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Abstract—Formal verification of hybrid systems can require
reasoning about Boolean combinations of nonlinear arithmetic
constraints over the real numbers. In this paper, we present a
new technique for satisfiability solving of Boolean combinations
of nonlinear constraints that are convex. Our approach applies
fundamental results from the theory of convex programming to
realize a satisfiability modulo theory (SMT) solver. Our solver,
CalCS, uses a lazy combination of SAT and a theory solver. A
key step in our algorithm is the use of complementary slackness
and duality theory to generate succinct infeasibility proofs that
support conflict-driven learning. Moreover, whenever non-convex
constraints are produced from Boolean reasoning, we provide
a procedure that generates conservative approximations of the
original set of constraints by using geometric properties of convex
sets and supporting hyperplanes. We validate CalCS on several
benchmarks including examples of bounded model checking for
hybrid automata.

I. I NTRODUCTION

The design and verification of certain classes of hybrid
systems requires reasoning about nonlinear equalities and
inequalities, both algebraic and differential. Examples range
from mixed-signal integrated circuits (e.g., [1]) that should
operate correctly over process-voltage-temperature variations,
to control design for biological or avionics systems, for which
safety must be enforced (e.g., [2]). In order to extend the
reach of formal verification methods such as bounded model
checking [3], [4] (BMC), it is necessary to develop efficient
satisfiability modulo theories (SMT) solvers [5] for Boolean
combinations of non-linear arithmetic constraints. However,
SMT solving for non-linear arithmetic is undecidable, in gen-
eral [6]. There is therefore a need to develop efficient solvers
for useful fragments of the theory of non-linear arithmetic over
the reals.

In this paper, we addressthe satisfiability problem for
Boolean combinations of convex non-linear constraints. We
follow the lazy SMT solving paradigm [7], where a classic
David-Putnam-Logemann-Loveland (DPLL)-style SAT solv-
ing algorithm interacts with a theory solver exploiting funda-
mental results from convex programming. The theory solver
needs only to check the feasibility of conjunctions of theory
predicates passed onto it from the SAT solver. However, when
all constraints are convex, a satisfying valuation can be found
using interior point methods [8], running in polynomial time.

A central problem in a lazy SMT approach is for the theory
solver to generate a compact explanation when the conjunction
of theory predicates is unsatisfiable. We demonstrate how this

can be achieved for convex constraints using duality theory for
convex programming. Specifically, we formulate the convex
programming problem in a manner that allows us to easily
obtain the subset of constraints responsible for unsatisfiability.

Additionally, even when constraints are restricted to be
convex, it is possible that, during Boolean reasoning, some
of these constraints become negated, and thus the theory
solver must handle some non-convex constraints. We show
how to handle such constraints by set-theoretic reasoning and
approximation with affine constraints.

The main novel contributions of our work can be summa-
rized as follows:

• We present the first SMT solver for a Boolean com-
bination of convex non-linear constraints. Our solver
exploits information from the primal and dual optimal
values to establish satisfiability of conjunctions of convex
constraints;

• We give a novel formulation that allows us to generate
certificates of unsatisfiability in case the conjunction of
theory predicates is infeasible, thus enabling the SMT
solver to perform conflict-directed learning;

• Whenever non-convex constraints originate from convex
constraints due to Boolean negation, we provide a proce-
dure that can still use geometric properties of convex sets
and supporting hyperplanes to generate approximations of
the original set of constraints;

• We present a proof-of-concept implementation, CalCS,
that can deal with a much broader category than linear
arithmetic constraints, also including conic constraints,
such as quadratic and semidefinite problems, or any
convex relaxations of other non-linear constraints [8]. We
validate our approach on several benchmarks including
examples of BMC for hybrid systems, showing that our
approach can be more accurate than current leading non-
linear SMT solvers such as iSAT [9].

The rest of the paper is organized as follows. In Section II, we
briefly review some related work in both areas on which this
work is based, i.e. SMT solving for non-linear arithmetic con-
straints and convex optimization. In Section III, we describe
background material including the syntax and semantics of the
SMT problems our algorithm addresses. Section IV introduces
to the convex optimization concepts that our development
builds on and provides a detailed explanation of our new



algorithm. In Section V we report implementation details on
integrating convex and SAT solving. After presenting some
benchmark results in Section VI, we conclude with a summary
of our work and its planned extensions.

II. RELATED WORK

An SMT instance is a formula in first-order logic, where
some function and predicate symbols have additional inter-
pretations related to specific theories, and SMT is the problem
of determining whether such a formula is satisfiable. Modern
SAT and SMT solvers can efficiently find satisfying valuations
of very large propositional formulae, including combinations
of atoms from various decidable theories, such as integers,
lists, arrays, bit vectors [5]. However, extensions of the SMT
problem to the theory of non-linear arithmetic constraints
over the reals have only recently started to appear. Since our
work combines both SAT/SMT solving techniques with convex
programming, we briefly survey related works in both of these
areas.

A. SMT solving for non-linear arithmetic constraints

Current SMT solvers for non-linear arithmetic adopt the
lazy combination of a SAT solver with a theory solver for
non-linear arithmetic.

The ABsolver tool [10] adopts this approach to solve
Boolean combinations of polynomial non-linear arithmetic
constraints. The current implementation uses the numerical
optimization tool IPOPT [11] for solving the nonlinear con-
straints. However, without any other additional property for
the constraints, such as convexity, the numerical optimization
tool will necessarily produce incomplete results, and possibly
incorrect, due to the local nature of the solver (all variables
need upper and lower bounds). Moreover, in case of infeasibil-
ity, no rigorous procedure is specified to produce infeasibility
proofs.

A completely different approach is adopted by the iSAT
algorithm that builds on a unification of DPLL SAT-solving
and interval constraint propagation [9] to solve arithmetic
constraints. iSAT directly controls arithmetic constraint prop-
agation from the SAT solver rather than delegating arithmetic
decisions to a subordinate solver, and has shown superior effi-
ciency. Moreover, it can address a larger class of formulae than
polynomial constraints, admitting arbitrary smooth, possibly
transcendental, functions. However, since interval consistency
is a necessary, but not sufficient condition for real-valued
satisfiability, spurious solutions can still be generated.

To reason about round-off errors in floating point arithmetic
an efficient decision procedure (CORD) based on precise arith-
metic and CORDIC algorithms has been recently proposed
by Ganai and Ivancic [12]. In their approach, the non-linear
part of the decision problem needs first to be translated into a
linear arithmetic (LA) formula, and then an off-the-shelf SMT-
LA solver and DPLL-style interval search are used to solve
the linearized formula. For a given precision requirement, the
approximation of the original problem is guaranteed to account
for all inaccuracies.

B. Convex Programming

An SMT solver for the non-linear convex sub-theory is
motivated by both theoretical and practical reasons. On the one
hand, convex problems can be solved very efficiently today,
and rely on a fairly complete and mature theory. On the other
hand, convex problems arise in a broad variety of applications,
ranging from automatic control systems, to communications,
electronic circuit design, data analysis and modeling [8]. The
solution methods have proved to be reliable enough to be
embedded in computer-aided design or analysis tool, or even
in real-time reactive or automatic control systems. Moreover,
whenever the original problem is not convex, convex problems
can still provide the starting point for other local optimization
methods, or a cheaply computable lower bounds via constraint
or Lagrangian relaxations. A thorough reference on convex
programming and its applications can be found in [8].

As an example, convex optimization has been used in
electronic circuit design to solve the sizing problem [13]–
[15]. Robust design approaches based on posynomial (hence
convex) models of mixed-signal integrated circuits have also
been presented in [16]–[18]. While, in these cases, there
was no Boolean structure, Boolean combinations of convex
constraints arise when the circuit topology is not fixed, or for
cyber-physical systems where continuous time dynamics need
to be co-designed with discrete switching behaviors between
modes. It is therefore necessary to have solvers that can reason
about both Boolean and convex constraints.

In the context of optimal control design for hybrid systems,
the work in [19], [20] proposes a combined approach of
mixed-integer-programming (MIP) and constraint satisfaction
problems (CSP), and specifically, convex programming and
SAT solvers, as in our work. The approach in [19], [20] is,
in some respects, complementary to ours. A SAT problem is
first used to perform an initial logic inference and branching
step on the Boolean constraints. Convex relaxations of the
original MIP (including Boolean variables) are then solved by
the optimization routine, which iteratively calls the SAT solver
to ensure that the integer solution obtained for the relaxed
problem is feasible and infer an assignment for the logic
variables that were assigned to fractional values from the MIP.
However, the emphasis in [19], [20] is more on speeding up
the optimization over a set of mixed convex and integer con-
straints, rather than elaborating a decision procedure to verify
feasibility of Boolean combinations of convex constraints, or
generate infeasibility proofs. Additionally, unlike [19], [20],
by leveraging conservative approximations, our work can also
handle disjunctions of convex constraints.

III. B ACKGROUND AND TERMINOLOGY

We cover here some background material on convexity and
define the syntax of the class of SMT formulae of our interest.

Convex Functions. A function f : R
n → R is termed

convex if its domain domf is a convex set and if for all
x, y ∈ domf , andθ with 0 ≤ θ ≤ 1, we have

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (1)



Geometrically, this inequality means that thechord from x to
y lies above the graph off . As a special case, when (1) always
holds as an equality, thenf is affine. All linear functions
are also affine, hence convex. It is possible to recognize
whether a function is convex based on certain properties. For
instance, iff is differentiable, thenf is convex if and only
if domf is convex andf(y) ≥ f(x) + ∇f(x)T (y − x)
holds for all x, y ∈ domf , and ∇f(x) is the gradient of
f . The above inequality states that iff is convex, its first-
order Taylor approximation is always a global underestimator.
The converse result can be also shown to be true. Iff is twice
differentiable, thenf is convex if and only ifdomf is convex
and its Hessian∇2f(x) is positive semidefinite matrix for all
x ∈ domf . In addition to linear, affine, and positive semi-
definite quadratic forms, examples of convex functions may
include exponentials (e.g.eax), powers (e.g.xa whena ≥ 1),
logarithms (e.g.− log(x)), themax function, and all norms.

Convex Constraint. A convex constraint is of the form
f(x) {<,≤, >,≥} 0 or h(x) = 0, wheref(x) andh(x) are
convex and affine (linear) functions, respectively, of their real
variablesx ∈ D ⊆ R

n, with D being a convex set. In the
following, we also denote a constraint in the formf(x) ≤ 0
(f(x) < 0) as aconvex(strictly convex) constraint (CC), where
f(x) is a convex function on its convex domain. A convex
constraint is associated with a setC = {x ∈ R

n : f(x) ≤ 0},
i.e. the set of points in the space that satisfy the constraint.
SinceC is the 0-sublevel set of the convex functionf(x), C
is also convex. We further denote the negation of a (strictly)
convex constraint, expressed in the formf(x) > 0 (f(x) ≥ 0),
asreversed convex(reversed strictly convex) constraint (RCC).
An RCC is, in general, non-convex as well as its satisfying
setN = {x ∈ R

n : f(x) > 0}. The complement̄N of N is,
however, convex.

Syntax of Convex SMT Formulae. We represent SMT
formulae over convex constraints to be quantifier-free formulae
in conjunctive normal form, with atomic propositions ranging
over propositional variables and arithmetic constraints. The
formula syntax is therefore as follows:

formula ::= {clause∧}∗clause

clause ::= ({literal∨}∗literal)
literal ::= atom| ¬atom

atom ::= conv constraint | bool var

conv constraint ::= equation | inequality

equation ::= affine function = 0
inequality ::= convex function relation 0

relation ::= < | ≤

In the grammar above,bool var denotes a Boolean variable,
and affine functions and convexfunction denote affine and
convex functions respectively. The termsatomand literal are
used as is standard in the SMT literature. Note that the only
theory atoms are convex or affine constraints. Even though we
allow negations on convex constraints (hence allowing non-
convex constraints), we will term the resulting SMT formula
as aconvex SMT formula.

Our constraint formulae are interpreted over valuations

µ ∈ (BV → B) × (RV → R), where BV is the set of
Boolean andRV the set of real-valued variables. The definition
of satisfaction is also standard: a formulaφ is satisfied by a
valuationµ (µ |= φ) iff all its clauses are satisfied, that is,
iff at least one atom is satisfied in any clause. A literall is
satisfied if µB(l) =true. Satisfaction of real constraints is
with respect to the standard interpretation of the arithmetic
operators and the ordering relations over the reals.

Based on the above definitions, here is an example of a
convex SMT formula:

(x + y − 3 = 0 ∨ a ∨ − log(ex + ey) + 10 ≥ 0)

∧ (¬b ∨ ||(x − 2, z − 3)||2 ≤ y − 5) ∧ (x2 + y2 − 4x ≤ 0)

∧
(

¬a ∨ y < 4.5 ∨ max{2x + z, 3x2 + 4y4 − 4.8} < 0
)

,
(2)

wherea, b ∈ BV , x, y, z ∈ RV , and || · ||2 is the Euclidean
norm onR

2.
If the SMT formula does not contain any negated convex

constraint, the formula is termed amonotone convex SMT
formula.

IV. T HEORY SOLVER FOR CONVEX CONSTRAINTS

In optimization theory, the problem of determining whether
a set (conjunction) of constraints are consistent, and if so,
finding a point that satisfies them, is afeasibility problem. The
feasibility problem for convex constraints can be expressed in
the form

find x

subject to fi(x) ≤ 0, i = 1, . . . , m

hj(x) = 0, j = 1, . . . , p

(3)

where the single (vector) variablex ∈ R
n represents then-

tuple of all the real variables(x1, . . . , xn)T , the fi functions
are convex, and thehj functions are affine. As in any opti-
mization problem, ifx is a feasible point andfi(x) = 0, we
say that thei-th inequality constraintfi(x) ≤ 0 is active at
x. If fi(x) < 0, we say the constraintfi(x) ≤ 0 is inactive.
The equality constraints are active at all feasible points. For
succinctness of presentation, we make the assumption that
inequalities are non-strict (as listed in (3)), but our approach
extends to systems with strict inequalities as well.

In this section, we describe how we construct a theory
solver for a convex SMT formula that generates explanations
when a system of constraints is infeasible. In general, the
system of constraints can have both convex constraints and
negated convex constraints (which are non-convex). We will
first consider the simpler case where all constraints in the
system are convex, and show how explanations for infeasibility
can be constructed by a suitable formulation that leverages
duality theory (Section IV-A). We later give an alternative
formulation (Section IV-B) and describe how to deal with the
presence of negated convex constraints (Section IV-C).

Although it is possible to directly solve feasibility problems
by turning them into optimization problems in which the
objective function is identically zero [8], no information about
the reasons for inconsistency would be propagated with this



formulation, in case of infeasibility. Therefore, we cast the
feasibility problem (3) as a combination of optimization prob-
lems with the addition of slack variables. Each of these newly
generated problems is an equivalent formulation of the original
problem (and it is therefore in itself a feasibility problem),
while at the same time being richer in informative content.
In particular, given a conjunction of convex constraints, our
framework builds upon the following equivalent formulations
of (3), namely thesum-of-slacksfeasibility problem (SSF), and
the single-slackfeasibility (SF) problem, both detailed below.

A. Sum-of-Slacks Feasibility Problem

In the SSFproblem, a slack variablesi is introduced for
every single constraint, so that (3) turns into the following

minimize

m+2p
∑

k=1

sk

subject to f̃k(x) − sk ≤ 0, k = 1, . . . , m + 2p

sk ≥ 0

(4)

where f̃k(x) = fk(x) for k = 1, . . . , m, f̃m+j(x) = hj(x),
and f̃m+p+j(x) = −hj(x) for j = 1, . . . , p. In other
words, every equality constrainthj(x) = 0 is turned into a
conjunction of two inequalities,hj(x) ≤ 0 and−hj(x) ≤ 0
before applying the reduction in (4). TheSSF problem can
be interpreted as trying to minimize the infeasibilities of the
constraints, by pushing each slack variable to be as much as
possible close to zero. The optimum is zero and is achieved
if and only if the original set of constraints (3) is feasible. At
optimum, the following result holds:

Proposition IV.1. Let (x∗, s∗) ∈ R
n+m+2p be a primal

optimal andz∗ ∈ R
m+2p be a dual optimal point for(4).

Then: (i) if (3) is feasible,x∗ provides a satisfying assignment;
(ii) moreover, we obtain:

z∗k(f̃k(x∗) − s∗k) = 0 k = 1, . . . , m + 2p. (5)

The first statement trivially follows from the solution of
problem (4). Sincex∗ is the optimal point, it also satisfies
all the constraints in (4) withsk = s∗k = 0, therefore it is a
satisfying assignment for (3). The second statement follows
from complementary slackness. In fact, under the assumptions
in Section III, (4) is a convex optimization problem. Moreover,
it is always possible to find a feasible point which strictly
satisfies all the nonlinear inequalities since, for a any given
x, the slack variablessk can be freely chosen, hence Slater’s
conditions hold. As a result, strong duality holds as well, i.e.
both the primal and dual optimal values are attained and equal,
which implies complementary slackness, as in (5).

We use complementary slackness to generate infeasibility
certificates for (3). In fact, if a constraintk is strictly satisfied
(i.e. s∗k = 0 and f̃k(x∗) < 0) then the relative dual variable
is zero, meaning that the constraintf̃k(x∗) ≤ 0 is actually
non-active. Conversely, a non-zero dual variable will necessary
correspond to either an unfeasible constraint (s∗k > 0) or to a
constraint that is non strictly satisfied (s∗k = 0). In both cases,

the constraintf̃k(x∗) ≤ sk is active at optimum and it is
one of the reasons for the conflict. We can therefore conclude
that the subset of constraints related to positive dual variables
represents a succinct reason of infeasibility or certificate.

In practice, the optimization algorithm will terminate with
the conclusion that|

∑m+2p

k=1
sk| ≤ ǫt, thus producing anǫt-

suboptimal point for arbitrary small, positiveǫt. Accordingly,
to enforce strict inequalities such as̃fk(x) < 0, we modify
the original expression with an additional user-defined positive
slack constantǫs as f̃k(x) + ǫs ≤ 0, thus requiring that the
constraint be satisfied with a desired marginǫs. All the above
conclusions valid for (3) can then be smoothly extended to the
modified problem.

B. Single-Slack Feasibility Problem

While the SSFproblem is the workhorse of our decision
procedure, we also present an alternative formulation of the
feasibility problem, which will be useful in the approximation
of RCCs.

The SF problem minimizes the maximum infeasibilitys of
a set of convex constraints as follows

minimize s

subject to f̃k(x) − s ≤ 0, k = 1, . . . , m + 2p
(6)

where inequalities are pre-processed as in Section IV-A. The
goal is clearly to drive the maximum infeasibility below
zero. At optimum the sign of the optimal values∗ provides
feasibility information. If s∗ < 0, (6) has a strictly feasible
solution; if s∗ > 0 then (6) is infeasible; finally, ifs∗ = 0 (in
practice|s∗| ≤ ǫt for some smallǫt > 0) and the minimum
is attained, then the set of inequalities is feasible, but not
strictly feasible. As in (4), complementary slackness will hold
at optimum, i.e.

z∗k(f̃k(x∗) − s∗) = 0 k = 1, . . . , m + 2p.

Therefore, even when the problem is feasible, whenever a
constraintk is not active, then(f̃k(x∗) − s∗) 6= 0 will be
strictly satisfied, and implyzk = 0. Conversely, ifzk 6= 0,
then the constraint(f̃k(x∗)− s∗) is certainly active and̃fk(x)
contributes to determine the maximum infeasibility for the
given problem, in the sense that ifs∗ was further pushed to
be more negative,̃fk(x) would be no longer satisfied.

C. Non-convex Constraint Approximation

A negated (reversed) convex constraint (an RCC) is non-
convex and defines a non-convex setN . Any conjunction
of this non-convex constraints with other convex constraints
results in general in a non-convex set. To deal with such
non-convex sets, we propose heuristics to compute convex
over- and under-approximations, which can then be solved
efficiently. This section describes these techniques.

Our approximation schemes are based on noting that the
complementary set̄N is convex. Therefore geometric prop-
erties of convex sets, such as strict or weak separation [8],
can still be used to approximate or boundN via a supporting
hyperplane. Once a non-convex constraint is replaced with a



bounding hyperplane, the resultingapproximate problem(AP)
will again be convex, and all the results in Section IV-A will
be valid for this approximate problem.

For simplicity, we assume in this section that we have
exactly one non-convex constraint (RCC), and the rest of the
constraints are convex. We will describe the general case in
Sec. IV-D. Beg(x) the convex function associated with the
RCC. Our approach proceeds as follows:

1) Solve the sum-of-slacks (SSF) problem for just the
convex constraints. Denote the resulting convex region
by B.
If the resulting problem isUNSAT, report this answer
along with the certificate computed as described in
Sec. IV-A.
Otherwise, if the answer returned isSAT, denote the
optimal point asx∗

b (satisfying assignment) and proceed
to the next step.

2) Add the negation of the RCC (a convex constraint) and
solve the SSF problem again, which we now denote as
reversed problem(RP). There are two cases:
(a) If the answer isUNSAT, then the RCC regionN̄

does not intersect the convex regionB. This implies
that B ⊂ N , and hence the RCC is a redundant
constraint. This situation is illustrated in Fig. 1(a).
Thus, the solver can simply returnSAT (as returned
in the previous step).

(b) On the other hand, if the answer isSAT, we denote
asx∗

c the optimal point of the RP and check whether
the negated RCC is now redundant, based on the
shift induced in the optimal pointx∗

b . In particular,
if both x∗

c andx∗

b are insideN̄ , we solve two single-
slack feasibility (SF) problems, and we denote as
x̃∗

b and x̃∗

c the two optimal points, for the problem
having just the convex constraints and for the the RP,
respectively. Similarly, we denote the two optimal
values as̃s∗b and s̃∗c .
As also observed in Section IV-B, for a set of
satisfiable constraints,̃x∗

b , x̃∗

c , s̃∗b ands̃∗c may contain
more information than the optimal pointsx∗

b andx∗

c

(and their slack variables) for theSSFproblem. In
fact, sinces̃∗b and s̃∗c are also allowed to assume
negative (hence different) values at optimum, they
can provide useful indications on how the RCC
has changed the geometry of the feasible set, and
which constraints are actually part of its boundary,
thus better driving our approximation scheme. In
particular, if we verify that̃s∗b = s̃∗c , x̃∗

b = x̃∗

c , and
the slack constraint related to the RCC is not active
at optimum, then we implyB ⊂ N̄ ⇒ B ∩N = ∅.
Hence, the solver can returnUNSAT. This case is
illustrated in Fig. 1(b) for the following conjunction
of constraints:

(x2
1 + x2

2 − 1 ≤ 0) ∧ (x2
1 + x2

2 − 4 > 0)

where(x2
1+x2

2−4 > 0) is the non-convex constraint
defining regionN .

Fig. 1. Two special cases for handling non-convex constraints: (a) by adding
a negated RCC a new set is generated that is strictly separated from the
previous convex set; (b) the negated RCC generates a set that totally includes
the previous convex set.

If none of the above cases hold, we proceed to the next
step. For example, this is the case wheneverx∗

b is outside
N̄ , or on its boundary (i.e.g(x∗

b ) ≥ 0). This implies that
the negated RCC is not redundant, and we can move to
the next step without solving the two SF problems.

3) In this step, we generate a convex under-approximation
of the original formula including the convex constraints
and the single non-convex RCC. If the resulting problem
is found satisfiable, the procedure returnsSAT. Other-
wise, it returnsUNKNOWN.

We now detail the under-approximation procedure using a2-
dimensional region, defined by the following SMT formula:

(x2
1+x2

2−1 ≤ 0)∧(x2
1 +x2

2−4x1 ≤ 0)∧(x2
1 +x2

2−2x2 > 0).
(7)

As apparent from the geometrical representation of the sets in
Fig. 2 a), the problem is clearly satisfiable and a satisfying
valuation could be any point in the grey regionA.

First, we note for this example the results obtained before
the under-approximation is performed. We solve theSSFprob-
lem for the convex setB = {(x1, x2) ∈ R

2 : (x2
1 + x2

2 − 1 ≤
0) ∧ (x2

1 + x2
2 − 4x1 ≤ 0)}, obtained fromA after dropping

the RCC. The problem is feasible, as shown in Fig. 2 (b), and
the optimal pointx∗

b = (0.537, 0) is returned.
Next, the RCC is negated to become convex and theSSF

problem is now solved on the newly generated formula

(x2
1 +x2

2−1 ≤ 0)∧(x2
1 +x2

2−4x1 ≤ 0)∧(x2
1 +x2

2−2x2 ≤ 0)

which represents thereversed problem(RP). The RP will
provide useful information for the approximation, thus acting
as a “geometric probe” for the optimization and search space.
Since the RCC is reversed, the RP is convex and generates the
setC, shown in Fig. 2 (c).

Let us assume, at this point, that the RP is feasible, as
in this example. ThenC 6= ∅, and an optimal pointx∗

c =
(0.403, 0.429) ∈ C is provided. Moreover,A can be expressed
asB \C, andx∗

b is clearly outside the convex set̄N generated
by N , meaning that we can go to the under-approximation
step without solving the SF problems since the negated RCC
is certainly non-redundant.

The key idea for under-approximation is to compute a
hyperplane that we can use to separate the RCC region



Fig. 2. Geometrical representation of the sets used in Section IV-C to illustrate the approximation scheme in CalCS: (a)A is the search space (in grey)
for the original non-convex problem including one RCC constraint; (b)B is search space when the RCC is dropped (over-approximation ofA); (c) C is the
search space for thereversed problem, i.e. the problem obtained from the original one in (a) when the RCC is negated; the RP is therefore convex; (d)D is
the under-approximation ofD in (a) using a supporting hyperplane.

N from the remaining convex region. This “cut” in the
feasible region is performed by exploiting the perturbation
of the optimal point fromx∗

b to x∗

c induced by the RCC
N : (x2

1 + x2
2 − 2x2) ≤ 0. At this point, we examine a few

possible cases:
Case (i):Suppose thatx∗

b 6= x∗

c , andx∗

b is outsideN̄ (as in
our example). In this case, we find the orthogonal projection
p = P(x∗

b) onto N̄ , which can be performed by solving a
convex,L2-norm minimization problem [8]. Intuitively, this
corresponds to projectingx∗

b onto a pointp on the boundary of
the regionN̄ . Finally, we compute the supporting hyperplane
to N̄ in p. The half-space defined by this hyperplane that
excludesN̄ provides our convex (affine) approximatioñN
for N .

For our example,N̄ = {x ∈ R
n : x2

1 + x2
2 − 2x2 ≤ 0}.

The affine constraint resulting from the above procedure is
Ñ : −0.06x1 +0.12x2 +0.016 < 0. On replacing the RCCN
with Ñ , we obtain a new setD, as shown Fig. 2(d), which is
now our approximation forA.

An SSF problem can now be formulated forD thus pro-
viding the satisfying assignmentx∗

d = (0.6,−0.33). The
approximation procedure will stop here and returnSAT.

Notice that, wheneverx∗

b is on the boundary of̄N , a similar
approximation as described above can be performed. In this
case,x∗

b is the point through which the supporting hyperplane
needs to be computed, and no orthogonal projection is neces-
sary. The normal direction to the plane needs, however, to be
numerically computed by approximating the gradient ofg(x)
in x∗

b .
Case (ii): A second case occurs whenx∗

b 6= x∗

c , but both
x∗

b and x∗

c are inside N̄ . In this case, starting fromx∗

c

we search the closest boundary point along the(x∗

b − x∗

c)
direction, and then compute the supporting hyperplane through
this point as in the previous case. In fact, to find an under-
approximation for the feasible regionA, we are looking for
an over-approximationof the setN̄ in the form of a tangent
hyperplane. Since the optimal pointx∗

b moves tox∗

c after the
addition of the RCC,N̄ is more likely to be “centered” around
x∗

c than aroundx∗

b . Therefore, a reasonable heuristic could be
to pick the direction starting fromx∗

c and looking outwards,
namely(x∗

b − x∗

c).

Case (iii):Assume now thatx∗

b = x∗

c (with bothx∗

b andx∗

c

inside N̄ ), but we havex̃∗

b 6= x̃∗

c , where x̃∗

b and x̃∗

c are the
two optimal points, respectively, for theSF problem having
just the convex constraints and for the the RP in theSF form,
as computed in Step 2 (b) above. In this case, to operate the
“cut”, we cannot use the perturbation onx∗

b and x∗

c , as in
Case (ii), but we can still exploit the information contained
in the SF problems. This time, starting from̃x∗

c , we search
the closest boundary point along the(x̃∗

b − x̃∗

c) direction, and
then compute the supporting hyperplane through this boundary
point.

Case (iv):Finally, both x∗

b = x∗

c and x̃∗

b = x̃∗

c can also
occur, as for the following formula:

(x2
1 + x2

2 − 1 ≥ 0) ∧ (x2
1 + x2

2 − 4 ≤ 0),

for which A would coincide with the white ring region in
Fig. 1 b) (including the dashed boundary). In this case, no
useful information can be extracted from perturbations in the
optimal points. The feasible set appears “isotropic” to bothx∗

b

andx̃∗

b , meaning that any direction could potentially be chosen
for the approximations. In our example, we infer from theSF
problems that the inner circle is the active constraint and we
need to replace the non-convex constraint corresponding to its
exterior with a supporting hyperplane, e.g.−x1 + 1 ≤ 0, by
simply picking it to be orthogonal to one of the symmetry
axes of the feasible set. The resulting under-approximation is
found SAT and we obtain a satisfying assignment consistent
with this approximation.

We note that we still have the possibility for the solver
to returnUNKNOWN. Depending on the target application, the
user can interpret this asSAT (possibly leading to spurious
counterexamples in BMC) orUNSAT (possibly missing coun-
terexamples). For higher accuracies, the approximation scheme
can also be iterated over a set of boundary points of the
original constraintf(x), to build a finer polytope bounding
the non-convex set.

D. Overall Algorithm

Our theory solver is summarized in Fig. 3. This procedure
generalizes that described in the preceding section by handling
multiple non-convex constraints (RCCs). In essence, if the



function [status, out] = Decision Manager(CC, RCC)
% receive a set of convex (CC) and non-convex constraints (RCC)
% return SAT/UNSAT and MODEL/CERTIFICATE
%
% solve sum-of-slacks feasibility problems with CCs
[status, out] = SoS solve(CC);
% OUT contains CERTIFICATE
if (status== UNSAT) return ; end
AC = CC;% AC stores all constraints
for (k = 1, k <= length(RCC), k++)

RP = reverse(CC, RCC(k));
[status, out] = SoS solve(RP);
% strict separation: ignore RCC
if (RP == UNSAT) continue; end
% both CC and RP problems are SAT: approximation
[approxCC, active, drop] = Approximate(RCC(k));
% RCC incompatible (inclusion)
if (˜active)

status= UNSAT;
% certificate
out = [CC, RCC(k)]; return ;
% over-approximation: ignore constraint

elseif (drop) continue;
else AC = AC ∪ approxCC;

[status, out] = SoS solve(AC);
if (status== SAT)

Check sat assignment on original constraints;
if (original constraints satisfied) status= SAT; return ;

end
end

end
status= UNKNOWN;

Fig. 3. Pseudo-code for the CalCS decision procedure.

conjunction of all convex constraints and any single RCC is
foundUNSAT, then we reportUNSAT. In order to reportSAT,
on the other hand, we must consider all convex constraints and
all affine under-approximations of non-convex constraints.

The details are as follows. For a given conjunction of
CCs and RCCs, we first solve theSSF problem generated
by the CCs alone (Section IV-A). If the problem isUNSAT,
the algorithm returns the subset of constraints that provide the
reason for inconsistency (infeasibility certificate) and stops.
Otherwise, each RCC is processed sequentially. For each
RCC, the initial convex problem is augmented and the RP
is formulated and solved. If the RP is unfeasible then, as
discussed in Section IV-C, the constraint is ignored since
it is non-active for the current feasibility problem. On the
contrary, if the RP is feasible we proceed by computing an
approximation.

The Approximate method implements the under-
approximation strategies outlined in Section IV-C and deter-
mines whether the constraint is non-active or can be dropped
by solving additionalSF problems (Section IV-B). If the RCC
is non-active for the RP, (as in full inclusion), the problem is
UNSAT, meaning that the RCC is incompatible with the whole
set of CC (step 2(b) of Section IV-C). The full set, including
both the CC and the current RC is returned as an explanation
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Convex Programming
Theory

Real
Model

Conjunction
of Constraints

BMC Solver

BMC
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HA
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Trace

SMT
Model

SMT
Model

SMT
Query

Fig. 4. The CalCS convex solver: inputs and outputs are denoted with blue
and green arrows, respectively.

for the conflict. If an over-approximation is required, then
constraint is ignored. If the constraint is compatible and cannot
be dropped, the supporting hyperplane is computed and the
new under-approximated problem is solved. The algorithm
proceeds with visiting the other RCCs. Finally, when all
non-convex constraints have been processed without returning
UNSAT the algorithm is re-invoked on the set of convex
constraints CC and the set of affine under-approximations of
non-convex constraints RCC. If this invocation returnsSAT,
so does the overall algorithm; otherwise, it returnsUNKNOWN.
A SAT answer is accompanied by a satisfying valuation to
variables.

V. I NTEGRATING CONVEX SOLVING AND SAT SOLVING

Using the theory solver described in Section IV, we have
implemented a proof-of-concept SMT solver, CalCS, that
supports the convex sub-theory. As in [10], CalCS receives as
input an SMT formula in a DIMACS-like CNF format, where
atomic predicates can be both Boolean or convex constraints,
according to the definitions in Section III. Our theory solver
interacts with a SAT solver following the lazy theorem proving
paradigm, as is schematically pictured in Fig. 4.

A. SAT Solver

To benefit from the most recent algorithmic advances in
SAT solving, MiniSAT2 [21] was adapted to our specific
requirements and embedded in CalCS. In particular, we added
two decision heuristics to better prune our search space in the
presence of convex constraints. First, we always first assign
values to all the Boolean variables in the formula, to satisfy
as many clauses as possible and reduce the number of calls
to the convex theory, a bottleneck in all lazy solvers. If some
clauses in the Boolean abstraction of the original formula are
not yet satisfied, we proceed with assigning values also to
some of the auxiliary variables that represent the non-linear
constraints until all clauses are satisfied.

As a second decision heuristic, we assign values to Boolean
variables so as to increase the number of convex constraints
that the theory solver sees. We classify all nonlinear constraints
as CC or RC as soon as we read them. Since we track the
nature of the nonlinear constraints, whenever we can choose



an assignment for an auxiliary variable, we decide1 for a CC,
and0 for a RCC, in such a way to maximize the number of
convex constraints for each theory call so as to reduce any
approximation performed within the theory solver.

B. Theory Manager

The Theory Manager (TM) is the link between the SAT
solver and the convex solver. The SMT problem is first
transformed into a SAT problem, by mapping the nonlinear
constraints into auxiliary Boolean variables. The formula is
then passed to the SAT solver. If the outcome isUNSAT,
the theory manager stops and returnsUNSAT. Conversely,
if the purely Boolean abstraction of the original problem is
insteadSAT, the TM maps the assigned auxiliary variables
back to a conjunction of CC and RCC to be sent to the
theory for consistency checking. If the theory solver returns
SAT, the whole problem is satisfied and a combined Boolean
and realmodel(satisfying assignment) is returned. Whenever
the theory finds inconsistencies (UNSAT), the reason for the
conflict (certificate) is encoded into a newlearned clause.
Since the theory returns a subset of constraints that are
infeasible by themselves, we generate a clause in the form

(¬la ∨ ¬lb ∨ . . . ∨ ¬lk)

where la, lb, . . . , lk are the auxiliary literals associated with
the infeasible constraints. The SAT problem is then augmented
and a new SAT query is performed until either the SAT solver
concludes withUNSAT or the theory solver concludes with
SAT.

The following theorems state the properties of CalCS.

Theorem V.1. Letφ be a convex SMT formula. Then, if CalCS
reports SAT on φ, φ is satisfiable. Alternatively, if CalCS
reportsUNSAT, φ is unsatisfiable.

Note that the converse does not hold in general. If CalCS
reportsUNKNOWN, it is possible that the formulaφ is either
satisfiable or unsatisfiable.

In the case of a monotone convex SMT formula, we have
stronger guarantees.

Theorem V.2. Let φ+ be a monotone convex SMT formula.
Then, CalCS reportsSAT on φ+ iff φ+ is satisfiable and
CalCS reportsUNSAT iff φ+ is unsatisfiable.

The result follows straightforwardly from the fact that for
monotone convex SMT formulas, all convex constraints are
assigned true, so the theory solver never sees non-convex
constraints.

VI. EXPERIMENTAL RESULTS

In our prototype implementation, we use the Matlab-based
convex programming packageCVX [22] to solve the optimiza-
tion problems, while theory solver and SAT solver interact via
an external file I/O interface. A faster implementation would
be possible by using a more optimized convex optimization
engine, such asCVXMOD [23]. We first validated our approach
on a set of benchmarks [24], including geometric decisions
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Fig. 5. Simple hybrid automata with convex guards and invariants (left) and
representation of the error traces from CalCS (solid) and iSAT (dashed) in
the (x, y) plane (right). The safety interval forx is [−4, 4].

problems dealing with the intersection ofn-dimensional ge-
ometric objects, and randomly generated formulae obtained
from 3-SAT classical Boolean benchmarks [25], after ade-
quately replacing some of the Boolean variables with convex
or RC constraints. Table I shows a summary of an experimen-
tal evaluation of our tool, also in comparison with iSAT. To
evaluate the impact of generating a compact explanation of
unsatisfiability (a certificate) we run CalCS in two modes: in
the first mode (C in Table I), a subset of conflicting constraints
is provided, as detailed in Section IV, while in the second
mode (NC in Table I), the full set of constraints is returned as
simply being inconsistent. All benchmarks were performed on
a 3 GHz Intel Xeon machine with2 GByte physical memory
running Linux.

Results show that whenever problems are purely convex,
they are solved without approximation and with full control of
rounding errors and can provide results that are more accurate
than the ones of iSAT, in comparable time, in spite of our
prototype implementation. In particular, the interval-based rea-
soning scheme can incur inaccuracies and large computation
times when the satisfying sets are lower dimensional sets with
respect to the full search space including all the real variables
in the problems. As a simple example, for the formula:

(x2
1 + x2

2 − 1 ≤ 0) ∧ (x2
1 + x2

2 − 6x1 + 5 < 0), (8)

iSAT returns an interval that contains a spurious solution,
while our convex sub-theory can rigorously deal with tight
inequalities and correctly returnsUNSAT (see (8) and Conj3
in Tab. I). Similarly, CalCS can provide the correct answer for
the following formulae ((9) and (10) in Tab. I), mentioned as
prone to unsound or spurious results in [12]:

(x+y < a)∧(x−y < b)∧(2x > a+b)∧(a = 1)∧(b = 0.1),
(9)

(x ≤ 109) ∧ (x + p > 109) ∧ (p = 10−8). (10)

While for small problem instances (Bool1-2-3, Conj1) both
the C and NC schemes show similar performances, the
advantages of providing succinct certificates becomes evident
for larger instances (Bool4-5-6-7, Conj2), where we rapidly
reached a time-over (TO) limit (set to200 queries to the theory
solver) without certificates.



TABLE I
CALCS: EXPERIMENTS

File Res. CalCS Approx. Queries iSAT
C/NC [s] C/NC C/NC [s]

(8) UN 0.5 (U) 0 1 0.05 (S)
(9) UN 0.2 (U) 0 1 0 (S)

Conj3 UN 22/23 (U) 5 3 0.05 (S)
(10) SAT 0.2 (S) 0 1 0 (U)

Bool1 SAT 3.5 (S) 1 1 8 (S)
Bool2 SAT 16 (S) 3 1 0.91 (S)
Bool3 SAT 27/23 (S) 5/4 2 0.76 (S)
Conj1 UN 8.7/9.5 (U) 3 2 0.3 (U)
Bool4 SAT 17.9/17.7 (S) 3 1 0.75 (S)
Conj2 UN 17/23.3 (U) 4/5 4/7 0.4 (U)
Bool5 UN 23.5/321.7 (U) 4/36 5/94 0.02 (U)
Bool6 UN 29.8/TO (U) 5/− 6/− 0.4 (U)
Bool7 SAT 257.7/TO (S) 24/− 6/− 1.31 (S)

We have also tested CalCS on BMC problems, consisting
in proving a property of a hybrid discrete-continuous dynamic
system for a fixed unwinding depthk. We generated a set
of hybrid automata (HA) including convex constraints in both
their guards and invariants. For the simple HA in Fig. 5 we also
report a pictorial view of the safety region for thex variable,
and the error traces produced by CalCS (solid line) and iSAT
(dashed line). The circle in Fig. 5 represents the HA invariant
set, while the portion of the parabola underlying thex axis
determines the set of pointsx satisfying the property we want
to verify, i.e. {x ∈ R : x2 − 16 ≤ 0}. Our safety region
is therefore the closed interval[−4, 4]. The dynamics of the
HA are represented by the solid and dash lines. As far as the
invariant is satisfied, the continuous dynamics hold and the
HA moves along the arrows on the(x, y) plane, starting from
the point (2, 3). When the trajectories intersect the circle’s
boundary, a jump occurs (e.g. from(3, 4) to (3, 2) and from
(4, 3) to (4, 1)) and the system is reset. Initially, both the solid
and dashed trajectories are overlapped (they are drawn slightly
apart for clarity). However, more accurately, we return unsafe
after 3 BMC steps (k = 3), while iSAT stops at the second
step producing an error trace that is still in the safety region,
albeit on the edge. As a final case study, we considered aircraft
conflict resolution [26] based on the Air Traffic Alert and
Collision Avoidance System (TCAS) specifications (Tab. II).
The hybrid automata in Fig. 6 models a standardized maneuver
that two airplanes need to follow when they come close to each
other during their flight. When the airplanes are closer than a
distancednear , they both turn left by∆φ degrees and fly for
a distanced along the new direction. Then they turn right and
fly until their distance exceeds a thresholddfar. At this point,
the conflict is solved and the two airplanes can return on their
original route. We verified that the two airplanes stay always
apart, even without coordinating their maneuver with the help
of a central unit.

VII. C ONCLUSIONS

In this paper, we have proposed a procedure for satisfiability
solving of a Boolean combination of nonlinear constraints that
are convex. We have prototyped CalCS, an SMT solver that

TABLE II
TCAS BMC CASE STUDY

Maneuver type Crash state #queries run time [s]

UNSAFE CRUISE 2 10.9
UNSAFE LEFT 4 28
UNSAFE STRAIGHT 6 50

SAFE NONE 10 110
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Fig. 6. Air Traffic Alert and Collision Avoidance System

combines fundamental results from the theory of convex pro-
gramming with the efficiency of SAT solving. By restricting
our domain of reasoning to a subset of non-linear constraints,
we can solve for conjunctions of non-linear constraints glob-
ally and accurately, by formulating a combination of convex
optimization problems and exploiting information from their
primal and dual optimal values. In case the conjunction of
theory predicates is infeasible, we have provided a formulation
that allows us to generate certificates of unsatisfiability, thus
enabling the SMT solver to perform conflict-directed learning.
Finally, whenever non-convex constraints originate from con-
vex constraints due to Boolean negation, we have described
a procedure that uses geometric properties of convex sets and
supporting hyperplanes to generate conservative approxima-
tions of the original set of constraints. We have validated our
approach on several benchmarks including examples of BMC
for hybrid systems, showing that we can be more accurate
than current leading non-linear SMT solvers. In the future, we
would like to extend the set of constraints under examination
to include posynomial or signomial functions, thus leveraging
geometric programming as an extension to convex program-
ming. Further improvements could also include devising more
sophisticated learning and approximation schemes.
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