for the
formula). Thus the function e(·) ∈ ℜ3 in Eq. 2.7 is given by

e =





L1(−cθz sθx sθy + cθx sθz ) + L2(cθy cθz sθe + cθe (−cθz sθx sθy + cθx sθz ))
−L1(cθx cθz + sθx sθy sθz ) − L2(−cθy sθe sθz + cθe (cθx cθz + sθx sθy sθz ))

−L1cθy sθx − L2(cθe cθy sθx + sθe sθy )



 ,

(A.5)
where cθz and sθz denote the cosine and sine of the indicated joint angle.

A.3 Dynamics

There are two links in our model - the upper arm is the first link and the lower arm is
the second link. A co-ordinate frame is attached to the center of mass of each link. The
body Jacobian of the first link, J1, is given by











l1cθx cθy −l1sθx 0 0
0 0 0 0

l1sθy 0 −l1 0
−sθy 0 1 0

cθy sθx cθx 0 0
cθy cθx −sθx 0 0











. (A.6)

The body Jacobian of the second link, J2, is given by










(l2 + L1cθe)cθx cθy −(l2 + L1cθe)sθx 0 l2
−L1cθx cθy sθe L1sθe sθx 0 0

l2(−cθy sθe sθx + cθe sθy) + L1sθy −l2cθx sθe −l2cθe − L1 0
cθy sθe sθx − cθe sθy cθx sθe cθe 0
cθe cθy sθx + sθe sθy cθe cθx −sθe 0

cθx cθy −sθx 0 1











. (A.7)

The Jacobian matrices can be computed from the definition of the co-ordinate frames and
the structure of the model and can be used to compute the instantaneous velocity of the
end-effector (See Chapter 2 of [Murray et al., 1994] for details).
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The generalized inertia matrix of the i-th link, denoted by Mi is a 6 × 6 matrix of the
form [

miI3 03

03 Ii,

]

(A.8)

where Ii denotes the 3 × 3 inertia tensor of the i-th link expressed in the link co-ordinate
frame. In our case the inertia tensors for both links are diagonal and of the form





Ii,xx 0 0
0 Ii,yy 0
0 0 Ii,zz



 . (A.9)

Assuming that the links are uniform cylinders of radius ri, the terms of the inertia tensor
matrix for the i-th link are are given by

Ii,zz = Ii,xx =
mi

12
(L2

i + 3r2
i ),

Ii,yy =
mir

2
i

12
.

(A.10)

The manipulator inertia matrix M(·) in Eq. 1.1 can be computed from the link Jacobians
and the generalized inertia matrices:

M(q) = J T
1 (q)M1J1(q) + J T

2 (q)M2J2(q). (A.11)

The total kinetic energy of the system is

1

2
q̇T M(q)q̇. (A.12)

Let hi(q) denote the height of the center of mass of the i-th link. In our model

h1 = −l1cθy sθx,

h2 = −L1cθy sθx − l2(cθe cθy sθx + sθe sθy ). (A.13)

The potential energy of the system is

m1gh1 + m2gh2, (A.14)

where g is the gravitational constant. Combining we have the Lagrangian of the system,

L(q, q̇) =
1

2
q̇T M(q)q̇ − (m1gh1(q) + m2gh2(q)), (A.15)

from which which we can derive the equations of motion of the system. The equations of
motion of the system are given by Lagrange’s equations (See p. 158 [Murray et al., 1994])

d

dt

∂L

∂q̇
−

∂L

∂q
= u, (A.16)

where u is the vector of joint torques. As discussed in Chapter 3 of [Murray et al., 1994],
the equations of motion can be re-written in the form

M(q)q̈ + C(q, q̇)q̇ + N(q) = u, (A.17)
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where we have already derived the form of the manipulator inertia matrix M(q) in
Eq.(A.11). The remaining terms on the left hand side of Eq.(A.17) are obtained using
Mathematica and presented below.

The vector N(q) which includes the gravity terms is of the form







0
−l2m2 cθy sθe + (l1m1 + L1m2)sθx sθy + l2m2 cθe sθx sθy

−(l1m1 + m2(L1 + l2cθe))cθx cθy

l2m2 (cθy sθe sθx − cθe sθy)







g. (A.18)

The terms in C(q, q̇)q̇ are computed as

C(q, q̇)q̇ = G(q)






















θ̇z
2

θ̇y
2

θ̇x
2

θ̇e
2

θ̇z θ̇y

θ̇z θ̇x

θ̇z θ̇e

θ̇y θ̇x

θ̇y θ̇e

θ̇x θ̇e






















, (A.19)

where the terms of the 4 × 10 matrix G(q) are given in the Matlab code fragment below.

% Notation

%%%%%%%%%%%%%%%%%%%%

% G(i,j) : i-th row and j-th column of matrix G

% m1 : mass of upper arm

% m2 : mass of lower arm

% L1 : length of upper arm

% L2 : length of lower arm

% l1 : location of center of mass of upper arm (from proximal end)

% l2 : location of center of mass of lower arm (from proximal end)

% thz : rotation about z-axis at shoulder

% thy : rotation about y-axis at shoulder

% thx : rotation about x-axis at shoulder

% the : rotation at elbow

% Iuxx : first diagonal term of inertia tensor for upper arm

% Iuyy : second diagonal term of inertia tensor for upper arm

% Iuzz : third diagonal term of inertia tensor for upper arm

% Ilxx : first diagonal term of inertia tensor for lower arm

% Ilyy : second diagonal term of inertia tensor for lower arm

% Ilzz : third diagonal term of inertia tensor for lower arm

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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G(1,1) = 0;

G(1,2) = (1/2)*cos(thx)*(-2*L1*l2*m2*cos(thy)*sin(the) - (Ilxx - ...

Ilyy + (l2^2)*m2)*cos(thy)*sin(2*the) + 2*(-Ilyy + Ilzz - ...

Iuyy + Iuzz + (l1^2)*m1 + (L1^2)*m2 + (l2^2)*m2)*sin(thx)*sin(thy)...

+ 4*L1*l2*m2*cos(the)*sin(thx)*sin(thy)...

- 2*(Ilxx - Ilyy + (l2^2)*m2)*(sin(the)^2)*sin(thx)*sin(thy));

G(1,3) = (L1*l2*m2 + (Ilxx - Ilyy + ...

(l2^2)*m2)*cos(the))*cos(thx)*cos(thy)*sin(the);

G(1,4) = (-L1*l2*m2*cos(thx)*cos(thy)*sin(the));

G(1,5) = (-2*L1*l2*m2*sin(the)*sin(thx) - (Ilxx - Ilyy + ...

(l2^2)*m2)*sin(2*the)*sin(thx) + ...

4*L1*l2*m2*sin(the)*sin(thx)*(sin(thy)^2) + ...

2*(Ilxx - Ilyy + (l2^2)*m2)*sin(2*the)*sin(thx)*(sin(thy)^2) + ...

Ilxx*sin(2*thy) - Ilzz*sin(2*thy) + Iuxx*sin(2*thy) - ...

Iuzz*sin(2*thy) - (Ilxx - Ilyy + (l2^2)*m2)*(sin(the)^2)*sin(2*thy)...

+ (-Ilyy + Ilzz - Iuyy + Iuzz + (l1^2)*m1 + (L1^2)*m2 + ....

(l2^2)*m2)*(sin(thx)^2)*sin(2*thy) + ...

2*L1*l2*m2*cos(the)*(sin(thx)^2)*sin(2*thy) ...

- (Ilxx -Ilyy + (l2^2)*m2)*(sin(the)^2)*(sin(thx)^2)*sin(2*thy));

G(1,6) = 2*cos(thx)*cos(thy)*((Ilyy - Ilzz + Iuyy - Iuzz - ...

(l1^2)*m1 - (L1^2)*m2 - (l2^2)*m2)*cos(thy)*sin(thx)- ...

2*L1*l2*m2*cos(the)*cos(thy)*sin(thx) + (Ilxx - Ilyy + ...

(l2^2)*m2)*cos(thy)*(sin(the)^2)*sin(thx) - ...

L1*l2*m2*sin(the)*sin(thy) ...

- (1/2)*(Ilxx - Ilyy + (l2^2)*m2)*sin(2*the)*sin(thy));

G(1,7)= L1*l2*m2*(2*sin(the)*(-1 + (cos(thy)^2)*(sin(thx)^2))...

- cos(the)*sin(thx)*sin(2*thy)) + ...

(Ilxx - Ilyy)*((cos(thy)^2)*sin(2*the)*(sin(thx)^2)...

- sin(2*the)*(sin(thy)^2) - cos(2*the)*sin(thx)*sin(2*thy)) ...

+ (l2^2)*m2*((cos(thy)^2)*sin(2*the)*(sin(thx)^2) - ...

sin(2*the)*(sin(thy)^2) - cos(2*the)*sin(thx)*sin(2*thy));

G(1,8) = (-1/4)*(2*Ilxx + 2*Ilyy + 4*Iuxx + 4*(L1^2)*m2 + ...

2*Ilxx*cos(2*the) - 2*Ilyy*cos(2*the) + Ilxx*cos(2*the - 2*thx) ...

- Ilyy*cos(2*the - 2*thx) + 8*(l1^2)*m1*(cos(thx)^2) + ...

16*L1*l2*m2*cos(the)*(cos(thx)^2) + ...

8*(l2^2)*m2*(cos(the)^2)*(cos(thx)^2)...

- 2*Ilxx*cos(2*thx) - 2*Ilyy*cos(2*thx) + 4*Ilzz*cos(2*thx)...

- 4*Iuyy*cos(2*thx) + 4*Iuzz*cos(2*thx) + 4*(L1^2)*m2*cos(2*thx)...

+ Ilxx*cos(2*(the + thx)) - Ilyy*cos(2*(the + thx)))*cos(thy);

G(1,9) = (1/2)*(2*L1*l2*m2*cos(thy)*sin(the)*sin(2*thx) + ...

(Ilxx - Ilyy + (l2^2)*m2)*cos(thy)*sin(2*the)*sin(2*thx) ...

- 4*L1*l2*m2*cos(the)*cos(thx)*sin(thy) - ...

2*(Ilzz + 2*(l2^2)*m2*(cos(the)^2) + ...

(Ilxx - Ilyy)*cos(2*the))*cos(thx)*sin(thy));

G(1,10)= (Ilxx - Ilyy - Ilzz)*cos(thy)*sin(thx) - ...

2*(Ilxx - Ilyy + (l2^2)*m2)*cos(thy)*(sin(the)^2)*sin(thx) ...

+ 2*L1*l2*m2*sin(the)*sin(thy) + ...

(Ilxx - Ilyy + (l2^2)* m2)*sin(2*the)*sin(thy);
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G(2,1) = (1/2)*(2*L1*l2*m2*sin(the)*sin(thx) + ...

(Ilxx - Ilyy + (l2^2)*m2)*sin(2*the)*sin(thx) - ...

4*L1*l2*m2*sin(the)*sin(thx)*(sin(thy)^2)...

-2*(Ilxx - Ilyy + (l2^2)*m2)*sin(2*the)*sin(thx)*(sin(thy)^2) ...

- Ilxx*sin(2*thy) + Ilzz*sin(2*thy) - Iuxx*sin(2*thy) ...

+ Iuzz*sin(2*thy) + (Ilxx - Ilyy + ...

(l2^2)* m2)*(sin(the)^2)*sin(2*thy)...

+ (Ilyy - Ilzz + Iuyy - Iuzz - (l1^2)*m1 - (L1^2)*m2 - ...

(l2^2)*m2)*(sin(thx)^2)*sin(2*thy)...

- 2*L1*l2*m2*cos(the)*(sin(thx)^2)*sin(2*thy) ...

+ (Ilxx - Ilyy + (l2^2)*m2)*(sin(the)^2)*(sin(thx)^2)*sin(2*thy));

G(2,2) = 0;

G(2,3) = (-L1*l2*m2 + (-Ilxx + Ilyy - ...

(l2^2)*m2)*cos(the))*sin(the)*sin(thx);

G(2,4) = L1*l2*m2*sin(the)*sin(thx);

G(2,5) = 0;

G(2,6) = (Ilxx + Ilyy - Ilzz + Iuxx + Iuyy - Iuzz)*cos(thy) ...

+ 2*(-Ilyy + Ilzz - Iuyy + Iuzz + (l1^2)*m1 + ...

(L1^2)*m2 + (l2^2)*m2)*cos(thy)*(sin(thx)^2)...

+ 4*L1*l2*m2*cos(the)*cos(thy)*(sin(thx)^2) - ...

2*(Ilxx - Ilyy + (l2^2)*m2)*cos(thy)*(sin(the)^2)*(sin(thx)^2) + ...

2*L1*l2*m2*sin(the)*sin(thx)*sin(thy) + (Ilxx - Ilyy + ...

(l2^2)*m2)*sin(2*the)*sin(thx)*sin(thy);

G(2,7) = cos(thx)*(2*L1*l2*m2*cos(thy)*sin(the)*sin(thx) + ...

(Ilxx -Ilyy + (l2^2)*m2)*cos(thy)*sin(2*the)*sin(thx) + ...

(Ilzz + (-Ilxx + Ilyy)*cos(2*the) + ...

2*(l2^2)*m2*(sin(the)^2))*sin(thy));

G(2,8) = 2*cos(thx)*(-Ilyy + Ilzz -Iuyy + Iuzz + ...

(l1^2)*m1 + (L1^2)*m2 + 2*L1*l2*m2*cos(the) +...

(l2^2)*m2*(cos(the)^2) + (-Ilxx + Ilyy)*(sin(the)^2))*sin(thx);

G(2,9) = 2*sin(the)*((Ilxx - Ilyy)*cos(the)*(cos(thx)^2) + ...

(l2^2)*m2*cos(the)*(cos(thx)^2) - L1*l2*m2*(sin(thx)^2));

G(2,10) = -cos(thx)*(Ilzz + (-Ilxx + Ilyy)*cos(2*the) +...

2*(l2^2)*m2*(sin(the)^2));

G(3,1) = cos(thx)*cos(thy)*((-Ilyy+ Ilzz - Iuyy + Iuzz + ...

(l1^2)*m1 + (L1^2)*m2 + (l2^2)*m2)*cos(thy)*sin(thx) + ...

2*L1*l2*m2*cos(the)*cos(thy)*sin(thx) + (-Ilxx + Ilyy - ...

(l2^2)*m2)*cos(thy)*(sin(the)^2)*sin(thx) + ...

L1*l2*m2*sin(the)*sin(thy) + (Ilxx - Ilyy + ...

(l2^2)*m2)*cos(the)*sin(the)*sin(thy));

G(3,2) =(-1/4)*(-Ilxx - Ilyy + 2*Ilzz - 2*Iuyy + ...

2*Iuzz + 2*(l1^2)*m1 + 2*(L1^2)*m2 + 4*L1*l2*m2*cos(the)...

+ 2*(l2^2)*m2*(cos(the)^2)...

+ Ilxx*cos(2*the) - Ilyy*cos(2*the))* sin(2*thx);
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G(3,3) = 0; G(3,4) = 0;

G(3,5) = (1/2)*((-3*Ilxx - Ilyy + 2*Ilzz - 2*Iuxx...

- 2*Iuyy + 2*Iuzz + (Ilxx - Ilyy)*cos(2*the))*cos(thy) + ...

2*(Ilxx - Ilyy)*cos(thy)*(sin(the)^2) - ...

8*L1*l2*m2*cos(the)*cos(thy)*(sin(thx)^2) + ...

(Ilxx + 3*Ilyy - 4*Ilzz + 4*Iuyy - 4*Iuzz - 4*(l1^2)*m1...

- 4*(L1^2)*m2 - 4*(l2^2)*m2 - Ilxx*cos(2*the) + ...

Ilyy*cos(2*the))*cos(thy)*(sin(thx)^2)+ 2*(Ilxx...

- Ilyy + 2*(l2^2)*m2)*cos(thy)*(sin(the)^2)*(sin(thx)^2)...

- 4*L1*l2*m2*sin(the)*sin(thx)*sin(thy) ...

- 2*(Ilxx - Ilyy + (l2^2)*m2)*sin(2*the)*sin(thx)*sin(thy));

G(3,6) = 0;

G(3,7) = (Ilzz + (Ilxx - Ilyy)*cos(2*the))*cos(thy)*sin(thx) ...

+ (Ilxx - Ilyy)*sin(2*the)*sin(thy) + ...

2*L1*l2*m2*(cos(the)*cos(thy)*sin(thx) + sin(the)*sin(thy))...

+ (l2^2)*m2*(2*(cos(the)^2)*cos(thy)*sin(thx) ...

+ sin(2*the)*sin(thy));

G(3,8) = 0;

G(3,9) = (Ilzz + 2*L1*l2*m2*cos(the) + 2*(l2^2)*m2*(cos(the)^2) ...

+ (Ilxx - Ilyy)*cos(2*the))*cos(thx);

G(3,10) = (-2*L1*l2*m2 - 2*(Ilxx - Ilyy + ...

(l2^2)*m2)*cos(the))*sin(the);

G(4,1) = (1/16)*(8*L1*l2*m2*(sin(the)*(2 - ...

2*(cos(thy)^2)*(sin(thx)^2))...

+ cos(the)*sin(thx)*sin(2*thy)) + ...

8*(l2^2)*m2*((-cos(thy)^2)*sin(2*the)*(sin(thx)^2) +...

sin(2*the)*(sin(thy)^2) + cos(2*the)*sin(thx)*sin(2*thy)) + ...

(Ilxx - Ilyy)*((2 + 2*cos(2*thx) + cos(2*thx - 2*thy) - ...

6*cos(2*thy) + cos(2*(thx + thy)))*sin(2*the) + ...

8*cos(2*the)*sin(thx)*sin(2*thy)));

G(4,2) = sin(the)*((-Ilxx+ Ilyy)*cos(the)*(cos(thx)^2)...

- (l2^2)*m2*cos(the)*(cos(thx)^2) + L1*l2*m2*(sin(thx)^2));

G(4,3) = (L1*l2*m2 + (Ilxx - Ilyy + (l2^2)*m2)*cos(the))*sin(the);

G(4,4) = 0;

G(4,5) = cos(thx)*(-2*L1*l2*m2*cos(thy)*sin(the)*sin(thx)...

- (Ilxx - Ilyy + (l2^2)*m2)*cos(thy)*sin(2*the)*sin(thx)...

- (Ilzz + (-Ilxx + Ilyy)*cos(2*the) + ...

2*(l2^2)*m2*(sin(the)^2))*sin(thy));

G(4,6) = -(Ilzz + (Ilxx - Ilyy)*cos(2*the))*cos(thy)*sin(thx)...

+ (-Ilxx + Ilyy)*sin(2*the)*sin(thy) ...

- 2*L1*l2*m2*(cos(the)*cos(thy)*sin(thx) + sin(the)*sin(thy))...

- (l2^2)*m2*(2*(cos(the)^2)*cos(thy)*sin(thx)...

+ sin(2*the)*sin(thy));

G(4,7) = 0;

G(4,8) = -(Ilzz + 2*L1*l2*m2*cos(the) + 2*(l2^2)*m2*(cos(the)^2)...

+ (Ilxx - Ilyy)*cos(2*the))*cos(thx);

G(4,9) = 0; G(4,10) = 0;
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Appendix B

Equations of motion for 2D Arm

Model

B.1 Notation

θ1 Angle that the upper arm makes with the horizontal
θ2 Angle that the lower arm makes with the horizontal
L1 Length of upper arm
L2 Length of lower arm
l1 Location of center of mass of upper arm from proximal end
l2 Location of center of mass of lower arm from proximal end
m1 Mass of upper arm
m2 Mass of lower arm
I1 Moment of inertia of upper arm
I2 Moment of inertia of lower arm

Table B.1. Notation.

The co-ordinate frame is shown in Fig. 2.11.

B.2 Forward Kinematics

The function e(·) in Eq. (2.8) which maps the state of the system (joint angles and
velocities) to the location of the end-effector (hand) is given by

e =

[
−L1 cos(θ1) − L2 cos(θ1 + θ2)
−L1 sin(θ1) − L2 sin(θ1 + θ2)

]

, (B.1)

and the velocity of the hand in the x-direction, ėx(·) in Eq. (2.8) is given by

ėx = L1 sin(θ1)θ̇1 + L2 sin(θ1 + θ2)(θ̇1 + θ̇2). (B.2)
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B.3 Dynamics

As in the case of the 3D arm model the equations of motion are of the form

M(q)q̈ + C(q, q̇)q̇ + N(q) = u, (B.3)

where in the 2D model q = [θ1 θ2]
T . The matrices M(·), C(·, ·) and N(·) are given below.

M =

[
I1 + I2 + m1l

2
1 + m2(L

2
1 + l22) + 2m2L1l2 cos(θ2) I2 + m2l

2
2 + m2L1l2 cos(θ2)

I2 + m2l
2
2 + m2L1l2 cos(θ2) I2 + m2l

2
2

]

(B.4)

C = −m2L1l2 sin(θ2)

[
θ̇2 θ̇1 + θ̇2

−θ̇1 0

]

(B.5)

N = −g

[
m1l1 cos(θ1) + m2(l2 cos(θ1 + θ2) + L1 cos(θ1))

m2l2 cos(θ1 + θ2)

]

(B.6)
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