
Design of LDPC Decoders for Improved Low Error

Rate Performance

Zhengya Zhang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-99

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-99.html

July 10, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Design of LDPC Decoders for Improved Low Error Rate Performance

by

Zhengya Zhang

B.A.Sc. (University of Waterloo) 2003
M.S. (University of California, Berkeley) 2005

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Borivoje Nikolić, Chair
Professor Venkat Anantharam

Professor Daniel Tataru

Fall 2009

The dissertation of Zhengya Zhang is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 2009

Design of LDPC Decoders for Improved Low Error Rate Performance

Copyright 2009

by

Zhengya Zhang

1

Abstract

Design of LDPC Decoders for Improved Low Error Rate Performance

by

Zhengya Zhang

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Borivoje Nikolić, Chair

In the past several decades, tremendous progress has been made in both communication

theory and practical implementation of communication systems. However, practice often

lags the most recent developments in theory possibly for two reasons: the cost of imple-

mentation is high, and the practical implementation incurs a non-negligible loss compared

to the theoretical bounds. The two objectives of what is theoretically possible and what is

achievable by implementation can be better aligned, so theory can be made more relevant

and practice can be more powerful and efficient.

A novel emulation-simulation framework is presented on studying the low error

rate performance of capacity-approaching low-density parity-check (LDPC) codes decoded

using a message-passing algorithm. High-throughput hardware emulation uncovers combi-

natorial error structures that underpin the error floors. The captured errors are analyzed

in functionally equivalent software simulation to illuminate the effects of wordlength, quan-

2

tization, and algorithm design, thereby extending the theoretical discovery for practical

usage.

The emulation-simulation framework further allows the algorithm and implemen-

tation to be iteratively refined to improve the error-floor performance of message-passing

decoders. A dual quantization scheme is first introduced to reduce the degradation of soft

decoding. Then, a reweighted message-passing algorithm is proposed to eliminate local

minima caused by the remaining dominant errors. This improved algorithm is realized

in a simple post-processor that compensates the message-passing decoding algorithm to

achieve the near maximum-likelihood decoding performance. Results are demonstrated by

the design of a 5.35 mm2, 65nm CMOS chip that realizes a grouped parallel architecture to

optimize the area and power efficiencies by aggressively scaling down the interconnection

overhead. The 47.7 Gb/s LDPC decoder operates without error floor down to the bit error

rate level of 10−14.

The iterative emulation-simulation framework and systematic architectural explo-

ration can be extended to other complex systems, thereby enabling the joint optimizations

of algorithm, architecture, and implementation.

Professor Borivoje Nikolić
Dissertation Committee Chair

i

To my parents

ii

Contents

List of Figures iv

List of Tables vii

1 Introduction 1

1.1 Scope of Work . 2
1.2 Related Work . 4
1.3 Organization . 6

2 LDPC Decoder Emulation 9

2.1 LDPC Code and Decoding Algorithm . 10
2.1.1 Sum-product Algorithm (SPA) . 13
2.1.2 Approximate Sum-product Algorithm (ASPA) 15

2.2 Message Quantization and Processing . 16
2.3 Structured LDPC Codes . 18
2.4 Emulation-based Investigation . 21

2.4.1 Decoder Architectures for Emulation 24
2.4.2 Design Flow . 31
2.4.3 Noise Realization . 31
2.4.4 Emulation Setup . 36
2.4.5 Related Work . 39

3 Investigation of Error Floors 40

3.1 Characterization of Error Events . 41
3.2 Absorbing Set . 43
3.3 Reed-Solomon-based LDPC Code . 50

3.3.1 Wordlength and Quantization Effects 51
3.3.2 Absorbing Set Characterization . 56
3.3.3 Finite Number of Decoding Iterations 57

3.4 Array-based LDPC code . 57
3.4.1 Strength of Extrinsic Messages . 61
3.4.2 Differentiation among Extrinsic Messages 63

iii

3.4.3 Representation of Channel Likelihoods 67
3.4.4 Approximate Sum-product Decoding 70
3.4.5 Dominant Absorbing Sets . 73

4 Reweighted Message Passing 74

4.1 Message Biasing . 79
4.1.1 Relaxed Selectivity . 80
4.1.2 Two-step Decoding . 82
4.1.3 Offset Selection . 85
4.1.4 Absorbing Region Analysis . 92

4.2 Emulation Results . 93

5 Decoder Chip Implementation 96

5.1 Architectural Design . 99
5.1.1 Wiring Overhead . 99
5.1.2 Density . 104

5.2 Functional Design . 105
5.2.1 Component Nodes . 105
5.2.2 Pipeline . 107
5.2.3 Complete System . 113
5.2.4 Area and Power Optimizations . 114
5.2.5 Timing Constraints and Verification 120

5.3 Chip Implementation . 123
5.3.1 Chip Testing Setup . 126
5.3.2 Functional Measurements . 127
5.3.3 Power Measurements . 128

6 Conclusion 131

6.1 Advances . 131
6.2 Future Work . 133

Bibliography 135

iv

List of Figures

2.1 Representation of an LDPC code using (a) a parity-check matrix (H matrix),
and (b) a factor graph. 11

2.2 Data flow through a simplified communication system (RF front ends are
omitted for simplicity). 11

2.3 (a) A factor graph with one slice highlighted. The slice consists of one variable
node and one check node. The implementation of the slice is illustrated for
(b) a sum-product message-passing decoder and (c) an approximate sum-
product message-passing decoder. 14

2.4 Illustration of (a) a parallel decoder architecture, and (b) a serial decoder
architecture. 19

2.5 Illustration of parity-check matrices of (a) a (2048, 1723) RS-LDPC code,
and (b) a (4896, 2448) Ramanujan-Margulis based LDPC code. 22

2.6 A structured parity-check matrix. 23
2.7 (a) An improved parallel architecture by node grouping and wire bundling.

(b) A partially parallel architecture by segmenting memory into banks. . . . 23
2.8 Design flow for hardware emulation. 25
2.9 A canonical architecture of the (2048,1723) RS-LDPC decoder composed of

32 processing units. 27
2.10 A layered architecture of the (2048,1723) RS-LDPC decoder composed of 32

processing units. 30
2.11 (a) A design library containing component modules. (b) A portion of a

complete LDPC decoder design showing instantiated component modules
and the interconnections drawn by a Matlab script. 32

2.12 An LDPC decoder emulation platform. 37

3.1 FER (dotted lines) and BER (solid lines) performance of the Q4.2 sum-
product decoder of the (2048,1723) RS-LDPC code using different number
of decoding iterations. 41

3.2 Illustration of the oscillation error based on soft decisions from four consec-
utive decoding iterations. 42

3.3 Illustration of the process for a message-passing decoder to enter an absorbing
state. 44

v

3.4 Hardware emulation being used in a feedback loop. 45
3.5 Illustration of a (3,3) fully absorbing set. 46
3.6 Iterative improvement cycle by hardware emulation and feedback simulation. 51
3.7 FER (dotted lines) and BER (solid lines) performance of the (2048,1723)

RS-LDPC sum-product decoder with Q3.2, Q3.3, Q4.2, and Q5.2 fixed-point
quantization using 200 iterations. 53

3.8 Discretization of the Φ function using a Q3.2 uniform quantization and the
resulting numerical errors. 54

3.9 Discretization of the Φ function using a Q3.3 uniform quantization and the
resulting numerical errors. 55

3.10 Illustration of the subgraph induced by the incorrect bits in an (8,8) fully
absorbing set. 56

3.11 FER (dotted lines) and BER (solid lines) performance of a (2209,1978) array-
based LDPC code using 200 decoding iterations. 59

3.12 Illustration of the (4,8) absorbing set. 60
3.13 The effect of adjusting the strength of extrinsic messages in a Q4.2 uniform

quantized sum-product decoder implementation using 200 decoding iterations. 62
3.14 The effect of adjusting the strength of extrinsic messages in a Q4.2 uniform

quantized sum-product decoder implementation using 10 decoding iterations. 63
3.15 A sum-product decoder with two quantization domains (the operating regions

of Φ1 and Φ2 functions are circled). 64
3.16 Discretization of log-tanh functions. 65
3.17 FER (dotted lines) and BER (solid lines) performance of a (2209,1978) array-

based LDPC code using 200 decoding iterations. 66
3.18 Illustration of (a) the (6,8) absorbing set, and (b) the (8,6) absorbing set. . 67
3.19 FER (dotted lines) and BER (solid lines) performance of a (2209,1978) array-

based LDPC code using 10 decoding iterations. 69
3.20 FER (dotted lines) and BER (solid lines) performance of ASPA decoders of

(2209,1978) array-based LDPC code using 200 decoding iterations. 70
3.21 An ASPA decoder with offset correction. 72
3.22 FER (dotted lines) and BER (solid lines) performance of ASPA decoders of

(2209,1978) array-based LDPC code using 10 decoding iterations. 72

4.1 FER (dotted lines) and BER (solid lines) performance of a (2048,1723) RS-
LDPC code using 20 decoding iterations. 75

4.2 Algorithm improvement based on hardware emulation. 77
4.3 Prior LLR distribution of the bits that belong to the (8,8) absorbing set.

Results are based on a Q4.0 offset ASPA decoder of the (2048,1723) RS-
LDPC code. 78

4.4 Illustration of a (3,3) fully absorbing set with falsely satisfied checks and
neighborhood set labeled. 80

4.5 Perturbation is introduced by biasing the messages. (Thick blue lines indicate
strengthened messages from check nodes to variable nodes and black lines
indicate weakened messages from check nodes to variable nodes.) 81

4.6 A two-step decoder composed of a regular decoder and a post-processor. . . 83

vi

4.7 Prior LLR distribution based on 114 (8,8) absorbing error traces. Results
are obtained using a Q4.0 offset ASPA decoder of the (2048,1723) RS-LDPC
code at SNR = 4.8 dB. 85

4.8 Soft decisions at each iteration of post-processing with Lweak = 0. 87
4.9 Soft decisions at each iteration of post-processing with Lweak = 1. 88
4.10 Soft decisions at each iteration of post-processing with Lweak = 2. 89
4.11 FER (dotted lines) and BER (solid lines) performance of a (2048,1723) RS-

LDPC code using 20 decoding iterations followed by post-processing with
Lweak = 0, 1, 2. 91

4.12 The effect of message bias offset ǫ on the post-processing results. 92
4.13 FER (dotted lines) and BER (solid lines) performance of a (2048,1723) array-

based LDPC code using 20 decoding iterations, which demonstrates the ef-
fectiveness of the post-processing approach. 94

5.1 Design optimization loop involving both architectural and algorithmic solu-
tions. 98

5.2 Architectural mapping and transformation. 100
5.3 Architectural optimization by the area expansion metric. 103
5.4 VN node design for an offset ASPA decoder. 106
5.5 CN node design for an offset ASPA decoder. 108
5.6 Pipeline design of the 32VNG-1CNG decoder. 109
5.7 Two-iteration pipeline chart with pipeline stalls. 111
5.8 Two-iteration pipeline chart without stalls. 111
5.9 Pipelines with shorter latency. 112
5.10 The decoder implementation using the 32VNG-1CNG architecture. 114
5.11 Steps of improvement evaluated on the 32VNG-1CNG architecture using

synthesis, place and route results in the worst-case corner. 115
5.12 VN node design for post-processing. 117
5.13 Power reduction steps with results from synthesis, place and route in the

worst-case corner. 119
5.14 Chip design flow with timing and functional verifications. 120
5.15 Chip microphotograph. 125
5.16 Printed circuit board hosting the packaged chip. 125
5.17 Measured FER (dotted lines) and BER (solid lines) performance of the de-

coder chip using a maximum of 20 decoding iterations. 128
5.18 Frequency and power measurement results of the decoder chip. 129

vii

List of Tables

2.1 Characterization of the Xilinx noise generator. 35
2.2 FPGA resource utilization of the (2048,1723) RS-LDPC decoder designs

based on the layered architecture. 38

3.1 Examples of bit error counts in the final 12 iterations of decoding. 43
3.2 Error statistics of (2048,1723) decoder implementations using 200 iterations. 52
3.3 Absorbing set profile of (2209,1978) Q4.2 sum-product decoder implementa-

tions. 60
3.4 Absorbing set profile of (2209,1978) decoder implementations. 68

4.1 Bit error count after post-processing. 90
4.2 Error statistics before and after post-processing. 95

5.1 Architectural selection based on synthesis, place and route results in the
worst-case corner. 103

5.2 Density selection based on synthesis, place and route results in the worst-case
corner. 105

5.3 Pipeline designs. 113
5.4 Application of timing constraints in the design flow. 121
5.5 Error statistics based on chip measurements. 129
5.6 Chip features. 130

viii

Acknowledgments

I consider myself very fortunate to be able to work with a group of exceptionally talented

individuals at Berkeley. First and foremost, my sincere gratitude goes to my advisor,

Professor Bora Nikolić, for his support and guidance. I benefited tremendously from his

vision and still feel constantly motivated by his own dedication to research. I would like to

thank members of my project group, Professor Venkat Anantharam for always upholding

high standards and elevating the research to the next level, Professor Martin Wainwright

for the most insightful discussions and constant encouragement, Lara Dolecek and Pamela

Lee for the hard work and open mind that contributed to the very successful collaboration.

I would also like to thank Professor Daniel Tataru for evaluating my research proposal and

reviewing this dissertation.

My research was supported in part by Marvell Semiconductor. I have had many

constructive meetings with Dr. Zining Wu, Dr. Engling Yeo, and other members of the read

channel group. Their technical advice helped guiding this research from the very beginning.

This research was also supported by NSF CCF grant no. 0635372, NSF CNS RI grant no.

0403427, as well as the generous donations from Intel Corporation and Infineon Technologies

through the University of California MICRO program. The chip fabrication donation was

provided by ST Microelectronics. Dr. Pascal Urard and his team at ST Microelectronics

offered valuable feedback in reviewing my chip design.

I was based in BWRC for the most part of my Ph.D. career. I consider it a privilege

to be associated with the center. The resource and level of collaboration is unmatched.

Senior students and staff laid the foundation that made my research possible. I learned

ix

how to use the BEE emulation platform from its creators, Chen Chang and Pierre-Yves

Droz. I appreciate their effort in listening to me and providing the best solutions. Thanks

to Brian Richards for helping with my chip design. I was shielded from all the intricacies of

design flows due to his ground work. I was also lucky to have a period of overlap with Dejan

Markovic, who shared his wealth of design experience. Many thanks go to Henry Chen for

always being patient with my questions and assisting in system emulation and board design.

Special thanks to Gary Kelson, Tom Boot, Brenda Farrell, Sue Mellers, Kevin Zimmerman,

Brad Krebs, and other staff members for making BWRC such a pleasant place to work.

I would like to express my appreciation to Ruth Gjerde and Mary Byrnes in the

graduate office, who helped me navigate through all the complex paperwork and procedures.

Thanks to Jennifer Stone and Jessica Budgin for taking care of all the issues with funding

of my research.

The friendship and camaraderie with my co-workers in the DCDG group made

a very enjoyable six years, during which I crossed paths with Sokratis Vamvakos, Dejan

Markovic, Radu Zlatanovici, Bill Tsang, Farhana Sheikh, Liang-Teck Pang, Zheng Guo,

Renaldi Winoto, Seng Oon Toh, Ji-Hoon Park, Dusan Stepanovic, Vinayak Nagpal, David

Fang, Melinda Ler, Kenneth Duong, Adam Abed, Lauren Jones, Jason Tsai, Milos Jorgov-

anovic, and Matthew Weiner. Every once a while some of us would graduate and new faces

join, but we always kept DCDG a loving family. I still have fond memories of Zheng and I

staying up until early mornings finishing project reports, Renaldi and I keeping each other

company in the lonely hours before the chip tapeout, as well as numerous retreats, barbe-

cues, group lunches, and graduation dinners. Thanks to Bill, Farhana, and Liang-Teck for

x

the encouragement in the difficult times, Zheng for sharing many thoughts on school and

life, Renaldi for being the best critic of my work. My appreciation also goes beyond the

group boundary – thanks to Wei-Hung Chen, Stanley Chen, Jing Yang, Mubaraq Mishra,

and Simone Gambini for always being supportive.

Finally, my gratitude goes to my parents, Shude and Fenglian, who have been a

perpetual source of comfort and encouragement. They taught me the life values and work

ethics, which I only learn to appreciate gradually over time. They always valued my honest

effort, no matter how minuscule. They provided the best cushion to allow me to recover

from each setback and become more determined. I dedicate this work to them for their love

and support that made it possible.

1

Chapter 1

Introduction

Low-density parity-check (LDPC) codes have been demonstrated to perform very

close to the Shannon limit when decoded iteratively using a message-passing algorithm [29,

45,46,57]. A wide array of the latest communication and storage systems have chosen LDPC

codes as forward error correction in applications including digital video broadcasting (DVB-

S2) [25, 53], 10 Gigabit Ethernet (10GBASE-T) [36], broadband wireless access (WiMax)

[37], wireless local area network (WiFi) [38], deep-space communications [3], and magnetic

storage in hard disk drives [39]. The adoption of the capacity-approaching LDPC codes

is, at least in theory, the key to achieving a lower transmission power for a more reliable

communication.

There is currently a challenge in implementing high-throughput LDPC decoders

with a low area and power on a silicon chip for practical applications [4, 65, 66], thus an

LDPC decoder is often considered an additional premium and implemented in systems as

an option [37, 38]. LDPC codes are not guaranteed to perform well either. Sometimes the

2

excellent error-correction performance of LDPC codes is only observed up until a moderate

bit error rate (BER); at a lower BER, the error curve often changes its slope, manifesting

a so-called error floor [54].

With the latest communication and storage systems demanding data rates up to

Gb/s, relatively high error floors degrade the quality of service – for example, frequent loss

of frames in high-definition video transmission, regular disk failures in magnetic storage,

etc. To prevent such degradations, transmission power is raised or a more complex scheme,

such as an additional level of error-correction coding [25], is created. These approaches

increase the power consumption and complicate the system integration.

This work presents the investigation of error floors of LDPC codes. Exploring

these error floors for realistic LDPC codes by software simulation on a general-purpose

computer is not practical. Even an optimized decoder implemented in C and executed on

a high-end microprocessor provides a peak throughput of only up to the order of 1 Mb/s.

Consequently, months of simulation time would be required to collect at least tens of frame

errors for a confident estimate of the BER at 10−10. However, the use of field-programmable

gate array (FPGA) platforms allows for substantial acceleration in the emulation of LDPC

codes [54,77].

1.1 Scope of Work

This work sheds light on the effects of practical implementations on the error floor

levels of some LDPC decoders [77, 79, 80]. Specifically, the understanding on error floors is

advanced on the following fronts: 1) the use of the absorbing set objects to quantify how

3

the error counts are affected by wordlength, numerical quantization, and decoding algo-

rithm choices; 2) differentiation of error mechanisms between oscillations and convergence

to absorbing sets; 3) differentiation of weak from strong absorbing sets – weak absorbing

sets can be eliminated by an optimized decoder implementation, while strong absorbing

sets dominate the error floor of even an optimal decoder implementation; 4) proposal of

dual quantization and demonstration of approximate algorithms in improving the error floor

performance by alleviating weak absorbing sets. High-performance hardware emulation has

been applied throughout the investigation to uncover large datasets of error signatures and

to verify conjectures.

This work contributes to the solution of the error floors by proposing a post-

processing algorithm that utilizes the graph-theoretic structure of absorbing sets [78]. The

post-processor carefully adjusts the appropriate messages in the iterative decoding once the

decoder enters and remains in the absorbing set of interest. The proposed post-processing

approach is based on a message-passing algorithm with selectively-biased messages. As a

result, it can be seamlessly integrated with the message-passing decoder. Results show

significant performance improvement at low error rates after post-processing even with a

short wordlength.

This work advances the state-of-the-art application-specific integrated circuit (ASIC)

and FPGA architectures of LDPC decoders [81]. A grouping strategy is applied in localizing

irregular wires and regularizing global wires. The optimal parallel architecture depends on

the balance between global and local wires, measured in an area expansion metric and a

wire length metric respectively. The post-processing algorithm further reduces wiring by

4

wordlength reduction. The post-processor is implemented as a small add-on to each local

processing element without adding external wiring, thus the area penalty is kept minimal.

Reduced wiring enables a highly parallel decoder design that achieves a very high through-

put. Frequency and voltage scaling can be applied to improve power efficiency if a lower

throughput is desired.

1.2 Related Work

Methods have been developed through past work on improving the performance

of LDPC codes by eliminating short cycles, and by increasing girth and minimum distance

of the codes [34,51,63,72]. These methods are effective in lowering the error floors, but the

resulting code structures are often irregular, leading to complex decoder implementations.

The alternative is to improve the decoding algorithms without modifying the code structure

as in [2, 9, 10, 28, 32, 82], where the improved algorithms were evaluated by the analytical

technique known as density evolution [57]. Density evolution assumes independent messages

being passed during iterative decoding. Though some agreement has been shown by software

simulation down to moderate BER levels, the independence assumption is a cause of concern

at lower BER levels as the previous analysis disregards the correlation of messages due to

cycles. So to reach lower BER levels, FPGA-based emulations were performed in [61, 71]

to reveal the error floors. These FPGA platforms conveniently capture the performance of

codes, but they do not provide sufficient evidence for the study of error floors.

This work explores practical LDPC decoder design issues using an emulation-

simulation approach. This investigation is motivated by Richardson’s work on error floors

5

[54], where he identified and semi-empirically defined a class of trapping sets using hardware

emulation. Starting from the same point, some of these earlier findings are confirmed, and

moreover, a combinatorial characterization is provided of what is referred to as absorbing

sets in terms of the graph structure of the code. For many LDPC codes, the associated fac-

tor graphs contain absorbing sets of lower weight than the minimum codeword weight. As

a result, the performance of the code in the low error rate region is determined by the dis-

tribution and structure of the low-weight absorbing sets, rather than the minimum distance

of the code [47,54]. This work is based on the characterization of absorbing sets, which are

classified by their structures. Through the analysis of absorbing set profiles, intuitions are

provided on why certain quantization choices and decoding algorithms perform better in

the error floor region, thereby extending the definition of absorbing sets for practical usage.

To overcome the error floors, past work presented modified message-passing decod-

ing algorithms by appropriately scaling, averaging messages, or reordering message-passing

schedules [6,14,41,59]. These modified algorithms were designed without specific consider-

ations of the error structures, thus their effectiveness is limited. In comparison, this work

concentrates on the combinatorial structure of the absorbing set in formulating the solution

that also minimizes the side effects. The proposed post-processing strategy can be com-

pared to the work by Han and Ryan [31], but note that their bi-mode syndrome-erasure

decoding algorithm falls short of resolving the absorbing sets in some codes, where erasure

decoding runs into stopping sets (which are defined in [19]) with high probability. The

post-processing strategy does not suffer from similar problems because the soft reliability

values are retained.

6

Building high-throughput LDPC decoders has always been challenging. Ever since

the very first silicon implementation of the LDPC decoder, high decoding throughput has

become the synonym for large area and high power consumption [4]. The challenge lies in

the wiring overhead associated with highly parallel decoder designs, resulting in low area

utilization due to routing irregularity and congestion. Architectural transformations have

been applied to either partition the parallel architecture as in [44], or to parallelize serial

architectures as in [43, 60, 65, 66, 73] by exploiting the code structure. The design in [50]

adopted a layered schedule that accelerates convergence for a higher throughput at the

cost of increasing computational intensity. A novel arithmetic transformation is applied

in [17] to enable bit-serialized operations that reduce wiring overhead by a factor of the

wordlength (referring to the number of bits representing a message). However, the space

for architectural optimization is limited, as a minimum wordlength needs to be kept for

an acceptable decoding performance. The post-processing strategy presented by this work

provides an excellent decoding performance at a very short wordlength of 4 bits. The

wordlength reduction permits a more compact physical implementation.

1.3 Organization

In Chapter 2, the background is provided on the decoding algorithm, the quanti-

zation procedure, and decoder architecture of a family of high-performance regular LDPC

codes. The architectural choices are presented with the (2048, 1723) Reed-Solomon based

LDPC (RS-LDPC) [20] as an example. The LDPC decoder emulator forms the basis of the

hardware emulation platform. Error traces are collected from hardware emulations.

7

In Chapter 3, the error traces are analyzed against the structure of the code to

reveal the nature of error floors. In a decoder implementation with a sufficient wordlength,

the hard decisions do not change after a number of decoding iterations while some parity

checks remain unsatisfied. Such non-codeword errors are attributed to a class of combi-

natorial structures termed absorbing sets. A series of experiments in Section 3.3 on the

(2048, 1723) RS-LDPC code illuminate the fixed-point quantization effects, and then in

Section 3.4 the experiments on the (2209, 1978) array-based LDPC code [26] help uncover

a collection of different absorbing sets in the error floor region. Methods are developed to

improve upon standard quantization approaches and alternative decoder implementations

are experimented with in reducing the effects of weak absorbing sets and lowering the error

floor.

In Chapter 4, the absorbing-error-inducing channel likelihoods are characterized

to demonstrate that most of the absorbing errors occur due to specific patterns in the

codeword being subject to noise moderately out in the tail rather than because of noise

values in the extreme tails. This intuition motivates the formulation of a message-biasing

approach to recover the absorbing errors in a two-step decoder. Tradeoffs are explored in

the bias selection and an adaption is proposed to dynamically adjust the bias for the best

performance.

In Chapter 5, a high-throughput LDPC decoder is designed following a series of

optimization steps. The architecture of the chip is determined based on a set of experiments

to explore how each design parameter (architectural grouping, density, pipeline design) af-

fects implementation results (wiring overhead, clock frequency, decoding throughput, area,

8

power). The design parameters are orthogonalized such that each can be determined al-

most independently. Important design tradeoffs are investigated in more depth: the degree

of parallelism versus wiring overhead, the area efficiency versus clock frequency, and the

pipeline efficiency versus effective throughput. The architecture choice that optimizes these

tradeoffs is adopted in the final decoder design. The decoder chip was fabricated by ST

Microelectronics. The chip is measured to be fully functional. The performance and power

measurements are presented in the end.

9

Chapter 2

LDPC Decoder Emulation

Gallager invented low-density parity-check (LDPC) code in his doctoral disserta-

tion in 1960 [29]. It received little attention until the 1990s through the rediscovery of

LDPC codes by MacKay [45, 46]. Since then significant advances have been made on the

understanding and design of LDPC codes as well as the iterative message-passing decoding

algorithms. In particular, irregular LDPC codes can be designed to achieve a performance

at rates extremely close to the Shannon limit [56], for example, one LDPC code construction

has been demonstrated to perform within 0.0045 dB of the Shannon limit [12], representing

a giant leap towards reaching the ultimate channel capacity [16,55].

Practical implementations of LDPC decoders immediately followed the theoretical

research. The first LDPC decoder in silicon was demonstrated in [4], featuring an impressive

1 Gb/s decoding throughput. This implementation also revealed routing congestion rather

than gate count as the bottleneck in high-throughput LDPC decoder designs. Subsequent

LDPC decoder implementations reduce the level of parallelism to improve routing [73].

10

The long block length, largely irregular LDPC codes have gradually lost their appeal due

to the difficulty in realizing efficient decoder implementations for a reasonable throughput.

The performance-complexity tradeoff propelled the development of structured codes [40,62],

which can be efficiently encoded and decoded with reasonably good to very good perfor-

mance. The majority of the recent communication standards have adopted codes with such

structures [36–38].

2.1 LDPC Code and Decoding Algorithm

A low-density parity-check code is a linear block code, defined by a sparse M ×N

parity check matrix H where N represents the number of bits in the code block (block

length) and M represents the number of parity checks. In the small example shown in Fig.

2.1a, the first row of the parity-check matrix specifies that bits 1, 3, and 5 have to satisfy

even parity constraint, the second row specifies that bits 2, 4, and 6 have to satisfy even

parity constraint, and so on. The H matrix of an LDPC code can be illustrated graphically

using a factor graph as in Fig. 2.1b, where each bit is represented by a variable node (shown

as a circle) and each check is represented by a factor (check) node (shown as a square). An

edge exists between the variable node i and the check node j if and only if H(j, i) = 1.

Consider a simplified communication system block diagram shown in Fig. 2.2,

where a binary phase-shift keying (BPSK) modulation and an additive white Gaussian noise

(AWGN) channel are assumed. The binary channel bits {0, 1} are represented using {1,−1}

for transmission over the channel. On the receiver side, the analog-to-digital converter

samples and digitizes the channel output. The resulting soft information represents each

11

1 0 1 0 1 0

0 1 0 1 0 1

1 1 0 1 0 0

0 0 1 0 1 1

check 1

bit1

check 2

check 3

check 4

bit2 bit3 bit4 bit5 bit6

(a)

bit 1

bit 2

bit 3

bit 4

bit 5

bit 6

check 1

check 2

check 3

check 4

(b)

Figure 2.1: Representation of an LDPC code using (a) a parity-check matrix (H matrix),
and (b) a factor graph.

{0, 1}

0 +11 -1
AWGN

BPSK

modulation

Source

data

+1-1
ADC

-1

+1

Soft

decision

Figure 2.2: Data flow through a simplified communication system (RF front ends are omit-
ted for simplicity).

received bit with a real (quantized) number. The sign part of the soft information represents

the hard decision, either 0 or 1; and the magnitude part of the soft information represents

the reliability of the hard decision. A decoding algorithm that utilizes both the sign and

the reliability information is called soft decoding. Soft decoding outperforms hard-decision

decoding, which relies only on the sign.

Low-density parity-check codes are usually iteratively decoded using the belief

propagation algorithm, also known as the message-passing algorithm [29]. The highly effi-

cient message-passing algorithm is an important factor that has contributed to the success

12

of LDPC codes in both theoretical studies and practical applications. Suitably-designed

LDPC codes have been shown to perform very close to the Shannon limit when decoded

using the iterative message-passing algorithm. This algorithm also features an intrinsic

parallel scheduling, which makes it very attractive for high-throughput hardware imple-

mentations.

The message-passing algorithm operates on a factor graph, where soft messages

are exchanged between variable nodes and check nodes. The variable nodes are initialized

based on the channel outputs. In the first step of decoding, check nodes receive the initial

beliefs from the neighboring variable nodes and in return, send the extrinsic information

(information from the neighbors) to each of the variable nodes. In every iteration, each

variable node receives new extrinsic information from more distant neighbors and refines

its initial decision. The message-passing algorithm is exact when operating on a factor

graph that is cycle-free, and in practice, free of short cycles is an important criterion in

the construction of good codes. The iterative message-passing algorithm can usually reach

convergence within a small number of iterations when operating on graphs containing no

short cycles.

The message-passing algorithm can be formulated as follows: in the first step,

variable nodes xi are initialized with the prior log-likelihood ratios (LLR) defined in (2.1)

using the channel outputs yi. This formulation assumes the information bits take on 0 and

1 with equal probability.

Lpr(xi) = log
Pr (xi = 0 | yi)

Pr (xi = 1 | yi)
=

2

σ2
yi, (2.1)

13

where σ2 represents the channel noise variance.

The variable nodes send messages to the check nodes along the edges defined by

the factor graph. The LLRs are recomputed based on the parity constraints at each check

node and returned to the neighboring variable nodes. Each variable node then updates its

decision based on the channel output and the extrinsic information received from all the

neighboring check nodes. The marginalized posterior information is used as the variable-

to-check message in the next iteration.

2.1.1 Sum-product Algorithm (SPA)

The sum-product algorithm is a conventional realization of the message-passing

algorithm. A simplified illustration of the iterative decoding procedure is shown in Fig.

2.3b. The illustration is for one slice of the factor graph showing a round trip from a

variable node to a check node back to the same variable node as highlighted in the Fig.

2.3a. Variable-to-check and check-to-variable messages are computed using equations (2.2),

(2.3), and (2.4).

L(qij) =
∑

j′∈Col[i]\j

L(rij′) + Lpr(xi), (2.2)

L(rij) = Φ−1

∑

i′∈Row[j]\i

Φ
(∣

∣L(qi′j)
∣

∣

)

∏

i′∈Row[j]\i

sgn
(

L(qi′j)
)

 , (2.3)

Φ(x) = − log

(

tanh

(

1

2
x

))

, x ≥ 0. (2.4)

14

variable

node check

node

(a)

L
pr

 1 (function)

!

L(qij)

Channel

output

Variable-to-check

messages

…
...

 2 (-1 function)

L(rij)

!

…
...

Check-to-variable

messages

Extrinsic

messages

Extrinsic

message

Prior

Initialize

L
ps

L
ext

Variable-to-check

msgs from adjacent

nodes

variable

node

check

node

(b)

L
pr

min

L(qij)

Channel

output

Variable-to-check

messages

…
...

L(rij)

…
...

Check-to-variable

messages

Extrinsic

messages

Extrinsic

message

Prior

Initialize

L
ps

L
ext

Variable-to-check

msgs from adjacent

nodes

variable

node

check

node

(c)

Figure 2.3: (a) A factor graph with one slice highlighted. The slice consists of one variable
node and one check node. The implementation of the slice is illustrated for (b) a sum-
product message-passing decoder and (c) an approximate sum-product message-passing
decoder.

15

The messages qij and rij refer to the variable-to-check and check-to-variable mes-

sages, respectively, that are passed between the ith variable node and the jth check node.

In representing the connectivity of the factor graph, Col[i] refers to the set of all the check

nodes adjacent to the ith variable node and Row[j] refers to the set of all the variable nodes

adjacent the jth check node.

The posterior LLR is computed in each iteration using (2.5) and (2.6). A hard

decision is made based on the posterior LLR as in (2.7).

Lext(xi) =
∑

j′∈Col[i]

L(rij′), (2.5)

Lps(xi) = Lext(xi) + Lpr(xi), (2.6)

x̂i =

0 if Lps(xi) ≥ 0,

1 if Lps(xi) < 0.

(2.7)

The iterative decoding algorithm is allowed to run until the hard decisions satisfy

all the parity check equations or when an upper limit on the iteration number is reached,

whichever occurs earlier.

2.1.2 Approximate Sum-product Algorithm (ASPA)

Equation (2.3) can be simplified by observing that the magnitude of L(rij) is

usually dominated by the minimum
∣

∣L(qi′j)
∣

∣ term. As shown in [30] and [28], the update

(2.3) can be approximated as

16

L(rij) = min
i′∈Row[j]\i

∣

∣L(qi′j)
∣

∣

∏

i′∈Row[j]\i

sgn
(

L(qi′j)
)

. (2.8)

Note that equation (2.8) precisely describes the check-node update of the min-

sum algorithm. The magnitude of L(rij) computed using (2.8) is usually overestimated and

correction terms are introduced to reduce the approximation error. The correction can be

either in the form of a normalization factor shown as α in (2.9) [9], an offset shown as β in

(2.10) [9], or a conditional offset [82].

L(rij) =
mini′∈Row[j]\i

∣

∣L(qi′j)
∣

∣

α

∏

i′∈Row[j]\i

sgn
(

L(qi′j)
)

. (2.9)

L(rij) = max

{

min
i′∈Row[j]\i

∣

∣L(qi′j)
∣

∣ − β, 0

}

∏

i′∈Row[j]\i

sgn
(

L(qi′j)
)

. (2.10)

2.2 Message Quantization and Processing

Practical implementations only approximate the ideal message-passing algorithm.

Such approximations are inevitable since real-valued messages can only be approximately

represented in a limited wordlength, thus causing saturation and quantization effects, and

moreover, the number of iterations is limited, so that the effectiveness of iterative decoding

cannot be fully realized.

The approximations are illustrated by considering a pass through the sum-product

decoding loop shown in Fig. 2.3b. The channel output is saturated and quantized before it

is saved as the prior LLR, Lpr. During the first phase of message passing, variable-to-check

messages pass through the log-tanh transformation defined in (2.4), then the summation

17

and marginalization, and finally the inverse log-tanh transformation. The log-tanh function

is its own inverse, so the two transformations are identical. They are referred to as Φ1 and

Φ2. The log-tanh function is approximated by discretization. The input and output of the

function are saturated and quantized, thus the characteristics of this function cannot be

fully captured in finite precision, especially in the regions approaching infinity and zero.

In the second phase of message passing, the extrinsic messages Lext are combined

with the prior Lpr to produce the posterior probability Lps. The prior, Lpr, is the saturated

and quantized channel output; the extrinsic message, Lext, is the sum of check-to-variable

messages, which originate from the outputs of the approximated Φ2 function. The messages

incur numerical errors, and these errors accumulate, causing a decoder to perform worse

than theoretically possible. The deficiencies due to real-valued implementations manifest

themselves via performance degradation in the waterfall region, and a rise of the error floor.

The saturation and quantization effects are related to the finite wordlength repre-

sentation that is used in the processing and storage of data. Two classes of number repre-

sentations can be used: a more flexible floating-point format which allows the representation

of finer resolution and wider range of values but involves more computationally-demanding

arithmetic operations, and a compact fixed-point format with a fixed number of digits be-

fore and after the radix point. In the case of a high-throughput LDPC decoder, the cost of

parallel processing dictates that each processing element be simplified and the fixed-point

number format becomes the preferred choice.

The notation Qm.f is used to represent a signed fixed-point number with m bits to

the left of the radix point to represent integer values, and f bits to the right of the radix point

18

to represent fractional values. Such a fixed-point representation translates to a quantization

resolution of 2−f and a range of [−2m−1, 2m−1 − 2−f]. Note that there is an asymmetry

between the maximum and the minimum because 0 is represented with a positive sign in

this number format. Values above the maximum or minimum are saturated, i.e., clipped.

The wordlength of this fixed-point number is m + f . As an example, a Q4.2 fixed-point

quantization translates to a quantization resolution of 0.25 and a range of [−8, 7.75].

In an ASPA implementation (2.8), Φ1, summation, and Φ2 are replaced by the

minimum operation as shown in Fig. 2.3c. The approximate algorithm introduces errors

algorithmically, but it eliminates some numerical saturation and quantization effects by

skipping through the log-tanh and the summation operations.

2.3 Structured LDPC Codes

A practical high-throughput LDPC decoder can be implemented in a fully parallel

manner by directly mapping the factor graph onto an array of processing elements inter-

connected by wires, as illustrated in Fig. 2.4a. Under this architecture, each variable node

is mapped to a variable node processing element (VN) and each check node is mapped to

a check node processing element (CN), such that all messages from variable nodes to check

nodes and then in reverse are processed concurrently. Practical high-performance LDPC

codes commonly feature block lengths on the order of 1kb and up to 64kb, requiring a large

number of VN nodes. The ensuing wiring overhead poses a substantial obstacle towards

efficient silicon implementations. The causes of concern are as follows:

1. Each connection between VN and CN consists of multiple wires to support the neces-

19

VN

VN

VN

VN

VN

VN

CN

CN

CN

CN

Interconnections

(a)

Memory

VN

CN

(b)

Figure 2.4: Illustration of (a) a parallel decoder architecture, and (b) a serial decoder
architecture.

sary wordlength in representing messages. To achieve a good functional performance,

wordlength needs to be increased, and so does the number of wires.

2. A large number of VN and CN nodes span a large chip area, and the wires between

them are global wires. Global wires are known to suffer from large propagation delays

and not scalable with semiconductor technology.

3. Good LDPC codes should resemble a random code with very large block length. Wires

supporting the decoders of such codes are necessarily long and irregularly structured,

causing difficulty in placement and routing.

On the other hand, a fully serial architecture can be very efficiently constructed.

Only one VN and one CN are required and messages can be stored in memory, shown in

Fig. 2.4b. Messages are processed sequentially in this architecture, resulting in a very low

20

throughput limited by memory bandwidth. However, this architecture is very flexible and

can be easily reconfigured for different codes. More VN and CN nodes could be added

to partially parallelize this architecture, but the memory bandwidth limits the level of

parallelism and the decoding throughput [74]. A randomly-constructed, or irregular code

further complicates the scheduling of a partially parallelized decoder.

Despite the superior performance of a randomly-constructed, irregular LDPC code,

the hardware architecture for the decoders presents difficulties in achieving a high through-

put. Structured LDPC codes of moderate block lengths have received more attention in

recent research, noticeably the algebraic constructions which are shown to perform within

a fraction of dB away from the Shannon limit. Several of these LDPC code constructions,

including the Reed-Solomon based codes [20], array-based codes [26], as well as the ones

proposed by Tanner et al. [62], share the same property that their parity check matrices can

be written as a two-dimensional array of component matrices of equal size, each of which

is a permutation matrix. Constructions using the ideas of Margulis and Ramanujan [58]

have a similar property that the component matrices in the parity check matrix are either

permutation or all-zeros matrices. The renditions of a RS-LDPC code and a Ramanujan-

Margulis based LDPC code are illustrated in Fig. 2.5a and 2.5b – each 1 in the respective

parity-check matrix is shown as a dot and each 0 is shown as a white space. In this family

of LDPC codes, the M × N H matrix can be partitioned along the boundaries of δ × δ

permutation submatrices. For N = δρ and M = δγ, column partition results in ρ column

groups and row partition results in γ row groups. This structure of the parity check matrix

proves amenable for efficient decoder architectures and recent published standards have

21

adopted LDPC codes defined by such H matrices [36–38].

Structured codes open the door to a range of feasible high-throughput decoder

architectures ranging from parallelized serial to fully parallel. In a fully parallel architecture,

structured codes allow the grouping of VN and CN nodes and the wires between VN and CN

nodes of the same group can to be bundled and routed together as shown in Fig. 2.7a for

the example H matrix in Fig. 2.6. Global wires can be regularized and wiring irregularity

can be localized to within the group, thereby significantly reducing the wiring overhead. A

serial architecture also benefits from a structured code by effective parallelization: memory

can be divided into banks so to avoid access conflicts and decoding schedules can be easily

formulated to parallel process among the decoupled code segments. An illustration is shown

in Fig. 2.7b.

2.4 Emulation-based Investigation

The performance of suitably-designed LDPC codes of large block length can be

almost exactly analyzed using techniques such as density evolution and EXIT charts. These

techniques assume that the factor graph contains no cycle, and they are based on the

asymptotic approximation that the code block length is infinitely long. The assumption and

the approximation that form the basis of the analytical techniques do not apply to practical

LDPC codes, which usually feature structured parity-check matrices and moderate block

lengths on the order of 1kb. Cycles are inevitable in the factor graphs of these codes, though

short cycles can be eliminated by suitable code construction strategies.

Software simulation has been used extensively to characterize the performance

22

(a)

(b)

Figure 2.5: Illustration of parity-check matrices of (a) a (2048, 1723) RS-LDPC code, and
(b) a (4896, 2448) Ramanujan-Margulis based LDPC code.

23

10 0 0

0 1 0 0

1 0 0 0

0 0 1 0 10 0 0

0 0 1 0

1 0 0 0

0 1 0 0

0 1 0 0

10 0 0

1 0 0 0

0 0 1 0

1 0 0 0

0 0 1 0

0 1 0 0

10 0 0

10 0 0

0 0 1 0

1 0 0 0

0 1 0 0

1 0 0 0

10 0 0

0 0 1 0

0 1 0 0

Figure 2.6: A structured parity-check matrix.

VN1

VN2

VN3

VN4

VN5

VN6

VN7

VN8

VN9

VN10

VN11

VN12

CN1

CN2

CN3

CN4

CN5

CN6

CN7

CN8

VN

Group CN

Group

(a)

Bank23

Bank22

Bank21

Bank13

Bank12

Bank11

VN

VN

VN

CN

CN

(b)

Figure 2.7: (a) An improved parallel architecture by node grouping and wire bundling. (b)
A partially parallel architecture by segmenting memory into banks.

24

of practical LDPC codes. A bit error rate on the order of 10−6 to 10−8 can be easily

achieved on high-performance computing platforms. Such characterizations are sufficient

for applications such as most of the wireless standards. However, high-throughput appli-

cations, such as wireline, satellite, optical communications, and magnetic storage systems

require error free operations below 10−10. The shortage of simulation power and lack of

analytical approaches have left a gap in the understanding of practical LDPC codes. The

performance uncertainty has prevented or slowed down the adoption of these codes in many

high-throughput applications.

An emulation-based design flow is developed to facilitate the investigation of LDPC

codes, as seen in Fig. 2.8. The design flow is based on the Berkeley Emulation Engine 2

(BEE2) platform [8]. The BEE2 platform consists of both the FPGA array hardware and the

Simulink-based programming paradigm. The message-passing algorithm is first described

in a fixed-point reference model in Matlab. The decoder is then constructed in Simulink.

Simulink simulations are verified against the Matlab reference model, before mapping to

FPGA. More parallel architectures can be implemented on FPGA, providing a throughput

at least several orders of magnitude higher than software simulations to reach very low BER

levels. The Simulink-based design flow allows the rapid translation from data-flow-based

design entry to hardware, enabling iterative designs and refinement.

2.4.1 Decoder Architectures for Emulation

Designing a decoder emulator on FPGA should be differentiated from designing a

decoder for practical implementations. Practical implementations aim at high performance

(function and throughput) and efficiency (area and power) while satisfying a particular ap-

25

Algorithm

Realization

Architecture
Hardware

emulation

Algorithm

description

Data flow

Matlab

Simulink

Verification

BEE2 FPGA

BEE2

design

flow

Figure 2.8: Design flow for hardware emulation.

plication requirement, whereas the decoder emulator is designed with resource efficiency and

configurability as the primary objectives. The FPGA platform is used as an investigation

platform, and as such a large amount of resources on FPGA are dedicated to capturing

event traces for analysis, leaving a limited level of parallelism available to the decoder de-

sign. The architecture of the decoder should also be very reconfigurable, so that it can

be programmed for different codes, decoding algorithms, and capable of operating with a

varying number of iterations at different SNR levels.

Two architectures have been used to map the decoder emulators, a canonical

architecture and a layered architecture. Both architectures are based on the partial par-

allelization of the serial architecture, which resembles the designs proposed in [33, 48, 76],

but the degree of parallelism is intentionally limited by partitioning the H matrix in only

one direction (i.e., parallelize among column partitions and process rows serially) to reduce

complexity. Each of the partitions is configurable based on the structure of the H matrix.

Compared to a fully parallel architecture [4], which is not reconfigurable, or a fully serial

architecture, which lacks the throughput [74], these architectures represent a tradeoff for

26

the purpose of code emulation.

A (6, 32)-regular (2048, 1723) RS-LDPC code is selected for the illustration of these

architectures. This particular LDPC code has been adopted as the forward error correction

in the IEEE 802.3an 10GBASE-T standard [36], which governs the operation of 10 Gigabit

Ethernet over up to 100 m of CAT-6a unshielded twisted-pair (UTP) cable. The H matrix

of this code contains M = 384 rows and N = 2048 columns. This matrix can be partitioned

into γ = 6 row groups and ρ = 32 column groups of δ×δ = 64×64 permutation submatrices.

In the canonical architecture, column partition is applied to divide the decoder

into 32 parallel units, where each unit processes a group of 64 bits. Fig. 2.9 illustrates

the architecture of the RS-LDPC sum-product decoder. Two sets of memories, M0 and

M1, are designed to be accessed alternately. M0 stores variable-to-check messages and M1

stores check-to-variable messages. Each set of memories is divided into 32 banks. Each

bank is assigned to a processing unit that can access them independently. In a check-

to-variable operation defined in (2.3), the 32 variable-to-check messages pass through the

log-tanh transformation, and then the check node computes the sum of these messages. The

sum is marginalized locally in the processing unit and stored in M1. The stored messages

pass through the inverse log-tanh transformation to generate check-to-variable messages. In

the variable-to-check operation defined in (2.2), the variable node inside every processing

unit accumulates check-to-variable messages serially. The sum is marginalized locally and

stored in M0. This architecture minimizes the number of global interconnects by performing

marginalization within the local processing unit.

The canonical architecture realizes the canonical form of the sum-product algo-

27

Bank1

Messages

for bits

1-64

Bank2

Messages

for bits

65-128

Bank3

Messages

for bits

129-192

…...

Bank31

Messages

for bits

1921-

1984

Bank32

Messages

for bits

1985-

2048

 …

…

Bank1

Messages

for bits

1-64

Bank2

Messages

for bits

65-128

Bank3

Messages

for bits

129-192

…...

Bank31

Messages

for bits

1921-

1984

Bank32

Messages

for bits

1985-

2048

…

Check

Node

+ + + + +

- - - - -

-
+

LUT LUT LUT LUT LUT

+
-

+
-

+
-

+
-

-1 …

-1

-1

-1

-1

Bit

Node

... …...

Hard Decision

Channel

output

Memory

M0

Memory

M1

Processing

Unit 1

Figure 2.9: A canonical architecture of the (2048,1723) RS-LDPC decoder composed of 32
processing units.

28

rithm shown in (2.2), (2.3), (2.5), and (2.6). These equations can also be rearranged by

taking into account the relationship between consecutive decoding iterations. A variable-

to-check message of iteration n can be computed by subtracting the corresponding check-

to-variable message from the posterior of iteration n− 1 as in (2.11), while the posterior of

iteration n can be computed by updating the posterior of the previous iteration with the

check-to-variable message of iteration n, as in (2.13).

Ln(qij) = Lps
n−1(xi) − Ln−1(rij), (2.11)

Ln(rij) = Φ−1

∑

i′∈Row[j]\i

Φ
(∣

∣Ln(qi′j))
∣

∣

)

∏

i′∈Row[j]\i

sgn
(

Ln(qi′j)
)

 , (2.12)

Lps
n (xi) = Lps

n−1(xi) − Ln−1(rij) + Ln(rij), j ∈ Col[i]. (2.13)

The reformulated sum-product algorithm leads to a check-node centric message-

passing schedule without an explicit variable-node operation. When interpreted using the H

matrix, operations are performed in horizontal layers, thus it is called the layered architec-

ture. The block diagram of the layered architecture is shown in Fig. 2.10 for the (2048, 1723)

RS-LDPC code. Only one set of memory M0 is required to store the check-to-variable mes-

sages and the posterior. In each iteration except the first, the check-to-variable message

from the previous iteration is subtracted from the posterior to produce the variable-to-

check message as in (2.11). One variable-to-check message from each of the column groups

is processed by the check node, and the new check-to-variable message is computed ac-

cording to (2.12). The new check-to-variable message replaces the old check-to-variable

29

message to update the posterior as in (2.13). Compared to the canonical architecture, the

variable-to-check operation is interleaved with the check-to-variable operation in the layered

architecture.

Both types of architectures allow efficient mapping of a practical decoder. For

example, an RS-LDPC code of up to 8kb in block length can be supported on a Xilinx

Virtex-II Pro XC2VP70 FPGA [70]. These architectures are also reconfigurable, so that

any member of the LDPC code family described in Section 2.3 can be accommodated.

Address lookup tables can be reconfigured based on the H matrix. Processing units can

be allocated depending on the column partitions, and the memory size can be adjusted to

allow variable code rates.

The decoding throughput of both types of architectures is determined by the di-

mensions of the H matrix of the LDPC code. In a high SNR regime, the majority of

the received frames can be decoded in one iteration. Therefore, the maximum achievable

throughput is approximately fclkN/(2M) for the canonical architecture, and fclkN/M for

the layered architecture, where fclk represents the clock frequency. Since pipeline stalls

need to be inserted between variable-to-check and check-to-variable operations in a canon-

ical architecture, and between horizontal layers in a layered architecture to resolve data

dependencies, the peak throughput attainable in practice is slightly lower than what is

quoted above. Note that a characteristic of both types of architectures is that the decoding

throughput depends on N/M , which is related to the rate of the code – the higher the code

rate, the higher the decoding throughput.

The ASPA decoders can be implemented similarly. Following the approximation

30

Bank1

Messages

for bits

1-64

Bank2

Messages

for bits

65-128

Bank3

Messages

for bits

129-192

…...

Bank31

Messages

for bits

1921-

1984

Bank32

Messages

for bits

1985-

2048

 …

…

…

Check

Node

+ + +

+ +- - - - -

LUT LUT LUT LUT LUT

-1

... …...

Hard Decision

Channel

output

Memory

M0

Processing

Unit 1

+ -

-1

-1

-1

-1

ps ext

+ -

ps ext

+ -

ps ext

+ -

ps ext

+ -

ps ext

Figure 2.10: A layered architecture of the (2048,1723) RS-LDPC decoder composed of 32
processing units.

31

(2.8), the lookup tables based on Φ are eliminated and the summation in a check node is

replaced by comparisons to find the minimum.

2.4.2 Design Flow

The decoder is hierarchically constructed in a bottom-up manner. The basic com-

ponent modules, including a processing unit (highlighted in Fig. 2.9 and 2.10), a check

node, and a controller, are designed and verified in Simulink. These component modules

are parameterized. The processing unit is parameterized by wordlength, quantization, and

the submatrix supported. The check node is constructed as an adder tree (in a sum-product

algorithm), or a compare-select tree (in an ASPA decoder). The breadth and depth of the

tree are determined by the number of partitioned column groups. The controller is param-

eterized by the check and variable node degrees, column partitions, and submatrix size.

These modules are copied to a Simulink design library, as in Fig. 2.11a.

A Matlab script takes as inputs the H matrix of the LDPC code, the decoding al-

gorithm, as well as the quantization choice, and then instantiates modules from the Simulink

design library. Most importantly, the Matlab script draws the connections between mod-

ules based on the H matrix. An example design is illustrated in Fig. 2.11b. This approach

significantly simplifies the design process and enables the design-time configurability.

2.4.3 Noise Realization

Along with the LDPC decoder, multiple independent additive Gaussian noise gen-

erators have been incorporated on the FPGA using the Xilinx AWGN generator [69] to

emulate the communication channel. The datasheet specifies that the probability density

32

(a)

(b)

Figure 2.11: (a) A design library containing component modules. (b) A portion of a com-
plete LDPC decoder design showing instantiated component modules and the interconnec-
tions drawn by a Matlab script.

33

function (PDF) of the noise realization deviates within 0.2% from the ideal Gaussian PDF

up to 4.8σ [69]. Questions arise on whether this noise generator would allow the decoding

performance to be truthfully characterized down to very low error rate levels. In particular,

what is of interest is how much the decoder performance would deviate from the one oper-

ating under the ideal AWGN channel. To answer this question, the decoder is treated as a

blackbox and inputs causing decoding errors at very low error rate levels are captured. The

empirical error probability under the Xilinx noise realization can be compared to the error

probabilities under ideal Gaussian channels. The inputs are characterized using quantized

(binned) samples, because the decoder operates on quantized inputs. This study consists

of the following three steps:

1. Bound the noise distribution

(a) Characterize the binned noise samples produced by the Xilinx noise generator,

fXilinx
X (x) = Pr[X = x], x ∈ S, where S indicates the sample space, or the set

of quantized levels.

(b) Compute the cumulative mass function (CMF) FXilinx
X (x) = Pr(X ≤ x), x ∈ S.

Empirically bound FXilinx
X (x) by the CMF of two ideal Gaussian distributions,

N1 ∼ N (0, σ1) and N2 ∼ N (0, σ2), as the lower and upper bound respectively,

such that FN1

X (x) ≤ FXilinx
X (x) ≤ FN2

X (x) for x ∈ S.

2. Characterize the decoder performance by hardware emulation

Select an SNR point of interest and run decoder emulations. The SNR point of interest

is at the moderate to high-SNR levels where the error floors could occur. Assume all-

zeros codeword is transmitted using a BPSK modulation, where the binary channel

34

bits {0, 1} are mapped to {1,−1} for transmission over the AWGN channel. Capture

a set of decoding errors T and perform the following three steps for each error.

(a) Characterize the noise realization causing this error. Assume a code block length

of N , for each i ∈ N , compute FXilinx
X (xi), where xi corresponds to the noise

sample at bit i and xi ∈ S. From Step 1, FN1

X (xi) ≤ FXilinx
X (xi) ≤ FN2

X (xi).

(b) The tightness of the bounds can be improved by finding the maximum mul-

tiplier m1,xi
and the minimum multiplier m2,xi

that satisfy m1,xi
FN1

X (xi) ≤

FXilinx
X (xi) ≤ m2,xi

FN2

X (xi).

(c) Compute the probability of the decoding error (frame error) under the Xilinx

AWGN channel PXilinx
e =

∏

1≤i≤N FXilinx
X (xi), and bound it by the decoding

error (frame error) probabilities under the ideal AWGN noise channels: PN1

e =

∏

1≤i≤N FN1

X (xi) and PN2

e =
∏

1≤i≤N FN2

X (xi), i.e., M1P
N1

e ≤ PXilinx
e ≤ M2P

N2

e ,

where M1 =
∏

1≤i≤N m1,xi
and M2 =

∏

1≤i≤N m2,xi
.

3. Compute the performance bounds

The product of multipliers M1 and M2 provide empirical measures of how much the

frame error rate obtained from hardware emulation deviates from the simulations

based on ideal AWGN channels.

A larger T size yields more reliable estimates of the performance bounds. But even

with a set of 64 errors collected at the FER of approximately 10−10, intuitions can be gained

on how the noise fidelity affects the emulation results. The above procedure is followed in

characterizing the N (0, 1) Xilinx Gaussian noise generator based on 232 samples. The noise

35

Table 2.1: Characterization of the Xilinx noise generator.

xi FXilinx
X (xi) FN1

X (xi) FN2

X (xi) m1,xi
m2,xi

−4.00 5.31 × 10−5 5.21 × 10−5 5.31 × 10−5 1.0197 1.0000

−3.75 1.43 × 10−4 1.42 × 10−4 1.44 × 10−4 1.0081 0.9910

−3.50 3.65 × 10−4 3.63 × 10−4 3.69 × 10−4 1.0036 0.9887

−3.25 8.78 × 10−4 8.78 × 10−4 8.89 × 10−4 1.0006 0.9876

−3.00 2.00 × 10−3 2.00 × 10−3 2.02 × 10−3 1.0000 0.9889

−2.75 4.30 × 10−3 4.30 × 10−3 4.34 × 10−3 1.0000 0.9906

−2.50 8.73 × 10−3 8.73 × 10−3 8.80 × 10−3 1.0003 0.9925

−2.25 1.67 × 10−2 1.67 × 10−2 1.68 × 10−2 1.0004 0.9940

−2.00 3.04 × 10−2 3.03 × 10−2 3.05 × 10−2 1.0003 0.9951

−1.75 5.21 × 10−2 5.21 × 10−2 5.23 × 10−2 1.0002 0.9961

−1.50 8.47 × 10−2 8.47 × 10−2 8.49 × 10−2 1.0001 0.9970

−1.25 1.31 × 10−1 1.31 × 10−1 1.31 × 10−1 1.0002 0.9980

−1.00 1.91 × 10−1 1.91 × 10−1 1.92 × 10−1 1.0003 0.9988

−0.75 2.67 × 10−1 2.67 × 10−1 2.67 × 10−1 1.0003 0.9993

samples are uniformly quantized in a Q4.2 format, corresponding to a step size of 0.25.

Hardware emulation is performed using a Q4.2 sum-product decoder of the (2048, 1723)

RS-LDPC code. The resulting CMF FXilinx
X (xi) is listed in Table 2.1 (an incomplete table

for brevity). This CMF is bounded by the CMFs of two ideal Gaussian distributions,

N1 ∼ N (0, 0.997556) and N2 ∼ N (0, 0.998776), and the associated multipliers m1,xi
, and

m2,xi
are listed in Table 2.1.

For each of the 64 errors in T , the product of multipliers M1 and M2 are computed.

The average products are M1,mean = 1.178, M2,mean = 0.284, which suggests that the frame

error rate under ideal AWGN channels is within a factor of 3.5 above and 0.85 below the

results obtained by hardware emulation down to the 10−10 FER levels. As what will be

described later, in the nonlinear finite-wordlength decoding process based emulations it is

36

observed that the decoder fails to converge at very low error rate levels because of specific

patterns of locations in the codeword being subject to noise moderately out in the tail rather

than because of noise values in the extreme tails. Thus accuracy of the random number

generator in the extreme tail distribution is not of concern in this application, in contrast

to what is stated in [42].

2.4.4 Emulation Setup

Block RAMs on the FPGA record the noise realizations and final iterations of soft

decisions when decoding fails. With a large number of block RAMs available on modern

FPGA devices, a large memory bandwidth and real-time access are possible. For exam-

ple, the Xilinx Virtex-II Pro XC2VP70 FPGA, featured on the BEE2 platform, contains

5, 904kb of block RAM memory. Assume a 6-bit Q4.2 quantization and a 2kb block length

LDPC code. Storing one frame of noise realizations requires 12kb memory. Additional 12kb

memory is required to store one iteration of soft decisions. With these assumptions, up to

about 100 errors can be captured – each error recording consists of the frame of noise real-

izations that cause the decoding error and final three decoding iterations of soft decisions.

The recordings can be analyzed offline.

An on-chip PowerPC microprocessor controls the decoder by issuing start, stop

commands, setting upper limit on the number of decoding iterations, and adjusting the

noise variance for different SNR levels. The hardware emulation platform is illustrated

in Fig. 2.12. Such a platform allows the characterization of the code and evaluation of

practical implementation parameters [77]. Error traces enable the exploration of patterns

that cause the decoder to fail.

37

Controller LDPC Decoder

AWGN

Generator

Block RAM

Matlab

Xilinx Virtex-II Pro

XCV2P70 FPGA

start/stop/reset

set iteration limit

control output

SNR update

collect error events

error

traces

noise

input

Figure 2.12: An LDPC decoder emulation platform.

The FPGA resource utilization is listed in Table 2.2 for the (2048, 1723) RS-LDPC

decoders implemented in the layered architecture with various options: wordlengths of 4,

6, and 8 bits for both the SPA and the ASPA algorithms. These decoders are resource

efficient – occupying less than 1/3 of the available slices and 130 of the 328 available block

RAMs on a Xilinx Virtex-II Pro XC2VP70 FPGA. The Xilinx AWGN noise generator can

be incorporated at the cost of approximately 900 slices. The remaining resource on-chip can

be used to store error traces. A decoder implemented this way achieves a peak throughput

of 480 Mb/s using a 100 MHz clock. Hardware emulation of this LDPC decoder extends

the BER curve below 10−10 within hours. For comparison, an optimized implementation of

the same decoder in C provides a peak throughput of only 260 kb/s on an Intel Xeon 2.4

GHz microprocessor.

38

Table 2.2: FPGA resource utilization of the (2048,1723) RS-LDPC decoder designs based on the layered architecture.

Available1
4-bit wordlength 6-bit wordlength 8-bit wordlength

SPA ASPA w/noise2 SPA ASPA w/noise2 SPA ASPA w/noise2

Number of Slice Flip Flops 66,176 7,997 7,964 9,153 8,737 8,830 10,017 9,477 9,696 10,881

Number of 4 input LUTs 66,176 7,580 7,763 8,386 8,955 9,671 10,296 10,426 11,318 11,946

Number of Occupied Slices 33,088 7,247 7,322 8,199 8,459 8,810 9,706 9,536 9,961 10,828

Total Number 4 input LUTs 66,176 9,988 10,171 11,252 11,843 12,559 13,645 13,794 14,686 15,778

Number of Block RAMs 328 130 130 134 130 130 134 130 130 134

1 Available resource and its allocation are based on the Xilinx Virtex-II Pro XC2VP70 FPGA.

2 An ASPA decoder with the Xilinx AWGN noise generator.

39

2.4.5 Related Work

FPGA platforms have been commonly used in studying decoder designs, mainly

for two purposes – verifying hardware architecture and accelerating code simulation. De-

coders of different architectures can be compared by the resource usage and the maximum

achievable clock frequency on an FPGA; hardware emulation also accelerates code simu-

lation [61, 71], allowing codes to be quickly evaluated and decoder implementations to be

compared under practical settings.

The emulation platform of this work is constructed for studying decoder failure

mechanisms. A similar hardware emulation platform in [54] returns only the final state

of the decoding, which limits its usefulness in analyzing error mechanisms. The platform

described in this work records the noise realizations, as well as the iteration-by-iteration

states that lead to a decoding error. Recording the noise realizations and the decoding

states in soft information requires a large amount of free resource available on chip, which

explains that less than 1/3 of the on-chip resource is allocated to the decoder itself, while

all the remaining is reserved for error capturing.

40

Chapter 3

Investigation of Error Floors

Both the wordlength and the number of decoding iterations are important design

parameters that determine the area, power, and performance of an LDPC decoder. In

particular, a short wordlength and a small number of iterations are always desirable in

practical implementations. As an illustration, the frame error rate (FER) and the bit error

rate versus the signal-to-noise ratio are plotted in Fig. 3.1 showing the effect of iteration

number on the performance of a 6-bit Q4.2 fixed-point implementation of the (2048, 1723)

RS-LDPC sum-product decoder. More iterations result in better performance, although the

gain becomes marginal after 50 iterations. So as to minimize the effect of iteration number

and to isolate the error events caused by fixed-point implementations, up to 200 iterations

are performed.

41

2.5 3 3.5 4 4.5 5 5.5 6
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No (dB)

F
E

R
/B

E
R

10 iterations
20 iterations
50 iterations
100 iterations
200 iterations

Figure 3.1: FER (dotted lines) and BER (solid lines) performance of the Q4.2 sum-product
decoder of the (2048,1723) RS-LDPC code using different number of decoding iterations.

3.1 Characterization of Error Events

Hardware emulations reveal that the errors dominating the error floors do not

resemble the errors occur in the waterfall region of the BER-SNR curve. Errors in the

waterfall region are mostly random-like errors with bit error count greater than the minimum

distance of the code. At higher SNR levels where the error floors occur, random-like errors

are very rare, and instead the dominant errors exhibit rather pronounced characteristics,

either oscillatory or absorbing. Both these types of errors appear to start with a small

number of bits that are received incorrectly. An oscillation error is illustrated in Fig. 3.2

showing the soft decisions after each decoding iteration. The horizontal axis is for each of

the 2048 bits in the code block, and the vertical axis is the soft decision each bit assumes

after an iteration of decoding. For simplicity of illustration, it is assumed that all-zeros

42

0 512 1024 1536 2048
−10

−5

0

5

10

15

20

25

Bit

S
of

t d
ec

is
io

n

(a) Iteration i

0 512 1024 1536 2048
−10

−5

0

5

10

15

20

25

Bit

S
of

t d
ec

is
io

n

(b) Iteration i + 1

0 512 1024 1536 2048
−10

−5

0

5

10

15

20

25

Bit

S
of

t d
ec

is
io

n

(c) Iteration i + 2

0 512 1024 1536 2048
−10

−5

0

5

10

15

20

25

Bit

S
of

t d
ec

is
io

n

(d) Iteration i + 3

Figure 3.2: Illustration of the oscillation error based on soft decisions from four consecutive
decoding iterations.

codewords are transmitted using a BPSK modulation and the binary channel bits {0, 1}

are mapped to {1,−1} for transmission over the channel. Thus the positive soft decisions

can be interpreted as correct decisions and the negative decisions as the incorrect ones. An

oscillation error appears to be unstable under the message-passing decoding: the number

of incorrect bits increases to a certain level before it falls in a periodic fashion. Examples

of the bit error counts illustrating the oscillatory behavior are given in Table 3.1.

Absorbing errors behave differently. These errors also start with a small number

43

Table 3.1: Examples of bit error counts in the final 12 iterations of decoding.

Iteration # 189 190 191 192 193 194 195 196 197 198 199 200

Error 1 23 68 137 23 72 143 24 69 136 24 75 121

Error 2 28 61 125 28 60 149 28 61 125 28 60 149

Error 3 28 52 148 28 49 138 28 49 128 27 51 139

of bits that are received incorrectly. But the small number of bits gradually stabilize among

themselves, such that the incorrect bits become more and more incorrect and correct bits

become more and more correct, as illustrated in Fig. 3.3, which appears to be a local

minimum state that absorbs the message-passing algorithm, thus it is called an absorbing

error.

As demonstrated here, hardware emulation provides a convenient replacement for

software simulations. Very low error rate performance of practical LDPC decoders can be

characterized. Iteration-by-iteration soft decision capture further allows the classification

of errors that cause the decoder to fail. Hardware emulation can also be utilized as a step

of an iterative design loop, as shown in Fig. 3.4. The input noise realizations that cause the

decoding errors are captured and plugged in a functionally-equivalent decoder in Matlab to

replicate each failure case. Such a feedback error-replicating simulation, when correlated

with code structure and decoding algorithm, could possibly yield in-depth understanding

of the decoding errors.

3.2 Absorbing Set

Feedback simulation is applied in investigating decoding errors. Oscillation errors

are unstable and can be interpreted as a consequence of the dynamics of quantized message

44

0 512 1024 1536 2048
−30

−20

−10

0

10

20

30

40

50

Bit

S
of

t d
ec

is
io

n

(a) Channel outputs

0 512 1024 1536 2048
−30

−20

−10

0

10

20

30

40

50

Bit

S
of

t d
ec

is
io

n

(b) Iteration 1

0 512 1024 1536 2048
−30

−20

−10

0

10

20

30

40

50

Bit

S
of

t d
ec

is
io

n

(c) Iteration 2

0 512 1024 1536 2048
−30

−20

−10

0

10

20

30

40

50

Bit

S
of

t d
ec

is
io

n

(d) Iteration 3

0 512 1024 1536 2048
−30

−20

−10

0

10

20

30

40

50

Bit

S
of

t d
ec

is
io

n

(e) Iteration 4

0 512 1024 1536 2048
−30

−20

−10

0

10

20

30

40

50

Bit

S
of

t d
ec

is
io

n

(f) Iteration 5

Figure 3.3: Illustration of the process for a message-passing decoder to enter an absorbing
state.

45

Algorithm

Realization

Architecture
Hardware

emulation

Matlab

Simulink
BEE2

FPGA

Replay error traces

Figure 3.4: Hardware emulation being used in a feedback loop.

exchange, while absorbing errors are the local minimum states and can be analyzed exactly.

Absorbing errors turn out to be related to the structure of the code under message-

passing decoding. For simplicity, hard-decision decoding can be used to illustrate the case.

The failure mechanisms of hard-decision and soft decoding are the same in principle as far

as absorbing errors are concerned. The starting point is a small factor graph illustrated

in Fig. 3.5a that is associated with a small LDPC code. Assume the all-zeros code being

transmitted, then all the even parity checks are satisfied. Suppose noise is injected to

the transmitted data, such that a subset of the bits are received incorrectly, e.g., the bits

corresponding to variable nodes v7, v8, and v9 now assume the incorrect value of 1 as

shown in Fig. 3.5b. These incorrectly received bits cause some of the parity checks to be

unsatisfied.

This set of incorrectly received bits constitute an absorbing set, such that all the

variable nodes in the absorbing set assume the incorrect value of 1 and all the variable nodes

outside the absorbing set assume the correct value of 0. With this setup, every incorrect

bit in the absorbing set receives two messages from the satisfied check nodes telling it to

46

00 0 0 0

SS

0 0 0 0000

S S S SS S S

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

c1 c2 c3 c4 c5 c6 c7 c8 c9

(a) All-zeros codeword is transmitted

10 0 0 0

US

O(D): unsatisfied checks

D: absorbing set

1 1 0 0000

S S S SS U U

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

c1 c2 c3 c4 c5 c6 c7 c8 c9

(b) Message-passing decoder is absorbed

10 0 0 0

US

O(D): unsatisfied checks

D: absorbing set

1 1 0 0000

S S S SS U U

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

c1 c2 c3 c4 c5 c6 c7 c8 c9

(c) A cycle in the factor graph

Figure 3.5: Illustration of a (3,3) fully absorbing set.

47

keep the incorrect decision, and it receives one message from the unsatisfied check node

telling it to correct the decision. But two is more than one, and the incorrect bit cannot be

recovered, thus the message-passing decoder is absorbed.

An absorbing set is fundamentally related to the cycles in the factor graph. A cycle

is highlighted in Fig. 3.5c, which connect variable nodes of the absorbing set through some

satisfied check nodes. An absorbing error occurs because the cycle in the graph reinforces

the incorrect bits among themselves.

Absorbing sets [22, 23,77] provide a valuable characterization of absorbing errors.

In order to define an absorbing set, let G = (V, F, E) be the bipartite graph associated with

a parity-check matrix H, such that the set V corresponds to the columns of H, the set F

corresponds to the rows of H, and E = {e(i, j)|H(j, i) = 1}. Such a graph GH is commonly

referred to as the Tanner or factor graph of the parity check matrix H of a code [27, 67].

For a subset D of V , let O(D) be the set of neighboring vertices of D in F with odd degree

with respect to D. With this setup we have the following.

Given an integer pair (a, b), an (a, b) absorbing set is a subset D of V of size a, with

O(D) of size b, and with the property that each element of D has strictly fewer neighbors

in O(D) than in F \O(D). We say that an (a, b) absorbing set D is an (a, b) fully absorbing

set, if in addition, all variable nodes in V \ D have strictly fewer neighbors in O(D) than

in F \ O(D).

Related notions have been previously introduced in the literature in the attempt

to characterize the behavior of the message-passing decoding algorithms when they do

not converge to a codeword, such as stopping sets [19], near-codewords [47], and trapping

48

sets [54]. A fully absorbing set, as defined above, can be understood as a special type of near-

codeword or trapping set, one which is stable under the bit-flipping decoding algorithm [29].

An example of an (a, b) fully absorbing set with a = 3 and b = 3 is given in Fig. 3.5b.

The notion of the absorbing set is being used in this work to resolve the ambiguity

in the definitions of objects for describing the error floors. The original definition of the

trapping set by Richardson is intuitive, but semi-empirical and decoder-dependent. As

a result, three different types of errors could be associated with trapping sets [68]: fixed

patterns, oscillatory patterns, and random-like patterns. Subsequent work defined trapping

set as a fixed point of the decoder [11]. In contrast, the absorbing set is defined as a

combinatorial object, and is decoder independent. Oscillations and random-like errors could

be disassociated from absorbing set errors. The combinatorial definition of absorbing set

only depends on the structure of the Tanner graph, and therefore the relevant absorbing

sets can be systematically enumerated [22, 23]. This exact enumeration of the absorbing

sets under iterative decoding can be viewed as being equivalent to identifying the weight

enumerator polynomial under maximum likelihood decoding. As such, the absorbing sets of

the smallest weight rather than smallest distance codewords determine the performance in

the error floor region. In particular, the count of relevant absorbing sets is a key component

in developing accurate error floor predictions using importance sampling [24].

Trapping sets are defined in [15] and [52] as any length-n bit vector denoted by

a pair (a, b), where a is the Hamming weight of the bit vector and b is the number of

unsatisfied checks. An absorbing set could be understood as a special type of such trapping

set where each variable node is connected to strictly more satisfied than unsatisfied checks.

49

The satisfied versus unsatisfied notion in the absorbing set definition explains how a fully

absorbing set is stable under bit-flipping operations; the implication on practical decoder

designs is significant.

Another related structure is an (a, b) elementary trapping set [15, 52], which is

defined as a trapping set for which all check nodes in the induced subgraph have either

degree one or two, and there are exactly b degree-one check nodes. Here again, the primary

contrast with absorbing sets is the stability of absorbing sets under bit-flipping operations,

implied by their definition. The notion of absorbing set can also be refined further by

imposing restrictions on vertex and check degree profiles, as done, for instance, in Section

3.4.

The definition of absorbing set uses the bit-flipping decoding algorithm, which

is a hard-decision decoding algorithm. The analysis of a soft decoding algorithm is more

involved as the variable node decision is not simply based on comparing number of sat-

isfied versus unsatisfied messages and the prior information also plays a role. The finite

wordlength quantization further complicates the problem. However, the following empirical

observations are made, which will be elaborated in the following sections.

• When the variable nodes in the absorbing set are initialized with very noisy inputs

as prior likelihoods, even a floating-point decoder would be absorbed. Therefore an

absorbing set can be stable under an ideal soft message-passing decoding, and it is

not simply an implementation-induced phenomenon.

• Finite-wordlength soft decoders are non-ideal soft decoders due to the clipping and

quantization effects. Messages tend to saturate after a few iterations (especially at

50

high SNR levels), which causes the degeneration of these soft decoders. In the extreme

case when all the soft messages are saturated to a fixed level, a finite-wordlength soft

decoder becomes a hard-decision decoder and absorbing errors can happen more easily.

3.3 Reed-Solomon-based LDPC Code

The Reed-Solomon based LDPC codes (RS-LDPC) [20] are regular, structured

LDPC codes, with the girth being at least 6. A (γ, ρ)-regular RS-LDPC code is constructed

by γ cosets (with each symbol mapped to a binary symbol location matrix) of a one-

dimensional subcode that is itself based on a codeword of a (ρ, 2, ρ − 1) shortened Reed-

Solomon code of length ρ, dimension 2, and minimum distance ρ−1. The minimum distance

of this code is at least γ + 1 for odd γ and γ + 2 for even γ. The detailed code construction

and properties can be found in [20].

A (6, 32)-regular (2048, 1723) Reed-Solomon-based LDPC code is being investi-

gated by feedback simulation for the possible link between error events and the wordlength

and quantization of the decoder implementation. The error profile of the baseline design is

first characterized. The Matlab reference model of the decoder is then improved by tuning

the wordlength and quantization. The improved design is subsequently mapped to FPGA

for fast emulation and a complete new set of error profiles can be obtained for verification.

The iterative investigation loop is illustrated in Fig. 3.6. This approach allows the errors

to be classified and the design to be improved based on each class of error events.

The RS-LDPC decoder is implemented using wordlengths of 5, 6, 7 bits, following

Q3.2, Q3.3, Q4.2, and Q5.2 uniform quantization schemes. The FER and BER versus

51

Algorithm

Realization

Architecture
Hardware

emulation

Matlab

BEE2

FPGA

wordlength,

quantization,

approximation

error profile

Figure 3.6: Iterative improvement cycle by hardware emulation and feedback simulation.

SNR curves are shown in Fig. 3.7. In all the following experiments, an all-zeros codeword

is transmitted and the sum-product algorithm is employed to decode the codeword. The

final 3 iterations are recorded when the decoder fails to converge to a codeword after 200

iterations. Absorbing errors are observed in cases when the decoder fails to converge and

the hard decisions of all bits remain the same for the final iterations; and oscillation errors

are observed in cases when the decoder fails to converge and the hard decisions of some bits

fluctuate with each iteration. The statistics of the error events are listed in Table 3.2 for

comparison.

3.3.1 Wordlength and Quantization Effects

In the 5-bit Q3.2 fixed-point implementation, most of the errors in the error floor

region display an oscillatory behavior and a small number of absorbing errors caused by

(8, 8) fully absorbing sets. The oscillatory behavior can be attributed to the dynamics of the

message exchange in which a small number of bits propagate incorrect messages through

their neighboring unsatisfied checks. These in turn make some of their other neighboring

52

Table 3.2: Error statistics of (2048,1723) decoder implementations using 200 iterations.

SNR (dB) Errors 5-bit (Q3.2) 6-bit (Q3.3) 6-bit (Q4.2) 7-bit (Q5.2)

5.2

Errors collected1 142 125 94 46

(8,8) absorbing sets 18 117 92 45

Oscillations 116 6 0 0

5.4

Errors collected1 56 49 44 40

(8,8) absorbing sets 8 40 42 37

Oscillations 47 8 0 0

5.6

Errors collected1 51 42 22 33

(8,8) absorbing sets 8 27 20 30

Oscillations 41 12 0 0

5.8

Errors collected1 52 27 14 20

(8,8) absorbing sets 6 18 13 16

Oscillations 44 8 0 0

1 The total number of frames is not uniform for different SNR levels and quantization

choices – more input frames were emulated for higher SNR levels and longer-wordlength

quantizations. The number of errors collected is divided by the total number of frames to

produce the FER plots in Fig. 3.7.

53

2.5 3 3.5 4 4.5 5 5.5 6
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No (dB)

F
E

R
/B

E
R

uncoded BPSK
Q3.2
Q3.3
Q4.2
Q5.2

Figure 3.7: FER (dotted lines) and BER (solid lines) performance of the (2048,1723) RS-
LDPC sum-product decoder with Q3.2, Q3.3, Q4.2, and Q5.2 fixed-point quantization using
200 iterations.

bits admit incorrect values, which are propagated further to more bits. As the number of

incorrect bits increases, so do their neighboring checks, which means that after about two

steps there is a sufficient number of unsatisfied checks to enforce the correct values. As a

result, the total number of incorrect bits decreases again.

Using the 5-bit Q3.2 uniform quantization, reliable (large-valued) prior LLRs out-

side the range [−4, 3.75] are clipped, causing underestimation. Variable nodes with underes-

timated prior LLRs become vulnerable to influence from extrinsic messages. The situation

is aggravated by limited resolution (two fractional bits for a resolution of 0.25). As seen in

Fig. 3.8 for a Q3.2 quantization of the Φ1 function, any input x ≥ 3 produces an output

of 0. In the identical Φ2 function that follows, an input of 0 produces an output of 3.75.

The two back-to-back Φ functions cause saturation (overestimation) of extrinsic messages

54

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

x

Φ
(x

)

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

−0.1

0

0.1

0.2

x

N
um

er
ic

al
 e

rr
or

Ideal Φ function
Discretized Φ function

Figure 3.8: Discretization of the Φ function using a Q3.2 uniform quantization and the
resulting numerical errors.

in [3, 3.5] and clipping (underestimation) of extrinsic messages greater than 4.0.

At high SNR levels where the majority of the prior LLRs are received correctly

with very high reliability, a short wordlength causes excessive clipping of the reliable prior

LLRs. And due to the saturation and clipping effects of the two log-tanh functions, both

reliable and some less reliable messages are clipped or saturated to a fixed level. Even some

weakly incorrect extrinsic messages are capable of exerting the same magnitude of influence

as very strongly correct extrinsic messages and priors, which necessarily encourages error

propagation and the oscillation errors become more likely.

A 6-bit wordlength allows one more bit for quantization. The extra bit can be

allocated either to resolution or range increase. An increased resolution reduces the over-

estimation error of less reliable extrinsic messages and limits error propagation. This is

55

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

x

Φ
(x

)

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.1

−0.05

0

0.05

0.1

x

N
um

er
ic

al
 e

rr
or

Ideal Φ function
Discretized Φ function

Figure 3.9: Discretization of the Φ function using a Q3.3 uniform quantization and the
resulting numerical errors.

demonstrated by the Q3.3 quantization shown in Fig. 3.9. The majority of the errors in

the Q3.3 decoder are due to (8, 8) fully absorbing sets and only a small number of errors are

due to oscillations. Alternatively, the extra bit can be allocated for range, as in a Q4.2 im-

plementation. A higher range allows reliable prior LLRs to obtain stronger representations,

thus stabilizing the respective variable nodes to prevent oscillations.

The 7-bit Q5.2 implementation further improves the error floor performance. All

errors collected in Q4.2 and Q5.2 implementations are absorbing errors, and the overwhelm-

ing majority of which exhibit the (8, 8) absorbing set structure.

56

satisfied check

unsatisfied check

incorrect bit

Figure 3.10: Illustration of the subgraph induced by the incorrect bits in an (8,8) fully
absorbing set.

3.3.2 Absorbing Set Characterization

As previously discussed, almost all encountered absorbing set errors are of (8, 8)

type, all of which are fully absorbing. They share the same structure in which these eight

variable nodes participate in a total of twenty-eight checks. Of these, twenty checks are

connected with degree-two to the eight variable nodes. Since the girth of the code is at

least six [20], these variable node pairs are all different. The remaining eight checks are

each connected to a different variable node in the absorbing set. The illustration of such

configuration is provided in Fig. 3.10. Although only a subgraph is drawn, all the (8, 8)

sets are indeed fully absorbing sets. The validity of the (8, 8) absorbing error is also verified

experimentally by simulating a floating-point decoder for channel realizations with very

noisy inputs in precisely eight bits that constitute an absorbing set, and observing that

even the floating-point decoder cannot successfully decode such realizations.

Even though this special (8, 8) configuration is intrinsic to the code, and hence

implementation-independent, its effect on BER is highly implementation-dependent. In

particular, when the wordlength is finite, the effect of the absorbing sets can be exacerbated.

This effect is demonstrated in the difference between the performance of the Q4.2 and Q5.2

57

decoders in the error floor region, whereby in the former case the number of absorbing set

failures is higher, leading to a relatively higher error floor.

3.3.3 Finite Number of Decoding Iterations

The number of decoding iterations is usually limited in practice, as it determines

the latency and throughput of the system. In the practical high-throughput implemen-

tations, the maximum number of iterations for the LDPC decoder is limited to less than

ten.

Fig. 3.1 shows that a good performance in the waterfall region can be achieved

with as few as ten iterations. The loss in performance in the waterfall region is due to an

insufficient number of iterations for the decoding to converge. The ten-iteration BER curve

eventually overlaps with the 200-iteration in the error floor region. Analysis of the failures

in this region confirms that the (8, 8) fully absorbing set, the dominant cause of error floors

in the 200-iteration decoder, causes the ten-iteration decoder to fail as well. This result

suggests that in the high SNR region, the absorbing process usually happens very quickly

and the absorbing structure emerges in full strength within a small number of decoding

iterations. Non-convergent errors, however, become negligible in the error floor region.

3.4 Array-based LDPC code

Array-based LDPC codes [26] are regular LDPC codes parameterized by a pair of

integers (p, γ), where γ ≤ p, p is an odd prime. The H matrix (Hp,γ) is given by

58

Hp,γ =

I I I · · · I

I σ σ2 · · · σp−1

I σ2 σ4 · · · σ2(p−1)

...
...

...
. . .

...

I σγ−1 σ(γ−1)2 · · · σ(γ−1)(p−1)

where σ denotes a p × p permutation matrix of the form

σ =

0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0

To demonstrate the applicability of hardware emulation approach in identifying

potentially important results, the finite-wordlength decoders of a (5, 47)-regular (2209, 1978)

array-based LDPC code is studied [80]. The class of array-based LDPC codes is known to

perform well under iterative decoding [26]. The H matrix of this code can be partitioned

into 5 row groups and 47 column groups of 47×47 permutation submatrices. Note that the

regular structure of the H matrix is well suited for the emulation platform. The following

experiments are performed with the wordlength fixed to 6 bits. Unless specified otherwise,

a maximum of 200 decoding iterations is allowed so as to isolate the quantization effect from

the iteration number effect. Using a Q4.2 quantization in a sum-product decoder yields the

results shown in Fig. 3.11.

59

3 3.5 4 4.5 5 5.5 6 6.5
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No (dB)

F
E

R
/B

E
R

uncoded BPSK
SPA Q4.2

Figure 3.11: FER (dotted lines) and BER (solid lines) performance of a (2209,1978) array-
based LDPC code using 200 decoding iterations.

Based on our emulation results, the failures in the error floor region are entirely

due to absorbing sets. The statistics of the frequently observed absorbing sets are listed in

Table 3.3. The structure of the dominant (4, 8) absorbing set is illustrated in Fig. 3.12. To

facilitate further discussions, the notation (p : q) is introduced to describe the connectivity of

a variable node with p connections to satisfied check nodes and q connections to unsatisfied

check nodes. In the (4, 8) absorbing set, each variable node in the absorbing set has a

(3 : 2) connection. All the other absorbing sets listed in Table 3.3 contain variable nodes

with (4 : 1) and (5 : 0) connections.

Variable node decisions are based on both the extrinsic information and the prior

information, as in equation (2.6). Numerical representations of extrinsic and prior informa-

tion affect the dynamics of the message-passing algorithm. Two types of tradeoffs can be

60

Table 3.3: Absorbing set profile of (2209,1978) Q4.2 sum-product decoder implementations.

Sat level1 SNR (dB) Errors collected2 (4,8) (5,9) (6,8) (7,9) (8,6) (8,8) (9,5)

3.5

5.4 185 50 22 34 17 9 13 2

5.6 121 39 12 36 9 8 4

5.8 104 50 15 11 6 1

6.0 50 32 5 5 4

4.0

5.6 247 65 12 56 22 24 20 4

5.8 191 83 20 35 17 6 3 2

6.0 91 68 4 12 2 3

6.2 36 25 4 3 3 1

4.5

5.8 111 38 3 30 7 8 4 4

6.0 70 38 12 5 6 1 2

6.2 24 19 2 1 1

1 Saturation level of the Φ2 function.

2 The total number of frames is not uniform for different SNR levels, quantization, and

algorithm choices. The number of errors collected is divided by the total number of

frames to produce the FER plots in Fig. 3.13.

satisfied check

unsatisfied check

incorrect bit

Figure 3.12: Illustration of the (4,8) absorbing set.

61

made, how to weigh extrinsic information versus prior information, and how to differentiate

extrinsic messages among themselves. The following experiments are performed to explore

these tradeoffs while keeping the wordlength constant to maintain the implementation com-

plexity.

3.4.1 Strength of Extrinsic Messages

The clipping level of extrinsic messages determines the strength of the most reliable

extrinsic messages. Adjusting the clipping level of extrinsic messages affects the weight of

extrinsic information compared to the prior information – a lower clipping level underweights

the extrinsic information and vice versa.

In a sum-product decoder, extrinsic messages are simply the outputs of the Φ2

function. Moving the saturation level of the Φ2 function (i.e., Φ2(0)) adjusts the strength

of the most confident extrinsic messages. Fig. 3.13 shows that stronger extrinsic messages

lower the error floor but worsen the performance in the waterfall region.

This observation can be intuitively explained as strong extrinsic messages permit-

ting stronger extrinsic effect on the variable node decisions. The extrinsic effect can be

favorable – the correct bits exert strong influences on the incorrectly-received bits, and the

effect can be unfavorable – the incorrectly-received bits exert strong influences on the cor-

rect bits. The SNR level determines whether the favorable influences overpower the adverse

influences or the opposite. In a low-SNR waterfall region, more bits are received incorrectly.

A large number of strong adverse influences tend to encourage excessive error propagation,

which prevents the convergence. At a high SNR level, very few bits are received incor-

rectly. Strong extrinsic messages allow the favorable influences to significantly outnumber

62

3 3.5 4 4.5 5 5.5 6 6.5
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No (dB)

F
E

R
/B

E
R

uncoded BPSK
sat level = 3.5
sat level = 4.0
sat level = 4.5

Figure 3.13: The effect of adjusting the strength of extrinsic messages in a Q4.2 uniform
quantized sum-product decoder implementation using 200 decoding iterations.

and overpower the adverse influences, which makes it more difficult to enter an absorbing

state.

The above describes the average behavior of a message-passing decoder. An

absorbing set is a special configuration at the high SNR level where seemingly satisfied

checks gather enough adverse influences that outnumber the favorable influences, therefore

strengthening extrinsic messages uniformly is not likely to change an absorbing configura-

tion. This conjecture is verified by strengthening the extrinsic messages and observe the

failure cases in the error floor region. Partial lists of the absorbing sets are shown in Table

3.3. The (4, 8) absorbing set remains the dominant cause of error floors when the extrinsic

messages are strengthened.

Increasing the weight of extrinsic messages slows down the convergence speed, as

63

3 3.5 4 4.5 5 5.5 6 6.5
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No (dB)

F
E

R
/B

E
R

uncoded BPSK
sat level = 3.5
sat level = 4.0
sat level = 4.5

Figure 3.14: The effect of adjusting the strength of extrinsic messages in a Q4.2 uniform
quantized sum-product decoder implementation using 10 decoding iterations.

evidenced in Fig. 3.14. If very few decoding iterations are permitted, the performance gap

between various decoders appears to be more significant in the waterfall region.

3.4.2 Differentiation among Extrinsic Messages

As the decoder starts to converge, the variable-to-check messages usually grow

larger, as their certainty increases. In this regime, the sum-product decoder is essentially

operating on the lower right corner of the Φ1 curve and subsequently on the upper left corner

of the Φ2 curve as highlighted in Fig. 3.15. These corners are referred to as the operating

regions of the Φ1 and Φ2 functions. A more accurate representation of extrinsic messages

requires more output levels of the Φ2 function in its operating region, which also necessitates

high-resolution inputs to the Φ2 function. These requirements can be both satisfied if the

64

Quantization

Domain A

Quantization

Domain B

L
pr

 1 (function)

!

L(qij)

Channel

output

Variable-to-check

messages

…
...

 2 (
-1

function)

L(rij)

!

…
...

Check-to-variable

messages

Extrinsic

messages

Extrinsic

message

Prior

Initialize

L
ext

L
ps

Variable-to-check

messages from

adjacent nodes

Figure 3.15: A sum-product decoder with two quantization domains (the operating regions
of Φ1 and Φ2 functions are circled).

quantization scheme is designed to have two quantization domains illustrated in Fig. 3.15.

For instance, suppose that Domain A uses a Q4.2 quantization whereas Domain B uses a

quantization with a higher resolution, such as a Q1.5 quantization. The 6-bit wordlength

is preserved to maintain the same implementation complexity. The functions Φ1 and Φ2

separate the two domains. The input to Φ1 is in a Q3.2 quantization and the output of Φ1

is in a Q0.5 quantization. The Φ2 function assumes the opposite quantization assignment.

This scheme is referred to as dual quantization, since the quantization levels are tailored to

the operating region within each domain. There is no increase in hardware complexity for

implementing this scheme.

In a Q4.2/1.5 dual quantization scheme, the discretization of two Φ functions are

shown in Fig. 3.16a and 3.16b. Note that the numerical error incurred is small in the

operating regions of the Φ1 function (lower right corner) and the Φ2 function (upper left

corner).

Fig. 3.17 shows that the Q4.2/1.5 dual quantization results in better performance

65

0 1 2 3 4 5 6 7 8
0

2

4

6

x [Q3.2]

Φ
(x

)
[Q

0.
5]

0 1 2 3 4 5 6 7 8
−0.02

−0.01

0

0.01

0.02

x [Q3.2]

N
um

er
ic

al
 e

rr
or

Ideal Φ function
Discretized Φ function

(a) Discretization of Φ1 function

0 0.2 0.4 0.6 0.8 1
0

2

4

6

x [Q0.5]

Φ
(x

)
[Q

3.
2]

Ideal Φ function
Discretized Φ function

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

x [Q0.5]

N
um

er
ic

al
 e

rr
or

(b) Discretization of Φ2 function

Figure 3.16: Discretization of log-tanh functions.

66

3 3.5 4 4.5 5 5.5 6 6.5
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No (dB)

F
E

R
/B

E
R

uncoded BPSK
SPA Q4.2
SPA Q4.2/1.5
SPA Q6.0/1.5

Figure 3.17: FER (dotted lines) and BER (solid lines) performance of a (2209,1978) array-
based LDPC code using 200 decoding iterations.

than the Q4.2 quantization in both the waterfall and the error floor regions. The per-

formance advantage of the Q4.2/1.5 dual quantization is attributed to more levels in the

operating regions of the Φ1 and Φ2 functions, which enable a more accurate representation

of the extrinsic messages. Reliable extrinsic messages could potentially obtain a stronger

representation than the less reliable extrinsic messages, so that the error propagation is

limited and the absorbing set errors become less likely.

The (4, 8) and (5, 9) absorbing sets, observed in the Q4.2 quantization, are much

less frequent when decoding using the dual quantization scheme, and the error floor is now

dominated by (6, 8) and (8, 6) absorbing sets as shown in Table 3.4. All of the collected (6, 8)

and (8, 6) sets are fully absorbing, with configurations illustrated in Fig. 3.18a and 3.18b.

The (6, 8) absorbing set consists of two variable nodes with (3 : 2) connections and four

67

satisfied check

unsatisfied check

incorrect bit

(a)

(b)

Figure 3.18: Illustration of (a) the (6,8) absorbing set, and (b) the (8,6) absorbing set.

variable nodes with (4 : 1) connections. The (8, 6) absorbing set consists of only variable

nodes with (4 : 1) and (5 : 0) connections. Both the (4 : 1) and the (5 : 0) configurations

are more stable as absorbing sets than the (3 : 2) configuration, for which reason the (6, 8)

and (8, 6) absorbing sets are considered stronger than the (4, 8) absorbing set.

3.4.3 Representation of Channel Likelihoods

For practical SNR levels, a Q4.2 quantization scheme does not offer enough range

to capture the input signal distribution. Moreover, it clips correct priors and incorrect priors

disproportionately. By selecting a Q6.0 quantization in Domain A, an increased input range

is accepted, which permits correct priors to assume stronger values without being clipped

excessively. Variable nodes backed by stronger correct priors cannot be easily attracted to

68

Table 3.4: Absorbing set profile of (2209,1978) decoder implementations.

Algorithm & Quantization SNR (dB) Errors collected (4,8) (5,9) (6,8) (7,9) (8,6) (8,8) (9,5) (10,4) (10,6)

SPA Q4.2 (sat level = 3.5)

5.4 185 50 22 34 17 9 13 2

5.6 121 39 12 36 9 8 4

5.8 104 50 15 11 6 1

6.0 50 32 5 5 4

SPA Q4.2/1.5

5.4 149 16 3 57 9 17 4 3

5.6 87 21 5 33 8 7 2

5.8 42 1 6 2 15 8 2 2 2

6.0 21 2 8 7 2 1

SPA Q6.0/1.5

5.4 133 1 28 7 16 12 3 1 1

5.6 66 1 29 5 12 12

5.8 38 17 2 7 6 1 1

6.0 13 9 2 1

ASPA Q4.2

5.6 221 2 91 5 36 14 7

5.8 59 1 30 1 13 3

6.0 22 15 1 3 1

ASPA β=1 Q4.2

5.4 307 6 2 143 17 38 16 12

5.6 243 6 2 122 13 40 16 9

5.8 58 1 35 1 8 4 2

6.0 18 2 9 3 2 1

69

3 3.5 4 4.5 5 5.5 6 6.5
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No (dB)

F
E

R
/B

E
R

uncoded BPSK
SPA Q4.2
SPA Q4.2/1.5
SPA Q6.0/1.5

Figure 3.19: FER (dotted lines) and BER (solid lines) performance of a (2209,1978) array-
based LDPC code using 10 decoding iterations.

an absorbing set, thus the probability of absorbing set errors is reduced. Statistics in Table

3.4 show that the (6, 8) and (8, 6) sets remain to be dominant. The error floor performance

of the Q6.0/1.5 dually-quantized decoder improves by at least a factor of two over the

Q4.2/1.5 performance.

The dual quantization scheme allows the extrinsic messages and prior messages

to differentiate among themselves by assuming more accurate representations. Compared

to the previous approach of uniformly increasing the weight of extrinsic messages versus

the weight of prior message, the dual quantization scheme achieves a better performance

without sacrificing convergence speed. Fig. 3.19 shows that the dually-quantized decoders

perform better in both the waterfall region and the error floor region in as few as 10 decoding

iterations.

70

3 3.5 4 4.5 5 5.5 6 6.5
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No (dB)

F
E

R
/B

E
R

uncoded BPSK
SPA Q4.2
ASPA Q4.2
ASPA Q4.2, β=1

Figure 3.20: FER (dotted lines) and BER (solid lines) performance of ASPA decoders of
(2209,1978) array-based LDPC code using 200 decoding iterations.

3.4.4 Approximate Sum-product Decoding

By using the approximate sum-product algorithm (2.8) to bypass Φ1, summation,

and Φ2 altogether, saturation and quantization errors incurred in the log-tanh processing

are eliminated. The Q4.2 sum-product decoder of the (2209, 1978) array-based LDPC code

is simplified using the approximation (2.8). The performance of the Q4.2 ASPA decoder

is illustrated along with its sum-product counterpart in Fig. 3.20. In the waterfall region,

the ASPA decoder incurs nearly 0.2 dB of performance loss due to overestimation errors;

however, it performs better in the error floor region. The error floor is dominated by (8, 6)

and (9, 5) fully absorbing sets, which both consist of only variable nodes with (4 : 1) and

(5 : 0) connections. Lower-weight weak absorbing sets (4, 8) and (5, 9) are eliminated and

even instances of (6, 8) and (7, 9) absorbing sets are reduced, as evidenced in Table 3.4.

71

The lackluster error floor performance of a conventional sum-product decoder com-

pared to an ASPA decoder is largely due to the estimation of the two log-tanh functions.

As in the case of the oscillatory behavior, a finite-wordlength quantization of the log-tanh

functions causes underestimations of reliable messages and overestimations of unreliable

messages. As a result, the reliability information is essentially lost, and soft decoding

degenerates to a type of hard-decision decoding where the decisions are based entirely on

majority counting. Such a decoding algorithm is susceptible to weak absorbing sets because

it disregards the reliability information. In contrast, the approximate sum-product algo-

rithm is better in maintaining the reliability information, so that it is not easily attracted

to weak absorbing sets.

The ASPA decoder can be improved using a correction term [9]. An offset of β = 1

is selected to optimize the decoder performance. Such a decoder is implemented as in Fig.

3.21. The performance of the offset-corrected decoder is illustrated in Fig. 3.20, where both

the waterfall and the error floor performance are improved. The absorbing set profile shows

that the (8, 6) and (9, 5) fully absorbing sets determine the error floor.

With reduced iteration count, the ASPA decoder incurs almost 0.5 dB of perfor-

mance loss. However, the loss can be easily compensated after applying the offset correction

to reduce the overestimation of extrinsic messages. In ten iterations, the performance of

the offset-corrected ASPA decoder easily surpasses the sum-product decoder as shown in

Fig. 3.22.

72

L
pr

min

L(qij)

Channel

output

Variable-to-check

messages

…
...

L(rij)

…
...

Check-to-variable

messages

Extrinsic

messages

Extrinsic

message

Prior

Initialize

L
ps

L
ext

Variable-to-check

messages from

adjacent nodes

–

Figure 3.21: An ASPA decoder with offset correction.

3 3.5 4 4.5 5 5.5 6 6.5
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No (dB)

F
E

R
/B

E
R

uncoded BPSK
SPA Q4.2
ASPA Q4.2
ASPA Q4.2, β=1

Figure 3.22: FER (dotted lines) and BER (solid lines) performance of ASPA decoders of
(2209,1978) array-based LDPC code using 10 decoding iterations.

73

3.4.5 Dominant Absorbing Sets

In previous discussions of the (2209, 1978) array-based LDPC code, the config-

urations of (4, 8), (6, 8), (8, 6), and (9, 5) fully absorbing sets have been described. Two

simple ways to characterize these sets are by weight and by stability. Everything else be-

ing equal, low-weight absorbing sets appear much more frequently when decoding fails.

This phenomenon is more pronounced in higher SNR levels. The stability of an absorbing

set is related to the structure of the set and the connectivity of the factor graph. In the

(2209, 1978) array-based LDPC code, the (8, 6) and (9, 5) absorbing sets are stronger or

more stable, as it is more difficult to escape such absorbing configurations. In general, the

ratio a/b provides clues to how stable an (a, b) absorbing set is – the higher the a/b ratio,

the more stable the (a, b) absorbing set. Low-weight absorbing sets and strong absorbing

sets are of greater importance because they dominate the error floors.

In suboptimal decoder implementations where severe message saturations can oc-

cur, such as the Q4.2 sum-product implementation, the performance is dictated by low-

weight weak absorbing sets, which lead to an elevated error floor. The implementations

can be improved using the dual quantization or the approximate sum-product algorithm to

reduce the adverse effects of message saturation and quantization. However, the underlying

message-passing algorithm is a local algorithm when operating on graphs containing cycles.

Despite a lower error floor achieved with these improved approaches, the floor still remains

and it is eventually defined by the strong absorbing sets.

74

Chapter 4

Reweighted Message Passing

Similar to the array-based LDPC code, the low error rate performance of the

RS-LDPC code can be improved using the ASPA decoder with offset correction. The per-

formance of the offset ASPA decoder is superior to the SPA decoder of the same wordlength,

as shown in Fig. 4.1. Despite the extra coding gain and lower error rate performance of

the offset ASPA decoder, the error floor emerges at a BER level of 10−11, which still ren-

ders this implementation unacceptable for 10GBASE-T Ethernet that requires an error-free

operation down to the BER level of 10−12 [36]. The (8, 8) fully absorbing set discussed in

Section 3.3 underpins the error floors of both the SPA decoder and the offset ASPA decoder

of the (2048, 1723) RS-LDPC code.

Brute-force performance improvement requires an even longer wordlength, though

the performance gain with each additional bit of wordlength diminishes as the wordlength

increases over 6 bits. Alternative decoding algorithms have been proposed in literature, such

as scaled decoder [14], averaged decoder [14, 41], and reordered decoding schedules [6, 59].

75

2.5 3 3.5 4 4.5 5 5.5
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No (dB)

F
E

R
/B

E
R

uncoded BPSK
SPA Q4.2
ASPA β=1 Q5.1

Figure 4.1: FER (dotted lines) and BER (solid lines) performance of a (2048,1723) RS-
LDPC code using 20 decoding iterations.

A scaled decoder is a form of the sum-product decoder with check-to-variable messages

scaled down by a factor [14]. Empirical evidence shows an improvement of the error floor

by an appropriate choice of the scaling factor. An averaged decoder improves the decoder

performance at high SNR levels by averaging the messages over multiple iterations to slow

down the convergence to a trapping state [41]. The scheme is based on a heuristic indicator

of the emergence of error traps as a sudden magnitude change in the values of certain

variable messages. Another heuristic approach is an “informed” decoder that processes

messages in the order of the largest residuals, defined as the magnitude change of check-

to-variable messages between consecutive iterations [6]. This informed schedule accelerates

the updates of low-reliability variable nodes and it was conjectured that this schedule would

target the variable nodes that belong to the trapping set. Alternatively, the messages can

76

be processed in the order of the most reliable check nodes [59]. The idea is to reinforce the

decoder with the reliable data before processing the less reliable ones.

The common drawback of all the above approaches is that they are formulated

without regard to the error structure, therefore they are only capable of improving the

average behavior of the decoder and the effect on error floor is not significant. Further

improvement should rely on adapting the message-passing algorithm to combat the effect

due to absorbing sets. In [31], Han and Ryan proposed a bi-mode decoder – in the first

mode, the regular sum-product decoding is performed for the decoder to reach the point

of failure, then it switches to the second mode for post-processing, which is activated only

when the syndrome weight of the error matches the set of syndrome weights of the target

trapping sets or oscillating sets. Post-processing is carried out in two steps: 1) starting

from the unsatisfied check nodes as roots, the set of the variable node neighbors are flagged

as erasures, 2) iterative erasure decoding is performed to resolve the erasures. The bi-mode

decoder works remarkably well when the erasure set contains no stopping set [19], such as a

regular (3, 6) rate-1/2 (2640, 1320) Margulis code [47,58] and a rate-0.3 (640, 192) QC code

designed using the approaches outlined in [34, 63]. However, the erasure set can be large

for some codes (due to a large number of unsatisfied checks and a high check node degree),

and the bi-mode erasure decoding cannot avoid running into stopping sets. An example is

the (2048, 1723) RS-LDPC code under consideration, where the size of the erasure set is

256 with respect to the errors caused by the dominant (8, 8) absorbing set.

The bi-mode erasure decoding algorithm can be improved. An algorithm im-

provement loop is formulated as shown in Fig. 4.2, relying on the hardware emulation

77

Algorithm

Realization

Architecture
Hardware

emulation

Matlab

BEE2

FPGA

error

structure

improved

algorithm

Simulink

Figure 4.2: Algorithm improvement based on hardware emulation.

infrastructure and feedback simulations. The statistics of the error-inducing channel out-

puts collected through hardware emulations are of the most interest as they shed light on

certain “weaknesses” of the absorbing error mechanism. An improved algorithm is designed

to exploit the weaknesses.

Whenever an (8, 8) absorbing error occurs, the emulation system records the prior

LLRs causing the error. Averaged over a large number of errors, the distribution of prior

LLRs of the variable nodes that belong to the absorbing set can be captured, as illustrated

for four different SNR levels in Fig. 4.3. In these plots, the y-axis shows the average number

of bits in the (8, 8) absorbing set that assume each of the prior LLR value displayed on the

x-axis. The center lobe of the distribution concentrates in the moderate tail region (LLR

values in [−4, 0]), confirming that absorbing errors are mostly due to noise moderately out

in the tail rather than noise values in the extreme tails.

78

<=−8 −6 −4 −2 0 2 4 6 >= 7
0

0.2

0.4

0.6

0.8

1

Prior LLR

A
ve

ra
ge

 n
um

be
r

of
 b

its

(a) SNR = 4.6 dB (averaged over 45 samples)

<=−8 −6 −4 −2 0 2 4 6 >= 7
0

0.2

0.4

0.6

0.8

1

Prior LLR

A
ve

ra
ge

 n
um

be
r

of
 b

its

(b) SNR = 4.8 dB (averaged over 59 samples)

<=−8 −6 −4 −2 0 2 4 6 >= 7
0

0.2

0.4

0.6

0.8

1

Prior LLR

A
ve

ra
ge

 n
um

be
r

of
 b

its

(c) SNR = 4.9 dB (averaged over 63 samples)

<=−8 −6 −4 −2 0 2 4 6 >= 7
0

0.2

0.4

0.6

0.8

1

Prior LLR

A
ve

ra
ge

 n
um

be
r

of
 b

its

(d) SNR = 5.0 dB (averaged over 63 samples)

Figure 4.3: Prior LLR distribution of the bits that belong to the (8,8) absorbing set. Results
are based on a Q4.0 offset ASPA decoder of the (2048,1723) RS-LDPC code.

79

4.1 Message Biasing

A post-processing method is described below, based on the combinatorial structure

of the absorbing set. In the following discussion, it is assumed that the all-zeros codewords

are used in transmission. Using the LLR definition in (2.1) and the hard decision rule

in (2.7), the prior LLRs are nonnegative if received correctly, and the posterior LLRs are

nonnegative if decoded correctly.

For simplicity, a (3, 3) absorbing set is used for illustration shown in Fig. 3.5b,

where each bit in the absorbing set is connected to two satisfied checks (these checks are

falsely satisfied because their neighboring bits are not all correct) and one unsatisfied check.

The message from the unsatisfied check attempts to correct the wrong bit decision, as

opposed to the messages from two falsely satisfied checks that reinforce the wrong bit

decision.

An intuitive way in which to escape this absorbing state is to perform the following

type of post-processing: reduce the reliability of the messages from falsely satisfied checks,

and increase the reliability of the message from the unsatisfied check. This selective biasing

method alleviates the joint effect of a large number of incorrect messages. As an illustration,

consider Fig. 4.4, where variable node v7(v7 ∈ D) is connected to falsely satisfied checks c4

and c5, as well as unsatisfied check c7. We selectively bias messages L(rv7c4) and L(rv7c5)

by reducing their reliabilities and bias the message L(rv7c7) by increasing its reliability, so

that L(rv7c7) reduces (or overcomes) the joint effect of L(rv7c4) and L(rv7c5), thus reversing

the wrong decision at v7.

Despite the simplicity of this approach, its exact form is not implementable because

80

10 0 0 0

US

O(D): unsatisfied

checks

D: absorbing set

1 1 0 0000

S S S SS U U

E(D): falsely

satisfied checks

S(D): satisfied checks

N(D): neighborhood set

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 4.4: Illustration of a (3,3) fully absorbing set with falsely satisfied checks and neigh-
borhood set labeled.

the falsely satisfied checks cannot be separated from the correctly satisfied checks in a

message-passing decoding process, and the post-processor needs to be further refined.

4.1.1 Relaxed Selectivity

Following the absorbing set definition in Section 3.1, let E(D) be the set of neigh-

boring vertices of D in F with even degree with respect to D. Let the neighborhood set

N(D) be the set of neighboring variable nodes to the unsatisfied checks in O(D). Let S(D)

be the set of neighboring satisfied check nodes to the variable nodes in N(D). Then S(D)

is composed of both the set of falsely satisfied checks E(D) and the set of correctly satisfied

checks. The example (3, 3) absorbing set is annotated and shown in Fig. 4.4.

The set of unsatisfied checks O(D) can be identified in each iteration of message-

passing decoding, but no knowledge of the absorbing set D can be inferred besides that D is

81

10 0 0 0

US

O(D): unsatisfied

checks

D: absorbing set

1 1 0 0000

S S S SS U U

E(D): falsely

satisfied checks

S(D): satisfied checks

N(D): neighborhood set

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

c1 c2 c3 c4 c5 c6 c7 c8 c9

Figure 4.5: Perturbation is introduced by biasing the messages. (Thick blue lines indicate
strengthened messages from check nodes to variable nodes and black lines indicate weakened
messages from check nodes to variable nodes.)

a subset of N(D). Thus we relax the selectivity and increase the reliabilities of all messages

from check nodes in O(D) to variable nodes in N(D) and decrease the reliabilities of all

messages from check nodes in S(D) to variable nodes in N(D). As a result, in the (3, 3)

absorbing set illustrated in Fig. 4.4, each bit in D receives two weak messages from falsely

satisfied checks and one strong message from the unsatisfied check, easing the absorbing

state as expected. However, the relaxed selectivity causes each (correct) bit in N(D) \ D

to receive one strong message from the unsatisfied check and two weak messages from the

satisfied checks as shown in Fig. 4.5. The side effect is undesired, as it can cause the correct

bits to reverse their values.

The biasing of the reliabilities needs to be carefully tuned, so that the incorrect bits

within the absorbing set can be corrected, while the negative side effects are minimized.

Two scenarios are depicted: for a bit in an absorbing set, e.g. v7 ∈ D, and for a bit

82

in the neighborhood set but outside of the absorbing set, e.g. v6 ∈ N(D) \ D. The

posterior LLRs of bits v7 and v6 are computed as in (4.1) and (4.2). The “+” and “−”

signs indicate strengthened and weakened reliabilities. Assume uniform strengthening and

weakening, referring to uniformly increase reliabilities to a fixed level, Lstrong, in performing

strengthening, and uniformly reduce reliabilities to a fixed level, Lweak, when performing

weakening. Then the sum of extrinsic messages received at v7 and v6 are equal in magnitude

but opposite in sign.

Lps(v7) = L−(rv7c4) + L−(rv7c5) + L+(rv7c7) + Lpr(v7)

= (Lstrong − 2Lweak) + Lpr(v7). (4.1)

Lps(v6) = L−(rv6c3) + L−(rv6c6) + L+(rv6c9) + Lpr(v6)

= −(Lstrong − 2Lweak) + Lpr(v6). (4.2)

Let the biasing offset ǫ = Lstrong − 2Lweak. Selecting a larger positive offset ǫ

helps recovering the bits in the absorbing set, but also spreads more errors to the correct

bits in the neighborhood set. An optimal selection of the ǫ value should be preferably small

enough to control the spreading of errors to the correct bits while still capable of correcting

the absorbing set errors. The selection criteria can be determined based on the prior LLRs.

4.1.2 Two-step Decoding

In the following, the above analysis is reformulated for the (8, 8) absorbing set that

dominates the error floor performance of the (2048, 1723) RS-LDPC code. The cardinality

83

Message-

passing

decoding

Yes

Successfully

decoded

No
Message

biasing

Follow-up

message

passing

Absorbing-set errors

resolved

Higher-weight

errors, undetected

errors

Post-processor

Converge?

Converge?

Yes

No

Figure 4.6: A two-step decoder composed of a regular decoder and a post-processor.

of the neighborhood set N(D) is 256. Each bit in N(D) is connected to five satisfied checks

and one unsatisfied check. The following decoding steps are performed:

1. Regular message-passing decoding

Run for a fixed number of iterations. If decoding fails to converge, continue with the

next step.

2. Post-processing

(a) Message biasing: apply uniform strengthening to all messages from check nodes

in O(D) to variable nodes in N(D) and uniform weakening to all messages from

check nodes in S(D) to variable nodes in N(D).

(b) Follow up with a small number of iterations of regular message-passing decoding

until post-processing converges or declare failure.

The flow chart describing the above steps is illustrated in Fig. 4.6.

84

The offset ǫ can be defined as ǫ = Lstrong − 5Lweak with respect to the (8, 8)

absorbing set, because each bit in the absorbing set is connected to five satisfied checks and

one unsatisfied check. By hardware emulation, 114 (8, 8) absorbing set errors have been

recorded together with the associated prior LLRs at an SNR level of 4.8 dB. The prior LLR

distribution of bits belonging to the absorbing set D and bits belonging to the set N(D)\D

are shown in Fig. 4.7a and 4.7b.

Based on Fig. 4.7a, the prior LLRs of over half of the bits in the (8, 8) absorbing

sets are greater than −1; thus setting ǫ = 1, for instance, solves at least half of the errors

and weakens the rest. Fig. 4.7b shows that the prior LLRs of the overwhelming majority

of the bits in N(D) \ D are very positive. Setting ǫ = 1 causes only 2.2% of the bits

in N(D) \ D (5 to 6 bits on average) to reverse their values and the remaining bits in

N(D) \ D are stable. Therefore, it is possible to select a small offset value ǫ to correct at

least a reasonable fraction of the incorrect bits in the absorbing set, and affect negatively

only a few correct bits.

After message biasing is applied, we follow up with a few more iterations of reg-

ular message-passing decoding to further break up the absorbing set and recover the few

incorrectly flipped bits. An absorbing set usually collapses quickly after a fraction of bits

in the absorbing set are corrected and the rest of the bits are weakened – the reinforce-

ments between the bits of the absorbing set are significantly reduced and the absorbing set

structure is resolved in a domino fashion.

85

<=−8 −6 −4 −2 0 2 4 6 >= 7
0

0.2

0.4

0.6

0.8

1

Prior LLR

A
ve

ra
ge

 n
um

be
r

of
 b

its

(a) Prior LLR distribution of bits in D, |D| = 8

<=−8 −6 −4 −2 0 2 4 6 >= 7
10

−2

10
−1

10
0

10
1

10
2

10
3

Prior LLR

A
ve

ra
ge

 n
um

be
r

of
 b

its

(b) Prior LLR distribution of bits in N(D) \ D,

|N(D) \ D| = 248

Figure 4.7: Prior LLR distribution based on 114 (8,8) absorbing error traces. Results are
obtained using a Q4.0 offset ASPA decoder of the (2048,1723) RS-LDPC code at SNR =
4.8 dB.

4.1.3 Offset Selection

Messages are often saturated after just a few decoding iterations, and the strength-

ening operation in post-processing is not necessary as the messages have reached the max-

imum reliability by the time post-processing starts. Since only the weakening operation is

needed, the offset can be reformulated as ǫ ≈ Lmax−5Lweak, where Lmax corresponds to the

maximum value that the quantization allows. In a Q4.0 uniform quantization, Lmax = 7.

Setting Lweak = {0, 1, 2} yields ǫ ≈ {7, 2,−3}. The iteration-by-iteration illustration of

the soft decisions during post-processing are shown in Fig. 4.8 for Lweak = 0, Fig. 4.9 for

Lweak = 1, and Fig. 4.10 for Lweak = 2. These three cases are demonstrated using the same

initial absorbing state with eight bits of an (8,8) absorbing set assuming extremely incorrect

values after 20 iterations of regular message-passing decoding. The initial absorbing states

are shown in Fig. 4.8a, 4.9a, and 4.10a.

86

Setting Lweak = 0 introduces a large offset of ǫ = 7. The strong bias allows all

eight bits in the absorbing set to be corrected immediately after the bias is applied. In the

meantime, a strong bias enables the bits in the absorbing set to easily propagate errors to

force 51 correct bits to admit wrong values, as in Fig. 4.8b. In the first follow-up iteration,

most of these incorrect bits can be recovered, though the errors continue to propagate to

more neighboring bits, as in Fig. 4.8c. Since the girth of the code is six [20], in the second

follow-up iteration, the errors propagate back to the bits that belong to the absorbing set,

forcing five of the eight bits in the absorbing set to revert to the wrong values as in Fig.

4.8d. After a few more iterations, the decoder re-enters the same absorbing state that it

starts with.

Setting Lweak = 1 reduces the bias offset to ǫ = 2. With a weaker bias, only four

of the eight bits that belong to the absorbing set are corrected immediately after the bias is

applied. The weaker bias also restricts the error propagation to only seven correct bits, as

in Fig. 4.9b. The error propagation continues in the first follow-up iteration but in a much

limited scale to only affect one correct bit, while seven of the eight bits in the absorbing

set are recovered, as in Fig. 4.9c. In the second follow-up iteration, the message-passing

decoding converges to the correct all-zeros codeword, as in Fig. 4.9d.

Setting Lweak = 2 further reduces the bias offset to ǫ = −3. A very weak bias

causes no error propagation, but neither does it help recover the bits in the absorbing set,

as shown in Fig. 4.10b. The reinforcement among the bits that belong to the absorbing

set remains in place and attracts the message-passing decoder back to the same state very

quickly, as in Fig. 4.10c and 4.10d.

87

0 512 1024 1536 2048
−30

−20

−10

0

10

20

30

40

50

Bit

S
of

t d
ec

is
io

n

(a) Absorbing state

0 512 1024 1536 2048
−30

−20

−10

0

10

20

30

40

50

Bit

S
of

t d
ec

is
io

n

(b) Message biasing

0 512 1024 1536 2048
−30

−20

−10

0

10

20

30

40

50

Bit

S
of

t d
ec

is
io

n

(c) Follow-up iteration 1

0 512 1024 1536 2048
−30

−20

−10

0

10

20

30

40

50

Bit

S
of

t d
ec

is
io

n

(d) Follow-up iteration 2

Figure 4.8: Soft decisions at each iteration of post-processing with Lweak = 0.

88

0 512 1024 1536 2048
−30

−20

−10

0

10

20

30

40

50

Bit

S
of

t d
ec

is
io

n

(a) Absorbing state

0 512 1024 1536 2048
−30

−20

−10

0

10

20

30

40

50

Bit

S
of

t d
ec

is
io

n

(b) Message biasing

0 512 1024 1536 2048
−30

−20

−10

0

10

20

30

40

50

Bit

S
of

t d
ec

is
io

n

(c) Follow-up iteration 1

0 512 1024 1536 2048
−30

−20

−10

0

10

20

30

40

50

Bit

S
of

t d
ec

is
io

n

(d) Follow-up iteration 2

Figure 4.9: Soft decisions at each iteration of post-processing with Lweak = 1.

89

0 512 1024 1536 2048
−30

−20

−10

0

10

20

30

40

50

Bit

S
of

t d
ec

is
io

n

(a) Absorbing state

0 512 1024 1536 2048
−30

−20

−10

0

10

20

30

40

50

Bit

S
of

t d
ec

is
io

n

(b) Message biasing

0 512 1024 1536 2048
−30

−20

−10

0

10

20

30

40

50

Bit

S
of

t d
ec

is
io

n

(c) Follow-up iteration 1

0 512 1024 1536 2048
−30

−20

−10

0

10

20

30

40

50

Bit

S
of

t d
ec

is
io

n

(d) Follow-up iteration 2

Figure 4.10: Soft decisions at each iteration of post-processing with Lweak = 2.

90

Table 4.1: Bit error count after post-processing.

SNR (dB) Before post-proc Lweak = 0 Lweak = 1 Lweak = 2

4.6 10.75 13.62 26.31 21.15

4.7 8.56 9.55 25.74 10.50

4.8 8.11 9.04 20.78 8.00

5.0 8.01 8.00 – 8.00

The effect of message biasing can be identified by the change of bit error count

after post-processing, which is listed in Table 4.1. In a regular message-passing decoder, the

average bit error count of a frame error converges to approximately 8 at high SNR levels,

indicating the dominance of (8, 8) absorbing sets in determining the error floor. Applying

a large ǫ, i.e., Lweak = 0, causes error propagation and the possible re-convergence to the

same (8, 8) absorbing set, thus the average bit error count still approaches 8 at high SNR

levels. On the other hand, applying a small ǫ, i.e., Lweak = 2, has no significant effect on

the absorbing state, and the average bit error count remains at 8 after post-processing. The

optimal level of message biasing is at Lweak = 1, which allows the injection of a sufficient

amount of noise to the absorbing state to push the decoder out of the local minimum. After

the (8, 8) absorbing errors are removed, the average bit error count increases.

The BER and FER performance are shown in Fig. 4.11. Post-processing with

either Lweak = 0 or Lweak = 2 lowers the error floor, but the floor still remains due to the

uncorrected (8, 8) absorbing errors. In comparison, after applying Lweak = 1, the dominance

of (8, 8) absorbing errors is removed and no error floor is observed below the BER level of

10−12.

For a numerical example, 117 absorbing errors were collected at the SNR level of 4.8

91

2.5 3 3.5 4 4.5 5 5.5
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No (dB)

F
E

R
/B

E
R

uncoded BPSK
ASPA β=1 Q4.0
Post−proc L

weak
=0

Post−proc L
weak

=1

Post−proc L
weak

=2

Figure 4.11: FER (dotted lines) and BER (solid lines) performance of a (2048,1723) RS-
LDPC code using 20 decoding iterations followed by post-processing with Lweak = 0, 1, 2.

dB. The number of unresolved absorbing errors after post-processing displays a “U”-shaped

relationship with the magnitude of ǫ, as shown in Fig. 4.12. Finding the optimal ǫ for any

given code is nontrivial as it depends on the absorbing set structure and the quantization

choice, however, the “U”-shaped curve can be exploited by run-time adaptation. A small

ǫ is applied initially, which limits the error propagation to the correct bits. If the small ǫ

does not result in convergence, a slightly larger ǫ is applied. The procedure continues until

the convergence is reached or a failure is declared. Adaptive biasing eliminates the need

of deciding the optimal ǫ beforehand, and it is shown to perform as well as applying the

optimal offset ǫ, resulting in all the 117 absorbing errors being successfully corrected in this

example.

92

−8 −6 −4 −2 0 2 4 6 8
0

20

40

60

80

100

120

ε

N
um

be
r

of
 u

nc
or

re
ct

ed
 a

bs
or

bi
ng

 e
rr

or
s

Figure 4.12: The effect of message bias offset ǫ on the post-processing results.

4.1.4 Absorbing Region Analysis

Despite the good case presented above, the reweighted message passing algorithm

is not guaranteed to work in all other LDPC codes. Running hardware emulation on each

code and trying different offsets for post-processing can be prohibitively expensive. A more

promising approach is to perform deterministic estimates of the absorbing region [21].

Given a decoder characterized by its decoding algorithm, quantization, and max-

imum number of decoding iterations, its associated absorbing region of a given absorbing

set is the set of input vectors for which the decoder converges to the absorbing set [21].

Absorbing region is channel-independent and can be deterministically estimated. In [21],

the absorbing region is approximated by its projection on a two-dimensional space. Intu-

itively, absorbing region serves as an indicator of the error probability due to a particular

absorbing set. This indicator is verified by experiments showing that the absorbing region

shrinks with an improved quantization. Furthermore, the lower bound obtained from the

93

absorbing region analysis shows good agreement with hardware emulation and importance

sampling for different quantization choices, channel models, and absorbing sets [21].

A similar absorbing region analysis can be performed to find the effectiveness of

post-processing when the dominant absorbing set is known. If the absorbing region shrinks

after post-processing, it is a good indication that the reweighted message passing algorithm

is successful. The analysis is particularly useful in offset selection: different offset values

can be applied in post-processing and the performance improvement can be quantized.

4.2 Emulation Results

The Q4.0 offset ASPA decoder performs worse than the Q5.1 offset decoder and

the error floor is elevated by an order of magnitude, as shown in Fig. 4.13. After apply-

ing post-processing, The error floor is eliminated down to the BER level of 10−12, which

surpasses even the longer-wordlength Q5.1 decoder. The post-processor requires minimal

overhead: the 4-bit wordlength is maintained and the approximate sum-product algorithm

is unchanged. A small block of logic is added to perform the weakening operation on the

corresponding messages after the decoder stalls.

The error count and weight statistics are shown in Table 4.2. The average bit

error count per decoding failure converges to 8 at higher SNR levels, signifying the effect of

(8, 8) absorbing sets in determining the error floor performance. The average error weight

is larger after post-processing, because the lower weight (8, 8) absorbing sets are resolved

and only the higher weight errors remain. In addition to (8, 8) absorbing sets, the message

biasing scheme successfully resolved (7, 12) and (11, 6) absorbing sets, which demonstrates

94

2.5 3 3.5 4 4.5 5 5.5
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No (dB)

F
E

R
/B

E
R

uncoded BPSK
SPA Q4.2
ASPA β=1 Q5.1
ASPA β=1 Q4.0
ASPA β=1 Q4.0 + post−proc

Figure 4.13: FER (dotted lines) and BER (solid lines) performance of a (2048,1723) array-
based LDPC code using 20 decoding iterations, which demonstrates the effectiveness of the
post-processing approach.

the general applicability of the solution. Approximately 3 iterations are required for the

message biasing scheme to finally converge. The extra iterations for post-processing can be

easily accommodated due to faster convergence rates at a higher SNR level and infrequent

invocation of the post-processor.

95

Table 4.2: Error statistics before and after post-processing.

SNR (dB)
Before post-processing After post-processing

Iteration count2
Errors1 Average weight Errors1 Average weight

4.6 928 10.75 102 26.31 2.9

4.7 2578 8.55 58 25.02 3.0

4.8 1603 8.12 10 20.30 2.7

5.0 485 8.01 0 – 2.5

1 The total number of frames is not uniform for different SNR levels – more input

frames were emulated for higher SNR levels. The number of errors collected is

divided by the total number of frames to produce the FER plots in Fig. 4.13.

2 Number of iterations include one iteration for message biasing and iterations of

follow-up message-passing decoding to reach convergence.

96

Chapter 5

Decoder Chip Implementation

The intrinsically-parallel message-passing decoding algorithm relies on the message

exchange between variable processing nodes (VN) and check processing nodes (CN) in the

graph defined by the H matrix. A direct mapping of the interconnection graph causes

large wiring overhead and low area utilization. In the first silicon implementation of a

fully parallel decoder, Blanksby and Howland reported that the size of the decoder was

determined by routing congestion and not by the gate count [4]. Even with optimized floor

plan and buffer placement technique, the area utilization rate is only 50%.

Architectures with lower degrees of parallelism can be attractive, as the area effi-

ciency can be improved. In [44], the H matrix is partitioned: partitions are time-multiplexed

and each partition is processed in a fully parallel manner. Pipeline registers are inserted in

the routing paths to reduce congestion and improve maximum frequency. With structured

codes, the routing can be further simplified. Examples include the decoders for DVB-

S2 [65, 66], where the connection between memory and processors is realized using Barrel

97

shifters. A more compact routing scheme, only for codes constructed with circulant H

matrices, is to fix the wiring between memory and processors while rotating data stored in

shift registers [73]. The more generic and most common partially-parallel architecture is

implemented in segmented memories to increase the access bandwidth and the schedules are

controlled by lookup tables. Architectures constructed this way permit reconfigurability, as

demonstrated by a WiMAX decoder [60].

Solely relying on architecture transformation could be limiting in producing the

optimal designs. Novel schemes have been proposed in achieving the design specification

with no addition (or even a reduction) of the architectural overhead. In [50], a layered

decoding schedule was implemented by interleaving check and variable node operations

in order to speed up convergence and increase throughput. This scheme costs additional

processing and a higher power consumption. In [17], a bit-serial arithmetic reduces the

number of interconnects by a factor of the wordlength, thereby lowering the wiring overhead

in a fully parallel architecture. This bit-serial architecture was demonstrated for a small

LDPC code with a block length of 660. More complex codes can still be difficult due to the

poor scalability of global wires.

In this work, a systematic design flow is adopted, which takes into account both

architectural and algorithmic solutions. An illustration is shown in Fig. 5.1. The functional

specification of the decoder chip is entered in the Simulink environment through a design

flow developed in the Berkeley Wireless Research Center. Chip synthesis and physical design

are performed using the Integrated Systems Environment for Configurable Technologies

and ASICs (INSECTA) [18]. INSECTA encompasses a collection of scripts that wrap

98

Algorithm

Realization

Architecture ASIC design

Matlab

Simulink
INSECTA

design flow

architectural

exploration

higher-level

solutions

Figure 5.1: Design optimization loop involving both architectural and algorithmic solutions.

around a number of commercial tools: Xilinx System Generator that replaces a set of

predefined Simulink blocks with register transfer level (RTL) description, Synopsys Design

Compiler for RTL synthesis to map RTL to gate-level (standard cells) circuit description,

and Synopsys Astro for placement and routing to generate chip layout for fabrication.

The unified Simulink-based entry point enables design reuse – the same design that has

been verified through extensive hardware emulation can be made to application-specific

integrated circuit (ASIC) without any change. Even though designs for emulation and

ASIC do not share a common set of objectives in performance and efficiency as described

in Section 2.4.1, the design library of the component blocks could be shared in constructing

different architectures to suit each set of objectives.

99

5.1 Architectural Design

A procedure is described here in designing a high-throughput decoder architecture

for the (6, 32)-regular (2048, 1723) RS-LDPC code. A high decoding throughput requires a

high degree of parallelism and a large memory access bandwidth. The previously described

strategy in Section 2.3 is adopted in grouping the VN and CN nodes and bundling the

wires between the nodes. Wiring irregularities are sorted within the group, as illustrated

in Fig. 5.2b for the example H matrix in Fig. 5.2a. Wire sorting can be viewed as a

routing operation and the operation on each submatrix can be viewed as a separate routing

operation. The fully parallel architecture with all the routers expanded is shown in Fig.

5.2b.

5.1.1 Wiring Overhead

Even with node grouping and wire bundling, the fully parallel architecture might

not be the most efficient for a complex LDPC decoder. To reduce the level of parallelism,

individual routers are combined and routing operations are time-multiplexed. Fig. 5.2c

shows how the two routers in every column are combined, resulting in a one-dimensional

3-way parallel architecture. Router combining leads to the creation of local units, shown as

variable node groups (VNG) and check node groups (CNG) in Fig. 5.2c, that encapsulate

irregular local wiring, and wires outside of local units are regular and structured.

The number of local units determines the level of parallelism. A less parallel design

uses fewer local units, but each one needs to be more complex as it needs to encapsulate

more irregular wiring to support multiplexing; a highly parallel design uses more local units

100

10 0 0

0 1 0 0

1 0 0 0

0 0 1 0 10 0 0

0 0 1 0

1 0 0 0

0 1 0 0

0 1 0 0

10 0 0

1 0 0 0

0 0 1 0

1 0 0 0

0 0 1 0

0 1 0 0

10 0 0

10 0 0

0 0 1 0

1 0 0 0

0 1 0 0

1 0 0 0

10 0 0

0 0 1 0

0 1 0 0

VN1

CN1

VN2 VN3 VN4 VN5 VN6 VN7 VN8 VN9 VN10 VN11 VN12

CN2

CN3

CN4

CN5

CN6

CN7

CN8

(a) A simple structured H matrix

VN1

VN2

VN3

VN4

CN1

CN2

CN3

CN4

VN5

VN6

VN7

VN8

CN1

CN2

CN3

CN4

VN9

VN10

VN11

VN12

CN1

CN2

CN3

CN4

VN1

VN2

VN3

VN4

CN5

CN6

CN7

CN8

VN5

VN6

VN7

VN8

CN5

CN6

CN7

CN8

VN9

VN10

VN11

VN12

CN5

CN6

CN7

CN8

(b) The fully parallel architecture

VN1

VN2

VN3

VN4

to CN1

CN1

CN2

CN3

CN4

VNG1

to CN2

to CN3

to CN4

VN5

VN6

VN7

VN8

to CN1

VNG2

to CN2

to CN3

to CN4

VN9

VN10

VN11

VN12

to CN1

VNG3

to CN2

to CN3

to CN4

CNG

(c) A 3VNG-1CNG parallel architecture

Figure 5.2: Architectural mapping and transformation.

101

and each one is simpler, but the amount of global wiring, though regular and structured,

would increase accordingly. Tradeoff exists between the global wiring overhead and local

wiring overhead. Local wiring is relatively cheaper but when the degree of parallelism is

lowered to a certain level, the multiplexing complexity increases rapidly, and the local wiring

overhead becomes dominant. On the other hand, regular global wiring is manageable but

a large volume of even regular global wires still makes it impossible for efficient placement

and routing.

To explore the optimal level of parallelism targeting a lower wiring overhead, the

area expansion factor (AEF) is defined in (5.1)

AEF =
area of the complete system

total area of stand-alone component nodes
(5.1)

The numerator of AEF is the area of the assembled system after placement and routing

and the denominator represents the sum of area of component nodes. i.e., VN and CN.

Based on this definition, AEF is a convenient metric for global wiring overhead. An AEF

of 1 indicates zero global wiring overhead, which is the case for a fully serial architecture.

As the degree of parallelism increases, more and more component nodes are assembled and

extra space is allocated for wiring. As a result, the AEF would increase accordingly. AEF

is a reliable metric for global wiring overhead for two reasons:

1. AEF accounts for wire buffering and gate upsizing in assembling a complete system.

Another common measure of the wiring overhead is the cell-to-core ratio (also known

as density or utilization ratio), referring to the ratio of standard cell area to core area.

A standard cell is a group of transistors and internal interconnect structures, which

102

provides a logic or storage function. A high cell-to-core ratio is not necessarily a good

indication of a low global wiring overhead. Techniques in reducing excessive global

wire delays, such as wire buffering and gate upsizing, increases the cell-to-core ratio,

which could be mistaken for a low global wiring overhead. In comparison, AEF bases

the denominator on the stand-alone component nodes, thus wire buffering and gate

upsizing are reflected in a higher AEF value.

2. AEF measures global wiring overhead. The total wire length and count reported by

the placement and routing tool do not make the distinction between global and local

wires.

For the (6, 32)-regular (2048, 1723) RS-LDPC H matrix under consideration, a

few selected architectures were investigated, listed in Table 5.1 with increasing degrees of

parallelism from top to bottom. The AEF of the designs is plotted in Fig. 5.3 with the

horizontal axis displaying the decoding throughput (for simplicity, assume throughput is a

linear function of the maximum clock frequency). The AEF curve shows an upward trend

with increasing degrees of parallelism. The middle segment of the curve from the 16VNG-

1CNG architecture to the 32VNG-1CNG architecture appears to be flat. Designs positioned

in the flat segment achieve a balance of throughput and area – doubling the throughput from

the 16VNG-1CNG architecture to the 32VNG-1CNG architecture requires almost twice as

many processing nodes, but the AEF remains almost constant, so the core area doubles. In

the region where the AEF is constant, the average global wiring overhead is constant and

it is advantageous to increase the degree of parallelism for a higher throughput.

Table 5.1 also shows that density is not a reliable measure of the wiring overhead.

103

Table 5.1: Architectural selection based on synthesis, place and route results in the worst-
case corner.

Architecture VN CN Freq(MHz) Density AEF Wire length(m)

8VNG-1CNG 512 64 400 91.01% 1.331 20.343

16VNG-1CNG 1024 64 400 91.21% 1.471 24.614

32VNG-1CNG 2048 64 400 84.17% 1.465 30.598

64VNG-2CNG 4096 128 350 86.84% 1.738 65.504

1

2

3

4

5

6

7

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 0.5 1 1.5 2

In
cr
e
m
e
n
ta
l
w
ir
in
g

 p
e
r

a
d
d
it
io
n
a
l p
ro
ce
ss
in
g

 n
o
d
e

(n
o
rm

a
li
ze
d
)

A
re
a

 e
x
p
a
n
si
o
n

 f
a
ct
o
r

Normalized throughput

area expansion factor

incremental wiring

8VNG!

1CNG

16VNG!

1CNG

32VNG!

1CNG

64VNG!

2CNG

Figure 5.3: Architectural optimization by the area expansion metric.

For example, the 64VNG-2CNG architecture has a higher density than the 32VNG-1CNG

architecture, but the total on-chip signal wire length is more than twice longer.

The AEF plot suggests a more serial architecture, e.g., 8VNG-1CNG, as it incurs

the lowest average global wiring overhead. However, the total on-chip signal wire length of

the 8VNG-1CNG architecture is still significant – an indication of the excessive local wiring

in supporting time-multiplexing. The incremental wiring overhead per additional processing

node is plotted in Fig. 5.3. As the degree of parallelism increases from 8VNG-1CNG, the

local wiring decreases more quickly while the global wiring increases slowly, resulting in a

decrease in the incremental wiring overhead. The incremental wiring overhead eventually

104

reaches the minimum with the 32VNG-1CNG architecture. This minimum corresponds

to the balance of local wiring and global wiring. Any further increase in the degree of

parallelism causes a significant increase in the global wiring overhead (suggested by the

increase of AEF), and the rise of the incremental wiring overhead.

The 32VNG-1CNG architecture is selected for final implementation to achieve the

balance of throughput and area and the balance of local and global wires.

5.1.2 Density

Density measures area efficiency, and a high density is desirable in practice. The

optimal density target depends on the tradeoff between routability and wire distance. A

lower-density design can be easily routed, but it occupies a larger core area and wires need

to travel longer distances from point to point. On the other hand, a high-density design

cannot be routed easily, and the clock frequency needs to be reduced as a compromise.

The density choice of the 32VNG-1CNG architecture is explored. An initial density is

specified for the allocation of white space in placement and routing. The physical design

tool performs iterative trial placement, cell sizing, placement relocation, trial routing, wire

buffering, parasitic extraction, and rerouting. The clock tree is inserted in the process of

physical design. The density of the final design is usually higher than the initial density

due to the addition of a clock tree, wire buffers, and possible cell upsizing.

The target clock frequency of the 32VNG-1CNG decoder architecture is set to 400

MHz based on worst-case corner operating condition. Table 5.2 shows that timing closure

can be achieved with initial densities of 70% to 80%. The total signal wire length decreases

with increasing density due to the shorter wire distances even with increasing wire counts.

105

Table 5.2: Density selection based on synthesis, place and route results in the worst-case
corner.

Initial density Final Density Frequency(MHz) Wire length(m) Wire count(,000)

70% 74.43% 400 31.884 9,071

75% 79.73% 400 31.868 9,270

80% 84.17% 400 30.598 9,295

85% 90.48% 360 32.118 10,258

90% 96.29% 350 31.431 10,308

An initial density above 80% results in routing difficulty and the maximum clock frequency

has to be reduced to accomodate longer propagation delays. To maximize density without

sacrificing timing, an 80% initial density is selected.

5.2 Functional Design

5.2.1 Component Nodes

The 32VNG-1CNG decoder architecture consists of 2, 048 VN nodes, representing

the majority of the chip area. The block diagram of the VN node for the offset ASPA

decoder is illustrated in Fig. 5.4. Each VN node sends six variable-to-check messages and

receives six returning messages from check nodes per decoding iteration. The six messages

are sent and received sequentially. (Refer to the the pipeline chart in Fig. 5.6 for the timing

diagram.) Three storage elements are allocated: the posterior memory which accumulates

the check-to-variable messages, the extrinsic memory which stores the check-to-variable

messages in a shift register, and the prior memory which contains the prior LLRs.

Each of the 2, 048 VN nodes participates in the operations in six horizontal rows. In

each operation, a variable-to-check message is computed by subtracting the corresponding

106

Posterior

memory

Extrinsic

memory

2's comp to

sign-mag

sign

mag

compare-

select

sign-mag

to 2's comp

offset

correction

Prior

memory

sel

to VNG

Routers

from

CNG

prior

input

hard-decision

output

min1
min2

prd

post

ext

post

priorsign

mag

ext

post

Figure 5.4: VN node design for an offset ASPA decoder.

check-to-variable message (of the previous iteration) from the posterior (of the previous

iteration) as in equation (2.11). The variable-to-check message is converted to the sign-

magnitude form before it is sent to the VNG routers destined for a CN node. The returning

messages to the VN node could be from one of the six CN nodes. A multiplexer selects the

appropriate message based on a schedule. The check node operation described in equation

(2.8) is divided to two parts: for the first part, the CN node computes the minimum

(min1) and the second minimum (min2, min2 ≥ min1) among all the variable-to-check

messages received from the neighboring VN nodes, as well as the product of the signs (prd)

of the variable-to-check messages. The min1, min2, and prd are bundled and routed to the

neighboring VN nodes; for the second part, the VN node completes the check-to-variable

operation with the compare-select described in equation (5.2), followed by the conversion

to the two’s complement format and the offset correction. The resulting check-to-variable

message is accumulated serially to form the posterior as in equation (2.13). The hard

107

decisions can be extracted from the posterior in every iteration.

Ln(rij) =

prd · sgn(Ln(qij))min1 if |Ln(qij)| 6= min1,

prd · sgn(Ln(qij))min2 if |Ln(qij)| = min1.

(5.2)

The VNG routers follow the structure shown in Fig. 5.2c with 64 6 : 1 multiplexers.

The CN node is designed as a compare-select tree shown in Fig. 5.5. The 32 input variable-

to-check messages are sorted in pairs, followed by four stages of 4-to-2 compare-selects.

The outputs min1, min2, and product of signs, prd (omitted in Fig. 5.5) are buffered and

broadcast to the 32 VNG blocks. In placing the compare-select tree on-chip, the first-level

sort and compare-selects are distributed very close to the respective VNG blocks. The

routing from the first-level to later stages of the compare-select tree covers longer distances

and incurs more delays. The final broadcast routing from CNG to VNG incurs even longer

delays due to long wire lengths. Considerations are taken in the pipeline design to account

for the extra wire delays in balancing the pipeline stages.

5.2.2 Pipeline

An example 7-stage pipeline is designed as in Fig. 5.6. Each box in the chart

represents a pipeline stage and pipeline registers are inserted at stage boundaries. One

stage is allocated for the VN node in preparing variable-to-check message, and one stage

for the delay through the VNG routers. Three stages are dedicated to the compare-select

tree in the CN node – one for the sorting and the first-level compare-select, one for the

following two levels of compare-select, and one for the final compare-select as well as the

fanout. Two stages are set aside for processing the return messages from the CN node – one

108

sort

sort

sort

sort

sort

sort

sort

sort

sort

sort

sort

sort

sort

sort

sort

sort

compare-

select

min1
min2

min1
min2

compare-

select

min1
min2

min1
min2

compare-

select

min1
min2

min1
min2

compare-

select

min1
min2

min1
min2

compare-

select

min1
min2

min1
min2

compare-

select

min1
min2

min1
min2

compare-

select

min1
min2

min1
min2

compare-

select

min1
min2

min1
min2

compare-

select

min1
min2

min1
min2

compare-

select

min1
min2

min1
min2

compare-

select

min1
min2

min1
min2

compare-

select

min1
min2

min1
min2

compare-

select

min1
min2

min1
min2

compare-

select

min1
min2

min1
min2

compare-

select

min1
min2

min1
min2

min1

min2

Inputs are the 32 variable-to-check

messages (q1j ... q32j) to a check node j min1: the minimum

min2: the second minimum

q1j
q2j

q3j
q4j

q5j
q6j

q7j
q8j

q9j
q10j

q11j
q12j

q13j
q14j

q15j
q16j

q17j
q18j

q19j
q20j

q21j
q22j

q23j
q24j

q25j
q26j

q27j
q28j

q29j
q30j

q31j
q32j

Outputs consist of

both min1 and min2
for marginalization

to form each check-

to-variable message

Figure 5.5: CN node design for an offset ASPA decoder.

109

prepare v-to-c

message

route v-to-c

msg in VNG

sort, compare-

select (CS)
2 stages of CS

final CS and

fanout

prepare c-to-v

message

accumulate

posterior

prepare v-to-c

message

route v-to-c

msg in VNG

sort, compare-

select (CS)
2 stages of CS

final CS and

fanout

prepare c-to-v

message

accumulate

posterior

prepare v-to-c

message

route v-to-c

msg in VNG

sort, compare-

select (CS)
2 stages of CS

final CS and

fanout

prepare c-to-v

message

accumulate

posterior

prepare v-to-c

message

route v-to-c

msg in VNG

sort, compare-

select (CS)
2 stages of CS

final CS and

fanout

prepare c-to-v

message

accumulate

posterior

prepare v-to-c

message

route v-to-c

msg in VNG

sort, compare-

select (CS)
2 stages of CS

final CS and

fanout

prepare c-to-v

message

accumulate

posterior

prepare v-to-c

message

route v-to-c

msg in VNG

sort, compare-

select (CS)
2 stages of CS

final CS and

fanout

prepare c-to-v

message

accumulate

posterior

Figure 5.6: Pipeline design of the 32VNG-1CNG decoder.

for preparing the check-to-variable message and one for accumulating the check-to-variable

message.

The 7-stage pipeline is designed to minimize the clock period. Trial placement

and routing are performed to identify the critical paths and characterize the global wiring

delays. The clock period is set such that it accommodates the longest wire delay and the

wire’s driving or receiving gate delay with a sufficient margin. The pipeline stages are

balanced, each targeting the set clock period. A deeper pipeline design would require wire

pipelining and an increase in area and power due to additional pipeline registers.

With the 7-stage pipeline and the minimum 2.5-ns clock period for the CMOS

technology being used, the final decoding throughput is computed in (5.3). For 10 de-

coding iterations, a throughput of 6.827 Gb/s can be achieved, which meets the standard

requirement.

Decoding throughput per iteration =
Code block length

Pipeline latency per iteration × Clock period

=
2, 048 bits

12 cycles × 2.5 ns/cycle
= 68.27 Gb/s. (5.3)

In a conventional message passing schedule, data dependency exists between con-

110

secutive iterations. The two-iteration pipeline stack is shown in Fig. 5.7. A 6-cycle stall is

inserted between iterations to resolve data dependencies such that the posterior can be fully

updated in the current iteration before the next iteration starts. The pipeline stall means

that the first VC stage (refer to Fig. 5.7) of iteration i + 1 has to wait for 6 cycles for the

last PS stage of iteration i to complete. During the stall cycles, the pipeline stages are not

performing useful work, so the efficiency is lower. The efficiency is reduced even more if a

turbo decoding schedule (also known as a layered schedule) [49] or a shuffled schedule [75] is

applied to such a pipeline, where data dependency arises between layers within an iteration.

If pipeline stalls are inserted to resolve the dependency, the efficiency is degraded to as low

as 1/7, thus defeating the purpose of a slightly higher convergence rate achieved with these

schedules. Therefore, a conventional message passing schedule is adopted.

Now consider the consequence of simply eliminating the pipeline stalls as in Fig.

5.8: the first layer of variable-to-check messages (referring to the messages processed in the

first cycle of a decoding iteration, corresponding to the first layer, or row, of the pipeline

chart) would not account for the last five layers of check-to-variable messages from the

previous iteration; the second layer of variable-to-check messages would disregard the last

four layers of check-to-variable messages, and so on. This incomplete message passing would

slow down the convergence. For the maximum convergence speed, a pipeline design with

stalls is chosen.

The pipeline efficiency is formally defined in (5.4). To increase the pipeline effi-

ciency, the number of pipeline stages can be reduced at the cost of a slower clock frequency.

Examples of a 3-stage pipeline and a 5-stage pipeline are illustrated in Fig. 5.9. The

111

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

iteration i

iteration i+1
VC: prepare variable-to-check message

R: route variable-to-check message in VNG

CS1: sort and first-level compare-select

CS2: second and third-level compare-select

CS3: final compare-select and fanout

CV: prepare check-to-variable message

PS: accumulate check-to-variable message for posterior

Figure 5.7: Two-iteration pipeline chart with pipeline stalls.

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

VC R CS1 CS2 CS3 CV PS

iteration i

iteration i+1

Figure 5.8: Two-iteration pipeline chart without stalls.

112

v-to-c

operation

compare-

select tree

c-to-v

operation

v-to-c

operation

compare-

select tree

c-to-v

operation

v-to-c

operation

compare-

select tree

c-to-v

operation

v-to-c

operation

compare-

select tree

c-to-v

operation

v-to-c

operation

compare-

select tree

c-to-v

operation

v-to-c

operation

compare-

select tree

c-to-v

operation

(a) A 3-stage pipeline

v-to-c

operation

sort, two

stages CS

c-to-v

operation

two stages

of CS

accumulate

posterior

v-to-c

operation

sort, two

stages CS

c-to-v

operation

two stages

of CS

accumulate

posterior

v-to-c

operation

sort, two

stages CS

c-to-v

operation

two stages

of CS

accumulate

posterior

v-to-c

operation

sort, two

stages CS

c-to-v

operation

two stages

of CS

accumulate

posterior

v-to-c

operation

sort, two

stages CS

c-to-v

operation

two stages

of CS

accumulate

posterior

v-to-c

operation

sort, two

stages CS

c-to-v

operation

two stages

of CS

accumulate

posterior

(b) A 5-stage pipeline

Figure 5.9: Pipelines with shorter latency.

pipeline efficiency and the maximum clock frequency are listed in Table. 5.3. The compar-

ison shows that a 3 or 5-stage pipeline improves the pipeline efficiency, but the maximum

clock frequency has to be reduced drastically to accommodate longer delays in a pipeline

stage. So to achieve the maximum decoding throughput, the 7-stage pipeline is adopted in

the current design.

Pipeline efficiency = 1 −
pipeline stalls per decoding iteration

pipeline latency per decoding iteration
(5.4)

113

Table 5.3: Pipeline designs.

Pipeline Latency1(cycles) Efficiency Frequency(MHz) Throughput2(Gb/s)

3-stage 8 75% 150 3.84

5-stage 10 60% 300 6.14

7-stage 12 50% 400 6.83

1 Latency of one decoding iteration.

2 Throughput with 10 decoding iterations at the maximum clock frequency.

5.2.3 Complete System

The block diagram of the complete decoder is shown in Fig. 5.10. The decoder is

hierarchically constructed using a Matlab script. The VN and CN nodes are first designed

and verified. The RTL code of the nodes are produced by the Xilinx System Generator

and then “blackboxed”. The higher-level VNG and CNG blocks are constructed with these

blackboxes. Hierarchical grouping affects the efficiency and the quality of synthesis, place-

ment and routing. The hierarchical boundaries are drawn such that they align with the

pipeline boundaries. Each block is self-contained and remain relatively “untouched” when

it is assembled to a higher-level block.

The decoder supports automated functional testing by incorporating AWGN noise

generators and error collection. AWGN noise is implemented by the Box-Muller algorithm

that transforms two independent uniform random variables to a unit Gaussian random vari-

able. The uniform random variables are produced by linear feedback shift registers (LFSR).

The unit Gaussian random noise is scaled by pre-stored multipliers to emulate an AWGN

channel at a particular SNR level. The automated functional testing assumes either all-zeros

or all-ones codeword. The output hard decisions are compared to the expected codeword,

114

VNG1

VNG2

VNG32

Input buffer

…
..

CNG

MUX

network

Output buffer

Hard

decisions
Priors

Variable-to-

check

messages

Check-to-variable messages

Noise

Gen

Error

count

process

c-to-v
mem

process

v-to-c

…
..

…
..

VN1MUX

network

…
..

…
..

VN2…..

…
..

VN64…..

co
m

p
are

select

co
m

p
are

select ….. co
m

p
are

select…
..

…
..

CN1

CN2Compare-

select tree

…
..

CN64Compare-

select tree

Figure 5.10: The decoder implementation using the 32VNG-1CNG architecture.

and the number of bit and frame mismatches are accumulated in the error counter. The

automated functional testing enables real-time decoder testing without the need of waiting

for external input or inspecting output externally.

5.2.4 Area and Power Optimizations

Steps of area, performance, power, and throughput improvements are illustrated

in Fig. 5.11a and 5.11b. The baseline design is a 6-bit SPA decoder. It occupies 6.83

mm2 of core area in a 65nm CMOS technology and it consumes 1.38 W of power to deliver

the 6.68 Gb/s throughput (assuming 8 decoding iterations) at the maximum 310 MHz

clock frequency (at a 0.9 V supply voltage and the worse-case operating condition). This

implementation incurs an error floor at a BER level of 10−11. To achieve a lower BER,

extra SNR needs to be spent due to the error floor.

By the hardware emulation results from Fig. 4.13, the conventional 6-bit SPA

115

20

25

30

35

40

45

50

55

60

2

3

4

5

6

7

8

6b SPA 6b ASPA

(offset)

4b ASPA

(offset)

Postproc

O
n
 c

h
ip

!s
ig

n
a

l!
w

ir
e
!l

e
n

g
th

!(
m

)

C
o

re
!a

re
a
!(

m
m

2
)

C
lo

ck
!f

re
q

u
e

n
cy

!(
×

1
0

0
!M

H
z)

core area

clock frequency

on!chip signal wire length

Error!floor

@!10 11

SNR!gain

by!0.5!dB

Error!floor

@!10 10

No!error!floor

below!10 12

20

25

30

35

40

45

50

55

60

2

3

4

5

6

7

8

6b SPA 6b ASPA

(offset)

4b ASPA

(offset)

Postproc

O
n
 c

h
ip

!s
ig

n
a

l!
w

ir
e
!l

e
n

g
th

!(
m

)

C
o

re
!a

re
a
!(

m
m

2
)

C
lo

ck
!f

re
q

u
e

n
cy

!(
×

1
0

0
!M

H
z)

core area

clock frequency

on!chip signal wire length

Error!floor

@!10 11

SNR!gain

by!0.5!dB

Error!floor

@!10 10

No!error!floor

below!10 12

(a) Area and performance improvement

6

7

8

9

1000

1200

1400

1600

p
u

t!
(G

b
/s

)

D
D

!=
!0

.9
!V

y
!(

M
H

z)

power

clock frequency

throughput

0

1

2

3

4

5

6

7

8

9

0

200

400

600

800

1000

1200

1400

1600

6b SPA 6b ASPA

(offset)

4b ASPA

(offset)

Postproc D
e

co
d

in
g
!t

h
ro

u
g

h
p

u
t!

(G
b

/s
)

P
o

w
e

r!
(m

W
),
!V

D
D

!=
!0

.9
!V

C
lo

ck
!f

re
q

u
e

n
cy

!(
M

H
z)

power

clock frequency

throughput

(b) Power and throughput improvement

Figure 5.11: Steps of improvement evaluated on the 32VNG-1CNG architecture using syn-
thesis, place and route results in the worst-case corner.

116

decoder is replaced by a 6-bit offset ASPA decoder to gain 0.5 dB in SNR. The core area

increases to 7.15 mm2 due to the differences in the CN node design. The CN node is

implemented as an adder tree in an SPA decoder and a compare-select tree in an ASPA

decoder (illustrated in Fig. 5.5). While the area of a 6-bit compare-select is comparable to

a 6-bit adder, every compare-select block maintains both min1 and min2 for the purpose of

marginalization. The resulting 11-bit message composed of min1, min2, and prd needs to

be routed to the VN nodes, and in comparison only 6 bits are required in a SPA decoder.

The additional routing overhead is reflected in the 15.6% increase in wiring, leading to a

slightly lower maximum clock frequency of 300 MHz and a reduced decoding throughput of

6.44 Gb/s (assuming 8 decoding iterations).

Despite the wiring and area increase, the offset ASPA decoder consumes less power

at 1.03 W (at the maximum clock frequency of 300 MHz). The power saving is attributed to

the check node operation characteristics – an adder tree consumes more dynamic power than

a compare-select tree due to a higher activity factor. At high SNR levels or when decoding

approaches convergence, the majority of the variable-to-check messages are saturated and

the wires driven by the compare-select blocks do not switch frequently, resulting in a lower

power consumption.

To further reduce the area and power, the wordlength of the offset ASPA decoder

is reduced from the conventional 6 bits to 4 bits. The reduction of wordlength cuts the total

wire length by 41.2%, shrinks the core area by 37.9% down to 4.44 mm2. With a reduced

wiring overhead, the maximum clock frequency can be raised to 400 MHz, while consuming

only 690 mW – a 33.3% power reduction. The decoding throughput is increased to 8.53

117

Posterior

memory

Extrinsic

memory

2's comp to

sign-mag

compare-

select

sign-mag

to 2's comp

offset

correction

Prior

memory

sel

to VNG

Routers

from

CNG

prior

input

hard-decision

output

min1
min2

prd

Lweak

bias

control

sel

tagp

tage

post-proc

enable

sign

mag mag

post

ext

tag

tag

ext

post

tag enable

tag enable

prd

prd

sign

mag

prior

post

Figure 5.12: VN node design for post-processing.

Gb/s.

Wordlength reduction results in better designs by all measures except the func-

tional performance. The error floor is elevated by an order of magnitude, as seen in Fig.

4.13. To fix the error floor, a post-processor is added to the 4-bit ASPA decoder. The

post-processor is designed as an add-on to the VN node without contributing to the wiring

external to the VN node. The block diagram of the new VN node is shown in Fig. 5.12.

Post-processing works in three phases: pre-biasing, biasing, and follow-up. The operations

are described as follows.

1. Pre-biasing phase (one iteration before post-processing): tag is enabled (refer to Fig.

5.12). If a parity check is not satisfied, as indicated by prd, the check-to-variable

messages originating from the check node are tagged, and the neighboring variable

118

nodes are also tagged by marking the posterior of these variable nodes. The 1-bit tags

cost small additional storage.

2. Biasing phase: post-proc is enabled (refer to Fig. 5.12). Tags of both the posterior

and the check-to-variable messages are inspected, such that if a variable node in the

neighborhood set sends a message to a satisfied check node, the magnitude of this

variable-to-check message is weakened.

3. Follow-up phase: post-proc is disabled (refer to Fig. 5.12). Regular message passing

decoding is performed for a few more iterations to clean up the errors after message

biasing.

The post-processor increases the core area by 13.7% to 5.05 mm2 and the power

consumption by 17.6% to 810 mW. Overall wiring overhead only increases by 1.7%, thus

the majority of the area and power increase is attributed to the extra logic and storage in

the VN node. Since the wiring overhead is almost constant, the maximum clock frequency

can be maintained, and the decoding throughput is kept constant at 8.53 Gb/s.

To further increase the decoding throughput, an early termination scheme is im-

plemented on-chip to detect early convergence by monitoring whether all the check nodes

are satisfied and if so, the decoder can immediately proceed to the next input frame. The

early termination scheme eliminates idle cycles and the processing nodes are kept busy all

the time. The throughput gain becomes significant at high SNR levels. For example, at

an SNR level of 5.5 dB, convergence can be achieved in approximately 1.47 iterations on

average. Taking into account one additional iteration to detect convergence, a total of 2.47

iterations are required. Therefore the average throughput can be improved to 27.68 Gb/s

119

20

25

30

1000

1200

1400

1600

g
h
p
u
t
(G
b
/s
)

V
D
D

 =
 0
.9
V

n
cy

 (
M
H
z)

power clock frequency throughput

Lower

Lower

error floor

Throughput

increase

SNR

gain

0

5

10

15

20

25

30

0

200

400

600

800

1000

1200

1400

1600

6b SPA 6b ASPA

(offset)

4b ASPA

(offset)

Postproc Early term

(5.5dB SNR)

Freq scaling Lower VDD

(0.7V)

D
e
co
d
in
g

 t
h
ro
u
g
h
p
u
t
(G
b
/s
)

P
o
w
e
r
(m

W
),

 V
D
D

 =
 0
.9
V

C
lo
ck

 f
re
q
u
e
n
cy

 (
M
H
z)

power clock frequency throughput

Lower

complexity

Lower

error floor

Throughput

increase

Lower power

SNR

gain

Figure 5.13: Power reduction steps with results from synthesis, place and route in the
worst-case corner.

as shown in Fig. 5.13, assuming a 400 MHz clock frequency in the worse-case corner. With

early termination, the power consumption increases by 18.4% to 960 mW due to a higher

activity factor.

With a much higher throughput, the clock frequency and supply voltage can be ag-

gressively scaled down to reduce the power consumption. To reach the required throughput

of 6.67 Gb/s, the clock frequency can be scaled from 400 MHz to 100 MHz and the supply

voltage can be scaled from 0.9 V to 0.7 V to reduce the power consumption by almost 85%

to 145 mW.

The decoding throughput quoted for an early-termination-enabled decoder is an

average throughput at a specific SNR point; a maximum iteration limit is still imposed

to prevent running an excessive number of iterations due to the occasional failures. A

120

Simulink

model

Matlab

model

Verification

RTL

System

generator Synthesized

RTL

Design

compiler
Layout

Astro

Timing constraints

Functional

verification

Functional

verification

Static Timing

Analysis

PrimeTime

ModelSim

ModelSim

Synthesis Placement,

clock tree

synthesis, routing

Figure 5.14: Chip design flow with timing and functional verifications.

higher maximum iteration limit calls for a larger input and output buffering to provide the

necessary timing slacks. A detailed analysis can be performed to determine the optimal

buffer length for a performance target [5].

5.2.5 Timing Constraints and Verification

Functional equivalence and timing consistency are maintained in every step of

the design flow as shown in Fig. 5.14. The Simulink model is verified rigorously through

hardware emulation. Emulation results are checked against the Matlab model through

feedback simulations. A set of timing constraints is applied at different stages of the chip

design flow, described in Table 5.4. More abstract constraints are applied at the early stage

of the flow and the constraints become more elaborate towards later stages.

The design in Simulink is based on the initial estimation of the clock period and

the pipeline stage division. The Simulink model is converted to the RTL model, which is

then synthesized using Synopsys Design Compiler. More elaborate timing constraints are

applied in the synthesis stage, including the constraints on clock latency, uncertainty, and

121

Table 5.4: Application of timing constraints in the design flow.

Flow step Timing constraints

Simulink model Clock: period and pipeline stage division

RTL synthesis

Clock: latency, uncertainty, transition

I/O: input and output delay

Wire delay: estimated

Initial placement

Clock: latency, uncertainty, transition

I/O: input and output delay

Wire delay: extracted

Clock tree insertion Clock: clock tree insertion delay, skew, transition, uncertainty

Placement optimization

Clock: propagated clock tree

I/O: input and output delay

Wire delay: extracted

Routing

Clock: propagated clock tree, hold time constraints

I/O: input and output delay

Wire delay: extracted

Post-layout

Clock: propagated clock tree, hold time constraints

I/O: input and output delay

Wire delay: extracted (STAR-RCXT)

122

transition. Input and output delays are also factored into consideration. These constraints,

coupled with wiring delay estimation in the synthesis process, tightens the window in each

clock period that can be allocated to gate delays. Initial clock period is adjusted and

pipeline boundaries are fine tuned to balance the stages. The procedure can be iterated. In

producing the mapped gate-level (standard cells) RTL, a timing annotation file is generated

which specifies the delay through each wire and standard cell instance. The gate-level

RTL is verified for functional equivalence in Mentor ModelSim. The model of the on-chip

Gaussian noise generator is implemented in Matlab, so the noise sequence can be reproduced

in Matlab simulation. Random test vectors are generated at different SNR points and the

correspondence is checked between the Matlab reference model and the functional simulation

in ModelSim.

Synopsys Astro performs placement with the objective of optimizing timing while

minimizing area. Following the initial placement, clock tree is inserted according to the

timing specification. The clock signal is first brought in from the input pads of the chip to

approximately the center of the chip. It then branches out in a tree structure to drive the

clocked elements. Clock insertion delay accounts for the propagation delay from the edge of

the chip to the center of the chip, as well as the subsequent fanout and propagation delays

through the tree stages. The worst-case clock insertion delay in a large design can be in

excess of one clock period, and a significant amount of clock skew needs to be budgeted.

The structure of the clock tree, such as the fanout and location of each intermediate node, is

also dependent on the clock transition time specification. The optimal clock transition time

should be set to allow for the most efficient fanout in achieving the minimal propagation

123

time, and fanout-4 can be used as a rule of thumb. Placement is further optimized after

clock tree insertion with extracted timing characteristics, including clock tree insertion

delay, skew, and transition time.

Accurate wire delays can be extracted in placement and routing. The discrepancies

between estimated timing in the early stage of the design and extracted timing in the later

stage of the design are resolved by adjusting the clock period and re-balancing the pipeline

stages, a procedure known as register retiming. For example, only one compare-select

operation is allocated in the final pipeline stage of the CN node to make a sufficient timing

margin for the wire delay from CN to VN. Unlike in smaller and well-contained designs,

register retiming in the LDPC decoder design cannot be easily performed by software tools.

Instead, retiming is done manually, relying on heuristics and iterative cycles to resolve the

timing bottlenecks.

The final chip layout is extracted to obtain the parasitic capacitance and resistance

using Synopsys Star-RCXT. The parasitics are back-annotated in the post-layout RTL

for timing verification using Synopsys PrimeTime – a static timing analysis (STA) tool.

The functional equivalence is verified in ModelSim with back-annotated timing against the

Matlab reference model.

5.3 Chip Implementation

The decoder is implemented in 65nm 7-metal low-power CMOS technology. An

initial density of 80% is used in placement and routing to produce the final density of 84.5%

in a 5.35 mm2 core. The decoder occupies 5.05 mm2 of area, while the remaining 0.30 mm2

124

is dedicated to AWGN noise generation, error collection, and I/O compensation for process,

voltage, and temperature conditions.

The chip microphotograph is shown in Fig. 5.15, featuring a dimension of 2.556×

2.608 mm for a chip area of 6.67 mm2. The nominal core supply voltage is 1.2 V and I/O

supply voltage is 1.8 V. The core is surrounded by 137 I/O pads, with one pair of high-speed

low-voltage differential signaling (LVDS) pads feeding the clock signal differentially from an

external source, and the rest being standard digital pads. 24 pairs of the pads carry core

VDD and GND supplies and 9 pairs carry I/O supplies. The supply pads are interlaced in

the pad ring at regular intervals. The number of core supply pairs is determined by the core

current consumption to reduce the voltage drop (IR drop) and supply noise (Ldi
dt

noise).

To further reduce the voltage drop and supply noise, on-chip metal layers, M6 and M7, are

entirely dedicated to core VDD and GND routing in a dense mesh structure. The number

of I/O supply pads is determined by the current consumption of the I/O pads and their

switching activities.

The chip is packaged in a 144-pin Ceramic Pin Grid Array (PGA) package. A

test board, shown in Fig. 5.16, is designed to provide the appropriate supplies to the

chip. The clock signal is generated externally using an Agilent E4438C ESG Vector Signal

Generator [1] and plugged to the test board through an SMA connection. The input clock is

converted to balanced differential signals on board and the common mode is shifted to 0.9 V

before they are routed to the LVDS receivers on-chip. The input (output) signals are routed

to (from) the test board through an LVDS interface, known as the Z-Dok connector [64].

125

Figure 5.15: Chip microphotograph.

Figure 5.16: Printed circuit board hosting the packaged chip.

126

5.3.1 Chip Testing Setup

A versatile, internally-developed FPGA board, known as the interconnect break-

out board (IBOB) [7], is programmed to be the equivalent logic analyzer that can be at-

tached to the chip test board through the Z-Dok connector. The input clock signal is split

into two, one drives the chip, and the other is routed through the Z-Dok connection to

drive the IBOB. The chip clock and the IBOB clock are provided by the same external

clock source. In addition, the phase of the IBOB clock can be tuned in 90 ◦ increments for

phase alignment. The IBOB operates at a 2.5 V supply voltage; the common mode of the

IBOB clock signal needs to be shifted to 1.25 V and all the inputs and outputs of FPGA

board also need to be voltage shifted to remain compatible.

The IBOB can be programmed in the same way as the BEE2 system with the

Simulink-based design entry. The board hosts a Xilinx Virtex II Pro XC2VP50 FPGA

[70], which contains two PowerPC microprocessors on-chip. Registers and block RAMs

in the FPGA can be address-mapped and accessed through the PowerPC microprocessor.

In the simplest setup, the registers can be programmed on the FPGA to connect to the

corresponding Z-Dok pins. A subsequent write operation (to the register) functions as an

input to the chip under test and a read operation (from the register) functions as an output

from the chip under test. This simplest form is used in automated testing, where the control

signals (start, load, reset) and configuration (limit on iteration count, SNR level, limit on the

number of input frames) are set via the PowerPC microprocessor. The progress of decoding

(number of input frames processed) can be monitored by polling the corresponding registers.

Decoding results (bit error count and frame error count) are automatically collected by the

127

decoder chip and can be read from the respective registers on the FPGA.

In a more elaborate testing scheme, the FPGA is programmed to generate the input

data (scanned in). A functionally-equivalent LDPC decoder (of a much lower throughput

due to resource limitation) is programmed on the FPGA, which runs concurrently with

the decoder chip. The output from the chip (through output scan chains) is compared to

the on-FPGA emulation to check for errors. This elaborate testing scheme enables more

flexibility of operating on any codeword, however the decoder needs to be paused in waiting

for scan-in and scan-out to complete loading and unloading, resulting in a much lower

decoding throughput.

5.3.2 Functional Measurements

Automated functional testing has been used to collect error counts at a range

of SNR levels to generate the waterfall curve. Early termination is adopted to boost the

decoding throughput while the maximum iteration limit is set to 20 for regular decoding.

Without post-processing, the waterfall curve displays a change of slope below the BER of

10−11. After enabling post-processing, the error floor is lowered. An excellent error correc-

tion performance is measured below the BER of 10−14, as shown in Fig. 5.17. The measured

waterfall curve matches the performance obtained from hardware emulation shown in Fig.

4.13 with extended BER by more than two orders of magnitude at high SNR levels. The

post-processor suppresses the error floor by eliminating the absorbing errors, which is evi-

denced in Table 5.5. In fact, five of the seven unresolved errors at the highest SNR point

(5.2 dB) measured are due to undetected errors – errors that are valid codewords, but not

the intended codeword. It was empirically discovered that the minimum number of bitwise

128

2.5 3 3.5 4 4.5 5 5.5

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Eb/No (dB)

F
E

R
/B

E
R

uncoded BPSK
ASPA β=1 Q4.0
ASPA β=1 Q4.0 + post−proc

Figure 5.17: Measured FER (dotted lines) and BER (solid lines) performance of the decoder
chip using a maximum of 20 decoding iterations.

decoding errors of an undetected error (or minimum distance) is 14 for the (2048, 1723) RS-

LDPC code. The eventual elimination of absorbing errors and the emergence of weight-14

undetected errors indicate the near maximum-likelihood decoding performance.

5.3.3 Power Measurements

The decoder chip operates at a maximum clock frequency of 700 MHz with the

nominal 1.2 V supply, which delivers a throughput of 47.7 Gb/s. The throughput is mea-

sured at an SNR level of 5.5 dB with early termination enabled on-chip. To achieve the

required 6.67 Gb/s of throughput for 10GBASE-T Ethernet, the chip can be frequency and

voltage scaled to operate at 100 MHz in a 0.7 V supply, resulting in a power dissipation of

144 mW. At the maximum allowed supply voltage of 1.32 V, a decoding throughput of 53.3

129

Table 5.5: Error statistics based on chip measurements.

SNR (dB)
Before post-processing After post-processing

Errors Average weight Errors Average weight

4.8 3396 8.72 95 30.66

4.9 4229 8.23 40 28.20

5.0 4553 8.08 18 20.22

5.1 5714 8.04 11 15.36

5.2 7038 8.01 7 13.43

20

30

40

50

60

1500

2000

2500

3000

3500

4000

h
ro
u
g
h
p
u
t
(G
b
/s
)

o
w
e
r
(m

W
)

Power

Throughput

1.1V

1.2V

1.32V

0

10

20

30

40

50

60

0

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600 800 1000

D
e
co
d
in
g

 t
h
ro
u
g
h
p
u
t
(G
b
/s
)

P
o
w
e
r
(m

W
)

Clock frequency (MHz)

Power

Throughput

0.7V
0.8V

0.9V

1.0V

1.1V

1.2V

1.32V

0

10

20

30

40

50

60

0

500

1000

1500

2000

2500

3000

3500

4000

0 200 400 600 800 1000

D
e
co
d
in
g

 t
h
ro
u
g
h
p
u
t
(G
b
/s
)

P
o
w
e
r
(m

W
)

Clock frequency (MHz)

Power

Throughput

0.7V
0.8V

0.9V

1.0V

1.1V

1.2V

1.32V

Figure 5.18: Frequency and power measurement results of the decoder chip.

Gb/s is achieved at the clock frequency of 780 MHz.

The maximum clock frequency and decoding throughput are measured at each

supply voltage level. The measurements are performed by fixing the supply voltage while

ramping up the clock frequency until the FER and BER performance start to deviate. The

power consumption and decoding throughput are plotted against the clock frequency in Fig.

5.18. Quadratic power savings can be achieved by the simultaneous voltage and frequency

scaling. It is therefore more power efficient to operate at the lowest supply voltage and

130

Table 5.6: Chip features.

Technology ST 65nm low-power CMOS

Core area 2.316 × 2.311 mm

Chip area 2.556 × 2.608 mm

Area utilization 80% initial, 84.5% final

Clock Frequency 100 MHz 700 MHz

Supply Voltage 0.7 V 1.2 V

Power Consumption 144 mW 2.80 W

Decoding Throughput1 6.67 Gb/s 47.7 Gb/s

Decoding Latency2 960 ns 137 ns

Energy Efficiency 21.5 pJ/bit 58.7 pJ/bit

1 At SNR = 5.5 dB with early termination.

2 Assumes an 8-iteration decoding limit for regular

decoding at a low SNR point. The worst latencies

are longer if the post-processing is accounted for.

clock frequency to deliver the required throughput within this range of operation.

The features of the decoder chip are summarized in Table 5.6. At the nominal

supply voltage and the maximum 700 MHz of clock frequency, the decoder experiences

the worst latency of 137 ns assuming an 8-iteration regular decoding limit, or 206 ns if an

additional 4-iteration post-processing is accounted for. The energy per coded bit reaches

58.7 pJ/bit. At the 100 MHz clock frequency and a 0.7 V supply voltage, the worst latency

is 960 ns (or 1440 ns with a 4-iteration post-processing), but the energy per coded bit is

reduced to 21.5 pJ/bit. These implementation results compare favorably to the state-of-

the-art high-throughput LDPC decoder implementations.

131

Chapter 6

Conclusion

Flexible, high-throughput architectures are proposed to allow the mapping of a

family of high performance LDPC decoders on an emulation platform. This emulation

platform has been demonstrated to be capable of capturing low BER traces down to 10−12

for a (2048, 1723) RS-LDPC code and a (2209, 1978) array-based LDPC code.

6.1 Advances

Error traces were analyzed to show that a class of combinatorial structures known

as absorbing sets ultimately determine the error floor performance of these LDPC codes.

This study also established the connection between fixed-point quantization choices and

the error floor performance of a sum-product decoder: in a low-resolution implementation,

the dominant cause of the error floor is oscillatory behavior, which can be corrected with

an increase in resolution, or, more effectively, an increase in range, whereas absorbing sets

dominate error floors in a high-range implementation and are due to the code construction.

132

Investigations based on the (2209, 1978) array-based LDPC code allows further

isolation of weak from strong absorbing sets. The conventional quantization schemes ap-

plied to the sum-product decoder can be suboptimal, thus allowing weak absorbing sets of

relatively small size to dominate, thereby leading to an elevated error floor. The proposed

dually-quantized sum-product decoder improves the estimation of log-tanh functions, and

the approximate sum-product decoder eliminates the log-tanh functions altogether. Both

approaches mitigate the effects of weak absorbing sets and lower the error floor even with

a small number of decoding iterations.

Even with these improved approaches, strong absorbing sets ultimately determine

the error floor performance of some LDPC codes. The well-defined structure of absorbing

sets motivated the design of a post-processor to tackle them using the message-passing

algorithm. The proposed message biasing scheme boosts the reliabilities of messages from

unsatisfied checks and weakens the reliabilities of messages from the satisfied checks, so that

the bits of the absorbing set can reverse the wrong values. The offset value ǫ is set small

enough to minimize the negative impact on the correct bits and the optimal ǫ can be reached

through run-time adaptation. A good low error rate decoding performance can be achieved

with post-processing due to the elimination of the absorbing errors. The post-processing

algorithm converges quickly, usually within 3 or 4 iterations.

The efficient implementation of the post-processor allows it to be easily padded on

an existing decoder with no change to the scheduling and only a minor fix to the decoding

algorithm. The post-processor further shortens the minimum wordlength required to achieve

a good decoding performance, thereby improving the area and power efficiencies. A grouping

133

strategy is applied in the architectural design to divide wires into global wires and local

wires, such that all wiring irregularities are kept within local groups and all global wires

are kept regular and structured. The optimal architecture lies in the point where the

incremental wiring overhead per additional processing element reaches the minimum, which

coincides with the balance point between area and throughput. The decoder with this

architecture is synthesized, placed and routed to achieve a 84.5% density without sacrificing

the maximum clock frequency. The message-passing decoding is scheduled based on a 7-

stage pipeline to deliver a high effective throughput.

The optimized decoder architecture, when aided by an early termination scheme,

achieves a maximum 47.7 Gb/s decoding throughput at the nominal supply voltage. The

high throughput capacity allows the voltage and frequency to be scaled to realize quadratic

power savings. Automated functional testing with real-time noise generation and error

collection extends the BER measurements below 10−14, where no error floor is observed.

Measurements show that the dominant absorbing errors are completely eliminated, and the

decoding performance approaches the maximum-likelihood decoder as the majority of the

residual errors are due to the minimum-distance codewords.

6.2 Future Work

Intuitions gained from this work enable further advancement of LDPC decoder

designs for a wide range of applications. An example is the LDPC decoding for digital

magnetic recording, where the AWGN channel assumption no longer holds. The magnetic

storage system utilizes partial-response signaling in combination with maximum-likelihood

134

sequence detection (PRML) [13]. The channel characteristics can alter the significance of

each type of decoding error, and the effect on the error floor level is yet to be determined.

The error-floor-lowering post-processing approach was derived based on heuristics

in this work. A better understanding can be developed to both qualitatively and quan-

titatively justify the effectiveness of this approach. An interesting direction is to apply a

deterministic technique, such as the absorbing region analysis [21], in selecting the optimal

message bias and estimating performance bounds.

The decoder chip design experience can be extended to many other high-throughput

applications, including data storage, optical communications, and high-speed wireless. One

drawback of the current design is the lack of reconfigurability, which becomes essential in

an application such as the 60-GHz short-range wireless communications [35], where three

different LDPC codes have been included in one standard. How to maintain a low power

consumption and a high decoding throughput while accommodating multiple codes is the

key to these applications.

A hardware emulation platform has been applied extensively in this work for the

iterative exploration of problems that are out-of-reach by conventional simulations. Such

a design platform can be successfully exploited in building complex communication, signal

processing, and computation systems. The unified emulation and chip design flow enforces

the implementation compatibility, so every solution obtained from investigation can be

realized in practice. The gap between theoretical investigation and practical implementation

can be effectively bridged.

135

Bibliography

[1] E4438C ESG Vector Signal Generator. Agilent Technologies. [Online]. Available:

http://www.home.agilent.com/agilent/product.jspx?nid=-536902340.536880956.00

[2] A. Anastasopoulos, “A comparison between the sum-product and the min-sum itera-

tive detection algorithms based on density evolution,” IEEE Communications Letters,

vol. 6, no. 5, pp. 208–210, May 2002.

[3] K. S. Andrews, D. Divsalar, S. Dolinar, J. Hamkins, C. R. Jones, and F. Pollara, “The

development of turbo and LDPC codes for deep-space applications,” Proceedings of the

IEEE, vol. 95, no. 11, pp. 2142–2156, Nov. 2007.

[4] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density

parity-check code decoder,” IEEE Journal of Solid-State Circuits, vol. 37, no. 3, pp.

404–412, Mar. 2002.

[5] G. Bosco, G. Montorsi, and S. Benedetto, “Decreasing the complexity of LDPC itera-

tive decoders,” IEEE Communications Letteres, vol. 9, no. 7, pp. 634–636, Jul. 2005.

[6] A. I. V. Casado, M. Griot, and R. D. Wesel, “Informed dynamic scheduling for belief-

136

propagation decoding of LDPC codes,” in Proc. IEEE International Conference on

Communications, Glasgow, UK, Jun. 2007, pp. 932–937.

[7] IBOB. Center for Astronomy Signal Processing and Electronics Research. [Online].

Available: http://casper.berkeley.edu/wiki/IBOB

[8] C. Chang, J. Wawrzynek, and R. W. Brodersen, “BEE2: a high-end reconfigurable

computing system,” IEEE Design and Test of Computers, vol. 22, no. 2, pp. 114–125,

Mar. 2005.

[9] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, and X. Hu, “Reduced-

complexity decoding of LDPC codes,” IEEE Transactions on Communications, vol. 53,

no. 8, pp. 1288–1299, Aug. 2005.

[10] J. Chen and M. P. C. Fossorier, “Density evolution for two improved BP-based decoding

algorithms of LDPC codes,” IEEE Communications Letters, vol. 6, no. 5, pp. 208–210,

May 2002.

[11] S. K. Chilappagari, S. Sankaranarayanan, and B. Vasic, “Error floors of LDPC codes

on the binary symmetric channel,” in Proc. IEEE International Conference on Com-

munications, Istanbul, Turkey, Jun. 2006, pp. 1089–1094.

[12] S. Chung, G. D. Forney, Jr., T. J. Richardson, and R. Urbanke, “On the design of

low-density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Com-

munications Letters, vol. 5, no. 2, pp. 58–60, Feb. 2001.

[13] R. D. Cideciyan, F. Dolivo, R. Hermann, W. Hirt, and W. Schott, “A PRML system

137

for digital magnetic recording,” IEEE Journal on Selected Areas in Communications,

vol. 10, no. 1, pp. 38–56, Jan. 1992.

[14] C. A. Cole and S. G. Wilson, “Message passing decoder behavior at low error rates,”

IEEE Transactions on Communications, submitted for publication.

[15] C. A. Cole, S. G. Wilson, E. K. Hall, and T. R. Giallorenzi, “A general method for

finding low error rates of LDPC codes,” IEEE Transactions on Information Theory,

submitted for publication.

[16] D. J. Costello, Jr. and G. D. Forney, Jr., “Channel coding: the road to channel capac-

ity,” Proceedings of the IEEE, vol. 95, no. 6, pp. 1150–1177, Jun. 2007.

[17] A. Darabiha, A. C. Carusone, and F. R. Kschischang, “Power reduction techniques for

LDPC decoders,” IEEE Journal of Solid-State Circuits, vol. 43, no. 8, pp. 1835–1845,

Aug. 2008.

[18] W. R. Davis, N. Zhang, K. Camera, D. Markovic, T. Smilkstein, M. J. Ammer, E. Yeo,

S. Augsburger, B. Nikolić, and R. W. Brodersen, “A design environment for high-

throughput low-power dedicated signal processing systems,” IEEE Journal of Solid

State Circuits, vol. 37, no. 3, pp. 420–431, Mar. 2002.

[19] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke, “Finite-length

analysis of low-density parity-check codes on the binary erasure channel,” IEEE Trans-

actions on Information Theory, vol. 48, no. 6, pp. 1570–1579, Jun. 2002.

[20] I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, and S. Lin, “A class of low-density parity-check

138

codes constructed based on Reed-Solomon codes with two information symbols,” IEEE

Communications Letters, vol. 7, no. 7, pp. 317–319, Jul. 2003.

[21] L. Dolecek, P. Lee, Z. Zhang, V. Anantharam, B. Nikolić, and M. J. Wainwright,

“Predicting error floors of LDPC codes: deterministic bounds and estimates,” IEEE

Journal on Selected Areas in Communications, to be published.

[22] L. Dolecek, Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolić, “Analysis of

absorbing sets for array-based LDPC codes,” in Proc. IEEE International Conference

on Communications, Glasgow, UK, Jun. 2007, pp. 6261–6268.

[23] L. Dolecek, Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolić, “Analysis of

absorbing sets and fully absorbing sets of array-based LDPC codes,” IEEE Transac-

tions on Information Theory, 2009, to be published.

[24] L. Dolecek, Z. Zhang, M. J. Wainwright, V. Anantharam, and B. Nikolić, “Evaluation

of the low frame error rate performance of LDPC codes using importance sampling,” in

Proc. IEEE Information Theory Workshop, Lake Tahoe, CA, Sep. 2007, pp. 202–207.

[25] ETSI Standard TR 102 376 V1.1.1: Digital Video Broadcasting (DVB) User guidelines

for the second generation system for Broadcasting, Interactive Services, News Gathering

and other broadband satellite applications (DVB-S2), ETSI Std. TR 102 376, Feb. 2005.

[26] J. L. Fan, “Array codes as low-density parity-check codes,” in Proc. International

Symposium on Turbo Codes and Related Topics, Brest, France, Sep. 2000, pp. 543–546.

[27] G. D. Forney, Jr., “Codes on graphs: normal realizations,” IEEE Transactions on

Information Theory, vol. 47, no. 2, pp. 520–548, Feb. 2001.

139

[28] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative decoding

of low-density parity check codes based on belief propagation,” IEEE Transactions on

Communications, vol. 47, no. 5, pp. 673–680, May 1999.

[29] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.

[30] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolu-

tional codes,” IEEE Transactions on Information Theory, vol. 42, no. 2, pp. 429–445,

Mar. 1996.

[31] Y. Han and W. E. Ryan, “LDPC decoder strategies for achieving low error floors,” in

Proc. Information Theory and Applications Workshop, San Diego, CA, Jan. 2008.

[32] J. Heo and K. M. Chugg, “Optimization of scaling soft information in iterative decoding

via density evolution methods,” IEEE Transactions on Communications, vol. 53, no. 6,

pp. 957–961, Jun. 2005.

[33] D. E. Hocevar, “A reduced complexity decoder architecture via layered decoding of

LDPC codes,” in Proc. IEEE Workshop on Signal Processing Systems, Austin, TX,

Oct. 2004, pp. 107–112.

[34] X. Hu, E. Eleftheriou, and D. Arnold, “Progressive edge-growth Tanner graphs,” in

Proc. IEEE Global Communications Conference, San Antonio, TX, Nov. 2001, pp.

995–1001.

[35] IEEE 802.15 WPAN Task Group 3c (TG3c) Millimeter Wave Alternative PHY.

IEEE. [Online]. Available: http://www.ieee802.org/15/pub/TG3c.html

140

[36] IEEE Standard for Information Technology-Telecommunications and Information Ex-

change between Systems-Local and Metropolitan Area Networks-Specific Requirements

Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access

Method and Physical Layer Specifications, IEEE Std. 802.3an, Sep. 2006.

[37] IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for

Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and

Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed

Bands and Corrigendum 1, IEEE Std. 802.16e, Feb. 2006.

[38] IEEE Draft Standard for Information Technology-Telecommunications and information

exchange between systems-Local and metropolitan area networks-Specific requirements-

Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)

specifications: Amendment : Enhancements for Higher Throughput, IEEE Std.

802.11n/D2.00, Feb. 2007.

[39] A. Kavčić and A. Patapoutian, “The read channel,” Proceedings of the IEEE, vol. 96,

no. 11, pp. 1761–1774, Nov. 2008.

[40] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes based on

finite geometries: a rediscovery and new results,” IEEE Transactions on Information

Theory, vol. 47, no. 7, pp. 2711–2736, Jul. 2001.

[41] S. Ländner and O. Milenkovic, “Algorithmic and combinatorial analysis of trapping sets

in structured LDPC codes,” in Proc. IEEE International Wireless Communications and

Mobile Computing Conference, Maui, HI, Jun. 2005, pp. 630–635.

141

[42] D. U. Lee, W. Luk, J. D. Villasenor, and P. Y. K. Cheung, “A Gaussian noise generator

for hardware-based simulations,” IEEE Transactions on Computers, vol. 53, no. 12, pp.

1523–1534, Dec. 2004.

[43] C. Liu, S. Yen, C. Chen, H. Chang, C. Lee, Y. Hsu, and S. Jou, “An LDPC decoder

chip based on self-routing network for IEEE 802.16e applications,” IEEE Journal of

Solid-State Circuits, vol. 43, no. 3, pp. 684–694, Mar. 2008.

[44] H. Liu, C. Lin, Y. Lin, C. Chung, K. Lin, W. Chang, L. Chen, H. Chang, and C. Lee,

“A 480Mb/s LDPC-COFDM-based UWB baseband transceiver,” in Proc. IEEE Inter-

national Solid-State Circuits Conference, San Francisco, CA, Feb. 2005, pp. 444–445.

[45] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE

Transactions on Information Theory, vol. 45, no. 2, pp. 399–431, Mar. 1999.

[46] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density

parity check codes,” Electronics Letters, vol. 33, no. 6, pp. 457–458, Mar. 1997.

[47] D. J. C. MacKay and M. S. Postol, “Weaknesses of Margulis and Ramanujan-Margulis

low-density parity-check codes,” Electronic Notes in Theoretical Computer Science,

vol. 74, pp. 97–104, Oct. 2003.

[48] M. M. Mansour and N. R. Shanbhag, “Low-power VLSI decoder architectures for

LDPC codes,” in Proc. International Symposium on Low Power Electronics and Design,

Monterey, CA, Aug. 2002, pp. 284–289.

[49] ——, “Turbo decoder architectures for low-density parity-check codes,” in Proc. IEEE

Global Communications Conference, Taipei, Taiwan, Nov. 2002, pp. 1383–1388.

142

[50] ——, “A 640-Mb/s 2048-bit programmable LDPC decoder chip,” IEEE Journal of

Solid-State Circuits, vol. 41, no. 3, pp. 684–698, Mar. 2006.

[51] Y. Mao and A. H. Banihashemi, “A heuristic search for good low-density parity-check

codes at short block lengths,” in Proc. IEEE International Conference on Communi-

cations, Helsinki, Finland, Jun. 2001, pp. 41–44.

[52] O. Milenkovic, E. Soljanin, and P. Whiting, “Asymptotic spectra of trapping sets

in regular and irregular LDPC code ensembles,” IEEE Transactions on Information

Theory, vol. 53, no. 1, pp. 39–55, Jan. 2007.

[53] A. Morello and V. Mignone, “DVB-S2: the second generation standard for satellite

broad-band services,” Proceedings of the IEEE, vol. 94, no. 1, pp. 210–227, Jan. 2006.

[54] T. Richardson, “Error floors of LDPC codes,” in Proc. Allerton Conference on Com-

munication, Control, and Computing, Monticello, IL, Oct. 2003, pp. 1426–1435.

[55] T. Richardson and R. Urbanke, “The renaissance of Gallager’s low-density parity-check

codes,” IEEE Communications Magazine, vol. 41, no. 8, pp. 126–131, Aug. 2003.

[56] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-

approaching irregular low-density parity-check codes,” IEEE Transactions on Infor-

mation Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.

[57] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes

under message-passing decoding,” IEEE Transactions on Information Theory, vol. 47,

no. 2, pp. 599–618, Feb. 2001.

143

[58] J. Rosenthal and P. O. Vontobel, “Construction of LDPC codes based on Ramanujan

graphs and ideas from Margulis,” in Proc. Allerton Conference on Communication,

Control, and Computing, Monticello, IL, Oct. 2000, pp. 248–257.

[59] V. Savin, “Iterative LDPC decoding using neighborhood reliabilities,” in Proc. IEEE

International Symposium on Information Theory, Nice, France, Jun. 2007, pp. 221–225.

[60] X. Shih, C. Zhan, C. Lin, and A. Wu, “A 8.29 mm2 52 mW multi-mode LDPC decoder

design for mobile WiMAX system in 0.13 µm CMOS process,” IEEE Journal of Solid-

State Circuits, vol. 43, no. 3, pp. 672–683, Mar. 2008.

[61] L. Sun, H. Song, Z. Keirn, and B. Kumar, “Field programmable gate array (FPGA)

for iterative code evaluation,” IEEE Transactions on Magnetics, vol. 42, no. 2, pp.

226–231, Feb. 2006.

[62] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello, “LDPC

block and convolutional codes based on circulant matrices,” IEEE Transactions on

Information Theory, vol. 50, no. 12, pp. 2966–2984, Dec. 2004.

[63] T. Tian, C. R. Jones, J. D. Villasenor, and R. D. Wesel, “Selective avoidance of cycles

in irregular LDPC code construction,” IEEE Transactions on Communications, vol. 52,

no. 8, pp. 1242–1247, Aug. 2004.

[64] Z-DOK Product Line Information. Tyco Electronics. [Online]. Available:

http://www.tycoelectronics.com/catalog/cinf/en/c/21138/0?RQS=

[65] P. Urard, L. Paumier, V. Heinrich, N. Raina, and N. Chawla, “A 360mW 105Mb/s

DVB-S2 compliant codec based on 64800b LDPC and BCH codes enabling satellite-

144

transmission portable devices,” in Proc. IEEE International Solid-State Circuits Con-

ference, San Francisco, CA, Feb. 2008, pp. 310–311.

[66] P. Urard, E. Yeo, L. Paumier, P. Georgelin, T. Michel, V. Lebars, E. Lantreibecq, and

B. Gupta, “A 135Mb/s DVB-S2 compliant codec based on 64800b LDPC and BCH

codes,” in Proc. IEEE International Solid-State Circuits Conference, San Francisco,

CA, Feb. 2005, pp. 446–447.

[67] N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation, Linköping

University, Linköping, Sweden, 1996.

[68] H. Xiao and A. H. Banihashemi, “Estimation of bit and frame error rates of finite-length

low-density parity-check codes on binary symmetric channels,” IEEE Transactions on

Communications, vol. 55, no. 12, pp. 2234–2239, Dec. 2007.

[69] Xilinx Additive White Gaussian Noise. Xilinx Corporation. [Online]. Available:

http://www.xilinx.com/products/ipcenter/DO-DI-AWGN.htm

[70] Xilinx Virtex Series FPGA. Xilinx Corporation. [Online]. Available:

http://www.xilinx.com/products/silicon solutions/fpgas/virtex/

[71] L. Yang, H. Liu, and R. Shi, “Code construction and FPGA implementation of capac-

ity approaching low error-floor LDPC decoder,” IEEE Transactions on Circuits and

Systems-I: Regular Papers, vol. 53, no. 4, pp. 892–904, Apr. 2006.

[72] M. Yang, W. E. Ryan, and Y. Li, “Design of efficiently encodable moderate-length

high-rate irregular LDPC codes,” IEEE Transactions on Communications, vol. 52,

no. 4, pp. 564–571, Apr. 2004.

145

[73] E. Yeo and B. Nikolić, “A 1.1-Gb/s 4092-bit low-density parity-check decoder,” in

Proc. IEEE Asian Solid-State Circuits Conference, Hsinchu, Taiwan, Nov. 2005, pp.

237–240.

[74] E. Yeo, B. Nikolić, and V. Anantharam, “Iterative decoder architectures,” IEEE Com-

munications Magazine, vol. 41, no. 8, pp. 132–140, Aug. 2003.

[75] J. Zhang and M. P. C. Fossorier, “Shuffled iterative decoding,” IEEE Transactions on

Communications, vol. 53, no. 2, pp. 209–213, Feb. 2005.

[76] T. Zhang and K. K. Parhi, “A 54 Mbps (3,6)-regular FPGA LDPC decoder,” in Proc.

IEEE Workshop on Signal Processing Systems, Antwerp, Belgium, Sep. 2001, pp. 25–

36.

[77] Z. Zhang, L. Dolecek, B. Nikolić, V. Anantharam, and M. Wainwright, “Investigation

of error floors of structured low-density parity-check codes by hardware emulation,”

in Proc. IEEE Global Communications Conference, San Francisco, CA, Nov. 2006, pp.

1–6.

[78] Z. Zhang, L. Dolecek, B. Nikolić, V. Anantharam, and M. J. Wainwright, “Lowering

LDPC error floors by postprocessing,” in Proc. IEEE Global Communications Confer-

ence, New Orleans, LA, Nov. 2008, pp. 1–6.

[79] ——, “Design of LDPC decoders for improved low error rate performance: quantization

and algorithm choices,” IEEE Transactions on Communications, to be published.

[80] Z. Zhang, L. Dolecek, M. Wainwright, V. Anantharam, and B. Nikolić, “Quantization

146

effects of low-density parity-check codes,” in Proc. IEEE International Conference on

Communications, Glasgow, UK, Jun. 2007, pp. 6231–6237.

[81] Z. Zhang, B. Nikolić, V. Anantharam, and M. J. Wainwright, “A 47 Gb/s LDPC

decoder with improved low error rate performance,” in Proc. Symposium on VLSI

Circuits, Kyoto, Japan, Jun. 2009, pp. 286–287.

[82] J. Zhao, F. Zarkeshvari, and A. H. Banihashemi, “On implementation of min-sum

algorithm and its modifications for decoding low-density parity-check (LDPC) codes,”

IEEE Transactions on Communications, vol. 53, no. 4, pp. 549–554, Apr. 2005.

