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Abstract—Formal verification of hybrid systems can require can be achieved for convex constraints using duality theory for
reasoning about Boolean combinations of nonlinear arithmetic convex programming. Specifically, we formulate the convex
constraints over the real numbers. In this paper, we present a programming problem in a manner that allows us to easily

new technique for satisfiability solving of Boolean combinations . . . e
of nonlinear constraints that are convex. Our approach applies obtain the subset of constraints responsible for unsatisfiability.

fundamental results from the theory of convex programming to Additionally, even when constraints are restricted to be
realize a satisfiability modulo theory (SMT) solver. Our solver, convex, it is possible that, during Boolean reasoning, some
EaICS, uses a Ialzy Pﬁmb'”aﬁ'on of SfAT a”‘lj a theory T°|‘l’(er- A of these constraints become negated, and thus the theory
ey step in our algorithm is the use of complementary slackness i :

and duality theory to generate succinct infeasibility proofs that solver must handle some r,]on convex ConStr_a'mS' W(? show
support conflict-driven learning. Moreover, whenever non-convex Now to handle such constraints by set-theoretic reasoning and

constraints are produced from Boolean reasoning, we provide approximation with affine constraints.

a procedure that generates conservative approximations of the  The main novel contributions of our work can be summa-
original set of constraints by using geometric properties of convex rized as follows:

sets and supporting hyperplanes. We validate CalCS on several

benchmarks including examples of bounded model checking for o+ We present the first SMT solver for a Boolean com-

hybrid automata. bination of convex non-linear constraints. Our solver

|. INTRODUCTION exploits information from the primal and dual optimal
values to establish satisfiability of conjunctions of convex
constraints;

We give a novel formulation that allows us to generate

certificates of unsatisfiability in case the conjunction of

theory predicates is infeasible, thus enabling the SMT
solver to perform conflict-directed learning;

Whenever non-convex constraints originate from convex

constraints due to Boolean negation, we provide a proce-

dure that can still use geometric properties of convex sets
and supporting hyperplanes to generate approximations of
the original set of constraints;

« We present a proof-of-concept implementation, CalCS,
that can deal with a much broader category than linear
arithmetic constraints, also including conic constraints,
such as quadratic and semidefinite problems, or any
convex relaxations of other non-linear constraints [8]. We
validate our approach on several benchmarks including
examples of BMC for hybrid systems, showing that our

The design and verification of certain classes of hybrid
systems requires reasoning about nonlinear equalities and
inequalities, both algebraic and differential. Examples range®
from mixed-signal integrated circuits (e.g., [1]) that should
operate correctly over process-voltage-temperature variations,
to control design for biological or avionics systems, for which
safety must be enforced (e.g., [2]). In order to extend the*®
reach of formal verification methods such as bounded model
checking [3], [4] (BMC), it is necessary to develop efficient
satisfiability modulo theories (SMT) solvers [5] for Boolean
combinations of non-linear arithmetic constraints. However,
SMT solving for non-linear arithmetic is undecidable, in gen-
eral [6]. There is therefore a need to develop efficient solvers
for useful fragments of the theory of non-linear arithmetic over
the reals.

In this paper, we addresthe satisfiability problem for
Boolean combinations of convex non-linear constraivie
follow the lazy SMT solving paradigm [7], where a classic .
David-Putnam-Logemann-Loveland (DPLL)-style SAT solv- gpproach can be more accurate than current leading non-
ing algorithm interacts with a theory solver exploiting funda- linear SMT solvers such as iSAT [9].
mental results from convex programming. The theory solv&he rest of the paper is organized as follows. In Section II, we
needs only to check the feasibility of conjunctions of theoryriefly review some related work in both areas on which this
predicates passed onto it from the SAT solver. However, whewrk is based, i.e. SMT solving for non-linear arithmetic con-
all constraints are convex, a satisfying valuation can be fousttaints and convex optimization. In Section Ill, we describe
using interior point methods [8], running in polynomial timebackground material including the syntax and semantics of the

A central problem in a lazy SMT approach is for the theor$MT problems our algorithm addresses. Section |V introduces
solver to generate a compact explanation when the conjuncttonthe convex optimization concepts that our development
of theory predicates is unsatisfiable. We demonstrate how thislds on and provides a detailed explanation of our new



algorithm. In Section V we report implementation details oB. Convex Programming
integrating convex and SAT solving. After presenting some pn, SMT solver for the non-linear convex sub-theory is

benchmark results in Section VI, we conclude with a summagyqsivated by both theoretical and practical reasons. On the one
of our work and its planned extensions. hand, convex problems can be solved very efficiently today,
and rely on a fairly complete and mature theory. On the other
) ) o ) hand, convex problems arise in a broad variety of applications,
An SMT instance is a formula in first-order logic, wherg,nging from automatic control systems, to communications,
some function and predicate symbols have additional intfjecironic circuit design, data analysis and modeling [8]. The
pretations related to specific theories, and SMT is the problelg| tion methods have proved to be reliable enough to be
of determining whether such a formula is satisfiable. Modegy,pedded in computer-aided design or analysis tool, or even
SAT and SMT solvers can efficiently find satisfying valuationg, o5\ time reactive or automatic control systems. Moreover,
of very large propositional formulae, including combinationghenever the original problem is not convex, convex problems
of atoms from various decidable theories, such as integetgy, siill provide the starting point for other local optimization
lists, arrays, bit vectors [5]. However, extensions of the SMheihods, or a cheaply computable lower bounds via constraint

problem to the theory of non-linear arithmetic constrainig | agrangian relaxations. A thorough reference on convex
over the reals have only recently started to appear. Since Bbgramming and its applications can be found in [8].
work combines both SAT/SMT solving techniques with convex ag gn example, convex optimization has been used in

programming, we briefly survey related works in both of thes§acironic circuit design to solve the sizing problem [13]-

areas. [15]. Robust design approaches based on posynomial (hence
A. SMT solving for non-linear arithmetic constraints convex) models of mixed-signal integrated circuits have also

_ ) _ been presented in [16]-[18]. While, in these cases, there
Current SMT solvers for non-linear arithmetic adopt thﬁ/as no Boolean structure, Boolean combinations of convex

lazy gomblngtlon O_f a SAT solver with a theory solver fogqstraints arise when the circuit topology is not fixed, or for
non-linear arithmetic. . cyber-physical systems where continuous time dynamics need
The ABsolver tool [10] adopts this approach to SolVg, e ¢4 designed with discrete switching behaviors between
Boolean combinations of polynomial non-linear arithmetig,,qes |t is therefore necessary to have solvers that can reason
constraints. The current implementation uses the numericgl, t both Boolean and convex constraints.
optimization tool IPOPT [11] for solving the nonlinear con- |, the context of optimal control design for hybrid systems,
straints. Ho_wever, without any _other addition_al property f%e work in [19], [20] proposes a combined approach of
the constraints, 590h as convexity, the numerical Opt'm'za_t'ﬂﬂxed-integer-programming (MIP) and constraint satisfaction
tool will necessarily produce incomplete results, and poss'bﬂﬁfoblems (CSP), and specifically, convex programming and
incorrect, due to the local nature of the solver (all variablesy solvers, as in our work. The approach in [19], [20] is,
need upper and lower bounds). Moreover, in case of infeasil?H—some respects, complementary to ours. A SAT problem is
ity, no rigorous procedure is specified to produce infeasibilits; seq to perform an initial logic inference and branching
proofs. ) ) ___step on the Boolean constraints. Convex relaxations of the
A gompletely Q|ﬁerent apprgach is adopted by the '_SA-BriginaI MIP (including Boolean variables) are then solved by
algorithm that builds on a unification of DPLL SAT-solvingy,q optimization routine, which iteratively calls the SAT solver

and interval constraint propagation [9] to solve arithmeti, engyre that the integer solution obtained for the relaxed
constraints. iISAT directly controls arithmetic constraint pro%(é

i . . yroblem is feasible and infer an assignment for the logic
agation from the SAT solver rather than delegating arithmetigiap|es that were assigned to fractional values from the MIP.
decisions to a subordinate solver, and has shown superior gffj

, ) El-ffb'wever, the emphasis in [19], [20] is more on speeding up
ciency. Moreover, it can address a larger class of formulae thaa optimization over a set of mixed convex and integer con-

polynomial constraints, admitting arbitrary smooth, possiblyaints, rather than elaborating a decision procedure to verify
transcendental, functions. However, since interval ConS'Ster}@ésibility of Boolean combinations of convex constraints, or

is a necessary, but not sufficient condition for real-value&anerate infeasibility proofs. Additionally, unlike [19], [20],

satisfiability, spurious solutions can still be generated. 1y eyeraging conservative approximations, our work can also
To reason about round-off errors in floating point arithmetiq, ,41e disjunctions of convex constraints

an efficient decision procedure (CORD) based on precise arith-
metic and CORDIC algorithms has been recently proposed I1l. BACKGROUND AND TERMINOLOGY

by Ganai and Ivancic [12]. In their approach, the non-linear e cover here some background material on convexity and

part of the decision problem needs first to be translated intQafine the syntax of the class of SMT formulae of our interest.
linear arithmetic (LA) formula, and then an off-the-shelf SMT- Convex Functions. A function f : R* — R is termed

LA solver and DPLL-style interval search are used to SOIV&)nvexif its domain dom is a convex set and if for all
the Ilne_arlzgd formula. .Fpr a given precision requirement, tf}ct?y € dom f, andf with 0 < 0 < 1, we have

approximation of the original problem is guaranteed to account
for all inaccuracies. fOx+(1—=0)y) <0f(z)+(1—-0)f(y). (1)

II. RELATED WORK



Geometrically, this inequality means that ttteord fromz to ¢ € (BV — B) x (RV — R), whereBV is the set of

y lies above the graph gf. As a special case, when (1) alway8oolean andrV the set of real-valued variables. The definition
holds as an equality, theyi is affine All linear functions of satisfaction is also standard: a formulas satisfied by a
are also affine, hence convex. It is possible to recognizaluationu (u | ¢) iff all its clauses are satisfied, that is,
whether a function is convex based on certain properties. Rffrat least one atom is satisfied in any clause. A litera
instance, iff is differentiable, thenf is convex if and only satisfied if ug(l) =t r ue. Satisfaction of real constraints is

if domf is convex andf(y) > f(z) + Vf(z)T(y — 2) with respect to the standard interpretation of the arithmetic
holds for allz,y € domf, and Vf(z) is the gradient of operators and the ordering relations over the reals.

f. The above inequality states that ffis convex, its first- Based on the above definitions, here is an example of a
order Taylor approximation is always a global underestimat@onvex SMT formula:

T_he converse result_can be al_so shown t(_) be truﬁ.i$ftwice (z+y—3=0VaV—loge® +e¥) +10 > 0)

differentiable, thery is convex if and only ifdom f is convex 5 9
and its HessiaV2 f(z) is positive semidefinite matrix for all "\ (FbVl(w =22 =3)ll2 <y =5) A(a” +y” — 42 < 0)

2 € domf. In addition to linear, affine, and positive semi- A (-aVy < 4.5V max{2z + z,3z> + 4y* — 4.8} < 0),
definite quadratic forms, examples of convex functions may . ) ()
include exponentials (e.g%*), powers (e.gz® whena > 1), Wherea,b € BV, x,y,z € RV, and|| - ||, is the Euclidean
logarithms (e.g— log(x)), the max function, and all norms. Norm onR?,

Convex Constraint. A convex constraint is of the form |f the SMT formula does not contain any negated convex
f(z) {<,<,>,>} 0 or h(z) = 0, where f(z) and h(z) are constraint, the formula is termed monotone convex SMT

convex and affine (linear) functions, respectively, of their refprmula
variablesz € D C R", with D being a convex set. In the
following, we also denote a constraint in the forft) < 0 o o
(f(z) < 0) as aconvex(strictly convex constraint (CC), where In opt|m|;at|on theory, the prpblem of determmmg whe_ther
#(z) is a convex function on its convex domain. A conve® Set (conjunction) of constraints are consistent, and if so,
constraint is associated with a et= {x € R" : f(z) < 0}, finding a point that satisfies them, igeasibility problemThe

i.e. the set of points in the space that satisfy the constraiff@SiPility problem for convex constraints can be expressed in

IV. THEORY SOLVER FORCONVEX CONSTRAINTS

SinceC is the 0-sublevel set of the convex functiof(z), ¢ the form
is also convex. We further denote the negation of a (strictly) find =
convex constraint, expressed in the fofiix) > 0 (f(z) > 0), subject to  f;(z) <0, i=1,..., m 3)

asreversed convefteversed strictly convéxonstraint (RCC).

An RCC is, in general, non-convex as well as its satisfying

setN = {z € R": f(z) > 0}. The complementV’ of A/ is, Wwhere the single (vector) variable € R" represents the:-

however, convex. tuple of all the real variableéry, ..., z,)7", the f; functions
Syntax of Convex SMT Formulae.We represent SMT are convex, and thé; functions are affine. As in any opti-

formulae over convex constraints to be quantifier-free formulagization problem, ifz is a feasible point and;(z) = 0, we

in conjunctive normal form, with atomic propositions rangingay that thei-th inequality constrain{f;(z) < 0 is active at

over propositional variables and arithmetic constraints. The If f;(z) < 0, we say the constrain;(z) < 0 is inactive.

formula syntax is therefore as follows: The equality constraints are active at all feasible points. For

succinctness of presentation, we make the assumption that

hj(:v)zo, jZl,...,p

formula:: {Clquse/\} flc.mse inequalities are non-strict (as listed in (3)), but our approach
clause == ({literalVv}*literal) : L "
. extends to systems with strict inequalities as well.
literal = atom| —~atom . . X
. In this section, we describe how we construct a theory
atom = conv_constraint | bool_var .
: . . . solver for a convex SMT formula that generates explanations
conv_constraint = equation | inequality . . .
. _ . when a system of constraints is infeasible. In general, the
equation = affine_function =0 . .
. . . . system of constraints can have both convex constraints and
inequality = convex_function relation 0 - . .
. negated convex constraints (which are non-convex). We will
relation == < | <

first consider the simpler case where all constraints in the
In the grammar abovéyool var denotes a Boolean variable,system are convex, and show how explanations for infeasibility
and affine functionsand convexfunction denote affine and can be constructed by a suitable formulation that leverages
convex functions respectively. The termomandliteral are duality theory (Section IV-A). We later give an alternative
used as is standard in the SMT literature. Note that the orflyrmulation (Section 1V-B) and describe how to deal with the
theory atoms are convex or affine constraints. Even though weesence of negated convex constraints (Section 1V-C).
allow negations on convex constraints (hence allowing non-Although it is possible to directly solve feasibility problems
convex constraints), we will term the resulting SMT formuldy turning them into optimization problems in which the
as aconvex SMT formula objective function is identically zero [8], no information about
Our constraint formulae are interpreted over valuatiortee reasons for inconsistency would be propagated with this



formulation, in case of infeasibility. Therefore, we caseé ththe constraintfk(x*) < sp is active at optimum and it is
feasibility problem (3) as a combination of optimization probene of the reasons for the conflict. We can therefore conclude
lems with the addition of slack variables. Each of these newtlgatthe subset of constraints related to positive dual variables
generated problems is an equivalent formulation of the origin@presents a succinct reason of infeasibility or certificate
problem (and it is therefore in itself a feasibility problem), In practice, the optimization algorithm will terminate with
while at the same time being richer in informative contenthe conclusion thatz;cnjf” sk| < e, thus producing arn;-

In particular, given a conjunction of convex constraints, owuboptimal point for arbitrary small, positivg. Accordingly,
framework builds upon the following equivalent formulationso enforce strict inequalities such :fg(x) < 0, we modify

of (3), namely thesum-of-slack$easibility problem §SH, and the original expression with an additional user-defined positive
the single-slackfeasibility (SF) problem, both detailed below. slack constant, as fi(z) + e, < 0, thus requiring that the
constraint be satisfied with a desired marginAll the above

conclusions valid for (3) can then be smoothly extended to the
In the SSFproblem, a slack variable; is introduced for modified problem.

every single constraint, so that (3) turns into the following . e
B. Single-Slack Feasibility Problem

A. Sum-of-Slacks Feasibility Problem

m-+2p . . .
minimize Z sk While the SSFproblem is the Workho_rse of our quC|S|on
= @ procedure, we also present an alternative formulation of the
subject to fk(x) _ s <0, k=1, m+2 feasibility problem, which will be useful in the approximation
of RCCs.
s 20 The SF problem minimizes the maximum infeasibilityof
wherejk(a:) = fulz) fork =1,...,m, me(I) = h(2), a set of convex constraints as follows
and fpiptj(z) = —h;(x) for j = 1,...,p. In other minimize s 5
words, every equality constrairit;(x) = 0 is turned into a subject to  fr(z) — s <0, k=1,..., m+2p (6)

conjunction of two inequalitiesh;(z) < 0 and —h;(x) < 0 _ - _ _

before applying the reduction in (4). TH&SF problem can Where_ inequalities are pre-process_ed as in Segtlp_n IV-A. The
be interpreted as trying to minimize the infeasibilities of thg02! i clearly to drive the maximum infeasibility below
constraints, by pushing each slack variable to be as muchZ80: At optimum the sign of the optimal value provides
possible close to zero. The optimum is zero and is achieVi&SiPility information. Ifs* < 0, (6) has a strictly feasible

if and only if the original set of constraints (3) is feasible. Agolution; if s* > 0 then (6) is infeasible; finally, it = 0 (in
optimum, the following result holds: practice|s*| < ¢, for some smalk; > 0) and the minimum

is attained, then the set of inequalities is feasible, but not

Proposition IV.1. Let (z*,5*) € R™™*2» be a primal strictly feasible. As in (4), complementary slackness will hold
optimal andz* € R™*2P be a dual optimal point for(4). at optimum, i.e.

Then: (i) if (3) is feasiblex* provides a satisfying assignment; T .
(i) moreover, we obtain: 2i(fi(@") =s") =0 k=1,...,m+2p.

(fe@) —s) =0 k=1,...,m+2p. (5) Therefore, even when the problem is feasible, whenever a
constraintk is not active, then(fi(z*) — s*) # 0 will be
The first statement trivially follows from the solution ofstrictly satisfied, and imply;, = 0. Conversely, ifz; # 0,
problem (4). Sincer* is the optimal point, it also satisfiesthen the constraintf, (z*) — s*) is certainly active and (x)
all the constraints in (4) withs;, = s;; = 0, therefore it is @ contributes to determine the maximum infeasibility for the
satisfying assignment for (3). The second statement followgen problem, in the sense thatsf was further pushed to

from complementary slackneds fact, under the assumptionspe more negativefk(x) would be no longer satisfied.
in Section l11, (4) is a convex optimization problem. Moreover,

it is always possible to find a feasible point which strictly=- Non-convex Constraint Approximation
satisfies all the nonlinear inequalities since, for a any givenA negated (reversed) convex constraint (an RCC) is non-
z, the slack variables; can be freely chosen, hence Slater'sonvex and defines a non-convex g€t Any conjunction
conditions hold. As a result, strong duality holds as well, i.ef this non-convex constraints with other convex constraints
both the primal and dual optimal values are attained and equakults in general in a non-convex set. To deal with such
which implies complementary slackness, as in (5). O non-convex sets, we propose heuristics to compute convex
We use complementary slackness to generate infeasibilityer- and under-approximations, which can then be solved
certificates for (3). In fact, if a constraitis strictly satisfied efficiently. This section describes these techniques.
(i.e. sy = 0 and fi(2*) < 0) then the relative dual variable Our approximation schemes are based on noting that the
is zero, meaning that the constraiﬂt(z*) < 0 is actually complementary sef is convex. Therefore geometric prop-
non-active. Conversely, a non-zero dual variable will necessaasties of convex sets, such as strict or weak separation [8],
correspond to either an unfeasible constraifit¥ 0) or to a can still be used to approximate or bouh@via a supporting
constraint that is non strictly satisfiesi;(= 0). In both cases, hyperplane. Once a non-convex constraint is replaced with a



bounding hyperplane, the resultiagproximate problenfAP)

will again be convex, and all the results in Section IV-A will e o
be valid for this approximate problem. 7 \ ’ N

For simplicity, we assume in this section that we hav
exactly one non-convex constraint (RCC), and the rest of tt
constraints are convex. We will describe the general case N / N
Sec. IV-D. Beg(z) the convex function associated with the - -
RCC. Our approach proceeds as follows:

1) Solve the sum-of-slacks (SSF) problem for just the

/ \

i/ \
-
]

\

\ /

a) Strict separation b) Inclusion

convex constraints. Denote the resulting convex regi@fy 1. Two special cases for handling non-convex consta{a by adding

by 5.

a negated RCC a new set is generated that is strictly separated from the

If the resulting problem idUNSAT, report this answer previous convex set; (b) the negated RCC generates a set that totally includes

along with the certificate computed as described In

the previous convex set.

Sec. IV-A.

Otherwise, if the answer returned $AT, denote the
optimal point as; (satisfying assignment) and proceed
to the next step.

Add the negation of the RCC (a convex constraint) and
solve the SSF problem again, which we now denote as
reversed problentRP). There are two cases:

(@) If the answer iSUNSAT, then the RCC regiot\

2)

(b)

If none of the above cases hold, we proceed to the next
step. For example, this is the case wheneyes outside

N, or on its boundary (i.eg(x;) > 0). This implies that

the negated RCC is not redundant, and we can move to
the next step without solving the two SF problems.

In this step, we generate a convex under-approximation
of the original formula including the convex constraints
and the single non-convex RCC. If the resulting problem
that B C N, and hence the RCC is a redundant s found satisfiable, the procedure retu@&T. Other-
constraint. This situation is illustrated in Fig. 1(a). wise, it returnsUNKNOWN.

Thus, the solver can simply retuBAT (as returned \we now detail the under-approximation procedure usirly a

in the previous step). dimensional region, defined by the following SMT formula:
On the other hand, if the answerSAT, we denote

asz* the optimal point of the RP and check whethefzi +23 —1 < 0) A (a7 + 25 —4a1 < 0)A (2] +a3 — 21 > 0).

the negated RCC is now redundant, based on the (7)

shift induced in the optimal point;. In particular, As apparent from the geometrical representation of the sets in
if both z* andz; are inside\/, we solve two single- Fig. 2 a), the problem is clearly satisfiable and a satisfying
slack feasibility 6F) problems, and we denote asvaluation could be any point in the grey regigh

#; and &% the two optimal points, for the problem First, we note for this example the results obtained before
having just the convex constraints and for the the Rif1e under-approximation is performed. We solve $&prob-

respectively. Similarly, we denote the two optimalem for the convex seB = {(z1,z2) € R? : (2} + 25 — 1 <
values ass and . 0) A (23 + 23 — 421 < 0)}, obtained fromA after dropping

As also observed in Section IV-B, for a set Of:he RCC. The prObIem is feaSible, as shown in Flg 2 (b), and

satisfiable constraints;, 77, 3; and3; may contain the optimal pointzj = (0.537,0) is returned.
more information than the optimal pointg andz Next, the RCC is negated to become convex andSB&
(and their slack variables) for t®SFproblem. In problem is now solved on the newly generated formula
fact, sinces; and 5! are also allowed to assume; 2 2 _ 2.,,2 2.,,2
negative (hebnce different) values at optimum, theg/xﬁ_x2 1< OA @ +ay—dm S OA (e 25~ 202 < 0)
can provide useful indications on how the RC@vhich represents theeversed problem(RP). The RP will
has changed the geometry of the feasible set, aptpvide useful information for the approximation, thus acting
which constraints are actually part of its boundar@s a “geometric probe” for the optimization and search space.
thus better driving our approximation scheme. I&ince the RCC is reversed, the RP is convex and generates the
particular, if we verify thatsy = 3%, #; = i, and SetC, shown in Fig. 2 (c).
the slack constraint related to the RCC is not active Let us assume, at this point, that the RP is feasible, as
at optimum, then we impiy8 c N = BNN = (. in this example. Therf # (), and an optimal point
Hence, the solver can retutdNSAT. This case is (0.403,0.429) € C is provided. MoreoverA can be expressed
illustrated in Fig. 1(b) for the following conjunction @asB\ C, andz} is clearly outside the convex saf generated
of constraints: by N, meaning that we can go to the under-approximation
step without solving the SF problems since the negated RCC
(a7 + a3 =1 <0) A (2} + 234> 0) is cpertainly non-redgundant. P ’

The key idea for under-approximation is to compute a

hyperplane that we can use to separate the RCC region

3)

does not intersect the convex regiBnThis implies

where(z?+x3—4 > 0) is the non-convex constraint
defining regionV.
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a) Original problem b) Convex-only problem ©) Reversed problem d) Approximation

Fig. 2. Geometrical representation of the sets used in $et#d to illustrate the approximation scheme in CalCS: £)s the search space (in grey)
for the original non-convex problem including one RCC constraint;Ah$ search space when the RCC is dropped (over-approximatiof);ofc) C is the
search space for theversed problemi.e. the problem obtained from the original one in (a) when the RCC is negated; the RP is therefore corieis (d)
the under-approximation dP in (a) using a supporting hyperplane.

N from the remaining convex region. This “cut” in the Case (iii):Assume now that; = z} (with bothz; andz?}
feasible region is performed by exploiting the perturbatioinside \), but we havezr; # z:, wherez; and z; are the

of the optimal point fromz; to z} induced by the RCC two optimal points, respectively, for th8F problem having

N : (2% + 23 — 225) < 0. At this point, we examine a few just the convex constraints and for the the RP in $ikeform,
possible cases: as computed in Step 2 (b) above. In this case, to operate the

Case (i):Suppose that; # =, andz; is outside\ (as in “cut’, we cannot use the perturbation arf and z}, as in
our example). In this case, we find the orthogonal projectidbase (i), but we can still exploit the information contained
p = P(x}) onto N, which can be performed by solving ain the SF problems. This time, starting frofij, we search
convex, Lz-norm minimization problem [8]. Intuitively, this the closest boundary point along th& — z}) direction, and
corresponds to projectingj onto a poinf on the boundary of then compute the supporting hyperplane through this boundary
the regionV. Finally, we compute the supporting hyperplanpoint.
to N in p. The half-space defined by this hyperplane that Case (iv): Finally, bothz; = 2% and z; = z} can also
excludes ' provides our convex (affine) approximatiod occur, as for the following formula:
for \V.

For our exampleN = {x € R" : 22 + 23 — 22, < 0}.
The affine constraint resulting from the above procedure fisr which A would coincide with the white ring region in
N : —0.06z1 +0.1225 +0.016 < 0. On replacing the RCQV  Fig. 1 b) (including the dashed boundary). In this case, no
with N, we obtain a new seP, as shown Fig. 2(d), which is useful information can be extracted from perturbations in the

(22 +22—1>0)A (22 + 22 -4<0),

now our approximation forA. optimal points. The feasible set appears “isotropic” to bgth

An SSF problem can now be formulated fbr thus pro- andz;, meaning that any direction could potentially be chosen
viding the satisfying assignment’; = (0.6, —0.33). The for the approximations. In our example, we infer from &ie
approximation procedure will stop here and retGAr. problems that the inner circle is the active constraint and we

Notice that, whenever; is on the boundary of/, a similar need to replace the non-convex constraint corresponding to its
approximation as described above can be performed. In teierior with a supporting hyperplane, egz; +1 < 0, by
case,r; is the point through which the supporting hyperplangimply picking it to be orthogonal to one of the symmetry
needs to be computed, and no orthogonal projection is necases of the feasible set. The resulting under-approximation is
sary. The normal direction to the plane needs, however, to feeind SAT and we obtain a satisfying assignment consistent
numerically computed by approximating the gradieny6f) Wwith this approximation.

In . We note that we still have the possibility for the solver
Case (ii): A second case occurs wherf # x7, but both {5 return UNKNOWN. Depending on the target application, the
zy and z; are inside V. In this case, starting fromx} yser can interpret this a8AT (possibly leading to spurious
we search the closest boundary point along thg — 27) counterexamples in BMC) ddNSAT (possibly missing coun-
direction, and then compute the supporting hyperplane throughexamples). For higher accuracies, the approximation scheme
this point as in the previous case. In fact, to find an undefan also be iterated over a set of boundary points of the

approximation for the feasible regiad, we are looking for original constraintf(z), to build a finer polytope bounding
an over-approximatiorof the set\ in the form of a tangent the non-convex set.

hyperplane. Since the optimal poinf moves tox} after the )

addition of the RCCN is more likely to be “centered” aroundD- Overall Algorithm

x; than aroundc;. Therefore, a reasonable heuristic could be Our theory solver is summarized in Fig. 3. This procedure

to pick the direction starting from? and looking outwards, generalizes that described in the preceding section by handling
namely (z; — z7). multiple non-convex constraints (RCCs). In essence, if the
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function [status ouf] = Decision ManagefCC, RCC)

% receive a set of convex (CC) and non-convex constraints (RCC) l

% return SAT/UNSAT and MODEL/CERTIFICATE

% BMC Solver

% solve sum-of-slacks feasibility problems with CCs 7y

[status oufl = SoS solvgCC); SMT Inzt’\a/lr?ce A ﬁﬁﬁ& SAT
% OUT contains CERTIFICATE Query —»| Query

if (status== UNSAT) return; end
AC = CC;% AC stores all constraints
for (k = 1, k <= length(RCC), k++)
RP = reverséCC, RCQOKk));
[status ouf] = SoSsolvgRP);
% strict separation: ignore RCC
if (RP == UNSAT) continue end

Theory Manager|,___| SAT Solver

Boolean!
Model

SMT <—
Model

4 Real

Model

Conjunction
of Constraints"

Convex Programming
Theory

% both CC and RP problems are SAT: approximation
[approxCC active dropg = ApproximatdRCOK));
% RCC incompatible (inclusion)
if ("active

status= UNSAT;

% certificate

out = [CC, RCQK)]; return;

% over-approximation: ignore constraint
elseif (drop) continue
else AC = AC U approxCC

[status ouf] = SoS solvgAC);

Fig. 4. The CalCS convex solver: inputs and outputs are denoted with blue
and green arrows, respectively.

for the conflict. If an over-approximation is required, then
constraint is ignored. If the constraint is compatible and cannot
be dropped, the supporting hyperplane is computed and the
new under-approximated problem is solved. The algorithm
proceeds with visiting the other RCCs. Finally, when all
non-convex constraints have been processed without returning

if (status== SAT)
Check sat assignment on original constrgints
if (original constraints satisfi@¢cstatus= SAT; return;

UNSAT the algorithm is re-invoked on the set of convex
constraints CC and the set of affine under-approximations of
end non-convex constraints RCC. If this invocation retu$AT,

end so does the overall algorithm; otherwise, it retuihiKNOWN.

end A SAT answer is accompanied by a satisfying valuation to
status= UNKNOWN; variables.

V. INTEGRATING CONVEX SOLVING AND SAT SOLVING

Using the theory solver described in Section IV, we have
implemented a proof-of-concept SMT solver, CalCS, that
supports the convex sub-theory. As in [10], CalCS receives as
|ﬁput an SMT formula in a DIMACS-like CNF format, where
. , atomic predicates can be both Boolean or convex constraints,
on th? other hand, we r_nust_conS|der all convex const@nts ording to the definitions in Section Ill. Our theory solver
all affine under-approximations of non-convex constraints. interacts with a SAT solver following the lazy theorem proving

The details are as follows. For a given conjunction gfaradigm, as is schematically pictured in Fig. 4.
CCs and RCCs, we first solve tt&SF problem generated

by the CCs alone (Section IV-A). If the problem WNSAT, A. SAT Solver
the algorithm returns the subset of constraints that provide theTo benefit from the most recent algorithmic advances in
reason for inconsistency (infeasibility certificate) and StopSAT solving, MiniSAT2 [21] was adapted to our specific
Otherwise, each RCC is processed sequentially. For ege@uirements and embedded in CalCS. In particular, we added
RCC, the initial convex problem is augmented and the RRo decision heuristics to better prune our search space in the
is formulated and solved. If the RP is unfeasible then, @$esence of convex constraints. First, we always first assign
discussed in Section IV-C, the constraint is ignored singglues to all the Boolean variables in the formula, to satisfy
it is non-active for the current feasibility problem. On theis many clauses as possible and reduce the number of calls
contrary, if the RP is feasible we proceed by computing a8 the convex theory, a bottleneck in all lazy solvers. If some
approximation. clauses in the Boolean abstraction of the original formula are
The Approxi mate method implements the under-not yet satisfied, we proceed with assigning values also to
approximation strategies outlined in Section IV-C and deteseme of the auxiliary variables that represent the non-linear
mines whether the constraint is non-active or can be droppashstraints until all clauses are satisfied.
by solving additionalS ' problems (Section IV-B). If the RCC  As a second decision heuristic, we assign values to Boolean
is non-active for the RP, (as in full inclusion), the problem isariables so as to increase the number of convex constraints
UNSAT, meaning that the RCC is incompatible with the wholéhat the theory solver sees. We classify all nonlinear constraints
set of CC (step 2(b) of Section IV-C). The full set, includingas CC or RC as soon as we read them. Since we track the
both the CC and the current RC is returned as an explanatiature of the nonlinear constraints, whenever we can choose

Fig. 3. Pseudo-code for the CalCS decision procedure.

conjunction of all convex constraints and any single RCC
found UNSAT, then we reportUNSAT. In order to reporSAT,



an assignment for an auxiliary variable, we decider a CC, Reset
and0 for a RCC, in such a way to maximize the number of P =z
convex constraints for each theory call so as to reduce any Init

approximation performed within the theory solver. 23

Invariant
B. Theory Manager Py —25<0
The Theory Manager (TM) is the link between the SAT Dynamics

solver and the convex solver. The SMT problem is first oo
transformed into a SAT problem, by mapping the nonlinear ~ Guard

constraints into auxiliary Boolean variables. The formula is % ="

then passed to the SAT solver. If the outcomeUNSAT, Fig. 5. Simple hybrid automata with convex guards and inwsidleft) and
the theory manager stops and retutdsSSAT. Conversely, representation of the error traces from CalCS (solid) and iSAT (dashed) in
if the purely Boolean abstraction of the original problem i&®€ (z,) plane (right). The safety interval for is [—4, 4].

instead SAT, the TM maps the assigned auxiliary variables

back to a conjunction of CC and RCC to be sent to the

theory for consistency checking. If the theory solver returfgoPlems dealing with the intersection atdimensional ge-

SAT, the whole problem is satisfied and a combined Boolegr'i“etriC objects, and randomly generated formulae obtained

and realmodel(satisfying assignment) is returned. WhenevéFom 3-SAT cl_assical Boolean benchmark_s [25], e_lfter ade-
the theory finds inconsistencieNSAT), the reason for the quately replacing some of the Boolean variables with convex

conflict (certificate) is encoded into a nelearmed clause or RC constraints. Table | shows a summary of an experimen-

Since the theory returns a subset of constraints that &k €valuation of our tool, also in comparison with iSAT. To

infeasible by themselves, we generate a clause in the fornfv@luate the impact of generating a compact explanation of
unsatisfiability (a certificate) we run CalCS in two modes: in

(=l Vlp Voo VAl the first mode ' in Table 1), a subset of conflicting constraints
is provided, as detailed in Section IV, while in the second
de (VC in Table I), the full set of constraints is returned as
ply being inconsistent. All benchmarks were performed on
3 GHz Intel Xeon machine witl2 GByte physical memory
running Linux.

Results show that whenever problems are purely convex,
they are solved without approximation and with full control of
Theorem V.1. Let ¢ be a convex SMT formula. Then, if CalC$ounding errors and can provide results that are more accurate
reports SAT on ¢, ¢ is satisfiable. Alternatively, if CalCS than the ones of iSAT, in comparable time, in spite of our
reports UNSAT, ¢ is unsatisfiable. O prototype implementation. In particular, the interval-based rea-

ning scheme can incur inaccuracies and large computation
o . N imes when the satisfying sets are lower dimensional sets with
reportsUNKNOAN, it is possible that the formula is either respect to the full se;yrct? space including all the real variables

satisfiable or unsatisfiable. in the problems. As a simple example, for the formula:
In the case of a monotone convex SMT formula, we have

stronger guarantees. (zf+23 —1<0)A (25 +25 — 621 +5<0), (8)

wherel,,ly, ..., l; are the auxiliary literals associated wit
the infeasible constraints. The SAT problem is then augment&
and a new SAT query is performed until either the SAT solver
concludes withUNSAT or the theory solver concludes with
SAT.

The following theorems state the properties of CalCS.

Note that the converse does not hold in general. If Cal

Theorem V.2. Let ¢™ be a monotone convex SMT formulaiSAT returns an interval that contains a spurious solution,
Then, CalCS reportsSSAT on ¢ iff ¢* is satisfiable and while our convex sub-theory can rigorously deal with tight
CalCS reportsUNSAT iff ¢* is unsatisfiable. inequalities and correctly returndNSAT (see (8) and CoB8j

The result follows straightforwardly from the fact that foi”? 12P- 1). Similarly, CalCS can provide the correct answer for

monotone convex SMT formulas, all convex constraints afg€ following formulae ((9) and (10) in Tab. I), mentioned as
assigned true, so the theory solver never sees non-conEyNe to unsound or spurious results in [12]:

constraints. O (+y<a)Ale—y<b)AQRz>at+b)Ala=1)A(b=0.1),
V1. EXPERIMENTAL RESULTS ()]
(z <109 A (z+p>107) A (p=10"%). (10)

In our prototype implementation, we use the Matlab-based
convex programming packa@®/X [22] to solve the optimiza-  While for small problem instances (Bde2-3, Conijl) both
tion problems, while theory solver and SAT solver interact vidne C' and NC schemes show similar performances, the
an external file /O interface. A faster implementation woulddvantages of providing succinct certificates becomes evident
be possible by using a more optimized convex optimizatidor larger instances (Bo#i5-6-7, ConpR), where we rapidly
engine, such a&vVXMOD [23]. We first validated our approachreached a time-over (TO) limit (set 2890 queries to the theory
on a set of benchmarks [24], including geometric decisiosslver) without certificates.



TABLE | TABLE Il

CALCS: EXPERIMENTS TCAS BMC CASE STUDY
File Res. CalCS Approx. | Queries iSAT [ Maneuver type| Crash state[ #queries | run time [s] |
CINC [s] CINC | CINC [s] UNSAFE CRUISE 2 10.9

®) UN 0.5 (U) 0 1 0.05 (S) UNSAFE LEFT 1 28

©) UN 0.2 (U) 0 1 0 (S) UNSAFE STRAIGHT 6 50
Conp | UN 22/23 (U) 5 3 0.05 (S) SAFE NONE 10 110

(10) | SAT 0.2 (S) 0 1 0 (U)
Booll | SAT 3.5 (S) 1 1 8 (S) CRUISE EFT
Bool | SAT 16 (S) 3 ) 0.91 (S) invariant P o Invariant
Bool3 | SAT 27/23 (S) 5/4 2 0.76 (S) T4+ 9? > dyr —— t < max (55 mas)
Confl | UN | 8.7/95 (U) 3 2 0.3 (U) Dynarmics . Reset Dynamics
Boold | SAT | 17.9/17.7 (S) 3 i 0.75 (9) - o | =B=20) | t=1
Con2 | UN 17/23.3 (U) 4/5 477 0.4 (U) :
Bools | UN | 23.5/321.7 (U) | 4/36 5/94 | 0.02 (U) Guard|  Reset Common Dynamics Lo Suad, , Reset
Bool6 | UN | 29.8/T0 (U) 5/— 6/— 0.4 (U) v<o [ = reag| = ]| T f'zf;;(O) - ,,(""‘”(A"')’ Tl _ R(ag) |
Boolr | SAT | 257.7/T0 (S) | 24/— 6/— | 1.31(S) ) eilao) v v

RIGHT

Invariant
t>0

STRAIGHT
Invariant
@}y < dy

_ Guard
a7+ y; 2 dpy
Reset

o] =mealy]

We have also tested CalCS on BMC problems, consisting
in proving a property of a hybrid discrete-continuous dynamic
system for a fixed unwinding depth. We generated a set
of hybrid automata (HA) including convex constraints in both
their guards and invariants. For the simple HA in Fig. 5 we also

report a pictorial view of the safety region for thevariable,

and the error traces produced by CalCS (solid line) and iS'&Pmbmes fundamental results from the theory of convex pro-

(dashed line). The circle in Fig. 5 represents the HA invariaffo g with the ef_f|C|ency of SAT solvmg: By restrlctm_g
set, while the portion of the parabola underlying theaxis our domain of reasoning to a subset of non-linear constraints,

: . S we can solve for conjunctions of non-linear constraints glob-
determines the set of poinissatisfying the property we want ally and accurately, by formulating a combination of convex
to verify, i.e. {x € R : 22 — 16 < 0}. Our safety region y Y, BY g

is therefore the closed intervak4. 4]. The dynamics of the optimization problems and exploiting information from their

HA are represented by the solid and dash lines. As far as iErlmal and dual optimal values. In case the conjunction of

. . . . : . eory predicates is infeasible, we have provided a formulation
invariant is satisfied, the continuous dynamics hold and the o o

. that allows us to generate certificates of unsatisfiability, thus
HA moves along the arrows on tfie, y) plane, starting from enabling the SMT solver to perform conflict-directed learnin
the point (2,3). When the trajectories intersect the circle’ 9 P g
boundary, a jump occurs (e.g. frof8,4) to (3,2) and from

?:inally, whenever non-convex constraints originate from con-
(4,3) to (4,1)) and the system is reset. Initially, both the soli

(Yex constraints due to Boolean negation, we have described
and dashed trajectories are overlapped (they are drawn sligﬂl

rocedure that uses geometric properties of convex sets and
: orting hyperplanes to generate conservative approxima-

apart for clarity). However, more accurately, we return unsafe P g hyperp g bp

after 3 BMC steps k£ = 3), while iSAT stops at the second

16ns of the original set of constraints. We have validated our

. S ._approach on several benchmarks including examples of BMC

step producing an error trace that is still in the safety regiofy hybrid systems, showing that we can be more accurate
albeit on the edge. As a final case study, we considered air(ijrt%étm current Ieadiné non-linear SMT solvers. In the future, we
conflict resolution [26] based on the Air Traffic Alert an would like to extend the set of constraints under examination

Collision Avoidance System (TCAS) specifications (Tab. ”)t'o include posynomial or signomial functions, thus leveragin
The hybrid automata in Fig. 6 models a standardized maneuyer Posy g ' ging

X ﬁometric programming as an extension to convex program-
that two airplanes need to follow when they come close to €3ing. Further improvements could also include devising more
other during their flight. When the airplanes are closer than_a g P g

. sophisticated learning and approximation schemes.
distanced,,...-, they both turn left byA¢ degrees and fly for P 9 PP
a distancel along the new direction. Then they turn right and REFERENCES
fly until their distance exceeds a threshdlg,,.. At this point, _ ) .
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