
Results and Techniques in Multiuser Information

Theory

Amin Aminzadeh Gohari

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-115

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-115.html

August 16, 2010



Copyright © 2010, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Results and Techniques in Multiuser Information Theory

by

Amin Aminzadeh Gohari

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering-Electrical Engineering and Computer Sciences

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Professor Venkatachalam Anantharam, Chair

Professor Martin J. Wainwright
Professor Donald E. Sarason

Fall 2010



Results and Techniques in Multiuser Information Theory

Copyright 2010

by

Amin Aminzadeh Gohari



1

Abstract

Results and Techniques in Multiuser Information Theory

by

Amin Aminzadeh Gohari
Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Venkatachalam Anantharam, Chair

In this dissertation we develop new techniques and apply them to prove new results
in multiuser information theory. In the first part of the dissertation, we introduce the
“potential function method,” and apply it to prove converses for a series of multiter-
minal network capacity problems. In the second part of the dissertation, we introduce
the “perturbation method,” and apply it to the general broadcast channel problem, a
fundamental open problem in information theory. Furthermore, we address a number
of computational issues associated with the general broadcast channel.

The first part of the dissertation is devoted to the “potential function method”
and its application to multiterminal networks. This method works by finding certain
properties of expressions which will imply that they dominate the capacity region, and
then proving a given bound by a verification argument. We show that this method can
provide a unified framework for proving converses. We begin by considering the cat-
egory of rate region problems without output feedback. The “dynamic programming
flavor” of the technique and its use of one-step equations are brought up here. To
demonstrate the use of technique in problems with feedback, we consider the problem
of information-theoretically secure secret key agreement under the well-known source
model and channel model. The concept of “state” and its evolution during the in-
teractive communication by the parties are brought up here. The upper bounds we
prove in this section are new and are strictly better than their corresponding previ-
ously best known upper bounds (our new lower bounds are relegated to an appendix
in the end of the dissertation as they were not derived using the potential function
method). Finally, we demonstrate the use of technique in a problem that involves
transmission of dependent sources over strong interference channels. The new feature
is that the notion of achievable rate regions is replaced by that of admissible sources.
The result proved in this section is also new.

The second part of the dissertation begins by discussing the “perturbation method,”
and its application to the general broadcast channel problem. The perturbation
method is based on an identity that relates the second derivative of the Shannon
entropy of a discrete random variable (under a certain perturbation) to the corre-
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sponding Fisher information. We apply this tool to make Marton’s inner bound for
the general broadcast channel computable. Before this, the latter region was not
computable (except in certain special cases) as no bounds on the cardinality of its
auxiliary random variables existed. The main obstacle in proving cardinality bounds
is the fact that the Carathéodory theorem, the main known tool for proving cardi-
nality bounds, does not yield a finite cardinality result. In order to go beyond the
traditional Carathéodory type arguments, we identify certain properties that the aux-
iliary random variables corresponding to the extreme points of the inner bound satisfy.
These properties are then used to establish cardinality bounds on the auxiliary ran-
dom variables of the inner bound, thereby proving the computability of the region.
We continue the second part of the dissertation with several results on computing a
number of regions associated with the general broadcast channels. For instance, we
prove various results that help to restrict the search space for computing the sum-rate
for Marton’s inner bound.

Professor Venkatachalam Anantharam

Dissertation Committee Chair
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Chapter 1

Dissertation Overview

Information theory was developed by Claude Shannon in 1948 to find the fun-
damental limits of storage and communications systems. Information theory proofs
consist of direct proofs or achievability proofs (establishing the inclusion of a given
region in the capacity region) and converse proofs (establishing the inclusion of the
capacity region in a given region). Many techniques have been introduced to address
the direct and the converse parts of various problems. Historically, these techniques
date back to Shannon himself. He introduced significant techniques such as random
coding, and important concepts such as typicality of sequences. Later researchers
came up with other techniques such as superposition coding, time sharing random
variable, the use of Carathéodory theorem to prove cardinality bounds and deter-
ministic models. The techniques used in the achievability proofs are generally more
intuitive and structured; for instance, see the recent textbook on network information
theory by El Gamal and Kim [15] for a systematic presentation of these proofs using
the so-called “Packing Lemma” and “Covering Lemma”. On the other hand, the
converse proofs generally lack such transparency and meaningfulness. The main issue
is moving from an n−letter expression to a single-letter expression which is usually
done on a case by case basis. There is no systematic and unified algorithm that would
result in the appropriate choice of auxiliary random variables. The converse proofs
sometimes depend on the Csiszár sum lemma, or other identities that hold for a col-
lection of n-random variables. Therefore, it is desirable to find a unified framework
for proving converses. We discuss such framework in the first part of this dissertation.
We introduce the “potential function method” and apply it to prove converses for a
series of problems in multiterminal networks.

In the second part of the dissertation, we introduce the “perturbation method” and
apply it to the general broadcast channel with two outputs. This is a fundamental
open problem in information theory whose theoretical and practical importance is
widely acknowledged. There has been some progress in cracking special cases of
this old but open problem – notably Gaussian MIMO Broadcast Channels without a
common message– yet, after decades of research we still cannot compute the capacity
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region of this simple-looking multiterminal network. The presented results contribute
to our understanding of this classical problem.

This dissertation is divided into two parts. An overview of the structure of each
part is in order.

The first part of this dissertation is devoted to the “potential function method”.
This method works by finding certain properties of expressions which will imply that
they dominate the capacity region, and then proving a given bound by a verifica-
tion argument. We show that this method provides a unified framework for proving
converses. We begin by considering the category of rate region problems without
output feedback. The following sample problems are selected from this category:
point-to-point communication, degraded broadcast channel, the Gelfand & Pinsker
problem, a classical source coding problem, and the rate distortion problem with side
information. We recover the known converses for these problems. Furthermore, the
attention of the reader is drawn to the fact that the main portion of these converse
proofs remains invariant. The derivation of the auxiliary random variables is done
in a systematic and recursive manner, rather than in one shot as is commonly done.
Each step of the recursion is systematic and algorithmic so that a computer program
could be written to generate the auxiliaries. The “dynamic programming flavor”
of the technique and its use of one-step equations are emphasized here. Extending
these proofs to the cases with output feedback makes the terminology and the dis-
cussion heavier. To demonstrate the applicability of this technique to the problems
with feedback, we consider the problem of information-theoretically secure secret key
agreement under the well-known source model and channel model. In both of these
models multiple terminals wish to create a shared secret key that is secure from a
passive eavesdropper. The terminals have access to a noiseless public communication
channel and an additional resource that depends on the model. In the source model,
the resource is an external source that repeatedly beams correlated randomness to the
terminals; whereas in the channel model, the resource is a secure but noisy discrete
memoryless broadcast channel. Applying the potential function method, we prove
new outer bounds under both the source model and the channel model. The concept
of “state” and its evolution during the interactive communication by the parties is
emphasized here. It is worth mentioning that we have also derived new lower bounds,
but those are relegated to an appendix in the end of the dissertation as they were not
derived using the potential function method.

Finally, we demonstrate the use of the potential function method in the problem of
transmission of dependent sources over strong interference channels. The new feature
is that the notion of achievable rate regions is replaced by that of admissible sources.
Among other things, we emphasize that the new method differs from the traditional
ones in that for a given network structure, we simultaneously consider all possible
networks compatible with that structure and think of the rate region as a function
from such networks to subsets of the positive orthant. We then identify properties
of such a function which need to be satisfied for it to give rise to an outer bound.
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The desired outer bound is then proved by a verification argument. To elaborate
on this, we apply the technique to recover and further generalize the outer bound
part of the recent result of Maric, Yates and Kramer on strong interference channels
with a common message to include dependent sources. In the papers [21, 22], we
have applied the same technique to 1) generalize the well known cut-set bound to
the problem of lossy transmission of functions of dependent sources over a discrete
memoryless multiterminal network, and to 2) simplify the recent outer bound of
Liang, Kramer and Shamai on the capacity region of a general broadcast channel,
and to generalize it to include dependent sources.

The second part of the dissertation begins by introducing the “perturbation method,”
and its application to the general broadcast channel problem. The perturbation
method is based on an identity that relates the second derivative of the Shannon en-
tropy of a discrete random variable (under a certain perturbation) to the correspond-
ing Fisher information. We apply this tool to make Marton’s inner bound for the
general broadcast channel computable. Before this work, Marton’s inner bound was
not computable (except in certain special cases) as no bounds on the cardinality of its
auxiliary random variables existed. It was not even known whether this inner bound
was a closed set. The main obstacle in proving cardinality bounds is the fact that the
Carathéodory theorem, the main known tool for proving cardinality bounds, does not
yield a finite cardinality result. In order to go beyond the traditional Carathéodory
type arguments, we identify certain properties that the auxiliary random variables
corresponding to the extreme points of the inner bound satisfy. These properties are
then used to establish cardinality bounds on the auxiliary random variables of the
inner bound, thereby proving the computability of the region, and its closedness.

In the rest of the second part of this dissertation, we report the subsequent research
that was done along the direction of computing Marton’s inner bound. Although
existence of cardinality bounds renders Marton’s inner bound computable, it is still
hard to evaluate the region. We prove various results which help to restrict the
search space for computing the sum-rate for Marton’s inner bound. For binary input
broadcast channels, we show that the computation can be further simplified if we
assume that Marton’s inner bound and the recent outer bound of Nair and El Gamal
match at the given channel. These results are used to show that the inner and the
outer bounds do not match for some broadcast channels, thus establishing a conjecture
of Nair and Zizhou [45]. Furthermore, we show that unlike in the Gaussian case, for
a degraded broadcast channel even without a common message, Marton’s coding
scheme without a superposition variable is in general insufficient for obtaining the
capacity region.

We end the second part of the dissertation by mentioning a few other results that
were left off since they did not concern the computation of Marton’s inner bound. We
establish the capacity region along certain directions and show that it coincides with
Marton’s inner bound. We show that the Nair-El Gamal outer bound can be made
fully computable. Lastly, we discuss an idea that may lead to a larger inner bound.
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Part I

On the converse proofs in
multiuser Information Theory
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Chapter 2

Rate region problems without
output feedback

Converse proofs generally lack the transparency, meaningfulness and structure of
the achievability proofs in information theory. This is partly due to the fact that
the auxiliary random variables showing up in the converse proof can involve the past
and/or the future of auxiliary random variables, and it is not always easy to assign
meanings to these expressions in an operational sense.

In this chapter we introduce the technique by reproving converses for several well-
known problems in which the transmitter(s) do not receive feedback from receivers
or other transmitters. Nor are the transmitters concerned with communication of
dependent messages. The problems we consider are Point-to-point communication,
Degraded broadcast channel, the Gelfand & Pinsker problem, a classical source cod-
ing problem, and the rate distortion problem with side information. We show the
technique in action in these examples without providing a general formulation of
the technique in this chapter. Extending these proofs to cases with output feedback
makes the terminology and the discussion heavier. The general formulation will be
discussed in later chapters.

The main portion of the following converse proofs is fixed and invariant. The
derivation of the auxiliary random variables is done in a systematic and recursive
manner, rather than in one shot as is commonly done. Each step of the recursion is
systematic and algorithmic so that a computer program could be written to generate
the auxiliary random variables.

2.1 Point-to-point communication

We begin with the point-to-point communication problem. Let X and Y respec-
tively represent the input and the output of the channel. We use the conditional
probability distribution function of Y given X, q(y|x), to describe the statistical
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behavior of the channel.
The following proof for the point-to-point communication problem may seem to

have the same complexity as the traditional proof, but it allows for a systematic
generalization to other problems.

Proposition: Given a channel q(y|x), we would like to show that any achievable
communication rate belongs to the set R

(
q(y|x)

)
= {R : 0 ≤ R ≤ supp(x) I(X;Y )}.

Proof: 1) The first step is to note that the closure of the union over the n-letter
regions ⋃

n≥0

1

n
R
(
q(y1y2...yn|x1x2...xn)

)
is an outer bound to the capacity region, where

q(y1y2...yn|x1x2...xn) =
n∏
i=1

q(yi|xi).

Proving that the closure of this n-letter expression is an outer bound to the capacity
region is straightforward by the Fano inequality.

2) The second (and the main) step is to show that
⋃
n≥0

1
n
R
(
q(y1y2...yn|x1x2...xn)

)
is equal to R

(
q(y|x)

)
. This step is the single-letterising step. This is usually done

in one shot, but here we do it iteratively and stage by stage. In order to accomplish
this, it is enough to prove the following statement:

1. For every n,

R
(
q(y1y2...yn|x1x2...xn)

)
⊂ (2.1)

R
(
q(y1y2...yn−1|x1x2...xn−1)

)
⊕R

(
q(yn|xn)

)
.

where ⊕ stands for the point by point sum (Minkowski sum) of the intervals
(see Definition 10 of section 5.2 for the definition of Minkowski sum).

This is because the statement implies that

R
(
q(y1y2...yn|x1x2...xn)

)
⊂

R
(
q(y1|x1)

)
⊕ · · · ⊕ R

(
q(yn−1|xn−1)

)
⊕R

(
q(yn, zn|xn)

)
= n×R

(
q(y, z|x)

)
.

In order to prove the equation (2.1), it is sufficient to show that for any arbitrary
channel q(yỹ|xx̃) that factorizes as q(ỹ|x̃) · q(y|x), we have (note that here x̃, ỹ are
playing the role of x1x2...xn−1, y1y2...yn−1)

R
(
q(yỹ|xx̃)

)
⊂ R

(
q(ỹ|x̃)

)
⊕R

(
q(y|x)

)
.
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Take an arbitrary point R belonging to R
(
q(yỹ|xx̃)

)
. Corresponding to this point is

a joint distribution p(xx̃) where R ≤ I(XX̃;Y Ỹ ). We would like to prove that there
are two points in R

(
q(ỹ|x̃)

)
and R

(
q(y|x)

)
that add up to a number greater than

or equal to I(XX̃;Y Ỹ ). Since I(XX̃;Y Ỹ ) = H(Y Ỹ ) − H(Y Ỹ |XX̃) = H(Y Ỹ ) −
H(Y |X) − H(Ỹ |X̃) ≤ I(X;Y ) + I(X̃; Ỹ ) we get the desired result since I(X;Y )

belongs to R
(
q(y|x)

)
, and I(X̃; Ỹ ) belongs to R

(
q(ỹ|x̃)

)
.

3) The third (and the last) step is to show thatR
(
q(y|x)

)
is a closed set. Since the

ranges of all the involving random variables are limited and the mutual information
function is continuous, the set of joint probability distributions p(x, y) where p(x, y) =
q(y|x)p(x) will be a compact set (when viewed as a subset of the Euclidean space).
The fact that mutual information function is continuous implies that the union over
p(x) of I(X;Y ) is a compact set, and thus closed.

2.2 The Gelfand and Pinsker problem

Proposition: We are given a channel q(y|x, s) where x is the input and s is the
state of the channel. The state of the channel is i.i.d. according to q(s) and is
known at the encoder. The achievable rate depends on the channel q(y|x, s), and
the marginal q(s). Here we would like to prove the converse result of the Gelfand
and Pinsker problem, i.e. to show that any communication rate belongs to the set
R
(
q(y|x, s), q(s)

)
= {R : 0 ≤ R ≤ supp(u,x|s) I(U ;Y )− I(U ;S)}.

Proof: 1) The first step is to note that the closure of the union over the n-letter
regions ⋃

n≥0

1

n
R
(
q(y1y2...yn|x1x2...xn, s1s2...sn), q(s1s2...sn)

)
is an outer bound to the capacity region, where

q(y1y2...yn|x1x2...xn, s1s2...sn) =
n∏
i=1

q(yi|xi, si),

q(s1s2...sn) =
n∏
i=1

q(si).

Proving that the closure of this n-letter expression is an outer bound to the capacity
region is straightforward by the Fano inequality.

2) The second (and the main) step is to show that⋃
n≥0

1

n
R
(
q(y1y2...yn|x1x2...xn, s1s2...sn), q(s1s2...sn)

)
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is equal to R
(
q(y|x, s), q(s)

)
. This step is the single-letterising step. This is usually

done in one shot, but here we do it iteratively and stage by stage. This would make
it possible to find the auxiliary random variable in a systematic manner. In order to
accomplish this, it is enough to prove the following statement:

1. For every n,

R
(
q(y1y2...yn|x1x2...xn, s1s2...sn), q(s1s2...sn)

)
⊂

R
(
q(y1...yn−1|x1...xn−1, s1...sn−1), q(s1s2...sn−1)

)
⊕

R
(
q(yn|xn, sn), q(sn)

)
where ⊕ stands for the point by point sum (Minkowski sum) of the intervals.

This is because the statement implies that

R
(
q(y1y2...yn|x1x2...xn, s1s2...sn), q(s1s2...sn)

)
⊂

R
(
q(y1|x1, s1), q(s1)

)
⊕ · · ·⊕

R
(
q(yn−1|xn−1, sn−1), q(sn−1)

)
⊕R

(
q(yn|xn, sn), q(sn)

)
= n×R

(
q(y|x, s), q(s)

)
.

In order to prove the first statement, it is sufficient to show that for any arbitrary
channel q(yỹ|xx̃, ss̃) that factorizes as q(ỹ|x̃, s̃) · q(y|x, s), and q(ss̃) that factorizes as
q(s)q(s̃), we have

R
(
q(yỹ|xx̃, ss̃), q(ss̃)

)
⊂ R

(
q(ỹ|x̃, s̃), q(s̃)

)
⊕R

(
q(y|x, s), q(s)

)
.

Take an arbitrary point R belonging to R
(
q(yỹ|xx̃, ss̃), q(ss̃)

)
. Corresponding to this

point is a joint distribution p(u, xx̃|ss̃) where R ≤ I(U ;Y Ỹ ) − I(U ;SS̃). We would
like to prove that there are two points in R

(
q(ỹ|x̃, s̃), q(s̃)

)
and R

(
q(y|x, s), q(s)

)
that add up to a number greater than or equal to I(U ;Y Ỹ )− I(U ;SS̃). Please note

that the following Markov chains hold: UY XS − S̃X̃ − Ỹ , and UỸ X̃S̃ − SX − Y .
Thus for taking a point from the set R

(
q(ỹ|x̃, s̃), q(s̃)

)
, we can search for a random

variable Ũ by taking some combination of the four random variables U , Y , X, S.
There are 24 = 16 possibilities in total. Similarly for taking a point from the set
R
(
q(y|x, s), q(s)

)
, we can search for a random variable U ′ by taking some combination

of the four random variables U , Ỹ , X̃, S̃. There are 24 = 16 possibilities in total. The
easiest approach is to write a computer program that tries all 16*16 cases using the
information theoretic inequality verifier program that is available (see [58] or [50]). It

is however not hard to guess the following choice of auxiliaries Ũ = UY and U ′ = US̃.
We need to verify that I(U ;Y Ỹ )−I(U ;SS̃) ≤ I(U ′;Y )−I(U ′;S)+I(Ũ ; Ỹ )−I(Ũ ; S̃),

or equivalently I(U ;Y Ỹ )− I(U ;SS̃) ≤ I(US̃;Y )− I(US̃;S) + I(UY ; Ỹ )− I(UY ; S̃),

which can be easily verified using the fact that I(S; S̃) = 0.
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3) The third (and the last) step is to show that R
(
q(y|x, s), q(s)

)
is a closed set.

Note that in computing R
(
q(y|x, s), q(s)

)
one can use the strengthened Carathéodory

theorem of Fenchel to bound the cardinality of U from above by |X ||S|. Since the
ranges of all the involved random variables are limited and the mutual information
function is continuous, one can use arguments similar to the one mentioned in the
proof of point-to-point converse to show that R

(
q(y|x, s), q(s)

)
is closed.

2.3 Degraded Broadcast Channel

Proposition: Consider a degraded broadcast channel q(y, z|x) = q(y|x)q(z|y).
It is known that the following region is the capacity region for this channel: let
R
(
q(y, z|x)

)
be the set of all non-negative (R1, R2) such that there exists a joint

distribution p(u, x) for which R1 ≤ I(X;Y |U) and R2 ≤ I(U ;Z) where X, Y, Z and
U are jointly distributed according to p(u, x) · q(y, z|x). Here we would like to prove
that R

(
q(y, z|x)

)
is an outer bound to the capacity region.

Proof: 1) The first step is to note that the closure of the union over the n-letter
regions ⋃

n≥0

1

n
R
(
q(y1y2...yn, z1z2...zn|x1x2...xn)

)
is an outer bound to the capacity region, where

q(y1y2...yn, z1z2...zn|x1x2...xn) =
n∏
i=1

q(yi, zi|xi).

Proving that the closure of this n-letter expression is an outer bound to the capacity
region is straightforward by the Fano inequality.

2) The second (and the main) step is to show that⋃
n≥0

1

n
R
(
q(y1y2...yn, z1z2...zn|x1x2...xn)

)
is equal to R

(
q(y, z|x)

)
. This step is the single-letterising step. This is usually done

in one shot, but here we do it iteratively and stage by stage. This would make it
possible to find the auxiliary random variable in a systematic manner. In order to
accomplish this, it is enough to prove the following two statements:

1. For every n,

R
(
q(y1y2...yn, z1z2...zn|x1x2...xn)

)
⊂

R
(
q(y1...yn−1, z1...zn−1|x1...xn−1)

)
⊕R

(
q(yn, zn|xn)

)
,

where ⊕ stands for the vector by vector sum (Minkowski sum) of the regions.
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2. R
(
q(y, z|x)

)
is convex.

This is because the two statements together imply that

R
(
q(y1y2...yn, z1z2...zn|x1x2...xn)

)
⊂

R
(
q(y1, z1|x1)

)
⊕R

(
q(y2, z2|x2)

)
· · · ⊕R

(
q(yn, zn|xn)

)
⊂ n× Convex Hull of R

(
q(y, z|x)

)
= n×R

(
q(y, z|x)

)
.

Proving the convexity is straightforward. In order to prove the first statement, it is sufficient
to show that for any arbitrary channel q(yỹ, zz̃|xx̃) that factorizes as q(ỹ, z̃|x̃) · q(y, z|x), we
have

R
(
q(yỹ, zz̃|xx̃)

)
⊂ R

(
q(ỹ, z̃|x̃)

)
⊕R

(
q(y, z|x)

)
.

Take an arbitrary point (R1, R2) belonging to R
(
q(yỹ, zz̃|xx̃)

)
. Corresponding to this point

is a joint distribution p(u, xx̃) where R1 ≤ I(XX̃;Y Ỹ |U) and R2 ≤ I(U ;ZZ̃). We would
like to prove that there are two points inR

(
q(ỹ, z̃|x̃)

)
andR

(
q(y, z|x)

)
whose first coordinate

adds up to a number greater than or equal to I(XX̃;Y Ỹ |U), and whose second coordinate
adds up to a number greater than or equal to I(U ;ZZ̃).

Since p(u, xx̃, yỹ, zz̃) = p(u, xx̃)·q(y, z|x)·q(ỹ, z̃|x̃), we have the following Markov chains:
UX̃Ỹ Z̃−X−Y Z and UXY Z−X̃− Ỹ Z̃. One can therefore write a computer program that
searches for the random variable U ′ from the sixteen subsets of {U, X̃, Ỹ , Z̃}, and searches
for Ũ from the sixteen subsets of {U,X, Y, Z}. For each choice of U ′ and Ũ , the program can
use an information-theoretic-inequality-verifier (see [58] or [50]) to check whether equations

I(U ;ZZ̃) ≤ I(U ′;Z) + I(Ũ ; Z̃), (2.2)

and
I(XX̃;Y Ỹ |U) ≤ I(X;Y |U ′) + I(X̃; Ỹ |Ũ). (2.3)

are satisfied under the given constraints.
In the above problem, there is however a natural choice for U ′ and Ũ : the expansion

I(U ;ZZ̃) = I(U ;Z)+I(U ; Z̃|Z) ≤ I(U ;Z)+I(UZ; Z̃) suggests setting U ′ = U and Ũ = UZ.
But we need to verify that equation (2.3) is also satisfied for this choice of random variables.
Note that I(XX̃;Y Ỹ |U) = H(Y Ỹ |U)−H(Y Ỹ |UXX̃) = H(Y Ỹ |U)−H(Y |X)−H(Ỹ |X̃)
since p(u, xx̃, yỹ, zz̃) = p(u, xx̃) · q(y, z|x) · q(ỹ, z̃|x̃). The right hand side of the equation
(2.3) is equal to I(X;Y |U ′)+I(X̃; Ỹ |Ũ) = I(X;Y |U)+I(X̃; Ỹ |UZ) = H(Y |U)−H(Y |X)+
H(Ỹ |UZ) −H(Ỹ |X̃). Hence the right hand side is greater than or equal to the left hand
side if and only if H(Ỹ |UZ) ≥ H(Ỹ |UY ). The latter is true because of the degradedness
of the channel which implies that H(Ỹ |UY ) = H(Ỹ |UY Z). The proof is complete now.

3) The third (and the last) step is to show that R
(
q(y, z|x)

)
is a closed set. Note that

in computing R
(
q(y, z|x)

)
one can use the strengthened Carathéodory theorem of Fenchel

to bound the cardinality of U from above by |X | + 1. Since the ranges of all the involved
random variables are limited and the mutual information function is continuous, one can
use arguments similar to the one mentioned in the proof of point-to-point converse to show
that R

(
q(y, z|x)

)
is closed.
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2.4 A classical source coding problem

Proposition: Three parties are observing i.i.d. copies of X,Y and Z. There is a com-
munication link of rate R1 from X to Z, and a communication link of rate R2 from Y to
Z. The Z party wants to reconstruct the i.i.d. copies of X. The achievable rates (R1, R2)
depend on the joint distributions q(x, y, z). The answer to this problem is known. Here we
would like to prove the converse to it, i.e. to show that any achievable rate pair (R1, R2)
belongs to R

(
q(x, y, z)

)
defined as

⋃
U−Y−XZ

{
R1 ≥ H(X|ZU)
R2 ≥ I(U ;Y |Z).

Proof: 1) The first step is to note that the closure of the union over the n-letter regions⋃
n≥0

1

n
R
(
q(x1x2...xn, y1y2...yn, z1z2...zn)

)
is an outer bound to the capacity rate region, where

q(x1x2...xn, y1y2...yn, z1z2...zn) =

n∏
i=1

q(xi, yi, zi).

Proving that the closure of this n-letter expression is an outer bound to the capacity region
is straightforward.

2) The second (and the main) step is to show that
⋃
n≥0

1
nR
(
q(x1x2...xn, y1y2...yn, z1z2...zn)

)
is equal to R

(
q(y, z|x)

)
. This step is the single-letterizing step. This is usually done in one

shot, but here we do it iteratively and stage by stage. This would make it possible to find
the auxiliary random variable in a systematic manner. In order to accomplish this, it is
enough to prove the following two statements:

1. For every n,

R
(
q(x1x2...xn, y1y2...yn, z1z2...zn)

)
⊂

R
(
q(x1...xn−1, y1...yn−1, z1...zn−1)

)
⊕R

(
q(xn, yn, zn)

)
,

where ⊕ stands for the vector by vector sum (Minkowski sum) of the regions.

2. R
(
q(x, y, z)

)
is convex.

This is because the two statements together imply that

R
(
q(x1x2...xn, y1y2...yn, z1z2...zn)

)
⊂

R
(
q(x1, y1, z1)

)
⊕R

(
q(x2, y2, z2)

)
⊕ · · · ⊕ R

(
q(xn, yn, zn)

)
⊂ n× Convex Hull of R

(
q(x, y, z)

)
= n×R

(
q(x, y, z)

)
.
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Proving the convexity is straightforward. In order to prove the first statement, it is sufficient
to show that for any arbitrary channel q(xx̃, yỹ, zz̃) that factorizes as q(x̃, ỹ, z̃) · q(x, y, z),
we have

R
(
q(xx̃, yỹ, zz̃)

)
⊂ R

(
q(x̃, ỹ, z̃)

)
⊕R

(
q(x, y, z)

)
.

Take an arbitrary point (R1, R2) belonging to R
(
q(xx̃, yỹ, zz̃)

)
. Corresponding to this point

is a random variable U −Y Ỹ −XX̃ZZ̃ where R1 ≥ H(XX̃|ZZ̃U) and R2 ≥ I(U ;Y Ỹ |ZZ̃).
We would like to prove that there are two points in R

(
q(x̃, ỹ, z̃)

)
and R

(
q(x, y, z)

)
whose

first coordinate adds up to a number less than or equal to H(XX̃|ZZ̃U), and whose second
coordinate adds up to a number less than or equal to I(U ;Y Ỹ |Z).

Since p(u, xx̃, yỹ, zz̃) = q(x, y, z)·q(x̃, ỹ, z̃)·p(u|yỹ), we have the following Markov chains:
UX̃Ỹ Z̃−Y −XZ and UXY Z− Ỹ −X̃Z̃. One can therefore write a computer program that
searches for the random variable U ′ from the sixteen subsets of {U, X̃, Ỹ , Z̃}, and searches
for Ũ from the sixteen subsets of {U,X, Y, Z}. For each choice of U ′ and Ũ , the program
can use an information-theoretic-inequality-verifier to check whether equations

H(XX̃|ZZ̃U) ≥ H(X|ZU ′) +H(X̃|Z̃Ũ), (2.4)

and
I(U ;Y Ỹ |ZZ̃) ≥ I(U ′;Y |Z) + I(Ũ ; Ỹ |Z̃) (2.5)

are satisfied under the given constraints.
In the above problem, there is however a natural choice for U ′ and Ũ : the expansion

H(XX̃|ZZ̃U) = H(X|ZZ̃U) + H(X̃|XZZ̃U) suggests setting U ′ = UZ̃ and Ũ = UZX.
But we need to verify that equation (2.5) is also satisfied for this choice of random variables.
In other words:

I(U ;Y Ỹ |ZZ̃)
?
≥ I(UZ̃;Y |Z) + I(UZX; Ỹ |Z̃).

Since the triples (X,Y, Z) and (X̃, Ỹ , Z̃) are independent, we have:

I(UZ̃;Y |Z) + I(UZX; Ỹ |Z̃) = I(U ;Y |ZZ̃) + I(U ; Ỹ |Z̃ZX).

Therefore we need to verify I(U ; Ỹ |Z̃ZY )
?
≥ I(U ; Ỹ |Z̃ZX). Noting the Markov chain

U − Y Ỹ −XX̃ZZ̃, and independence of the triples (X,Y, Z) and (X̃, Ỹ , Z̃), we can write:

I(U ; Ỹ |Z̃ZX) ≤ I(UY ; Ỹ |Z̃ZX) =

I(Y ; Ỹ |Z̃ZX) + I(U ; Ỹ |Z̃ZXY ) ≤

I(U ; Ỹ |Z̃ZXY ) = H(U |Z̃ZXY )−H(U |Z̃ZXY Ỹ )

= H(U |Z̃ZXY )−H(U |Z̃ZY Ỹ ) ≤

H(U |Z̃ZY )−H(U |Z̃ZY Ỹ ) = I(U ; Ỹ |Z̃ZY ).

This completes the proof.
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3) The third (and the last) step is to show that R
(
q(x, y, z)

)
is a closed set. Note that

in computing R
(
q(x, y, z)

)
one can use the strengthened Carathéodory theorem of Fenchel

to bound the cardinality of U from above by |Y| + 1. Since the ranges of all the involving
random variables are limited and the mutual information function is continuous, one can
use arguments similar to the one mentioned in the proof of point-to-point converse to show
that R

(
q(x, y, z)

)
is closed.

2.5 Rate distortion with side information

Proposition: Two parties are observing i.i.d. copies of X and Y . There is a communi-
cation link of rate R from X to Y . The Y party wants to reconstruct the i.i.d. copies of X
within some average distortion D for some given distortion function d(x, x̂). The achievable
rate R depends on the joint distribution q(x, y) and D. The answer to this problem is known.
Here we would like to prove the converse to it, i.e. to show that any achievable rate R belongs
toR

(
q(x, y), D

)
defined asR

(
q(x, y), D

)
= {R : R ≥ infp(w|x),f I(W ;X|Y )}, where the min-

imization is over all p(w|x) and functions f : Y ×W 7→ X such that E[d(X, f(Y,W )] ≤ D.
Proof: 1) The first step is to note that for any D′ > D, the closure of the union over

the n-letter regions ⋃
n≥0

1

n
R
(
q(x1x2...xn, y1y2...yn), nD′

)
is an outer bound to the capacity region, where

q(x1x2...xn, y1y2...yn) =
n∏
i=1

q(xi, yi).

Proving that the closure of this n-letter expression is an outer bound is straightforward.
2) The second (and the main) step is to show that

⋃
n≥0

1
nR
(
q(x1x2...xn, y1y2...yn), nD′

)
is equal to R

(
q(x, y), D′

)
, and further limD′→DR

(
q(x, y), D′

)
= R

(
q(x, y), D

)
.

In this document, we only focus on the first part of the claim; the limit can be proven
using compactness arguments and noting that a cardinality bound on W can be established.
It suffices to prove that

1. For every n and D1,

R
(
q(x1x2...xn, y1y2...yn), D1

)
⊂

R
(
q(x1x2...xn−1, y1y2...yn−1), D2

)
⊕R

(
q(x, y), D3

)
for some D2 and D3 satisfying D2 +D3 ≤ D1.

2. R
(
q(x, y), D

)
is convex in D in the following sense: given any D1 and D2,

1

2
R
(
q(x, y), D1

)
⊕ 1

2
R
(
q(x, y), D2

)
⊂ R

(
q(x, y),

1

2
D1 +

1

2
D2

)
.
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Here, we omit the proof for the convexity statement. In order to show the first statement,
it is sufficient to show that for any arbitrary q(xx̃, yỹ) that factorizes as q(x̃, ỹ)q(x, y), we
have

R
(
q(xx̃, yỹ), D1

)
⊂ R

(
q(x, y), D3

)
⊕R

(
q(x̃, ỹ), D2

)
for some D2 and D3 satisfying D2 + D3 ≤ D1. On the right hand side, we use distortion
function d on X and d̃ on X̃ . The distortion function on the left hand side on X × X̃ is
assumed to be the sum of d and d̃.

Take an arbitrary point R belonging to R
(
q(xx̃, yỹ), D1

)
. Corresponding to this point

is p(w|xx̃) and function f : Y × Ỹ × W 7→ X × X̃ . We can represent f as f = (f1, f2)
where f1 : Y × Ỹ × W 7→ X and f2 : Y × Ỹ × W 7→ X̃ such that E[d(X, f1(Y, Ỹ ,W )] +
E[d̃(X̃, f2(Y, Ỹ ,W )] ≤ D1. We have R ≥ I(W ;XX̃|Y Ỹ ). We would like to prove that there
are D2 and D3 satisfying D2+D3 ≤ D1, and two points inR

(
q(x, y), D3

)
andR

(
q(x̃, ỹ), D2

)
that add up to a number less than or equal to I(W ;XX̃|Y Ỹ ).

Please note that the following condition holds here:

p(w, x, x̃, y, ỹ) = q(x, y)q(x̃, ỹ)p(w|x, x̃).

Thus for taking a point from the set R
(
q(x̃, ỹ), D2

)
, we can search for a random variable

W̃ by taking some combination of the four random variables W , Y , X and X̃. There are
24 = 16 possibilities in total. Similarly for taking a point from the set R

(
q(x, y), D3

)
,

we can search for a random variable W ′ by taking some combination of the four random
variables W , Ỹ , X̃ and X. There are 24 = 16 possibilities in total.

It is natural to take D2 = E[d(X, f1(Y, Ỹ ,W )] and D3 = E[d̃(X̃, f2(Y, Ỹ ,W )]. This also

suggests taking W̃ = WY and W ′ = WỸ . We need to verify

I(W ;XX̃|Y Ỹ )
?
≥ I(WỸ ;X|Y ) + I(WY ; X̃|Ỹ ).

Using the fact that q(x, x̃, y, ỹ) = q(x, y)q(x̃, ỹ), we can write

I(W ;XX̃|Y Ỹ ) = H(XX̃|Y Ỹ )−H(XX̃|WY Ỹ ) =

H(X|Y ) +H(X̃|Ỹ )−H(X|WY Ỹ )−H(X̃|WXY Ỹ ) =

I(WỸ ;X|Y ) + I(WXY ; X̃|Ỹ ) ≥

I(WỸ ;X|Y ) + I(WY ; X̃|Ỹ ).

3) The third (and the last) step is to show that R
(
q(x, y), D

)
is a closed set. Note that

in computing R
(
q(x, y), D

)
one can use the strengthened Carathéodory theorem of Fenchel

to bound the cardinality of W from above by |X |+ 1. Since the ranges of all the involved
random variables are limited and the mutual information function is continuous, one can
use arguments similar to the one mentioned in the proof of point-to-point converse to show
that R

(
q(x, y), D

)
is closed.
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Table 2.1: The main part of the proof structure for the multiple access channel

Conditions that one needs to verify Choice of
in the second step of the proof auxiliaries

For
Q,X, X̃, Y, Ỹ , ZZ̃ ∼
p(q)p(x, x̃|q)p(y, ỹ|q)q(z|x, y)q(z̃|x̃, ỹ)

have Q′ = Q

I(XX̃;ZZ̃|Y Ỹ Q) ≤ I(X;Z|Y Q′) + I(X̃; Z̃|Ỹ Q̃),

I(Y Ỹ ;ZZ̃|XX̃Q) ≤ I(Y ;Z|XQ′) + I(Ỹ ; Z̃|X̃Q̃),

I(XX̃Y Ỹ ;ZZ̃|Q) ≤ I(XY ;Z|Q′) + I(X̃Ỹ ; Z̃|Q̃).

Q̃ = Q

Table 2.2: The main part of the proof structure for a converse to the general broadcast
channel

Conditions that one needs to verify Choice of
in the second step of the proof auxiliaries

For
U, V,X, X̃, Y, Ỹ , ZZ̃ ∼
p(u, v, x, x̃)q(y, z|x)q(ỹ, z̃|x̃)

have

I(U ;Y Ỹ ) ≤ I(U ′;Y ) + I(Ũ ; Ỹ ),

I(V ;ZZ̃) ≤ I(V ′;Z) + I(Ṽ ; Z̃),

I(U ;Y Ỹ ) + I(V ;ZZ̃|U) ≤ I(U ′;Y ) + I(V ′;Z|U ′)
+I(Ũ ; Ỹ ) + I(Ṽ ; Z̃|Ũ),

I(V ;ZZ̃) + I(U ;Y Ỹ |V ) ≤ I(V ′;Z) + I(U ′;Y |V ′)
+I(Ṽ ; Z̃) + I(Ũ ; Ỹ |Ṽ ).

U ′ = UZ̃

V ′ = V Z̃

Ũ = UY

Ṽ = V Y

2.6 Multiple Access Channel

Given a MAC channel q(z|x, y), let

R
(
q(z|x, y)

)
=

⋃
p(q)p(x|q)p(y|q)q(z|x,y)


R1, R2 ≥ 0
R1 ≤ I(X;Z|Y Q),
R2 ≤ I(Y ;Z|XQ),
R1 +R2 ≤ I(XY ;Z|Q).

We would like to show that R is an outer bound to the capacity region of a MAC. The
structure of the proof is similar to the ones given above. Therefore we have omitted the
details. However, the structure of the second (and the main) step of the proof is provided
in Table 2.1.
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2.7 General Broadcast Channel

Given a broadcast channel q(y, z|x), let (see [46])

R
(
q(y, z|x)

)
=

⋃
p(u,v,x)q(y,z|x)


R1, R2 ≥ 0
R1 ≤ I(U ;Y ),
R2 ≤ I(V ;Z),
R1 +R2 ≤ I(U ;Y ) + I(V ;Z|U),
R1 +R2 ≤ I(V ;Z) + I(U ;Y |V ).

We would like to show that R is an outer bound to the capacity region of a BC. The
structure of the proof is similar to the ones given above. Therefore we have omitted the
details. However, the structure for the second (and the main) step of the proof is provided
in Table 2.2.
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Chapter 3

Problems with feedback

In this chapter we discuss the extension of the approach discussed in chapter 2 to
problems in multiterminal networks with feedback.

For simplicity let us begin with the point-to-point communication problem with feed-
back. We would like to prove the following:

Proposition: Given a channel q(y|x) assisted with full feedback, we would like to show
that any achievable communication rate belongs to the set

R
(
q(y|x)

)
= {R : 0 ≤ R ≤ sup

p(x)
I(X;Y )}.

A naive extension of the approach described in the previous chapter would not work
since the n-letter q(y1y2...yn|x1x2...xn) would not factorize as

∏n
i=1 q(yi|xi). This is because

Yi can depend on Xi, Xi+1, Xi+2, ..., Xn. Furthermore, the single-letter definition of R does
involve any term reflecting the feedback information. Another difference is the fact that
feedback is imposing a particular time order on indices 1, 2, 3, ..., n; there is a non-symmetric
time flow that needs to be captured.

In the next chapters we will use the concept of “information state” and its evolution
during the interactive communication by the parties to resolve this issue. Assume that
the transmitter has message W and creates Xi from WY1:i−1, the message W and the past
output feedbacks. At the beginning, the transmitter and the receiver have W and a constant
random variable respectively. At the jth stage, the transmitter and the receiver have WY1:j

and Y1:j respectively. Roughly speaking, we will represent the information state of the
whole system at the jth stage by the pair (conditional distribution of what the parties know
at the jth stage given what they know at the beginning, the joint distribution of what the
parties know at the beginning). The “information state” has a simpler representation when
there is no feedback. In such cases, Xi will be a deterministic function of W . Therefore the
conditional distribution of Y1:j given W , that is p(y1:j |w), factorizes as

∏j
i=1 p(yi|xi). For

this reason, lack of output feedback makes the terminology and the discussion lighter.
The remaining chapters of the first part of the thesis adopt the idea of “information

state”. But before getting there, it is worthwhile to briefly mention another approach
that could have been adopted to deal with the point-to-point communication problem with
feedback.
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Given a channel q(y|x), we say that X = (X1, X2, ..., Xn), Y = (Y1, Y2, ..., Yn) and W
obey the feedback rule under q(y|x) if WY1:i−1 → Xi → Yi and p(yi|xi) = q(yi|xi) hold for

i = 1, 2, 3, ..., n. We show this by the notation W → X
q

 Y. The two-sided arrow

q

 means

that there is a two-way interaction, and that the forward channel is q. Unfortunately, we
can define W → X 
 Y only when random variables X and Y are ordered vectors defined
on X n × Yn for some n.

Note that when n = 1, the relation W → X
q

 Y simply reduces to W → X → Y

together with p(y|x) = q(y|x). We can thus re-express R as

R
(
q(y|x)

)
= {R : 0 ≤ R ≤ sup

p(x,y,w):W→X
q

Y

I(W ;Y )}.

Using this expression, define the n-letter Rn
(
q(y|x)

)
as

{R : 0 ≤ R ≤ sup

p(x,y,w):W→X
q

Y

I(W ; Y)}

for n-tuples X and Y.
We can now continue with the proof:
Proof: 1) The first step is to note that the closure of the union over the n-letter regions⋃

n≥0
1
nRn

(
q(y|x)

)
is an outer bound to the capacity region. Proving that this n-letter

expression is an outer bound to the capacity region is straightforward.
2) The second (and the main) step is to show that

⋃
n≥0

1
nRn

(
q(y|x)

)
is equal to

R
(
q(y|x)

)
. This step is the single-letterizing step. In order to do this iteratively, it is

enough to prove the following statement:

1. For every n,

Rn
(
q(y|x)

)
⊂ Rn−1

(
q(y|x)

)
⊕R

(
q(y|x)

)
.

where ⊕ stands for the point by point sum (Minkowski sum) of the intervals.

In order to prove this, it is sufficient to show that for any arbitrary channel p(w, (x̃, x), (ỹ, y))

satisfying W → (X̃, X)
q

 (Ỹ, Y ), one can find p(w′, x, y) satisfying W ′ → X

q

 Y and

p(w̃, x̃, ỹ) satisfying W̃ → X̃
q

 Ỹ such that

I(W ;Y Ỹ) ≤ I(W ′;Y ) + I(W̃ ; Ỹ). (3.1)

The condition W → (X̃, X)
q

 (Ỹ, Y ) implies that W → X̃

q

 Ỹ. Thus, it is natural

to take W̃ = W . Equation 3.1 then suggests setting W ′ = W Ỹ. It remains to verify

W Ỹ → X
q

 Y . Or, in other words W Ỹ → X → Y . But this is immediate from

W → (X̃, X)
q

 (Ỹ, Y ) as the last of the “obeying the feedback rule” condition.

3) The third (and the last) step is to show that R
(
q(y|x)

)
is a closed set. This was

argued in the proof of point-to-point converse in the previous section.
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Chapter 4

Interactive communication for
secret key generation

In this chapter we introduce the potential function method and apply it to two im-
portant problems in Information-theoretic security as well as a problem of communication
for omniscience. It is worthwhile to briefly motivate Information-theoretic security as a
subfield, before getting into the specifics of our problems.

The rapidly flourishing wireless networks have created challenging demands on reliable
and secure communication in the past decade. Unlike wireline links, wireless links are
inherently open, and thus very susceptible to eavesdropping and jamming. In order to
preserve privacy, it is desirable to embed security mechanisms in various layers of the system.
Whereas complexity based encryption schemes can be used at higher network levels, channel
coding ideas based on information-theoretic notion of security can be used at the physical
layer.

Information-theoretic security demands that the evesdropper(s) learn a negligible amount
about the secret message regardless of the computational power of the adversary. Therefore
it is the most stringent form of security. It was once commonly considered infeasible in
view of Shannon’s one time pad result. The following recognitions have however led to a
rethinking of this pessimistic viewpoint: first, Information-theoretic security can utilize the
physical properties of wireless channels (e.g. the broadcasting properties) to provide secu-
rity at the physical layer. Second, in many environments requiring secret key generation,
it is possible to provide external randomness to the agents. For instance, sensor networks
are often deployed in places where it is possible to beam randomness, e.g. from a satellite.
These observations have led to significant work over the last decade to develop protocols to
extract high rate secret keys. Nonetheless, Information-theoretic security still remains to
be less practical compared to the computational security.

In this chapter we study a fundamental problem in information-theoretic security in
which a group of agents together with an eavesdropper have access to possibly correlated
random sources of information. These agents want to use public discussion to generate a
common key that is secret from the eavesdropper. As discussed above, this problem is of
practical importance because it exploits the physical characteristics of wireless networks
such as the broadcasting property to provide security at the physical layer, whereas com-



20

Figure 4.1: Shannon’s one time pad

plexity based encryption schemes are traditionally used at the higher network levels, and
furthermore, because sensor networks are often deployed in places where it is possible to
beam randomness, e.g. from a satellite. The source-model and channel-model are of theo-
retical interest since they quantify the fundamental limits of extracting a secret key from
given resource. Outside the context of security, one can motivate the source-model capacity
S(X1;X2‖Z) as representing the “private common information” of random variables X1 and
X2 against a third random variable Z, in some operational sense. The natural conjecture
I(X1;X2|Z), for instance, would not satisfy the expected property that the “private common
information” should be less than the common information, since I(X1;X2|Z) ≤ I(X1;X2)
does not always hold.

4.1 Introduction

The problem of secret key generation by multiple terminals, information-theoretically
secure from an eavesdropper was originally formulated by Shannon [52]. Shannon considered
the scenario in which Alice wants to transmit a message securely to Bob in the presence of an
eavesdropper. As shown in Figure 4.1, Alice and Bob have access to a public communication
link. Secure communication is possible if Alice and Bob share a secret key to encrypt and
decrypt the message respectively. For example, Alice can take the binary addition of her
message with the secret key, thereby keeping the eavesdropper absolutely ignorant about
the message. However, Bob can decode the intended message. Shannon proved that this
strategy is indeed optimal in the sense of using up the minimum number of secret bits per
message bit. This is a pessimistic result since it is saying that the shared key must be at
least as long as the message. Generation and distribution of such a long key is not practical
in many applications. Shannon’s work has been much developed and modified to address
this issue; see for example [1], [11] and [39]. In an early work, Wyner [56] studied what
may be called a “degraded broadcast scenario”. In this setting Alice is connected to Bob
by a discrete memoryless channel. The eavesdropper, Eve, receives a noisy version of the
output at Bob’s end. In a subsequent work, Csiszár and Körner [11] generalized Wyner’s
model by assuming that Alice is connected to Bob and Eve through a broadcast channel.
The channel from Alice to Eve in this model is not necessarily a degraded version of the
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channel between Alice and Bob. In this scenario, the secret key capacity, as one might
expect, would be zero if the channel from Alice to Eve is stronger than the channel from
Alice to Bob. The scenario considered by Csiszár and Körner was further generalized by
Maurer [39]. Maurer made the interesting observation that even if the channel from Alice
to Eve is stronger than the channel from Alice to Bob, Alice and Bob may still be able
to generate a common secret key that is information-theoretically secure from Eve, in an
asymptotic sense, if we allow Bob to send authenticated but public messages to Alice. In
some sense in this result the communication between Alice and Bob is being used to agree
about features of the noise realization in the broadcast channel that are independent of
Eve’s knowledge: this is the secret key. This observation led to the formulation of the two
main models in this area, introduced by the works of Ahlswede and Csiszár [1], Csiszár and
Narayan [13] and Maurer [39], called the source model and channel model. In both models
there are m terminals interested in secret key generation against an adversary Eve. In
the source model, the m terminals and Eve have access to n independently and identically
distributed (i.i.d.) repetitions of jointly distributed random variables Xi (i = 1, 2, ...,m) and
Z respectively. Following the reception of the n i.i.d. repetitions of (X1, X2, ..., Xm, Z), in
the traditional source model the m terminals are allowed to have interactive authenticated
public communication. The public channel is assumed to be noiseless. In the channel
model, a secure discrete memoryless broadcast channel (DMBC) q(x2, x3, ...xm, z|x1) exists
from the first terminal to all other terminals (including Eve). The input of the DMBC is
governed by the first terminal while the other terminals (including Eve) observe the outputs
of the broadcast channel at their end. In the traditional channel model, after each use of
the channel by the first terminal, all the m terminals are allowed to engage in arbitrarily
many rounds of interactive authenticated communication over a public channel. Again, the
public channel is assumed to be noiseless. We generalize both models somewhat by allowing
the public communication only among the first u (1 ≤ u ≤ m) of the terminals; terminals
u + 1, ...,m can listen and have to participate in secret key generation, but do not talk.
This generalization has the technical advantage of putting one-way secret key generation
and interactive secret key generation on the same footing and includes the standard model
as a special one. Further, and more importantly, it provides an approach to study the secret
key capacity by splitting it into parts in a sense that will become clear after understanding
the main results of section 4.4.2. Following the communication, each terminal generates a
random variable Si as its secret key, i = 1, 2, 3, ...,m. All Si’s should with probability close
to 1 be equal to each other and they should be approximately independent of Eve’s whole
information after the communication. In the source model, Eve’s whole information after
the communication consists of the n i.i.d repetitions of Z and the public discussion, whereas
in the channel model Eve’s whole information after the communication is the n outputs of
the DMBC at Eve’s terminal and the public discussion. The achieved secret key rate would
then be roughly 1

nH(S1). The highest achievable secret key rate, asymptotic in n, is called
the secret key capacity. For a precise formulation see section 4.2.

Another problem discussed in this chapter is the problem of communication for omni-
science. This problem is a generalization of a similar one considered by Csiszár and Narayan
[12]. In some special cases, Csiszár and Narayan [12] derived a single-letter characterization
of the source model secret key capacity, notably when all the legitimate terminals know Z,
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that is H(Z|Xi) = 0 for i = 1, 2, 3, ...,m. This was done by bringing out a connection be-
tween a problem of communication for omniscience (CFO) by the terminals and the secret
key generation problem. In the CFO problem, as defined in [12], the requirement at the end
of the communication is not a secret key, but that all the terminals become approximately
omniscient about each other’s random variables. The goal is to minimize the communication
rate required to achieve this. In this thesis we relax the requirement that all the legitimate
terminals know Z and define a broader notion of communication for omniscience, called
the problem of communication for omniscience by a neutral observer (still abbreviated as
CFO). In the CFO problem, as defined in this thesis, the m terminals at the end of the
communication wish to create a shared random variable which when provided to a neutral
observer who has access to the i.i.d. copies of Z seen by Eve, allows the observer to recon-
struct the i.i.d. copies of the variables (X1, X2, ..., Xu) (where 1 ≤ u ≤ m is as before). The
CFO rate is the minimum conditional entropy of the communication, conditioned on the
information available to Eve, measured on a per observation basis. We use our technique for
proving converses to show that our CFO problem is equivalent to the problem of secret key
generation (see section 4.2 for the precise formulation of the definitions and section 4.4.2
for a precise formulation of the results). This result generalizes the one of [12] but does not
appear to lead to a single letter characterization of the secret key capacity.

4.2 Definitions and Notation

Throughout this chapter we assume that there are m legitimate terminals and one
eavesdropper; random variables X1, X2, ...., Xm and Z will be m + 1 possibly dependent
random variables taking values from finite sets X1, X2, ...., Xm and Z. In the source model,
we begin with a given joint distribution on X1, X2, ...., Xm and Z; we assume that the
i-th legitimate terminal observes i.i.d. copies of Xi whereas the eavesdropper observes i.i.d.
copies of Z. In the channel model however, X1 represents the input to a discrete memoryless
broadcast channel (DMBC), q(x2, x3, ..., xm, z|x1), and X2, ...., Xm and Z represent the
outputs at the legitimate terminals 2, 3, ..., m and at the eavesdropper. In both models,
the eavesdropper is passive.

Every random variable in this chapter takes values in a finite set. Given random variables
X(1), X(2), ..., X(n), we write X1:i for (X(1), X(2), ..., X(i)). For X1:n we will often instead
write Xn.

Some previous works consider secret key generation in the case where only one terminal
is allowed to participate in public discussion, called the one-way secret key capacity. Our
models more generally include the case in which only a subset of terminals is allowed to
participate in the public discussion. Without loss of generality, we assume that terminals
1, 2, ..., u (1 ≤ u ≤ m) are allowed to talk while terminals u+ 1, u+ 2, ...,m are silent.

The definitions for the source model and channel model are provided in the following
two subsections:
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Source Model

Definition 1. Given n i.i.d repetitions of the jointly distributed random variables
(X1, X2, ..., Xm, Z), the pair (n,C), where C = (C1, C2, ..., Cr) is a finite set of finite random
variables, is considered a valid communication if the following two properties hold:

• H(Ck|C1, C2, ..., Ck−1, X
n
jk

) = 0 where 1 ≤ jk ≤ m is such that jk = k modulo m.
This means that the indexing of the communications is done in round-robin order and
each communication is adapted to the available information of the communicator;

• Ck = 0 whenever u+ 1 ≤ jk ≤ m where jk is defined as above. This means that the
terminals u+ 1, u+ 2, ...,m are not allowed to participate in the communication.1

Please note that if (n,C) is valid, then one has H(C|Xn
1 , X

n
2 , ..., X

n
m) = 0.

The communication is conducted by the m terminals in an interactive way, over an
authenticated but insecure channel (called the public channel); the eavesdropper is assumed
to remain passive throughout, but hears the messages sent over the public channel.

Definition 2. Let ε be a positive real number. Take some valid communication (n,C) and
assume that, following the communication, the m terminals create finite random variables
S1, S2, ..., Sm satisfying the following conditions:

1. H(Sj |C, Xn
j ) = 0 for all 1 ≤ j ≤ m. This condition is saying that Sj is created

by the j-th terminal using the information available to the terminal following the
communication C on the public channel;

2. P (S1 = S2 = S3 = ... = Sm) > 1 − ε. This condition ensures that the legitimate
terminals are, with probability close to 1, generating a shared key;

3. 1
nI(S1;Zn,C) < ε. This ensures that the generated key is almost hidden from the
eavesdropper.

We call such a strategy a secret key (SK) generation strategy, and denote it by SK(n, ε, S1,
S2, S3, ..., Sm, C). The corresponding secret key rate is defined as 1

nH(S1). The intuitive
reason for this terminology is that we are measuring the amount of secret bits generated
per i.i.d. observation of X1, X2, ..., Xm and Z.

Discussion: We basically use the same multi-terminal model as in [12] when all the m
terminals are interested in secret key generation. We have however relaxed the uniformity
condition on the generated secret key i.e. equation (2) in [12]. Maurer in [39] argued that
the assumption of uniformity could always be added without loss of generality. A rigorous
treatment of this point can be found in Lemma 5 of [42]. The idea is as follows: roughly
speaking, a protocol that achieves a non-uniformly distributed key can be converted into one
that does so at the cost of a negligible reduction in the key rate. The idea is to repeat the
protocol several times and take the new key to be the concatenation of the keys generated

1By Ck = 0, we mean P (Ck = 0) = 1. In effect this means the alphabet for random variables
representing the public communication by terminals u+ 1, u+ 2, ...,m is of size one.
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by one of the terminals in each execution of the protocol, when the sequence of individual
secret keys is typical. If the sequence is not typical, the key is set as an error symbol.
This results in an almost uniformly distributed key. In order to enable the other legitimate
terminals to reconstruct the key with probability close to 1 an error correction message is
created by the distinguished terminal and revealed on the public channel.

Furthermore, in this chapter we have adopted the notion of weak secrecy (where the
equivocation rate of the key is made arbitrarily small), rather than the notion of strong
secrecy (where the total equivocation of the key is made arbitrarily small). Maurer and Wolf
showed that the weak and strong secret key rates are equal for the case of two legitimate
terminals [42]. The idea is similar to the one mentioned above, i.e. to carry out the
protocol several times, and send the error correction message on the public channel. Lastly,
the leftover hash lemma is used to create a key about which the eavesdropper has almost
no knowledge (according to the strong notion of secrecy). The strong notion of secrecy, and
its equivalence with the weak notion of secrecy for certain models, was also studied in an
earlier work by Csiszár in [14] using a different technique.

Definition 3. Let ε be a positive real number. Take some valid communication (n,C) and
assume that following the communication, the m terminals create finite random variables
T1, T2, ..., Tm satisfying the following conditions:

1. H(Tj |C, Xn
j ) = 0 for all 1 ≤ j ≤ m. This condition is saying that Tj is created

by the j-th terminal using the information available to the terminal following the
communication C on the public channel;

2. P (T1 = T2 = T3 = ... = Tm) > 1−ε. This condition ensures that the random variables
generated at the legitimate terminals form common randomness with probability close
to 1;

3. 1
nH(Xn

1 , X
n
2 , ..., X

n
u |Zn, T1) < ε. This condition ensures that the generated com-

mon randomness together with Zn covers almost all of the information content of
Xn

1 , X
n
2 , ..., X

n
u .

We call such a strategy a communication for omniscience by a neutral observer (CFO)
strategy, and denote it by CFO (n, ε, T1, T2, T3, ..., Tm, C). The corresponding conditional
CFO rate is defined as 1

nH(C|Zn).

Discussion: Intuitively speaking, a communication for omniscience (CFO) protocol
works as follows: The terminals will conduct a public discussion in order to agree, with
probability close to 1, on a common randomness, but there is no secrecy constraint. We
can assume that there is a neutral terminal, say Charles, who receives Zn from Eve and the
common randomness obtained by the terminals. Charles is required to become omniscient
about Xn

1 , X
n
2 , ..., X

n
u . The cost of the communication, called the conditional CFO rate,

would be the entropy rate of the overall communication conditioned on Zn.
Consider the special case in which u = m, and all the legitimate terminals know Z, that

is H(Z|Xi) = 0 for i = 1, 2, 3, ...,m. Charles has access to ZnT1. Suppose that he has learnt
Xn

1 , X
n
2 , ..., X

n
m, meaning that 1

nH(Xn
1 , X

n
2 , ..., X

n
m|ZnT1) is small. Since H(Zn|Xn

1 ) = 0,
1
nH(Xn

1 , X
n
2 , ..., X

n
m|Xn

1 T1) will be small too, meaning that the first terminal should have
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learned the random variables of all terminals. Furthermore since T1 = T2 = ... = Tm
with high probability, the other terminals should have also learned the random variables
of all the terminals. Therefore, the communication for omniscience by a neutral observer
would be transformed to a simple communication for omniscience, as studied by Csiszár and
Narayan [12]. The communication cost, i.e. the conditional CFO rate of communication,
in this case is equal to the total entropy rate of the communication conditioned on Zn.
Since Zn is known to all terminals at the beginning of the communication and, without
loss of generality, the successive communications can be made independent of each other
and of Zn, one could have chosen them so that the communication cost as we measure it is
identical to the cost as measured by Csiszár and Narayan. Therefore the communication for
omniscience by a neutral observer is a generalization of the communication for omniscience
of [12].

Definition 4. Given positive ε, the ε-secret capacity when the terminals cannot randomize,

Sεno−r(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z),

is defined as the limsup of the maximal SK rate as n converges infinity.2 Please note that
the superscript “(s)” is used to denote the silent terminals. Similarly, the ε-CFO capacity,

T ε(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z),

is defined as the liminf of the minimal conditional CFO rate as n converges infinity.
The SK capacity when the terminals cannot randomize,

Sno−r(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z),

and the CFO capacity,

T (X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z),

are defined as:

Sno−r(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z) =

lim
ε→0

Sεno−r(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z),

T (X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z) =

lim
ε→0

T ε(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z).

The SK capacity when the terminals can randomize, S(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z),

is defined as the supremum of Sno−r(X1M1;X2M2;X3M3;XuMu;X
(s)
u+1; ...;X

(s)
m ‖Z) over all

(M1,M2, ...,Mu) satisfying:

p(M1, ...,Mu, X1, ..., Xm, Z) = p(M1)p(M2)...p(Mu)p(X1, ..., Xm, Z).

2It is easy to see that the limsup (resp liminf) is actually a limit, but the definitions made this
way are technically convenient.
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Channel Model

In the channel model, the m legitimate terminals have access to two resources: an
authenticated but public communication channel, and a discrete memoryless broadcast
channel (DMBC), described by the conditional law q(x2, x3, ..., xm, z|x1). Any message
sent on the public channel will be heard by all terminals including the eavesdropper. The
eavesdropper is assumed to be passive and cannot tamper with the messages sent on the
public channel. The input of the broadcast channel X1 is controlled by the first legitimate
terminal. The DMBC has outputs X2, X3, ..., Xm at the remaining m − 1 legitimate
terminals, and output Z at the eavesdropper.

Before providing a formal definition, we begin with an intuitive description of a secret
key generation scheme in the channel model.

The secret key generation scheme begins by the first terminal inserting random variable
X1(1) at the input of q(x2, x3, ..., xm, z|x1). The other legitimate terminals and the eaves-
dropper receive X2(1), ..., Xm(1) and Z(1), respectively. The first terminal is assumed to
have access to private randomness, implying that the random variable X1(1) need not be a
constant. We then assume that the legitimate terminals engage in r(1) rounds of interac-
tive public discussion over the authenticated public channel; the number of communication
rounds, r(1), can be arbitrarily large. In order to enable the possibility of private ran-
domization during the public discussion we assume that the first u terminals are provided
with random variables M1, M2, ..., Mu that are mutually independent of each other and of
(X1(1), X2(1), ..., Xm(1), Z).3 We use C1 = (C1,1, C1,2, ..., C1,r(1)) to represent this inter-
active public discussion. More specifically, C1,1 is a message created by the first terminal
as a function of X1(1)M1, and revealed to all the other terminals (including the eavesdrop-
per). Then the second terminal creates C1,2 as a function of the information available to
the second terminal at this stage, i.e. C1,1X2(1)M2, and reveals it to all other terminals.
The messages C1,3, C1,4, ... are created and revealed in a similar manner. Note that if
r(1) > m, C1,m+1 will be created by the first terminal. This means that the indexing of
the communications is done in round robin order. Furthermore, since we insist that only
the first u terminals can engage in public discussion, the messages created by terminals
u + 1, u + 2, ..., m must be vacuous (for instance C1,u+1 = C1,u+2 = 0; see footnote 1).
The eavesdropper remains passive throughout, and only hears the public discussions and
its observations from the DMBC. Following the interactive public discussion of the first
stage, the first terminal inserts X1(2) at the input of the DMBC. This input is adapted to
the information available to the first terminal at that stage, i.e. C1X1(1)M1. The other
legitimate terminals and the eavesdropper receive X2(2), ..., Xm(2) and Z(2), respectively.
Then the terminals engage in r(2) rounds of interactive communication over the public
channel, where r(2) is an arbitrary natural number. We use C2 = (C2,1, C2,2, ..., C2,r(2)) to
represent this interactive public discussion. For instance, C2,1 is created as a function of
the information available to the first terminal, i.e. C1X1(1)X1(2)M1. The message C2,2 is
created by the second terminal as a function of the information available to the terminal,
i.e. C1C2,1X2(1)X2(2)M2; the message C2,3 is created by the third terminal as a function

3Therefore the total source of private randomness available to the first u terminals are M1X1(1),
M2, M3, ... and Mu.



27

of C1C2,1C2,2X3(1)X3(2)M3, etc. This process is repeated for n stages. At the end, the
m terminals create the secret keys S1, ..., Sm. These keys should be equal to each other
with probability close to 1 and almost independent of the total information available to the
eavesdropper, i.e. the n observations from the DMBC, Zn, and the messages C1, C2, ...,
Cn sent over the public channel.

For the special case of u = m = 2, the secret key generation scheme can be described
as follows:

→ (X1(1), X2(1), Z(1))

→ (X1(1)M1, X2(1)M2, Z(1))

→ (X1(1)M1C1,1, X2(1)M2C1,1, Z(1)C1,1)

→ (X1(1)M1C1,1C1,2, X2(1)M2C1,1C1,2, Z(1)C1,1C1,2)

→ · · · → (X1(1)M1C1, X2(1)M2C1, Z(1)C1)

→ (X1(1)X1(2)M1C1, X2(1)X2(2)M2C1, Z(1)Z(2)C1)

→ (X1(1)X1(2)M1C1C2,1, X2(1)X2(2)M2C1C2,1, Z(1)Z(2)C1C2,1)

→ (X1(1)X1(2)M1C1C2,1C2,2, X2(1)X2(2)M2C1C2,1C2,2, Z(1)Z(2)C1C2,1C2,2)

→ · · ·
→ (X1(1)X1(2)M1C1C2, X2(1)X2(2)M2C1C2, Z(1)Z(2)C1C2)

→ (X1(1)X1(2)X1(3)M1C1C2, X2(1)X2(2)X2(3)M2C1C2, Z(1)Z(2)Z(3)C1C2)

→ (X1(1)X1(2)X1(3)M1C1C2C3,1, X2(1)X2(2)X2(3)M2C1C2C3,1, Z(1)Z(2)Z(3)C1C2C3,1)

→ · · ·
→ (Xn

1M1C, X
n
2M2C, Z

nC)

→ (S1, S2, Z
nC)

A formal definition of a secret key generation scheme is as follows:

Definition 5. Let ε be a positive real number, M1, M2, ..., Mu, X
n
1 , Xn

2 , ..., Xn
m,

Zn and S1, S2, ..., Sm be finite random variables, and C = (C1,C2, ...,Cn) be a
collection of n finite sets of finite random variables Ci : i = 1, 2, ..., n, where Ci =
(Ci,1, Ci,2, ..., Ci,r(i)) for some natural number r(i) (i = 1, 2, 3..., n). Consider the
following conditions:

1. p(M1,M2, ...,Mu, X1(1), X2(1), ..., Xm(1), Z) =
p(M1)...p(Mu)p(X1(1), X2(1), ..., Xm(1), Z).
This condition is saying that external random variables provided to the u termi-
nals, i.e. M1,M2, ...,Mu, before the first round of communication are mutually
independent of each other and of the random variables corresponding to the
first use of the DMBC.
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2. For i = 1, 2, ..., n:

p

(
X2(i) = x2(i), ..., Xm(i) = xm(i), Z(i) = z(i)

∣∣∣∣
X1:i

1 = x1:i
1 , X

1:i−1
2 = x1:i−1

2 , ..., X1:i−1
m = x1:i−1

m ,

Z1:i−1 = z1:i−1,M1 = m1, ...,Mu = mu

)
=

q(x2(i), ..., xm(i), z(i)|x1(i)).

This condition is essentially saying that the outputs received by the terminals
2, 3, ..., m at the i-th stage, i.e. X2(i), ..., Xm(i), Z(i) depend only on X1(i),
and the DMBC q(x2(i), ..., xm(i), z(i)|x1(i));

3. For i = 2, ..., n,

H(X1(i)|C1,C2, ...,Ci−1, X
1:i−1
1 ,M1) = 0.

This condition is saying that X1(i) is created by the first terminal at the i-th
stage using the information available to the terminal at that stage;

4. H(Ci,k|C1,C2, ...,Ci−1, Ci,1, Ci,2, ..., Ci,k−1, X
1:i
jk
Mjk) is zero whenever 1 ≤ jk ≤

u, where 1 ≤ jk ≤ m is such that jk = k modulo m. This means that the index-
ing of the communications in each stage is done in round robin order and each
communication is adapted to the available information of the communicator.
Furthermore for 1 ≤ i ≤ n, Ci,k = 0 whenever u + 1 ≤ jk ≤ m where jk is de-
fined as above. This means that the terminals u+ 1, u+ 2, ...,m are not allowed
to participate in the communication;

5. H(Sj|C, Xn
jMj) = 0 for 1 ≤ j ≤ u, and H(Sj|C, Xn

j ) = 0 for u + 1 ≤ j ≤ m.
This means that the secret key Sj is created by j-th terminal at the end of
the entire process. For instance, the information available to the j-th terminal
1 ≤ j ≤ u is the whole public communications, i.e. C, the observations made
from the DMBC, i.e. Xn

j , and the private source of randomness Mj;

6. P (S1 = S2 = S3 = ... = Sm) > 1−ε. This ensures that the secret keys generated
at the legitimate terminals are equal to each other high probability close to 1;

7. 1
n
I(S1;Zn,C) < ε. This ensures that the generated key is almost hidden from

the eavesdropper.

We represent such a secret key generation scheme by SKC(n, ε, S1, S2, S3,..., Sm,
C, M1,M2, ...,Mu, X

n
1 , X

n
2 , ..., X

n
m, Z

n). The secret key rate of the scheme is defined
as 1

n
H(S1). In other words, we are measuring the amount of secret bits generated per

use of the DMBC.
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Definition 6. Given ε > 0, Cε
CH(u, q(x2, x3, ...xm, z|x1)), the ε-secret key capacity, is

defined as the limsup of the maximal SKC rate as n converges infinity.
Cε
CH(u, q(x2, x3, ...xm, z|x1)) represents the maximal secret key rate when the prob-

ability of mismatch among the secret keys S1, S2, ..., Sm, and the leakage rate
1
n
I(S1;Zn,C) are bounded from above by ε.

Definition 7. CCH(u, q(x2, x3, ...xm, z|x1)), the channel model secret key capacity, is
defined as:

lim
ε→0

Cε
CH(u, q(x2, x3, ...xm, z|x1)).

Discussion: Note that we have allowed the first user to participate in the public
discussion and to randomize (by randomize we mean the messages put on the public
channel are not necessarily deterministic functions of the random variables received).
Further, all the terminals who participate in the public discussion, i.e. terminals
1 ≤ i ≤ u, are allowed to randomize. The assumption on the participation of the first
terminal in the public discussion can be removed but this terminal must be allowed
to randomize. Otherwise, the inputs to the broadcast channel will be always a deter-
ministic function of the public communication and thus known to the eavesdropper,
resulting in zero secret key rate. It is legitimate to differentiate between the ability to
randomize and the ability to participate in the public discussion as long as the first
user is concerned. For the sake of notational simplicity, however, we allow the first
user to participate in the public discussion.

4.3 Review of the known results

Calculation of the exact secret key capacity remains an unsolved problem, al-
though some lower and upper bounds on this quantity are known. In the source model,
for the case of m = 2, the best known upper bound is that of Renner and Wolf [51].
This bound, known as the double intrinsic information bound, is equal to infU [H(U)+
I(X1;X2 ↓ ZU)], where I(X1;X2 ↓ Z) is defined as infX1X2→Z→Z I(X1;X2|Z) and is
called the intrinsic information [41]. The essentially best known lower bound, proved
using random binning arguments, is due to Ahlswede and Csiszár [1]: the maximum
of supV→U→X1→X2Z

(
I(U ;X2|V ) − I(U ;Z|V )

)
and supV→U→X2→X1Z

(
I(U ;X1|V ) −

I(U ;Z|V )
)
. 4 In the channel model, for the case of m = 2, the best known upper

bound explicitly mentioned in the literature, as far as we are aware, is

min[sup
p(x1)

I(X1;X2), sup
p(x1)

I(X1;X2|Z))],

4Maurer provided a different technique for deriving lower bounds on the secret key capacity in
[39]. He proved, for instance, that even when the maximum of the two one-way secret key capacities
vanishes, the secret key capacity may still be positive. This technique however seems to give us a
rather low secret key rate in this case. A generally applicable single letter form of a lower bound
based on the ideas in [39] is not known.
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which was proposed by Maurer [39]. This can however be easily generalized to
infZ→Z→X1X2

[supp(x1) I(X1;X2|Z)]. The essentially best know lower bound, as far
as we are aware, is

sup
p(x1)

max
{

sup
V→U→X1→X2Z

[I(U ;X2|V )− I(U ;Z|V )],

sup
V→U→X2→X1Z

[I(U ;X1|V )− I(U ;Z|V )]
}
,

which one can find in [12], [39]. Recently, Csiszár and Narayan have derived new
sufficient conditions for tight upper bounds [13].

4.4 The source model and the CFO problem

4.4.1 The proof technique at an intuitive level

In this section, we illustrate the main proof technique at an intuitive level. Roughly
speaking, the technique used for deriving the upper bounds is to consider functions
of joint distributions which satisfy specific properties that eventually lead to their
dominating the secret key capacity. More specifically, in the source model, we consider
a specific class of functions of joint distributions, called potential functions, and show
that they satisfy the following property: for any secret key generating protocol, the
potential function starts from the upper bound and decreases as we move along the
protocol, and eventually becomes equal to the secret key rate of the protocol. It was
pointed to us by one of the reviewers for a journal paper published on this, that our
technique is similar to that of “secret key monotones” of Lemma 2.10 of [38]. We now
provide the details:

Consider the special case of u = m = 2. One can view Sno−r(X1;X2‖Z) as a
function from the set of all joint distributions p(x1, x2, z) defined on arbitrary finite
sets X1, X2 and Z to non-negative real numbers. Our technique for proving upper
bounds on the secret key capacity is to identify certain properties of Sno−r(X1;X2‖Z)
as a function, and then consider the class of all functions that have those properties
and show that each of them is an upper bound on Sno−r(X1;X2‖Z). The function
Sno−r(X1;X2‖Z) has the following properties:

1. For any natural number n, we have n · Sno−r(X1;X2‖Z) ≥ Sno−r(X
n
1 ;Xn

2 ‖Zn);

2. For any random variable F such that H(F |X1) = 0 or H(F |X2) = 0, we have:
Sno−r(X1;X2‖Z) ≥ Sno−r(X1F ;X2F‖ZF );

3. For any random variables X ′1, X
′
2 such that H(X ′1|X1) = H(X ′2|X2) = 0, we

have: Sno−r(X1;X2‖Z) ≥ Sno−r(X
′
1;X ′2‖Z);

4. Sno−r(X1;X2‖Z) ≥ H(X1|Z)−H(X1|X2) = I(X1;X2)− I(X1;Z).
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In order to show that the first property holds, take a particular secret key generation
scheme for the triple (Xn

1 , X
n
2 , Z

n). This scheme consists of taking say n′ i.i.d. copies
of (Xn

1 , X
n
2 , Z

n), conducting a public discussion and then generating a secret key. One
can however simulate the same scheme on the left hand side by taking nn′ i.i.d copies
of (X1, X2, Z), conducting the same public discussion, and then generating the same
secret key. The difference in the number of i.i.d. copies observed is compensated for
by the factor n on the left hand side. Using the same simulation idea, one can show
that properties 2 and 3 also hold. Property 4 holds since H(X1|Z) − H(X1|X2) =
I(X1;X2) − I(X1;Z) is known to be a lower bound on Sno−r(X1;X2‖Z) (see for
example [1]).

Next, take an arbitrary function ϕ(X1;X2‖Z), from the set of all joint distributions
p(x1, x2, z) defined on arbitrary finite sets X1, X2 and Z to non-negative real numbers.
Assume that ϕ(X1;X2‖Z) satisfies the above three properties:

1. For any natural number n, we have n · ϕ(X1;X2‖Z) ≥ ϕ(Xn
1 ;Xn

2 ‖Zn);

2. For any random variable F such that H(F |X1) = 0 or H(F |X2) = 0, we have:
ϕ(X1;X2‖Z) ≥ ϕ(X1F ;X2F‖ZF );

3. For any random variables X ′1, X
′
2 such that H(X ′1|X1) = H(X ′2|X2) = 0, we

have: ϕ(X1;X2‖Z) ≥ ϕ(X ′1;X ′2‖Z);

4. ϕ(X1;X2‖Z) ≥ H(X1|Z)−H(X1|X2) = I(X1;X2)− I(X1;Z).

We claim that any such function ϕ(X1;X2‖Z) dominates Sno−r(X1;X2‖Z), i.e.
ϕ(X1;X2‖Z) ≥ Sno−r(X1;X2‖Z). The rough sketch of the proof is as follows. Take a
secret key generation scheme that generates a secret key rate close to Sno−r(X1;X2‖Z).
The terminals observe n i.i.d. copies of (X1, X2, Z), conduct the communication
C = (C1, C2, ..., Cr), and generate the secret keys S1 and S2 where S1

∼= S2, and
1
n
H(S1) ∼= Sno−r(X1;X2‖Z). We then have:

n · ϕ(X1;X2‖Z) ≥ ϕ(Xn
1 ;Xn

2 ‖Zn) ≥ (4.1)

ϕ(Xn
1C1;Xn

2C1‖ZnC1) ≥ (4.2)

ϕ(Xn
1C1C2;Xn

2C1C2‖ZnC1C2) ≥ (4.3)

... ≥

ϕ(Xn
1 C;Xn

2 C‖ZnC) ≥
ϕ(S1;S2‖ZnC) ≥ (4.4)

H(S1|ZnC)−H(S1|S2) (4.5)
∼= n · Sno−r(X1;X2‖Z),

where equation (4.1) holds because of property 1; equation (4.2) holds because of
property 2 and the fact that H(C1|Xn

1 ) = 0; equation (4.3) holds because of property
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2 and the fact that H(C2|C1X
n
1 ) = 0; equation (4.4) holds because of property 3 and

the fact that H(S1|Xn
1 C) = H(S2|Xn

2 C) = 0; equation (4.5) holds because of property
4. The above chain of inequalities imply that ϕ(X1;X2‖Z) ≥ Sno−r(X1;X2‖Z).

Note that the triples

(Xn
1 , X

n
2 , Z

n), (Xn
1C1, X

n
2C1, Z

nC1),

(Xn
1C1C2, X

n
2C1C2, Z

nC1C2), ...,

(Xn
1 C, Xn

2 C, ZnC), (S1, S2, Z
nC),

can be thought of as representing the sequence of the information states of the sys-
tem during the simulation of the secret key generation scheme. The function ϕ(.)
associates a value to the information state of the system in such a way that, as the
scheme is conducted, the value associated to the information state decreases (as shown
in equations (4.2), (4.3)). Thus, it is justified to view ϕ(.) as a potential function.

The above result could make the converse proofs systematic. Suppose we would
like to prove that I(X1;X2|Z) constitutes an upper bound on Sno−r(X1;X2‖Z). It
suffices to verify that ϕ(X1;X2‖Z) = I(X1;X2|Z) satisfies the above four properties:
the first property holds since I(Xn

1 ;Xn
2 |Zn) = nI(X1;X2|Z); the second property

holds since if we for instance assume that H(F |X1) = 0, we will have I(X1;X2|Z) =
I(X1F ;X2|Z) = I(F ;X2|Z) + I(X1;X2|ZF ) ≥ I(X1F ;X2F |ZF ); the third property
holds since I(X1;X2|Z) ≥ I(X ′1;X ′2|Z) whenever H(X ′1|X1) = H(X ′2|X2) = 0; the
fourth property holds since I(X1;X2|Z)−

(
H(X1|Z)−H(X1|X2)) = I(X1;Z|X2) ≥ 0.

In order to find a new upper bound, therefore, one might seek a function that
satisfies the above conditions. Given any such function, the proof would consist of
verification of these properties. In order to find a new upper bound, one can think of
a given function ϕ(X1;X2‖Z) as a point in the set of all functions that satisfy the four
properties, and try to slightly perturb the expression so that all the four properties
remain satisfied. Theorems 4 and 5 that will be discussed later were derived using
such a trial and error process.

4.4.2 Statement of the new converses

In this section we state the main results. We use the potential function method
to prove them in section 4.4.3 and the appendices. Following the formal statement of
each result, a brief informal discussion is provided to clarify the statement.

Sufficient conditions for being an upper bound on the SK capacity

Theorem 1. Let ϕ(X1;X2;X3; ...;Xm‖Z) be a real-valued function from the set of all
probability distributions defined on (X1, X2, X3, ..., Xm, Z), where X1, X2, ..., Xm and
Z take values from arbitrary finite sets. ϕ(X1;X2;X3; ...;Xm‖Z) is an upper bound

on S(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) if it satisfies all of the following properties
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(1-5). ϕ(X1;X2;X3; ...;Xm‖Z) is an upper bound on

Sno−r(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z)

if it satisfies properties (1-4).

1. For any natural number n:

nϕ(X1;X2; ...;Xm‖Z) ≥ ϕ(Xn
1 ;Xn

2 ; ...;Xn
m‖Zn) ;

2. For any random variable F such that for some 1 ≤ i ≤ u we have H(F |Xi) = 0,
it holds that:

ϕ(X1;X2; ...;Xm‖Z) ≥ ϕ(X1F ;X2F ; ...;XmF‖ZF ) ;

3. For any random variables X ′1, X
′
2, ..., X

′
m such that H(X ′i|Xi) = 0 for all 1 ≤

i ≤ m, we have:

ϕ(X1;X2; ...;Xm‖Z) ≥ ϕ(X ′1;X ′2; ...;X ′m‖Z) ;

4. ϕ(X1;X2; ...;Xm‖Z) ≥ H(X1|Z)−
∑m

i=2H(X1|Xi);

5. For any set of random variables (M1,M2, ...,Mu) satisfying

p(M1,M2, ...,Mu, X1, X2, ..., Xm, Z) =

p(M1)p(M2)...p(Mu)p(X1, X2, ..., Xm, Z), (4.6)

we have:

ϕ(X1;X2; ...;Xm‖Z) ≥
ϕ(X1M1;X2M2; ...;XuMu;Xu+1; ...;Xm‖Z).

Further, S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) itself satisfies all of these properties

and
Sno−r(X1;X2; ...;Xu;X

(s)
u+1; ...;X

(s)
m ‖Z) satisfies properties (1-4).

Discussion: The domain of ϕ in Theorem 1 is the set of all probability distribu-
tions on all products of m + 1 finite sets. Condition 1 corresponds to the notion of
taking blocks of observations. Condition 2 corresponds to the notion of terminal i
communicating over the authenticated public channel. Condition 3 corresponds to
the notion of each terminal choosing to ignore part of its available information. The
right hand side of condition 4 is a choice of an easily proved and technically conve-
nient lower bound on the secret key capacity; other such expressions could also have
been used instead. Condition 5 is relevant to the case where the speaking terminals
are allowed to independently randomize. �
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Sufficient conditions for being a lower bound on the CFO capacity

Theorem 2. Let ψ(X1;X2;X3; ...;Xm‖Z) be a real-valued function from the set of
all probability distributions defined on (X1, X2, X3, ..., Xm, Z), where X1, X2, ..., Xm

and Z take values from arbitrary finite sets. ψ(X1;X2;X3; ...;Xm‖Z) is a lower bound
on
T (X1;X2;X3; ...;Xu;X

(s)
u+1; ...;X

(s)
m ‖Z) if it satisfies the following properties:

1. For any natural number n:

nψ(X1;X2; ...;Xm‖Z) ≤ ψ(Xn
1 ;Xn

2 ; ...;Xn
m‖Zn);

2. For any random variable F such that for some 1 ≤ i ≤ u we have H(F |Xi) = 0,
it holds that:

ψ(X1;X2; ...;Xm‖Z) ≤ ψ(X1F ;X2F ; ...;XmF‖ZF ) +H(F |Z) ;

3. For any random variables X ′1, X
′
2, ..., X

′
m such that H(X ′i|Xi) = 0 for all 1 ≤

i ≤ m, we have:

ψ(X1;X2; ...;Xm‖Z) ≤ ψ(X ′1;X ′2; ...;X ′m‖Z) +H(X1...Xu|X ′1...X ′uZ);

4. ψ(X1;X2; ...;Xm‖Z) is bounded from above by

H(X2...Xu|X1Z) +
m∑
i=2

H(X1|Xi).

Further, T (X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) satisfies these properties.

Discussion: As in the case of ϕ of Theorem 1, here ψ should be thought of as
defined on the set of all probability distributions on all products of m+ 1 finite sets.
Condition 1 corresponds to the notion of forming blocks. Condition 2 corresponds
to the notion of terminal i communicating over the authenticated public channel and
paying the cost H(F |Z) for this. Condition 3 corresponds to each terminal choosing
to work with only part of its observation; intuitively the missing part can later be
shared by incurring a conditional CFO rate of at most H(X1X2...Xu|X ′1X ′2...X ′uZ).
The right hand side of condition 4 is a convenient choice of an easily proved upper
bound on the CFO rate; other such choices could also have been used instead. It
should however be noted that the choice in condition 4 is concave over probability
distributions and this was important in the proof of some additional properties of the
CFO rate given in [21]. �
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Connection between the SK and the CFO capacities

Theorem 3. For any joint distribution p(x1, x2, ..., xm, z), we have:

Sno−r(X1; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z) + T (X1; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z) =

H(X1X2...Xu|Z).

Discussion: This establishes the equivalence between the problem of secret key
generation and the problem of communication for omniscience by a neutral observer,
generalizing the result of [12]. �

New upper bound on the SK capacity

Theorem 4. For an arbitrary natural number t and finite random variables J1, J2, ..., Jt,
arbitrarily jointly distributed withX1, X2, ..., Xm and Z, S(X1; ...;Xu;X

(s)
u+1; ...;X

(s)
m ‖Z)

is bounded above by

max
i

(S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Ji))+

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ; J
(s)
1 ; J

(s)
2 ; ...J

(s)
t ‖Z).

Discussion: To understand this claim, start with the case t = 1. One can think of
J1 as trying to define a “split” in the secret key capacity: one looks for a secret key
among the m terminals that is secret from an entity that gets i.i.d. copies of J1 (the
first term on the right hand side of the upper bound) and then for a secret key that
is shared by a terminal getting i.i.d. repetitions of J1 (who is not allowed to talk)
but is secret from the original eavesdropper (the second term on the right hand side
of the upper bound). The claim is that the true secret key cannot exceed the sum of
the two rates got in this “split” way.

The case of general t can be intuitively understood as follows: suppose there are
t fictitious terminals, with the i-th terminal receiving i.i.d. copies of Ji. The secret
key generated by the m original terminals is split into two components: one that is
shared with each of the fictitious terminals J1, J2, ..., Jt, and one that is independent
of some fictitious terminal Ji, 1 ≤ i ≤ t. Assuming that S1 is the secret key, we can
write:

1

n
H(S1) =

1

n
min
1≤i≤t

I(S1; Jni ) +
1

n
max
1≤i≤t

H(S1|Jni ). (4.7)

One can argue that the term 1
n

min1≤i≤t I(S1; Jni ) represents a secret key rate that
could be created in a way that is shared with each of the silent fictitious terminals
J1, J2, ..., Jt; and the term 1

n
max1≤i≤tH(S1|Jni ) represents a part S1 that is indepen-

dent of some Jni , 1 ≤ i ≤ t.
Although the upper bound can be interpreted in the above way, we originally

derived it following the trial and error process discussed in section 4.4.1. �
Theorem 4 leads to some corollaries that appear to deserve separate statements.
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Corollary 1. S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) is bounded above by

inf
J

(
S(X1J ;X2J ; ...;XuJ ; (Xu+1J)(s); ...; (XmJ)(s)‖J)

+ S(X1X2...Xm; J (s)‖Z)
)
,

where the infimum is taken over finite random variables J arbitrarily jointly dis-
tributed with X1, X2, ..., Xm and Z.

A single letter characterization of S(X1J ;X2J ; ...;XuJ ; (Xu+1J)(s); ...; (XmJ)(s)‖J)
is given in Theorem 6 of [23]. A single letter characterization for the second term
S(X1X2...Xm; J (s)‖Z), the one-way secret key capacity from X1X2...Xm to J in the
presence of the eavesdropper Z, is also known (see [1, Theorem 1]). �

Corollary 2. For u = m = 2, we have

S(X1;X2‖Z) ≤ inf
J

(
S(X1;X2‖J) + S(X1X2; J (s)‖Z)

)
≤ inf

J

(
I(X1;X2|J) + S(X1X2; J (s)‖Z)

)
.

A single letter characterization for the second term S(X1X2; J (s)‖Z) is known
(see [1, Theorem 1]). This bound is no worse than the Renner-Wolf double intrinsic
information upper bound, and furthermore there exists a joint distribution on X1, X2

and Z for which the new bound is strictly tighter than the Renner-Wolf upper bound.
�

A variant of Corollary 1 can be proved by the verification technique that was used
to prove Theorem 1. This is stated as the next result.

Theorem 5. Let R≥0 denote the set of non-negative real numbers. Given any func-
tion f : R≥0 7→ R≥0, define the f -one-way secret key capacity as

Sf−one−way(X;Y (s)‖Z) =

sup
V→U→X→Y Z

[f(H(U |ZV ))− f(H(U |Y V ))].

Then for any arbitrary strictly increasing convex function f : R≥0 7→ R≥0, and for
any finite random variables J arbitrarily jointly distributed with X1, X2, ..., Xm and
Z, the secret key capacity S(X1;X2; ...;Xu;X

(s)
u+1; ...;X

(s)
m ‖Z) is bounded above by

f−1{f(S(X1;X2; ...;Xu; (Xu+1)(s); ...; (Xm)(s)‖J))

+ Sf−one−way(X1X2...Xm; J (s)‖Z)}.

This upper bound is in turn bounded above by

f−1
(
f(S(X1J ; ...;XuJ ; (Xu+1J)(s); ...; (XmJ)(s)‖J))

+ Sf−one−way(X1...Xm; J (s)‖Z)
)
.
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Discussion: The f -one-way secret key capacity can be viewed as a generalization of
the one-way key capacity (also known as the forward key capacity) (see [1, Theorem
1, ]) since the former reduces to the latter in the special case of f(x) = x. The
upper bound given in Theorem 5 reduces to that of Corollary 1 in the special case of
f(x) = x. We don’t know if this bound strictly improves that of Corollary 1. The
weaker form of the bound given in the statement of the theorem is useful because there
is a single letter characterization for S(X1J ;X2J ; ...;XuJ ; (Xu+1J)(s); ...; (XmJ)(s)‖J),
given in Theorem 6.

The two upper bounds given in this theorem can be understood as perturbations
of those given in Theorem 4 and its corollaries. This upper bound was obtained by
the trial and error process described at the end of section 4.4.1. �

4.4.3 Proofs

Proof of Theorem 1: Fix a probability distribution p(x1, x2, ..., xm, z) on X1×X2×
... × Xm × Z where X1,X2, ...,Xm,Z are finite sets. We begin by proving that
ϕ(X1;X2;X3; ...;Xm‖Z) is an upper bound on Sno−r(X1;X2;X3; ...;Xu;X

(s)
u+1; ...;X

(s)
m ‖Z)

if it satisfies properties (1-4).
For every positive δ and ε, one can find some secret key generation scheme SK(n,

ε, S1, S2, S3,..., Sm, C) whose key rate is within δ of

Sεno−r(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z). We have:

nϕ(X1;X2;X3; ...;Xm‖Z) ≥
ϕ(Xn

1 ;Xn
2 ;Xn

3 ; ...;Xn
m‖Zn) (4.8)

≥ ϕ(Xn
1C1;Xn

2C1; ...;Xn
mC1‖ZnC1) (4.9)

≥ ϕ(Xn
1C1C2;Xn

2C1C2; ...;Xn
mC1C2‖ZnC1C2) (4.10)

... ≥ ϕ(Xn
1 C;Xn

2 C; ......;Xn
mC‖ZnC) (4.11)

≥ ϕ(S1;S2; ...;Sm‖ZnC) (4.12)

≥ H(S1|ZnC)−
m∑
j=2

H(S1|Sj) (4.13)

≥ nSεno−r(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z)}

− nδ − (m− 1)[h(ε) + εn log
m∏
i=1

|Xi|]. (4.14)

Inequalities (4.8), (4.9), (4.10), (4.11), (4.12), (4.13) are true respectively because of
the properties 1, 2, 2, 2, 3, 4. Inequality (4.14) holds because of the Fano inequality
and the fact that the secret key rate of SK(n, ε, S1, S2, S3,..., Sm, C) is within δ of

Sεno−r(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z).
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Therefore we get

ϕ(X1;X2;X3; ...;Xm‖Z) ≥

Sεno−r(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z)} − δ − (m− 1)[
h(ε)

n
+ ε log

m∏
i=1

|Xi|].

We get the desired result by letting ε and δ converge to zero.
Next, in order to show that ϕ(X1;X2;X3; ...;Xm‖Z) would be an upper bound on

S(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z)

if it satisfies all the five properties, we note that for any M1, M2, ..., Mu (satisfying
equation (4.6)),

ϕ(X1;X2;X3; ...;Xm‖Z) ≥
ϕ(X1M1;X2M2; ...;XuMu;Xu+1; ...;Xm‖Z) ≥ (4.15)

Sno−r(X1M1; ...;XuMu;X
(s)
u+1; ...;X(s)

m ‖Z). (4.16)

Inequality (4.15) is true because of the property 5, and inequality (4.16) holds because
ϕ satisfies the first four properties. Therefore for any M1, M2, ..., Mu satisfying
equation (4.6), we have

ϕ(X1;X2;X3; ...;Xm‖Z) ≥
Sno−r(X1M1;X2M2; ...;XuMu;X

(s)
u+1; ...;X(s)

m ‖Z),

implying that ϕ is an upper bound on S(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z).

Lastly, we need to show that

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z)

and
Sno−r(X1;X2; ...;Xu;X

(s)
u+1; ...;X(s)

m ‖Z)

themselves satisfy the five (respectively the first four) properties.

S(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) satisfies properties 1, 2, 3 and 5 and

Sno−r(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) satisfies properties 1, 2 and 3 because every

valid SK generation scheme for the right hand side of the inequalities can be converted
to one for the left hand side. In 1, the terminals observing (X1, X2, ..., Xm) can first
observe n i.i.d. copies of their random variables and then simulate the SK generation
scheme for the right hand side. In 2, they can take i.i.d repetitions of F by the i-th
terminal as the first non-trivial communication and then simulate the SK generation
scheme for the right hand side. In 3, they can create X ′i’s first and then simulate
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the SK generation scheme for the right hand side. In 5, the terminals 1 ≤ i ≤ u can
respectively create M1,M2, . . . ,Mu first and then simulate the SK generation scheme
for the right hand side.

For property 4, note that both the terms S(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z)

and Sno−r(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) are greater than or equal to the one-

way secret key capacity from X1 to X2, X3, ..., Xm in the presence of Z, which in turn
is greater than or equal to min2≤i≤m(I(X1;Xi)−I(X1;Z)). This expression is greater
than or equal to the right hand side of 4. �

Proof of Theorem 2: Fix a probability distribution p(x1, x2, ..., xm, z) on X1×X2×
... × Xm × Z where X1,X2, ...,Xm,Z are finite sets. For every δ > 0 and ε > 0, one
can find a CFO strategy (n, ε, T1, T2, T3, ..., Tm, C), whose conditional CFO rate is

within δ of T ε(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z). We have:

nψ(X1;X2;X3; ...;Xm‖Z) ≤
ψ(Xn

1 ;Xn
2 ;Xn

3 ; ...;Xn
m‖Zn) (4.17)

≤ ψ(Xn
1C1;Xn

2C1; ...;Xn
mC1‖ZnC1) +H(C1|Zn) (4.18)

≤ ψ(Xn
1C1C2;Xn

2C1C2; ...;Xn
mC1C2‖ZnC1C2)+

H(C1C2|Zn) (4.19)

... ≤ ψ(Xn
1 C;Xn

2 C; ...;Xn
mC‖ZnC) +H(C|Zn) (4.20)

≤ ψ(T1;T2; ...;Tm‖ZnC)+

H(Xn
1X

n
2 ...X

n
u |T1T2...TuZ

n) +H(C|Zn) (4.21)

≤ H(T2...Tu|T1Z
nC)+

m∑
j=2

H(T1|Tj)+

H(Xn
1X

n
2 ...X

n
u |T1T2...TuZ

n) +H(C|Zn) (4.22)

≤ h(ε) + ε · n log
u∏
i=1

|Xi|+

(m− 1)[h(ε) + ε · n log
m∏
i=1

|Xi|] + nε

+ nT ε(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z) + nδ. (4.23)

Inequalities (4.17), (4.18), (4.19), (4.20), (4.21), (4.22) are true respectively because
of the properties 1, 2, 2, 2, 3, 4. Inequality (4.23) is true due to the Fano inequality,
and the fact that the conditional CFO rate of (n, ε, T1, T2, T3, ..., Tm, C) is within δ

of T ε(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z).
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Therefore we get

ψ(X1;X2;X3; ...;Xm‖Z) ≤

T ε(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z) + δ +
m

n
[h(ε) + ε · n log

m∏
i=1

|Xi|] + ε.

The theorem is proved by taking the limit as ε and δ go to zero.
T (X1;X2;X3; ...;Xu;X

(s)
u+1; ...;X

(s)
m ‖Z) itself satisfies the four properties.

For property 1, note that the terminals observing (X1, X2, ..., Xm) can first observe
n i.i.d. copies of their random variables and then pretend that they are in the situation
on the right hand side of 1. For property 2, they can take i.i.d repetitions of F by
the i-th terminal as the first non-trivial communication, and then pretend that they
are in the situation corresponding to the first term on the right hand side of 2. The
total cost would be the sum of H(F |Z) and the remaining conditional CFO rate of
the left hand side.

Regarding property 3, we first intuitively sketch the proof: one possible commu-
nication for omniscience for (X1, X2, ..., Xm, Z) is to first conduct a communication
for omniscience for (X ′1, X

′
2, ..., X

′
m, Z). The terminal who wants to become omni-

scient, Charles, would be able to approximately learn (X ′1, X
′
2, ..., X

′
u, Z) with the

conditional CFO rate of T (X ′1;X ′2;X ′3; ...;X ′u;X
′(s)
u+1; ...;X

′(s)
m ‖Z). If Charles exactly

knew (X ′1, X
′
2, ..., X

′
u, Z), the u terminals could use a Slepian-Wolf type communica-

tion scheme to reveal
H(X1X2...Xu|X ′1X ′2...X ′uZ) bits on the public channel, thereby enabling Charles to
receive these bits as a common randomness and become omniscient. The total con-
ditional CFO rate is no more than

T (X ′1;X ′2;X ′3; ...;X ′u;X
′(s)
u+1; ...;X

′(s)
m ‖Z) +H(X1X2...Xu|X ′1X ′2...X ′uZ).

Even though Charles does not exactly know (X ′1, X
′
2, ..., X

′
u;Z), this Slepian-Wolf

algorithm still works.
We now prove the property more precisely. Fix ε > 0 and δ > 0.

T ε(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) is defined as the liminf of the minimal conditional

CFO rate as n converges infinity. Therefore we can find a large enough n such that
the following requirements are satisfied:

• There is a CFO strategy (n, ε, T1, T2, T3, ..., Tm, C) whose conditional CFO

rate is within δ of T ε(X ′1;X ′2;X ′3; ...;X ′u;X
′(s)
u+1; ...;X

′(s)
m ‖Z);

• There is a communication with the total entropy of at most

n(H(X1....Xu|X ′1X ′2...X ′uZ) + δ)

for the following Slepian-Wolf type problem: u terminals having i.i.d. repeti-
tions of X1, X2, ..., Xu want to transmit their information to a receiver who has
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i.i.d. repetitions of X ′1X
′
2...X

′
uZ as side information. In this Slepian-Wolf type

problem, it is desired to have 1
n
H(Xn

1 ....X
n
u |X

′n
1 X

′n
2 ...X

′n
u Z

n, Communication) ≤
δ.

The terminals first follow CFO(n, ε, T1, T2, T3, ..., Tm, C) and then the u terminals
X1, X2, ..., Xu insert the corresponding communications for the Slepian-Wolf problem
on the public channel. Let C′ denote the whole communication (C′ includes C).

We prove that the CFO(n, ε + δ, T1C
′, T2C

′, ..., TmC′, C′) is valid and further
the conditional CFO rate is less than or equal to

T ε(X ′1;X ′2;X ′3; ...;X ′u;X
′(s)
u+1; ...;X

′(s)
m ‖Z)

+H(X1....Xu|X ′1X ′2...X ′uZ) + 2δ.

Using the inequality

H(X|YW ) ≤ H(X|ZW ) +H(Z|YW )

for any four random variables X, Y, Z,W , we have

1

n
H(Xn

1 ....X
n
u |T1C

′Zn) ≤
1

n
H(Xn

1 ....X
n
u |X

′n
1 X

′n
2 ...X

′n
u C′Zn)+

1

n
H(X

′n
1 X

′n
2 ...X

′n
u |T1C

′Zn) ≤ δ + ε.

The other requirements for the CFO to be valid can be easily checked.
The conditional CFO rate, i.e. 1

n
H(C′|Zn) is bounded above by

1

n
H(C|Zn) +

1

n
H(C′|C) ≤

T ε(X ′1;X ′2; ...;X ′u;X
′(s)
u+1; ...;X

′(s)
m ‖Z)

+ δ +H(X1X2...Xu|X ′1X ′2...X ′uZ) + δ.

For property 4, the idea is that, in the first phase, the first terminal transmits
messages to the other terminals enabling them to find X1 with probability close to 1.
The entropy of the communication from the first terminal to the i-th terminal would
be roughly n ·H(X1|Xi), and this is an upper bound for the conditional entropy of the
communication given Zn. Now, since all the terminals can include X1 as a common
randomness, Charles would be able to calculate X1Z. In the second stage, the first
u terminals reveal roughly n · H(X1X2...Xu|X1Z) bits on the public channel. Since
this now becomes a common randomness, it can be passed to Charles, enabling him
to learn X1X2...Xu. The total conditional CFO rate of this communication scheme



42

would be bounded above by
∑
H(Xi|X1) +H(X1X2...Xu|X1Z) on a per observation

basis, asymptotically as n→∞. �
Proof of Theorem 3: It can be easily shown that ψ(X1;X2;X3; ...;Xm‖Z) satisfies

the four properties of Theorem 2 if and only ifH(X1X2...Xu|Z)−ψ(X1;X2;X3; ...;Xm‖Z)
satisfies the four properties of Theorem 1.

T (X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) itself satisfies the four properties of Theo-

rem 2. Hence

H(X1X2...Xu|Z)− T (X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z) ≥
Sno−r(X1;X2; ...;Xu;X

(s)
u+1; ...;X(s)

m ‖Z).

Further since Sno−r(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) itself satisfies the four properties

of Theorem 1, we get

H(X1X2...Xu|Z)−
Sno−r(X1;X2;X3; ...;Xu;X

(s)
u+1; ...;X(s)

m ‖Z) ≤
T (X1;X2;X3; ...;Xu;X

(s)
u+1; ...;X(s)

m ‖Z).

Therefore

H(X1X2...Xu|Z) =

Sno−r(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z)+

T (X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z).

�
Proof of Theorem 4: Theorem 1 allows one to systematically prove the correct-

ness of the upper bound by treating it as an algebraic expression satisfying certain
properties. More specifically, we simply need to prove that

ϕ(X1;X2;X3; ...;Xm‖Z) =

inf
J1,J2,...,Jt

[max
i

(S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Ji))+

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ; J
(s)
1 ; J

(s)
2 ; ...J

(s)
t ‖Z)]

satisfies the five properties of Theorem 1, where the infimum is taken over finite
random variables J1, J2, ..., Jt arbitrarily jointly distributed with X1, X2, ..., Xm and
Z.

Property 1 : It is enough to prove that for any J1, J2, ..., Jt, there exist J ′1, J
′
2, ..., J

′
t
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such that:

n
{

max
i

(S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Ji))+

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ; J
(s)
1 ; J

(s)
2 ; ...J

(s)
t ‖Z)

}
≥ max

i
(S(Xn

1 ;Xn
2 ; ...;Xn

u ; (Xn
u+1)(s); ...; (Xn

m)(s)‖J ′i))+

S(Xn
1 ; ...;Xn

u ; (Xn
u+1)(s); ...; (Xn

m)(s); J
′(s)
1 ; ...; J

′(s)
t ‖Zn).

We take J ′i to be Jni for 1 ≤ i ≤ t. The inequality holds since the secret key
function itself satisfies the first property of Theorem 1.

Property 2 : Let H(F | Xi) = 0, where 1 ≤ i ≤ u. It is enough to prove that for
any J1, J2, ..., Jt, there exist J ′1, J

′
2, ..., J

′
t such that:

max
i

(S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Ji))+

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ; J
(s)
1 ; J

(s)
2 ; ...J

(s)
t ‖Z)

≥ max
i

(S(X1F ;X2F ; ...;XuF ;X
(s)
u+1F ; ...;X(s)

m F‖J ′i))+

S(X1F ; ...;XuF ; (Xu+1F )(s); ...; (XmF )(s); J
′(s)
1 ; ...; J

′(s)
t ‖ZF ).

We take J ′i to be JiF for 1 ≤ i ≤ t. The inequality holds since the secret key
function itself satisfies the second property of Theorem 1.

The proof for property 3 is similar to that for the two preceding properties.
Property 4 : It is enough to prove that for any J1, J2, ..., Jt,

max
i

(S(X1;X2; ...;Xu;X
(s)
u+1...;X

(s)
m ‖Ji))+

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ; J
(s)
1 ; J

(s)
2 ; ...J

(s)
t ‖Z)

is greater than or equal to H(X1|Z)−
∑m

k=2H(X1|Xk).
We have:

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ; J
(s)
1 ; J

(s)
2 ; ...J

(s)
t ‖Z) ≥

S(X1;X
(s)
2 ;X

(s)
3 ; ...;X(s)

m ; J
(s)
1 ; J

(s)
2 ; ...J

(s)
t ‖Z) ≥

min( min
1≤i≤t

I(X1; Ji), min
2≤k≤m

I(X1;Xk))

− I(X1;Z).

Since the secret key function itself satisfies the fourth property of Theorem 1, we
have:

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Ji) ≥

H(X1)− I(X1; Ji)−
∑
k

H(X1|Xk).
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This implies that

max
i
S(X1;X2; ...;Xu;X

(s)
u+1; ...;X(s)

m ‖Ji) ≥

H(X1)−min
i
I(X1; Ji)−

m∑
k=2

H(X1|Xk).

There are two cases:

• If mini I(X1; Ji) ≤ mink I(X1;Xk) :
We have:

S(X1; ...;Xu;X
(s)
u+1; ...;X(s)

m ; J
(s)
1 ; J

(s)
2 ; ...J

(s)
t ‖Z) ≥

min
i
I(X1; Ji)− I(X1;Z) =

H(X1)−max
i
H(X1|Ji)− I(X1;Z).

Therefore

max
i
S(X1; ...;Xu;X

(s)
u+1; ...;X(s)

m ‖Ji)+

S(X1; ...;Xu;X
(s)
u+1; ...;X(s)

m ; J
(s)
1 ; ...J

(s)
t ‖Z) ≥

H(X1)− I(X1;Z)−
m∑
k=2

H(X1|Xk) =

H(X1|Z)−
m∑
k=2

H(X1|Xk).

• If mini I(X1; Ji) > min2≤k≤m I(X1;Xk) :
We have:

S(X1; ...;Xu;X
(s)
u+1; ...;X(s)

m ; J
(s)
1 ; J

(s)
2 ; ...J

(s)
t ‖Z) ≥

min
2≤k≤m

I(X1;Xk)− I(X1;Z) ≥

H(X1)−
m∑
k=2

H(X1|Xk)− I(X1;Z) =

H(X1|Z)−
m∑
k=2

H(X1|Xk).

Property 5 : It is enough to prove that for any J1, J2, ..., Jt, there exists J ′1, J
′
2, ..., J

′
t
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such that:

max
i

(S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Ji))+

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ; J
(s)
1 ; J

(s)
2 ; ...J

(s)
t ‖Z) ≥

max
i

(S(X1M1;X2M2; ...;XuMu;X
(s)
u+1; ...;X(s)

m ‖J ′i))+

S(X1M1; ...;XuMu;X
(s)
u+1; ...;X(s)

m ; J
′(s)
1 ; ...J

′(s)
t ‖Z).

We define J ′1, J
′
2, ..., J

′
t such that for every x1, ..., xm, z, j1, ..., jt,

p(J ′1 = j1, ..., J
′
t = jt|X1 = x1, ..., Xm = xm, Z = z) =

p(J1 = j1, ..., Jt = jt|X1 = x1, ..., Xm = xm, Z = z),

and

p(M1, ...,Mu, X1, ..., Xm, Z, J
′
1..., J

′
t) =

p(M1)p(M2)...p(Mu)p(X1, ..., Xm, Z, J
′
1..., J

′
t).

The proof is finished by noting that the secret key function itself satisfies the fifth
property of Theorem 1. �

Proof of Corollary 1. We get the desired result by applying Theorem 4 for the
case of t = 1 and noting that

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖J) ≤
S(X1J ;X2J ; ...;XuJ ; (Xu+1J)(s); ...; (XmJ)(s)‖J)

and

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ; J (s)‖Z) ≤
S(X1X2...Xm; J (s)‖Z).

�
Proof of Corollary 2. This is a straightforward special case of Corollary 1. In the

case of two terminals we have:

S(X1;X2‖Z) ≤
inf
J

(
S(X1;X2‖J) + S(X1X2; J (s)‖Z)

)
≤

inf
J

(
S(X1J ;X2J‖J) + S(X1X2; J (s)‖Z)

)
.

The infimum is taken over all finite random variables J arbitrarily jointly distributed
with (X1, X2, Z).

We get the desired upper bound by noting that S(X1J ;X2J‖J) = I(X1;X2|J).
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infJ I(X1;X2|J) + S(X1X2; J (s)‖Z) could be further bounded above by

inf
J

(
I(X1;X2|J) + I(X1X2; J |Z)

)
.

One can use the strengthened Carathéodory theorem of Fenchel to get the cardi-
nality bound of |X1||X2||Z| on the size of the alphabet of J . Therefore the in-
fimum over finite random variables J is a minimum. It is enough to prove that
minJ

(
I(X1;X2|J) + I(X1X2; J |Z)

)
strictly improves the Renner-Wolf double intrin-

sic information upper bound. In order to prove that the new bound is not worse than
the double intrinsic information bound, it is sufficient to prove that for any random
variable U there is a random variable J such that I(X1;X2|J) + I(X1X2; J |Z) ≤
H(U) + minZ:X1X2→ZU→Z I(X1;X2|Z). Choosing J = Z, we will have I(X1;X2|J) =

I(X1;X2|Z) and also

I(X1X2; J |Z) = I(X1X2;U |Z)− I(X1X2;U |ZJ) ≤ I(X1X2;U |Z) ≤ H(U).

Therefore minJ
(
I(X1;X2|J) + I(X1X2; J |Z)

)
is no worse than the double intrin-

sic information bound. Appendix I of section 4.4.4 contains an example for which
minJ

(
I(X1;X2|J) + I(X1X2; J |Z)

)
is strictly better than the double intrinsic infor-

mation bound. �
Proof of Theorem 5: Take an arbitrary strictly increasing convex function f :

R≥0 7→ R≥0. Without loss of generality we can assume f(0) = 0, because for any
positive constant c, g(x) = f(x) + c satisfies the following equations:

• Sg−one−way(X;Y (s)‖Z) = Sf−one−way(X;Y (s)‖Z);

• g−1
(
g(a) + b) = f−1

(
f(a) + b) for any non-negative a and b.

Since

S(X1J ;X2J ; ...;XuJ ; (Xu+1J)(s); ...; (XmJ)(s)‖J) ≥
S(X1;X2; ...;Xu; (Xu+1)(s); ...; (Xm)(s)‖J),

and f is increasing, it suffices to prove the first bound in the statement of the theorem.
In order to show this, it suffices to verify the five conditions of Theorem 1 for

inf
J
f−1{f(S(X1; ...;Xu; (Xu+1)(s); ...; (Xm)(s)‖J)) (4.24)

+ Sf−one−way(X1X2...Xm; J (s)‖Z)}. (4.25)

This is done in Appendix II of section 4.4.4. The proof uses the standard fact that the
convexity of f implies that it is continuous, and that f(x+ a)− f(x) is an increasing
function in x for any fixed a. �
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Table 4.1: Joint probability distribution of X and Y

X

Y 0 1 2 3

0 1
8

1
8

0 0

1 1
8

1
8

0 0

2 0 0 1
4

0

3 0 0 0 1
4

4.4.4 Appendices

Appendix I

In this appendix we prove the existence of a joint probability distribution on
X, Y, Z for which the new bound is strictly better than the double intrinsic informa-
tion bound. In this appendix, we use the notation L(X) to refer to the law of the
random variable X.

We need the following Lemmas which we will prove at the end of this appendix.
Lemma A1.1 Assume that infU [H(U) + I(X;Y ↓ ZU)] = minJ [I(X;Y |J) +

I(XY ; J |Z)], then there is a sequence of random variables Ui, i = 1, 2, ... taking
values in finite sets Ui, and a sequence of positive real numbers δi converging to zero,
such that:

1. H(Ui) + I(X;Y ↓ ZUi)→ infU [H(U) + I(X;Y ↓ ZU)] as i→∞;

2. H(Ui|XY Z)→ 0 as i→∞;

3. I(Ui;Z)→ 0 as i→∞;

4. |p(Ui = ui|X = x, Y = y, Z = z)− 1
2
| ≥ 1

2
−δi ∀ui ∈ Ui, (x, y, z) : p(x, y, z) > 0;

5. The total variation distance d(L(Ui|Z = z1),L(Ui|Z = z2)) → 0 as i →
∞ ∀z1, z2 : p(Z = z1) > 0, p(Z = z2) > 0.

�
Lemma A1.2 Continuity of the intrinsic information I(X;Y ↓ Z): ∀ξ > 0,∃δ > 0

such that for all random variables T having entropy less than δ, we have

|I(X;Y ↓ ZT )− I(X;Y ↓ Z)| < ξ.

�
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We will perturb the example provided by Renner and Wolf in order to prove that
their bound is better than the intrinsic information bound. Table (4.1) shows the
joint probability distribution between X and Y in that example. Z is defined as:

Z =

{
(X + Y ) mod 2 if X ∈ {0, 1},

X mod 2 if X ∈ {2, 3}.
Renner and Wolf proved that for the choice of U = bX

2
c, one has:

I(X;Y ↓ Z) =
3

2
, I(X;Y ↓ ZU) = 0.

And therefore their bound would be less than or equal to H(U)+I(X;Y ↓ ZU) =
1, while I(X;Y ↓ Z) = 3

2
> 1.

Let V be a binary random variable, satisfying the V → U → XY Z Markov
property and defined as follows:

p(U = 0|V = 0) = α1, p(U = 1|V = 0) = 1− α1,

p(U = 0|V = 1) = α2, p(U = 1|V = 1) = 1− α2.

Clearly, there exist α1 and α2 such that the intersection of{
0, α1, 1− α1,

1

2
α1, 1−

1

2
α1, 1

}
and {

0, α2, 1− α2,
1

2
α2, 1−

1

2
α2, 1

}
is the set

{
0, 1
}

. If the constraint is not satisfied for some α1 and α2, then it would
be enough to perturb α1 or α2 by a tiny amount.

Let X̃ = X, Ỹ = Y, Z̃ = (Z, V ). We would like to prove that the new bound is

strictly better than the double intrinsic information bound for the triple (X̃, Ỹ , Z̃).
We have:

p(X = x, Y = y|Z̃ = (0, 0)) =

1

2
α111[(x, y) = (0, 0)] +

1

2
α111[(x, y) = (1, 1)]+

(1− α1)11[(x, y) = (2, 2)],

and

p(X = x, Y = y|Z̃ = (0, 1)) =

1

2
α211[(x, y) = (0, 0)] +

1

2
α211[(x, y) = (1, 1)]+

(1− α2)11[(x, y) = (2, 2)].
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Assuming that the new bound is not better than the double intrinsic information
bound, we can apply Lemma A1.1 to get a sequence Ui having the five properties
given in Lemma A1.1. Using the property 4, we have:

|p(Ui = u|X̃ = 0, Ỹ = 0, Z̃ = (0, 0))− 1

2
| ≥ 1

2
− δi;

|p(Ui = u|X̃ = 1, Ỹ = 1, Z̃ = (0, 0))− 1

2
| ≥ 1

2
− δi;

|p(Ui = u|X̃ = 2, Ỹ = 2, Z̃ = (0, 0))− 1

2
| ≥ 1

2
− δi.

Therefore p(Ui = u|Z̃ = (0, 0)) is within the 3δi distance of a point in the set
{0, α1, 1− α1,

1
2
α1, 1− 1

2
α1, 1}.

Similarly, p(Ui = u|Z̃ = (0, 1)) is within the 3δi distance of a point in the set
{0, α2, 1− α2,

1
2
α2, 1− 1

2
α2, 1}.

Since the total variation distance between the distribution of L(Ui|Z̃ = (0, 0))

and L(Ui|Z̃ = (0, 1)) converges to zero, and the intersection of the sets {0, α2, 1 −
α2,

1
2
α2, 1− 1

2
α2, 1} and {0, α1, 1−α1,

1
2
α1, 1− 1

2
α1, 1} is just {0, 1}, one can conclude

that there is some natural number i0 such that for ∀ i > i0, ∀u ∈ Ui, the probabilities

p(Ui = u|X̃ = 0, Ỹ = 0, Z̃ = (0, 0)),

p(Ui = u|X̃ = 1, Ỹ = 1, Z̃ = (0, 0)),

p(Ui = u|X̃ = 2, Ỹ = 2, Z̃ = (0, 0))
are either all less than 1

2
or all greater than 1

2
.

Let h(x) = x log( 1
x
). We would like to bound from above the entropy of the

distribution of L(Ui|Z̃ = (0, 0)) in terms of h
(
p(Ui = u|X̃ = 0, Ỹ = 0, Z̃ = (0, 0))

)
,

h
(
p(Ui = u|X̃ = 1, Ỹ = 1, Z̃ = (0, 0))

)
, h
(
p(Ui = u|X̃ = 2, Ỹ = 2, Z̃ = (0, 0))

)
. Since

entropy is a concave function, we cannot use Jensen’s inequality to bound from above
H
(
L(Ui|Z̃ = (0, 0))

)
, which is a convex combination of these probabilities. However,

noting that the three mentioned probabilities are all on the same side of 1
2
, and that

h(x) is monotonic for all x < 1
2

and for all x > 1
2
, we can derive the following bound:

H
(
L(Ui|Z̃ = (0, 0)))

)
<

max
(
h
(
p(Ui = u|X̃ = 0, Ỹ = 0, Z̃ = (0, 0))

)
,

h
(
p(Ui = u|X̃ = 1, Ỹ = 1, Z̃ = (0, 0))

)
,

h
(
p(Ui = u|X̃ = 2, Ỹ = 2, Z̃ = (0, 0))

))
<

h
(
p(Ui = u|X̃ = 0, Ỹ = 0, Z̃ = (0, 0))

)
+

h
(
p(Ui = u|X̃ = 1, Ỹ = 1, Z̃ = (0, 0))

)
+

h
(
p(Ui = u|X̃ = 2, Ỹ = 2, Z̃ = (0, 0))

)



50

Therefore ∑
u

h
(
p(Ui|Z̃ = (0, 0))

)
<∑

u

h
(
p(Ui = u|X̃ = 0, Ỹ = 0, Z̃ = (0, 0))

)
+∑

u

h
(
p(Ui = u|X̃ = 1, Ỹ = 1, Z̃ = (0, 0))

)
+∑

u

h
(
p(Ui = u|X̃ = 2, Ỹ = 2, Z̃ = (0, 0))

)
=

H(Ui|X̃ = 0, Ỹ = 0, Z̃ = (0, 0))+

H(Ui|X̃ = 1, Ỹ = 1, Z̃ = (0, 0))+

H(Ui|X̃ = 2, Ỹ = 2, Z̃ = (0, 0)).

Since the terms

H(Ui|X̃ = 0, Ỹ = 0, Z̃ = (0, 0)),

H(Ui|X̃ = 1, Ỹ = 1, Z̃ = (0, 0)),

H(Ui|X̃ = 2, Ỹ = 2, Z̃ = (0, 0))

converge to zero as i converges to infinity, we have H(Ui|Z̃ = (0, 0)) → 0 as i → ∞.

Similarly, H(Ui|Z̃ = (0, 1))→ 0 , etc. Thus, H(Ui|Z̃)→ 0 as i→∞.

But property 3 of Lemma A1.1 states that I(Ui; Z̃) → 0 as i → ∞. Thus, we
conclude that H(Ui)→ 0 as i→∞.

Hence, the limit of H(Ui) + I(X;Y ↓ ZUi) is the same as that of I(X;Y ↓
ZUi). Property 1 of Lemma A1.1 states that the series converges to the double

intrinsic information upper bound which is assumed to be equal to minJ [I(X̃; Ỹ |J) +

I(X̃Ỹ ; J |Z̃)].

Evaluating the expression at J = Z̃U , gives us

0 + I(XY ;UZV |ZV ) = I(XY ;U |ZV ) ≤ 1.

Therefore we should have: limi→∞ I(X;Y ↓ ZUi) ≤ 1. On the other hand, Renner
and Wolf have shown that I(X;Y ↓ Z) = 3

2
. But this is in contradiction with Lemma

A1.2 noting that H(Ui)→ 0 as i→∞. �
Now, we prove the Lemmas mentioned at the beginning of this appendix.
Proof of Lemma A1.1 : Take a sequence U1, U2, ... such that

H(Ui) + I(X;Y ↓ ZUi)→ inf
U

[H(U) + I(X;Y ↓ ZU)].
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For every Ui, there exists Ji such that I(X;Y ↓ ZUi) = I(X;Y |Ji), and also
XY → ZUi → Ji forming a Markov chain, since the infimum in the definition of the
intrinsic information can be shown to be a minimum (see [5]).

We have:

I(XY ; Ji|Z) =

I(XY ;Ui|Z)− I(XY ;Ui|ZJi) ≤
I(XY ;Ui|Z) = H(Ui|Z)−H(Ui|XY Z) =

H(Ui)− I(Ui;Z)−H(Ui|XY Z).

Hence

H(Ui) + I(X;Y ↓ ZUi) ≥
[I(Ui;Z) +H(Ui|XY Z)]+

[I(X;Y |Ji) + I(XY ; Ji|Z)] ≥
[I(Ui;Z) +H(Ui|XY Z)]+

min
J

[I(X;Y |J) + I(XY ; J |Z)] =

[I(Ui;Z)+

H(Ui|XY Z)] + inf
U

[H(U) + I(X;Y ↓ ZU)].

Taking the limit as i → ∞, we conclude that [I(Ui;Z) + H(Ui|XY Z)] → 0 as
i→∞. Therefore properties 2 and 3 are proved.

Since H(Ui|XY Z) → 0, so do H(Ui|X = x, Y = y, Z = z) for all (x, y, z)
such that p(x, y, z) > 0. Therefore for all u ∈ Ui, p(Ui = u|X = x, Y = y, Z =
z) log 1

p(Ui=u|X=x,Y=y,Z=z)
should go to zero. Therefore property 4 is proved.

In order to prove property 5, we note that
I(Ui;Z) =

∑
z:p(z)>0 p(z).D(L(Ui|Z = z)‖L(Ui))→ 0.

Therefore if p(z1) and p(z2) are positive, bothD(L(Ui|Z = z1)‖L(Ui)) andD(L(Ui|Z =
z2)‖L(Ui)) converge to zero. The Pinsker inequality, D(p‖q) ≥ 1

2 ln(2)
d2(p, q) implies

that both d(L(Ui|Z = z1),L(Ui)) and d(L(Ui|Z = z2),L(Ui)) converge to zero, and
therefore the total variation distance d(L(Ui|Z = z1),L(Ui|Z = z2)) should also go
to zero. �

Proof of Lemma A1.2 : Assume that I(X;Y ↓ ZT ) = I(X;Y |J) for some XY →
ZT → J (this is possible because the infimum in the definition of the intrinsic infor-
mation can be shown to be a minimum [5]).

H(T ) > H(T |Z) > p(Z = z)H(T |Z = z). ThereforeH(T |Z = z) < δ
min(p(z):p(z)>0)

:=
Q.

The denominator, min(p(z) : p(z) > 0), is a fixed constant depending on z.
Intuitively, since H(T |Z = z) is small, with probability close to one it will be a
constant. More precisely, assume that

p(T = Tz|Z = z) ≥ p(T = t|Z = z) for all t.
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Since H(T |Z = z) ≥ h(p(T = Tz|Z = z)), we have h(p(T = Tz|Z = z)) ≤ Q.
Let c1 ≤ 1

2
and c2 = 1 − c1 be the two solutions of the equation h(x) = Q in the

interval [0, 1]. c2 goes to one as δ goes to zero. h(p(T = Tz|Z = z)) ≤ Q implies
p(T = Tz|Z = z) ≤ c1 or p(T = Tz|Z = z) ≥ c2.

If p(T = Tz|Z = z) ≤ c1, we will have p(T = t|Z = z) ≤ c1 for all t. Therefore
H(T |Z = z) ≥ log 1

c1
.

We also have H(T |Z = z) < δ
min(p(z):p(z)>0)

. If δ goes to zero, 1
c1

goes to infinity,

but δ
min(p(z):p(z)>0)

converges zero. Hence, for small enough δ, we must have p(T =

Tz|Z = z) ≥ c2.
Define a random variable J ′ taking values on the same set as J such that

• XY → Z → J ′ forms a Markov chain,

• p(J ′ = j|Z = z) = p(J = j|Z = z, T = Tz).

We can furthermore couple J and J ′ so that P (J 6= J ′) ≤ 1− c2 by first drawing J ′

and then changing it with probability 1− c2. Let V be the indicator function of the
event J = J ′.

|I(X;Y |JJ ′)− I(X;Y |J)| = |I(X;Y |JJ ′V )− I(X;Y |J)| ≤
|I(X;Y |JJ ′V )− I(X;Y |JV )|+H(V ) =

p(V = 0)|I(X;Y |JJ ′V = 0)− I(X;Y |JV = 0)|+H(V ) ≤
2p(V = 0)H(XY ) +H(V ).

Similarly, we can show that

|I(X;Y |JJ ′)− I(X;Y |J ′)| ≤ 2p(V = 0)H(XY ) +H(V ).

These two inequalities show that

|I(X;Y |J ′)− I(X;Y |J)| ≤ 4p(V = 0)H(XY ) + 2H(V ).

Since p(V = 0) and H(V ) converge to zero as δ goes to zero, we have: ∀ξ > 0,∃δ > 0
such that for all random variables T having entropy less than δ, we have

I(X;Y ↓ Z)− I(X;Y ↓ ZT ) < ξ.

It would be enough to prove that I(X;Y ↓ ZT ) ≤ I(X;Y ↓ Z) to complete
the proof. Assume J satisfies the Markov chain property XY → Z → J . Define a
random variable J ′ taking values on the same set as J such that

p(J ′ = j|X = x, Y = y, Z = z, T = t) =

p(J = j|X = x, Y = y, Z = z).
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We have I(J ′;T |XY Z) = 0 and I(J ′;XY |Z) = I(J ;XY |Z) = 0. Therefore
I(J ′;XY T |Z) = I(J ′;XY |Z) + I(J ′;T |XY Z) = 0.

Since I(J ′;XY T |Z) = I(J ′;T |Z) + I(J ′;XY |ZT ), we have I(J ′;XY |ZT ) = 0
and therefore the following Markov chain holds:

XY → ZT → J ′.
Furthermore, we have I(X;Y |J ′) = I(X;Y |Z). This proves that

I(X;Y ↓ ZT ) ≤ I(X;Y ↓ Z).

�

Appendix II

In this appendix, we verify that

inf
J
f−1
(
f(S(X1;X2; ...;Xu; (Xu+1)(s)...; (Xm)(s)‖J))+

Sf−one−way(X1X2...Xm; J (s)‖Z)
)

satisfies the five conditions of Theorem 1, where the infimum is taken over finite
random variables J arbitrarily jointly distributed with X1, X2, ..., Xm and Z.

Property 1.
It is enough to show that for any J there exists some J ′ such that

n · f−1{f(S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖J))

+ Sf−one−way(X1X2...Xm; J (s)‖Z)} ≥
f−1{f(S(Xn

1 ;Xn
2 ; ...;Xn

u ; (Xn
u+1)(s); ...; (Xn

m)(s)‖J ′))+
Sf−one−way(X

n
1X

n
2 ...X

n
m; J

′(s)‖Zn)}.

We prove that J ′ = Jn is an appropriate choice.
We will first prove that we will be done if we can prove that

n · Sf−one−way(X1X2...Xm; J (s)‖Z) ≥
Sf−one−way(X

n
1X

n
2 ...X

n
m; (Jn)(s)‖Zn).

Let
s = S(X1;X2; ...;Xu;X

(s)
u+1; ...;X

(s)
m ‖J),

b = Sf−one−way(X1X2...Xm; J (s)‖Z),
c = Sf−one−way(X

n
1X

n
2 ...X

n
m; (Jn)(s)‖Zn) ≤ nb.

We have:
f−1{f(ns) + c} ≤ f−1{f(ns) + nb}.

It suffices to prove that:
nf−1{f(s) + b} ≥ f−1{f(ns) + nb}



54

or equivalently
f(nf−1{f(s) + b}) ≥ f(ns) + nb.

Let t = f−1{f(s) + b} − s. We can then write this inequality as: f(ns + nt) ≥
f(ns) + nb. According to the definition of t, we have b = f(s + t) − f(s). Thus, we
can rewrite the inequality as

f(ns+ nt)− f(ns) ≥ n.(f(s+ t)− f(s)).
This inequality holds because f is increasing and convex.
It remains to show that

n · Sf−one−way(X1X2...Xm; J (s)‖Z) ≥
Sf−one−way(X

n
1X

n
2 ...X

n
m; (Jn)(s)‖Zn).

Take some arbitrary U and V satisfying V → U → Xn
1X

n
2 ...X

n
m − JnZn. We will

prove that there exist Ũ and Ṽ satisfying
Ṽ → Ũ → X̃1X̃2...X̃m → J̃ Z̃

such that (X̃1, X̃2, ..., X̃m, J̃ , Z̃) has the same joint distribution as (X1, X2, ..., Xm, J, Z)
and

f(H(U |ZnV ))− f(H(U |JnV )) =

n ·
[
f(H(Ũ |Z̃Ṽ ))− f(H(Ũ |J̃ Ṽ ))

]
.

We start with the left hand side:

f(H(U |ZnV ))− f(H(U |JnV )) =
n∑
i=1

{
f(H(U |Zi+1:nJ1:i−1V Z(i)))−

f(H(U |Zi+1:nJ1:i−1V J(i)))

}
.

By letting Vi = Zi+1:nJ1:i−1V and Ui = (U, Vi) for i = 1...n, we can write the
above equality as:

f(H(U |ZnV ))− f(H(U |JnV )) =
n∑
i=1

f(H(Ui|ViZ(i)))− f(H(Ui|ViJ(i))).

For every i, we have Vi → Ui → X1(i)X2(i)...Xm(i)→ J(i)Z(i). We would like to

define an appropriate (Ũ , Ṽ , X̃1, X̃2, ..., X̃m, J̃ , Z̃) whose f(H(Ũ |Z̃Ṽ ))− f(H(Ũ |J̃ Ṽ ))
is

1
n
(
∑n

i=1 f(H(Ui|ViZ(i))− f(H(Ui|ViJ(i)))).
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This would be possible if the following region is convex:
{r ∈ R|∃U, V satisfying (V → U → X1X2...Xm → JZ) such that r =

f(H(U |ZV ))− f(H(U |JV ))}.
Since we can continuously move from

V1 → U1 → X1X2...Xm → JZ

to

V2 → U2 → X1X2...Xm → JZ

while having the expressions H(U |ZV ) = H(UV Z) − H(ZV ) and H(U |JV ) =
H(UJV ) −H(JV ) change continuously, the above region has to be convex (the en-
tropy function is continuous in the whole probability simplex). The proof for this
part is now completed.

Property 2.
Let H(F |Xi) = 0, where 1 ≤ i ≤ m. It is enough to show that for any J , the

following inequality holds:

f−1{f(S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖J))+

Sf−one−way(X1X2...Xm; J (s)‖Z)} ≥
f−1{f(S(X1F ; ...;XuF ; (Xu+1F )(s); ...; (XmF )(s)‖JF ))+

Sf−one−way(X1X2...XmF ; (JF )(s)‖ZF )}.

It is clear that

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖J) ≥
S(X1F ; ...;XuF ; (Xu+1F )(s); ...; (XmF )(s)‖JF )

because the secret key capacity itself satisfies the second property of Theorem 1. It
remains to show that

Sf−one−way(X1X2...Xm; J (s)‖Z) ≥
Sf−one−way(X1X2...XmF ; (JF )(s)‖ZF ).

Since H(F |Xi) = 0, we can rewrite the last inequality as:

Sf−one−way(X1X2...Xm; J (s)‖Z) ≥
Sf−one−way(X1X2...Xm; (JF )(s)‖ZF ).

Take some arbitrary U and V satisfying V → U → X1X2...Xm → JZF . It
can be verified that for Ũ = UF and Ṽ = V F , the Markov property Ṽ → Ũ →
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X1X2...Xm → JZ holds. For this choice of Ṽ and Ũ :

f(H(Ũ |Ṽ Z))− f(H(Ũ |Ṽ J)) =

f(H((UF )|(V F )Z))− f(H((UF )|(V F )J)) =

f(H(U |V (ZF )))− f(H(U |V (JF ))).

The proof for this part is now complete.
Property 3.
By taking an approach similar to the one we took in the proof of the second

condition, it would suffice to show that

Sf−one−way(X1X2...Xm; J‖Z) ≥
Sf−one−way(X

′
1X
′
2...X

′
m; J‖Z).

Take U and V satisfying V → U → X ′1X
′
2...X

′
m → JZ. Define U1 and V1 in the

following way:

p(U1, V1, X1, X2, ..., Xm, Z, J) =

p(V1|U1)p(U1|X ′1, X ′2, ..., X ′m)p(X1, X2, ..., XmZJ),

p(V1|U1) = p(V |U),

p(U1|X ′1, X ′2, ..., X ′m) = p(U |X ′1, X ′2, ..., X ′m).

It can be proved that V1 → U1 → X1X2...Xm → JZ and that (V1, U1, J, Z) has
the same joint distribution as (V, U, J, Z), implying f(H(U1|V1Z))− f(H(U1|V1J)) =
f(H(U |V Z))− f(H(U |V J)). The proof for this part is now complete.

Property 4.
We need to prove that

f−1{f(S(X1;X2; ...;Xm‖J))+

Sf−one−way(X1X2...Xm; J‖Z)} ≥

H(X1|Z)−
m∑
i=2

H(X1|Xi).

If H(X1|Z) ≤
∑m

i=2H(X1|Xi), the inequality clearly holds. So we assume
H(X1|Z) >

∑m
i=2 H(X1|Xi).

Using the fact that S(X1, X2, ..., Xm‖J) itself satisfies property 4 of Theorem 1
and the definition of Sf−one−way, one can lower bound

f−1{f(S(X1;X2; ...;Xm‖J))+

Sf−one−way(X1X2...Xm; J‖Z)}
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by

f−1

{
f(max[0, H(X1|J)−

m∑
i=2

H(X1|Xi)])+

max[0, f(H(X1|Z))− f(H(X1|J))]

}
.

Having assumed that H(X1|Z) >
∑m

i=2H(X1|Xi), one of the following three cases
must occur. In each case, we will prove that

f−1{f(S(X1, ..., Xm‖J)) + Sf−one−way(X1...Xm; J‖Z)}

≥ H(X1|Z)−
m∑
i=2

H(X1|Xi).

1. H(X1|Z) ≤ H(X1|J): In this case,

f(H(X1|J)−
m∑
i=2

H(X1|Xi)) ≥

f(H(X1|Z)−
m∑
i=2

H(X1|Xi)) > 0.

Therefore the lower bound

f−1{f(max[0, H(X1|J)−
m∑
i=2

H(X1|Xi)])+

max[0, f(H(X1|Z))− f(H(X1|J))]}

equals

f−1{f(H(X1|J)−
m∑
i=2

H(X1|Xi))}

and is itself bounded below by

f−1{f(H(X1|Z)−
m∑
i=2

H(X1|Xi))} =

H(X1|Z)−
m∑
i=2

H(X1|Xi).



58

2. H(X1|Z) >
∑m

i=2 H(X1|Xi) ≥ H(X1|J): In this case, the lower bound

f−1{f(max[0, H(X1|J)−
m∑
i=2

H(X1|Xi)])+

max[0, f(H(X1|Z))− f(H(X1|J))]}

equals

f−1{f(H(X1|Z))− f(H(X1|J))}.

But since

f(H(X1|Z))− f(H(X1|Z)−H(X1|J)) ≥
f(H(X1|J))− f(0),

the term f−1{f(H(X1|Z))−f(H(X1|J))} can be bounded below by H(X1|Z)−
H(X1|J) which in turn can be bounded below by

H(X1|Z)−
m∑
i=2

H(X1|Xi).

3. H(X1|Z) > H(X1|J) >
∑m

i=2 H(X1|Xi): In this case the lower bound

f−1{f(max[0, H(X1|J)−
m∑
i=2

H(X1|Xi)]) + max[0, f(H(X1|Z))− f(H(X1|J))]}

equals

f−1{f(H(X1|J)−
m∑
i=2

H(X1|Xi))+

f(H(X1|Z))− f(H(X1|J))}.

Since

H(X1|Z) > H(X1|J),

f(H(X1|Z))− f(H(X1|Z)−
m∑
i=2

H(X1|Xi)) ≥

f(H(X1|J))− f(H(X1|J)−
m∑
i=2

H(X1|Xi)).
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Therefore:

f(H(X1|J)−
m∑
i=2

H(X1|Xi))+

f(H(X1|Z))− f(H(X1|J)) ≥

f(H(X1|Z)−
m∑
i=2

H(X1|Xi)).

Therefore:

f−1{f(H(X1|J)−
m∑
i=2

H(X1|Xi))+

f(H(X1|Z))− f(H(X1|J))} ≥

f−1{f(H(X1|Z)−
m∑
i=2

H(X1|Xi))} =

H(X1|Z)−
m∑
i=2

H(X1|Xi).

In all the three cases we have proved that

f−1{f(S(X1, ..., Xm‖J)) + Sf−one−way(X1...Xm; J‖Z)} ≥

H(X1|Z)−
m∑
i=2

H(X1|Xi).

The proof for this part is now complete.
Property 5.
It is enough to show that for any J , there exists J ′ such that the following in-

equality holds:

f−1{f(S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖J))+

Sf−one−way(X1X2...Xm; J (s)‖Z)} ≥
f−1{f(S(X1M1; ...;XuMu;X

(s)
u+1; ...;X(s)

m ‖J ′))+
Sf−one−way(X1M1...XuMuXu+1...Xm; J

′(s)‖Z)}.

Take an arbitrary J jointly distributed with (X1, X2, ..., Xm, Z), and define J ′ so
that

p(J ′X1, X2, ..., Xm, Z,M1, ...,Mu) =

p(J ′X1, X2, ..., Xm, Z)p(M1, ...,Mu),

p(J ′|X1, X2, ..., Xm, Z) = p(J |X1, X2, ..., Xm, Z).
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It is clear that

S(X1; ...;Xu;X
(s)
u+1; ...; (Xm)(s)‖J) ≥

S(X1M1; ...;XuMu;X
(s)
u+1; ...;X(s)

m ‖J ′)

because

p(J ′|X1, X2, ..., Xm, Z) = p(J |X1, X2, ..., Xm, Z)

and the secret key capacity itself satisfies property 5 of Theorem 1. It remains to
show that

Sf−one−way(X1X2...Xm; J (s)‖Z) ≥
Sf−one−way(X1M1X2M2....XuMuXu+1...Xm; J

′(s)‖Z).

Take some U and V satisfying V → U → X1X2...XmM1...Mu → J ′Z. Since M1,
M2, ..., Mu are independent of (X1, X2, ..., Xm, Z, J

′), M1,M2, ...,Mu can be thought
of as playing the role of an external randomness employed by X1X2...Xm to create U
and V . Thus, if we let

p(Ṽ , Ũ |X1X2...XmJZ) = p(V, U |X1X2...XmJ
′Z)

Ṽ , Ũ will satisfy Ṽ → Ũ → X1X2...Xm → JZ. For this choice of Ṽ and Ũ :

f(H(Ũ |Ṽ Z))− f(H(Ũ |Ṽ J)) =

f(H(U |V Z))− f(H(U |V J)).

The proof for this part is now complete. �

4.5 The channel model

4.5.1 The proof technique at an intuitive level

In this section, we illustrate the main proof technique we use for proving the
upper bounds at an intuitive level. Roughly speaking the technique can be described
as follows. Take an arbitrary secret key generation scheme that uses the DMBC
for say n times. During the simulation of the protocol, the “secret key reservoir”
(representing the amount of secret key bits built up so far)5 of the legitimate terminals
gradually increases until it reaches its final state where the legitimate terminals create
the common secret key. Each use of the DMBC increases the “secret key reservoir”
of the terminals, whereas the public discussion that follows after each use of the
DMBC allows for coordination and processing of the “secret key reservoir”, but does
not increase the amount of secret key bits, since the public discussion is observed by

5We do not need to define “secret key reservoir” formally.
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the eavesdropper. The idea is to quantify this gradual evolution of the “secret key
reservoir”, bound the derivative of its growth at each stage from above by showing
that one use of the DMBC can buy us at most a certain amount of secret bits, and
conclude that the final size of the “secret key reservoir” is not bigger than n times
the upper bound on its derivative per use of the DMBC. An implementation of this
idea requires quantification of the “secret key reservoir” of the m terminals at a given
stage of the process. To that end, we take a real-valued function of joint distributions,
and evaluate it at the joint distribution of m + 1 random variables that represent,
roughly speaking, the knowledge of the m legitimate terminals and the eavesdropper
at the given stage of the secret key generation protocol. Properties that such a
function would need to satisfy are identified. The new upper bound is then proved
by a verification argument. We now provide the details.

Consider the special case of u = m = 2 and take an arbitrary secret key generation
protocol SKC(n, ε, S1, S2, C, M1,M2, Xn

1 , X
n
2 , Z

n). During the simulation of the
protocol, the “secret key reservoir” of the legitimate terminals gradually evolves until
it reaches its final state where the terminals know enough to create the common
secret key. We can represent the state of the system at a given stage of the process
by the joint distribution of three random variables that represent, roughly speaking,
the knowledge of the two legitimate terminals and the eavesdropper at that stage.
The state of the system therefore evolves as follows:

→ (X1(1), X2(1), Z(1))

→ (X1(1)M1, X2(1)M2, Z(1))

→ (X1(1)M1C1,1, X2(1)M2C1,1, Z(1)C1,1)

→ (X1(1)M1C1,1C1,2, X2(1)M2C1,1C1,2, Z(1)C1,1C1,2)

→ · · · → (X1(1)M1C1, X2(1)M2C1, Z(1)C1)

→ (X1(1)X1(2)M1C1, X2(1)X2(2)M2C1, Z(1)Z(2)C1)

→ (X1(1)X1(2)M1C1C2,1, X2(1)X2(2)M2C1C2,1, Z(1)Z(2)C1C2,1)

→ (X1(1)X1(2)M1C1C2,1C2,2, X2(1)X2(2)M2C1C2,1C2,2, Z(1)Z(2)C1C2,1C2,2)

→ · · ·
→ (X1(1)X1(2)M1C1C2, X2(1)X2(2)M2C1C2, Z(1)Z(2)C1C2)

→ (X1(1)X1(2)X1(3)M1C1C2, X2(1)X2(2)X2(3)M2C1C2, Z(1)Z(2)Z(3)C1C2)

→ (X1(1)X1(2)X1(3)M1C1C2C3,1, X2(1)X2(2)X2(3)M2C1C2C3,1, Z(1)Z(2)Z(3)C1C2C3,1)

→ · · ·
→ (Xn

1M1C, X
n
2M2C, Z

nC)

→ (S1, S2, Z
nC)

Formally speaking, we can represent the state by three finite sets and a joint dis-
tribution on these finite sets, i.e. a four-tuple (X̂1, X̂2, Ẑ, p(x̂1, x̂2, ẑ)). Please note

that here we have used random variables X̂1, X̂2 and Ẑ to represent the total in-
formation available to the terminals at a given stage of the key generation process
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(whereas random variables X1, and X2, Z were representing the input and outputs
to the broadcast channel).

The functions φ and ϕ, and properties imposed on them

To quantify the evolution of the “secret key reservoir” of the legitimate parties,
we use a function ϕ defined from the set of all four tuples (X̂1, X̂2, Ẑ, p(x̂1, x̂2, ẑ)) to

non-negative real numbers. We sometimes use the notation ϕ(X̂1; X̂2‖Ẑ) to refer to

ϕ(p(x̂1, x̂2, ẑ)) when (X̂1, X̂2, Ẑ) has the law p(x̂1, x̂2, ẑ).6

Suppose we would like to prove that some given non-negative function φ(q(x2, z|x1))
is an upper bound on the secret key capacity. It would be enough to prove that
each use of the DMBC in each stage, cannot buy us more than φ(q(x2, z|x1)) se-
cret bits. This would imply that n uses of the DMBC does not buy us more than
n × φ(q(x2, z|x1)) secret bits, and therefore the secret key rate achieved will be less
than or equal to φ(q(x2, z|x1)) on a per use basis.

Motivated by the above discussion, let us assume that the system is in the state
(X̂1, X̂2, Ẑ, p(x̂1, x̂2, ẑ)), and the terminals decide to use the DMBC. The first terminal

would create X1 as a function of X̂1, and put it at the input of the DMBC q(x2, z|x1).
The second terminal and the eavesdropper will receive X2 and Z. The state of the
system will evolve to (X̂1 × X1, X̂2 × X2, Ẑ × Z, p(x̂1x1, x̂2x2, ẑz)). Note that the

following statements are true about the joint distribution of X̂1, X1, X̂2, X2, Ẑ, Z:

H(X1|X̂1) = 0, (4.26)

X̂1X̂2Ẑ → X̂1 → X1 → X1X2Z, (4.27)

p(x2, z|x1) = q(x2, z|x1). (4.28)

We then expect the quantified state does not increase by more than φ. In other words,
we would like to have the following property:

1. Whenever equations (4.26), (4.27) and (4.28) hold, we require:

ϕ(X̂1X1; X̂2X2‖ẐZ) ≤
ϕ(X̂1; X̂2‖Ẑ) + φ(q(x2, z|x1)).

Next, we expect the public discussion that follows each use of the DMBC does
not increase the “secret key reservoir” (since the public discussion is heard by the

eavesdropper). Let us assume that the system is in the state (X̂1, X̂2, Ẑ, p(x̂1, x̂2, ẑ)),
and the i-th legitimate terminal (1 ≤ i ≤ 2) decides to use the public channel.

This terminal creates random variable F , so we must have H(F |X̂i) = 0. Random

6As in the source model notation, we have separated the legitimate parties and the eavesdropper
via the symbol ‖.
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variable F is made public and the state of the system evolves to (X̂1 × F , X̂2 ×
F , Ẑ × F , p(x̂1f, x̂2f, ẑf)). We then expect the quantified state to stay the same or
to decrease. In other words, we would like to have the following property:

2. For any random variable F such that ∃i : H(F |X̂i) = 0, we require:

ϕ(X̂1; X̂2‖Ẑ) ≥ ϕ(X̂1F ; X̂2F‖ẐF );

Next, since ϕ is quantifying the “secret key reservoir”, and reducing the infor-
mation available to the legitimate terminals should not increase their “secret key
reservoir”, we impose the following constraint:

3. For any random variables X̂ ′1, X̂
′
2 such that ∀i : H(X̂ ′i|X̂i) = 0, we require:

ϕ(X̂1; X̂2‖Ẑ) ≥ ϕ(X̂ ′1; X̂ ′2‖Ẑ).

Next, consider the special case of X̂1
∼= X̂2, and Ẑ being almost independent of

(X̂1, X̂2). In this case, we expect ϕ(X̂1; X̂2‖Ẑ) to be approximately equal to H(X̂1).

In order to ensure this property, and inspired by the lower bound I(X̂1; X̂2)−I(X̂1; Ẑ)
on the source model secret key capacity, we impose the following constraint:

4. ϕ(X̂1; X̂2‖Ẑ) ≥ H(X̂1|Ẑ)−H(X̂1|X̂2) = I(X̂1; X̂2)− I(X̂1; Ẑ).

Since ϕ is quantifying the “secret key reservoir”, providing the legitimate terminals
with private external randomness should not increase their “secret key reservoir”. We
therefore impose the following constraint:

5. Whenever random variables M1, M2 satisfy

p(M1,M2, X̂1, X̂2, Ẑ) = p(M1)p(M2)p(X̂1, X̂2, Ẑ),

we require

ϕ(X̂1; X̂2‖Ẑ) ≥ ϕ(X̂1M1; X̂2M2‖Ẑ).

Lastly, we assume the following constraint: for any conditional distribution q(x2, z|x1),

sup
q(x1)

ϕ(q(x1)q(x2, z|x1)) <∞. (4.29)
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Implication of the properties imposed on φ and ϕ

Claim: Assume that the above conditions 1-5 and equation (4.29) are satis-
fied for some functions ϕ and φ. Then the channel model secret key capacity,
CCH(2, q(x2, z|x1)), must be bounded from above by φ(q(x2, z|x1)) for any channel
q(x2, z|x1).

Intuitive Proof: Take some DMBC q(x2, z|x1), and a secret key generation protocol
SKC(n, ε, S1, S2, C, M1,M2, Xn

1 , X
n
2 , Z

n) whose secret key rate is approximately
equal to Cε

CH(2, q(x2, z|x1))). Then we have (here we are using the notation X1
1 to

represent X1(1), and X1:k
1 to represent X1(1)...X1(k)):

(n− 1)φ(q(x2, z|x1)) + sup
q(x1)

ϕ(q(x1)q(x2, z|x1)) ≥

(n− 1)φ(q(x2, z|x1)) + ϕ(X1
1 ;X1

2‖Z1)

≥ (n− 1)φ(q(x2, z|x1)) + ϕ(M1X
1
1 ;M2X

1
2‖Z1) (4.30)

≥ (n− 1)φ(q(x2, z|x1)) + ϕ(M1X
1
1C1,1;M2X

1
2C1,1‖Z1C1,1) (4.31)

≥ (n− 1)φ(q(x2, z|x1)) + ϕ(M1X
1
1C1,1C1,2;M2X

1
2C1,1C1,2‖Z1C1,1C1,2) (4.32)

≥ · · ·
≥ (n− 1)φ(q(x2, z|x1)) + ϕ(M1X

1
1C1;M2X

1
2C1‖Z1C1)

≥ (n− 2)φ(q(x2, z|x1)) + ϕ(M1X
1:2
1 C1;M2X

1:2
2 C1‖Z1:2C1) (4.33)

≥ (n− 2)φ(q(x2, z|x1)) + ϕ(M1X
1:2
1 C1:2;M2X

1:2
2 C1:2‖Z1:2C1:2) (4.34)

≥ (n− 3)φ(q(x2, z|x1)) + ϕ(M1X
1:3
1 C1:2;M2X

1:3
2 C1:2‖Z1:3C1:2) (4.35)

≥ · · ·
≥ ϕ(M1X

1:n
1 C1:n;M2X

1:n
2 C1:n‖Z1:nC1:n)

≥ ϕ(S1;S2‖Z1:nC1:n) (4.36)

≥ H(S1|Z1:nC1:n)−H(S1|S2) (4.37)
∼= nCε

CH(2, q(x2, z|x1)))− 0, (4.38)

where equation (4.30) holds because of condition 5; equation (4.31) holds because
of condition 2 and the fact that H(C1,1|M1X

1
1 ) = 0; equation (4.32) holds be-

cause of condition 2 and the fact that H(C1,2|M2X
1
2C1,1) = 0; equation (4.33) holds

because of condition 1; equation (4.34) is true because we can repeatedly invoke
condition 2 for the individual communications within C2; equation (4.35) holds be-
cause of condition 1; equation (4.36) holds because of condition 3 and the fact that
H(S1|M1X

1:n
1 C1:n) = H(S2|M2X

1:n
2 C1:n) = 0; equation (4.37) holds because of con-

dition 4; and equation (4.38) holds since the secret key rate of the protocol is approx-
imately equal to Cε

CH(2, q(x2, z|x1))), and S1 is approximately equal to S2.
Intuitively, the above chain of inequalities imply that

n− 1

n
φ(q(x2, z|x1)) +

1

n
sup
q(x1)

ϕ(q(x1) · q(x2, z|x1))
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is greater than or equal to Cε
CH(2, q(x2, z|x1))). Letting n→∞ and then ε→ 0, we

would get that φ(q(x2, z|x1)) is greater than or equal to CCH(2, q(x2, z|x1)).

Discussion

As the above proof indicates, as one moves along a given protocol, the expres-
sion 1

n

(
(n− i)φ(q(x2, z|x1)) +ϕ(current state)

)
(where i denotes the number of uses

of the DMBC so far) is non-increasing. This quantity starts from the upper bound
φ(q(x2, z|x1)) and decreases as we move along the protocol, and eventually becomes
equal to the secret key rate of the protocol. Thus, it is justified to view the expres-
sion as a potential function. The reader may compare this with the corresponding
discussion in the source model.

In order to show the effectiveness of the technique, and show that it could make
the converse proofs systematic, we provide an example:

Example. Prove that supp(x1) I(X1;X2|Z) is an upper bound on CCH(2, q(x2, z|x1)).

Proof. Let ϕ(X̂1; X̂2‖Ẑ) = I(X̂1; X̂2|Ẑ) and φ(q(x2, z|x1)) = supp(x1) I(X1;X2|Z).
Clearly equation (4.29) is satisfied. We need to verify the five properties. The first
property holds since whenever equations (4.26), (4.27) and (4.28) are hold, we have

I(X̂1X1; X̂2X2|ẐZ) =

H(X̂2X2|ẐZ)−H(X̂2X2|ẐZX̂1X1) =

H(X̂2X2|ẐZ)−H(X̂2|ẐX̂1)−H(X2|ZX1) ≤ (4.39)

H(X̂2|Ẑ) +H(X2|Z)−H(X̂2|ẐX̂1)−H(X2|ZX1) =

I(X̂1; X̂2|Ẑ) + I(X1;X2|Z) =

ϕ(X̂1; X̂2‖Ẑ) + ϕ(X1;X2‖Z) ≤
ϕ(X̂1; X̂2‖Ẑ) + φ(q(x2, z|x1)).

Equation (4.39) holds because

H(X̂2X2|ẐZX̂1X1) =

H(X̂2|ẐZX̂1X1) +H(X2|ẐZX̂1X1X̂2) =

H(X̂2|ẐX̂1)− I(X̂2;ZX1|ẐX̂1)+

H(X2|ZX1)− I(X2; ẐX̂1X̂2|ZX1).

But equation (4.27) implies that

I(X̂2;ZX1|ẐX̂1) ≤ I(ẐX̂2;ZX1|X̂1) = 0

I(X2; ẐX̂2X̂1|ZX1) ≤ I(X2Z; ẐX̂2X̂1|X1) = 0.
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The second property holds because assuming that H(F |X̂1) = 0, we will have

I(X̂1; X̂2|Ẑ) = I(X̂1F ; X̂2|Ẑ) =

I(F ; X̂2|Ẑ) + I(X̂1; X̂2|ẐF ) ≥
I(X̂1F ; X̂2F |ẐF ).

The other properties can be easily verified. �
In order to find a new upper bound, one can think of a given functions ϕ(X̂1; X̂2‖Ẑ)

and φ(q(x2, z|x1)) as a point in the set of all functions that satisfy the properties, and
try to slightly perturb the expression so that all the properties remain satisfied.

4.5.2 Statement of the new converses

In this section we state the main results. We use the potential function method
to prove them in section 4.5.3 and the appendices. Following the formal statement of
each result, a brief informal discussion is provided to clarify the statement.

Sufficient conditions for being an upper bound on the SKC capacity

Let ϕ(p(x̂1, x̂2, ..., x̂m, ẑ)) be a real-valued function from the set of all probability
distributions defined on a product of any m+1 finite sets. We sometimes use the nota-
tion ϕ(X̂1; X̂2; X̂3; ...; X̂m‖Ẑ) to refer to ϕ(p(x̂1, x̂2, ..., x̂m, z)) when (X̂1, X̂2, ..., X̂m, Ẑ)
has the law p(x̂1, ..., x̂m, ẑ). Furthermore, let φ be a real-valued function from the set
of all conditional laws q(x2, x3, ...xm, z|x1) defined on a product of any m + 1 finite
sets. Further assume that for any channel q(x2, x3, ...xm, z|x1),

sup
q(x1)

ϕ(q(x1) · q(x2, x3, ...xm, z|x1)) <∞. (4.40)

The following theorem formalizes the ideas discussed in section 4.5.1.

Theorem 6. Given functions φ and ϕ satisfying equation (4.40) for any channel
q(x2, x3, ...xm, z|x1), the function φ(q(x2, x3, ...xm, z|x1)) will be an upper bound on
CCH(u, q(x2, x3, ...xm, z|x1)) (the channel model secret key capacity assuming that
only the first u terminals are permitted to talk) if ϕ satisfies the following 5 conditions
for all p(x̂1, x̂2, ..., x̂m, ẑ):

1. For any random variablesX1, X2, ..., Xm, Z jointly distributed with X̂1, ..., X̂m, Ẑ
such that the equations

H(X1|X̂1) = 0,

X̂1X̂2...X̂mẐ → X̂1 → X1 → X1X2...XmZ,

p(x2, x3, ..., xm, z|x1) = q(x2, x3, ...xm, z|x1)
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hold, we have:

ϕ(X̂1X1; X̂2X2; ...; X̂mXm‖ẐZ) ≤
ϕ(X̂1; X̂2; ...; X̂m‖Ẑ) + φ(q(x2, x3, ...xm, z|x1));

2. For any random variable F such that ∃i ≤ u : H(F |X̂i) = 0, we have:

ϕ(X̂1; X̂2; ...; X̂m‖Ẑ) ≥ ϕ(X̂1F ; X̂2F ; ...; X̂mF‖ẐF );

3. For any random variables X̂ ′1, X̂
′
2, ..., X̂

′
m such that ∀i : H(X̂ ′i|X̂i) = 0, we have:

ϕ(X̂1; X̂2; ...; X̂m‖Ẑ) ≥ ϕ(X̂ ′1; X̂ ′2; ...; X̂ ′m‖Ẑ);

4. ϕ(X̂1; X̂2; ...; X̂m‖Ẑ) ≥ H(X̂1|Ẑ)−
∑m

i=2H(X̂1|X̂i);

5. Whenever random variables M1, M2, ..., Mu satisfy

p(M1,M2, ...,Mu, X̂1, X̂2, ..., X̂m, Ẑ) =

p(M1)p(M2)...p(Mu)p(X̂1, X̂2, ..., X̂m, Ẑ),

we have:

ϕ(X̂1; X̂2; ...; X̂m‖Ẑ) ≥
ϕ(M1X̂1;M2X̂2; ...;MuX̂u; X̂u+1; ...; X̂m‖Ẑ).

New upper bound on the SKC capacity

Before stating the theorem, we make a few definitions. The intuitive meaning of
the definitions and of the new upper bound are provided in the discussion that follows
the statement of the theorem.

Definitions. Let [m] and [u] respectively denote the sets {1, 2, ...,m}, {1, 2, ..., u}.
For any subset B of [m], let λB be a non-negative real number, and Λ = (λB, B ⊆ [m])
denote a vector of dimension 2m whose elements are the λB for the various subsets
of [m]. Let V denote the set of vectors Λ = (λB, B ⊆ [m]) satisfying the following
equation for any (R1, R2, ..., Ru) ∈ Ru

≥0:

∑
B:B⊂[m],B∩[u]6=∅,B 6=[m]

λB
∑

j∈B∩[u]

Rj =
u∑
j=1

Rj. (4.41)

For any subset B of [m] = {1, 2, 3, ...,m}, we use the notation X̂B when referring

to the set of random variables (X̂k, k ∈ B). Note that unlike λB, X̂B is a set of
random variables.

We then have the following theorem:
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Theorem 7. For any Λ = (λB, B ⊆ [m]) ∈ V , the secret key capacity

CCH(u, q(x2, x3, ...xm, z|x1))

is bounded from above by

sup
p(x1)

{
inf
J

(
[H(X1...Xu|J)− τΛ(X1, ..., Xu, X

(s)
u+1, ..., X

(s)
m ‖J) + I(X1X2...Xm; J |Z)]

)}
.

In this expression (X1, X2, ..., Xm, J, Z) have the law

p(x1)q(x2, x3, ...xm, z|x1)p(j|x1, ..., xm, z);

the infimum is taken over finite random variables J arbitrarily jointly distributed with
X1, X2, ..., Xm, Z; and

τΛ(X1, X2, ..., Xu, X
(s)
u+1, ..., X

(s)
m ‖J) :=∑

B:B⊂[m],B∩[u]6=∅,B 6=[m]

λBH(XB∩[u]|XBcJ).

Discussion: This upper bound was derived in an attempt to imitate the source model
upper bound. In section 4.4.2 we showed that

S(X1;X2; ...;Xu; (Xu+1)(s)...; (Xm)(s)‖Z) ≤
inf
J

[
S(X1J ;X2J ; ...;XuJ ; (Xu+1J)(s)...; (XmJ)(s)‖J)

+ I(X1X2...Xm; J |Z)
]
, (4.42)

where the infimum is taken over finite random variables J arbitrarily jointly dis-
tributed with X1, X2, ..., Xm and Z. Theorem 6 of [23] provides a single letter
expression for the first term in the right hand side of equation (4.42). This upper
bound on the secret key capacity in the source model suggests the following upper
bound on CCH(u, q(x2, x3, ...xm, z|x1)):

sup
p(x1)

{inf
J

[S(X1J ; ...;XuJ ; (Xu+1J)(s)...; (XmJ)(s)‖J)

+ I(X1X2...Xm; J |Z)]}. (4.43)

In order to prove that this expression is an upper bound on CCH(u, q(x2, ..., xm, z|x1)),
one simply needs to define appropriate functions φ and ϕ, and then verify the proper-
ties of Theorem 6. We were not however able to complete the proof. So, we modified
the expression of equation (4.43) for the proof to go through. We first provide an
alternative characterization of the expression of equation (4.43), and then mention
our modification.
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Note that Theorem 6 of [23] provides the following expression:

S(X1J ;X2J ; ...;XuJ ; (Xu+1J)(s); ...; (XmJ)(s)‖J) =

H(X1X2...Xu|J)− min
(R1,R2,...,Ru)∈<

(
u∑
i=1

Ri)

where

< = {(R1, ..., Ru) : ∀B : B ⊂ [m], B ∩ [u] 6= ∅, B 6= [m]

we have
∑

j∈B∩[u]

Rj ≥ H(XB∩[u]|XBcZ)}.

The intuitive meaning of the quantity Ri is to be found in the context of the problem
of communication for omniscience (CFO) discussed in section 4.2, or in [12]. The
above expression can be rewritten using the duality theory as follows:

S(X1J ; ...;XuJ ; (Xu+1J)(s); ...; (XmJ)(s)‖J) =

H(X1X2...Xu|J)−max
Λ∈V

(τΛ(X1, ..., Xu, X
(s)
u+1, ..., X

(s)
m ‖J)) =

min
Λ∈V

[
H(X1...Xu|J)− τΛ(X1, ..., Xu, X

(s)
u+1, ..., X

(s)
m ‖J)

]
. (4.44)

Therefore we can write the expression in equation (4.43) as follows:

sup
p(x1)

{
inf
J

min
Λ∈V

(
H(X1...Xu|J)− τΛ(X1, X2, ..., Xu, X

(s)
u+1, ..., X

(s)
m ‖J)+

I(X1X2...Xm; J |Z)

)}
.

We modified this expression by swapping minΛ∈V with supp(x1) infJ as follows:

min
Λ∈V

sup
p(x1)

{
inf
J

(
H(X1...Xu|J) (4.45)

− τΛ(X1, ..., Xu, X
(s)
u+1, ..., X

(s)
m ‖J) + I(X1...Xm; J |Z)

)}
.

Theorem 7 implies that the above expression is an upper bound on
CCH(u, q(x2, x3, ...xm, z|x1)), since for any arbitrary Λ ∈ V ,

CCH(u, q(x2, x3, ...xm, z|x1)) ≤

sup
p(x1)

{
inf
J

(
H(X1...Xu|J)

− τΛ(X1, ..., Xu, X
(s)
u+1, ..., X

(s)
m ‖J) + I(X1...Xm; J |Z)

)}
.
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�
Corollary. In the case of m = u = 2, the only possible value for λ{1} and λ{2} is

one, and the new upper bound on CCH(2, q(x2, z|x1)) will be equal to

sup
p(x1)

inf
J

[I(X1;X2|J) + I(X1X2; J |Z)],

where the infimum is taken over all finite random variables J , arbitrarily jointly
distributed with (X1, X2, Z). This upper bound can be intuitively understood as
follows: instead of the broadcast channel q(x2, z|x1), consider an extended broadcast
channel q(x2, z, j|x1) with a fictitious terminal receiving J . The total secret key is
“split” into two parts: one that is independent of J , and one that is shared with J .
These two parts correspond to the terms I(X1;X2|J) and I(X1X2; J |Z) respectively.

The new upper bound is always less than or equal to

inf
Z→Z→X1X2

sup
p(x1)

I(X1;X2|Z)

which in turn is less than or equal to min[supp(x1) I(X1;X2), supp(x1) I(X1;X2|Z))].
This is because in the new upper bound, the minimum is over finite random variables
J arbitrarily jointly distributed with (X1, X2, Z); if one takes J = Z for some Z →
Z → X1X2, the term I(X1X2; J |Z) will be zero, and the term I(X1;X2|J) will be
equal to I(X1;X2|Z). Therefore

sup
p(x1)

inf
J

[I(X1;X2|J) + I(X1X2; J |Z)] ≤

sup
p(x1)

inf
Z→Z→X1X2

I(X1;X2|Z).

Lastly, note that

sup
p(x1)

inf
Z→Z→X1X2

I(X1;X2|Z) ≤

inf
Z→Z→X1X2

sup
p(x1)

I(X1;X2|Z).

Remark: One can use the strengthened Carathéodory theorem of Fenchel to get the
cardinality bound of |X1||X2||Z| on the size of the alphabet of J . One can therefore
express the new upper bound as

sup
p(x1)

min
J

[I(X1;X2|J) + I(X1X2; J |Z)],

where the infimum is replaced with a minimum.

Theorem 8. The new upper bound represents a strict improvement over the previ-
ously best known upper bound for the case of u = m = 2: there exists an example for
which the new upper bound is strictly smaller than supp(x1) infZ→Z→X1X2

I(X1;X2|Z)

which in turn is always less than or equal to infZ→Z→X1X2
supp(x1) I(X1;X2|Z).
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4.5.3 Proofs

Proof of Theorem 6: Fix a probability distribution q(x2, x3, ..., xm, z|x1) and as-
sume that X1, X2, ..., Xm and Z take values from finite sets X1,X2, ...,Xm,Z. For
every δ > 0 and ε > 0, one can find a valid secret key generation scheme, SKC(n, ε,
S1, S2, S3, ..., Sm, C, M1,M2, ...,Mu, X

n
1 , X

n
2 , ..., X

n
m, Z

n), whose secret key rate is
within δ of Cε

CH(u, q(x2, x3, ...xm, z|x1)). Furthermore, without loss of generality, we
can add the uniformity condition 1

n
log |S1| < 1

n
H(S1) + ε.7 Following the secret key

generation scheme, we write the following inequalities:

(n− 1)φ(q(x2, x3, · · ·, xm, z|x1)) + supq(x1) ϕ(q(x1)q(x2, x3, ...xm, z|x1))

≥ (n− 1)φ(q(x2, · · ·, xm, z|x1)) + ϕ(X1
1 ;X1

2 ; · · ·;X1
m‖Z1)

≥ (n− 1)φ(q(x2, x3, · · ·, xm, z|x1)) + (4.46)

ϕ(M1X
1
1 ;M2X

1
2 ; · · ·;MuX

1
u;X1

u+1 · · ·X1
m‖Z1).

Equation (4.46) holds because of condition 5 of Theorem 6. Next we have

(n− 1)φ(q(x2, x3, · · ·, xm, z|x1)) +

ϕ(M1X
1
1 ;M2X

1
2 ; · · ·;MuX

1
u;X1

u+1 · · ·X1
m‖Z1)

≥ (n− 1)φ(q(x2, x3, · · ·, xm, z|x1)) + (4.47)

ϕ(M1X
1
1C1,1; · · ·;MuX

1
uC1,1;X1

u+1C1,1 · · ·X1
mC1,1‖Z1C1,1)

≥ (n− 1)φ(q(x2, x3, · · ·, xm, z|x1)) + (4.48)

ϕ(M1X
1
1C1,1C1,2; · · ·;MuX

1
uC1,1C1,2;X1

u+1C1,1C1,2 · · ·X1
mC1,1C1,2‖Z1C1,1C1,2).

Equation (4.47) holds because of condition 2 and the fact that H(C1,1|M1X
1
1 ) = 0.

Equation (4.48) holds because of condition 2 and the fact that H(C1,2|M2X
1
2C1,1) = 0.

Next we have

(n− 1)φ(q(x2, x3, · · ·, xm, z|x1)) +

ϕ(M1X
1
1C1,1C1,2; · · ·;MuX

1
uC1,1C1,2;X1

u+1C1,1C1,2 · · ·X1
mC1,1C1,2‖Z1C1,1C1,2)

≥ · · ·
≥ (n− 1)φ(q(x2, x3, · · ·, xm, z|x1)) +

ϕ(M1X
1
1C1;M2X

1
2C1; · · ·;MuX

1
uC1;X1

u+1C1 · · ·X1
mC1‖Z1C1)

≥ (n− 2)φ(q(x2, x3, ...y, xm, z|x1)) + (4.49)

ϕ(M1X
1:2
1 C1; · · ·;MuX

1:2
u C1;X1:2

u+1C1 · · ·X1:2
m C1‖Z1:2C1)

≥ (n− 2)φ(q(x2, x3, · · ·, xm, z|x1)) + (4.50)

ϕ(M1X
1:2
1 C1:2; · · ·;MuX

1:2
u C1:2;X1:2

u+1C1:2 · · ·X1:2
m C1:2‖Z1:2C1:2).

7This point is argued in [39], or Lemma 5 of [42]. Please see the discussion following definition 2
of 4.2 for details.
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Equation (4.49) holds because of condition 1. Equation (4.50) is true because we can
repeatedly invoke condition 2 for the individual communications of C2. Next we have

(n− 2)φ(q(x2, x3, · · ·, xm, z|x1)) + (4.51)

ϕ(M1X
1:2
1 C1:2; · · ·;MuX

1:2
u C1:2;X1:2

u+1C1:2 · · ·X1:2
m C1:2‖Z1:2C1:2)

≥ (n− 3)φ(q(x2, x3, · · ·, xm, z|x1)) + (4.52)

ϕ(M1X
1:3
1 C1:2; · · ·;MuX

1:3
u C1:2;X1:3

u+1C1:2 · · ·X1:3
m C1:2‖Z1:3C1:2)

≥ · · · ≥
ϕ(M1X

1:n
1 C1:n; · · ·MuX

1:n
u C1:n;X1:n

u+1C1:n · · ·X1:n
m C1:n‖Z1:nC1:n) (4.53)

≥ ϕ(S1;S2; · · ·;Sm‖Z1:nC1:n) (4.54)

≥ H(S1|Z1:nC1:n)−
∑m

j=2H(S1|Sj) (4.55)

≥ nCε
CH(u, q(x2, x3, · · ·xm, z|x1)))− nδ − (m− 1)[h(ε) + ε · log |S1|].

Equation (4.52) holds because of condition 1. Equation (4.53) holds because of con-
dition 3. Equation (4.54) holds because of condition 4, and equation (4.55) is a
consequence of Fano’s inequality and the fact that the secret key rate of the protocol
is within δ of Cε

CH(u, q(x2, x3, ...xm, z|x1)).
The above inequalities show that

n− 1

n
φ(q(x2, x3, · · ·, xm, z|x1)) ≥

Cε
CH(u, q(x2, x3, ...xm, z|x1)))− δ

− m− 1

n
h(ε)− (m− 1)ε

1

n
log |S1|

− 1

n
sup
q(x1)

ϕ(q(x1) · q(x2, x3, ...xm, z|x1)).

Note that

1

n
log |S1| <

1

n
H(S1) + ε < Cε

CH(u, q(x2, x3, ...xm, z|x1))) + δ + ε.

The theorem is proved by first taking the limit as n → ∞, and then letting ε and δ
converge zero. �

Proof of Theorem 7: Fix some Λ = (λB, B ⊆ [m]) in the set V . In order to prove
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Table 4.2: Joint probability distribution of X and Y

X

Y 0 1 2 3

0 1
2
p0

1
2
p1 0 0

1 1
2
p0

1
2
p1 0 0

2 0 0 p2 0

3 0 0 0 p3

this theorem, it suffices to verify the five conditions of Theorem 6 when we set:

ϕ(X̂1; X̂2; X̂3; ...; X̂m‖Ẑ) =

inf
J

(
H(X̂1...X̂u|J)− τΛ(X̂1, X̂2, ..., X̂u, X̂

(s)
u+1, ..., X̂

(s)
m ‖J)

+ I(X̂1X̂2...X̂m; J‖Ẑ)

)
; (4.56)

φ(p(x2, x3, ...xm, z|x1)) = sup
p(x1)

ϕ
(
p(x1) · p(x2, x3, ...xm, z|x1)

)
.

In the above expression the infimum is taken over all finite random variables J arbi-
trarily jointly distributed with X̂1, X̂2, ..., X̂m, Ẑ.
τΛ(X̂1, X̂2, ..., X̂u, X̂

(s)
u+1, ..., X̂

(s)
m ‖J) is defined as in the statement of the Theorem.

In Appendix I of section 4.5.4, the five conditions of Theorem 6 are verified. This
completes the proof. �

Proof of Theorem 8: Since m = 2, for simplicity we use the notation X, Y instead
of X1 and X2 for the rest of the proof. In order to prove that this bound strictly
improves supp(x) infZ→Z→XY I(X;Y |Z) we use the example of Renner and Wolf in
[51]. X and Y take values from the set {0, 1, 2, 3}. Assuming that P (X = i) = pi,
Table (4.2) characterizes the conditional probability distribution of Y given X. The
conditional distribution of Z given X and Y is specified by the following equation:

Z =

{
(X + Y ) mod 2 if X ∈ {0, 1},

X mod 2 if X ∈ {2, 3}.

Renner and Wolf proved that for the choice of pi = 1
4

for i = 0, 1, 2, 3 and U = bX
2
c,

one has

I(X;Y ↓ Z) =
3

2
, I(X;Y ↓ ZU) = 0,

where I(X;Y ↓ Z), known as “the intrinsic information”, is defined as
infZ→Z→XY I(X;Y |Z) [51].

Therefore supp(x)[I(X;Y ↓ Z)] ≥ 3
2
.
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The proof will be complete if one can show that supp(x) minJ [I(X;Y |J)+I(XY ; J |Z)] <
3
2
. We show that supp(x) minJ [I(X;Y |J) + I(XY ; J |Z)] is in fact less than or equal

to one (thus strictly less than 3
2
).

Let

J0 =

{
U if U=0,
UZ if U=1.

We can bound supp(x) minJ [I(X;Y |J)+I(XY ; J |Z)] from above by supp(x)[I(X;Y |J0)+
I(XY ; J0|Z)].

Since I(X;Y |J0) = 0 and I(XY ; J0|Z) ≤ 1 for all p(x), the supremum

sup
p(x)

min
J

[I(X;Y |J) + I(XY ; J |Z)]

must be less than or equal to one. �

4.5.4 Appendices

Appendix I

In this Appendix, we prove that ϕ(·), proposed in equation (4.56), satisfies the five
properties of Theorem 6. Recall that the elements of the vector Λ = (λB, B ⊆ [m])
satisfy equation (4.41). Let

θΛ(X̂1; X̂2; X̂3; ...; X̂m; J‖Ẑ) :=

H(X̂1...X̂u|J)− τΛ(X̂1, X̂2, ..., X̂u, X̂
(s)
u+1, ..., X̂

(s)
m ‖J) + I(X̂1X̂2...X̂m; J‖Ẑ),

where τΛ(X̂1, X̂2, ..., X̂u, X̂
(s)
u+1, ..., X̂

(s)
m ‖J) is as in the statement of Theorem 7. We

can then re-express equation (4.56) as

ϕ(X̂1; X̂2; X̂3; ...; X̂m‖Ẑ) =

inf
J

(
θΛ(X̂1; X̂2; X̂3; ...; X̂m; J‖Ẑ)

)
,

where the infimum is over all finite random variables J arbitrarily jointly distributed
with X̂1, X̂2, ..., X̂m, Ẑ.

Property 1.
It is required to verify that:

inf
J̃

(θΛ(X̂1X1; X̂2X2; X̂3X3; ...; X̂mXm; J̃‖ẐZ)) ≤

inf
J̃ ′

(θΛ(X̂1; X̂2; X̂3; ...; X̂m; J̃ ′‖Ẑ)) + φ(q(x2, x3, ..., xm, z|x1)). (4.57)
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φ(q(x2, x3, ..., xm, z|x1)) is by definition greater than or equal to ϕ(X1;X2; ...;Xm‖Z)
which is equal to

inf
J̃ ′′

(θΛ(X1;X2;X3; ...;Xm; J̃ ′′‖Z)).

In order to show equation (4.57), it suffices to prove that for any J ′′, the following
inequality holds:

inf
J̃
θΛ(X̂1X1; X̂2X2; X̂3X3; ...; X̂mXm; J̃‖ẐZ) ≤

inf
J̃ ′
θΛ(X̂1; X̂2; X̂3; ...; X̂m; J̃ ′‖Ẑ) + θΛ(X1;X2;X3; ...;Xm; J ′′‖Z). (4.58)

Without loss of generality, we can further assume that

J̃ ′ → X̂1X̂2...X̂mẐ → X̂1 → X1 → X1X2...XmZ → J ′′,

because the two terms on the right hand side of equation (4.58) depend only on

p(J̃ ′|X̂1...X̂mẐ) and p(J ′′|X1...XmZ).
In order to prove equation (4.58), it suffices to show that for any arbitrary J ′

satisfying

J ′ → X̂1X̂2...X̂mẐ → X̂1 → X1 → X1X2...XmZ → J ′′,

the following inequality holds:

θΛ(X̂1X1; X̂2X2; X̂3X3; ...; X̂mXm; J ′J ′′‖ẐZ) ≤
θΛ(X̂1; X̂2; X̂3; ...; X̂m; J ′‖Ẑ)+

θΛ(X1;X2;X3; ...;Xm; J ′′‖Z).

We claim that the following two inequalities hold:

H(X̂1...X̂uX1...Xu|J ′, J ′′)

− τΛ(X̂1X1, ..., X̂uXu, (X̂u+1Xu+1)(s), ..., (X̂mXm)(s)‖J ′J ′′)

≤ H(X̂1...X̂u|J ′)− τΛ(X̂1, ..., X̂u, X̂
(s)
u+1, ..., X̂

(s)
m ‖J ′)+

H(X1...Xu|J ′′)− τΛ(X1, ..., Xu, X
(s)
u+1, ..., X

(s)
m ‖J ′′), (4.59)

and

I(X̂1X̂2...X̂mX1X2...Xm; J ′J ′′|ẐZ) ≤
I(X̂1X̂2...X̂m; J ′|Ẑ) + I(X1X2...Xm; J ′′|Z).
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Starting from the last inequality:

I(X̂1X̂2...X̂mX1X2...Xm; J ′J ′′|ẐZ) =

H(J ′J ′′|ẐZ)−H(J ′J ′′|ẐZX̂1X̂2...X̂mX1X2...Xm) ≤
H(J ′|ẐZ) +H(J ′′|ẐZ)

−H(J ′|ẐZX̂1...X̂mX1...Xm)

−H(J ′′|J ′ẐZX̂1...X̂mX1...Xm) ≤ (4.60)

H(J ′|Ẑ) +H(J ′′|Z)−H(J ′|ẐX̂1X̂2...X̂m)

−H(J ′′|ZX1X2...Xm) =

I(X̂1X̂2...X̂m; J ′|Ẑ) + I(X1X2...Xm; J ′′|Z).

In equation (4.60) we have used the Markov property

J ′ → X̂1X̂2...X̂mẐ → X̂1 → X1 → X1X2...XmZ → J ′′.

It remains to prove the inequality (4.59). We first prove that for every set B ⊆ [m]:

H(X̂B∩[u]XB∩[u]|X̂BcXBcJ ′J ′′)−H(X̂1|X̂BcXBcJ ′J ′′) =(
H(X̂B∩[u]|X̂BcJ ′)−H(X̂1|X̂BcJ ′)

)
+(

H(XB∩[u]|XBcJ ′′)−H(X1|XBcJ ′′)
)
.

This equality is true because

H(X̂B∩[u]XB∩[u]|X̂BcXBcJ ′J ′′) =

H(X̂B∩[u]XB∩[u]X̂1|X̂BcXBcJ ′J ′′) =

H(X̂1|X̂BcXBcJ ′J ′′)+

H(X̂B∩[u]XB∩[u]|X̂1X̂BcXBcJ ′J ′′) =i

H(X̂1|X̂BcXBcJ ′J ′′) +H(X̂B∩[u]|X̂1X̂BcXBcJ ′J ′′)+

H(XB∩[u]|X̂1X1X̂B∩[u]X̂BcXBcJ ′J ′′) =ii

H(X̂1|X̂BcXBcJ ′J ′′) +H(X̂B∩[u]|X̂1X̂BcJ ′)+

H(XB∩[u]|X1XBcJ ′′) =

H(X̂1|X̂BcXBcJ ′J ′′) +H(X̂B∩[u]|X̂BcJ ′)

−H(X̂1|X̂BcJ ′) +H(XB∩[u]|XBcJ ′′)−H(X1|XBcJ ′′).

In step i we have used the fact that H(X1|X̂1) = 0 and in step ii we have used
the Markov property

J ′ → X̂1X̂2...X̂mẐ → X̂1 → X1 → X1X2...XmZ → J ′′.
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This property lets us rewrite the inequality we would like to prove in a new form:

H(X̂1|J ′, J ′′)−∑
B:B⊂[m],B∩[u]6=∅,B 6=[m]

λBH(X̂1|X̂BcXBcJ ′, J ′′) ≤

H(X̂1|J ′)−
∑

B:B⊂[m],B∩[u] 6=∅,B 6=[m]

λBH(X̂1|X̂BcJ ′)+

H(X1|J ′′)−
∑

B:B⊂[m],B∩[u]6=∅,B 6=[m]

λBH(X1|XBcJ ′′).

Further, we can restrict the summation to those sets B such that 1 ∈ B (otherwise
the term in question would be zero).

Using equation (4.41), and by setting R1 = 1 and Rj = 0 for 1 < j ≤ u, one can
get: ∑

B:B⊂[m],B∩[u]6=∅,B 6=[m],1∈B

λB = 1.

Therefore

H(X̂1|J ′, J ′′)

−
∑

B:B⊂[m],B∩[u]6=∅,B 6=[m],1∈B

λBH(X̂1|X̂BcXBcJ ′J ′′) =

∑
B:B⊂[m],B∩[u] 6=∅,B 6=[m],1∈B

λB[H(X̂1|J ′, J ′′)

−H(X̂1|X̂BcXBcJ ′J ′′)] =∑
B:B⊂[m],B∩[u] 6=∅,B 6=[m],1∈B

λBI(X̂1; X̂BcXBc |J ′J ′′).

Similarly we can rewrite the two other expressions. It would then suffice to prove
that

I(X̂1; X̂BcXBc |J ′J ′′) ≤ I(X̂1; X̂Bc |J ′) + I(X1;XBc|J ′′)

for all B ⊆ [m] such that B 6= [m] and 1 ∈ B.
We have:

I(X̂1; X̂BcXBc|J ′J ′′) =

H(X̂BcXBc|J ′J ′′)−H(X̂BcXBc |J ′J ′′X̂1) ≤
H(X̂Bc|J ′) +H(XBc |J ′′)−H(X̂BcXBc |J ′J ′′X̂1) =i

H(X̂Bc|J ′) +H(XBc |J ′′)
−H(X̂Bc|J ′X̂1)−H(XBc |J ′′X1) =

I(X̂1; X̂Bc|J ′) + I(X1;XBc|J ′′).
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In step i, we have used H(X1|X̂1) = 0 and the Markov property

J ′ → X̂1X̂2...X̂mẐ → X̂1 → X1 → X1X2...XmZ → J ′′.

�

Property 2.
Let 1 ≤ i ≤ u and let H(F |X̂i) = 0. We need to prove that:

inf
J̃

(θΛ(X̂1; X̂2; X̂3; ...; X̂m; J̃‖Ẑ)) ≥

inf
J̃ ′

(θΛ(X̂1F ; X̂2F ; X̂3F ; ...; X̂mF ; J̃ ′‖ẐF )).

It is enough to show that for any J there is a J ′ such that:

θΛ(X̂1; X̂2; X̂3; ...; X̂m; J‖Ẑ) ≥
θΛ(X̂1F ; X̂2F ; X̂3F ; ...; X̂mF ; J ′‖ẐF ).

Let J ′ = JF . Since I(F ; J | Ẑ) ≥ 0, one can show that the above inequality
would hold if:

H(F |J)−
∑

B:B⊂[m],B∩[u]6=∅,B 6=[m]

λBH(F |X̂BcJ) ≥ 0.

Since H(F |X̂i) = 0, we can rewrite the above inequality as follows:

H(F |J)−
∑

B:B⊂[m],B∩[u] 6=∅,B 6=[m],i∈B

λBH(F |X̂BcJ) ≥ 0.

The term H(F |X̂BcJ) is bounded from above by H(F |J), hence:

H(F |J)−
∑

B:B⊂[m],B∩[u]6=∅,B 6=[m],i∈B

λBH(F |X̂BcJ) ≥

H(F |J).(1−
∑

B:B⊂[m],B∩[u]6=∅,B 6=[m],i∈B

λB).

But 1−
∑

B:B⊂[m],B∩[u] 6=∅,B 6=[m],i∈B λB = 0. This could be proved by setting Ri = 1,

and Rj = 0 for any 1 ≤ j ≤ u, j 6= i in equation (4.41). �

Property 3.
We need to prove that:

inf
J̃

(θΛ(X̂1; X̂2; X̂3; ...; X̂m; J̃‖Ẑ)) ≥

inf
J̃ ′

(θΛ(X̂ ′1; X̂ ′2; X̂ ′3; ...; X̂ ′m; J̃ ′‖Ẑ)).
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It is enough to prove that for any J :

θΛ(X̂1; X̂2; X̂3; ...; X̂m; J‖Ẑ) ≥
θΛ(X̂ ′1; X̂ ′2; X̂ ′3; ...; X̂ ′m; J‖Ẑ).

It is clear that I(X̂1X̂2...X̂m; J |Ẑ) ≥ I(X̂ ′1X̂
′
2...X̂

′
m; J |Ẑ). It remains to show that

the sum of the first two terms of the expression, that is

H(X̂1...X̂u|J)− τΛ(X̂1, X̂2, ..., X̂u, X̂
(s)
u+1, ..., X̂

(s)
m ‖J)

does not increase when we replace (X̂1, X̂2, ..., X̂m, Ẑ, J) with (X̂ ′1, X̂
′
2, ..., X̂

′
m, Ẑ, J).

Since we can replace the components of (X̂1, X̂2, ..., X̂m) with (X̂ ′1, X̂
′
2, ..., X̂

′
m) one

at a time, it is enough to consider the case of changing only one component, that is
we replace (X̂1, X̂2, ..., X̂m) with (X̂1, X̂2, ..., X̂j−1, X̂

′
j, X̂j+1, ..., X̂m).

The proof can be completed by considering the two cases of j > u and j ≤
u separately. In the case j > u, we note that τΛ(X̂1, X̂2, ..., X̂u, X̂

(s)
u+1, ..., X̂

(s)
m ‖J)

increases term by term while H(X̂1X̂2...X̂u|J) remains constant. In case j ≤ u, we

note that for every set B that does not contain j, the term −λBH(X̂B∩[u]|X̂BcJ)

decreases as we replace X̂j by X̂ ′j. If the set B includes j, we have:

H(X̂B∩[u]|X̂BcJ) =

H(X̂B∩[u])−{j}X̂j|X̂BcJ) = H(X̂B∩[u])−{j}X̂jX̂
′
j|X̂BcJ) =

H(X̂B∩[u])−{j}X̂
′
j|X̂BcJ) +H(X̂j|X̂ ′jX̂BcX̂B∩[u])−{j}J) ≤

H(X̂B∩[u])−{j}X̂
′
j|X̂BcJ) +H(X̂j|X̂ ′jX̂[u]−{j}J).

So, in order to prove the inequality, it would be enough to prove that

H(X̂j|X̂ ′jX̂[u]−{j}J)

−
∑

B:B⊂[m],B∩[u] 6=∅,B 6=[m],j∈B

λBH(X̂j|X̂ ′jX̂[u]−{j}J) ≥ 0.

But the left hand side is zero since
∑

B:B⊂[m],B∩[u]6=∅,B 6=[m],j∈B λB = 1. �

Property 4.
Equation (4.44) implies that for any random variable J arbitrarily jointly dis-

tributed with X̂1, X̂2, ..., X̂m and Ẑ we have:

S(X̂1J ; X̂2J ; ...; X̂uJ ; (X̂u+1J)(s); ...; (X̂mJ)(s)‖J) ≤
H(X̂1X̂2...X̂u|J)− (4.61)

τΛ(X̂1, X̂2, ..., X̂u, X̂
(s)
u+1, ..., X̂

(s)
m ‖J).
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Therefore:

inf
J

(
S(X̂1J ; X̂2J ; ...; X̂uJ ; (X̂u+1J)(s); ...; (X̂mJ)(s)‖J)+

I(X̂1X̂2...X̂m; J‖Ẑ)
)
≤

inf
J

(
H(X̂1X̂2...X̂u|J)− τΛ(X̂1, X̂2, ..., X̂u, X̂

(s)
u+1, ..., X̂

(s)
m ‖J)+

I(X̂1X̂2...X̂m; J‖Ẑ)
)

= ϕ(X̂1; X̂2; X̂3; ...; X̂m‖Ẑ).

Thus,

ϕ(X̂1; X̂2; X̂3; ...; X̂m‖Ẑ) ≥
inf
J

(
S(X̂1J ; ...; X̂uJ ; (X̂u+1J)(s)...; (X̂mJ)(s)‖J)+

I(X̂1X̂2...X̂m; J (s)‖Ẑ)
)
. (4.62)

According to Theorem 5 of section 4.4.2,

inf
J

(
S(X̂1J ; ...; X̂uJ ; (X̂u+1J)(s)...; (X̂mJ)(s)‖J)+

I(X̂1X̂2...X̂m; J (s)‖Ẑ)
)

≥ S(X̂1; X̂2; ...; X̂u; X̂
(s)
u+1...; X̂

(s)
m ‖Ẑ). (4.63)

According to Theorem 1 of section 4.4.2, the expression S(X̂1; ...; X̂u; X̂
(s)
u+1...; X̂

(s)
m ‖Ẑ)

satisfies the condition 4 of the same theorem. Thus,

S(X̂1; X̂2; ...; X̂u; X̂
(s)
u+1...; X̂

(s)
m ‖Ẑ) ≥

H(X̂1|Ẑ)−
m∑
i=2

H(X̂1|X̂i). (4.64)

Equations (4.62), (4.63) and (4.64) imply that

ϕ(X̂1; X̂2; X̂3; ...; X̂m‖Ẑ) ≥ H(X̂1|Ẑ)−
m∑
i=2

H(X̂1|X̂i).

�
Property 5.
We need to prove that

inf
J̃

(θΛ(X̂1; X̂2; X̂3; ...; X̂m; J̃‖Ẑ)) ≥

inf
J̃ ′

(θΛ(X̂1M1; X̂2M2; ...; X̂uMu; X̂u+1...; X̂m; J̃ ′‖Ẑ)),



81

where the first infimum is taken over finite random variables J̃ arbitrarily jointly
distributed with X̂1, X̂2, ..., X̂m and Ẑ, and the second infimum is taken over finite
random variables J̃ ′ arbitrarily jointly distributed with X̂1, X̂2, ..., X̂m, Ẑ, M1, M2,
..., Mu.

It is enough to prove that for any J , there is a J ′ such that:

θΛ(X̂1; X̂2; X̂3; ...; X̂m; J‖Ẑ) ≥
θΛ(X̂1M1; X̂2M2; ...; X̂uMu; X̂u+1...; X̂m; J ′‖Ẑ).

We define J ′ in such a way that it has the same joint distribution with (X̂1, ..., X̂m, Ẑ)

as J has, and furthermore (X̂1, X̂2, ..., X̂m, Ẑ, J
′) is independent of M1M2...Mu. One

can then prove that:

H(X̂1M1...X̂uMu|J ′)− τΛ(X̂1M1, X̂2M2, ..., X̂uMu, X̂
(s)
u+1, ..., X̂

(s)
m ‖J ′)+

I(X̂1X̂2...X̂mM1...Mu; J
′|Ẑ) =

H(X̂1...X̂u|J)− τΛ(X̂1, X̂2, ..., X̂u, X̂
(s)
u+1, ..., X̂

(s)
m ‖J)+

I(X̂1X̂2...X̂m; J |Ẑ)+

H(M1) + ...+H(Mu)−∑
B:B⊂[m],B∩[u] 6=∅,B 6=[m]

λB
∑

i∈B∩[u]

H(Mi).

But

H(M1) +H(M2) + ...+H(Mu)

−
∑

B:B⊂[m],B∩[u] 6=∅,B 6=[m]

λB
∑

i∈B∩[u]

H(Mi)

is zero. This could be proved using equation (4.41) and setting Rj = H(Mj) for
1 ≤ j ≤ u. �
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Chapter 5

Transmission of correlated sources
over multiterminal networks

A (discrete memoryless) general multiterminal network (GMN) is a model for re-
liable communication of sets of messages among the nodes of a network, and has been
extensively used in modeling of wireless systems. In this chapter, we apply the “poten-
tial function method” to study the limitations of joint source-channel coding strategies
for lossy transmission across GMNs. In this method, for a given network structure,
we simultaneously consider all possible networks compatible with that structure and
think of the rate region as a function from such networks to subsets of the positive
orthant. We then identify properties of such a function which would need to be satis-
fied for it to give rise to an outer bound. The desired outer bound is then proved by
a verification argument. This technique also differs from the traditional ones in the
single-letterizing step: instead of reducing the n-letter expression to a single-letter
expression in one shot using time sharing and other auxiliary random variables, we
effectively reduce the n-letter expression inductively in n steps. This approach is also
useful in extending known results for problems with independent sources to ones with
dependent sources. To demonstrate this, we apply the technique to recover and fur-
ther generalize the outer bound part of the recent result of Maric, Yates and Kramer
on strong interference channels with a common message to include dependent sources.
In [22] and [21], we have applied the same technique to respectively generalize the well
known cut-set bound to the problem of lossy transmission of functions of dependent
sources over a GMN, and to simplify the recent outer bound of Liang, Kramer and
Shamai on the capacity region of a general broadcast channel, and generalize it to
include dependent sources.
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5.1 The proof technique

Let m and d be natural numbers and Rd
+ the set of all d-tuples of non-negative

reals. Intuitively speaking, for a given network structure, we simultaneously consider
all possible networks compatible with that structure and think of the rate region as a
function from such networks to subsets of Rd

+. We then identify properties of such a
function which would need to be satisfied in one step of the communication for it to
give rise to an outer bound. The outer bound is then proved by a verification argu-
ment. Properties that such a function would need to satisfy are identified, intuitively
speaking, as follows: take an arbitrary code of length say n over a GMN. During the
simulation of the code, the information of the parties begins from the ith party having
the i.i.d. repetitions of the random variable W (i), gradually evolves over time with
the usage of the network, and eventually after n stages of communication reaches
its final state where the parties know enough to estimate their objectives within the
desired average distortion. The idea is to quantify this gradual evolution of infor-
mation, bound the derivative of the information growth at each stage from above by
showing that one step of communication can buy us at most a certain amount and
conclude that at the final stage, i.e. the nth stage, the system cannot reach an infor-
mation state better than n times the outer bound on the derivative of information
growth. An implementation of this idea requires quantification of the information of
the m parties at a given stage of the process. To that end, we evaluate the function
we started with at a virtual channel whose inputs and outputs represent, roughly
speaking, the initial and the gained knowledge of the parties at the given stage of the
communication. We also need to make sense of the derivative of a region. This is
done using Minkowski sums.

Our technique differs from the traditional ones also in the single-letterizing step:
the traditional converses begin with the Fano inequality and continue with the single-
letterizing step, that is, reducing the n-letter expression to a single-letter expression
in one shot using time sharing and other auxiliary random variables. However in our
technique we effectively reduce the n-letter expression inductively in n steps. The
ith step will be equivalent to bounding the derivative of the information growth at
the ith use of the multiterminal network (see remark 1 of subsection 5.3 following the
proof of the main lemma). The inductive approach to the single-letterizing step is
also useful in extending known results for problems with independent sources to ones
with dependent sources, as will become clear after understanding the main claims of
this paper.

5.2 Formal definitions and Notation

As in the previous chapter, throughout this chapter we assume that each random
variable takes values in a finite set. R denotes the set of real numbers and R+ denotes
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Table 5.1: Notation

Variable Description
R Real numbers.

R+ Non-negative real numbers.

[k] The set {1, 2, 3, ..., k}.
m Number of nodes of the network.

q(y(1), ..., y(m)|x(1), ..., x(m)) The statistical description of a

general multi-terminal network.

W (i) Random variable representing the source observed at the ith node.

M (i) Random variable to be reconstructed,

in a possibly lossy way, at the ith node.

X (i),Y(i), W(i), M(i) Alphabets of X(i), Y (i), W (i), M (i).

∆(i)(·, ·) Distortion function used by the ith party.

ζ
(i)
k (·) The encoding function used by the ith party at the kth stage.

ϑ(i)(·) The decoding function at the ith party.

n Length of the code used.

Π(·) Down-set (Definition 11).

⊕ Minkowski sum of two sets (Definition 10).

≥ A vector or a set being greater than or equal another (Definition 11).

Ψ A permissible set of input distributions;

Given input sources and a GMN, Ψ is a set of

joint distributions on X (1) ×X (2) ×X (3) × · · · × X (m).

Inputs to the network are required to have a

joint distribution belonging to this set.
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the set of non-negative reals. For any natural number k, let [k] = {1, 2, 3, ..., k}. For
a set S ⊂ [k], let Sc denote its compliment, that is [k] − S. The context will make
the ambient space of S clear.

Although we are dealing with interference channels in this chapter, we discuss the
formulation in full generality. We represent a GMN by the conditional distribution

q(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)),

meaning that the input by the ith party is X(i) and the output at the ith party is Y (i).
We assume that the ith party (1 ≤ i ≤ m) has access to i.i.d. repetitions of W (i) before
the beginning of the communication. The message that needs to be delivered (in a
possibly lossy manner) to the ith party is taken to be M (i) = f (i)(W (1),W (2), ...,W (m))
for some function f (i). We assume that for any i ∈ [m], random variables X(i), Y (i),
W (i) and M (i) take values from finite sets X (i), Y(i), W(i) and M(i) respectively.
For any natural number n, let (X (i))n, (Y(i))n, (W(i))n and (M(i))n denote the n-

th product sets of X (i), Y(i), W(i) and M(i) respectively. We use Y
(i)

1:k to denote

(Y
(i)

1 , Y
(i)

2 , ..., Y
(i)
k ).

For any i ∈ [m], let the distortion function ∆(i) be a function ∆(i) :M(i)×M(i) →
[0,∞) satisfying ∆(i)(m(i),m(i)) = 0 for all m(i) ∈ M(i). For any natural number n

and vectors (m
(i)
1 ,m

(i)
2 , ...,m

(i)
n ) and (m

′(i)
1 ,m

′(i)
2 , ...,m

′(i)
n ) from (M(i))n, let

∆(i)
n (m

(i)
1:n,m

′(i)
1:n) =

1

n

n∑
k=1

∆(i)(m
(i)
k ,m

′(i)
k ).

Roughly speaking, we require the i.i.d. repetitions of random variable M (i) to be
reconstructed, by the ith party, within the average distortion D(i).

Definition 8. Given natural number n, an n-code is the following set of mappings:

For any i ∈ [m] :ζ
(i)
1 : (W(i))n −→ X (i);

For any i ∈ [m], k ∈ [n]− {1} :ζ
(i)
k : (W(i))n × (Y(i))k−1 −→ X (i);

For any i ∈ [m] :ϑ(i) : (W(i))n × (Y(i))n −→ (M(i))n.

Intuitively speaking ζ
(i)
k is the encoding function of the ith party at the kth time

instance, and ϑ(i) is the decoding function of the ith party.
Given positive reals ε and D(i) (1 ≤ i ≤ m), and a source marginal distribution

p(w(1), w(2), ..., w(m)), an n-code is said to achieve the average distortion at most
D(i) + ε (for all i ∈ [m]) over the channel q(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)) if the
following condition is satisfied:

Assume that random variables (W
(i)
1:n, i ∈ [m]) are n i.i.d. repetitions of random

variables (W (1),W (2), ...,W (m)) with joint distribution p(w(1), w(2), ..., w(m)). Random
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variables X
(i)
k and Y

(i)
k (k ∈ [n], i ∈ [m]) are defined according to the following

constraints:

p(w
(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n , x

(1)
1:n, x

(2)
1:n, ..., x

(m)
1:n , y

(1)
1:n, y

(2)
1:n, ..., y

(m)
1:n ) =

n∏
k=1

p(w
(1)
k , w

(2)
k , ..., w

(m)
k )×

n∏
k=1

q(y
(1)
k , y

(2)
k , ..., y

(m)
k |x

(1)
k , x

(2)
k , ..., x

(m)
k )×

n∏
k=1

m∏
i=1

p(x
(i)
k |w

(i)
1:n, y

(i)
1:k−1);

so we may write X
(i)
1 = ζ

(i)
1

(
W

(i)
1:n

)
, and for any 2 ≤ k ≤ n, X

(i)
k = ζ

(i)
k

(
W

(i)
1:n, Y

(i)
1:k−1

)
.

Random variables X
(i)
k and Y

(i)
k represent the input and output of the ith party at

the kth time instance and satisfy the following Markov chains:

W
(1)
1:n ...W

(m)
1:n Y

(1)
1:k−1...Y

(m)
1:k−1 → W

(i)
1:nY

(i)
1:k−1 → X

(i)
k ,

W
(1)
1:n ...W

(m)
1:n Y

(1)
1:k−1...Y

(m)
1:k−1 → X

(1)
k ...X

(m)
k → Y

(1)
k ...Y

(m)
k .

Let M
(i)
k = f (i)(W

(1)
k ,W

(2)
k , ...,W

(m)
k ). We should then have the following constraint

for every i ∈ [m]:

E
[
∆(i)
n

(
ϑ(i)
(
W

(i)
1:n, Y

(i)
1:n

)
,M

(i)
1:n

)]
≤ D(i) + ε.

Definition 9. Given positive realsD(i), a source marginal distribution p(w(1), ..., w(m))
is called an admissible source over the channel q(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)) for
the target reproduction functions f (i) (i ∈ [m]) at the distortion levels D(i) (i ∈ [m]) if
for every positive ε and sufficiently large n, an n-code achieving the average distortion
at most D(i) + ε exists.

Definition 10. For sets K and L of points in Rd
+, let K⊕L refer to their Minkowski

sum: K ⊕L = {v1 + v2 : v1 ∈ K, v2 ∈ L}. For any real number r, let r×K = {r · v1 :
v1 ∈ K}. We also define K

r
as the set formed by shrinking K through scaling each

point of it by a factor 1
r
. Note that in general r × K 6= (r1 × K) ⊕ (r2 × K) when

r = r1 + r2 but this is true when K is a convex set.

Definition 11. For −→v1 and −→v2 in Rd
+, we say −→v1 ≥ −→v2 if and only if each coordinate

of −→v1 is greater than or equal to the corresponding coordinate of −→v2 . For sets A and
B of points in Rd

+, we say A ≤ B if and only if for any point −→a ∈ A, there exists a

point
−→
b ∈ B such that −→a ≤

−→
b . For a set A ∈ Rd

+, the down-set Π(A) is defined as:
Π(A) = {−→v ∈ Rd

+ : −→v ≤ −→w for some −→w ∈ A}.
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Definition 12. Given a network q(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)), and the source
marginal distribution p(w(1), w(2), ..., w(m)), there may be properties that the inputs
to the GMN have to satisfy throughout the communication. For instance in an
interference channel or a multiple access channel with no output feedback, if the
transmitters observe independent messages, the random variables representing their
information stay independent of each other throughout the communication. This is
because the transmitters neither interact nor receive any feedback from the outputs.
Also, constraints on the set of input distributions when the transmitters are observing
i.i.d. copies of correlated random variables are reported in [29]. Other constraints on
the inputs to the network might come from practical requirements such as coupled
magnitude constraint across inputs in each stage of the communication. Given a
multiterminal network q(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)) and assuming that X (i)

(i ∈ [m]) is the set X(i) is taking values from, let Ψ be a set of joint distributions
on X (1) × X (2) × X (3) × ... × X (m) for which the following guarantee exists: for any
communication protocol, the inputs to the multiterminal network at each time stage
have a joint distribution belonging to the set Ψ. Such a set will be called a permissible
set of input distributions. Some of the results below will be stated in terms of this
nebulously defined region Ψ. To get explicit results, simply replace Ψ by the set of
all probability distributions on X (1) ×X (2) ×X (3) × ...×X (m).

Definition 8 can be extended in the obvious way to define the notion of an n-code
for a permissible set of input distributions Ψ. Definition 9 can also be extended in the
obvious way to define the notion of an admissible source for the target reproduction
functions f (i) (i ∈ [m]) at distortion levels D(i) (i ∈ [m]) for a permissible set of input
distributions Ψ.

Definition 13. We think of an interference channel as a four-input/four-output mul-
titerminal network whose inputs are X(1), X(2), X(3) and X(4), and whose outputs
are Y (1), Y (2), Y (3) and Y (4). The set of alphabets is assumed to belong to

Ainterference :=
{(
X (1),X (2),X (3),X (4),Y(1),Y(2),Y(3),Y(4)

)
: |X (3)| = |X (4)| = 1

}
,

and the conditional law of the network is assumed to belong to

Qinterference :={
q(y(1), y(2), y(3), y(4)|x(1), x(2), x(3), x(4)) : H(Y (1)|X(1)) = H(Y (2)|X(2)) = 0

}
.

Apart from notational changes, this is identical to the traditional interference channel.

5.3 The main lemma for proving the converses

Let m and d be natural numbers. Let φ(p(y(1), ..., y(m)|x(1), ..., x(m)),Ψ) be a func-
tion that takes as input an arbitrary pair of

(m-input/m-output multiterminal network,
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a permissible set of input distributions for the network),

consistent with the structure of interest (this will be made precise below) and returns
a subset of Rd

+. We will now impose some conditions on φ, which we first discuss
informally and then formally. Apart from these conditions nothing need be assumed
about φ; in particular there is no need to impose any regularity conditions.

Intuitive discussion of the properties imposed on φ

Intuitively speaking, we want the function φ to quantify the information state
during the simulation of a code: during the simulation of the code, the informa-
tion of the parties begins from the ith party having W

(i)
1:n and gradually evolves over

time with the use of the network. At the jth stage, the ith party has W
(i)
1:nY

(i)
1:j . We

represent the information state of the whole system at the jth stage by the virtual
channel p(w

(1)
1:ny

(1)
1:j , ..., w

(m)
1:n y

(m)
1:j |w

(1)
1:n, ..., w

(m)
1:n ) and the single admissible input distri-

bution p(w
(1)
1:n, ..., w

(m)
1:n ). In order to quantify the information state, we map it to a

subset of Rd
+ using the function φ. We demand that φ satisfies two conditions. The

first condition is intuitively saying that an additional use of the channel

p(y
′(1), y

′(2), ..., y
′(m)|x′(1), x

′(2), ..., x
′(m))

restricted to input distributions from Ψ can expand φ by at most

φ
(
p(y

′(1), y
′(2), ..., y

′(m)|x′(1), x
′(2), ..., x

′(m)),Ψ
)
.

The second condition is intuitively saying that φ vanishes if the parties are unable to
communicate, that is, if each party receives exactly what it puts at the input of the
channel.

Note that all the channels we encounter in the above process (including the virtual
channels and the physical channel) fall into a certain class of m-input/m-output mul-
titerminal networks. We can demand that the function φ satisfies certain conditions
within this class. For instance, assume that the physical channel is an interference
channel.

As discussed in the previous section, we think of an interference channel as a four-
input/four-output multiterminal network whose inputs are X(1), X(2), X(3) and X(4),
and whose outputs are Y (1), Y (2), Y (3) and Y (4). The set of alphabets is assumed to
belong to

Ainterference :=
{(
X (1),X (2),X (3),X (4),Y(1),Y(2),Y(3),Y(4)

)
: |X (3)| = |X (4)| = 1

}
,

and the conditional law of the network is assumed to belong to

Qinterference :={
q(y(1), y(2), y(3), y(4)|x(1), x(2), x(3), x(4)) : H(Y (1)|X(1)) = H(Y (2)|X(2)) = 0

}
.
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Note that when |W(3)| = |W(4)| = 1, the virtual channel

p(w
(1)
1:ny

(1)
1:j , w

(2)
1:ny

(2)
1:j , w

(3)
1:ny

(3)
1:j , w

(4)
1:ny

(4)
1:j |w

(1)
1:n, w

(2)
1:n, w

(3)
1:n, w

(4)
1:n)

is also an interference channel. This is because |W(3)
1:n| = |W

(4)
1:n| = 1, and

H(W
(1)
1:nY

(1)
1:j |W

(1)
1:n) = 0

and
H(W

(2)
1:nY

(2)
1:j |W

(2)
1:n) = 0.

In general, we consider a class of m-input/m-output multiterminal networks whose
set of input alphabets (X (1), ...,X (m),Y(1), ...,Y(m)) is in a given set A and whose
conditional law p(y(1), ..., y(m)|x(1), ..., x(m)) is in a given set Q. Furthermore, the set
Q is assumed to include the channel

p(y(1), ..., y(m)|x(1), ..., x(m)) =
m∏
i=1

1[y(i) = x(i)].

Formal statement of the properties imposed on φ

Suppose we are given a class of m-input/m-output multiterminal networks, spec-
ified by sets A and Q, as above. The formal statement of the properties imposed on
φ is as follows. Please see Definitions 10 and 11 of section 5.2 for the notation used.

1. Assume that the conditional law p(y(1)y
′(1), y(2)y

′(2), ..., y(m)y
′(m)|x(1), x(2), ..., x(m))

satisfies the following

p(y(1)y
′(1), y(2)y

′(2), ..., y(m)y
′(m)|x(1), ..., x(m)) =

p(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)) · p(y′(1), y
′(2), ..., y

′(m)|x′(1), x
′(2), ..., x

′(m)),

where X
′(i) is a deterministic function of X(i)Y (i) (i.e. H(X

′(i)|X(i)Y (i)) = 0
(i ∈ [m])). We assume that

(X (1), ...,X (m),Y(1) × Y ′(1), ...,Y(m) × Y ′(m)),

(X (1), ...,X (m),Y(1), ...,Y(m))

and
(X ′(1), ...,X ′(m),Y ′(1), ...,Y ′(m))

are inA, and the conditional laws p(y(1)y
′(1), y(2)y

′(2), ..., y(m)y
′(m)|x(1), x(2), ..., x(m)),

p(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)) and p(y
′(1), y

′(2), ..., y
′(m)|x′(1), x

′(2), ..., x
′(m))

are in Q.
Take an arbitrary input distribution q(x(1), x(2), ..., x(m)). This input distribu-
tion, together with the conditional distribution p(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)),
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impose a joint distribution
q(x

′(1), x
′(2), ..., x

′(m)) on (X
′(1), X

′(2), ..., X
′(m)). Then the following constraint

needs to be satisfied for any arbitrary set Ψ of joint distributions on X ′(1) ×
X ′(2) × · · · × X ′(m) that contains q(x

′(1), x
′(2), ..., x

′(m)):

φ

(
p(y(1)y

′(1), ..., y(m)y
′(m)|x(1), ..., x(m)), {q(x(1), x(2), ..., x(m))}

)
⊆

φ
(
p(y(1), ..., y(m)|x(1), ..., x(m)), {q(x(1), x(2), ..., x(m))}

)
⊕ φ

(
p(y

′(1), y
′(2), ..., y

′(m)|x′(1), ..., x
′(m)),Ψ

)
.

2. Assume that

p(y(1), ..., y(m)|x(1), ..., x(m)) =
m∏
i=1

1[y(i) = x(i)],

and that (X (1), ...,X (m),Y(1), ...,Y(m)) is in A. Then we require that for any
input distribution q(x(1), x(2), ..., x(m)), the set

φ
(
p(y(1), ..., y(m)|x(1), ..., x(m)), {q(x(1), x(2), ..., x(m))}

)
contains only the origin in Rd.

Statement of the Main Lemma

Lemma 1. Take a physical channel q(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)) whose set of
input alphabets is in a given set A, and whose conditional law is in a given set Q. Let
Ψ be a permissible set of input distributions for this channel. Then for any function
φ satisfying the above two properties, target distortion levels D(i), and for arbitrary
admissible source W (i) (i ∈ [m]) for these distortion levels for which for any n-code

for the permissible set of input distributions Ψ, p(w
(1)
1:ny

(1)
1:k, ..., w

(m)
1:n y

(m)
1:k |w

(1)
1:n, ..., w

(m)
1:n )

is in Q, and (W(1)
1:n, ...,W

(m)
1:n ,W

(1)
1:n × Y

(1)
1:k , ...,W

(m)
1:n × Y

(m)
1:k ) is in A for all 0 ≤ k ≤ n,

the following holds:

φ
(
p(w

(1)
1:ny

(1)
1:n, ..., w

(m)
1:n y

(m)
1:n |w

(1)
1:n, ..., w

(m)
1:n ), {p(w(1)

1:n, ..., w
(m)
1:n )}

)
⊆

n× Convex Hull
{
φ
(
q(y(1), ..., y(m)|x(1), ..., x(m)),Ψ

)}
.

5.3.1 Proof

Proof of Lemma 1: Let random variables X
(i)
k and Y

(i)
k (k ∈ [n], i ∈ [m]) respec-

tively represent the inputs and outputs of the multiterminal network. We have:

φ
(
p(w

(1)
1:ny

(1)
1:n, w

(2)
1:ny

(2)
1:n, ..., w

(m)
1:n y

(m)
1:n |w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n ), {p(w(1)

1:n, w
(2)
1:n, ..., w

(m)
1:n )}

)
⊆
(5.1)
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φ
(
p(w

(1)
1:ny

(1)
1:n−1, w

(2)
1:ny

(2)
1:n−1, ..., w

(m)
1:n y

(m)
1:n−1|w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n ), {p(w(1)

1:n, w
(2)
1:n, ..., w

(m)
1:n )}

)
⊕

φ(q(y(1)
n , y(2)

n , ..., y(m)
n |x(1)

n , x(2)
n , ..., x(m)

n ),Ψ) ⊆

φ
(
p(w

(1)
1:ny

(1)
1:n−2, w

(2)
1:ny

(2)
1:n−2, ..., w

(m)
1:n y

(m)
1:n−2|w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n ), {p(w(1)

1:n, w
(2)
1:n, ..., w

(m)
1:n )}

)
⊕

φ(q(y
(1)
n−1, y

(2)
n−1, ..., y

(m)
n−1|x

(1)
n−1, x

(2)
n−1, ..., x

(m)
n−1),Ψ)⊕

φ(q(y(1)
n , y(2)

n , ..., y(m)
n |x(1)

n , x(2)
n , ..., x(m)

n ),Ψ) ⊆
· · · ⊆

φ
(
p(w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n |w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n ), {p(w(1)

1:n, w
(2)
1:n, ..., w

(m)
1:n )}

)
⊕

φ(q(y
(1)
1 , y

(2)
1 , ..., y

(m)
1 |x

(1)
1 , x

(2)
1 , ..., x

(m)
1 ),Ψ)⊕

φ(q(y
(1)
2 , y

(2)
2 , ..., y

(m)
2 |x

(1)
2 , x

(2)
2 , ..., x

(m)
2 ),Ψ)⊕ · · ·

φ(q(y
(1)
n−1, y

(2)
n−1, ..., y

(m)
n−1|x

(1)
n−1, x

(2)
n−1, ..., x

(m)
n−1),Ψ)⊕

φ(q(y(1)
n , y(2)

n , ..., y(m)
n |x(1)

n , x(2)
n , ..., x(m)

n ),Ψ) ⊆ (5.2)

φ(q(y
(1)
1 , y

(2)
1 , ..., y

(m)
1 |x

(1)
1 , x

(2)
1 , ..., x

(m)
1 ),Ψ)⊕

φ(q(y
(1)
2 , y

(2)
2 , ..., y

(m)
2 |x

(1)
2 , x

(2)
2 , ..., x

(m)
2 ),Ψ)⊕ · · ·

φ(q(y
(1)
n−1, y

(2)
n−1, ..., y

(m)
n−1|x

(1)
n−1, x

(2)
n−1, ..., x

(m)
n−1),Ψ)⊕

φ(q(y(1)
n , y(2)

n , ..., y(m)
n |x(1)

n , x(2)
n , ..., x(m)

n ),Ψ) ⊆ (5.3)

n× Convex Hull
{
φ(q(y(1), y(2), ..., y(m)|x(1), x(2), ..., x(m)),Ψ)

}
,

where in equation (5.1) we have used property (1) because

p(w
(1)
1:ny

(1)
1:n, w

(2)
1:ny

(2)
1:n, ..., w

(m)
1:n y

(m)
1:n |w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n ) =

p(w
(1)
1:ny

(1)
1:n−1, w

(2)
1:ny

(2)
1:n−1, ..., w

(m)
1:n y

(m)
1:n−1|w

(1)
1:n, w

(2)
1:n, ..., w

(m)
1:n )·p(y(1)

n , ..., y(m)
n |x(1)

n , x(2)
n , ..., x(m)

n )

and furthermore H(X
(i)
n |W (i)

1:nY
(i)

1:n−1) = 0 for all i ∈ [m], and also

p(y(1)
n , y(2)

n , ..., y(m)
n |x(1)

n , x(2)
n , ..., x(m)

n ) = q(y(1)
n , y(2)

n , ..., y(m)
n |x(1)

n , x(2)
n , ..., x(m)

n ).

Since the n-code must work with the permissible set of input distributions Ψ, the joint
distribution p(x

(1)
n , x

(2)
n , ..., x

(m)
n ) is in Ψ. In equation (5.2) we have used property (2).

In equation (5.3), we first note that the conditional distributions

q(y
(1)
i , y

(2)
i , ..., y

(m)
i |x

(1)
i , x

(2)
i , ..., x

(m)
i )

for i = 1, 2, ..., n are all the same. We then observe that whenever

−→vi ∈ φ(q(y(1), ..., y(m)|x(1), ..., x(m)),Ψ)

for i ∈ [n], their average, 1
n

∑n
i=1
−→vi , falls in the convex hull of

φ(q(y(1), ..., y(m)|x(1), ..., x(m)),Ψ).

�
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Remark 1. The second property of φ is used in the proof to reduce the n-letter
expression

φ
(
p(w

(1)
1:ny

(1)
1:n, ..., w

(m)
1:n y

(m)
1:n |w

(1)
1:n, ..., w

(m)
1:n ), {p(w(1)

1:n, ..., w
(m)
1:n )}

)
to n single-letter expressions involving φ(q(y(1), ..., y(m)|x(1), ..., x(m)),Ψ) in n stages.

5.4 Correlated sources over strong interference chan-

nels

5.4.1 Introduction

We prove a new outer bound to the admissible source region of a strong inter-
ference channel with arbitrarily correlated sources. As a special case, we recover the
converse part of the capacity region given by Maric, Yates and Kramer [36] for strong
interference channels with common information.

An interference channel is said to be strong if

I(X(1);Y (3)|X(2)) ≤ I(X(1);Y (4)|X(2)); (5.4)

I(X(2);Y (4)|X(1)) ≤ I(X(2);Y (3)|X(1)), (5.5)

for all product distributions on X (1) × X (2) := {(x(1), x(2)) : x(1) ∈ X (1), x(2) ∈ X (2)}.
This condition then automatically extends to all joint distributions on X (1) ×X (2).

Costa and El Gamal found the capacity region of a strong interference chan-
nel when the transmitters send independent private messages to their intended re-
ceivers [6]. Recently, this result was extended by Maric, Yates and Kramer, who
assumed that the transmitters additionally have a common message that needs to be
sent to both the receivers [36]. In this problem a new feature arises: the inputs
X(1) and X(2) are no longer guaranteed to be independent throughout the com-
munication, since the transmitters have correlated information. Maric, Yates and
Kramer found the capacity region to be the union over p(u, x(1), x(2), y(3), y(4)) =
p(u)p(x(1)|u)p(x(2)|u)q(y(3), y(4)|x(1), x(2)), of the set of all non-negative triples
(R0, R1, R2) satisfying

R1 ≤ I(X(1);Y (3)|X(2), U);

R2 ≤ I(X(2);Y (4)|X(1), U);

R1 +R2 ≤ min(I(X(1)X(2);Y (3)|U), I(X(1)X(2);Y (4)|U));

R0 +R1 +R2 ≤ min(I(X(1)X(2);Y (3)), I(X(1)X(2);Y (4))). (5.6)

In the above expressions R0 denotes the common message rate, and R1 and R2 are
respectively the private message rates of the first and second transmitter.
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The communication task is formulated as before. In an interference channel with
arbitrarily dependent sources, the transmitters are observing i.i.d. repetitions of two,
possibly dependent, random variables W (1) and W (2). The transmitters would like to
reliably send the i.i.d. copies ofW (1) to the receiver Y (3) and the i.i.d. copies ofW (2) to
the receiver Y (4). To be notationally consistent, we assume that the third and fourth
party are observing i.i.d. copies of W (3) and W (4), but that |W(3)| = |W(4)| = 1 imply-
ing that these random variables are constant. Roughly speaking, the source marginal
distribution p(w(1), w(2), w(3), w(4)) is called admissible if there exists a strategy for
reliable transmission of the i.i.d copies of W (1) and W (2) to the intended receivers. A
formal definition can be made by setting M (1) = f (1)(W (1),W (2),W (3),W (4)) = W (1),
M (2) = f (2)(W (1),W (2),W (3),W (4)) = W (2), M (3) = f (3)(W (1),W (2),W (3),W (4)) =
W (1) and M (4) = f (4)(W (1),W (2),W (3),W (4)) = W (2). Note that the definitions of
f (1) and f (2) reflect the fact that neither transmitter is expected to recover the message
of the other transmitter. We require the ith party to reconstruct the i.i.d repetitions of
f (i)(W (1),W (2),W (3),W (4)) with a vanishing average distortion. The distortion func-
tion used by the ith party, ∆(i)(m(i),m

′(i)) (for 1 ≤ i ≤ 4) is taken to be the indicator
function 1[m(i) 6= m

′(i)]. Since we are proving an outer bound, the main result can
be carried over to the problem of “lossless transmission” since requiring the ith party
to reconstruct the i.i.d. repetitions of M (i) = f (i)(W (1),W (2),W (3),W (4)) with arbi-
trarily small average probability of error is no stronger than requiring the ith party to
reconstruct the i.i.d repetitions of M (i) with a vanishing average distortion. Further,
our notion of correlated source is strictly more general than that considered in [36].
For example, take three mutually independent binary random variables L ∼ Bern(1

2
),

N1 ∼ Bern(p1) and N2 ∼ Bern(p2) and let W (1) = L⊕N1 and W (2) = L⊕N2 where
the addition is modulo two. Since the common part of W (1) and W (2) in the sense
of Gács and Körner [16] is a constant random variable, one cannot represent the
dependence between the i.i.d. copies of W (1) and W (2) through a random variable
that is computable by both the parties, a restriction which is required in [36]. How-
ever we only prove an outer bound whereas [36] computes the capacity region. Our
outer bound reduces to the region of [36] in the case of correlated sources of the type
considered there.

The admissible source region of a strong interference channel with correlated
sources is not known except in certain special cases. Inner bounds to the admis-
sible source region are reported in [25] and [49]. We are not aware of any previous
work discussing any interesting outer bounds on the admissible source region of an
interference channel with dependent sources. It is known that the source−channel
separation theorem breaks down for multi-access channels [7] and multi-access chan-
nels (MACs) are special cases of strong interference channels. One can therefore not
expect that finding outer bounds on an interference channel with correlated sources
can be resolved by a source−channel separation approach. Further, since the prob-
lem of determining the admissible source region for a MAC with correlated sources
is still unsolved, determining the admissible region for a strong interference channel
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is a difficult one.

5.4.2 Statement of the new converse

An interference channel is a four-input/four-output multiterminal network whose
set of alphabets is assumed to belong to

Ainterference :=
{(
X (1),X (2),X (3),X (4),Y(1),Y(2),Y(3),Y(4)

)
: |X (3)| = |X (4)| = 1

}
,

and whose conditional law is assumed to belong to

Qinterference :={
q(y(1), y(2), y(3), y(4)|x(1), x(2), x(3), x(4)) : H(Y (1)|X(1)) = H(Y (2)|X(2)) = 0

}
.

As discussed in subsection 5.4.1, we consider strong interference channels and assume
that the third and fourth party are observing i.i.d. copies of W (3) and W (4), but that
|W(3)| = |W(4)| = 1 implying that these random variables are constant. Furthermore,
we consider the special case of

M (1) = f (1)(W (1),W (2),W (3),W (4)) = W (1),

M (2) = f (2)(W (1),W (2),W (3),W (4)) = W (2)

M (3) = f (3)(W (1),W (2),W (3),W (4)) = W (1)

M (4) = f (4)(W (1),W (2),W (3),W (4)) = W (2),

and D(i) = 0 for i = 1, 2, 3, 4. The distortion function used by the ith party,
∆(i)(m(i),m

′(i)) (for 1 ≤ i ≤ 4) is taken to be the indicator function 1[m(i) 6= m
′(i)].

We state our main result in terms of the nebulously defined permissible set of input
distributions Ψ. To get explicit results, simply replace Ψ by the set of all probability
distributions on X (1) ×X (2) ×X (3) ×X (4). Our main result is the following:

Theorem 9. Take an arbitrary interference channel q(y(1), ..., y(4)|x(1), ..., x(4)), a per-
missible set of input distributions Ψ, and an admissible source marginal distribution
p(w(1), w(2), w(3), w(4)) at zero distortion levels satisfying |W(3)| = |W(4)| = 1. Then
for any random variable L where W (1) → L→ W (2) holds, there must exist

p(u, x(1), x(2), x(3), x(4), y(1), y(2), y(3), y(4))

such that

p(x(1), x(2), x(3), x(4)) is in the convex hull of Ψ,

p(u, x(1), x(2), y(1), y(2), y(3), y(4)) = p(u)p(x(1)|u)p(x(2)|u)q(y(1), y(2), y(3), y(4)|x(1), x(2)),(
note that

q(y(1), y(2), y(3), y(4)|x(1), x(2))



95

can be used for
q(y(1), y(2), y(3), y(4)|x(1), x(2), x(3), x(4))

because of the standing assumption that |X (3)| = |X (4)| = 1
)

such the following
inequalities hold:

H(W (1)|L) ≤ I(X(1);Y (3)|X(2), U);

H(W (2)|L) ≤ I(X(2);Y (4)|X(1), U);

H(W (1)|L) +H(W (2)|L) ≤ min(I(X(1)X(2);Y (3)|U), I(X(1)X(2);Y (4)|U));

H(W (1)W (2)) ≤ min(I(X(1)X(2);Y (3)), I(X(1)X(2);Y (4)));

H(W (1)|W (2)) ≤ I(X(1);Y (3)|X(2));

H(W (2)|W (1)) ≤ I(X(2);Y (4)|X(1)).

(5.7)

Remark 2. One can use the strengthened Carathéodory theorem of Fenchel to bound
the cardinality of U from above by |X (1)||X (2)|+ 3.

5.4.3 Proof

Proof of Theorem 9: In order to apply Lemma 1, we will define
φ(q(y(1), y(2), y(3), y(4)|x(1), x(2), x(3), x(4)),Ψ), a function that takes as input an arbi-
trary 4-input/4-output multiterminal network from Qinterference, where the alphabets
are from Ainterference and a subset of probability distributions on X (1)×X (2)×X (3)×
X (4) and returns a subset of R8

+. We let:

φ(q(y(1), y(2), y(3), y(4)|x(1), x(2), x(3), x(4)),Ψ) =⋃
p(x(1),x(2),x(3),x(4))∈Ψ

⋃
U such that

X(1) → U → X(2),
U → X(1)X(2) → Y (3)Y (4)

Π

({(
I(X(1);Y (3)|X(2), U), I(X(2);Y (4)|X(1), U), I(X(1)X(2);Y (3)|U),

I(X(1)X(2);Y (4)|U), I(X(1)X(2);Y (3)), I(X(1)X(2);Y (4)),

I(X(1);Y (3)|X(2)), I(X(2);Y (4)|X(1))
)})

.

In Appendix I of section 5.4.4, we show that the above choice of φ verifies the prop-
erties of Lemma 1 for Ainterference and Qinterference. Take an arbitrary interference
channel

q(y(1), y(2), y(3), y(4)|x(1), x(2), x(3), x(4)),
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an arbitrary admissible source marginal distribution

p(w(1), w(2), w(3), w(4))

satisfying |W(3)| = |W(4)| = 1, and a permissible set of input distributions, Ψ. Let Ψ
denote the convex hull of Ψ; Ψ itself is a permissible set of input distributions. The
conditions of Lemma 1 are satisfied for Ainterference and Qinterference since |W(3)

1:n| =

|W(4)
1:n| = 1 and H(W

(1)
1:nY

(1)
1:k |W

(1)
1:n) = H(W

(2)
1:nY

(2)
1:k |W

(2)
1:n) = 0 for any 1 ≤ k ≤ n. For

any arbitrary positive ε and n-code for which at each stage the inputs belong to the
permissible set of input distributions Ψ, the lemma implies

φ
(
p(w

(1)
1:ny

(1)
1:n, w

(2)
1:ny

(2)
1:n, w

(3)
1:ny

(3)
1:n, w

(4)
1:ny

(4)
1:n|w

(1)
1:n, w

(2)
1:n, w

(3)
1:n, w

(4)
1:n), {p(w(1)

1:n, w
(2)
1:n, w

(3)
1:n, w

(4)
1:n)}

)
⊆

n× Convex Hull
{
φ
(
q(y(1), y(2), y(3), y(4)|x(1), x(2), x(3), x(4)),Ψ

)}
. (5.8)

In Appendix II of section 5.4.4 we show that

n×
(
H(W (1)|L)−O(h(ε)), H(W (2)|L)−O(h(ε)), H(W (1)|L) +H(W (2)|L)−O(h(ε)),

H(W (1)|L) +H(W (2)|L)−O(h(ε)), H(W (1)W (2))−O(h(ε)),

H(W (1)W (2))−O(h(ε)), H(W (1)|W (2))−O(h(ε)), H(W (2)|W (1))−O(h(ε))

)
∈

φ
(
p(w

(1)
1:ny

(1)
1:n, w

(2)
1:ny

(2)
1:n, w

(3)
1:ny

(3)
1:n, w

(4)
1:ny

(4)
1:n|w

(1)
1:n, w

(2)
1:n, w

(3)
1:n, w

(4)
1:n), {p(w(1)

1:n, w
(2)
1:n, w

(3)
1:n, w

(4)
1:n)}

)
.

(5.9)
In the above expression O(h(ε)) we mean a constant (that depends only on the net-
work q(y(1), ..., y(4)|x(1), ..., x(4))) times h(ε). Here h(·) is the binary entropy function.
Equations (5.8) and (5.9) imply that(

H(W (1)|L)−O(h(ε)), H(W (2)|L)−O(h(ε)), H(W (1)|L) +H(W (2)|L)−O(h(ε)),

H(W (1)|L) +H(W (2)|L)−O(h(ε)), H(W (1)W (2))−O(h(ε)),

H(W (1)W (2))−O(h(ε)), H(W (1)|W (2))−O(h(ε)), H(W (2)|W (1))−O(h(ε))

)
∈

Convex Hull
{
φ
(
q(y(1), y(2), y(3), y(4)|x(1), x(2), x(3), x(4)),Ψ

)}
.

In Appendix III of section 5.4.4 we show that for any interference channel
q(y(1), ..., y(4)|x(1), ..., x(4)), φ

(
q(y(1), y(2), y(3), y(4)|x(1), x(2), x(3), x(4)),Ψ

)
is convex when

the set Ψ is convex. Hence(
H(W (1)|L)−O(h(ε)), H(W (2)|L)−O(h(ε)), H(W (1)|L) +H(W (2)|L)−O(h(ε)),
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H(W (1)|L) +H(W (2)|L)−O(h(ε)), H(W (1)W (2))−O(h(ε)),

H(W (1)W (2))−O(h(ε)), H(W (1)|W (2))−O(h(ε)), H(W (2)|W (1))−O(h(ε))

)
∈

φ
(
q(y(1), y(2), y(3), y(4)|x(1), x(2), x(3), x(4)),Ψ

)
.

Since φ
(
q(y(1), y(2), y(3), y(4)|x(1), x(2), x(3), x(4)),Ψ

)
is closed (since the cardinality of

U can be bounded, as mentioned in remark 2), letting ε converge to zero, we get(
H(W (1)|L), H(W (2)|L), H(W (1)|L) +H(W (2)|L), H(W (1)|L) +H(W (2)|L),

H(W (1)W (2)), H(W (1)W (2)), H(W (1)|W (2)), H(W (2)|W (1))

)
∈

φ
(
q(y(1), y(2), y(3), y(4)|x(1), x(2), x(3), x(4)),Ψ

)
.

The above equation completes the proof of Theorem 9. �

5.4.4 Appendices

Appendix I: Verifying the properties of Lemma 1

In this appendix we show that our choice of φ verifies the two properties of the
main lemma for m = 4 when restricted to the class of interference channels. For the
first property of the lemma, take a channel

p(y(1)y
′(1), ..., y(4)y

′(4)|x(1), ..., x(4)) =

p(y(1), ..., y(4)|x(1), ..., x(4)) · p(y′(1), ..., y
′(4)|x′(1), ..., x

′(4))

where H(X
′(i)|X(i)Y (i)) = 0 for 1 ≤ i ≤ 4. Take an arbitrary point from

φ
(
p(y(1)y

′(1), ..., y(4)y
′(4)|x(1), ..., x(4)), {q(x(1), ..., x(4))}

)
.

The set of input distributions contains only one distribution q(x(1), ..., x(4)). There-
fore we define random variables X(1), X(2), ..., X(4), Y (1), Y

′(1), ..., Y (4), Y
′(4) jointly dis-

tributed according to

p(y(1)y
′(1), ..., y(4)y

′(4)|x(1), ..., x(4)) · q(x(1), ..., x(4)) =

p(y(1), ..., y(4)|x(1), ..., x(4)) · p(y′(1), ..., y
′(4)|x′(1), ..., x

′(4)) · q(x(1), ..., x(4)).

Corresponding to the arbitrary point in

φ
(
p(y(1)y

′(1), ..., y(4)y
′(4)|x(1), ..., x(4)), {q(x(1), ..., x(4))}

)
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is a random variable U satisfying

X(1) → U → X(2)

and
U → X(1)X(2) → Y (3)Y (4)Y

′(3)Y
′(4)

such that the point is coordinate by coordinate less than or equal to the point

−→v =
(
I(X(1);Y (3)Y

′(3)|X(2), U), I(X(2);Y (4)Y
′(4)|X(1), U), I(X(1)X(2);Y (3)Y

′(3)|U),

I(X(1)X(2);Y (4)Y
′(4)|U), I(X(1)X(2);Y (3)Y

′(3)), I(X(1)X(2);Y (4)Y
′(4)),

I(X(1);Y (3)Y
′(3)|X(2)), I(X(2);Y (4)Y

′(4)|X(1))
)

Since p(y(1), ..., y(4)|x(1), ..., x(4)) and p(y
′(1), ..., y

′(4)|x′(1), ..., x
′(4)) belong to the class

of interference channels, we haveH(Y (1)|X(1)) = H(Y (2)|X(2)) = 0. H(X
′(1)|X(1)Y (1)) =

H(X
′(2)|X(2)Y (2)) = 0 then implies that H(X

′(1)|X(1)) = 0 and H(X
′(2)|X(2)) = 0.

Since |X (3)| = |X (4)| = |X ′(3)| = |X ′(4)| = 1

p(y(3)y
′(3), y(4)y

′(4)|x(1), x(2), x(3), x(4)) =

p(y(3), y(4)|x(1), x(2)) · p(y′(3), y
′(4)|x′(1), x

′(2)).

Since X(1) → U → X(2) and U → X(1)X(2) → Y (3)Y (4), the point

−→v1 =
(
I(X(1);Y (3)|X(2), U), I(X(2);Y (4)|X(1), U), I(X(1)X(2);Y (3)|U),

I(X(1)X(2);Y (4)|U), I(X(1)X(2);Y (3)), I(X(1)X(2);Y (4)),

I(X(1);Y (3)|X(2)), I(X(2);Y (4)|X(1))
)

belongs to φ
(
p(y(1), ..., y(4)|x(1), ..., x(4)), {q(x(1), x(2), ..., x(4))}

)
. Next, note thatX(1) →

U → X(2) implies X
′(1) → U → X

′(2) since H(X
′(1)|X(1)) = 0 and H(X

′(2)|X(2)) = 0.
Furthermore U → X

′(1)X
′(2) → Y

′(3)Y
′(4) since

p(u, x(1), x(2), x
′(1), x

′(2), y
′(3), y

′(4)) =

p(x(1), x(2))p(u|x(1), x(2))p(x
′(1), x

′(2)|x(1), x(2))p(y
′(3), y

′(4)|x′(1), x
′(2)).

Thus the point

−→v2 =
(
I(X

′(1);Y
′(3)|X ′(2), U), I(X

′(2);Y
′(4)|X ′(1), U), I(X

′(1)X
′(2);Y

′(3)|U),

I(X
′(1)X

′(2);Y
′(4)|U), I(X

′(1)X
′(2);Y

′(3)), I(X
′(1)X

′(2);Y
′(4)),

I(X
′(1);Y

′(3)|X ′(2)), I(X
′(2);Y

′(4)|X ′(1))
)

belongs to φ
(
p(y

′(1), y
′(2), ..., y

′(4)|x′(1), ..., x
′(4)),Ψ

)
where Ψ is a given set that contains

q(x
′(1), ..., x

′(4)).
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It suffices to show that −→v ≤ −→v1 + −→v2 . This is straightforward, once one observes
that

p(y
′(3), y

′(4)|x(1), x
′(1), x(2), x

′(2), u) = p(y
′(3), y

′(4)|x′(1), x(2))

and

p(x(2), x
′(2), x(1), x

′(1), y
′(3), y

′(4)|u) =

p(x(2)|u)p(x
′(2)|x(2))p(x(1)|u)p(x

′(1)|x(1))p(y
′(3), y

′(4)|x′(1), x
′(2)).

The proof for the second property is straightforward since Y (3) = X(3) = constant,
and Y (4) = X(4) = constant implying that all the mutual information terms are zero.
�

Appendix II

In the proof of Theorem 9, we claimed that the point

n×
(
H(W (1)|L)−O(h(ε)), H(W (2)|L)−O(h(ε)), H(W (1)|L) +H(W (2)|L)−O(h(ε)),

H(W (1)|L) +H(W (2)|L)−O(h(ε)), H(W (1)W (2))−O(h(ε)),

H(W (1)W (2))−O(h(ε)), H(W (1)|W (2))−O(h(ε)), H(W (2)|W (1))−O(h(ε))

)
is in the set

φ
(
p(w

(1)
1:ny

(1)
1:n, w

(2)
1:ny

(2)
1:n, w

(3)
1:ny

(3)
1:n, w

(4)
1:ny

(4)
1:n|w

(1)
1:n, w

(2)
1:n, w

(3)
1:n, w

(4)
1:n), {p(w(1)

1:n, w
(2)
1:n, w

(3)
1:n, w

(4)
1:n)}

)
.

(5.10)
Here O(h(ε)) is equal to a constant (that depends only on the network architecture)
times h(ε). Here h(·) is the binary entropy function. In this appendix we show that
this equation holds.

Here, because of the assumptions on the alphabets, we can think of the overall
virtual channel as being p(y

(3)
1:n, y

(4)
1:n|w

(1)
1:n, w

(2)
1:n) and the set of admissible distributions

as being p(w
(1)
1:n, w

(2)
1:n) where random variables W

(1)
1:n ,W

(2)
1:n , Y

(3)
1:n , Y

(4)
1:n are distributed

according to
p(y

(3)
1:n, y

(4)
1:n|w

(1)
1:n, w

(2)
1:n) · p(w(1)

1:n, w
(2)
1:n)

and L1:n is jointly distributed with W
(1)
1:n ,W

(2)
1:n , Y

(3)
1:n , Y

(4)
1:n according to

p(y
(3)
1:n, y

(4)
1:n, w

(1)
1:n, w

(2)
1:n) ·

n∏
i=1

p(li|w(1)
i , w

(2)
i ),

and such that we have W
(1)
1:n → L1:n → W

(2)
1:n and L1:n → W

(1)
1:nW

(2)
1:n → Y

(3)
1:n Y

(4)
1:n . The

set

φ
(
p(w

(1)
1:ny

(1)
1:n, w

(2)
1:ny

(2)
1:n, w

(3)
1:ny

(3)
1:n, w

(4)
1:ny

(4)
1:n|w

(1)
1:n, w

(2)
1:n, w

(3)
1:n, w

(4)
1:n), {p(w(1)

1:n, w
(2)
1:n, w

(3)
1:n, w

(4)
1:n)}

)



100

by definition contains the following point:

−→v =
(
I(W

(1)
1:n ;Y

(3)
1:n |W

(2)
1:n , L1:n), I(W

(2)
1:n ;Y

(4)
1:n |W

(1)
1:n , L1:n), I(W

(1)
1:nW

(2)
1:n ;Y

(3)
1:n |L1:n),

I(W
(1)
1:nW

(2)
1:n ;Y

(4)
1:n |L1:n), I(W

(1)
1:nW

(2)
1:n ;Y

(3)
1:n ), I(W

(1)
1:nW

(2)
1:n ;Y

(4)
1:n ),

I(W
(1)
1:n ;Y

(3)
1:n |W

(2)
1:n), I(W

(2)
1:n ;Y

(4)
1:n |W

(1)
1:n)
)
.

We show that −→v is pointwise greater than or equal to

n×
(
H(W (1)|L)−O(h(ε)), H(W (2)|L)−O(h(ε)), H(W (1)|L) +H(W (2)|L)−O(h(ε)),

H(W (1)|L) +H(W (2)|L)−O(h(ε)), H(W (1)W (2))−O(h(ε)),

H(W (1)W (2))−O(h(ε)), H(W (1)|W (2))−O(h(ε)), H(W (2)|W (1))−O(h(ε))

)
.

We only give the proof for the first, third, fifth and seventh element of −→v . The proof
for the other coordinates is similar.
• The first coordinate:

I(W
(1)
1:n ;Y

(3)
1:n |W

(2)
1:nL1:n) = H(W

(1)
1:n |W

(2)
1:nL1:n)−H(W

(1)
1:n |W

(2)
1:nL1:nY

(3)
1:n ) =

n · [H(W (1)|W (2)L)−O(h(ε))

because of lemma 2 mentioned at the end of this appendix. Here h(·) denotes the
binary entropy function. Note that H(W (1)|W (2)L) = H(W (1)|L).
• The third coordinate:

I(W
(1)
1:nW

(2)
1:n ;Y

(3)
1:n |L1:n) = H(W

(1)
1:nW

(2)
1:n |L1:n)−H(W

(1)
1:nW

(2)
1:n |L1:nY

(3)
1:n ) =

n · [H(W (1)W (2)|L)−O(h(ε))]

because of lemma 2 mentioned at the end of this appendix. Here h(·) denotes the
binary entropy function. Furthermore, note that H(W (1)W (2)|L) = H(W (1)|L) +
H(W (2)|L).
• The fifth coordinate:
I(W

(1)
1:nW

(2)
1:n ;Y

(3)
1:n ) = H(W

(1)
1:nW

(2)
1:n) − H(W

(1)
1:nW

(2)
1:n |Y

(3)
1:n ) = n · [H(W (1)W (2)) −

O(h(ε))] because of lemma 2 mentioned at the end of this appendix.
• The seventh coordinate:
I(W

(1)
1:n ;Y

(3)
1:n |W

(2)
1:n) = H(W

(1)
1:n |W

(2)
1:n) − H(W

(1)
1:n |W

(2)
1:nY

(3)
1:n ) = n · [H(W (1)|W (2)) −

O(h(ε)) because of lemma 2 mentioned at the end of this appendix. Here h(·) denotes
the binary entropy function. �
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Lemma 2. Given any admissible source marginal distribution p(w(1), w(2), w(3), w(4))
for a strong interference channel q(y(1), y(2), y(3), y(4)|x(1), x(2), x(3), x(4)) satisfying |W(3)| =
|W(4)| = 1, and an arbitrary positive ε and n-code, we have:

1

n
H(W

(1)
1:nW

(2)
1:n |Y

(3)
1:n ) = O(h(ε)), (5.11)

1

n
H(W

(1)
1:nW

(2)
1:n |Y

(4)
1:n ) = O(h(ε)). (5.12)

Proof of Lemma 2: We prove the equation (5.11); the proof of equation (5.12) is
similar. Since q(.|.) is a strong interference channel, lemma of section III of [6] implies
that the n-letter product channel

q(y
(3)
1:n, y

(4)
1:n|x

(1)
1:n, x

(2)
1:n) =

n∏
i=1

q(y
(3)
i , y

(4)
i |x

(1)
i , x

(2)
i )

is also a strong interference channel. Therefore 1

I(X
(2)
1:n;Y

(3)
1:n |X

(1)
1:n) ≥ I(X

(2)
1:n;Y

(4)
1:n |X

(1)
1:n).

This implies thatH(X
(2)
1:n|Y

(3)
1:nX

(1)
1:n) ≤ H(X

(2)
1:n|Y

(4)
1:nX

(1)
1:n). We haveH(X

(2)
1:n|Y

(4)
1:nX

(1)
1:n) ≤

H(W
(2)
1:n |Y

(4)
1:nX

(1)
1:n) ≤ H(W

(2)
1:n |M̂

(4)
1:n) since H(X

(2)
1:n|W

(2)
1:n) = 0. Here M̂

(4)
1:n is the recon-

struction of W
(2)
1:n by the third party (the average distortion between M̂

(4)
1:n and Ŵ

(2)
1:n

is less than or equal to ε). H(W
(2)
1:n |M̂

(4)
1:n) is equal to n ·O(h(ε)) for ε < 1

2
since

H(W
(2)
1:n |M̂

(4)
1:n) ≤

n∑
i=1

H(W
(2)
i |M̂

(4)
i ) ≤ (5.13)

n∑
i=1

[h(p(W
(2)
i 6= M̂

(4)
i )) + p(W

(2)
i 6= M̂

(4)
i ) log(|W(2)|)] ≤ (5.14)

n
[
h(

1

n

n∑
i=1

p(W
(2)
i 6= M̂

(4)
i )) +

1

n

n∑
i=1

p(W
(2)
i 6= M̂

(4)
i ) log(|W(2)|)

]
(5.15)

= n ·O(h(ε)),

where in equation (5.13) we have used the Fano inequality, in equation (5.14) we have
used the concavity of the binary entropy function, and lastly, in equation (5.15), we

have used the fact that the average distortion between M̂
(4)
1:n and W

(2)
1:n is less than or

equal to ε. Thus, H(W
(2)
1:n |M̂

(4)
1:n) ≤ n ·O(h(ε)).

1Note that equations (5.4) and (5.5) hold for all arbitrary distributions on the inputs for a strong
interference channel.
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Therefore H(X
(2)
1:n|Y

(3)
1:nX

(1)
1:n) ≤ n · O(h(ε)). Since the average distortion between

M̂
(3)
1:n and W

(1)
1:n is less than or equal to ε, we have: H(X

(1)
1:n|Y

(3)
1:n ) ≤ H(W

(1)
1:n |Y

(3)
1:n ) ≤

H(W
(1)
1:n |M̂

(3)
1:n) = n ·O(h(ε)). Thus, H(X

(1)
1:nX

(2)
1:n|Y

(3)
1:n ) ≤ n ·O(h(ε)). Next, note that

H(W
(1)
1:nW

(2)
1:n |Y

(3)
1:n ) ≤ H(W

(1)
1:nW

(2)
1:n |X

(1)
1:nX

(2)
1:n) +H(X

(1)
1:nX

(2)
1:n|Y

(3)
1:n )

since for any three random variables A,B and C we have H(A|C) ≤ H(A|B) +

H(B|C). It suffices to show that H(W
(1)
1:nW

(2)
1:n |X

(1)
1:nX

(2)
1:n) = n · O(h(ε)). This is true

because
H(W

(1)
1:nW

(2)
1:n |X

(1)
1:nX

(2)
1:n) = H(W

(1)
1:nW

(2)
1:n |X

(1)
1:nX

(2)
1:nY

(3)
1:n Y

(4)
1:n ) ≤

H(W
(1)
1:nW

(2)
1:n |Y

(3)
1:n Y

(4)
1:n ) ≤ H(W

(1)
1:n |Y

(3)
1:n ) +H(W

(2)
1:n |Y

(4)
1:n )

�

Appendix III: Convexity of φ

In this appendix, we show that for any interference channel

q(y(1), y(2), y(3), y(4)|x(1), x(2), x(3), x(4)),

φ
(
q(y(1), y(2), y(3), y(4)|x(1), x(2), x(3), x(4)),Ψ

)
is convex when the set Ψ is convex. Take

two arbitrary points −→v1 and −→v2 from this set. Corresponding to these two points are
random variables U1, X

(i)
1 , Y

(i)
1 for i = 1, ..., 4 and U2, X

(i)
2 , Y

(i)
2 for i = 1, ..., 4, where

X
(1)
i − Ui − X

(2)
i and Ui − X(1)

i X
(2)
i − Y

(3)
i Y

(4)
i for i = 1, 2 and −→vi is coordinate by

coordinate less than or equal to(
I(X

(1)
i ;Y

(3)
i |X

(2)
i , Ui), I(X

(2)
i ;Y

(4)
i |X

(1)
i , Ui), I(X

(1)
i X

(2)
i ;Y

(3)
i |Ui),

I(X
(1)
i X

(2)
i ;Y

(4)
i |Ui), I(X

(1)
i X

(2)
i ;Y

(3)
i ), I(X

(1)
i X

(2)
i ;Y

(4)
i ),

I(X
(1)
i ;Y

(3)
i |X

(2)
i ), I(X

(2)
i ;Y

(4)
i |X

(1)
i )
)

for i = 1, 2. Take a binary and uniform random variable Q on {1, 2} and let U =

(UQ, Q), X(i) = X
(i)
Q and Y (i) = Y

(i)
Q for i = 1, ..., 4. It can be then verified that

p(x(1), x(2), x(3), x(4)) is in Ψ, that the conditional law of Y (1), Y (2), Y (3), Y (4) given
X(1), X(2), X(3), X(4) is described by q(y(1), y(2), y(3), y(4)|x(1), x(2), x(3), x(4)), and that
the point

−→v =
(
I(X(1);Y (3)|X(2), U), I(X(2);Y (4)|X(1), U), I(X(1)X(2);Y (3)|U),

I(X(1)X(2);Y (4)|U), I(X(1)X(2);Y (3)), I(X(1)X(2);Y (4)),

I(X(1);Y (3)|X(2)), I(X(2);Y (4)|X(1))
)

is coordinate by coordinate greater than or equal to 1
2
(−→v1 + −→v2). The proof for the

first four coordinates is straightforward. For the fifth coordinate, we use the fact
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that I(X(1)X(2);Y (3)) = I(UX(1)X(2);Y (3)) ≥ I(X(1)X(2);Y (3)|U). The proof for the
sixth, seventh and eighth coordinates is the similar. Since −→v can be seen to belong
to

φ
(
q(y(1), y(2), y(3), y(4)|x(1), x(2), x(3), x(4)),Ψ

)
,

this region must be convex. �
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Part II

The general broadcast channel
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In this part of the thesis, we consider two-receiver general broadcast channels. Of
particular interest will be the computation of the best known inner and outer bounds.
Please note that this part can be read independently of the first part of the thesis. We
begin by reviewing the definition of the problem of communicating over a broadcast
channel. This will be followed by an outline of this part of the thesis.

A two-receiver broadcast channel is characterized by the conditional distribution
q(y, z|x) where X is the input to the channel and Y and Z are the outputs of the
channel at the two receivers. Let X , Y and Z denote the alphabets of X, Y and
Z respectively. The transmitter wants to send a common message, M0, to both the
receivers and two private messages M1 and M2 to Y and Z respectively. Assume that
M1, M2 andM3 are mutually independent, andMi (for i = 0, 1, 2) is a uniform random
variable over setMi. The transmitter maps the messages into a codeword of length n
using an encoding function ζ :M0×M1×M2 → X n, and sends it over the broadcast
channel q(y, z|x) in n times steps. The receivers use the decoding functions ϑy : Yn →
M0 ×M1 and ϑz : Zn → M0 ×M2 to map their received signals to (M̂0

(1)
, M̂1)

and (M̂0

(2)
, M̂2) respectively. The average probability of error is then taken to be the

probability that (M̂0

(1)
, M̂1, M̂0

(2)
, M̂2) is not equal to (M0,M1,M0,M2).

The capacity region of the broadcast channel is defined as the set of all triples
(R0, R1, R2) such that for any ε > 0, there is some integer n, uniform random variables
M0, M1, M2 with alphabets |Mi| ≥ 2n(Ri−ε) (for i = 0, 1, 2), encoding function ζ,
and decoding functions ϑy and ϑz such that the average probability of error is less
than or equal to ε.

We begin the second part of this dissertation by discussing the main obstacle to
computing Marton’s inner bound. We will then introduce the “perturbation method”
and apply this novel tool to make Marton’s inner bound computable. Next, we re-
port the subsequent research that was done along the direction of computing Marton’s
inner bound. We prove various results that help to restrict the search space for com-
puting the sum-rate for Marton’s inner bound. For binary input broadcast channels,
we show that the computation can be further simplified if we assume that Marton’s
inner bound and the recent outer bound of Nair and El Gamal match at the given
channel. These results are used to show that the inner and the outer bound do not
match for some broadcast channels, thus establishing a conjecture of [45]. We also
show that unlike in the Gaussian case, for a degraded broadcast channel even without
a common message, Marton’s coding scheme without a superposition variable is in
general insufficient for obtaining the capacity region. We end the second part of the
dissertation by mentioning a few other results that were left off because they did not
concern the computation of Marton’s inner bound. We establish the capacity region
along certain directions and show that it coincides with Marton’s inner bound. We
show that the Nair-El Gamal outer bound can be made fully computable. Lastly, we
discuss an idea that may lead to a larger inner bound.
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Chapter 6

Introduction

The capacity region of the broadcast channel is not known except in certain special
cases. The best achievable region of triples (0, R1, R2) for the broadcast channel is due
to Marton [37, Theorem 2]. Marton’s work was subsequently generalized in [10, p.
391, Problem 10(c)], and by Gelfand and Pinsker [18] who established the achievability
of the region formed by taking the union over random variables U, V,W,X, Y, Z,
having the joint distribution p(u, v, w, x, y, z) = p(u, v, w, x)q(y, z|x), of

R0, R1, R2 ≥ 0;

R0 ≤ min(I(W ;Y ), I(W ;Z)); (6.1)

R0 +R1 ≤ I(UW ;Y ); (6.2)

R0 +R2 ≤ I(VW ;Z); (6.3)

R0 +R1 +R2 ≤ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

+ min(I(W ;Y ), I(W ;Z)). (6.4)

In Marton’s original work, the auxiliary random variables U, V and W are finite
random variables. We however allow the auxiliary random variables U, V and W to
be discrete or continuous random variables to get an apparently larger region. A main
result of this chapter however implies that this relaxation will not make the region
grow. We refer to this region as Marton’s inner bound for the general broadcast
channel. Recently Liang and Kramer reported an apparently larger inner bound to
the broadcast channel [33], which however turns out to be equivalent to Marton’s inner
bound [35]. Marton’s inner bound therefore remains to be the currently best known
inner bound on the general broadcast channel. Liang, Kramer and Poor showed
that in order to evaluate Marton’s inner bound, it suffices to search over p(u, v, w, x)
for which either I(W ;Y ) = I(W ;Z), or I(W ;Y ) > I(W ;Z)&V = constant, or
I(W ;Y ) < I(W ;Z)&U = constant holds [35]. This restriction however does not lead
to a computable characterization of the region.
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Unfortunately Marton’s inner bound is not computable (except in certain special
cases) as no bounds on the cardinality of its auxiliary random variables exist. A prior
work by Hajek and Pursley derives cardinality bounds for an earlier inner bound
of Cover and van der Meulen for the special case of X is binary, and R0 = 0 [26];
Hajek and Pursley showed that X can be taken as a deterministic function of the
auxiliary random variables involved, and conjectured certain cardinality bounds on
the auxiliary random variables when |X | is arbitrary but R0 is equal to zero. For the
case of non-zero R0, Hajek and Pursley commented that finding cardinality bounds
appears to be considerably more difficult. The inner bound of Cover and van der
Meulen was however later improved by Marton. A Carathéodory-type argument
results in a cardinality bound of |V||X |+1 on |U|, and a cardinality bound of |U||X |+1
on |V| for Marton’s inner bound. This does not lead to fixed cardinality bounds on
the auxiliary random variables U and V . A main result of this chapter is to prove that
the subset of Marton’s inner bound defined by imposing extra constraints |U| ≤ |X |,
|V| ≤ |X |, |W| ≤ |X |+ 4 and H(X|UVW ) = 0 is identical to Marton’s inner bound.
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Chapter 7

New cardinality bounds

7.1 The proof technique at an intuitive level

In this section, we demonstrate the use of the “perturbation method” at an in-
tuitive level. In the following discussion, we will repeatedly make use of the follow-
ing observation: consider an arbitrary set of finite random variables X1, X2, ..., Xn

jointly distributed according to p0(x1, x2, ..., xn). One can represent a perturba-
tion of this joint distribution by a vector consisting of the first derivative of the
individual probabilities p0(x1, x2, ..., xn) for all values of x1, x2, ..., xn. We how-
ever suggest the following perturbation that can be represented by a real valued
random variable, L, jointly distributed by X1, X2, ..., Xn and satisfying E[L] = 0,∣∣E[L|X1 = x1, X2 = x2, ..., Xn = xn]

∣∣ <∞ for all values of x1, x2, ..., xn:

pε(X̂1 = x1, ..., X̂n = xn) = p0(X1 = x1, ..., Xn = xn)·
(
1+ε·E[L|X1 = x1, ..., Xn = xn]

)
,

where ε is a real number in some interval [−ε1, ε2]. Random variable L is a canonical
way of representing the direction of perturbation since given any subset of indices I ⊂
{1, 2, 3, ..., n}, one can verify that the following equation for the marginal distribution

of random variables X̂i for i ∈ I:

pε(X̂i∈I = xi∈I) = p0(Xi∈I = xi∈I) ·
(
1 + ε · E[L|Xi∈I = xi∈I ]

)
.

Furthermore for any set of indices I ⊂ {1, 2, 3, ..., n}, the second derivative of the

joint entropy of random variables X̂i for i ∈ I as a function of ε is related to the
problem of MMSE estimation of L from Xi∈I :

∂2

∂ε2
H(X̂i∈I) |ε=0= − log e · E

[
E[L|Xi∈I ]

2
]
.

In order to show the essence of the proof while avoiding the unnecessary details,
we consider a simpler problem that is different from the problem at hand, although
it will be used in the later proofs.
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Given a broadcast channel q(y, z|x) and an input distribution p(x), let us consider
the problem of finding the supremum of

I(U ;Y ) + I(V ;Z)− I(U ;V ) + λI(U ;Y ) + γI(V ;Z)

over all joint distributions p(uv|x)p(x)q(y, z|x) where λ and γ are arbitrary non-
negative reals, and auxiliary random variables U , V have alphabets satisfying |U| ≤ Su
and |V| ≤ Sv for some natural numbers Su and Sv. For this problem, we would like to
show that it suffices to take the maximum over random variables U and V with the
cardinality bounds of min(|X |, Su) and min(|X |, Sv). It suffices to prove the following
lemma:

Lemma 3. Given an arbitrary broadcast channel q(y, z|x), an arbitrary input dis-
tribution p(x), non-negative reals λ and γ, and natural numbers Su and Sv where
Su > |X | the following holds:

sup
UV→X→Y Z;|U|≤Su;|V|≤Sv

I(U ;Y ) + I(V ;Z)− I(U ;V ) + λI(U ;Y ) + γI(V ;Z) =

I(Û ; Ŷ ) + I(V̂ ; Ẑ)− I(Û ; V̂ ) + λI(Û ; Ŷ ) + γI(V̂ ; Ẑ),

where random variables Û , V̂ , X̂, Ŷ , Ẑ satisfy the following properties: the Markov
chain Û V̂ → X̂ → Ŷ Ẑ holds; the joint distribution of X̂, Ŷ , Ẑ is the same as the
joint distribution of X, Y, Z, and furthermore |Û | < Su, |V̂| ≤ Sv.

Proof. Since the cardinalities of U and V are bounded, one can show that the
supremum of I(U ;Y ) + I(V ;Z) − I(U ;V ) + λI(U ;Y ) + γI(V ;Z) is a maximum1,
and is obtained at some joint distribution p0(u, v, x, y, z) = p0(u, v, x)q(y, z|x). If

|U| < Su, one can finish the proof by setting (Û , V̂ , X̂, Ŷ , Ẑ) = (U, V,X, Y, Z). One

can also easily show the existence of appropriate (Û , V̂ , X̂, Ŷ , Ẑ) if p(u) = 0 for some
u ∈ U . Therefore assume that |U| = Su and p(u) 6= 0 for all u ∈ U . Take an arbitrary
non-zero function L : U ×V ×X → R where E[L(U, V,X)|X]=0. Let us then perturb

the joint distribution of U, V,X, Y, Z by defining random variables Û , V̂ , X̂, Ŷ and Ẑ
distributed according to

pε(Û = u, V̂ = v, X̂ = x, Ŷ = y, Ẑ = z) =

p0(U = u, V = v,X = x, Y = y, Z = z)·(
1 + ε · E[L(U, V,X)|U = u, V = v,X = x, Y = y, Z = z]

)
,

1Since the ranges of all the involving random variables are limited and the conditional mutual
information function is continuous, the set of admissible joint probability distributions p(u, v, x, y, z)
where I(UV ;Y Z|X) = 0 and p(y, z, x) = q(y, z|x)p(x) will be a compact set (when viewed as a
subset of the Euclidean space). The fact that mutual information function is continuous implies
that the union over random variables U, V,X, Y, Z satisfying the cardinality bounds, having the
joint distribution p(u, v, x, y, z) = p(u, v|x)p(x)q(y, z|x), of I(U ;Y )+I(V ;Z)−I(U ;V )+λI(U ;Y )+
γI(V ;Z) is a compact set, and thus closed.
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or equivalently according to

pε(Û = u, V̂ = v, X̂ = x, Ŷ = y, Ẑ = z) =

p0(U = u, V = v,X = x, Y = y, Z = z)
(
1 + ε · L(u, v, x)

)
=

p0(U = u, V = v,X = x)q(Y = y, Z = z|X = x)
(
1 + ε · L(u, v, x)

)
.

The parameter ε is a real number that can take its value in [−ε1, ε2] where ε1 and
ε2 are some positive reals representing the maximum and minimum values of ε, i.e.
minu,v,x 1 − ε1 · L(u, v, x) = minu,v,x 1 + ε2 · L(u, v, x) = 0. Since L is a function of

U , V and X only, for any value of ε, the Markov chain Û V̂ → X̂ → Ŷ Ẑ holds,
and p(Ŷ = y, Ẑ = z|X̂ = x) is equal to q(Y = y, Z = z|X = x) for all x, y, z
where p(X = x) > 0. Furthermore E[L(U, V,X)|X] = 0 implies that the marginal
distribution of X is preserved by this perturbation. This is because

pε(X̂ = x) = p0(X = x) ·
(
1 + ε · E[L(U, V,X)|X = x]

)
.

This further implies that the marginal distributions of Y and Z are also fixed. 2

The expression I(Û ; Ŷ ) + I(V̂ ; Ẑ)− I(Û ; V̂ ) + λI(Û ; Ŷ ) + γI(V̂ ; Ẑ) as a function
of ε achieves its maximum at ε = 0 (by our assumption). Therefore its first derivative
at ε = 0 should be zero, and its second derivative should be less than or equal to zero.
Using Lemma 5, one can compute the first derivative and set it to zero, and thereby
get the following equation:

IL(U ;Y ) + IL(V ;Z)− IL(U ;V ) + λIL(U ;Y ) + γIL(V ;Z) = 0. (7.1)

In order to compute the second derivative, one can expand the expression as en-
tropy terms and use Lemma 5 to compute the second derivative for each term. We can
use the assumption that E[L(U, V,X)|X] = 0 (which implies E[L(U, V,X)|Y ] = 0 and
E[L(U, V,X)|Z] = 0) to simplify the expression. In particular the second derivative of

H(Ŷ ) and H(Ẑ) at ε = 0 would be equal to zero (as the marginal distributions of Y

and Z are preserved under the perturbation), the second derivative of I(Û ; Ŷ ) at ε = 0
will be equal to − log e ·E[E[L(U, V,X)|U ]2]+ log e ·E[E[L(U, V,X)|UY ]2], the second

derivative of I(V̂ ; Ẑ) at ε = 0 will be equal to − log e · E[E[L(U, V,X)|V ]2] + log e ·
E[E[L(U, V,X)|V Z]2], and the second derivative of −I(Û ; V̂ ) at ε = 0 will be equal to
+ log e ·E[E[L(U, V,X)|U ]2]+log e ·E[E[L(U, V,X)|V ]2]− log e ·E[E[L(U, V,X)|UV ]2].

Note that the second derivatives of I(Û ; Ŷ ) and I(V̂ ; Ẑ) are always non-negative.

Since the second derivative of the expression I(Û ; Ŷ )+I(V̂ ; Ẑ)−I(Û ; V̂ )+λI(Û ; Ŷ )+

γI(V̂ ; Ẑ) at ε = 0 must be non-positive, the second derivative of I(Û ; Ŷ ) + I(V̂ ; Ẑ)−
I(Û ; V̂ ) must be non-positive at ε = 0. The second derivative of the latter ex-
pression is equal to + log e · E[E[L(U, V,X)|UY ]2] + log e · E[E[L(U, V,X)|V Z]2] −

2The terms E[L(U, V,X)|Y ] = 0 and E[L(U, V,X)|Z] = 0 must be zero if E[L(U, V,X)|X] = 0
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log e · E[E[L(U, V,X)|UV ]2]. Hence we conclude that for any non-zero function L :
U × V × X → R where E[L(U, V,X)|X] = 0 we must have:

E[E[L(U, V,X)|UY ]2] + E[E[L(U, V,X)|V Z]2]− E[E[L(U, V,X)|UV ]2] ≤ 0. (7.2)

Next, take an arbitrary non-zero function L′ : U → R where E[L′(U)|X] = 0.
Since |U| = Su > |X |, such a non-zero function L′ exists. Note that the direction of
perturbation L′ being only a function of U implies that

pε(Û = u, V̂ = v, X̂ = x, Ŷ = y, Ẑ = z) =

pε(Û = u)p0(V = v,X = x, Y = y, Z = z|U = u)

In other words, the perturbation only changes the marginal distribution of U , but
preserves the conditional distribution of p0(V = v,X = x, Y = y, Z = z|U = u).

Note that

E[E[L′(U)|UV ]2] = E[E[L′(U)|UY ]2] = E[L′(U)2].

This implies that E[E[L′(U)|V Z]2] should be non-positive. But this can happen
only when E[L′(U)|V Z] = 0. Therefore any arbitrary function L′ : U → R where
E[L′(U)|X] = 0 must also satisfy E[L′(U)|V Z] = 0. In other words, any arbitrary
direction of perturbation L′ that is a function of U and preserves the marginal distri-
bution of X, must also preserve the marginal distribution of V Z.3

We next show that the expression I(Û ; Ŷ )+I(V̂ ; Ẑ)−I(Û ; V̂ )+λI(Û ; Ŷ )+γI(V̂ ; Ẑ)
as a function of ε is constant.4 Using the last part of Lemma 5, one can write:

I(Û ; Ŷ ) =

I(U ;Y ) + ε · IL(Û ; Ŷ )− E
[
r
(
ε · E[L|U ]

)]
− E

[
r
(
ε · E[L|Y ]

)]
+ E

[
r
(
ε · E[L|UY ]

)]
=

I(U ;Y ) + ε · IL(Û ; Ŷ ), (7.3)

where r(x) = (1 + x) log(1 + x). Equation (7.3) holds because E[L|Y ] = 0 and
E[L|U ] = E[L|UY ]. Similarly using the last part of Lemma 5, one can write:

I(Û ; V̂ ) =

I(U ;V ) + ε · IL(Û ; V̂ )− E
[
r
(
ε · E[L|U ]

)]
− E

[
r
(
ε · E[L|V ]

)]
+ E

[
r
(
ε · E[L|UV ]

)]
=

I(U ;V ) + ε · IL(Û ; V̂ ) (7.4)

where r(x) = (1 + x) log(1 + x). Equation (7.4) holds because E[L|V ] = 0 and

E[L|U ] = E[L|UV ]. One can similarly show that the term I(V̂ ; Ẑ) can be written as

3Note that pε(V̂ = v, Ẑ = z) = p0(V = v, Z = z) ·
(
1 + ε · E[L(U, V,X)|V = v, Z = z]

)
= p0(V =

v, Z = z).
4The author would like to thank Chandra Nair for suggesting this shortcut to simplify the original

proof.
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I(V ;Z) + ε · IL(V̂ ; Ẑ) = 0. Therefore the expression I(Û ; Ŷ ) + I(V̂ ; Ẑ) − I(Û ; V̂ ) +

λI(Û ; Ŷ ) + γI(V̂ ; Ẑ) as a function of ε is equal to

I(U ;Y ) + I(V ;Z)− I(U ;V ) + λI(U ;Y ) + γI(V ;Z)+

ε ·
(
IL(U ;Y ) + IL(V ;Z)− IL(U ;V ) + λIL(U ;Y ) + γIL(V ;Z)

)
. (7.5)

Equation (7.1) implies that this expression is equal to I(U ;Y ) + I(V ;Z)− I(U ;V ) +
λI(U ;Y ) + γI(V ;Z).

Therefore the expression I(Û ; Ŷ ) + I(V̂ ; Ẑ)− I(Û ; V̂ ) + λI(Û ; Ŷ ) + γI(V̂ ; Ẑ) as a
function of ε is constant. Since the function L′ is non-zero, setting ε = −ε1 or ε = ε2
will result in a marginal distribution on Û with a smaller support than U since the
marginal distribution of U is being perturbed as follows:

pε(Û = u) = p0(U = u) ·
(
1 + εL′(u)

)
.

This perturbation does not increase the support and would decrease it by at least one
when ε is at its maximum or minimum, i.e. when ε = −ε1 or ε = ε2. Therefore one is
able to define a random variable with a smaller cardinality as that of U while leaving
the value of I(U ;Y ) + I(V ;Z)− I(U ;V ) + λI(U ;Y ) + γI(V ;Z) unaffected.

Discussion: Aside from establishing cardinality bounds, the above argument im-
plies that if the maximum of I(U ;Y ) + I(V ;Z) − I(U ;V ) + λI(U ;Y ) + γI(V ;Z)
is obtained at some joint distribution p0(u, v, x, y, z) = p0(u, v, x)q(y, z|x), equations
(7.1) and (7.2) must hold for any non-zero function L : U × V × X → R where
E[L(U, V,X)|X] = 0. The proof used these properties to a limited extent.

7.2 Definitions and Notation

Let R denote the set of real numbers. All the logarithms throughout this chapter
are in base two, unless stated otherwise. Let C(q(y, z|x)) denote the capacity region
of the broadcast channel q(y, z|x). We use X1:k to denote (X1, X2, ..., Xk); similarly
we use Y1:k and Z1:k to denote (Y1, Y2, ..., Yk) and (Z1, Z2, ..., Zk) respectively.

Definition 14. For two vectors −→v1 and −→v2 in Rd, we say −→v1 ≥ −→v2 if and only if
each coordinate of −→v1 is greater than or equal to the corresponding coordinate of −→v2 .
For a set A ⊂ Rd, the down-set ∆(A) is defined as: ∆(A) = {−→v ∈ Rd : −→v ≤
−→w for some −→w ∈ A}.

Definition 15. Let CM(q(y, z|x)) denote Marton’s inner bound on the channel q(y, z|x).
CM(q(y, z|x)) is defined as the union over of non-negative triples (R0, R1, R2) satis-
fying equations (6.1), (6.2), (6.3) and (6.4) over random variables U, V,W,X, Y, Z,
having the joint distribution p(u, v, w, x, y, z) = p(u, v, w, x)q(y, z|x). Please note
that the auxiliary random variables U, V and W may be discrete or continuous ran-
dom variables.
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Definition 16. Let CM−I(q(y, z|x)) be a subset of R6 defined as the union of

∆
({(

I(W ;Y ), I(W ;Z), I(UW ;Y ), I(VW ;Z),

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + I(W ;Y ),

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + I(W ;Z)
)})

,

over random variables U, V,W,X, Y, Z, having the joint distribution p(u, v, w, x, y, z) =
p(u, v, w, x)q(y, z|x). Note that the region CM−I(q(y, z|x)) specifies CM(q(y, z|x)),
since given any p(u, v, w, x, y, z) = p(u, v, w, x)q(y, z|x) the corresponding vector in
CM−I(q(y, z|x)) is providing the values for the left hand side of the 6 inequalities that
define the region CM(q(y, z|x)). CM−I(q(y, z|x)) is defined as a subset of R6, and not
R6

+ for technical reasons that will become clear later.

Definition 17. The region CSu,Sv ,Sw

M (q(y, z|x)) is defined as the union of non-negative
triples (R0, R1, R2) satisfying equations (6.1), (6.2), (6.3) and (6.4), over discrete ran-
dom variables U, V,W,X, Y, Z satisfying the cardinality bounds |U| ≤ Su, |V| ≤ Sv
and |W| ≤ Sw, and having the joint distribution p(u, v, w, x, y, z) = p(u, v, w, x)q(y, z|x).

Note that CSu,Sv ,Sw

M (q(y, z|x)) ⊂ CS
′
u,S
′
v ,S
′
w

M (q(y, z|x)) whenever Su ≤ S ′u, Sv ≤ S ′v and
Sw ≤ S ′w.

The region CSu,Sv ,Sw

M−I (q(y, z|x)) is defined as the union of the 6-tuple mentioned in

Definition 16. Note that the region CSu,Sv ,Sw

M−I (q(y, z|x)) specifies CSu,Sv ,Sw

M (q(y, z|x)),
over discrete random variables U, V,W,X, Y, Z satisfying the cardinality bounds |U| ≤
Su, |V| ≤ Sv and |W| ≤ Sw, and having the joint distribution p(u, v, w, x, y, z) =
p(u, v, w, x)q(y, z|x).

Definition 18. Let L (q(y, z|x)) be equal to C|X |,|X |,|X |+4
M (q(y, z|x)), and LI(q(y, z|x))

be equal to C|X |,|X |,|X |+4
M−I (q(y, z|x)).

The region C (q(y, z|x)) is defined as the union over discrete random variables
U, V,W,X, Y, Z satisfying the cardinality bounds |U| ≤ |X |, |V| ≤ |X | and |W| ≤
|X | + 4, and having the joint distribution p(u, v, w, x, y, z) = p(u, v, w, x)q(y, z|x)
for which H(X|UVW ) = 0, of non-negative triples (R0, R1, R2) satisfying equations
(6.1), (6.2), (6.3) and (6.4). Please note that the definition of C (q(y, z|x)) differs from
that of L (q(y, z|x)) since we have imposed the extra constraint H(X|UVW ) = 0
on the auxiliaries. C (q(y, z|x)) is a computable subset of the region CM(q(y, z|x)).
The region CI(q(y, z|x)) is defined similar to LI(q(y, z|x)) but by adding the extra
constraint H(X|UVW ) = 0 on the auxiliaries.

Definition 19. Given any finite random variable X, and real valued random variable
L where

∣∣E[L|X = x]
∣∣ <∞ for all x ∈ X , HL(X) is defined as

HL(X) =
∑
x∈X

p(X = x)E[L|X = x] log
1

p(X = x)
.
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The motivation for defining HL(X) will become clear later. Note that HL(X) is
linear in E[L|X = x] and in L, and can in general become negative. If L is a constant
random variable equal to 1, HL(X) reduces to the Shannon’s entropy.

Given finite random variables X and Y , and real valued random variable L where∣∣E[L|X = x, Y = y]
∣∣ < ∞ for all x ∈ X and y ∈ Y , HL(X|Y ) and IL(X;Y ) are

defined as follows: HL(X|Y ) =
∑

y∈Y p(Y = y)HL(X|Y = y), where

HL(X|Y = y) =
∑
x∈X

p(X = x|Y = y)E[L|X = x, Y = y] log
1

p(X = x|Y = y)
,

and

IL(X;Y ) =
∑

x,y∈(X ,Y)

p(X = x, Y = y)E[L|X = x, Y = y] log
p(X = x, Y = y)

p(X = x)p(Y = y)
.

It can be verified that IL(X;Y ) = HL(X)−HL(X|Y ) = HL(Y )−HL(Y |X).

7.3 Statement of the result

Theorem 10. For any arbitrary broadcast channel q(y, z|x), the closure of CM(q(y, z|x))
is equal to C (q(y, z|x)).

Corollary 1. CM(q(y, z|x)) is closed since C (q(y, z|x)) is also a subset of CM(q(y, z|x)).

Lemma 4. For any arbitrary natural numbers Su, Sv and Sw, the following state-
ments hold:

• CSu,Sv ,Sw

M−I (q(y, z|x)) is a closed subset of R6;

• CSu,Sv ,Sw

M−I (q(y, z|x)) is a subset of CSu,Sv ,|X |+4
M−I (q(y, z|x));

• CSu,Sv ,|X |+4
M−I (q(y, z|x)) is convex.

Lemma 5. Given any finite random variable X, and real valued random variable L
where

∣∣E[L|X = x]
∣∣ < ∞ for all x ∈ X , and E[L] = 0, let random variable X̂ be

defined on the same alphabet as X according to pε(X̂ = x) = p0(X = x) ·
(
1 + ε ·

E[L|X = x]
)
, where ε is a real number in the interval [−ε1, ε2]. ε1 and ε2 are positive

reals for which minx 1 − ε1 · E[L|X = x] ≥ 0 and minx 1 + ε2 · E[L|X = x] ≥ 0 hold.
Then

1. H(X̂) |ε=0= H(X), and ∂
∂ε
H(X̂) |ε=0= HL(X).
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2. ∀ε ∈ (−ε1, ε2), ∂2

∂ε2
H(X̂) = − log e·E

[ E[L|X]2

1+ε·E[L|X]

]
= − log(e)·I(ε) where the Fisher

Information I(ε) is defined as I(ε) =
∑

x

(
∂
∂ε

loge
(
pε(X̂ = x)

))2

pε(X̂ = x). In

particular ∂2

∂ε2
H(X̂) |ε=0= − log e · E

[
E[L|X]2

]
.

3. H(X̂) = H(X) + εHL(X)− E
[
r
(
ε · E[L|X]

)]
where r(x) = (1 + x) log(1 + x).

7.3.1 Proofs

Proof of Theorem 10: In Appendices II and III of section 7.3.2, we prove that the
closure of CM(q(y, z|x)) is equal to the closure of

⋃
Su,Sv ,Sw≥0 C

Su,Sv ,Sw

M (q(y, z|x)), and
that C (q(y, z|x)) is equal to L (q(y, z|x)). Therefore we need to show that the closure
of ⋃

Su,Sv ,Sw≥0

CSu,Sv ,Sw

M (q(y, z|x))

is equal to L (q(y, z|x)). It suffices to prove that L (q(y, z|x)) is closed, and that for
any arbitrary natural numbers Su, Sv and Sw, CSu,Sv ,Sw

M (q(y, z|x)) ⊂ L (q(y, z|x)). The
former can be proven using Lemma 4 according to which the region LI(q(y, z|x)) is
closed.5 To show the latter, it suffices to prove that CSu,Sv ,Sw

M−I (q(y, z|x)) ⊂ LI(q(y, z|x)).6

Lemma 4 shows that the regions CSu,Sv ,Sw

M−I (q(y, z|x)) and LI(q(y, z|x)) are closed.
Lemma 4 implies that the region LI(q(y, z|x)) is convex. In order to prove that
CSu,Sv ,Sw

M−I (q(y, z|x)) is a subset of LI(q(y, z|x)), it suffices to show that for any sup-

porting hyperplane of CSu,Sv ,Sw

M−I (q(y, z|x)), the half-space delimited by the hyperplane

which contains CSu,Sv ,Sw

M−I (q(y, z|x)) is contained in the corresponding half-space for
LI(q(y, z|x)).7

5The region LI(q(y, z|x)) determines L (q(y, z|x)). In order to show that the closedness of
LI(q(y, z|x)) implies the closedness of L (q(y, z|x)), take a convergent sequence (R0,i, R1,i, R2,i)
in L (q(y, z|x)). We would like to show that (R0, R1, R2) = limi→∞(R0,i, R1,i, R2,i) belongs to
L (q(y, z|x)). The six-tuple (R0,i, R0,i, R0,i +R1,i, R0,i +R2,i, R0,i +R1,i +R2,i, R0,i +R1,i +R2,i)
is in LI(q(y, z|x)). Since LI(q(y, z|x)) is closed, limi→∞(R0,i, R0,i, R0,i + R1,i, R0,i + R2,i, R0,i +
R1,i +R2,i, R0,i +R1,i +R2,i) = (R0, R0, R0 +R1, R0 +R2, R0 +R1 +R2, R0 +R1 +R2) is also in
LI(q(y, z|x)). Thus, (R0, R1, R2) = limi→∞(R0,i, R1,i, R2,i) belongs to L (q(y, z|x)).

6This is true because (R0, R1, R2) being in CSu,Sv,Sw

M (q(y, z|x)) implies that (R0, R0, R0+R1, R0+

R2, R0 + R1 + R2, R0 + R1 + R2) is in CSu,Sv,Sw

M−I (q(y, z|x)). If CSu,Sv,Sw

M−I (q(y, z|x)) is a subset of
LI(q(y, z|x)), the latter point would belong to LI(q(y, z|x)). Therefore (R0, R1, R2) belongs to
L (q(y, z|x)).

7This is because the closed convex set LI(q(y, z|x)) can be expressed as the intersection of
its supporting half-spaces, i.e. (R1, R2, ..., R6) ∈ LI(q(y, z|x)) if and only if for any λ1, λ2, ...,

λ6,
∑6
i=1 λiRi is less than or equal to the maximum of

∑6
i=1 λiR

′
i over triples (R′1, R

′
2, ..., R

′
6) in

LI(q(y, z|x)). Thus CSu,Sv,Sw

M−I (q(y, z|x)) is a subset of LI(q(y, z|x)) if and only if the maximum

of
∑6
i=1 λiR

′
i over triples (R′1, R

′
2, ..., R

′
6) in CSu,Sv,Sw

M−I (q(y, z|x)) is less than or equal to the same

maximum over LI(q(y, z|x)).
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A supporting hyperplane of CSu,Sv ,Sw

M−I (q(y, z|x)) is identified with constants λ1, λ2,

..., λ6 and the maximum of
∑6

i=1 λiR
′
i over triples (R′1, R

′
2, ..., R

′
6) in CSu,Sv ,Sw

M−I (q(y, z|x)).
We must have λi ≥ 0 for i = 1, 2, ..., 6, since if λi is negative, Ri can be made to con-
verge to −∞ causing

∑6
i=1 λiR

′
i to converge to ∞, and hence not finite. Our goal

is therefore to show that for any non-negative values of λi (i = 1, 2, ..., 6), the maxi-
mum of

∑6
i=1 λiR

′
i over CSu,Sv ,Sw

M−I (q(y, z|x)) is less than or equal to the corresponding
maximum over LI(q(y, z|x)).

First consider the case where λ5 = λ6 = 0. Let (R1, R2, ..., R6) be a point in
CSu,Sv ,Sw

M−I (q(y, z|x)) where the maximum of
∑6

i=1 λiR
′
i over CSu,Sv ,Sw

M−I (q(y, z|x)) is ob-
tained. Corresponding to (R1, R2, ..., R6) is at least one joint distribution
p0(u, v, w, x, y, z) = p0(u, v, w, x)q(y, z|x) on U, V,W,X, Y, Z where |U| ≤ Su, |V| ≤ Sv
and |W| ≤ Sw, and furthermore the following equalities are satisfied: R1 ≤ I(W ;Y ),
R2 ≤ I(W ;Z), R3 ≤ I(UW ;Y ), ... etc. The maximum of

∑6
i=1 λiR

′
i =

∑4
i=1 λiR

′
i

over CSu,Sv ,Sw

M−I (q(y, z|x)) must be then equal to λ1 · I(W ;Y ) + λ2 · I(W ;Z) + λ3 ·
I(UW ;Y ) + λ4 · I(VW ;Z). Let Ũ = Ṽ = X. Clearly I(UW ;Y ) ≤ I(ŨW ;Y ) and

I(VW ;Z) ≤ I(Ṽ W ;Z). Hence the maximum of
∑6

i=1 λiR
′
i over CSu,Sv ,Sw

M−I (q(y, z|x))

would be less than or equal to the maximum of
∑6

i=1 λiR
′
i over

C|X |,|X |,Sw

M−I (q(y, z|x)). The latter is itself less than or equal to the maximum of
∑6

i=1 λiR
′
i

over C|X |,|X |,|X |+4
M−I (q(y, z|x)) by Lemma 4. This implies the desired result when λ5 =

λ6 = 0.
Next consider the case when either λ5 > 0 or λ6 > 0, or both: we proceed by

proving the following three equations:

max
(R′1,...,R

′
6)∈CSu,Sv,Sw

M−I (q(y,z|x))

6∑
i=1

λiR
′
i ≤ max

(R′1,...,R
′
6)∈C|X|,Sv,Sw

M−I (q(y,z|x))

6∑
i=1

λiR
′
i (7.6)

max
(R′1,...,R

′
6)∈C|X|,Sv,Sw

M−I (q(y,z|x))

6∑
i=1

λiR
′
i ≤ max

(R′1,...,R
′
6)∈C|X|,|X|,Sw

M−I (q(y,z|x))

6∑
i=1

λiR
′
i (7.7)

max
(R′1,...,R

′
6)∈C|X|,|X|,Sw

M−I (q(y,z|x))

6∑
i=1

λiR
′
i ≤ max

(R′1,...,R
′
6)∈C|X|,|X|,|X|+4

M−I (q(y,z|x))

6∑
i=1

λiR
′
i (7.8)

The proof for equation (7.6) is provided in Appendix I of section 7.3.2. The proof for
equation (7.7) is similar. Equation (7.8) follows from Lemma 4.

�
Proof of Lemma 4: We begin by proving that the region CSu,Sv ,Sw

M−I (q(y, z|x)) is
closed. Since the ranges of all the involving random variables are limited and the
conditional mutual information function is continuous, the set of admissible joint
probability distributions p(u, v, w, x, y, z) where I(UVW ;Y Z|X) = 0 and p(y, z|x) =
q(y, z|x) will be a compact set (when viewed as a subset of the Euclidean space).
The fact that mutual information function is continuous implies that the union over
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random variables U, V,W,X, Y, Z satisfying the cardinality bounds, having the joint
distribution p(u, v, w, x, y, z) = p(u, v, w, x)q(y, z|x), of the six-tuples(

I(W ;Y ), I(W ;Z), I(UW ;Y ), I(VW ;Z),

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + I(W ;Y ),

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + I(W ;Z)

)
is a compact set. Since the down-set of any compact set in R6 is closed8, the region
CSu,Sv ,Sw

M−I (q(y, z|x)) must be closed.

Next we prove that CSu,Sv ,Sw

M−I (q(y, z|x)) is a subset of CSu,Sv ,|X |+4
M−I (q(y, z|x)). Take an

arbitrary point (R1, R2, ..., R6) in CSu,Sv ,Sw

M−I (q(y, z|x)). Corresponding to (R1, ..., R6)
is at least one joint distribution p0(u, v, w, x, y, z) = p0(u, v, w, x)q(y, z|x) on
U, V,W,X, Y, Z where |U| ≤ Su, |V| ≤ Sv and |W| ≤ Sw, and furthermore the
following equations are satisfied: R1 ≤ I(W ;Y ), R2 ≤ I(W ;Z), R3 ≤ I(UW ;Y ),
... etc. Without loss of generality, assume that p(W = w) > 0 for all w. We define

Ũ , Ṽ and W̃ on the same alphabet as U , V and W but will however ensure that
p(W̃ = w) 6= 0 for at most |X |+ 4 values of w. Random variables Ũ , Ṽ and W̃ that
we will define are jointly distributed with X, Y, Z in a way that

The Markov chain Ũ Ṽ W̃X → X → Y Z holds;

p(Ũ = u, Ṽ = v,X = x|W̃ = w) = p(U = u, V = v,X = x|W = w); (7.9)

I(W̃ ;Y ) = I(W ;Y );

I(W̃ ;Z) = I(W ;Z);

I(Ũ ;Y |W̃ ) = I(U ;Y |W );

I(Ṽ ;Z|W̃ ) = I(V ;Z|W );

I(Ũ ; Ṽ |W̃ ) ≤ I(U ;V |W ).

Please note that proving the existence of random variables Ũ , Ṽ and W̃ with the above
properties implies that the point (R1, R2, ..., R6) belongs to CSu,Sv ,|X |+4

M−I (q(y, z|x)).

Given that we would like impose the equation p(Ũ = u, Ṽ = v,X = x|W̃ = w) =

p(U = u, V = v,X = x|W = w), defining the marginal distribution of p(W̃ = w)

would completely characterize the joint distribution p(Ũ = u, Ṽ = v, W̃ = w,X = x).

8In order to show this, let A ⊂ R6 be a compact set. Take a convergent sequence of points v1, v2,
... in ∆(A). We would like to show that v = limi→∞ vi is in ∆(A). Corresponding to vi is a point
wi in A where wi ≥ vi. Since A is compact the sequence wi has a convergent subsequence, the limit
point of which belongs to A. Let w denote this limit point. Clearly w ≥ v, hence v is in ∆(A).
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In order to define the elements of the vector w 7→ p(W̃ = w), we first identify the
properties that this vector needs to satisfy, and then pin down an appropriate vector
that has only |X |+ 4 non-zero elements.

To make sure that the elements of the vector w 7→ p(W̃ = w) correspond to a
probability distribution, we impose the following two constraints:

p(W̃ = w) ≥ 0 ∀w; (7.10)∑
w

p(W̃ = w) = 1. (7.11)

Since we require that p(X = x|W̃ = w) = p(X = x|W = w), p(W̃ = w) must also
satisfy the consistency equation∑

w

p(X = x|W = w)p(W = w) = p(X = x) = (7.12)

∑
w

p(X = x|W = w)p(W̃ = w) ∀x.

As long as these three equations hold, the joint distribution of p(Ũ = u, Ṽ = v, W̃ =
w,X = x) will be well defined. Equation (7.12) seems to be imposing |X | equations

on p(W̃ = w). But in fact, one of these equations is a linear combination of the rest
and equation (7.11); thus it is redundant. This is because

∑
x p(X = x|W = w) = 1.

Therefore the equation (7.12) imposes |X | − 1 constraints on p(W̃ = w).

Next, in order to enforce I(W̃ ;Y ) = I(W ;Y ), we require∑
w

p(W̃ = w)H(Y |W̃ = w) =
∑
w

p(W = w)H(Y |W = w). (7.13)

Please note that because of equation (7.9), H(Y |W̃ = w) = H(Y |W = w). Similarly

in order to enforce I(W̃ ;Z) = I(W ;Z), we require∑
w

p(W̃ = w)H(Z|W̃ = w) =
∑
w

p(W = w)H(Z|W = w). (7.14)

For I(Ũ ;Y |W̃ ) = I(U ;Y |W ) and I(Ṽ ;Z|W̃ ) = I(V ;Z|W ), we require∑
w

p(W̃ = w)I(Ũ ;Y |W̃ = w) =
∑
w

p(W = w)I(U ;Y |W = w), (7.15)

and ∑
w

p(W̃ = w)I(Ṽ ;Z|W̃ = w) =
∑
w

p(W = w)I(V ;Z|W = w). (7.16)
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Please note that because of equation (7.9), I(Ũ ;Y |W̃ = w) = I(U ;Y |W = w) and

I(Ṽ ;Z|W̃ = w) = I(V ;Z|W = w).

In order to enforce I(Ũ ; Ṽ |W̃ ) ≤ I(U ;V |W ), we require∑
w

p(W̃ = w)I(Ũ ; Ṽ |W̃ = w) ≤
∑
w

p(W = w)I(U ;V |W = w). (7.17)

Because of equation (7.9), I(Ũ ; Ṽ |W̃ = w) = I(U ;V |W = w).
The rest of the proof is based on the technique of Fenchel to strengthen the

Carathéodory theorem. The region formed by equations (7.10), (7.11), (7.12), (7.13),
(7.14), (7.15) and (7.16) contains the vector w 7→ p(W = w). The vector w 7→
p(W = w) further lies in the half space defined by equation (7.17). We can write the
vector w 7→ p(W = w) as the convex combination of extreme points of the region
formed by equations (7.10), (7.11), (7.12), (7.13), (7.14), (7.15) and (7.16). Since
w 7→ p(W = w) is in the half space, it must be the case that at least one of these
extreme points satisfies equation (7.17). Any such extreme point can have at most
|X | + 4 non-negative elements. This is because any extreme point must satisfy with
equality at least |W| of the equations (7.10), (7.11), (7.12), (7.13), (7.14), (7.15) and
(7.16). The number of equations that do not enforce one of the elements of the vector

w 7→ p(W̃ = w) to zero is |X | + 4. Therefore at least |W| − |X | − 4 coordinates of
an extreme point must be zero. Hence the number of non-zero elements is at most
|X |+ 4.

It remains to prove that the last part of Lemma 4 is true, i.e. that

CSu,Sv ,|X |+4
M−I (q(y, z|x))

is convex. Since CSu,Sv ,Sw

M−I (q(y, z|x)) is a subset of CSu,Sv ,|X |+4
M−I (q(y, z|x)), it suffices to

show that
⋃
Sw≥0 C

Su,Sv ,Sw

M−I (q(y, z|x)) is convex. Take two arbitrary points (R1, R2, ..., R6)

and (R̃1, R̃2, ..., R̃6) in
⋃
Sw≥0 C

Su,Sv ,Sw

M−I (q(y, z|x)). Corresponding to (R1, ..., R6) and

(R̃1, ..., R̃6) are joint distributions p0(u, v, w, x, y, z) = p0(u, v, w, x)q(y, z|x) on

U, V,W,X, Y, Z, and p0(ũ, ṽ, w̃, x̃, ỹ, z̃) = p0(ũ, ṽ, w̃, x̃)q(ỹ, z̃|x̃) on Ũ , Ṽ , W̃ , X̃, Ỹ , Z̃,

where |U| = |Ũ | = Su, |V| = |Ṽ| = Sv, and furthermore the following equations

are satisfied: R1 ≤ I(W ;Y ), R2 ≤ I(W ;Z), R3 ≤ I(UW ;Y ), ..., R̃1 ≤ I(W̃ ; Ỹ ),

R̃2 ≤ I(W̃ ; Z̃), R̃3 ≤ I(ŨW̃ ; Ỹ ),...
Without loss of generality we can assume that

(Ũ , Ṽ , W̃ , X̃, Ỹ , Z̃)

and
(U, V,W,X, Y, Z)

are independent. Let Q be a uniform binary random variable independent of all previ-
ously defined random variables. Let (Û , V̂ , Ŵ , X̂, Ŷ , Ẑ) be equal to (U, V,WQ,X, Y, Z)
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when Q = 0, and equal to (Ũ , Ṽ , W̃Q, X̃, Ỹ , Z̃) when Q = 1. One can verify that

p(Ŷ = y, Ẑ = z|X̂ = x) = q(Ŷ = y, Ẑ = z|X̂ = x), I(Û V̂ Ŵ ; Ŷ Ẑ|X̂) = 0, and
furthermore

I(Ŵ ; Ŷ ) ≥ 1

2
I(W ;Y ) +

1

2
I(W̃ ; Ỹ );

I(Ŵ ; Ẑ) ≥ 1

2
I(W ;Z) +

1

2
I(W̃ ; Z̃);

I(ÛŴ ; Ŷ ) ≥ 1

2
I(UW ;Y ) +

1

2
I(ŨW̃ ; Ỹ );

· · · .

Hence (1
2
R1 + 1

2
R̃1,

1
2
R2 + 1

2
R̃2, ...,

1
2
R6 + 1

2
R̃6) belongs to

⋃
Sw≥0 C

Su,Sv ,Sw

M−I (q(y, z|x)).
Thus⋃
Sw≥0 C

Su,Sv ,Sw

M−I (q(y, z|x)) = CSu,Sv ,|X |+4
M−I (q(y, z|x)) is convex.

�
Proof of Lemma 5: The equation H(X̂) = H(X) + εHL(X) − E

[
r
(
ε · E[L|X]

)]
where r(x) = (1 + x) log(1 + x) is true because:

H(X̂) = −
∑
x̂

pε(x̂) log pε(x̂)

= −
∑
x̂

p0(x̂)
(
1 + ε · E[L|X = x̂]

)
· log

(
p0(x̂) ·

(
1 + ε · E[L|X = x̂]

))
= −

∑
x̂

p0(x̂)
(
1 + ε · E[L|X = x̂]

)
·
[

log

(
p0(x̂)

)
+ log

(
1 + ε · E[L|X = x̂]

)]
= H(X)− ε

∑
x̂

p0(x̂)E[L|X = x̂] log

(
p0(x̂)

)
−

∑
x̂

p0(x̂)
(
1 + ε · E[L|X = x̂]

)
· log

(
1 + ε · E[L|X = x̂]

)
= H(X) + εHL(X)− E

[
r
(
ε · E[L|X]

)]
.

Next, note that r(0) = 0, ∂
∂x
r(x) = log(1 +x) + log(e) and ∂2

∂x2
r(x) = log(e)

1+x
. We have:

∂

∂ε
H(X̂) = HL(X)− E

[
E[L|X]{log(1 + ε · E[L|X]) + log e}

]
=

HL(X)− E
[
E[L|X] log(1 + ε · E[L|X])

]
,

where at ε = 0 is equal to HL(X).
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Figure 7.1: Plot of the convex function r(x) = (1 + x) log(1 + x) over the interval

[−1, 1]. Note that r(0) = 0, ∂
∂x
r(x) = log(1 + x) + log(e) and ∂2

∂x2
r(x) = log(e)

1+x
> 0.

Next, we have:

∂2

∂ε2
H(X̂) = − ∂

∂ε
E
[
E[L|X] log(1 + ε · E[L|X])

]
− E

[
E[L|X]

E[L|X]

1 + ε · E[L|X]
log e

]
= − log e · E

[ E[L|X]2

1 + ε · E[L|X]

]
On the other hand,

I(ε) =
∑
x

(
∂

∂ε
loge(pε(X̂ = x))

)2

pε(X̂ = x) =

∑
x

(
∂

∂ε
loge

(
p0(X = x) ·

(
1 + ε · E[L|X = x]

)))2

p0(X = x) ·
(
1 + ε · E[L|X = x]

)
=

∑
x

(
∂

∂ε
loge

(
1 + ε · E[L|X = x]

))2

p0(X = x) ·
(
1 + ε · E[L|X = x]

)
=

∑
x

(
E[L|X = x]

1 + ε · E[L|X = x]

)2

p0(X = x) ·
(
1 + ε · E[L|X = x]

)
=

∑
x

E[L|X = x]2

1 + ε · E[L|X = x]
p0(X = x) = E

[ E[L|X]2

1 + ε · E[L|X]

]
.

�
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7.3.2 Appendix

Appendix I

In this appendix we prove equation (7.6) assuming that λ5 > 0 or λ6 > 0, or both.
Let (R1, R2, ..., R6) be a point in CSu,Sv ,Sw

M−I (q(y, z|x)) where the maximum of
∑6

i=1 λiR
′
i

over CSu,Sv ,Sw

M−I (q(y, z|x)) is obtained.9 Corresponding to (R1, R2, ..., R6) is at least one
joint distribution p0(u, v, w, x, y, z) = p0(u, v, w, x)q(y, z|x) on U, V,W,X, Y, Z where
|U| ≤ Su, |V| ≤ Sv and |W| ≤ Sw, and furthermore the following inequalities are
satisfied: R1 ≤ I(W ;Y ), R2 ≤ I(W ;Z), R3 ≤ I(UW ;Y ), ... etc. Maximum of∑6

i=1 λiR
′
i over CSu,Sv ,Sw

M−I (q(y, z|x)) must be then equal to λ1 ·I(W ;Y )+λ2 ·I(W ;Z)+
λ3 ·I(UW ;Y )+λ4 ·I(VW ;Z)+λ5 ·

(
I(U ;Y |W )+I(V ;Z|W )−I(U ;V |W )+I(W ;Y )

)
+

λ6 ·
(
I(U ;Y |W )+I(V ;Z|W )−I(U ;V |W )+I(W ;Z)

)
. We would like to define random

variables Ũ , Ṽ , W̃ , X̃, Ỹ and Z̃ jointly distributed according to p(ũ, ṽ, w̃, x̃)q(ỹ, z̃|x̃),
and satisfying the following properties:

• λ1 · I(W ;Y ) +λ2 · I(W ;Z) +λ3 · I(UW ;Y ) +λ4 · I(VW ;Z) +λ5 · (I(U ;Y |W ) +
I(V ;Z|W )−I(U ;V |W )+I(W ;Y ))+λ6 ·(I(U ;Y |W )+I(V ;Z|W )−I(U ;V |W )+

I(W ;Z)) is less than or equal to λ1 · I(W̃ ; Ỹ ) + λ2 · I(W̃ ; Z̃) + λ3 · I(ŨW̃ ; Ỹ ) +

λ4 · I(Ṽ W̃ ; Z̃) + λ5 · (I(Ũ ; Ỹ |W̃ ) + I(Ṽ ; Z̃|W̃ ) − I(Ũ ; Ṽ |W̃ ) + I(W̃ ; Ỹ )) + λ6 ·
(I(Ũ ; Ỹ |W̃ ) + I(Ṽ ; Z̃|W̃ )− I(Ũ ; Ṽ |W̃ ) + I(W̃ ; Z̃)).

• |Ũ | = |X |.

• |Ṽ| = |V|.

• |W̃| = |W|.

Instead of finding Ũ that takes values in a set of size at most |X |, it however suffices

to find an appropriate Ũ such that for any w̃, the conditional distribution p(ũ|w̃) 6= 0
for at most |X | values of ũ. 10

We assume that random variables Ũ , Ṽ , W̃ , X̃, Ỹ and Z̃ are respectively defined
on the alphabets of U , V , W , X, Y and Z. Without loss of generality assume p(W =

w) > 0 for all w ∈ W . We assume that the joint distribution of W̃ , X̃, Ỹ , Z̃ is the

9Note that by Lemma 4, CSu,Sv,Sw

M−I (q(y, z|x)) is closed and furthermore
∑
i λiR

′
i is bounded from

above when λi ≥ 0. Hence maximum of
∑
i λiR

′
i over the region CSu,Sv,Sw

M−I (q(y, z|x)) is well defined.
10This is true because Marton’s inner bound depends only on the conditional distribution of Ũ

given W̃ , rather than the distribution of Ũ itself. More specifically, assume that we are given a
random variable Ũ such that for every w̃ ∈ W̃, there is a subset Aw̃ of the alphabet of Ũ satisfying
|Aw̃| = |X |, and p(Ũ = ũ|W̃ = w̃) = 0 if ũ /∈ Aw̃. Assume that Aw̃ = {aw̃,1, aw̃,2, aw̃,3, ..., aw̃,|X |}.
Define Ũ ′, a random variable taking values from the set {1, 2, 3, ..., |X |}, as follows: p(Ũ ′ = i|W̃ =

w̃, Ṽ = ṽ, X̃ = x̃) = p(Ũ = aw̃,i|W̃ = w̃, Ṽ = ṽ, X̃ = x̃). The alphabet of Ũ ′ is of size |X | and

furthermore I(Ũ ′; Ṽ |W̃ ) = I(Ũ ; Ṽ |W̃ ) and I(Ũ ′; Ỹ |W̃ ) = I(Ũ ; Ỹ |W̃ ).
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same as that of W,X, Y, Z. Therefore I(W ;Y ) = I(W̃ ; Ỹ ) and I(W ;Z) = I(W̃ ; Z̃).
We therefore need to define p(ũ, ṽ|w̃, x̃) such that

• For any w ∈ W , λ3 · I(U ;Y |W = w) + λ4 · I(V ;Z|W = w) + λ5 · (I(U ;Y |W =
w) + I(V ;Z|W = w)− I(U ;V |W = w)) + λ6 · (I(U ;Y |W = w) + I(V ;Z|W =

w)−I(U ;V |W = w)) is less than or equal to λ3·I(Ũ ; Ỹ |W̃ = w)+λ4·I(Ṽ ; Z̃|W̃ =

w)+λ5 ·(I(Ũ ; Ỹ |W̃ = w)+I(Ṽ ; Z̃|W̃ = w)−I(Ũ ; Ṽ |W̃ = w))+λ6 ·(I(Ũ ; Ỹ |W̃ =

w) + I(Ṽ ; Z̃|W̃ = w)− I(Ũ ; Ṽ |W̃ = w)).

• |Ṽ| = |V|.

• For any w, p(Ũ = u|W̃ = w) 6= 0 for at most |X | values of u.

The above statement holds since Lemma 3 of Section 7.1 holds.

Appendix II

In this appendix, we prove that the closure of CM(q(y, z|x)) is equal to the closure
of
⋃
Su,Sv ,Sw≥0 C

Su,Sv ,Sw

M (q(y, z|x)). In order to show this it suffices to show that any

triple (R0, R1, R2) in CM(q(y, z|x)) is a limit point of
⋃
Su,Sv ,Sw≥0 C

Su,Sv ,Sw

M (q(y, z|x)).
Since (R0, R1, R2) is in CM(q(y, z|x)), random variables U, V,W,X, Y and Z for which
equations (6.1), (6.2), (6.3) and (6.4) are satisfied, exist. First assume U, V,W are
discrete random variables taking values in {1, 2, 3, ...}. For any integer m, let Um, Vm
and Wm be truncated versions of U, V and W defined on {1, 2, 3, ...,m} as follows:
Um, Vm and Wm are jointly distributed according to p(Um = u, Vm = v,Wm = w) =
p(U=u,V=v,W=w)
p(U≤m,V≤m,W≤m)

for every u, v and w less than or equal to m. Further assume that

Xm, Ym and Zm are random variables defined on X , Y and Z where p(Ym = y, Zm =
z,Xm = x|Um = u, Vm = v,Wm = w) = p(Y = y, Z = z,X = x|U = u, V =
v,W = w) for every u, v and w less than or equal to m, and for every x, y and z.
Note that the joint distribution of Um, Vm,Wm, Xm, Ym and Zm converges to that of
U, V,W,X, Y and Z as m→∞. Therefore the mutual information terms I(Wm;Ym),
I(Wm;Zm), I(WmUm;Ym), ... (that define a region in Cm,m,mM (q(y, z|x))) converge to
the corresponding terms I(W ;Y ), I(W ;Z), I(WU ;Y ), ... Therefore (R0, R1, R2) is
a limit point of

⋃
Su,Sv ,Sw≥0 C

Su,Sv ,Sw

M (q(y, z|x)).
Next assume that some of the random variables U , V andW are continuous. Given

any positive q, one can quantize the continuous random variables to a precision q, and
get discrete random variables Uq, Vq and Wq. We have already established that any
point in the Marton’s inner bound region corresponding to Uq, Vq,Wq, X, Y, Z is a limit

point of
⋃
Su,Sv ,Sw≥0 C

Su,Sv ,Sw

M (q(y, z|x)). The joint distribution of Uq, Vq,Wq, X, Y, Z
converges to that of U, V,W,X, Y, Z as q converges to zero. Therefore the corre-
sponding mutual information terms I(Wq;Yq), I(Wq;Zq), I(WqUq;Yq), ... (that de-
fine a region in CM(q(y, z|x))) converge to the corresponding terms I(W ;Y ), I(W ;Z),
I(WU ;Y ),.... Therefore (R0, R1, R2) is a limit point of

⋃
Su,Sv ,Sw≥0 C

Su,Sv ,Sw

M (q(y, z|x)).
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Appendix III

In this appendix, we prove that C (q(y, z|x)) is equal to L (q(y, z|x)). Clearly
C (q(y, z|x)) is a subset of L (q(y, z|x)). Therefore we need to show that L (q(y, z|x)) ⊂
C (q(y, z|x)). Instead we show that LI(q(y, z|x)) ⊂ CI(q(y, z|x)).11 It suffices to prove
that CI(q(y, z|x)) is convex, and that for any λ1, λ2, ..., λ6, the maximum of

∑6
i=1 λiRi

over triples (R1, R2, ..., R6) in LI(q(y, z|x)), is less than or equal to the maximum of∑6
i=1 λiRi over triples (R1, R2, ..., R6) in CI(q(y, z|x)).
In order to show that CI(q(y, z|x)) is convex, we take two arbitrary points in

CI(q(y, z|x)). Corresponding to them are joint distributions p(u1, v1, w1, x1, y1, z1)
and p(u2, v2, w2, x2, y2, z2). Let Q be a uniform binary random variable independent of
all previously defined random variables, and let U = UQ, V = VQ, W = (WQ, Q), X =
XQ, Y = YQ and Z = ZQ. Clearly H(X|UVW ) = 0, and furthermore I(W ;Y ) ≥
1
2

(
I(W1;Y1) + I(W2;Y2)

)
, I(W ;Z) ≥ 1

2

(
I(W1;Z1) + I(W2;Z2)

)
, .... Random variable

W is not however defined on an alphabet of size |X | + 4. However, one can reduce
the cardinality of W using the Carathéodory theorem (as in the proof of part two of
Lemma 4) by fixing p(u, v, x, y, z|w) and changing the marginal distribution of W in
a way that at most |X |+ 4 elements get non-zero probability assigned to them. Since
we have preserved p(u, v, x, y, z|w) throughout the process, p(x|u, v, w) will remain to
belong to the set {0, 1} after reducing the cardinality of W .

Next, we need to show that for any λ1, λ2, ..., λ6, the maximum of
∑6

i=1 λiRi

over triples (R1, R2, ..., R6) in LI(q(y, z|x)), is less than or equal to the maximum
of
∑6

i=1 λiRi over triples (R1, R2, ..., R6) in CI(q(y, z|x)). As discussed in the proof
of theorem 10, without loss of generality we can assume λi is non-negative for i =
1, 2, ..., 6.

Take an arbitrary point (R1, R2, ..., R6) in LI(q(y, z|x)). By definition there exists
random variables U, V,W,X, Y and Z for which

6∑
i=1

λiRi ≤ λ1 · I(W ;Y ) + λ2 · I(W ;Z) + λ3 · I(UW ;Y ) + λ4 · I(VW ;Z)+ (7.18)

λ5 ·
(
I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + I(W ;Y )

)
+

λ6 ·
(
I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + I(W ;Z)

)
.

Fix p(u, v, w). The right hand side of equation (7.18) would then be a convex
function of p(x|u, v, w).12 Therefore its maximum occurs at the extreme points

11This is true because (R0, R1, R2) being in L (q(y, z|x)) implies that (R0, R0, R0 + R1, R0 +
R2, R0 + R1 + R2, R0 + R1 + R2) is in LI(q(y, z|x)). If LI(q(y, z|x))(q(y, z|x)) is a subset of
CI(q(y, z|x)), the latter point would belong to CI(q(y, z|x)). Therefore (R0, R1, R2) belongs to
C (q(y, z|x)).

12This is true because I(W ;Y ) is convex in the conditional distribution p(y|w); similarly
I(U ;Y |W = w) is convex for any fixed value of w. The term I(U ;V |W ) that appears with a
negative sign is constant since the joint distribution of p(u, v, w) is fixed.
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when p(x|u, v, w) ∈ {0, 1} whenever p(u, v, w) 6= 0. Therefore random variables

Û , V̂ , Ŵ , X̂, Ŷ and Ẑ exists for which

λ1 · I(W ;Y ) + λ2 · I(W ;Z) + ...

+ λ6 ·
(
I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + I(W ;Z)

)
≤

λ1 · I(Ŵ ; Ŷ ) + λ2 · I(Ŵ ; Ẑ) + ...

+ λ6 ·
(
I(Û ; Ŷ |Ŵ ) + I(V̂ ; Ẑ|Ŵ )− I(Û ; V̂ |Ŵ ) + I(Ŵ ; Ẑ)

)
and furthermore p(x̂|û, v̂, ŵ) ∈ {0, 1} for all x̂, û, v̂ and ŵ where p(û, v̂, ŵ) > 0.
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Chapter 8

Follow up results

In this chapter we report the subsequent research that was done along the direction
of computing Marton’s inner bound. We prove various results that help to restrict
the search space for computing the sum-rate for Marton’s inner bound. For binary
input broadcast channels, we show that the computation can be further simplified
if we assume that Marton’s inner bound and the recent outer bound of Nair and El
Gamal match at the given channel. These results are used to show that the inner
and the outer bound do not match for some broadcast channels, thus establishing a
conjecture of [45]. We also show that unlike in the Gaussian case, for a degraded
broadcast channel even without a common message, Marton’s coding scheme without
a superposition variable is in general insufficient for obtaining the capacity region.
We end this chapter by mentioning a few other results that were left off because they
did not concern the computation of Marton’s inner bound. We establish the capacity
region along certain directions and show that it coincides with Marton’s inner bound.
We show that the Nair-El Gamal outer bound can be made fully computable. Lastly,
we discuss an idea that may lead to a larger inner bound.

8.1 Definitions and Notation

In this section, we provide other definitions we need for the rest of the dissertation.
Given random variables K1, K2 ∈ {0, 1, 2, ..., k− 1} for a natural number k, K1 ⊕K2

denotes (K1 +K2) mod k.

Definition 20. [46] Let CNE(q(y, z|x)) denote the Nair-El Gamal outer bound on the
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channel q(y, z|x), defined as the set of non-negative rate triples (R0, R1, R2) satisfying

R0 ≤ min{I(W ;Y ), I(W ;Z)},
R0 +R1 ≤ I(UW ;Y ),

R0 +R2 ≤ I(VW ;Z),

R0 +R1 +R2 ≤ I(UW ;Y ) + I(V ;Z|UW ),

R0 +R1 +R2 ≤ I(VW ;Z) + I(U ;Y |VW ),

for some random variables (U, V,W,X, Y, Z) ∼ p(u)p(v)p(w|u, v)p(x|u, v, w)q(y, z|x).

Definition 21. [30] Let Cd1(q(y, z|x)) and Cd2(q(y, z|x)) denote the degraded message
set capacity regions, i.e. when R1 = 0 and R2 = 0, respectively. The capacity region
Cd1(q(y, z|x)) is the set of of non-negative rate pairs (R0, R2) satisfying

R0 ≤ I(W ;Y ),

R2 ≤ I(X;Z|W ),

R0 +R2 ≤ I(X;Z),

for some random variables (W,X, Y, Z) ∼ p(w, x)q(y, z|x). The capacity region
Cd2(q(y, z|x)) is defined similarly.

Definition 22. The input symbols x0 and x1 are said to be indistinguishable by the
channel if q(y|x0) = q(y|x1) for all y, and q(z|x0) = q(z|x1) for all z. A channel
q(y, z|x) is said to be irreducible if no two of its inputs symbols are indistinguishable
by the channel.

Definition 23. Let U = {u1, u2, ..., u|U|}, V = {v1, ..., v|V|} be finite sets, and ξ be
a deterministic mapping from U × V to X . One can represent the mapping by a
table having |U| rows and |V| columns; the rows are indexed by u1, u2, ...., u|U| and
the columns are indexed by v1, v2, ..., v|V|. In the cell (i, j), we write ξ(ui, vj), for the
symbol x that (ui, vj) is being mapped to. The profile of the ith row is defined to be a
vector of size |X | counting the number of occurrences of the elements of X in the ith

row. In other words if X = {x1, x2, ..., x|X |}, the kth element of the profile of the ith

row is the number of times that xk shows up in the ith row of the table. The profile
of the jth column is defined similarly. Let the profile of the table to be a vector of
size (|U| + |V|)|X | formed by concatenating the profile vectors of the rows and the
columns of the table. The profile vector of the mapping ξ is denoted by −→vξ .

8.2 On binary input broadcast channels

8.2.1 Statement of the result

In this section, we study binary input broadcast channels, that is when |X | = 2.
It therefore suffices to consider binary random variables U and V . The cardinality of
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W would be six and X can be taken to be a deterministic function of (U, V,W ). Still,
the region is hard to evaluate. We however demonstrate that the computation can be
greatly simplified if we make the extra assumption that CM(q(y, z|x)) and the recent
outer bound of Nair and El Gamal, CNE(q(y, z|x)), match at the given broadcast
channel q(y, z|x). We demonstrate this by computing the maximum of the sum rate
R1 +R2 over all triples (R0, R1, R2) in CM(q(y, z|x)). For simplicity, we assume that
for any y ∈ Y and z ∈ Z, p(Y = y|X = 0), p(Y = y|X = 1), p(Z = z|X = 0) and
p(Z = z|X = 1) are non-zero. This is a mild assumption since an arbitrarily small
perturbation of a broadcast channel would place it in this class.

Theorem 11. Take an arbitrary binary input broadcast channel q(y, z|x) such that
for all y ∈ Y and z ∈ Z, q(Y = y|X = 0), q(Y = y|X = 1), q(Z = z|X = 0) and
q(Z = z|X = 1) are non-zero. Assuming that CM(q(y, z|x)) = CNE(q(y, z|x)), the
maximum of the sum rate R1 + R2 over triples (R0, R1, R2) in the Marton’s inner
bound is equal to

max

(
min
γ∈[0,1]

(
max

p(wx)q(y, z|x)
|W| = 2

γI(W ;Y ) + (1− γ)I(W ;Z)+

∑
w

p(w)T (p(X = 1|W = w))

)
,

max
p(u, v)p(x|uv)q(y, z|x)
|U| = |V| = 2, I(U ;V ) = 0, H(X|UV ) = 0

I(U ;Y ) + I(V ;Z)

)
, (8.1)

where T (p) = max
{
I(X;Y ), I(X;Z)|P (X = 1) = p

}
.

Remark 3. The expression given in equation (8.1) is always a lower bound on the
maximum of the sum rate R1 + R2 over triples (R0, R1, R2) in the Marton’s inner
bound whether CM(q(y, z|x)) is equal to CNE(q(y, z|x)) or not.

Corollary 2. Take an arbitrary binary input broadcast channel q(y, z|x) such that
for all y ∈ Y and z ∈ Z, q(Y = y|X = 0), q(Y = y|X = 1), q(Z = z|X = 0) and
q(Z = z|X = 1) are non-zero. If the expression of equation (8.1) turns out to be
strictly less than the maximum of the sum rate R1 + R2 over triples (R0, R1, R2) in
CNE(q(y, z|x)) (which is given in [45]), it will serve as evidence for CM(q(y, z|x)) 6=
CNE(q(y, z|x)). The maximum of the sum rate R1 + R2 over triples (R0, R1, R2) in
CNE(q(y, z|x)) is known to be [45]

max
p(u, v, x)q(y, z|x)

min
(
I(U ;Y ) + I(V ;Z), I(U ;Y ) + I(V ;Z|U), I(V ;Z) + I(U ;Y |V )

)
,

which can be written as (see Bound 4 in [45])

max
p(u, v, x)q(y, z|x)
|U| = |V| = 3,
I(U ;V |X) = 0

min
(
I(U ;Y ) + I(V ;Z), I(U ;Y ) + I(X;Z|U), I(V ;Z) + I(X;Y |V )

)
.



129

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

β

M
ax

im
um

 o
f R

1+
R

2

Sum rate curves for α=0.01

Figure 8.1: Red curve (top curve): sum rate for CNE(q(y, z|x)); Blue curve (bottom
curve): sum rate for CM(q(y, z|x)) assuming CNE(q(y, z|x)) = CM(q(y, z|x)).

There are examples for which the expression of equation (8.1) turns out to be strictly
less than the maximum of the sum rate R1 + R2 over triples (R0, R1, R2) in CNE.
For instance given any two positive reals α and β in the interval (0, 1), consider the
broadcast channel for which |X | = |Y| = |Z| = 2, p(Y = 0|X = 0) = α, p(Y = 0|X =
1) = β, p(Z = 0|X = 0) = 1 − β, p(Z = 0|X = 1) = 1 − α. Assuming α = 0.01,
Figure 8.1 plots maximum of the sum rate for CNE(q(y, z|x)), and the maximum of
the sum rate for CM(q(y, z|x)) (assuming that CNE(q(y, z|x)) = CM(q(y, z|x))) as a
function of β. Where the two curves do not match, Nair and El Gamal’s outer bound
and Marton’s inner bound cannot be equal for the corresponding broadcast channel.

8.2.2 Proofs

Proof of Theorem 11: The maximum of the sum rateR1+R2 over triples (R0, R1, R2)
in CM(q(y, z|x)) is equal to

max
p(u, v, w, x)q(y, z|x)
|U| = 2, |V| = 2
H(X|UVW ) = 0

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + min(I(W ;Y ), I(W ;Z)).

(8.2)
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The proof consists of two parts: first we show that the above expression is equal to
the following expression:

max

(
max

p(wx)q(y, z|x)
min

(
I(W ;Y ), I(W ;Z)

)
+
∑
w

p(w)T (p(X = 1|W = w)), (8.3)

max
p(u, v)p(x|uv)q(y, z|x)
|U| = |V| = 2, I(U ;V ) = 0, H(X|UV ) = 0

I(U ;Y ) + I(V ;Z)

)
.

Next, we show that the expression of equation 8.3 is equal to the expression given in
Theorem 11.

The expression of equation (8.2) is greater than or equal to the expression of
equation (8.3).1 For the first part of the proof we thus need to prove that the ex-
pression of equation (8.2) is less than or equal to the expression of equation (8.3).
Take the joint distribution p(u, v, w, x) that maximizes the expression of equation

(8.2). Let Ũ = (U,W ) and Ṽ = (V,W ). The maximum of the sum rate R1 + R2

over triples (R0, R1, R2) in CNE(q(y, z|x)) is greater than or equal to min
(
I(Ũ ;Y ) +

I(Ṽ ;Z), I(Ũ ;Y ) + I(Ṽ ;Z|Ũ), I(Ṽ ;Z) + I(Ũ ;Y |Ṽ )
)

(see Bound 3 in [45]). Since
CNE(q(y, z|x)) = CM(q(y, z|x)), we must have:

min
(
I(UW ;Y )+I(VW ;Z), I(UW ;Y )+I(VW ;Z|UW ), I(UW ;Z)+I(UW ;Y |VW )

)
≤

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + min(I(W ;Y ), I(W ;Z)).

Or alternatively

min

(
max(I(W ;Y ), I(W ;Z)) + I(U ;V |W ),

I(W ;Y )−min(I(W ;Y ), I(W ;Z)) + I(U ;V |WZ),

I(W ;Z)−min(I(W ;Y ), I(W ;Z)) + I(U ;V |WY )

)
≤ 0.

Since each expression is also greater than or equal to zero, at least one of the three
terms must be equal to zero. Therefore at least one of the following must hold:

1. I(W ;Y ) = I(W ;Z) = 0 and I(U ;V |W ) = 0,

2. I(U ;V |WY ) = 0,

3. I(U ;V |WZ) = 0.

1Consider the following special cases: 1) given W = w, let (U, V ) = (X, constant) if I(X;Y |W =
w) ≥ I(X;Z|W = w), and (U, V ) = (constant,X) otherwise. This would produce the first part of
the expression given in Theorem 11. 2) Assume that W is constant, and U is independent of V .
This would produce the second part of the expression given in Theorem 11.
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If (1) holds, I(U ;Y |W ) + I(V ;Z|W ) − I(U ;V |W ) + min(I(W ;Y ), I(W ;Z)) equals
I(U ;Y |W ) + I(V ;Z|W ). Suppose maxw:p(w)>0 I(U ;Y |W = w) + I(V ;Z|W = w)
occurs at some w∗. Clearly I(U ;Y |W )+I(V ;Z|W ) ≤ I(U ;Y |W = w∗)+I(V ;Z|W =

w∗). Let Û , V̂ , X̂, Ŷ and Ẑ be distributed according to p(u, v, x, y, z|w∗). I(Û ; V̂ ) =
I(U ;V |W = w∗) = 0. Therefore

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + min(I(W ;Y ), I(W ;Z))

is less than or equal to

max
p(u, v)p(x|uv)q(y, z|x)
|U| = |V| = 2, I(U ;V ) = 0, H(X|UV ) = 0

I(U ;Y ) + I(V ;Z).

Next assume (2) or (3) holds, i.e. I(U ;V |WY ) = 0 or I(U ;V |WZ) = 0. We
show in Appendix of section 8.2.3 that for any value of w where p(w) > 0, either
I(U ;V |W = w, Y ) = 0 or I(U ;V |W = w,Z) = 0 imply that I(U ;Y |W = w) +
I(V ;Z|W = w)− I(U ;V |W = w) ≤ T (p(X = 1|W = w)). Therefore

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + min(I(W ;Y ), I(W ;Z)) ≤

min(I(W ;Y ), I(W ;Z)) +
∑
w

p(w)T (p(X = 1|W = w)).

This in turn implies that I(U ;Y |W )+I(V ;Z|W )−I(U ;V |W )+min(I(W ;Y ), I(W ;Z))
is less than or equal to

max
p(w, x)q(y, z|x)

min(I(W ;Y ), I(W ;Z)) +
∑
w

p(w)T (p(X = 1|W = w)).

This completes the first part of the proof.
Next, we would like to show that the expression of equation (8.3) is equal to the

the expression given in Theorem 11. In order to show this, we prove that

max
p(w, x)q(y, z|x)

min(I(W ;Y ), I(W ;Z)) +
∑
w

p(w)T (p(X = 1|W = w)) (8.4)

is equal to

min
γ∈[0,1]

(
max

p(wx)q(y, z|x)
|W| = 2

γI(W ;Y ) + (1− γ)I(W ;Z) +
∑
w

p(w)T (p(X = 1|W = w))
)
.

(8.5)
The expression given in equation (8.4) can be written as

max
p(w, x)q(y, z|x)

min

(
I(W ;Y ) +

∑
w

p(w)T (p(X = 1|W = w)),

I(W ;Z) +
∑
w

p(w)T (p(X = 1|W = w))

)
.
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This expression can be expressed as

min
γ∈[0,1]

(
max

p(wx)q(y, z|x)
γI(W ;Y ) + (1− γ)I(W ;Z) +

∑
w

p(w)T (p(X = 1|W = w))
)
.

It remains to prove the cardinality bound of two on W . This is done using the
strengthened Carathéodory theorem of Fenchel. Take an arbitrary p(w, x)q(y, z|x).

The vector w → p(W = w) belongs to the set of vectors w → p(W̃ = w) satisfying the

constraints
∑

w p(W̃ = w) = 1, p(W̃ = w) ≥ 0 and p(X = 1) =
∑

w p(X = 1|W =

w)p(W̃ = w). The first two constraints ensure that w → p(W̃ = w) corresponds to a
probability distribution, and the third constraint ensures that one can define random
variable W̃ , jointly distributed with X, Y and Z according to p(w̃, x)q(y, z|x) and

further satisfying p(X = x|W̃ = w) = p(X = x|W = w). Since w → p(W = w)
belongs to the above set, it can be written as the convex combination of some of the
extreme points of this set. The expression

∑
w[−(1− γ)H(Z|W = w)− γH(Y |W =

w) + T (p(X = 1|W = w))]p(W̃ = w) is linear in p(W̃ = w), therefore this expression
for w → p(W = w) is less than or equal to the corresponding expression for at least one
of these extreme points. On the other hand, every extreme point of the set of vectors
w → p(W̃ = w) satisfying the constraints

∑
w p(W̃ = w) = 1, p(W̃ = w) ≥ 0 and

p(X = 1) =
∑

w p(X = 1|W = w)p(W̃ = w) satisfies the property that p(W̃ = w) 6= 0
for at most two values of w ∈ W . Thus a cardinality bound of two is established.

�

8.2.3 Appendix

In this Appendix, we complete the proof of theorem 11 by showing that given
any random variables U, V,W,X, Y and Z where UVW → X → Y Z holds, U and V
are binary, H(X|UVW ) is zero, the transition matrices PY |X and PZ|X have positive
elements, and for any value of w where p(w) > 0, either I(U ;V |W = w, Y ) = 0 or
I(U ;V |W = w,Z) = 0 holds, the following inequality is true:

I(U ;Y |W = w) + I(V ;Z|W = w)− I(U ;V |W = w) ≤ T (p(X = 1|W = w)).

We assume I(U ;V |W = w, Y ) = 0 (the proof for the case I(U ;V |W = w,Z) = 0
is similar). First consider the case in which the individual capacity CPY |X is zero.
We will then have I(U ;Y |W = w) = 0 and T (p(X = 1|W = w)) = I(X;Z|W =
w) ≥ I(V ;Z|W = w)− I(U ;V |W = w). Therefore the inequality holds in this case.
Assume therefore that CPY |X is non-zero.

It suffices to prove the following proposition:
Proposition: For any random variables U, V,X, Y and Z satisfying

• UV → X → Y Z,
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• H(X|UV ) = 0,

• |U| = |V| = |X | = 2,

• for all y ∈ Y , p(Y = y|X = 0) and p(Y = y|X = 1) are non-zero,

• CPY |X 6= 0,

• I(U ;V |Y ) = 0,

one of the following two cases must be true: (1) at least one of the random variables
X, U or V is constant, (2) Either U = X or U = 1−X or V = X or V = 1−X.

Proof: Assume that neither (1) nor (2) holds. Since H(X|UV ) = 0, there are 24

possible descriptions for p(x|uv), some of which are ruled out because neither (1) nor
(2) holds. In the following we prove that X = U ⊕ V and X = U ∧ V can not hold.
The proof for other cases is essentially the same.

Since CPY |X 6= 0 implies that the transition matrix PY |X has linearly independent
rows. This implies the existence of y1, y2 ∈ Y for which p(X = 1|Y = y1) 6= p(X =
1|Y = y2).2 Furthermore since X is not constant, and p(Y = y1|X = 0), p(Y =
y1|X = 1), p(Y = y2|X = 0) and p(Y = y2|X = 1) are all non-zero, both p(X = 1|Y =
y1) and p(X = 1|Y = y2) are in the open interval (0, 1). Note that I(U ;V |Y ) = 0
implies that I(U ;V |Y = y1) = 0 and I(U ;V |Y = y2) = 0.

Let ai,j = p(U = i, V = j) for i, j ∈ {0, 1}. First assume that X = U ⊕ V . We
have

• p(u = 0, v = 0|y = yi) = a0,0
a0,0+a1,1

p(X = 0|Y = yi),

• p(u = 0, v = 1|y = yi) = a0,1
a0,1+a1,0

p(X = 1|Y = yi),

• p(u = 1, v = 0|y = yi) = a1,0
a0,1+a1,0

p(X = 1|Y = yi),

• p(u = 1, v = 1|y = yi) = a1,1
a0,0+a1,1

p(X = 0|Y = yi).

Therefore I(U ;V |Y = yi) = 0 for i = 1, 2 implies that

p(u = 1, v = 1|y = yi)× p(u = 0, v = 0|y = yi) =

p(u = 0, v = 1|y = yi)× p(u = 1, v = 0|y = yi).

2If this is not the case we have p(X = 1|Y = y1) = p(X = 1|Y = y2) for all y1, y2 ∈ Y. This
would imply that X and Y are independent. Since X is not constant, independence of X and Y
implies that P (Y = y|X = 1) = p(Y = y|X = 0) for all y ∈ Y. Therefore the transition matrix
PY |X has linearly dependent rows. Hence I(X;Y ) = 0 for all p(x). Therefore CPY |X = 0 which is a

contradiction.
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Therefore

a0,0a1,1

(a0,0 + a1,1)2
p(X = 0|Y = yi)

2 =
a0,1a1,0

(a0,1 + a1,0)2
p(X = 1|Y = yi)

2,

or alternatively
√
a0,0a1,1

a0,0 + a1,1

p(X = 0|Y = yi) =

√
a1,0a0,1

a1,0 + a0,1

p(X = 1|Y = yi). (8.6)

Since X is not deterministic, P (X = 0) = a0,0 + a1,1 and P (X = 1) = a1,0 + a0,1 are
non-zero. Next, if either of a0,0 or a1,1 are zero, it implies that a1,0 or a0,1 is zero. But
this implies that either U or V are constant random variables which is a contradiction.
Hence

√
a0,0a1,1

a0,0+a1,1
and

√
a1,0a0,1

a1,0+a0,1
are non-zero. But then equation (8.6) uniquely specifies

p(X = 1|Y = yi), implying that p(X = 1|Y = y1) = p(X = 1|Y = y2) which is again
a contradiction.

Next assume that X = U ∧ V . We have:

• p(u = 0, v = 0|y = yi) = a0,0
a0,0+a0,1+a1,0

p(X = 0|Y = yi),

• p(u = 0, v = 1|y = yi) = a0,1
a0,0+a0,1+a1,0

p(X = 0|Y = yi),

• p(u = 1, v = 0|y = yi) = a1,0
a0,0+a0,1+a1,0

p(X = 0|Y = yi),

• p(u = 1, v = 1|y = yi) = p(X = 1|Y = yi).

Note that P (X = 0) = a0,0 + a0,1 + a1,0 is non-zero. Independence of U and V given
Y = yi implies that

p(u = 1, v = 1|y = yi)× p(u = 0, v = 0|y = yi) =

p(u = 0, v = 1|y = yi)× p(u = 1, v = 0|y = yi).

Therefore
a0,0

a0,0 + a0,1 + a1,0

p(X = 0|Y = yi)p(X = 1|Y = yi) =

a1,0a0,1

(a0,0 + a0,1 + a1,0)2
p(X = 0|Y = yi)

2,

or alternatively

a0,0 · p(X = 1|Y = yi) =
a1,0a0,1

a0,0 + a0,1 + a1,0

p(X = 0|Y = yi), (8.7)

If a0,0 is zero, either a1,0 or a0,1 must also be zero, but this implies that either U
or V are constant random variables which is a contradiction. Therefore a0,0 is non-
zero. But then equation (8.7) uniquely specifies p(X = 1|Y = yi), implying that
p(X = 1|Y = y1) = p(X = 1|Y = y2) which is again a contradiction.
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8.3 Computing the sum-rate for Marton’s Inner

Bound

8.3.1 Statement of the result

In this section, we prove a result that helps to restrict the search space for com-
puting the sum-rate for Marton’s inner bound.

Computing the sum-rate for Marton’s inner bound is closely related to the follow-
ing maximization problem for λ ∈ [0, 1]: For any λ ∈ [0, 1], let

T (λ) = max
p(u,v,w,x)

(
λI(W ;Y ) + (1− λ)I(W ;Z)+

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )
)
.

Observation 1. The maximum of the sum-rate for Marton’s inner bound is equal to

min
λ∈[0,1]

T (λ).

The main theorem of this section restricts the search space for computing T (λ).
In this section, we only deal with broadcast channels q(y, z|x) with strictly positive
transition matrices, i.e. when q(y|x) > 0, q(z|x) > 0 for all x, y, z. In order to evaluate
T (λ) when q(y|x) or q(z|x) become zero for some y or z, one can use the continuity of
T (λ) in q(y, z|x) and take the limit of T (λ) for a sequence of channels with positive
entries converging to the desired channel. The reason for dealing with this class of
broadcast channels should become clear by the following lemma.

Lemma 6. Take an arbitrary broadcast channel q(y, z|x) with strictly positive tran-
sition matrices (i.e. q(y|x) > 0, q(z|x) > 0 for all x, y, z). Let p(u, v, w, x) be an ar-
bitrary joint distribution maximizing T (λ) for some λ ∈ [0, 1]. If p(u,w) and p(v, w)
are positive for some triple (u, v, w), then it must be the case that p(u, v, w) > 0,
p(u,w, y) > 0 and p(v, w, z) > 0 for all y and z.

Theorem 12. Take an arbitrary irreducible broadcast channel q(y, z|x) with strictly
positive transition matrices. In computing T (λ) for some λ ∈ [0, 1], it suffices to take
the maximum over auxiliary random variables p(u, v, w, x)q(y, z|x) simultaneously
satisfying the following constraints,

• |U| ≤ min(|X |, |Y|), |V| ≤ min(|X |, |Z|), |W| ≤ |X |.

• H(X|UVW ) = 0. Given w where p(w) > 0, we use x = ξ(w)(u, v) to denote
the deterministic mapping from Uw × Vw to X . Here Uw is the set of u ∈
U such that p(u|w) > 0 and Vw is the set of v ∈ V such that p(v|w) > 0.
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• For arbitrary w such that p(w) > 0, the profile vector of the mapping ξ(w), −−→vξ(w) ,
cannot be written as

M∑
t=1

αt
−→vξt ,

where ξt (for t = 1, 2, 3, ...,M) are deterministic mappings from Uw × Vw to
X not equal to ξ(w), and αt are non-negative numbers adding up to one, i.e.∑M

t=1 αt = 1.

• For arbitrary w such that p(w) > 0, let the functions

fu,w : X → R for every u ∈ Uw,
gv,w : X → R for every v ∈ Vw,
and hw : X → R,

be defined by

fu,w(x) =
∑
y

q(y|x) log p(uy|w),

gv,w(x) =
∑
z

q(z|x) log p(vz|w),

hw(x) = min
u′∈Uw,v′∈Vw

(
log(p(u′v′|w))

−fu′,w(x)− gv′,w(x)

)
.

These definitions make sense because of Lemma 6. Then, for any u ∈ Uw and
v ∈ Vw, the following two equations hold:

log(p(uv|w)) = max
x

[fu,w(x) + gv,w(x) + hw(x)],

and

p(x0|u, v, w) = 1 for some x0 ∈ X ⇒
x0 ∈ argmaxx[fu,w(x) + gv,w(x) + hw(x)].

• Given any w, random variables Uw, Vw, Xw, Yw, Zw distributed according to
p(u, v, x, y, z|w) satisfy the following:

I(U ;Yw) ≥ I(U ;VwZw) for any U → Uw → VwXwYwZw,

I(V ;Zw) ≥ I(V ;UwYw) for any V → Vw → UwXwYwZw.
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Discussion 1. The first constraint imposes cardinality bounds on |U| and |V| that
are better than those reported in section 7.3. However, we only claim the improved
cardinality bounds for T (λ) and not the whole capacity region. The second constraint
is not new, and can be found in section 7.3. The other constraints are useful in
restricting the search space due to the constraints imposed on p(u, v, w, x). For in-
stance, take arbitrary w where p(w) > 0, distinct u0, u1 in Uw and distinct v0, v1 in
Vw. Assume further that x0 = ξ(w)(u0, v0) = ξ(w)(u1, v1) for some x0. Then the third
bullet implies that x1 = ξ(w)(u1, v0) = ξ(w)(u0, v1) for some x1 6= x0 cannot hold,
and the fourth bullet implies that p(u0, v0, w)p(u1, v1, w) ≤ p(u1, v0, w)p(u0, v1, w).
Assume that the first claim is false. Let the mapping ξ1 to be equal to ξ(w) except
that (u0, v0) and (u1, v1) are mapped to x1 (instead of x0), and (u1, v0) and (u0, v1)
are mapped to x0 (instead of x1). The mapping ξ1 has the same profile vector as ξ(w).
The condition in the third bullet is violated for the choice of M = 1, ξ1 and α1 = 1.
The second claim holds since

log p(u0, v0|w) + log p(u1, v1|w) =

fu0,w(x0) + gv0,w(x0) + hw(x0)+

fu1,w(x0) + gv1,w(x0) + hw(x0) =

fu0,w(x0) + gv1,w(x0) + hw(x0)+

fu1,w(x0) + gv0,w(x0) + hw(x0) ≤
max
x

fu0,w(x) + gv1,w(x) + hw(x)+

max
x

fu1,w(x) + gv0,w(x) + hw(x) =

log p(u0, v1|w) + log p(u1, v0|w).

8.3.2 Proof

Proof of Theorem 12: From the set of pmfs p(u, v, w, x) that maximize the ex-
pression λI(W ;Y ) + (1 − λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W ) − I(U ;V |W ), let
p0(u, v, w, x) be the one that achieves the largest value of I(W ;Y ) + I(W ;Z). In
Appendix I of section 8.3.3, we prove that one can find p(û, v̂, ŵ, x̂) such that

• λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) is equal to

λI(Ŵ ; Ŷ ) + (1− λ)I(Ŵ ; Ẑ) + I(Û ; Ŷ |Ŵ ) + I(V̂ ; Ẑ|Ŵ )− I(Û ; V̂ |Ŵ ),

• I(W ;Y ) + I(W ;Z) is equal to I(Ŵ ; Ŷ ) + I(Ŵ ; Ẑ),

• |Û | ≤ min(|X |, |Y|),

• |V̂| ≤ min(|X |, |Z|),

• |Ŵ| ≤ |X |,
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• H(X̂|Û V̂ Ŵ ) = 0.

Thus the constraints in the first and second bullets are satisfied by p(û, v̂, ŵ, x̂). In
Appendix II of section 8.3.3, we show that p(û, v̂, ŵ, x̂) will automatically satisfy the
third bullet of Theorem 12. In Appendix V of section 8.3.3, we show that the fourth
bullet of Theorem 12 holds for any joint distribution that maximizes the expression
λI(W ;Y ) + (1 − λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W ) − I(U ;V |W ). In Appendix
VI of section 8.3.3, we show that the fifth bullet of Theorem 12 holds for any joint
distribution that maximizes the expression λI(W ;Y )+(1−λ)I(W ;Z)+I(U ;Y |W )+
I(V ;Z|W ) − I(U ;V |W ), and at the same time has the largest possible value of
I(W ;Y ) + I(W ;Z).

�
Proof of Observation 1: This observation was exploited in section 3.1.1 of [28], but

no proof for it was given in [28]. In order to prove the observation, one needs to argue
that the following exchange of max and min is legitimate:

max
p(u,v,w,x)

min
λ∈[0,1]

λI(W ;Y ) + (1− λ)I(W ;Z)+

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) =

min
λ∈[0,1]

max
p(u,v,w,x)

λI(W ;Y ) + (1− λ)I(W ;Z)+

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ).

Let RMarton−Sum denote the sum-rate for Martons inner bound. We would like to
show that RMarton−Sum is equal to min0≤λ≤1 T (λ).

Let D be the union over all p(u, v, w, x) of real pairs (d1, d2) satisfying

d1 ≤ I(W ;Y ) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ),

d2 ≤ I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ).

We claim that this region is convex. Take two points (d1, d2) and (d′1, d
′
2) in the

region. Corresponding to these are joint distributions p(u1, v1, w1, x1)q(y1, z1|x1) and
p(u2, v2, w2, x2)q(y2, z2|x2). Take a uniform binary random variable Q independent of
all the previously defined random variables. Set U = UQ, V = VQ, W = (Q,WQ),
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X = XQ, Y = YQ, Z = ZQ. We will then have

I(W ;Y ) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) =

I(WQ, Q;YQ) + I(UQ;YQ|WQ, Q)+

I(VQ;ZQ|WQ, Q)− I(UQ;VQ|WQ, Q) ≥
I(WQ;YQ|Q) + I(UQ;YQ|WQ, Q)+

I(VQ;ZQ|WQ, Q)− I(UQ;VQ|WQ, Q) =

1

2

(
I(W1;Y1) + I(U1;Y1|W1)+

I(V1;Z1|W1)− I(U1;V1|W1)
)
+

1

2

(
I(W2;Y2) + I(U2;Y2|W2)+

I(V2;Z2|W2)− I(U2;V2|W2)
)
≥

1

2
(d1 + d′1).

Similarly,

I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) ≥
1

2
(d2 + d′2).

Thus, the point (1
2
(d1 + d′1), 1

2
(d2 + d′2)) is in the region. Thus, D is convex.

Next, note that the point (RMarton−Sum, RMarton−Sum) is in D. We claim that it
is a boundary point of D. If it is an interior point, there must exist ε > 0 such
that (RMarton−Sum + ε, RMarton−Sum + ε) is in D. This implies the existence of some
p(u, v, w, x) where

RMarton−Sum + ε ≤
I(W ;Y ) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ),

RMarton−Sum + ε ≤
I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ).

This implies that

RMarton−Sum + ε ≤
min(I(W ;Y ), I(W ;Z)) + I(U ;Y |W )+

I(V ;Z|W )− I(U ;V |W )

for some p(u, v, w, x), which is a contradiction.
Using the supporting hyperplane theorem and the fact thatD is convex and closed,

one can conclude that there exists a supporting hyperplane to D at the boundary
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point (RMarton−Sum, RMarton−Sum). We claim that this supporting hyperplane must
have the equation λ∗d1 + (1 − λ∗)d2 = T (λ∗) for some λ∗ ∈ [0, 1]. The proof is as
follows: any supporting hyperplane has the formula λ∗d1 + (1 − λ∗)d2 = k for some
real λ∗ and real k. We claim that λ∗ must be in [0, 1] and k = T (λ∗). Assume that for
instance λ∗ < 0. We know that D must be entirely contained in one of the two closed
half-spaces determined by the hyperplane. Note that the points (0, 0), (−∞, 0) and
(0,−∞) are in D (take p(u, v, w, x) satisfying I(U ;V |W ) = 0 in the definition of D).
The value of λ∗d1 +(1−λ∗)d2 at these points is equal to 0, +∞ and −∞ respectively.
Thus, D cannot possibly be entirely contained in one of the two closed half-spaces
determined by the hyperplane. Similarly the case 1−λ∗ < 0 can be refuted. Therefore
λ∗ must be in [0, 1]. Since the points (−∞, 0) and (0,−∞) are in D, the half-space
determined by the hyperplane that contains D is the one determined by the equation
λ∗d1 +(1−λ∗)d2 ≤ k for some k. Since the half-space has at least one point of D, the
value of k must be equal to max(d1,d2)∈R λ

∗d1+(1−λ∗)d2. The latter is equal to T (λ∗).
Thus, the supporting hyperplane at the boundary point (RMarton−Sum, RMarton−Sum)
has the equation λ∗d1 + (1− λ∗)d2 = T (λ∗) for some λ∗ ∈ [0, 1].

Since (RMarton−Sum, RMarton−Sum) lies on this hyperplane, λ∗RMarton−Sum + (1 −
λ∗)RMarton−Sum = T (λ∗) implies that RMarton−Sum = T (λ∗) for some λ∗ ∈ [0, 1].
Therefore

min
0≤λ≤1

T (λ) ≤ RMarton−Sum.

On the other hand, for every λ, T (λ) ≥ RMarton−Sum. Therefore

min
0≤λ≤1

T (λ) ≥ RMarton−Sum.

�
Proof of Lemma 6: Take a triple (u, v, w) such that p(u,w) and p(v, w) are posi-

tive. There must exist some x such that p(u,w, x) > 0. Since the transition matrices
have positive entries and p(u,w, y) ≥ p(u,w, x)q(y|x), p(u,w, y) will be positive for
all y. A similar statement could be proved for p(v, w, z). Assume that p(u, v, w) = 0.
Take some u′, v′ such that p(u′, v′, w) > 0. Let us reduce p(u′, v′, w) by ε and increase
p(u, v, w) by ε. Furthermore, have (u, v, w) mapped to the same x that (u′, v′, w) was
mapped to; this ensures that the joint distribution of W and X is preserved. One
can write

λI(W ;Y ) + (1− λ)I(W ;Z)+

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) =

λI(W ;Y ) + (1− λ)I(W ;Z)+

H(Y |W ) +H(Z|W )+

H(UV |W )−H(UY |W )−H(V Z|W ).

The only change in this expression comes from the change in H(UV |W = w) −
H(UY |W = w)−H(V Z|W = w). The derivative of H(UV |W = w) with respect to
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ε, at ε = 0, will be infinity. But the derivative of H(UY |W = w) and H(V Z|W = w)
will be finite since p(u, y|w), p(u′, y|w), p(v, z|w) and p(v′, z|w) are positive for all y
and z. So, the first derivative of H(UV |W = w)−H(UY |W = w)−H(V Z|W = w)
with respect to ε, at ε = 0, will be positive. This is a contradiction since p(u, v, w, x)
was assumed to maximize T (λ).

�

8.3.3 Appendix

Appendix I

Suppose p0(u, v, w, x) is a joint distribution that maximizes λI(W ;Y ) + (1 −
λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W ) − I(U ;V |W ), and among all such joint dis-
tributions has the largest value of I(W ;Y ) + I(W ;Z). In this appendix, we prove
that one can find p(û, v̂, ŵ, x̂) such that

• λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) is equal to

λI(Ŵ ; Ŷ ) + (1− λ)I(Ŵ ; Ẑ) + I(Û ; Ŷ |Ŵ ) + I(V̂ ; Ẑ|Ŵ )− I(Û ; V̂ |Ŵ ),

• I(W ;Y ) + I(W ;Z) is equal to I(Ŵ ; Ŷ ) + I(Ŵ ; Ẑ),

• |Û | ≤ min(|X |, |Y|),

• |V̂| ≤ min(|X |, |Z|),

• |Ŵ| ≤ |X |,

• H(X̂|Û V̂ Ŵ ) = 0.

We begin by reducing the cardinality of W . Assume that |W| > |X | and p(w) 6= 0
for all w. There must therefore exists a function L :W → R where

E[L(W )|X] = 0,

∃w : p(w) 6= 0, L(w) 6= 0.

Let us perturb p0(u, v, w, x) along L as follows:

pε(u, v, w, x, y, z) = p0(u, v, w, x, y, z) · [1 + εL(w)],

where ε is a real number in some interval [−ε1, ε2] for some positive reals ε1 and ε2.
Consider the expression λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )−

I(U ;V |W ) at pε(u, v, w, x, y, z). It can be verified that the expression is a linear
function of ε under this perturbation. Since a maximum of this expression occurs at
ε = 0, which is a point strictly inside the interval [−ε1, ε2], it must be the case that this
expression is a constant function of ε. Next consider the expression I(W ;Y )+I(W ;Z)
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at pε(u, v, w, x, y, z). It can be verified that the expression is a linear function of
ε under this perturbation. Note that p0(u, v, w, x) is a joint distribution that has
the largest value of I(W ;Y ) + I(W ;Z) among all joint distributions that maximize
λI(W ;Y )+(1−λ)I(W ;Z)+I(U ;Y |W )+I(V ;Z|W )−I(U ;V |W ). Thus a maximum
of I(W ;Y ) + I(W ;Z) occurs at ε = 0, which is a point strictly inside the interval
[−ε1, ε2]. But this can only happen when I(W ;Y ) + I(W ;Z) is a constant function
of ε. Now, taking ε = −ε1 or ε = ε2 gives us a joint distribution with the same
values of λI(W ;Y ) + (1 − λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W ) − I(U ;V |W ) and
I(W ;Y ) + I(W ;Z), but with a smaller support on W . Using this argument, one can
reduce the cardinality of W to |X |.

Next, we show how one can reduce the cardinality of U to find p(û, v̂, ŵ, x̂) such
that

• λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) is equal to

λI(Ŵ ; Ŷ ) + (1− λ)I(Ŵ ; Ẑ) + I(Û ; Ŷ |Ŵ ) + I(V̂ ; Ẑ|Ŵ )− I(Û ; V̂ |Ŵ ),

• I(W ;Y ) + I(W ;Z) is equal to I(Ŵ ; Ŷ ) + I(Ŵ ; Ẑ),

• |Û | ≤ min(|X |, |Y|),

• |Ŵ| ≤ |X |.

We can repeat a similar procedure to impose the constraint |V̂| ≤ min(|X |, |Z|).
Imposing the extra constraint H(X̂|Û V̂ Ŵ ) = 0 will be discussed at the end.

If |X | ≤ |Y|, establishing the cardinality bound of |X | on U suffices. This cardi-
nality bound is proved in section 7.3 using perturbations of the type L : U ×W → R
where

E[L(U,W )|WX] = 0.

Note that these perturbations preserve the marginal distribution of p(w, x), and thus
also I(W ;Y ) + I(W ;Z). The interesting case is therefore when |X | > |Y|. Assume
that |U| > |Y|. If for every w ∈ W , p(u|w) 6= 0 for at most |Y| elements u, we are done,
since we can relabel the elements in the range of U to ensure that only an alphabet
of size at most |Y| is used, without affecting any of the mutual information terms in
the expression of interest. There must therefore exists a function L : U × W → R
where

E[L(U,W )|WY ] = 0,

∃(u,w) : p0(u,w) 6= 0, L(u,w) 6= 0.

Let us perturb p0(u, v, w, x) along the random variable L : U × W → R. Random

variables Ũ , Ṽ , W̃ , X̃, Ỹ , Z̃ are distributed according to pε(ũ, ṽ, w̃, x̃, ỹ, z̃) defined as
follows

pε(ũ, ṽ, w̃, x̃, ỹ, z̃) = p0(ũ, ṽ, w̃, x̃, ỹ, z̃) · [1 + εL(ũ, w̃)],
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where ε is a real number in some interval [−ε1, ε2].
The first derivative of λI(W ;Y ) + (1 − λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W ) −

I(U ;V |W ) with respect to ε, at ε = 0 should be zero. Since

λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W )

+ I(V ;Z|W )− I(U ;V |W ) =

λ
(
H(W ) +H(Y )−H(WY )

)
+ (1− λ)

(
H(W ) +H(Z)−H(WZ)

)
+

H(YW ) +H(ZW )−H(UYW )

−H(V ZW ) +H(UVW )−H(W ),

we will have:

λ
(
HL(W ) +HL(Y )−HL(WY )

)
+

(1− λ)
(
HL(W ) +HL(Z)−HL(WZ)

)
+HL(YW ) +HL(ZW )−HL(UYW )

−HL(V ZW ) +HL(UVW )−HL(W ) = 0,

where HL(W ) denotes
∑

w E[L|W = w]p(w) log 1
p(w)

and similarly for the other terms.
Using Lemma 3 of section 7.3, we have:

λI(W̃ ; Ỹ ) + (1− λ)I(W̃ ; Z̃) + I(Ũ ; Ỹ |W̃ )

+ I(Ṽ ; Z̃|W̃ )− I(Ũ ; Ṽ |W̃ ) =

λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W )

+ I(V ;Z|W )− I(U ;V |W )+

λ
(
− E

[
r
(
ε · E[L|W ]

)]
− E

[
r
(
ε · E[L|Y ]

)]
+ E

[
r
(
ε · E[L|WY ]

)])
+

(1− λ)
(
− E

[
r
(
ε · E[L|W ]

)]
− E

[
r
(
ε · E[L|Z]

)]
+ E

[
r
(
ε · E[L|WZ]

)])
+

− E
[
r
(
ε · E[L|YW ]

)]
− E

[
r
(
ε · E[L|ZW ]

)]
+ E

[
r
(
ε · E[L|UYW ]

)]
+ E

[
r
(
ε · E[L|VWZ]

)]
− E

[
r
(
ε · E[L|UVW ]

)]
+ E

[
r
(
ε · E[L|W ]

)]
,



144

where r(x) = (1 + x) log(1 + x). Since E[L(U,W )|WY ] = 0, and L is a function of
UW , we have:

λI(W̃ ; Ỹ ) + (1− λ)I(W̃ ; Z̃) + I(Ũ ; Ỹ |W̃ )

+ I(Ṽ ; Z̃|W̃ )− I(Ũ ; Ṽ |W̃ ) =

λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W )

+ I(V ;Z|W )− I(U ;V |W )+

(1− λ)
(
− E

[
r
(
ε · E[L|Z]

)]
+ E

[
r
(
ε · E[L|WZ]

)])
− E

[
r
(
ε · E[L|ZW ]

)]
+ E

[
r
(
ε · E[L|VWZ]

)]
.

Since r(x) = (1 + x) log(1 + x) is a convex function, we have

− E
[
r
(
ε · E[L|Z]

)]
+ E

[
r
(
ε · E[L|WZ]

)]
≥ 0,

− E
[
r
(
ε · E[L|WZ]

)]
+ E

[
r
(
ε · E[L|VWZ]

)]
≥ 0.

Therefore for any ε ∈ [−ε1, ε2], we have

λI(W̃ ; Ỹ ) + (1− λ)I(W̃ ; Z̃) + I(Ũ ; Ỹ |W̃ )

+ I(Ṽ ; Z̃|W̃ )− I(Ũ ; Ṽ |W̃ ) ≥
λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W )

+ I(V ;Z|W )− I(U ;V |W ).

This implies that λI(W̃ ; Ỹ ) + (1−λ)I(W̃ ; Z̃) + I(Ũ ; Ỹ |W̃ ) + I(Ṽ ; Z̃|W̃ )− I(Ũ ; Ṽ |W̃ )

is a constant function of ε. The maximum of I(W̃ ; Ỹ ) + I(W̃ ; Z̃) as a function of ε
occurs at ε = 0. Therefore

IL(W ;Y ) + IL(W ;Z) = 0.

Using lemma 3 of section 7.3, one can observe that [I(W̃ ; Ỹ )+ I(W̃ ; Z̃)]− [I(W ;Y )+
I(W ;Z)] equals

− E
[
r
(
ε · E[L|Z]

)]
+ E

[
r
(
ε · E[L|WZ]

)]
≥ 0.

But this can only happen when I(W̃ ; Ỹ ) + I(W̃ ; Z̃) is a constant function of ε. Now,

taking ε = −ε1 or ε = ε2 gives us auxiliary random variable (Ũ , W̃ ) with smaller
support than that of (U,W ). We can continue this process as long as there exists
w ∈ W , such that p(u|w) 6= 0 for more than |Y| elements u.

It remains to show that one can impose the extra constraint H(X̂|Û V̂ Ŵ ) = 0.

Fix p(ũ, ṽ, w̃). Consider the expressions λI(W̃ ; Ỹ ) + (1 − λ)I(W̃ ; Z̃) + I(Ũ ; Ỹ |W̃ ) +

I(Ṽ ; Z̃|W̃ )− I(Ũ ; Ṽ |W̃ ) and I(W̃ ; Ỹ ) + I(W̃ ; Z̃) as functions of the conditional dis-
tribution of r(x̃|ũ, ṽ, w̃). We know that for instance that the former expression is
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maximized at p(x̃|ũ, ṽ, w̃). Further, the extreme points of the corresponding region
for r(x̃|ũ, ṽ, w̃) satisfy r(x̃|ũ, ṽ, w̃) ∈ {0, 1}. Both of the expressions are convex func-

tions of r(x̃|ũ, ṽ, w̃). This is because I(W̃ ; Ỹ ) is convex in the conditional distribu-

tion p(ỹ|w̃); similarly I(Ũ ; Ỹ |W̃ = w̃) is convex for any fixed value of w̃. The term

I(Ũ ; Ṽ |W̃ ) that appears with a negative sign is constant since the joint distribution
of p(ũ, ṽ, w̃) is fixed.

We can express p(x̃|ũ, ṽ, w̃) as a linear combination of the extreme points of the
region formed by all conditional distributions r(x̃|ũ, ṽ, w̃). Since the maximum of

λI(W̃ ; Ỹ ) + (1− λ)I(W̃ ; Z̃) + I(Ũ ; Ỹ |W̃ ) + I(Ṽ ; Z̃|W̃ )− I(Ũ ; Ṽ |W̃ ) occurs at some
p(x̃|ũ, ṽ, w̃) and the expression is convex in r(x̃|ũ, ṽ, w̃), the maximum must also
occur at all the extreme points showing up in the linear combination. One can use
the convexity of I(W̃ ; Ỹ )+I(W̃ ; Z̃) in r(x̃|ũ, ṽ, w̃) to show that the value of I(W̃ ; Ỹ )+

I(W̃ ; Z̃) at all these extreme points must be also equal to that at p(x̃|ũ, ṽ, w̃).

Appendix II

It suffices to prove the following statement:
Statement: Take an irreducible broadcast channel with positive transition ma-

trices, and an arbitrary marginal input distribution on X, p(x). Let p(u, v, x) be a
solution to the following maximization problem

max
UV→X→Y Z,X∼p(x)

I(U ;Y ) + I(V ;Z)− I(U ;V ).

Further assume that p(u) > 0 for all u, and p(v) > 0 for all v. Further assume that
H(X|UV ) = 0. We use x = ξ0(u, v) to denote the deterministic mapping from U ×V
to X .

Then the profile vector of the mapping ξ0, −→vξ0 , cannot be written as

M∑
t=1

αt
−→vξt ,

where ξt (for t = 1, 2, 3, ...,M) are deterministic mappings not equal to ξ0, and αt are
non-negative numbers adding up to one, i.e.

∑M
t=1 αt = 1.

Proof of the statement: Assume that U = {u1, u2, ...., u|U|} and V = {v1, v2, ...., v|V|}.
Let πi,j = p(ui, vj) for i = 1, ..., |U|, j = 1, 2, 3, ..., |V|. The proof of Lemma 6 could be
mimicked to show that p(u, v) is positive for all u, v whenever p(u) > 0 and p(v) > 0
for all u, v. Therefore we must have πi,j > 0 for all i and j. Let ε = mini,j πi,j. Take
some ε ∈ (0, ε).

We prove the statement by contradiction. Assume that

−→vξ0 =
M∑
t=1

αt
−→vξt ,



146

for some mappings ξt (t = 1, 2, ..,M) and non-negative numbers αt adding up to one.
Let random variables Ti,j (for i = 1, ..., |U|, j = 1, 2, 3, ..., |V|) be M+1-ary random

variables mutually independent of each other, and of U, V,X, Y, Z satisfying:

• p(Ti,j = 0) = 1− ε
πi,j

,

• p(Ti,j = 1) = ε
πi,j
α1,

• p(Ti,j = 2) = ε
πi,j
α2,

• p(Ti,j = 3) = ε
πi,j
α3,

• ...

• p(Ti,j = M) = ε
πi,j
αM .

Let X̃ be defined as follows:

• Under the event the pair (U, V ) = (ui, vj), let X̃ be equal to ξTi,j(ui, vj). In

other words, if Ti,j = 0, X̃ is equal to ξ0(ui, vj); if Ti,j = 1, X̃ is equal to
ξ1(ui, vj), etc.

We claim that p(X̃ = x|U = ui) = p(X = x|U = ui) for all i = 1, 2, 3, ..., |U| and

x; and similarly p(X̃ = x|V = vj) = p(X = x|V = vj) for all j = 1, 2, 3, ..., |V| and x.
The reason is that

p(X̃ = x|U = ui) =∑
j

p(V = vj |U = ui)p(X̃ = x|U = ui, V = vj) =

∑
j

p(V = vj |U = ui)
M∑
k=0

p(Ti,j = k)1[ξk(ui, vj) = x] =

∑
j

p(V = vj |U = ui)(1−
ε

πi,j
)1[ξ0(ui, vj) = x]+

∑
j

p(V = vj |U = ui)
M∑
k=1

ε

πi,j
αk1[ξk(ui, vj) = x] =

∑
j

p(V = vj |U = ui)(
πi,j − ε
πi,j

)1[ξ0(ui, vj) = x]+

M∑
k=1

∑
j

p(V = vj |U = ui)
ε

πi,j
αk1[ξk(ui, vj) = x].
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Note that p(V = vj|U = ui) =
p(V=vj ,U=ui)

p(U=ui)
=

πi,j
p(U=ui)

. Therefore

p(X̃ = x|U = ui) =∑
j

πi,j − ε
p(U = ui)

1[ξ0(ui, vj) = x]+

M∑
k=1

∑
j

ε

p(U = ui)
αk1[ξk(ui, vj) = x] =

∑
j

πi,j
p(U = ui)

1[ξ0(ui, vj) = x]

− ε

p(U = ui)

∑
j

1[ξ0(ui, vj) = x]+

ε

p(U = ui)

M∑
k=1

αk
∑
j

1[ξk(ui, vj) = x].

But since

−→vξ0 =
M∑
t=1

αt
−→vξt ,

the profiles of the ith rows must also satisfy the same property:

∑
j

1[ξ0(ui, vj) = x] =
M∑
k=1

αk
∑
j

1[ξk(ui, vj) = x].

Therefore,

p(X̃ = x|U = ui) =∑
j

πi,j
p(U = ui)

1[ξ0(ui, vj) = x] + 0− 0 =

∑
j

πi,j
p(U = ui)

1[ξ0(ui, vj) = x] = p(X = x|U = ui).

The equation p(X̃ = x|V = vj) = p(X = x|V = vj) for all j = 1, 2, 3, ..., |V| and
x can be proved similarly.

Note that the above property implies that X̃ and X have the same marginal
distributions.

Let Ỹ and Z̃ be defined such that UV (Ti,j)i:1,2,..,j=1,2,.. → X̃ → Ỹ Z̃, and the
conditional law of ỹ and z̃ given x̃ is the same as q(y, z|x). Here (Ti,j)i:1,2,..,j=1,2,..

denotes the collection of all Ti,j for all i and j.



148

Without loss of generality, let us assume α1 6= 0. Since the mapping ξ0(·, ·)
is not equal to ξ1(·, ·), there must exist (i, j) such that ξ0(ui, vj) 6= ξ1(ui, vj). Let
us label the inputs symbol ξ0(ui, vj) by x0, and the input symbol ξ1(ui, vj) by x1.
We know that the channel is irreducible. Let us then assume that there is some y
such that q(y|x0) 6= q(y|x1); the proof for the case when there is some z such that

q(z|x0) 6= q(z|x1) is similar. Let Ũ = (U, Ti,j) and Ṽ = V .

Since p(X̃ = x|U = u) = p(X = x|U = u) for all u and x, and p(X̃ = x|V = v) =
p(X = x|V = v) for all v and x, we have

• I(U ; Ỹ ) = I(U ;Y ),

• I(V ; Z̃) = I(V ;Z).

Therefore I(Ṽ ; Z̃) = I(V ;Z) and I(Ũ ; Ỹ ) = I(U ;Y ) + I(Ti,j; Ỹ |U). Furthermore

since Ti,j is independent of U, V , we have I(Ũ ; Ṽ ) = I(U ;V ). Therefore

I(Ũ ; Ỹ ) + I(Ṽ ; Z̃)− I(Ũ ; Ṽ )−
(
I(U ;Y ) + I(V ;Z)− I(U ;V )

)
= I(Ti,j ; Ỹ |U).

Since p(u, v, x) was maximizing I(U ;Y ) + I(V ;Z)− I(U ;V ) under fixed marginal

distribution on x, we must have I(Ti,j; Ỹ |U) = 0. Therefore I(Ti,j; Ỹ |U = ui) = 0
holds as well.

In Appendix III of this section, we prove that the following are true

p(X̃ = x0|U = ui, Ti,j = 0) 6= p(X̃ = x0|U = ui, Ti,j = 1),

p(X̃ = x1|U = ui, Ti,j = 0) 6= p(X̃ = x1|U = ui, Ti,j = 1).

But for any x /∈ {x0, x1},

p(X̃ = x|U = ui, Ti,j = 0) = p(X̃ = x|U = ui, Ti,j = 1).

Remember that we assumed that there is some y such that q(y|x0) 6= q(y|x1). In
Appendix IV of this section, we show that

p(Ỹ = y|U = ui, Ti,j = 0) 6= p(Ỹ = y|U = ui, Ti,j = 1).

This implies that Ỹ and Ti,j are not conditionally independent given U = ui. There-

fore I(Ti,j; Ỹ |U = ui) 6= 0 which is a contradiction.
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Appendix III

Note that

p(X̃ = x0|U = ui, Ti,j = 0) =

p(X̃ = x0|U = ui, Ti,j = 0, V = vj)p(V = vj |U = ui, Ti,j = 0)

+

p(X̃ = x0|U = ui, Ti,j = 0, V 6= vj)p(V 6= vj |U = ui, Ti,j = 0).

Since under the event (U, V ) = (ui, vj) and Ti,j = 0, X̃ is equal to x0, the term

p(X̃ = x0|U = ui, Ti,j = 0, V = vj) will be equal to one. Since (U, V ) is independent
of Ti,j, we have

p(V = vj|U = ui, Ti,j = 0) = p(V = vj|U = ui),

p(V 6= vj|U = ui, Ti,j = 0) = p(V 6= vj|U = ui).

Lastly p(X̃ = x0|U = ui, Ti,j = 0, V 6= vj) is equal to p(X̃ = x0|U = ui, V 6= vj) since

under the event that (U = ui, V 6= vj), X̃ will be independent of Ti,j (note that T·,·
random variables were mutually independent of each other). Therefore,

p(X̃ = x0|U = ui, Ti,j = 0) = (8.8)

p(V = vj|U = ui)+

p(X̃ = x0|U = ui, V 6= vj)p(V 6= vj|U = ui).

Next, note that

p(X̃ = x0|U = ui, Ti,j = 1) =

p(X̃ = x0|U = ui, Ti,j = 1, V = vj)p(V = vj |U = ui, Ti,j = 1)+

p(X̃ = x0|U = ui, Ti,j = 1, V 6= vj)p(V 6= vj |U = ui, Ti,j = 1).

Since under the event (U, V ) = (ui, vj) and Ti,j = 1, X̃ is equal to x1, the term

p(X̃ = x0|U = ui, Ti,j = 1, V = vj) will be equal to zero. Following an argument like
above, one can show that

p(X̃ = x0|U = ui, Ti,j = 1) = (8.9)

0 + p(X̃ = x0|U = ui, V 6= vj)p(V 6= vj|U = ui).

Comparing equations (8.8) and (8.9), and noting that p(V = vj|U = ui) > 0, we
conclude that

p(X̃ = x0|U = ui, Ti,j = 0) 6= p(X̃ = x0|U = ui, Ti,j = 1).
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The proof for

p(X̃ = x1|U = ui, Ti,j = 0) 6= p(X̃ = x1|U = ui, Ti,j = 1)

is similar.
It remains to show that for any x /∈ {x0, x1},

p(X̃ = x|U = ui, Ti,j = 0) = p(X̃ = x|U = ui, Ti,j = 1).

Note that

p(X̃ = x|U = ui, Ti,j = 1) =

p(X̃ = x|U = ui, Ti,j = 1, V = vj)p(V = vj|U = ui, Ti,j = 1)+

p(X̃ = x|U = ui, Ti,j = 1, V 6= vj)p(V 6= vj|U = ui, Ti,j = 1) =

0 + p(X̃ = x|U = ui, V 6= vj)p(V 6= vj|U = ui) =

p(X̃ = x|U = ui, Ti,j = 0).

Appendix IV

We prove the statement by contradiction. Assume that

p(Ỹ = y|U = ui, Ti,j = 0) = p(Ỹ = y|U = ui, Ti,j = 1).

We have

p(Ỹ = y|U = ui, Ti,j = 0) =

p(Ỹ = y|U = ui, Ti,j = 0, X̃ = x0)p(X̃ = x0|U = ui, Ti,j = 0)+

p(Ỹ = y|U = ui, Ti,j = 0, X̃ = x1)p(X̃ = x1|U = ui, Ti,j = 0)+∑
x∈X ,x/∈{x0,x1}

(
p(Ỹ = y|U = ui, Ti,j = 0, X̃ = x)×

p(X̃ = x|U = ui, Ti,j = 0)
)

=

p(Ỹ = y|X̃ = x0)p(X̃ = x0|U = ui, Ti,j = 0)+

p(Ỹ = y|X̃ = x1)p(X̃ = x1|U = ui, Ti,j = 0)+∑
xX ,x/∈{x0,x1}

(
p(Ỹ = y|X̃ = x)p(X̃ = x|U = ui, Ti,j = 0)

)
.
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Similarly,

p(Ỹ = y|U = ui, Ti,j = 1) =

p(Ỹ = y|U = ui, Ti,j = 1, X̃ = x0)p(X̃ = x0|U = ui, Ti,j = 1)+

p(Ỹ = y|U = ui, Ti,j = 1, X̃ = x1)p(X̃ = x1|U = ui, Ti,j = 1)+∑
x∈X ,x/∈{x0,x1}

(
p(Ỹ = y|U = ui, Ti,j = 1, X̃ = x)×

p(X̃ = x|U = ui, Ti,j = 1)
)

=

p(Ỹ = y|X̃ = x0)p(X̃ = x0|U = ui, Ti,j = 1)+

p(Ỹ = y|X̃ = x1)p(X̃ = x1|U = ui, Ti,j = 1)+∑
xX ,x/∈{x0,x1}

(
p(Ỹ = y|X̃ = x)p(X̃ = x|U = ui, Ti,j = 1)

)
.

The assumption that

p(Ỹ = y|U = ui, Ti,j = 0) = p(Ỹ = y|U = ui, Ti,j = 1),

therefore implies:

p(Ỹ = y|X̃ = x0)p(X̃ = x0|U = ui, Ti,j = 0)+

p(Ỹ = y|X̃ = x1)p(X̃ = x1|U = ui, Ti,j = 0)+∑
xX ,x/∈{x0,x1}

(
p(Ỹ = y|X̃ = x)×

p(X̃ = x|U = ui, Ti,j = 0)
)

=

p(Ỹ = y|X̃ = x0)p(X̃ = x0|U = ui, Ti,j = 1)+

p(Ỹ = y|X̃ = x1)p(X̃ = x1|U = ui, Ti,j = 1)+∑
x∈X ,x/∈{x0,x1}

(
p(Ỹ = y|X̃ = x)p(X̃ = x|U = ui, Ti,j = 1)

)
.

It was shown in Appendix III of this section that

p(X̃ = x0|U = ui, Ti,j = 0) 6= p(X̃ = x0|U = ui, Ti,j = 1),

p(X̃ = x1|U = ui, Ti,j = 0) 6= p(X̃ = x1|U = ui, Ti,j = 1).

But for any x /∈ {x0, x1},

p(X̃ = x|U = ui, Ti,j = 0) = (8.10)

p(X̃ = x|U = ui, Ti,j = 1).
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Thus, we must have

p(Ỹ = y|X̃ = x0)p(X̃ = x0|U = ui, Ti,j = 0)+

p(Ỹ = y|X̃ = x1)p(X̃ = x1|U = ui, Ti,j = 0) =

p(Ỹ = y|X̃ = x0)p(X̃ = x0|U = ui, Ti,j = 1)+

p(Ỹ = y|X̃ = x1)p(X̃ = x1|U = ui, Ti,j = 1).

This implies that

p(X̃ = x0|U = ui, Ti,j = 1)− p(X̃ = x0|U = ui, Ti,j = 0)

p(X̃ = x1|U = ui, Ti,j = 0)− p(X̃ = x1|U = ui, Ti,j = 1)
=
p(Ỹ = y|X̃ = x1)

p(Ỹ = y|X̃ = x0)
.

Note that the nominator and denominator are positive by what was proved in Ap-
pendix III of this section.

On the other hand, we also have by equation 8.10:

p(X̃ = x0|U = ui, Ti,j = 0)+

p(X̃ = x1|U = ui, Ti,j = 0) =

p(X̃ = x0|U = ui, Ti,j = 1)+

p(X̃ = x1|U = ui, Ti,j = 1).

This implies that

p(X̃ = x0|U = ui, Ti,j = 1)− p(X̃ = x0|U = ui, Ti,j = 0)

p(X̃ = x1|U = ui, Ti,j = 0)− p(X̃ = x1|U = ui, Ti,j = 1)
= 1.

Hence,

p(Ỹ = y|X̃ = x1)

p(Ỹ = y|X̃ = x0)
= 1.

But we know that p(Ỹ = y|X̃ = x0) 6= p(Ỹ = y|X̃ = x1) since the input values x0

and x1 are distinguishable by the Y receiver. This is a contradiction.

Appendix V

Take a broadcast channel with positive transition matrices, and let p(u, v, w, x)
maximize the expression λI(W ;Y ) + (1 − λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W ) −
I(U ;V |W ). Fixing the joint distribution of X and W , one can see that for any w the
conditional distribution p(u, v, x|w) will be a solution to the following maximization
problem:

max
UV→X→Y Z,X∼p(x|w)

H(UV )−H(UY )−H(V Z).
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The proof relies on the following claim:
Claim. Take a broadcast channel with positive transition matrices, and an ar-

bitrary marginal input distribution on X, p(x). Let p(u, v, x) be a solution to the
following maximization problem

max
UV→X→Y Z,X∼p(x)

H(UV )−H(UY )−H(V Z).

Further assume that p(u) > 0 for all u, and p(v) > 0 for all v. Let the functions

f̂u : X → R for every u ∈ U ,
ĝv : X → R for every v ∈ V ,
ĥ : X → R,

be defined as follows:

f̂u(x) =
∑
y

q(y|x) log p(uy),

ĝv(x) =
∑
z

q(z|x) log p(vz),

ĥ(x) = min
u′,v′

(
log(p(u′, v′))− f̂u′(x)− ĝv′(x)

)
.

It is then claimed that for any (u, v), we have

p(x0|u, v) = 1 for some x0 ∈ X ⇒
x0 ∈ argmaxxf̂u(x) + ĝv(x) + ĥ(x),

and

log(p(u, v)) = max
x

f̂u(x) + ĝv(x) + ĥ(x).

Proof of the claim: The proof of Lemma 6 could be mimicked to show that p(u, v),
p(u, y) and p(v, z) are positive for all u, v, y, z whenever p(u) > 0 and p(v) > 0 for all
u, v. Therefore f̂u(x), ĝv(x) and ĥ(x) are well-defined.

The proof begins by noting that the definition of ĥ(x) implies that for any (u, v, x),

ĥ(x) ≤ log(p(u, v))− f̂u(x)− ĝv(x).

Therefore, for any (u, v, x),

log(p(u, v)) ≥ f̂u(x) + ĝv(x) + ĥ(x).

Thus,

log(p(u, v)) ≥ max
x

(
f̂u(x) + ĝv(x) + ĥ(x)

)
. (8.11)
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Note that the first partial derivative of H(UV )−H(UY )−H(V Z) with respect
to p(u, v, x) is proportional to

− log p(u, v)− 1 +
∑
y

q(y|x) log p(u, y) + 1+∑
z

q(z|x) log p(v, z) + 1 =

− log p(u, v) + f̂u(x) + ĝv(x) + 1.

Assume that the triple (u, v, x) is such that p(u, v, x) > 0. Take some arbitrary
u′ and v′. Reducing p(u, v, x) by a small ε and increasing p(u′, v′, x) by ε does not
affect the marginal distribution of X and hence should not increase the expression
H(UV ) − H(UY ) − H(V Z). Therefore the first derivative of H(UV ) − H(UY ) −
H(V Z) with respect to p(u, v, x) must be greater than or equal to the first derivative
of H(UV )−H(UY )−H(V Z) with respect to p(u′, v′, x). Thus,

− log p(u, v) + f̂u(x) + ĝv(x) + 1 ≥
− log p(u′, v′) + f̂u′(x) + ĝv′(x) + 1.

In other words, for any arbitrary u′ and v′, we have

log p(u, v)− f̂u(x)− ĝv(x) ≤
log p(u′, v′)− f̂u′(x)− ĝv′(x).

Therefore

log p(u, v)− f̂u(x)− ĝv(x) ≤
min
u′,v′

log p(u′, v′)− f̂u′(x)− ĝv′(x) = ĥ(x).

Thus, log p(u, v) ≤ f̂u(x) + ĝv(x) + ĥ(x) whenever p(u, v, x) > 0. This together with
equation (8.11) imply that

log(p(u, v)) = max
x

f̂u(x) + ĝv(x) + ĥ(x),

and

p(x0|u, v) = 1 for some x0 ∈ X ⇒
x0 ∈ argmaxxf̂u(x) + ĝv(x) + ĥ(x).
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Appendix VI

The proof follows from the following two statements:
Statement 1: Assume that p∗(u, v, w, x) is an arbitrary joint distribution maxi-

mizing λI(W ;Y )+(1−λ)I(W ;Z)+I(U ;Y |W )+I(V ;Z|W )−I(U ;V |W ), and having
the largest value of I(W ;Y ) + I(W ;Z) among all maximizing joint distributions. For
every w, p∗(x|w) must belong to the set T defined as follows. Let T (q(y, z|x)) be the
set of pmfs on X , t(x), such that

max
p(u,v,w|x)t(x)q(y,z|x)

{
λI(W ;Y ) + (1− λ)I(W ;Z)

+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )
}

= max
p(u,v|x)t(x)q(y,z|x)

(I(U ;Y ) + I(V ;Z)− I(U ;V )),

and I(W ;Y ) = I(W ;Z) = 0 for any3 pmf p(u, v, w|x)t(x) that maximizes the expres-
sion λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ).4

Statement 2: Let q(y, z|x) be a general broadcast channel, and t(x) ∈ T (q(y, z|x)).
Consider the maximization problem: maxp(u,v|x)t(x)q(y,z|x)(I(U ;Y )+I(V ;Z)−I(U ;V )).
Assume that a maximum occurs at p∗(u, v|x). Then the following holds for random
variables (U, V,X, Y, Z) ∼ p∗(u, v|x)t(x)q(y, z|x):

• I(U ;Y ) ≥ I(U ;V Z) for every U → U → V XY Z.

• I(V ;Z) ≥ I(V ;UY ) for every V → V → UXY Z.

Proof of Statement 1: Assume that the marginal pmf of X given W = w does
not belong to T for some w. By the definition then, at least one of the following must
hold:

Case 1: Corresponding to p∗X|W=w(x) is the conditional distribution p(û, v̂, ŵ|x̂)
such that

I(U ;Y |W = w) + I(V ;Z|W = w)− I(U ;V |W = w) <

λI(Ŵ ; Ŷ ) + (1− λ)I(Ŵ ; Ẑ) + I(Û ; Ŷ |Ŵ )

+ I(V̂ ; Ẑ|Ŵ )− I(Û ; V̂ |Ŵ ) (8.12)

where p(û, v̂, ŵ, x̂, ŷ, ẑ) = p(û, v̂, ŵ|x̂)p∗X|W=w(x̂)q(ŷ, ẑ|x̂).

Case 2: Corresponding to p∗X|W=w(x) is the conditional distribution p(û, v̂, ŵ|x̂)
such that

I(U ;Y |W = w) + I(V ;Z|W = w)− I(U ;V |W = w) =

λI(Ŵ ; Ŷ ) + (1− λ)I(Ŵ ; Ẑ) + I(Û ; Ŷ |Ŵ )

+ I(V̂ ; Ẑ|Ŵ )− I(Û ; V̂ |Ŵ )

3Note that such a pmf may not unique.
4We have used maximum and not supremum in the above conditions since cardinality bounds on

the auxiliary random variables exist.
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but I(Ŵ ; Ŷ )+I(Ŵ ; Ẑ) > 0, where p(û, v̂, ŵ, x̂, ŷ, ẑ) = p(û, v̂, ŵ|x̂)p∗X|W=w(x̂)q(ŷ, ẑ|x̂).

Define Ũ , Ṽ , W̃ jointly distributed with U , V , W , X, Y , Z as follows: whenever
W 6= w, the random variables Ũ = U , Ṽ = V , W̃ = W . For W = w, the Markov
chain Ũ Ṽ W̃ → X → UVWY Z holds, and p(ũ, ṽ, w̃|x) = p(û, v̂, ŵ|x̂). Next, assume

that U ′ = Ũ , V ′ = Ṽ , W ′ = WW̃ .
If case 1 holds, we prove that λI(W ′;Y ) + (1 − λ)I(W ′;Z) + I(U ′;Y |W ′) +

I(V ′;Z|W ′)−I(U ′;V ′|W ′) > λI(W ;Y )+(1−λ)I(W ;Z)+I(U ;Y |W )+I(V ;Z|W )−
I(U ;V |W ), which results in a contradiction. If case 2 holds, we prove that λI(W ′;Y )+
(1 − λ)I(W ′;Z) + I(U ′;Y |W ′) + I(V ′;Z|W ′) − I(U ′;V ′|W ′) = λI(W ;Y ) + (1 −
λ)I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W ) − I(U ;V |W ) but that I(W ′;Y ) + I(W ′;Z) >
I(W ;Y ) + I(W ;Z), which results in a contradiction.

Assume that case 1 holds. Since W ′ = WW̃ , I(W ′;Y ) = I(W ;Y ) + I(W̃ ;Y |W )

and I(W ′;Z) = I(W ;Z) + I(W̃ ;Z|W ), we need to show that

λI(W̃ ;Y |W ) + (1− λ)I(W̃ ;Z|W ) + I(Ũ ;Y |WW̃ )+

I(Ṽ ;Z|WW̃ )− I(Ũ ; Ṽ |WW̃ ) >

I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

Remember that whenever W 6= w, random variables Ũ , Ṽ , W̃ were defined to be
equal to U , V , W . Therefore we need to show that

p(W = w)
[
λI(W̃ ;Y |W = w) + (1− λ)I(W̃ ;Z|W = w)+

I(Ũ ;Y |W = w, W̃ ) + I(Ṽ ;Z|W = w, W̃ )

− I(Ũ ; Ṽ |W = w, W̃ )
]
>

p(W = w)
[
I(U ;Y |W = w) + I(V ;Z|W = w)

− I(U ;V |W = w)
]
.

On the event W = w, random variables Ũ , Ṽ , W̃ were defined so that p(ũ, ṽ, w̃|x) is
equal to p(û, v̂, ŵ|x̂). Furthermore the marginal distribution of p(x̂) is p∗(x|W = w).

Therefore I(W̃ ;Y |W = w) = I(Ŵ ; Ŷ ), I(W̃ ;Z|W = w) = I(Ŵ ; Ẑ), I(Ũ ;Y |W =

w, W̃ ) = I(Û ; Ŷ |Ŵ ), etc. Thus it remains to show that

λI(Ŵ ; Ŷ ) + (1− λ)I(Ŵ ; Ẑ) + I(Û ; Ŷ |Ŵ )

+ I(V̂ ; Ẑ|Ŵ )− I(Û ; V̂ |Ŵ ) >

I(U ;Y |W = w) + I(V ;Z|W = w)− I(U ;V |W = w).

This holds because of equation (8.12). This concludes the proof for case 1.
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Now, assume that case 2 holds. Following, the above proof for case 1, one can get

λI(W ′;Y ) + (1− λ)I(W ′;Z) + I(U ′;Y |W ′)

+ I(V ′;Z|W ′)− I(U ′;V ′|W ′) ≥
λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W )

+ I(V ;Z|W )− I(U ;V |W ).

Note that I(W ′;Y ) + I(W ′;Z) = I(W ;Y ) + I(W̃ ;Y |W ) + I(W ;Z) + I(W̃ ;Z|W ).

Thus, we need to show that I(W̃ ;Y |W ) + I(W̃ ;Z|W ) > 0. Note that

I(W̃ ;Y |W ) + I(W̃ ;Z|W ) =

p(W = w)
(
I(W̃ ;Y |W = w) + I(W̃ ;Z|W = w)

)
= p(W = w)

(
I(Ŵ ; Ŷ ) + I(Ŵ ; Ẑ)

)
> 0.

Proof of Statement 2: Take an arbitrary U satisfying U → U → V XY Z. Let
Ŵ = U , Û = U , V̂ = V . Since t(x) ∈ T (q(y, z|x)), and p∗(u, v|x) maximizes
I(U ;Y ) + I(V ;Z)− I(U ;V ), we can write:

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≥
λI(Ŵ ;Y ) + (1− λ)I(Ŵ ;Z) + I(Û ;Y |Ŵ ) + I(V̂ ;Z|Ŵ )

− I(Û ; V̂ |Ŵ ), (8.13)

and furthermore if equality holds, we must have I(Ŵ ;Y ) = I(Ŵ ;Z) = 0. We prove
that this implies that I(U ;Y ) ≥ I(U ;V Z).

We can write:

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≥
λI(Ŵ ;Y ) + (1− λ)I(Ŵ ;Z) + I(Û ;Y |Ŵ ) + I(V̂ ;Z|Ŵ )

− I(Û ; V̂ |Ŵ ) =

λI(U ;Y ) + (1− λ)I(U ;Z) + I(U ;Y |U)

+ I(V ;Z|U)− I(U ;V |U).

Therefore

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≥
λI(U ;Y ) + (1− λ)I(U ;Z) + I(U ;Y |U) + I(V ;Z|U)

− I(U ;V |U)
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Since U → U → V XY Z, we have I(U ;Y ) = I(UU ;Y ) and I(U ;V ) = I(UU ;V ).
This implies that

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≥
λI(U ;Y ) + (1− λ)I(U ;Z) + I(V ;Z|U)

or,

I(U ;Y ) + I(V ;Z) ≥ λI(U ;Y ) + (1− λ)I(U ;Z) + I(V ;ZU)

or,

(1− λ)I(U ;Y ) ≥ (1− λ)I(U ;Z) + I(V ;U |Z).

In other words

(1− λ)I(U ;Y ) ≥ (1− λ)I(U ;V Z) + λI(V ;U |Z). (8.14)

Let us consider the following two cases:

• λ < 1: In this case, equation (8.14) implies that I(U ;Y ) ≥ I(U ;V Z) +
λ

1−λI(V ;U |Z). This inequality implies the desired inequality I(U ;Y ) ≥ I(U ;V Z).

• λ = 1: In this case, equation (8.14) implies that I(V ;U |Z) = 0. Furthermore
equation (8.13) will hold with equality. Since t(x) ∈ T , we must have I(U ;Y ) =
I(U ;Z) = 0.
The fact that I(V ;U |Z) = I(U ;Y ) = I(U ;Z) = 0 implies that I(U ;Y ) =
I(U ;ZV ) = 0. Therefore the inequality I(U ;Y ) ≥ I(U ;ZV ) also holds in this
case.

In each case, we are done. The proof for the inequality I(V ;Z) ≥ I(V ;Y U) is
similar.

8.4 Insufficiency of Marton’s coding scheme with-

out a superposition variable

8.4.1 Statement of the result

In this section we then consider Marton’s inner bound and show that, unlike in the
Gaussian broadcast channel case, “Marton’s coding scheme” alone is not sufficient to
achieve the capacity region of the general degraded broadcast channel. Necessity of
the “superposition-coding” aspect of the inner bound had previously been observed
for a non-degraded broadcast channel [28].
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In Marton’s inner bound the auxiliary random variable W corresponds to the
“superposition-coding” aspect of the bound, and the random variables U and V
correspond to the “Marton-coding” aspect of the bound. When R0 = 0 (private
messages only) and W = ∅, Marton’s inner bound reduces to the the set of non-
negative rate pairs (R1, R2) satisfying

R1 ≤ I(U ;Y |Q), (8.15)

R2 ≤ I(V ;Z|Q), (8.16)

R1 +R2 ≤ I(U ;Y |Q) + I(V ;Z|Q)− I(U ;V |Q) (8.17)

for some random variables (Q,U, V,X, Y, Z) ∼ p(q)p(u, v, x|q)q(y, z|x).
It is known that this inner bound is tight for Gaussian broadcast channels (through

dirty paper coding), implying that W is unnecessary for achieving the capacity region
of this class of degraded broadcast channels. We show through an example that this
is not the case in general.

Lemma 7. There are degraded broadcast channels for which Marton’s private mes-
sage inner bound without W is strictly contained in the capacity region of the channel.

8.4.2 Proof

Proof of Lemma 7: Consider the degraded broadcast channel p(y, z|x) =
p(y|x)p(z|y), where the channel from X to Y is a BSC(0.3) and the channel from Y
to Z is as follows: pZ|Y (0|0) = 0.6, pZ|Y (1|0) = 0.4, pZ|Y (0|1) = 0, pZ|Y (1|1) = 1. We
show that the private message capacity region for this channel is strictly larger than
Marton’s inner bound without W .

We first intuitively sketch outline of the proof: take a non-negative real α and
consider the maximum ofR1+αR2 over the pairs (R1, R2) in the capacity region. Since
the broadcast channel is degraded, the maximum is equal to maxV→X→Y Z I(X;Y |V )+
αI(V ;Z). Since X → Y → Z, when the weight of the degraded receiver is less than or
equal to 1, an optimum V will be equal to a constant (corresponding to R2 = 0). As
we gradually increase α beyond one, the optimum V gradually moves from a constant
random variable to X (corresponding to R1 = 0). Now, let us consider the maximum
of R1 + αR2 over the pairs (R1, R2) in Marton’s inner bound without the auxiliary
random variable W . The latter maximum is equal to I(U ;Y ) + αI(V ;Z)− I(U ;V ).
When α ≤ 1, it is optimum to take U = X, V =constant and dedicate all the rate
to the stronger receiver. The simulation results however indicate that as we increase
α beyond one in the problem of maximizing I(U ;Y ) + αI(V ;Z) − I(U ;V ), U = X,
V =constant continues to be optimal up to a threshold. Beyond this threshold,
suddenly U =constant, V = X becomes the optimizing choice, and stays as the
optimizing choice afterwards. In other words, unlike the gradual transition of the
maximizing V for the actual region, there is a sharp transition in the maximizing V
for Marton’s inner bound without W .
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In the following, we provide a formal proof: the maximum of R1 +2.4R2 over pairs
(R1, R2) in the capacity region, is equal to maxV→X→Y Z I(X;Y |V )+2.4I(V ;Z). Take
the joint pmf of p(v, x) to be as follows: P (V = 0, X = 0) = 0, P (V = 0, X = 1) =
0.41, P (V = 1, X = 0) = 0.48, P (V = 1, X = 1) = 0.11. For this choice of p(v, x),
I(X;Y |V )+2.4I(V ;Z) = 0.1229.... Therefore the maximum of R1+2.4R2 ≥ 0.1229....
The maximum of R1 + 2.4R2 over Marton’s inner bound without W is equal to
supUV→X→Y Z I(U ;V ) + 2.4I(V ;Z) − I(U ;V ). Using the perturbation method, one
can show that the supremum is indeed a minimum, and that the cardinality of U
and V can be bounded from above by |X |. Furthermore X can be assumed to be
a deterministic function of (U, V ). Since X is a binary random variable, we need
to search over binary random variables U , V . Numerical simulations show that the
maximum is equal to 0.1215... < 0.1229... and occurs when X = V and U = constant.
Therefore Marton’s inner bound without W is not tight for this broadcast channel.

�

8.5 Computation of the Nair-El Gamal outer bound

8.5.1 Statement of the result

In this section, we find bounds on the cardinalities of the auxiliary random vari-
ables appearing in the Nair-El Gamal outer bound, thus making it fully computable
and generalizing an earlier result by Nair and Zizhou [45] for the case of R0 = 0.

Theorem 13. For a general broadcast channel q(y, z|x), the Nair-El Gamal outer
bound RNE is the set of non-negative rate triples (R0, R1, R2) satisfying

R0 ≤ min{I(W ;Y ), I(W ;Z)}, (8.18)

R0 +R1 ≤ I(UW ;Y ), (8.19)

R0 +R2 ≤ I(VW ;Z), (8.20)

R0 +R1 +R2 ≤ min{I(UW ;Y ) + I(X;Z|UW ),

I(VW ;Z) + I(X;Y |VW )}, (8.21)

for some random variables (U, V,W,X, Y, Z) ∼ p(w, x)p(u|w, x)p(v|w, x)q(y, z|x) with
|U| ≤ |X |, |V| ≤ |X |, |W| ≤ |X |+ 6.

Note that the above result makes the Nair-El Gamal outer bound fully com-
putable.

8.5.2 Proof

Proof of Theorem 13: LetR1 denote the region given in the statement of Theorem
13. We would like to show that R1 = RNE. Our proof resembles and generalizes
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the one provided by Nair and Zizhou [45] for the case of R0 = 0. We first show that
RNE = R2, where R2 consists of the set of non-negative rate triples (R0, R1, R2)
satisfying

R0 ≤ min{I(W ;Y ), I(W ;Z)},
R0 +R1 ≤ I(UW ;Y ),

R0 +R2 ≤ I(VW ;Z),

R0 +R1 +R2 ≤ min{I(UW ;Y ) + I(X;Z|UW ),

I(VW ;Z) + I(X;Y |VW )},

for some random variables U, V,W,X, Y, Z ∼ p(u, v, w, x)q(y, z|x).
Clearly RNE ⊂ R2, since in R2 we take the union over all p(u, v, w, x), and

I(X;Z|UW ) ≥ I(V ;Z|UW ), I(X;Y |VW ) ≥ I(U ;Y |VW ). In order to show that
R2 ⊂ RNE, take some arbitrary p(u, v, w, x). Without loss of generality assume that
U = {0, 1, 2, ..., |U| − 1}, V = {0, 1, 2, ..., |V| − 1} and X = {0, 1, 2, ..., |X | − 1}.

Let Ũ , Ṽ , X̃1, X̃2, X̃3, X̃4 be uniform random variables on sets U , V , X , X , X ,
X respectively. We assume that Ũ , Ṽ , X̃1, X̃2, X̃3 and X̃4 are mutually independent
of each other and of U, V,W,X, Y, Z. Let us define random variables Û , V̂ , Ŵ and
X̂, Ŷ and Ẑ as follows:

• Û = (Ũ ⊕ U,X ⊕ X̃1 ⊕ X̃4, X̃3);

• V̂ = (Ṽ ⊕ V,X ⊕ X̃2 ⊕ X̃3, X̃4);

• Ŵ = (W, Ũ, Ṽ , X̃1, X̃2);

• X̂ = X;

• Ŷ = Y ;

• Ẑ = Z.

It can be verified that Û is independent of V̂ . Furthermore

• I(W ;Y ) ≤ I(Ŵ ; Ŷ );

• I(W ;Z) ≤ I(Ŵ ; Ẑ);

• I(UW ;Y ) ≤ I(ÛŴ ; Ŷ );

• I(VW ;Z) ≤ I(V̂ Ŵ ; Ẑ);

• I(UW ;Y ) + I(X;Z|UW ) ≤ I(ÛŴ ; Ŷ ) + I(V̂ ; Ẑ|ÛŴ );

• I(VW ;Z) + I(X;Y |VW ) ≤ I(V̂ Ŵ ; Ẑ) + I(Û ; Ŷ |V̂ Ŵ ).
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Therefore R2 ⊂ RNE, and R2 = RNE. It remains to show that R2 = R1.
In evaluating R2, it does not matter if we take the union over all p(u, v, w, x) or

over those of the form p(u, v, w, x) = p(w, x)p(u|w, x)p(v|w, x), since the expression
depends only on the marginals of p(u,w, x) and p(v, w, x), so let us assume this is
done. The last step is to establish cardinality bounds of |U| ≤ |X |, |V| ≤ |X |,
|W| ≤ |X | + 6 on the auxiliary random variables in R2. This would imply that
R2 = R1.

Let us consider a six dimensional region CNE−I(q(y, z|x)) defined as the union of

∆
({(

I(W ;Y ), I(W ;Z), I(UW ;Y ), I(VW ;Z),

I(UW ;Y ) + I(X;Z|UW ),

I(VW ;Z) + I(X;Y |VW )
)})

,

over p(w, x)p(u|w, x)p(v|w, x). Here the down-set operator ∆(A) for a set A ⊂ Rd

is defined as follows: ∆(A) = {−→v ∈ Rd : −→v is coordinatewise less than or equal to
−→w for some −→w ∈ A}. Note that the region CNE−I(q(y, z|x)) specifies CNE(q(y, z|x)),
since given any p(u, v, w, x, y, z) = p(w, x)p(u|w, x)p(v|w, x)q(y, z|x) the correspond-
ing vector in CNE−I(q(y, z|x)) is providing the values for the right hand side of the 6
inequalities that define the region CNE(q(y, z|x)). Therefore, it suffices to prove the
cardinality bound for determining CNE−I(q(y, z|x)).

We begin by proving cardinality bounds for a weighted combination of the terms:
given non-negative λ1, λ2, ..., λ6, and any joint distribution p(u, v, w, x, y, z) =
p(u, v, w, x)q(y, z|x) on U, V,W,X, Y, Z, we would like to define random variables

Ũ , Ṽ , W̃ , X̃, Ỹ and Z̃ jointly distributed according to p(ũ, ṽ, w̃, x̃)q(ỹ, z̃|x̃), and
satisfying the following properties:

• λ1 · I(W ;Y ) +λ2 · I(W ;Z) +λ3 · I(UW ;Y ) +λ4 · I(VW ;Z) +λ5 · (I(UW ;Y ) +
I(X;Z|UW )) + λ6 · (I(VW ;Z) + I(X;Y |VW )) is less than or equal to λ1 ·
I(W̃ ; Ỹ ) + λ2 · I(W̃ ; Z̃) + λ3 · I(ŨW̃ ; Ỹ ) + λ4 · I(Ṽ W̃ ; Z̃) + λ5 · (I(ŨW̃ ; Ỹ ) +

I(X̃; Z̃|ŨW̃ )) + λ6 · (I(Ṽ W̃ ; Z̃) + I(X̃; Ỹ |Ṽ W̃ )),

• |Ũ | = |X |,

• |Ṽ| = |X |,

• |W̃| = |W|.

In the appendix in section 8.5.3, we verify that this is possible with a cardinality bound
of |X | on |Ũ | and |Ṽ|. The cardinality of W can be reduced by fixing the conditional
distribution of p(u, v, x, y, z|w) and trying to change the marginal distribution of p(w)
so that non-zero probabilities are assigned to at most |X | elements of W . Note that
the above expression can be written as λ1H(Y ) + λ2H(Z) + λ3H(Y ) + λ4H(Z) +
λ5H(Y ) + λ6H(Z) plus a second term that is linear in p(w). In order to preserve
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the first term, we preserve the marginal distribution of Y and Z by preserving the
marginal distribution of X by imposing |X | − 1 linear equations on p(w). There is
one linear constraint

∑
w p(w) = 1, and the inequalities p(w) ≥ 0 for w ∈ W . If we

want to use the traditional Carathéodory theorem, we need to impose one more linear
constraint for preserving the second linear term. The number of linear constraints
will be |X |+ 1. The strengthened Carathéodory theorem of Fenchel however reduces
this to |X |.

Having established cardinality bounds for a weighted combination of the terms, it
remains to show that if the alphabet of W is of size greater than or equal to |X |+ 6,
then this guarantees the convexity of the region. We would like to show that the
region defined as the union of

∆
({(

I(W ;Y ), I(W ;Z), I(UW ;Y ), I(VW ;Z),

I(UW ;Y ) + I(X;Z|UW ), I(VW ;Z) + I(X;Y |VW )
)})

,

over random variables U, V,W,X, Y, Z, having the joint distribution p(u, v, w, x, y, z) =
p(u, v, w, x)q(y, z|x), |U| ≤ |X |, |V| ≤ |X |, and |W| ≤ |X |+ 6 is convex. Note that if
the constraint |W| ≤ |X |+ 6 is relaxed, the region becomes convex by a time-sharing
argument. One can then use the strengthened Carathéodory argument to reduce the
cardinality of W to |X | + 6 as we would like to preserve the marginal distribution
of X and the linear terms H(Y |W ), H(Z|W ), H(Y |UW ), H(Z|VW ), I(X;Z|UW ),
I(X;Y |VW ).

�

8.5.3 Appendix

Claim: We claim that it suffices to find W̃ , X̃, Ỹ and Z̃ jointly distributed
according to p(ũ, ṽ, w̃, x̃)q(ỹ, z̃|x̃), and satisfying the following properties:

• λ1 · I(W ;Y ) +λ2 · I(W ;Z) +λ3 · I(UW ;Y ) +λ4 · I(VW ;Z) +λ5 · (I(UW ;Y ) +
I(X;Z|UW )) + λ6 · (I(VW ;Z) + I(X;Y |VW )) is less than or equal to λ1 ·
I(W̃ ; Ỹ ) + λ2 · I(W̃ ; Z̃) + λ3 · I(ŨW̃ ; Ỹ ) + λ4 · I(Ṽ W̃ ; Z̃) + λ5 · (I(ŨW̃ ; Ỹ ) +

I(X̃; Z̃|ŨW̃ )) + λ6 · (I(Ṽ W̃ ; Z̃) + I(X̃; Ỹ |Ṽ W̃ )),

• For any w̃ where p(w̃) > 0, p(ũ|w̃) 6= 0 for at most |X | values of ũ,

• For any w̃ where p(w̃) > 0, p(ṽ|w̃) 6= 0 for at most |X | values of ṽ,

• |W̃| = |W|.

Proof of the claim: Given w̃ ∈ W̃ , let Aw̃ be a subset of Ũ satisfying |Aw̃| = |X |,
and p(Ũ = ũ|W̃ = w̃) = 0 if ũ /∈ Aw̃. Assume that Aw̃ = {aw̃,1, aw̃,2, aw̃,3, ..., aw̃,|X |}.
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Similarly, let Bw̃ be a subset of Ṽ satisfying |Bw̃| = |X |, and p(Ṽ = ṽ|W̃ = w̃) =
0 if ṽ /∈ Bw̃. Assume that Bw̃ = {bw̃,1, bw̃,2, bw̃,3, ..., bw̃,|X |}.

Define Ũ ′ and Ṽ ′, two random variables taking values from the set {1, 2, 3, ..., |X |},
and jointly distributed with W̃ , X̃, Ỹ and Z̃ as follows: for any w̃, x̃, ỹ and z̃ where
p(W̃ = w̃, X̃ = x̃, Ỹ = ỹ, Z̃ = z̃) > 0, let p(Ũ ′ = i, Ṽ ′ = j|W̃ = w̃, X̃ = x̃, Ỹ =

ỹ, Z̃ = z̃) = p(Ũ = aw̃,i|W̃ = w̃, X̃ = x̃)p(Ṽ = bw̃,j|W̃ = w̃, X̃ = x̃). Both Ũ ′ and Ṽ ′

have alphabet of size |X | and furthermore I(Ũ ′; Ỹ |W̃ ) = I(Ũ ; Ỹ |W̃ ) , I(X̃; Z̃|Ũ ′W̃ ) =

I(X̃; Z̃|ŨW̃ ), I(Ṽ ′; Z̃|W̃ ) = I(Ṽ ; Z̃|W̃ ) and I(X̃; Ỹ |Ṽ ′W̃ ) = I(X̃; Ỹ |Ṽ W̃ ). Random

variables Ũ ′, Ṽ ′, W̃ , X̃, Ỹ and Z̃ have the desired properties. �
Thus, it suffices to find Ũ , Ṽ , W̃ , X̃, Ỹ satisfying the properties mentioned above.

We assume that random variables Ũ , Ṽ , W̃ , X̃, Ỹ and Z̃ are respectively defined on
the alphabets of U , V , W , X, Y and Z. Without loss of generality assume p(W =

w) > 0 for all w ∈ W . We assume that the joint distribution of W̃ , X̃, Ỹ , Z̃ is the

same as that of W,X, Y, Z. Therefore I(W ;Y ) = I(W̃ ; Ỹ ) and I(W ;Z) = I(W̃ ; Z̃). It
suffices to define p(ũ, ṽ|w̃, x̃) = p(ũ|w̃, x̃)p(ṽ|w̃, x̃) satisfying the following properties:

• For any w ∈ W , λ3 ·I(U ;Y |W = w)+λ5 · (I(U ;Y |W = w)+I(X;Z|UW = w))

is less than or equal to λ3 ·I(Ũ ; Ỹ |W̃ = w)+λ5 ·(I(Ũ ; Ỹ |W̃ = w)+I(X̃; Z̃|ŨW̃ =
w)).

• For any w ∈ W , λ4 ·I(V ;Z|W = w)+λ6 · (I(V ;Z|W = w)+I(X;Y |VW = w))

is less than or equal to λ4 ·I(Ṽ ; Z̃|W̃ = w)+λ6 ·(I(Ṽ ; Z̃|W̃ = w)+I(X̃; Ỹ |Ṽ W̃ =
w)).

• For any w, p(Ũ = u|W̃ = w) 6= 0 for at most |X | values of u.

• For any w, p(Ṽ = v|W̃ = w) 6= 0 for at most |X | values of v.

Note that the conditions involving U and V are disjoint, because we can choose
p(ũ, ṽ|w̃, x̃) = p(ũ|w̃, x̃)p(ṽ|w̃, x̃).

Such choices of p(ũ|w̃, x̃) and p(ṽ|w̃, x̃) exist because of the following lemma that
can be proved using the strengthened Carathéodory theorem of Fenchel:

Lemma. Given any non-negative numbers α and β, a broadcast channel q(y, z|x)
and a fixed marginal distribution p(x), consider the problem of finding the max-
imum of αI(U ;Y ) + β

(
I(U ;Y ) + I(X;Z|U)

)
over all p(u|x) where U,X, Y, Z ∼

p(u|x)p(x)q(y, z|x). The cardinality of U for this problem can be reduced to |X |.
Note that αI(U ;Y ) + β

(
I(U ;Y ) + I(X;Z|U)

)
is equal to (α + β)H(Y ) plus −(α +

β)H(Y |U) + βI(X;Z|U). Since p(x) is fixed, we are interested in the maximum of
−(α+β)H(Y |U) +βI(X;Z|U) over all p(u|x). A typical application of the strength-
ened Carathéodory theorem of Fenchel reduces the cardinality of U to |X |.
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8.6 Computation of the capacity along certain di-

rections

8.6.1 Statement of the result

In this section we compute the capacity region along certain directions.

Lemma 8. For a broadcast channel q(y, z|x) and real numbers λ0, λ1 and λ2 such
that λ0 ≥ λ1 + λ2,

max
(R0,R1,R2)∈C(q(y,z|x))

(λ0R0 + λ1R1 + λ2R2) =

max{ max
(R0,R2)∈Cd1 (q(y,z|x))

(λ0R0 + λ2R2),

max
(R0,R1)∈Cd2 (q(y,z|x))

(λ0R0 + λ1R1)},

where Cd1(q(y, z|x)) and Cd2(q(y, z|x)) are the degraded message set capacity regions
for the given channel.

Corollary 3. The above observation essentially says that if λ0 ≥ λ1 + λ2, then a
maximum of λ0R0 + λ1R1 + λ2R2 over triples (R0, R1, R2) in the capacity region
occurs when either R1 = 0 or R2 = 0.

Remark 4. Since Cd1(q(y, z|x)) ∪ Cd1(q(y, z|x)) ⊂ CM(q(y, z|x)) ⊂ C(q(y, z|x)), the
above lemma implies that Marton’s inner bound is tight along the direction of such
(λ0, λ1, λ2), i.e.

max
(R0,R1,R2)∈C(q(y,z|x))

(λ0R0 + λ1R1 + λ2R2) =

max
(R0,R1,R2)∈CM (q(y,z|x))

(λ0R0 + λ1R1 + λ2R2),

whenever λ0 ≥ λ1 + λ2.

Based on numerical simulations for certain broadcast channels, we conjecture that
the Nair-El Gamal outer bound is also tight along the direction of any such (λ0, λ1, λ2).
However if this conjecture turns out to be false, it would imply that the Nair-El Gamal
outer bound is not tight.

8.6.2 Proof

Proof of Lemma 8: It suffices to show that

max
(R0,R1,R2)∈C(q(y,z|x))

(λ0R0 + λ1R1 + λ2R2) ≤

max{ max
(R0,R2)∈Cd1 (q(y,z|x))

(λ0R0 + λ2R2),

max
(R0,R1)∈Cd2 (q(y,z|x))

(λ0R0 + λ1R1)}.
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The key step is to show that if (R0, R1, R2) is in the capacity region of a broadcast
channel, then (R0 + min{R1, R2}, R1−min{R1, R2}, R2−min{R1, R2}) is also in the
capacity region. Since λ0 ≥ λ1 + λ2, we then have that λ0(R0 + min{R1, R2}) +
λ1(R1 − min{R1, R2}) + λ2(R2 − min{R1, R2}) ≥ λ0R0 + λ1R1 + λ2R2, so at the
maximum we must have min(R1, R2) = 0. One can prove this property using the
result of Willems [55], which shows that the maximal probability of error capacity
region is equal to the average probability of error capacity region. Willems’ proof,
however, is rather involved. Instead, we provide a simple direct proof. Consider an
arbitrary code (M0,M1,M2, X

n, ε). We show that

λ0

n
H(M0) +

λ1

n
H(M1) +

λ2

n
H(M2)−O(ε) ≤

max( max
(R0,R2)∈Cd1 (q(y,z|x))

λ0R0 + λ2R2,

max
(R0,R1)∈Cd2 (q(y,z|x))

λ0R0 + λ1R1),

where O(ε) denotes a constant (depending only on |X |, |Y|, |Z|) times ε.
Assume without loss of generality that H(M2) ≤ H(M1), i.e. R2 ≤ R1. Let

Ŵ = M0M2, X̂ = Xn, Ŷ = Y n, Ẑ = Zn. Note that q(ŷ, ẑ|x̂) is the n-fold version of
q(y, z|x). Let us look at Cd1(q(ŷ, ẑ|x̂)), evaluated at the joint pmf p(ŵ, x̂):

R̂0 ≤ I(Ŵ ; Ẑ),

R̂1 ≤ I(X̂; Ŷ |Ŵ ),

R̂0 + R̂1 ≤ I(X̂; Ŷ ).

Note that, by Fano’s inequality,

I(Ŵ ; Ẑ) = I(M0M2;Zn) = H(M0) +H(M2)−O(nε),

I(X̂; Ŷ |Ŵ ) = I(Xn;Y n|M0M2) = H(M1)−O(nε),

I(X̂; Ŷ ) = I(Xn;Y n) = H(M0) +H(M1)−O(nε).

Therefore R̂0 = H(M0) +H(M2)−O(nε) = n(R0 +R2)−O(nε) and R̂1 = H(M1)−
H(M2) = n(R1−R2)−O(nε) is in Cd1(q(ŷ, ẑ|x̂)). Since q(ŷ, ẑ|x̂) is the n-fold version of
q(y, z|x) and Cd1(q(ŷ, ẑ|x̂)) is the degraded message set capacity region for q(ŷ, ẑ|x̂),
we must have: Cd1(q(ŷ, ẑ|x̂)) = n · Cd1(q(y, z|x)), where the multiplication here is

pointwise. Thus, ( R̂0

n
, R̂1

n
) ∈ Cd1(q(y, z|x)). We can complete the proof by letting

ε→ 0, and conclude that (R0 +R2, R1 −R2, 0) ∈ Cd1(q(y, z|x)), and thus also in the
capacity region.

�
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8.7 An achievable region

8.7.1 Statement of the result

In this section we discuss an idea that may lead to a larger inner bound. Since
capacity is defined in the limit of large block length, it is natural to expect that it
has an invariant structure with respect to shifts in time. This suggests that it should
be expressed via a formula that has a fixed-point character, namely it should involve
joint distributions that are invariant under a time shift. The following theorem is a
proposed inner bound along these lines.

Theorem 14. For a broadcast channel q(y, z|x), consider two i.i.d. copies (U1, V1,W1)
and (U2, V2,W2) and a conditional pmf r(x|u1, v1, w1, u2, v2, w2). Assume that

U1, V1,W1, U2, V2,W2, X1, X2, Y1, Y2, Z1, Z2

are distributed according to

p(u1, v1, w1, u2, v2, w2, x1, y1, z1, x2, y2, z2) =

r(u1, v1, w1)r(u2, v2, w2)·
r(x2|u1, v1, w1, u2, v2, w2)q(y2, z2|x2)·
r̃(x1|u1, v1, w1)q(y1, z1|x1),

where r̃(x|u, v, w) is defined as∑
u′∈U ,v′∈V,w′∈W

r(x|u′, v′, w′, u, v, w)r(u′, v′, w′).

Then a rate triple (R0, R1, R2) is achievable if

R0, R1, R2 ≥ 0,

R0 +R1 < I(U2W2;Y1Y2U1W1),

R0 +R2 < I(V2W2;Z1Z2V1W1),

R0 +R1 +R2 < I(V2;Z1Z2V1W1|W2)

+ I(U2W2;Y1Y2U1W1)− I(U2;V2|W2),

R0 +R1 +R2 < I(U2;Y1Y2U1W1|W2)

+ I(V2W2;Z1Z2V1W1)− I(U2;V2|W2),

2R0 +R1 +R2 < I(U2W2;Y1Y2U1W1)

+ I(V2W2;Z1Z2V1W1)− I(U2;V2|W2),

for some U1, V1,W1, U2, V2,W2, X1, X2 that satisfy the above conditions.

Remark 5. The above inner bound reduces to Marton’s inner bound if the condi-
tional distribution r(x|u1, v1, w1, u2, v2, w2) = r(x|u2, v2, w2), i.e. U1V1W1 → U2V2W2 →
X form a Markov chain.
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8.7.2 Proof

Proof of Theorem 14: Consider a natural number n, and define the super symbols
X̃ = X1X2...Xn, Ỹ = Y1Y2...Yn, Z̃ = Z1Z2...Zn representing n-inputs and n-outputs
of the product broadcast channel

qn(y1y2...yn, z1z2...zn|x1x2...xn) =
n∏
i=1

q(yi, zi|xi).

Since the capacity region of the product channel qn(ỹ, z̃|x̃) is n times the capacity re-
gion of q(y, z|x), we have 1

n
CM(qn(y1y2...yn, z1z2...zn|x1x2...xn)) ⊂ C(q(y, z|x)). Given

an arbitrary joint pmf p(un, vn, wn, xn), one can then show that the following region
is an inner bound to C(q(y, z|x)):

R0, R1, R2 ≥ 0,

R0 +R1 ≤
1

n
I(UnWn;Y n), (8.22)

R0 +R2 ≤
1

n
I(V nWn;Zn), (8.23)

R0 +R1 +R2 ≤
1

n

[
I(UnWn;Y n) + I(V n;Zn|Wn)

− I(Un;V n|Wn)
]
, (8.24)

R0 +R1 +R2 ≤
1

n

[
I(Un;Y n|Wn) + I(V nWn;Zn)

− I(Un;V n|Wn)
]
, (8.25)

2R0 +R1 +R2 ≤
1

n

[
I(UnWn;Y n) + I(V nWn;Zn)

− I(Un;V n|Wn)
]
, (8.26)

where Un, V n,W n, Xn, Y n, Zn are distributed according to p(un, vn, wn, xn)q(yn, zn|xn).
Clearly if we assume that (Un, V n,W n, Xn) is n i.i.d. copies of p(u, v, w, x) we get
back the one-letter version of Marton’s inner bound. Assume that

p(un, vn, wn) =
n∏
i=1

r(ui, vi, wi).

Note that Ui, Vi,Wi are i.i.d. copies of (U, V,W ) distributed according to r(u, v, w).
We further use the given conditional law r(x|u1, v1, w1, u2, v2, w2) to define the joint
distribution of Xn given Un, V n,W n as

p(xn2 |un, vn, wn) =
n∏
i=2

r(xi|ui−1, vi−1, wi−1, ui, vi, wi),

X1 = constant.
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We then have

I(UnW n;Y n) = H(UnW n)−H(UnW n|Y n) =
n∑
i=1

H(UiWi)−H(UiWi|U i−1W i−1Y n) =

n∑
i=1

I(UiWi;U
i−1W i−1Y n) ≥

n∑
i=2

I(UiWi;Ui−1Wi−1YiYi−1)

= (n− 1)I(U2W2;Y1Y2U1W1).

Similarly I(V nW n;Zn) ≥ (n− 1)I(V2W2;V1W1Z1Z2). Next, note that

I(V n;Zn|W n) = H(V n|W n)−H(V n|W nZn) =
n∑
i=1

H(Vi|Wi)−H(Vi|V i−1W nZn) =

n∑
i=1

I(Vi;V
i−1W nZn|Wi) ≥

n∑
i=2

I(Vi;Vi−1Wi−1ZiZi−1|Wi) =

(n− 1)I(V2;V1W1Z2Z1|W2).

Similarly, I(Un;Y n|W n) ≥ (n−1)I(U2;Y1Y2U1W1|W2). Lastly, note that I(Un;V n|W n) =
n·I(U ;V |W ). We obtain the desired result by substituting these values into equations
(8.22)-(8.26), and letting n→∞.

�
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Appendix A

Appendices

A.1 Lower bound on secret key rate

A.1.1 Source Model

The essentially best known lower bound on the source model secrecy capacity,
proved using random binning arguments, is due to Ahlswede and Csiszár [1]: the maxi-
mum of supV→U→X1→X2Z

(
I(U ;X2|V )−I(U ;Z|V )

)
and supV→U→X2→X1Z

(
I(U ;X1|V )−

I(U ;Z|V )
)
. 1

Roughly speaking our new lower bound in the source model is proved by following
the interactive communication stage by stage, however we have to do some careful
bookkeeping of the buildup of the secret-key rate by controlling the amount of reduc-
tion of secret key rate built up in earlier stages due to the communication in later
stages. The lower bound in the source model is exploited for deriving a new lower
bound on the secret key capacity in the channel model. After the submission of [23],
the authors were informed about the existence of a related result in [54] in which a
two-way key agreement protocol for binary random variables (in the context of the
quantum key distribution) is discussed.

Theorem 15. S(X1;X2; ...;Xu; (Xu+1)(s); ...; (Xm)(s)‖Z) is bounded below by∑b
j=a[min1≤r≤m I(Uj;Xr|U1:j−1)− I(Uj;Z|U1:j−1)]

for all natural numbers a ≤ b, and finite random variables U1, U2, ..., Ub satisfying the
following constraints:

1Maurer provided a different technique for deriving lower bounds on the secret key capacity in
[39]. He proved, for instance, that even when the maximum of the two one-way secret key capacities
vanishes, the secret key capacity may still be positive. This technique however seems to give us a
rather low secret key rate in this case. A generally applicable single letter form of a lower bound
based on the ideas in [39] is not known.
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•

p(U1, U2, ..., Ub|X1, X2, X3, ..., Xm, Z) =

b∏
k=1

p(Uk|U1:k−1Xjk),

where 1 ≤ jk ≤ m is such that jk = k modulo m;

• Uk = 0 whenever u+ 1 ≤ jk ≤ m where jk is defined as above.

This lower bound strictly improves what is essentially the currently best known
lower bound, namely the maximum of the two one-way secret key capacities.

Discussion: The first property that (U1, ..., Ub) should satisfy is equivalent to the
following condition:

I(Uk;X[m]−{jk}|U1:k−1Xjk) = 0.
Intuitively, assuming that all the Xi’s and Z have learnt U1:k−1, the jk-th terminal

can create Uk. The individual terms in the lower bound can be understood from the
form of the one-way secret key capacity. �

Proof

Proof of Theorem 15: It is enough to prove the lower bound for the special case
of a = 1. This is because S(X1;X2; ...;Xu;X

(s)
u+1; ...;X

(s)
m ‖Z) can be bounded below

by

S
(
X1U1:a−1; ...;XuU1:a−1; (Xu+1U1:a−1)(s); ...

...; (XmU1:a−1)(s)‖ZU1:a−1

)
since the m terminals can collaboratively create i.i.d. repetitions of U1:a−1. Here we
are using the following inequality for k = 1, 2, ..., a− 2:

S
(
X1U1:k−1; ...;XuU1:k−1; (Xu+1U1:k−1)(s); ...

...; (XmU1:k−1)(s)‖ZU1:k−1

)
≥ S

(
X1U1:k; ...;XuU1:k; (Xu+1U1:k)

(s); ...

...; (XmU1:k)
(s)‖ZU1:k

)
.

We proceed with the assumption a = 1.

For any sequence (s1, s2, ..., sl), let (s1, s2, ..., si−1,
︷︸︸︷
si , si+1, ..., sl) refer to the sub-

sequence in which si is removed. Apply Lemma A3.1 mentioned at the end of this
section to the m+ 1-tuple:

(Ui, X1U1:i−1, ..., Xji−1
U1:i−1,

︷ ︸︸ ︷
XjiU1:i−1, Xji+1

U1:i−1,

..., XmU1:i−1, ZU1:i−1)
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for i = 1, 2, ..., b where ji is defined as the natural number 1 ≤ ji ≤ m satisfying
ji = i modulo m. The lemma implies the existence of a natural number n and
random variables C1:b satisfying the following four properties (here we use Un

1:i−1 as a
shorthand for Un

1 U
n
2 U

n
3 ...U

n
i−1, n i.i.d repetitions of U1U2...Ui−1):

• Ci is a function of Un
i , i = 1, 2, 3..., b;

• Un
i could be reconstructed from Ci and Xn

j U
n
1:i−1 for all j with probability 1− ε

for i = 1, 2, 3..., b;

• 1
n
I(Ci;Z

nUn
1:i−1) < ε+ max[0, I(Ui;ZU1:i−1)−minj I(Ui;XjU1:i−1)] =

ε+ max[0, I(Ui;Z|U1:i−1)−minj I(Ui;Xj|U1:i−1)];

• 1
n
H(Un

i |CiZnUn
1:i−1) ≥ max[0,minj I(Ui;XjU1:i−1)− I(Ui;ZU1:i−1)]− ε =

max[0,minj I(Ui;Xj|U1:i−1)− I(Ui;Z|U1:i−1)]− ε.
Assume that the m terminals observe n i.i.d repetitions of their random variables.

At the i-th stage, Un
i and Ci are created by the ji-th terminal. Ci is then communi-

cated to the other terminals and thereby enabling the other m−1 terminals to create
Un
i with probability 1 − ε. The probability that after b stages all the m terminals

cannot agree on the common randomness Un
1 U

n
2 U

n
3 ...U

n
b will therefore be at most

(m− 1)bε. In other words, if we let Gi represent the i-th terminal’s guess of Un
1:b, we

will have:
P (G1 = · · · = Gm = Un

1:b) ≥ 1− (m− 1)bε.

We can bound S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) from below by

1

n
S(G1;G2; ...;Gu;G

(s)
u+1; ...;G(s)

m ‖C1:bZ
n) ≥

1

n
[H(G1|C1:bZ

n)−
m∑
i=2

H(G1|Gi)].

The last inequality was derived using property 4 of Theorem 1. Since

P (G1 = · · · = Gm = Un
1:b) ≥ 1− (m− 1)bε,

we can work out the last expression as follows:

1

n
[H(G1|C1:bZ

n)−
m∑
i=2

H(G1|Gi)] ≥

1

n
[H(Un

1:b|C1:bZ
n)−H(Un

1:b|G1)−
m∑
i=2

H(G1|Gi)] ≥

1

n
H(Un

1:b|C1:bZ
n)

−m
(
h((m− 1)bε) + (m− 1)bε log

b∏
i=1

|Ui|
)
,
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where h(.) is the binary entropy function.
We prove that 1

n
H(Un

1:b|C1:bZ
n) is at least∑b

i=1[min1≤j≤m I(Ui;Xj|U1:i−1)− I(Ui;Z|U1:i−1)]− 2bε.
If we can show this, the proof would be finished by letting ε tend to zero.

H(Un
1:b|C1:bZ

n) =
b∑
i=1

H(Un
i |C1:bZ

nUn
1:i−1) =

b∑
i=1

H(Un
i |C1:iZ

nUn
1:i−1)−

b−1∑
i=1

I(Un
i ;Ci+1:b|C1:iZ

nUn
1:i−1) =

b∑
i=1

H(Un
i |CiZnUn

1:i−1)−

b−1∑
i=1

I(Un
i ;Ci+1:b|C1:iZ

nUn
1:i−1).

Starting with the second term,

b−1∑
i=1

I(Un
i ;Ci+1:b|C1:iZ

nUn
1:i−1) =∑

1≤i<j≤p

I(Un
i ;Cj|C1:j−1Z

nUn
1:i−1) =

b∑
j=2

I(Un
1:j−1;Cj|C1:j−1Z

n) ≤

b∑
j=2

I(Un
1:j−1C1:j−1Z

n;Cj) =

b∑
j=2

I(Un
1:j−1Z

n;Cj) ≤

b∑
j=2

n
(
ε+ max[0, I(Uj;Z|U1:j−1)−min

r
I(Uj;Xr|U1:j−1)]

)
,

where we have used the third above-mentioned property of the Cj in the last step.
The first term in the above expansion of H(Un

1:b|C1:bZ
n) can be bounded below
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using the fourth property of the Ci.

b∑
i=1

H(Un
i |CiZnUn

1:i−1) ≥

n
b∑
i=1

(
max[0,min

j
I(Ui;Xj|U1:i−1)− I(Ui;Z|U1:i−1)]− ε

)
.

Therefore
H(Un

1:b|C1:bZ
n) ≥

n

b∑
i=1

(
max[0,min

j
I(Ui;Xj|U1:i−1)− I(Ui;Z|U1:i−1)]

)
−

n

b∑
i=2

(
max[0, I(Ui;Z|U1:i−1)−min

j
I(Ui;Xj|U1:i−1)]

)
− 2nbε.

Since, for every real number r, max[0, r]−max[0,−r] ≥ r, we can conclude:

1

n
H(Un

1:b|C1:bZ
n) ≥

b∑
j=1

[ min
1≤r≤m

I(Uj;Xr|U1:j−1)− I(Uj;Z|U1:j−1)]− 2bε.

It remains to prove that, in the case of two terminals, the new lower bound strictly
improves the maximum of the two one-way secret key capacities. Since m = 2, for
simplicity we use the notation X, Y instead of X1 and X2 for the rest of the proof.
We note that for any arbitrary random variables V1 and V2 satisfying the Markov
chain V1 → V2 → X → Y Z, the choice of a = b = 3 and U1 = V1, U2 = 0, U3 = V2

would achieve I(V2;Y |V1)− I(V2;Z|V1). Therefore the new lower bound is no worse
than the maximum of the two one-way secret key capacities. We use the example
and proof technique provided by Ahlswede and Csiszár in [1] to show that there is at
least one example in which the new lower bound outperforms the maximum of the
two one-way secret key capacities. Assume that X1 and X2 are independent binary
random variables. The joint conditional distribution of Y1, Y2, Z1, Z2 given X1 and
X2 is defined in Figure A.1. Let X = (X1, X2), Y = (Y1, Y2), Z = (Z1, Z2). Assume
further that X1 has a uniform distribution.

The upper bound I(X;Y |Z) = I(X1;Y1|Z1)+I(X2;Y2|Z2) is also a lower bound on
S(X;Y ‖Z). This is because the above expression is achievable with the choice of U1 =
X1, U2 = Y2. But this cannot be achieved by either of the one-way secret key capaci-
ties. As pointed out in [1], the one-way secret key capacity S(X;Y (s)‖Z) depends only
on p(x, y) and p(x, z). But p((x1, x2), (y1, y2)) is the same as p((x1, x2), (y1, t2)). Fur-
ther (X1, X2)→ (Y1, T2)→ (Z1, Z2) forms a Markov chain. Therefore S(X;Y (s)‖Z) =
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Figure A.1: The conditional distribution of (Y1, Y2, Z1, Z2) given X1 and X2

I(X1;Y1|Z1) + I(X2;T2|Z2) < I(X1;Y1|Z1) + I(X2;Y2|Z2). The last inequality is be-
cause I(Y2;Z2) = 0.9I(X2;Z2) < I(X2;Z2).

Similarly, S(X(s);Y ‖Z) < I(X;Y |Z) because p((y1, y2), (x1, x2)) is the same as
p((y1, y2), (t1, x2)) as X1 has a uniform distribution, and also because I(X1;Z1) <
I(Y1;Z1). The latter inequality is valid because H(Z1|X1) = h(0.95ε, 1 − ε, 0.05ε) >
H(Z1|Y1) = 0.9h(ε, 1− ε) + 0.1h(0.5ε, 1− ε, 0.5ε).

�
Lemma A3.1 For any random variables X1, X2, ..., Xm and Z taking values in

finite sets, and for any ε > 0, there exists a natural number M such that for any
n ≥M , there exists random variable C such that:

• H(C|Xn
1 ) = 0;

• Xn
1 could be reconstructed from C and Xn

j for all j with probability 1− ε;

• 1
n
I(C;Zn) < ε+ max(0, I(X1;Z)−minj I(X1;Xj));

• 1
n
H(Xn

1 |CZn) ≥ max[0,minj I(X1;Xj)− I(X1;Z)− ε].

Proof: Let X1 denote the alphabet of X1. We will find a mapping f : X n
1 7→

{1, 2, 3, ..., 2n(maxj H(X1|Xj)+cε)} such that C = f(Xn
1 ) satisfies the required properties.

c < 1 is a small constant that will be specified during the proof.
We consider two cases: in the first case we assume I(X1;Z)−minj I(X1;Xj) ≥ 0.

In other words, maxj H(X1|Xj) ≥ H(X1|Z). Consider the scenario in which the first
terminal wants to enable the terminals X2, X3, ..., Xm and Z to recover his message
with probability at least 1− cε. Slepian-Wolf tells us that there is a natural number
M such that for any n ≥ M there exists random variable C = f(Xn

1 ) of entropy
n[maxj H(X1|Xj) + cε] that would work. Among the four properties that C has to
satisfy, all but the third one are trivial. Regarding the third inequality one can write:

I(Xn
1 ;Zn) = I(C;Zn) + I(Xn

1 ;Zn|C) =

I(C;Zn) +H(Xn
1 |C)−H(Xn

1 |CZn).
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According to the Fano inequality, H(Xn
1 |CZn) is of order n(h(cε) + cε log |X1|)

since Xn
1 can be recovered from CZn with probability 1− cε and the logarithm of the

support set of these random variables is of order n. The constant c can be chosen so
that h(cε) + cε log |X1| ≤ ε.

We get the desired bound on I(C;Zn) by noting that

H(Xn
1 |C) = H(Xn

1 )−H(C) =

n[H(X1)−max
j
H(X1|Xj)] = n ·min

j
I(X1;Xj).

For the second case, we assume that I(X1;Z) − minj I(X1;Xj) < 0, or in other
words

max
j
H(X1|Xj) < H(X1|Z).

Slepian-Wolf shows the existence of a natural number M such that for any n ≥ M
there are random variables C = f(Xn

1 ) of entropy n[maxj H(X1|Xj) + cε], and C ′ =
g(Xn

1 ) of entropy n[H(X1|Z)−maxj H(X1|Xj)+cε] such that Xn
1 is recoverable from

(C, C ′,Zn) with probability 1−cε, and from (C, Xn
j ) for any j with probability 1−cε.

Now,

I(Xn
1 ;CC ′Zn) = I(Xn

1 ;Zn) +H(CC ′|Zn).

On the other hand,

I(Xn
1 ;CC ′Zn) = H(Xn

1 )−H(Xn
1 |CC ′Zn) =

H(Xn
1 )− n(h(cε) + cε · log |X1|).

The constant c can be chosen so that h(cε)+cε·log |X1| = ε. ThereforeH(CC ′|Zn) =
H(Xn

1 )− I(Xn
1 ;Zn)− nε ≥ H(C) +H(C ′)− nε. In the last inequality we have used

the fact that the values of H(C) and H(C ′) are known.
But since H(CC ′|Zn) = H(C|Zn) + H(C ′|CZn), we can conclude 1

n
I(C;Zn) +

1
n
I(C ′;CZn) = ε. This proves the third property that C has to satisfy, i.e. 1

n
I(C;Zn) ≤

ε. The fourth property can be proved by noting that

1

n
H(Xn

1 |CZn) ≥ 1

n
H(C ′|CZn) ≥

1

n
[H(C ′)− I(C ′;CZn)] ≥ min

j
I(X1;Xj)− I(X1;Z)− ε.

�
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A.1.2 Channel Model

In the channel model, for the case of m = 2, the best known upper bound explicitly
mentioned in the literature, as far as we are aware, is

min[sup
p(x1)

I(X1;X2), sup
p(x1)

I(X1;X2|Z))],

which was proposed by Maurer [39]. This can however be easily generalized to

inf
Z→Z→X1X2

[sup
p(x1)

I(X1;X2|Z)].

The essentially best know lower bound, as far as we are aware, is

sup
p(x1)

max
{

sup
V→U→X1→X2Z

[I(U ;X2|V )− I(U ;Z|V )],

sup
V→U→X2→X1Z

[I(U ;X1|V )− I(U ;Z|V )]
}
, (A.1)

which one can find in [12], [39]. Recently, Csiszár and Narayan have derived new
sufficient conditions for tight upper bounds [13].

In this section, we derive a new lower on the secrecy capacity. An example is pro-
vided to show that the new bound represents a strict improvement over the previously
best known bound.

Theorem 16. Assume that a ≤ b are two arbitrary natural numbers and (U1, U2, ..., Ub)
are arbitrary finite random variables satisfying the following constraints:

•

p(U1, U2, ..., Ub|X1, X2, X3, ..., Xm, Z) =

b∏
k=1

p(Uk|U1:k−1Xjk),

where 1 ≤ jk ≤ m is such that jk = k modulo m;

• Uk = 0 whenever u+ 1 ≤ jk ≤ m where jk is defined as above.2

CCH(u, q(x2, x3, ...xm, z|x1)) is then bounded from below by

sup
p(x1)

b∑
j=a

[ min
1≤r≤m

I(Uj;Xr|U1:j−1)− I(Uj;Z|U1:j−1)],

2By Uk = 0, we mean P (Uk = 0) = 1, in effect meaning that the alphabet for Uk is of size one.
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where random variables X1, X2, ..., Xm, Z, U1, ..., Ub inside the supremum are jointly
distributed as

p(x1)q(x2, ...xm, z|x1)p(u1, u2, ..., ub|x1, x2, ..., xm, z).

In the case of m = 2, the new lower bound on CCH(2, q(x2, z|x1)) derived by
taking supremum over all valid (a, b, U1, U2, ..., Ub) strictly improves the

sup
p(x1)

[max(S(X1;X
(s)
2 ‖Z), S(X

(s)
1 ;X2‖Z))]

lower bound, where in this expression, S(X1;X
(s)
2 ‖Z) is the source model one-way

secret key capacity from X1 to X2 in the presence of Z.

Discussion: CCH(u, q(x2, x3, ...xm, z|x1)) is bounded from below by

sup
p(x1)

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z),

because given any p(x1) and a source model key generation scheme for

S(X1; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z),

one can simulate the scheme in the channel model [39]. More specifically, let SK(n,
ε, S1, S2, S3, ..., Sm, C) denote a source model secret key generation scheme. This
scheme can be simulated in the channel model by having the first terminal insert i.i.d.
copies of X1 at the input of the DMBC for n stages, and letting the first n− 1 public
discussions C1, C2, ..., Cn−1 be vacuous, and Cn to be equal to the source model
discussion C. The same secret keys S1, S2, S3, ..., Sm are then created at the end of
the scheme.

We can then apply Theorem 15 of section A.1.1 to bound

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z)

from below by

b∑
j=a

[ min
1≤r≤m

I(Uj;Xr|U1:j−1)− I(Uj;Z|U1:j−1)].

The proof will establish that, in the case of u = m = 2, this new lower bound
represents a strict improvement over the

sup
p(x1)

[max(S(X1;X
(s)
2 ‖Z), S(X

(s)
1 ;X2‖Z))]

lower bound. �
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Proof of Theorem 16: CCH(u, q(x2, x3, ...xm, z|x1)) is bounded from below by

sup
p(x1)

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X(s)

m ‖Z).

This is argued in the discussion following the statement of Theorem 16. We apply
Theorem 15 of section A.1.1 to bound

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) from below by∑b

j=a[min1≤r≤m I(Uj;Xr|U1:j−1)− I(Uj;Z|U1:j−1)]. Therefore
CCH(u, q(x2, x3, ...xm, z|x1)) is bounded from below by

sup
p(x1)

[
b∑

j=a

[ min
1≤r≤m

I(Uj;Xr|U1:j−1)− I(Uj;Z|U1:j−1)]]. (A.2)

For the case of u = m = 2, for simplicity, we use the notation X, Y instead of
X1 and X2 for the rest of the proof. We first prove that the new lower bound on
CCH(2, q(y, z|x)) is always greater than or equal to

sup
p(x)

[max(S(X;Y (s)‖Z), S(X(s);Y ‖Z))].

Take some arbitrary p(x), and consider random variables X, Y and Z having
the joint distribution p(x)q(y, z|x). Take arbitrary random variables V1 and V2 sat-
isfying the Markov chain V2 → V1 → X → Y Z. Specializing equation (A.2) to
a = b = 3, the chosen p(x), and (U1, U2, U3) = (V2, 0, V1)3, one can show that
CCH(2, q(y, z|x)) ≥ I(V2;Y |V1) − I(V2;Z|V1). Therefore the new lower bound is
always greater than or equal to supp(x) S(X;Y (s)‖Z). By symmetry, it is greater than

or equal to supp(x) S(X;Y (s)‖Z). Thus,

CCH(2, q(y, z|x)) ≥
sup
p(x)

[max(S(X;Y (s)‖Z), S(X(s);Y ‖Z))].

Next, we construct an example to show that there is at least one case in which
the new lower bound outperforms supp(x)[max(S(X;Y (s)‖Z), S(X(s);Y ‖Z))]. Our
example is in part motivated by the example and the proof technique of Ahlswede
and Csiszár in [1].

Assume that X = (X1, X2), Y = (Y1, Y2), Z = (Z1, Z2). The conditional
distribution of (Y1, Y2, Z1, Z2) given X1 and X2 is defined in Figure A.1 in terms
of a parameter ε ∈ [0, 1]. We prove that the new lower bound and the upper

3By U2 = 0, we mean that the finite random variable U2 takes on the value 0 with probability
one.
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bound supp(x) I(X;Y |Z) match for this broadcast channel. This would imply that
CCH(2, q(y, z|x)) = supp(x) I(X;Y |Z). On the other hand, we show that

sup
p(x)

I(X;Y |Z) >

sup
p(x)

[max(S(X;Y (s)‖Z), S(X(s);Y ‖Z))], (A.3)

meaning that the previously known lower bound does not close the gap.
We begin by showing that the supremum supp(x) I(X;Y |Z) is uniquely achieved at

the uniform distribution on X, i.e. when p(x) = 1
4

for all x = (x1, x2) ∈ {0, 1}×{0, 1}.
In other words, the supremum is uniquely achieved when X1 and X2 are independent
uniform binary random variables. In appendix of section A.1.2, with reference to
Figure A.1 with X = (X1, X2), Y = (Y1, Y2) and Z = (Z1, Z2), it is shown that for
any 0 < ε < 1, I(X;Y |Z) strictly increases when

• X1 and X2 are not independent and we replace p(X1, X2)p(Y, Z|X) with
p(X1)p(X2)p(Y, Z|X), i.e. replacing the joint distribution of X1, X2 with the
product of their marginal distributions;

• we change the marginal distribution of X1 to a uniform distribution if X1 and
X2 are independent, but X1 is not uniform;

• we change the marginal distribution of X2 to a uniform distribution if X1 and
X2 are independent, but X2 is not uniform.

Therefore the supremum supp(x) I(X;Y |Z) is uniquely achieved when X1 and X2 are
independent uniform binary random variables.

When X1 and X2 are independent, the pairs (X1, Y1, Z1) and (X2, Y2, Z2) will be-
come independent. In this case, I(X;Y |Z) will be equal to I(X1;Y1|Z1)+I(X2;Y2|Z2).
Since the Markov chains X1 → Y1 → Z1 and Y2 → X2 → Z2 hold, the sum
I(X1;Y1|Z1)+I(X2;Y2|Z2) will be equal to I(X1;Y1)−I(X1;Z1)+I(Y2;X2)−I(Y2;Z2).
The latter secrecy rate is achievable by the choice of a = 1, b = 2, (U1, U2) = (X1, Y2)
in equation (A.2).

Now, we will prove equation (A.3). Since

∀p(x), I(X;Y |Z) ≥ max(S(X;Y (s)‖Z), S(X(s);Y ‖Z)),

and the supremum supp(x) I(X;Y |Z) is uniquely achieved when X1 and X2 are inde-
pendent uniform binary random variables, it suffices to show that

I(X;Y |Z) > max(S(X;Y (s)‖Z), S(X(s);Y ‖Z))

for independent uniform binary random variables X1 and X2. In the proof of Theorem
15 of section A.1.1, we have considered exactly the same joint distribution on X, Y
and Z, and showed that I(X;Y |Z) strictly exceeds max(S(X;Y (s)‖Z), S(X(s);Y ‖Z)).
In order to avoid duplication, the argument is not repeated here.

�
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Appendix I

In this appendix, we show that with reference to Figure A.1 with X = (X1, X2),
Y = (Y1, Y2) and Z = (Z1, Z2), for any 0 < ε < 1, I(X;Y |Z) strictly increases when

• X1 and X2 are not independent and we replace p(X1, X2)p(Y, Z|X) with
p(X1)p(X2)p(Y, Z|X), i.e. replace the joint distribution of X1, X2 with the
product of their marginal distributions;

• we change the marginal distribution of X1 to a uniform distribution if X1 and
X2 are independent, but X1 is not uniform;

• we change the marginal distribution of X2 to a uniform distribution if X1 and
X2 are independent, but X2 is not uniform.

Case 1:

I(X;Y |Z) =

I(X1X2;Y1Y2|Z1Z2) =

H(Y1Y2|Z1Z2)−H(Y1Y2|Z1Z2X1X2).

Since Y1Z1 → X1 → X2 → Y2Z2, we can work out the second term as:

H(Y1Y2|Z1Z2X1X2) =

H(Y1|Z1Z2X1X2) +H(Y2|Z1Z2X1X2Y1) =

H(Y1|Z1X1) +H(Y2|X2Z2).

The first term can be bounded from above as follows:

H(Y1Y2|Z1Z2) = H(Y2|Z1Z2) +H(Y1|Z1Z2Y2) ≤
H(Y2|Z2) +H(Y1|Z1).

Therefore I(X;Y |Z) ≤ I(X1;Y1|Z1) + I(X2;Y2|Z2). This would mean that if we
replace
p(X1, X2)p(Y, Z|X) with p(X1)p(X2)p(Y, Z|X), the term I(X;Y |Z) does not de-
crease.

We prove that I(X;Y |Z) strictly increases by contradiction. Assume I(X;Y |Z)
does not increase. In this case, H(Y1|Z1Z2Y2) must be equal to H(Y1|Z1), implying
that I(Y1;Y2|Z1) = 0. Since Z1 → Y1 → Y2 is a Markov chain, the I(Y1;Y2|Z1) = 0
constraint implies that I(Y2;Z1) = I(Y2;Y1). But since

I(Y2;Y1) ≥ I(Y2;T1) ≥ I(Y2;Z1),
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we get I(Y2;T1) = I(Y2;Z1).

I(Y2;Z1) = I(Y2;Z1, 11[Z1 = E]) =

I(Y2; 11[Z1 = E]) + I(Y2;Z1|11[Z1 = E]) = 0 + ε · I(Y2;T1).

Since ε < 1, I(Y2;T1) = I(Y2;Z1) can hold only when I(Y2;T1) = I(Y2;Z1) =
I(Y2;Y1) = 0.

0 = I(Y2;Y1) = I(Y2, 11[Y2 = E];Y1, 11[Y1 = E]) ≥
I(Y2;Y1|11[Y2 = E], 11[Y1 = E]) ≥
p(Y2 6= E).p(Y1 6= E).I(Y2;Y1|Y2 6= E, Y1 6= E) =

0.81I(X1;X2).

Therefore I(X1;X2) = 0, meaning that X1 and X2 are independent. This is a
contradiction. �

Case 2:
I(X1;Y1|Z1) = I(X1;Y1)−I(X1;Z1) = H(Y1)−H(Y1|X1)−H(Z1)+H(Z1|X1) can

be thought of as a function of p(X1 = 0) = a. H(Y1|X1) and H(Z1|X1) are constant
not depending on a. The marginal distribution of Z1 equals (ε · (0.9a+ 0.05), 1− ε, ε ·
(−0.9a + 0.95)), and the marginal distribution of Y1 equals (0.9a, 0.1, 0.9 − 0.9a)).
Therefore it is enough to show that H(Y1)−H(Z1) uniquely reaches its maximum at
a = 0.5. This can be seen by noting that the derivative of 1

0.9
(H(Y1) −H(Z1)) with

respect to a equals log 0.5−(a−0.5)
0.5+(a−0.5)

− ε log 0.5−0.9(a−0.5)
0.5+0.9(a−0.5)

, which is zero only at a = 0.5. �
Case 3:

I(X2;Y2|Z2) = I(X2; (Y2, 11[Y2 = E])|Z2) =

I(X2; 11[Y2 = E]
∣∣Z2) + I(X2;Y2

∣∣11[Y2 = E], Z2) =

0 + P (Y2 = E) ∗ 0 + P (Y2 6= E) ·H(X2|Z2) =

0.9H(X2|Z2).

But

H(X2|Z2) =

P (Z2 = 0) ∗ 0 + P (Z2 = 1) ∗ 0 + P (Z2 = E) ∗H(X2).

Therefore

I(X2;Y2|Z2) = 0.9 ∗ 0.19H(X2).

We are done by noting that H(X2) strictly increases when the distribution of X2 is
changed to the uniform distribution.
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