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Abstract

We introduce a method that adapts object models acquired in a par-
ticular visual domain to new imaging conditions by learning a transforma-
tion which minimizes the effect of domain-induced changes in the feature
distribution. The transformation is learned in a supervised manner, and
can be applied to categories unseen at training time. We prove that the
resulting model may be kernelized to learn non-linear transformations un-
der a variety of regularizers. In addition to being one of the first studies
of domain adaptation for object recognition, this work develops a general
theoretical framework for adaptation that could be applied to non-image
data. We present a new image database for studying the effects of vi-
sual domain shift on object recognition, and demonstrate the ability of
our method to improve recognition on categories with few or no target
domain labels, moderate to large changes in the imaging conditions, and
even changes in the feature representation.

1 Introduction

Supervised classification methods such as kernel-based and nearest-neighbor
classifiers have been shown to perform very well on standard object recognition
tasks (e.g. [1], [2], [3]). However, many such methods expect the test images
to come from the same distribution as the training images, and often fail when
presented with a novel visual domain. While the problem of domain adapta-
tion has received significant recent attention in the natural language processing
community, it has been largely overlooked in the object recognition field. In
this paper, we present a novel adaptation method, and apply it to the problem
of domain shift in the context of object recognition.

Often, we wish to perform recognition in a target visual domain where we
have very few labeled examples and /or only have labels for a subset of categories,
but have access to a source domain with plenty of labeled examples in many
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Figure 1: (Left) Example of extreme visual domain shift: The table shows how
the classification accuracies (averaged over 31 categories) of two methods (an SVM
over a bag-of-words representation (SVM-bow) and the Naive Bayes nearest neighbor
(NBNN) classifier of [3]) degrade when they are trained on the source domain (online
merchant images) and tested on the target domain (images from office robot). See
Sec. 4 for detailed dataset descriptions. (Right) Unlike category transfer methods,
our method does not transfer structure between related tasks, but rather transfers the
domain shift to new tasks (which may or may not be related), such as from tasks 1-3
to task 4, as shown in the figure.

categories. As Figure 1 shows, it is insufficient to directly use object classifiers
trained on the source domain, as their performance can degrade significantly
on the target domain. Even when the same features are extracted in both
domains, and the necessary normalization is performed on the image and the
feature vectors, the underlying cause of the domain shift can strongly affect the
feature distribution and thus violate the assumptions of the classifier. Typical
causes of visual domain shift include changes in the camera, image resolution,
lighting, background, viewpoint, and post-processing. In the extreme case, all
of these changes take place, such as when shifting from typical object category
datasets mined from internet search engines to images captured in real-world
surroundings, e.g. by a mobile robot (see Figure 1). Furthermore, the feature
vectors could be extracted using different pipelines and could have different
dimensionalities.

Recently, domain adaptation methods that attempt to transfer classifiers
learned on a source domain to new domains have been proposed for natural
language tasks. For example, Blitzer et al. adapt sentiment classifiers learned on
book reviews to electronics and kitchen appliances [4]. We argue that addressing
the problem of domain adaptation for object recognition is essential for two
reasons: 1) while labeled datasets are becoming larger and more available, they
still differ significantly from many interesting domains, and 2) it is unrealistic
to expect the user to collect many labels in each new domain, especially when
one considers the large number of possible object categories.

In this paper, we introduce a novel domain adaptation technique based on
cross-domain transformations. The key idea is to learn a regularized non-linear
transformation that maps points from one domain to another domain (see Fig-



ure 2), using supervised data from both domains. The input consists of pairs of
inter-domain examples that are known to be similar (or dissimilar). The out-
put is the learned transformation, which can be applied to previously unseen
test data points. We present a general model for learning linear cross-domain
transformations, and then prove a novel result showing how to learn non-linear
transformations by kernelizing the formulation for a particular class of regular-
izers. The ability to learn asymmetric and non-linear transformations is key, as
it allows us to handle more general types of domain shift and changes in feature
type and dimension. Encoding the domain invariance into the feature repre-
sentation allows our method to benefit a broad range of classification methods,
from k-NN to SVM, as well as clustering methods.

Importantly, our approach can be applied to the scenario where some of
categories do not have any labels in the target domain. This essentially means
transferring the learned “domain shift” to new categories encountered in the
target domain. Thus, our approach can be thought of as a form of knowledge
transfer from the source to the target domain. However, in contrast to many
existing transfer learning paradigms (e.g. [5], [6]), we do not presume any degree
of relatedness between the categories that are used to learn the transferred
structure and the categories to which the structure is transferred (see Figure 1).
The key point is that we are transferring the structure of the domain shift, not
transferring structures common to related categories.

In the next section, we relate our approach to existing work on domain
adaptation. Section 3 describes the theoretical framework behind our approach,
including novel results on the possibility of kernelization of the asymmetric
transform, and presents the main algorithm. We evaluate our method on a new
dataset designed to study the problem of visual domain shift, which is described
in Section 4, and show results of object classifier adaptation on several types of
visual domain shift in Section 5.

2 Related Work

The domain adaptation problem has recently started to gain attention in the
natural language community. Daume III [7] proposed a domain adaptation
approach that works by transforming the features into an augmented space,
where the input features from each domain are copied twice, once to a domain-
independent portion of the feature vector, and once to the portion specific to
that domain. The portion specific to all other domains is set to zeros. While
“frustratingly” easy to implement, this approach only works for classifiers that
learn a function over the features. With normalized features (as in our ex-
perimental results), the nearest neighbor classifier results are unchanged after
adaptation. Structural correspondence learning is another method proposed for
NLP tasks such as sentiment classification [4]. However, it is targeted towards
language domains, and relies heavily on the selection of pivot features, which
are words that frequently occur in both domains (e.g. “wonderful”, “awful”)
and are correlated with domain-specific words.



°
() * (Y]
*
- ® o0 .{O.\.. ...o *x
[
m ° *

(] *
¥ & . >
mm = e Ny m
| EE N
(a) Domain shift prob- (b) Pairwise con- (c) Invariant space
lem straints

Figure 2: The key idea of our approach to domain adaptation is to learn a transforma-
tion that compensates for the domain-induced changes. By leveraging (dis)similarity
constraints (b) we aim to reunite samples from two different domains (blue and green)
in a common invariant space (c) in order to learn and classify new samples more ef-
fectively across domains. The transformation can also be applied to new categories
(lightly-shaded stars). This figure is best viewed in color.

Recently, several adaptation methods for the support vector machine (SVM)
classifier have been proposed in the video retrieval literature. Yang et al. [§]
proposed an Adaptive SVM (A-SVM) which adjusts the existing classifier f*(x)
trained on the source domain to obtain a new SVM classifier f!(x). Cross-
domain SVM (CD-SVM) proposed by Jiang et al. [9] defines a weight for each
source training sample based on distance to the target domain, and re-trains the
SVM classifier was with re-weighted patterns. The domain transfer SVM (DT-
SVM) proposed by Duan et al. [10] used multiple-kernel learning to minimize
the difference between the means of the source and target feature distributions.
These methods are specific to the SVM classifier, and they require target-domain
labels for all categories. The advantage of our method is that it can perform
transfer of domain-invariant representations to novel categories, with no target-
domain labels.

Finally, metric and similarity learning has been successfully applied to a va-
riety of problems in vision and other domains (see [11, 12, 13, 14] for some vision
examples) but to our knowledge has not been applied to domain adaptation.

3 Domain Adaptation Using Regularized Cross-
Domain Transforms

We begin by describing our general domain adaptation model in the linear
setting, focusing on the particular cases that we employ in our experiments,
then, in Section 3.1, we prove a novel result showing that kernelization of the
model can be achieved under a wide class of regularizers.

In the following, we assume that there are two domains A and B (e.g.,
source and target). Given vectors € A and y € B, we propose to learn a
linear transformation W from B to A (or equivalently, a transformation W7 to
transform from A to B). If the dimensionality of the vectors @ € A is d4 and
the dimensionality of the vectors y € B is dpg, then the size of the matrix W is



da x dg. We denote the resulting inner product similarity function between
and the transformed y as

simy (x,y) = =’ Wy.

The goal is to learn the linear transformation given some form of supervision,
and then to utilize the learned similarity function in a classification or cluster-
ing algorithm. To avoid overfitting, we choose a regularization function for W,
which we will denote as r(W) (choices of the regularizer are discussed below).
Denote X = [x1,...,@p,] as the matrix of n4 training data points (of dimen-
sionality d4) from A and Y = [y1, ..., Yn,] as the matrix of np training data
points (of dimensionality dg) from B. We will discuss the exact form of super-
vision we propose for domain adaptation problems in Section 3.2, but for now
assume that it is a function of the learned similarity values simy (2,vy) (i.e., a
function of the matrix XZWY), so a general optimization problem would seek
to minimize the regularizer subject to supervision constraints given by functions
C;.

miny (W)

s.t. a(XTwy)>o0, 1<i<ec (1)

Due to the potential of infeasibility, we can introduce slack variables into the
above formulation, or write the problem as an unconstrained problem:

. (xT
min r(W) + /\zi:c,(X WY).

In this paper, we focus on two particular special cases of this general transfor-
1

mation learning problem. The first employs the regularizer r(W) = 1||W||% and
constraints of the form simy (x,y) < b for dissimilar pairs or simw (z,y) > b
for similar pairs.! We call this probelm the Frobenius-reqularized asymmetric
transformation problem with similarity and dissimilarity constraints, or asymm
for short in the rest of the paper.

Second, we consider the regularizer r(W) = tr(W) — log det(W), and con-
straints that are a function of the learned distances dw (z,y) = (z —y)T W (x —
y) (as with similarity constraints, the learned distances are linear functions
of XTWY). Unlike the asymm formulation, this regularizer can only be ap-
plied when the dimensionalities of the two domains are equal (d4 = dp). This
choice of regularizer and constraints has previously been studied as a Maha-
lanobis metric learning method, and is called information-theoretic metric learn-
ing (ITML) [13]; we stress, however, that the use of such a regularizer for domain
adaptation is novel, as is our method for constructing cross-domain constraints,
which we discuss in Section 3.2. We call this approach symm for short, since
the learned transformation W is always symmetric positive definite.

Lsimyy (z;,y;) for some x; € A and y; € B can be written as a linear function of XTwy

via the expression eiTXTWYej, where e; and e; are the i-th and j-th standard basis vectors,
respectively.



3.1 Kernelization

There are two main limitations to the transformation learning problem (1) pre-
sented above. First, it is limited to linear transformations W, which may not
be sufficient for some adaptation tasks. Second, the size of W grows as d4 - dp,
which may be prohibitively large for some problems. In this section, we prove
that (1) may be solved in kernel space, resulting in a non-linear transforma-
tion whose complexity is independent of the dimensionalities of the points in
either domain. This kernelization result is the first general kernelization re-
sult for asymmetric transformation learning, and is critical to obtaining good
performance for several domain adaptation tasks.

The main idea behind the following results is to show that i) the learned
similarity function resulting from solving (1) can be computed only using inner
products between data points in A and inner products between data points
in B, and ii) (1) can be reformulated as an optimization problem involving
such inner products and whose size is independent of the dimensionalities d4
and dp. Then we can replace standard inner products with arbitrary kernel
functions, resulting in non-linear learned transformations in the input space. In
the following analysis, the input kernel matrices over within-domain points are
given as K4 = XTX and K = YTY. We begin with the first result (proof in
Appendix A).

Lemma 3.1. Assume that the regularizer r is convez, r(W) =3, r;(0;), where
o1,...,04 are the singular values of W, and that min, rj(x) = 0. Then the
optimal solution W* to (1) (or the corresponding unconstrained version) is of

the form W* = XKXI/QLK];NYT, where L is some ng X ng matrix.

Note that the assumption that min, r;(z) = 0 can be eliminated, and this
leads to a W* of the form ol + XK;UQLKB?UQYT. One important con-
sequence of the above lemma is that, given arbitrary points « and y, the
function simy (2, y) can be computed in kernel space—by replacing W with
XKZl/zLKglﬁYT, the expression €7 Wy can be written purely in terms of
inner products.

The above result demonstrates the existence of such a matrix L, but does
not show how to compute it. Using the above lemma, we now show how to
rewrite the optimization (1) in terms of the kernel matrices to solve for L (proof
in Appendix A):

Theorem 3.2. Assume the conditions of Lemma 3.1 hold. If W* is the optimal
solution to (1) and L* is the optimal solution to the following problem:

miny, (L) @)
st a(KY’LKY?) >0, 1<i<c,

then W* = XKZl/zL*KBTI/QYT. In the unconstrained case, the corresponding
optimization is ming, (L) + X, ci(Ki‘/zLK;m).



In summary, we have proven that the general asymmetric transformation
learning problem may be applied in kernel space under a class of convex reg-
ularizers of the form r(W) = > ,r;(0;). Though our focus on this paper is
on two particular regularizers—the squared Frobenius norm and a LogDet-type
regularizer (for the symmetric case)—one can imagine applying our analysis to
other regularizers. For example, the trace norm tr(WW) falls under our frame-
work; because the trace-norm as a regularizer is known to produce low-rank

matrices W, it would be desirable in dimensionality-reduction settings.

3.2 Algorithm

Both regularizers considered in our paper (r(W) = ||W||% and (W) = tr(W)—
log det(W)) are strictly convex, and the constraints we consider are linear. In
either case, one can use a variety of possible optimization techniques. We opted
for an alternating projection method using Bregman’s algorithm; this method
can be easily implemented to scale to large problems and has fast convergence
in practice. See Censor and Zenios for details on Bregman’s algorithm [15].

Generating Cross-Domain Constraints: Assume that there are k cate-
gories, with data from each category i denoted as D;, consisting of (x,y) pairs
of input data and category labels. There are two cases that we consider. In the
first case, we have many labeled examples for each of the n categories in the
source domain data, D® = {D3,..., D3}, and a few labeled examples for each
category in the target domain data, D* = {D?, ..., D! }. In the second case, we
have the same D® but only have labels for a subset of the categories in the target
domain, Dt = {D¢, ..., D! }, where m < k. Here, our goal is to adapt the clas-
sifier trained on the tasks m+ 1, ..., k, which only have source domain labels, to
obtain a new classifier, which reduces the predictive error on the target domain
by accounting for the domain shift. We do this by applying the transformation
learned on the m categories to the features in the source domain training set of
the new categories, and re-training the classifier.

To generate similarity constraints (x;,«;) € S and dissimilarity constraints
(z;, ;) € D necessary to learn the domain-invariant transformation, we use the
following procedure. We sample a random pair consisting of a labeled source
domain sample (zf, y7) and a labeled target domain sample (a:;, y%), and create
a constraint

Simw(wi,a')j)zu if Yi = Yj,
simw (i, x5) <0 if  y; #y;.

(3)

when running asymm and

dw(zi,zj) <u if y =y,

4
dw(ﬂﬁi,l’j) ZZ if Yi #yj. ( )

when running symm. Alternatively, we can generate constraints based not on
class labels, but on information of the form: target sample x; is similar to source
sample ;. This is particularly useful when the source and target data include
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Figure 3: New dataset for investigating domain shifts in visual category recognition
tasks.

images of the same object, as it allows us to best recover the structure of the
domain shift, without learning anything about particular categories. We refer
to these as correspondence constraints. It is important to generate constraints
between samples of different domains, as including same-domain constraints can
make it difficult for the algorithm to learn a domain-invariant metric. In fact, we
show experimentally that generating constraints based on class labels without
regard for domain boundaries, in the style of metric learning, does considerably
worse than our method.

4 A Database for Studying Effects of Domain
Shift in Object Recognition

As detailed earlier, effects of domain shift have been largely overlooked in previ-
ous object recognition studies. Therefore, one of the contributions of this paper
is a database that allows researchers to study, evaluate and compare solutions
to the domain shift problem by establishing a multiple-domain labeled dataset
and benchmark. The database, benchmark code, and code for our method will
be made available to the community upon publication. In addition to the do-
main shift aspects, this database also proposes a challenging office environment
category learning task which reflects the difficulty of real-world indoor robotic
object recognition, and may serve as a useful testbed for such tasks. It contains
a total of 4652 images originating from the following three domains:

Images from the web: The first domain consists of images from the web
downloaded from online merchants (www.amazon.com). This has become a very
popular way to acquire data, as it allows for easy access to large amounts of data
that lends itself to learning category models. These images are of products shot
at medium resolution typically taken in an environment with studio lighting



conditions. We collected two datasets: amazon contains 31 categories? with an
average of 90 images each. The images capture the large intra-class variation of
these categories, but typically show the instances only from a canonical view-
point. amazonINS contains 17 object instances (e.g. can of Taster’s Choice
instant coffee) with an average of two images each.

Images from a digital SLR camera: The second domain consists of im-
ages that are captured with a digital SLR camera in realistic environments with
natural lighting conditions. The images have high resolution (4288x2848) and
low noise. We have recorded two datasets: dsir has images of the 31 object cat-
egories, with 5 different objects for each, in an office environment. Each object
was captured with on average 3 images taken from different viewpoints, for a
total of 423 images. dslrINS contains 534 images of the 17 object instances,
with an average of 30 images per instance, taken in a home environment.

Images from a webcam: The third domain consists of images of the 31
categories recorded with a simple webcam. The images are of low resolution
(640x480) and show significant noise and color as well as white balance arti-
facts. Many current imagers on robotic platforms share a similarly-sized sensor,
and therefore also possess these sensing characteristics. The resulting webcam
dataset contains same 5 objects as for in dSLR, for a total of 795 images.

The database represents several interesting visual domain shifts. First of all,
it allows us to investigate the adaptation of category models learned on the web
to dSLR and webcam images, which can be thought of as in situ observations
on a robotic platform in a realistic office or home environment. Second, domain
transfer between the high-quality dSLR images to low-resolution webcam im-
ages allows for a very controlled investigation of category model adaptation, as
the same objects were recorded in both domains. Finally, the amazonINS and
dsIrINS datasets allow us to evaluate adaptation of product instance models
from web data to a user environment, in a setting where images of the same
products are available in both domains.

5 Experiments

In this section, we evaluate our domain adaptation approach by applying it to
k-nearest neighbor classification of object categories and instances. We use the
database described in the previous section to study different types of domain
shifts and compare our new approach to several baseline methods. First, we
will detail our processing pipeline before we describe the different setting and
elaborate on our empirical findings.

Image Processing: All images were resized to the same width and con-
verted to grayscale. Local scale-invariant interest points were detected using
the SURF [16] detector to describe the image. SURF features have been shown

2The 31 categories in the database are: backpack, bike, bike helmet, bookcase, bottle,
calculator, desk chair, desk lamp, computer, file cabinet, headphones, keyboard, laptop, letter
tray, mobile phone, monitor, mouse, mug, notebook, pen, phone, printer, projector, puncher,
ring binder, ruler, scissors, speaker, stapler, tape, and trash can.



No shift Baseline Methods Our Method
domain A | domain B ‘ knnAA ‘ knnAB ‘ knnBB ‘ ITML(A+B) ‘ ITML(B) ‘ asymm ‘ symm
webcam dslr 0.34 0.14 0.20 0.18 0.23 0.25 0.27
dslr webcam 0.31 0.25 0.23 0.23 0.28 0.30 0.31
amazon webcam 0.33 0.03 0.43 0.41 0.43 0.48 0.44

Table 1: Domain adaptation results for categories seen during training in the
target domain.

Baseline Methods Our Method
domain A domain B || knnAB ‘ ITML(A+B) ‘ asymm ‘ symm
webcam dslr 0.37 0.38 0.53 0.49
webcam-800 | dslr-600 0.31 n/a 0.43 n/a
amazonINS | dsIrINS 0.23 0.25 0.30 0.25

Table 2: Domain adaptation results for categories not seen during training in
the target domain.

to be highly repeatable and robust to noise, displacement, geometric and pho-
tometric transformations. The blob response threshold was set to 1000, and the
other parameters to default values. A 64-dimensional non-rotationally invari-
ant SURF descriptor was used to describe the patch surrounding each detected
interest point. After extracting a set of SURF descriptors for each image, vec-
tor quantization into visual words was performed to generate the final feature
vector. A codebook of size 800 was constructed by k-means clustering on a
randomly chosen subset of the amazon database. All images were converted to
histograms over the resulting visual words. No spatial or color information was
included in the image representation for these experiments.

In the following, we compare k-NN classifiers that use the proposed cross-
domain transformation to the following baselines: 1) k-NN classifiers that op-
erate in the original feature space using a Euclidean distance, and 2) k-NN
classifiers that use traditional supervised metric learning, implemented using
the ITML [17] method, trained using all available labels in both domains. We
kernelize the metric using an RBF kernel with width o = 1.0, and set A\ = 102
As a performance measure, we use accuracy (number of correctly classified test
samples divided by the total number of test samples) averaged over 10 randomly
selected train/test sets.

Same-category setting: In this setting, all categories have (a small num-
ber of) labels in the target domain (3 in our experiments.) We generate con-
straints between all cross-domain image pairs in the training set based on their
class labels, as described in Section 3.2. Table 1 shows the results. In the first
result column, to illustrate the level of performance without the domain shift, we
plot the accuracy of the Euclidean k-NN classifier trained on the source domain
A and tested on images from the same domain (knn_-AA). The next column
shows the same classifier, but trained on A and tested on B (knn_AB). Here,

10




Figure 4: Examples of the 5 nearest neighbors retrieved for a webcam query image
(right image) from the amazon dataset, using the knn_AB baseline in Table 1 (top
row of smaller images) and the learned cross-domain symm kernel (bottom row).

the effect of the domain shift is evident, as the performance drops for all do-
main pairs, dramatically so in the case of the amazon to webcam shift. We can
also train k-NN using the few available B labels (knn_BB, third column). The
fourth and the fifth columns show the metric learning baseline, trained either on
all pooled training data from both domains (ITM L(A+ B), or only on B labels
(ITML(B)). The last two columns show the symmetric and asymmetric vari-
ants of our domain adaptation method. Note that knn_BB does not perform
as well because of the limited amount of labeled examples we have available
in B. Even the more powerful metric-learning based classifier fails to perform
as well as the k-NN classifier using our domain-invariant transform, given the
small amount of labeled target data.

The shift between dslr and webcam domains represents a moderate amount
of change, mostly due to the differences in the cameras, as the same objects
were used to collect both datasets. Since webcam actually has more training
images, the reverse webcam-to-dslr shift is probably better suited to adaptation.
In both these cases, symm outperforms asym, possibly due to the more sym-
metric nature of the shift and/or lack of training data to learn a more general
tranformation. The shift between the amazon and the dslr/webcam domains
is the most drastic (bottom row of Table 1.) Even for this challenging prob-
lem, the adapted k-NN classifier outperforms the non-adapted baselines, with
asymm doing better than symm. Figure 4 show example images retrieved by
our method from amazon for a query from webcam.

New-category setting: In this setting, the test data belong to categories
(or instances) for which we only have labels in the source domain. We use the
first half of the categories to learn the transformation, forming correspondence
constraints between images of the same object instances in roughly the same
pose. We test the metric on the remaining categories. The results of adapting
webcam to dslr are shown the first row of Table 2. Our approach clearly learns
something about the domain shift, significantly improving the performance over
the baselines, with asymm beating symm. Note that the overall accuracies are
higher as this is a 16-way classification task. The second row in Table 2 shows
results of adapting between heterogeneous feature sets: webcam, where features
are computed using an 800-codeword vocabulary, and dslr-600, where a different

11



vocabulary is used, with 600 codewords computed on dSLR images. The baseline
k-NN is achieved by mapping each B codeword to it’s nearest neighbor in A.
This clearly illustrates the advantage of our asymmetric method, as it is able to
handle such drastic transformations of the input features. The last row shows
results on an instance classification task, tackling the shift from Amazon to user
environment images.

6 Conclusion

We presented a detailed study of domain shift in the context of object recogni-
tion, and introduced a novel adaptation technique that projects the features into
a domain-invariant space via a transformation learned from labeled source and
target domain examples. Our approach can be applied to adapt a wide range of
visual models which operate over similarities between samples, and works both
on cases where we need to classify novel test samples from categories seen at
training time, and on cases where the test samples come from new categories
which were not seen at training time. This is especially useful for object recog-
nition, as large multi-category object databases can be adapted to new domains
without requiring labels for all of the possibly huge number of categories. Our
results show the effectiveness of our technique for adapting k-NN classifiers to
a range of domain shifts.
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A Appendix: Proofs

Proof of Lemma 3.1: Let W have singular value decomposition UsUT. We
can therefore write W as W = Zj UjujﬁjT. For every u;, either it is in the range
space of X or the null space of X. If it is in the range space, then u; = Xz;,
for some z;; if it is in the null space, then X7 u; = 0. An analogous statement
holds for u;.

Consider computation of ¢;(XTWY'). Expanding W via the SVD yields

XTwy = xT ( > ojujaf)y = o;(XTu;a]Y).
J J

If either u; is in the null space of X or w@; is in the null space of Y, then
the corresponding terms in the sum will be zero. As a result, o; is completely
unconstrained, and can be chosen to minimize f;, which is assumed to be at 0.

Therefore, let us assume that the singular values are ordered such that the
first ¢ are such that the corresponding singular vectors u are in the range space
of X and u are in the range space of Y. The remainder of the singular values
are equal to 0. Then we have

t

t
w = ZO'J"U,]"&? = ZO’jXZj%fYT
i=1 =1
t
= X(Zajzj2f> vyT =xLy?.
j=1

With the transformation L = Kix/ 2£K]1_3/ 2, we can equivalently write as W =
XK 'PLKGPYT,

Proof of Theorem 3.2: Denote V, = XK;l/2 and Vg = YKEl/z. Note
that V4 and Vp are orthogonal matrices. From the lemma, W = VALVg ; let
Vj‘ and VE{- be the orthogonal complements to V4 and Vg, and let V4 = [VAV\}]
and Vz = [VpVg]. Then

- |L Ol s1 W 0
T(VA {0 0] VB ) r([o O]) = r(W) + const.
One can easily verify that, given two orthogonal matrices V; and V5 and an

arbitrary matrix M, that r(ViMVaz) = >, r;(0;) if o, are the singular values
of M. So

T(VA [é 8} V_BT) = Z r;(d;) + const = r(L) + const,
J

where ¢; are the singular values of L. Thus, (W) = r(L) + const.
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Now rewrite the constraints ¢; using W = XK;l/zLKgl/QYT:
(XTWY) = (KoK, PLEK 5" ?Kp) = e;(K* LK Y?).

The theorem follows by rewriting r and the ¢; functions using the above deriva-
tions. Note that both r and the ¢;’s can be computed independently of the
dimensionality, so simple arguments show that the optimization may be solved
in polynomial time independent of the dimensionality when the r; functions are
convex.
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