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Abstract

Support Vector Machine is a very important tech-
nique used for classification and regression. Although
very accurate, the speed of SVM classification de-
creases with increase in the number of support vec-
tors. This paper describes one method of reducing the
number of support vectors through the application of
Kernel PCA. This method is different from other pro-
posed methods as we show that the exact choice of the
reduced support vectors is not important as long as the
vectors span a fixed subspace. This method reduces
the number of support vectors by upto 90% without
any significant degradation in performance. We also
propose a heuristic to determine the reducibility of an
SVM.

1 Introduction

Support Vector Machine(SVM) is a very success-
ful method used for classification and regression prob-
lems extensively today. SVMs are known to be quite
accurate and generalize very well to include non-linear
classification using the “Kernel trick”. However, they
are known to be slow and the time taken for classi-
fication increases linearly with the number of support
vectors. Reduced set methods try to speed up the SVM
classification by reducing the number of support vec-
tors [1], [2], [3].

This paper proposes a technique to reduce the num-
ber of support vectors through Kernel Principal Com-
ponent Analysis (KPCA). Unlike other techniques
which use an unconstrained optimization problem (us-
ing SVM regression or reformulation [3] or conjugate
gradient [2]) or doing clustering in the kernel space

[1], our method randomly picks points in the space
of principal components. We claim that reduced set
methods are an instance of dimensionality reduction
and could be solved using a dimensionality reduction
technique. We use PCA in the kernel space for dimen-
sionality reduction.

This paper is organized as follows. Section 2 de-
scribes the technique of Support Vector Machine clas-
sification. Section 3 explains the technique of princi-
pal component analysis in the Kernel space. Section
2 introduces the preimage problem in kernel methods.
The proposed method is described in detail in Section
5 and the results are discussed in Section 6. We con-
clude in Section 7.

2 Support Vector Machines

Support Vector Machines are an implementation
of Structural Risk Minimization, proposed by Vapnik
[4]. For a two-class classification problem, where the
classes are labeled as +1 and -1, the SVM problem
(known as the C-SVM formluation) can be written as

Minimize
1
2
w ·w + C

l∑
i=1

ξi (1)

such that

yi(w · xi + b) ≥ 1− ξi , i = 1, 2 . . . l

ξi ≥ 0 , i = 1, 2 . . . l

where xi are the input vectors and yi are the class la-
bels.

The problem is more commonly solved as the dual
formulation, which also generalizes to the non-linear



classification case.

Maximize − 1
2
αT Qα + 1T α (2)

such that

yT α = 0
0 ≤ αi ≤ C , i = 1, 2 . . . l

where K is the kernel matrix Qij = yiyjK(xi,xj) =
yiyjΦ(xi) · Φ(xj) in some high dimensional space Φ.

The output of the classifier for an unknown x is
given by

y = sign(
N∑

i=1

αiyiK(xi,x) + b) (3)

where N is the number of non-zero α’s in the result of
the previous optimization problem. The set {xi|αi 6=
0}is the set of support vectors.

The reduced set methods therefore try to approx-
imate

∑N
j=1 αiK(xj,x) ≈

∑M
k=1 βkK(zk,x) by

choosing appropriate {βk, zk} (M << N )1.

3 Kernel PCA

Principal Component Analysis in the kernel space
can be solved by doing an eigen value decomposition
on the centered Kernel matrix Kc.

Kc(i, j) = Φ̃(xi) · Φ̃(xj) (4)

Φ̃(xi) = Φ(xi)−
1
N

N∑
j=1

Φ(xj) (5)

The eigen values of Kc, λk = Nσ2
k (where σ2

k is
the varaince along the kth principal direction in the
kernel space) and the eigen vectors are unnormalized
principal directions.

More details about kernel PCA can be found in [5].

4 Pre-image problem

The preimage problem in kernel methods is one of
finding an approximate vector z in the input space

1The yi in equation 3 can be combined into the αi term and
hence we use only αi in the remainder of the paper

given its image in the kernel space Φ(z). Generally
Φ(z) is given as a sum of several known vectors in the
kernel space Φ(z) =

∑P
i=1 γiΦ(xi).

Pre-images for kernel points are not guaranteed to
exist. Even if they exist, they need not be unique.
However, several methods for finding approximate
pre-images exist that give reasonably good results in
practice. An iterative method for doing gradient de-
scent to find the optimal preimage was given by [6].
[7] gives a one-step approximation of the method in [6]
that is very good for our purposes. We use the method
proposed by [7] in our experiments.

5 Proposed Method

Any reduced set method for reducing the number of
support vectors must do an efficient approximation of
the type

N∑
i=1

αiΦ(xi) ≈
M∑

k=1

βkΦ(zk) (6)

This is a dimensionality reduction problem and hence
should be treated as such. The exact choice of zk’s
is not important as long as the set of all Φ(zk)’s con-
stitute the space as all the Φ(xi)’s with minimal er-
ror. This is exactly what principal component analy-
sis does. It finds the set of directions where the data
has the most variance. Points should be chosen so that
they span the directions as given by PCA in the kernel
space. The exact choice of the points is not important.

The steps of the proposed method can be listed as
follows:

1. Calculate the centered kernel matrix Kc
xx from

the set of support vectors xi.

Kxx(i, j) = K(xi,xj) (7)

Kc
xx = HKxxH (8)

(9)

where H = I − 1
N 11T is the centering matrix

2. Do Kernel PCA by doing an eigen value decom-
position on Kc

xx.

Kc
xx = AΛAT (10)



3. Discard eigen values smaller than a threshold. A
value of 10−5 was used in our experiments. This
was done to prevent numerical problems in the
later stages of the algorithm.

4. Calculate the normalized principal directions.

Ṽk =
1√
λk

N∑
j=1

ajkΦ̃(xj) (11)

where Φ̃(xj) = Φ(xj)−
1
N

N∑
i=1

Φ(xi) (12)

In matrix form, this becomes,

Ṽ = HAΛ− 1
2 (13)

5. Calculate new support vectors by choosing the
projections on the principal directions from a uni-

form distribution U [−σk,+σk] where σk =
√

λk
N

and adding it to the center of the distribution. In
matrix form,

V = Ṽ R +
1
N

(14)

R =
1√
N

Λ
1
2 U (15)

where U is a matrix of points chosen from the
uniform distribution U [−1,+1].

6. Each column of V corresponds to a new support
vector. Choose any M columns. (This step can
be combined with the previous step by choosing
a smaller R).

Φ(zk) =
N∑

i=1

VikΦ(xi) (16)

7. Calculate the approximate pre-images of the
points obtained in the previous step according to
[7].

zk =
∑N

i=1 Vik(1
2(1− V T

k KxxVk + 2V T
k kxi

))xi∑N
i=1 Vik(1

2(1− V T
k KxxVk + 2V T

k kxi
))

(17)

kxi
= [K(xi,x1) K(xi,x2) . . . K(xi,xN)]T (18)

8. Calculate the new coefficients β by solving

Kzzβ = Kzxα (19)

This ensures that both SVMs produce same re-
sults for all the zk’s [8]. We could instead solve
the following system of equations (in a least
squares sense) to get the βk’s.

Kxzβ = Kxxα (20)

This seems to have marginal improvement in per-
formance but was not considered further.

6 Results

We show the results of our method on two datasets
- the adult dataset and the web dataset. The versions
considered have been used in [9]. The adult dataset
is a part of UCI Machine Learning Repository [10].
Details of the datasets are given in table 1.

Dataset # Training # Support # Dimensions # Test
examples vectors Vectors

adult 1605 653 123 30956
web 4912 663 300 44837

Table 1: Details of the datasets used

The SVMs were trained using LibSVM [11]. RBF
kernel K(x,y) = eγ||x−y||2was used in our experi-
ments. The value of γ and C were determined using
10-fold crossvalidation.

6.1 Data distribution in the kernel space

Figure 1 shows the distribution of eigen values for
the adult and web datasets. The graph represents the
variance ignored by neglecting the principal directions
that have smaller variance than the direction consid-
ered i.e. yi =

∑N
j=i λj , assuming the eigen values are

sorted in descending order.
From the figure, it is clear that very few directions

contribute to most of the variance in the data distribu-
tion. In the case of adult dataset, ignoring 90% of the
principal components removes just 10% of the total
variance.

It is clear that dimensionality reduction would work
as long as the area under the curve in Figure 1 is less
than 0.5 (the area under a straight line from (1,0) to
(0,1)).
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Figure 1: Eigen value distribution in Kernel space for adult
and web datasets

6.2 Effect of the preimage approximation

Figure 2 shows the effect of the pre-image approxi-
mation on the accuracy of the final SVM for the adult
dataset. Equation 19 is applied to points obtained in
step 6 of the algorithm in Section 5 to get the opti-
mal β for the points in the kernel space. From the
figure, it is clear that although the preimage compu-
tation is approximate, it does not lead to any loss in
performance. In fact, for this dataset, the performance
after computing the preimages is better than the actual
points in Kernel space. This might be because points in
the kernel space do not correspond to any “real” data,
whereas the preimages are points in the input space
and hence the coefficients β are more accurate. The
accuracy results are the average of 10 instances (to re-
move the effect of the random selection of points in
our algorithm).

6.3 Reducibility of an SVM

Reduced set methods that do approximations of
SVMs like [8],[3],[1] do not give us any insight into
how reducible a particular instance of SVM is. We
have no idea if a reduced set method would work, and
if it works, what the performance-speed tradeoff curve
is. We propose a heuristic for determining how re-
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Figure 2: Effect of the pre-image approximation

ducible an SVM instance is. The area under the curve
in Figure 1 is a measure of the reducibility of an SVM.

Area under the curve =
∑N

i=1 iλi

N
∑N

i=1 λi

(21)

where the eigen values are sorted in descending order.
A smaller area implies better reducibility.

Using this measure, the adult dataset has a re-
ducibility of 0.0458 and the web dataset has a re-
ducibility of 0.1558. The adult dataset is clearly more
reducible than the web dataset.

6.4 Performance trade-off

Figure 3 shows the reduction in accuracy of the
reduced SVM obtained using our method versus the
number of support vectors used. The adult dataset
clearly shows a trend that echos the eigen value dis-
tribution in Frigure 1. The web dataset does not show
any significant difference from the original SVM, even
when the number of support vectors used is very small.
This can be attributed to the nature of the test dataset
that is particularly biased towards one class and so
does not indicate the errors due to the approximations
clearly.

To see the error trends more clearly, we plot the
normalized sum of squared errors for the test data
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original support vectors

(E[||
∑N

i=1 αiK(xi,x) −
∑M

k=1 βkK(zk,x)||2] - not
just the output of the SVM) in Figure 4. The error
trends closely resemble those of Figure 1.
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Figure 4: Sum of squared errors(normalized) Versus Frac-
tion of original support vectors

6.5 Comparison to existing methods

Reduced set methods for SVMs have been studied
before. [8],[3],[2] and [1] use techniques for reduc-
ing the number of support vectors. While all of them
provide ways to do SVM reduction, none of them give
a method for determining the reducibility of a given
SVM.

[2] takes a fixed value of M to do an unconstrained
optimization using conjugate gradient in the space of
{βk, zk}. [3] discuss two methods to do SVM reduc-
tion - one using SVM regression and one using a pri-
mal reformulation. These methods are limited by the
fact the new SVM is constrained to contain only orig-
inal data points as support vectors. The bigger prob-
lem, however, is that they give the user little handle
on the accuracy-speed tradeoff. The SVM regression
method, gives some handle with the ε parameter, but
there is no direct relation between ε and the number of
support vectors obtained.

[8] is closely related to our method. While [8] does
use Kernel PCA to explain the reducibility of SVMs,
they do not use the principal directions obtained in any
way. They allow only original data points to enter into
the new solution. This is achieved by a number of tech-
niques - iterative optimization, quadratic programming
and iterative kernel PCA. These methods are compu-
tationally expensive and provide only as much perfor-
mance as our simple scheme. [1] uses kernel clustering
and distance based preimage computations to reduce
SVMs. This is also a very compute-intensive method,
and does not provide a direct relation between the
maximum-distance parameter(R) used and the number
of support vectors obtained.

The USPS handwritten digit recognition dataset is
used by [8] and [1]. To see why this dataset is at-
tractive for SVM reduction, see Figure 5 for the eigen
value distribution for the SVM classifying digit 5 from
the rest of the digits. The reducibility is 0.0237, even
better than the adult dataset and hence, is highly re-
ducible.

For this particular instance of SVM, for a reduced
set of size 96 support vectors, our method gives 50 er-
rors, while [8] gives 47, 54 and 26 errors for 3 differ-
ent methods. [1] gives 31 errors with 83 vectors. Our
method is only worse than compute intensive methods
like iterative optimization and kernel clustering, while
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Figure 5: Eigen value distribution for the SVM classifying
digit 5 from the rest

comparable to methods based on quadratic program-
ming and iterative kernel PCA, but is much faster than
those.

It should be noted that we get these results inspite
of not taking into account the different α’s as part of
dimensionality reduction. Doing this will improve the
results. Naı̈ve uniform sampling gives us a decent per-
formance. Better sampling heuristics will lead to bet-
ter results. A simple extension would be to restrict the
new support vectors to lie in the convex hull of the
original support vectors.

Our results could be also be interpreted in a differ-
ent way. We do not need accurate eigen value decom-
position for the kernel PCA. As long as the errors in

the eigen vectors are within the limits of ±
√

λk
N for

all vectors Vk, we can use them to compute the new
vectors. This approximation could lead to significant
speedups.

7 Conclusion

A reduced set method based on kernel PCA is pro-
posed in this paper. It is conceptually simple and easy
to implement. The advantage of the method is that it
gives comparable reduction performance to other com-
plicated methods based on quadratic programming and
iterative kernel PCA. We get a 90% reduction in sup-
port vectors with less than 1% degradation in the ac-
curacy for the adult and web datasets by this method.
The proposed method is also faster than other compli-
cated techniques for the purpose.
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