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Abstract

We consider a problem of distributed lossy source coding with three jointly Gaussian sources(y1, y2, y3), wherey1 and

y2 are positively correlated,y3 = y1 − cy2, c ≥ 0, and the decoder requires reconstructingy3 with a target distortion. Inspired

by results from the binary expansion model, the rate–distortion region of this problem is characterized within a bounded gap.

Treating each source as a multi-layer input, it is shown thatthe layers required by the decoder are combined with some unneeded

information, referred as interference. Therefore, the responsibility of a source coding algorithm is not only to eliminate the

redundancy among the inputs, but also to manage the interference. It is shown that the interference can be effectively managed

through some linear operations among the input layers. Binary expansion model demonstrates that some middle layers ofy1

andy2 are not needed at the decoder, while some upper and lower layers are required. Structured (Lattice) quantizers enable

the encoders to pre-eliminate unnecessary layers. While inthe lossless distributed source coding cut-set outer boundis tight,

it is shown that in the lossy ones, even for binary expansion models, this outer-bound has an unbounded gap with the rate

distortion region. To prove the bounded-gap result, a new outer-bound is established.

I. INTRODUCTION

In this paper, we investigate a distributed lossy source coding problem with three jointly Gaussian

sources(y1, y2, y3), wherey1 and y2 are positively correlated andy3 = y1 − cy2, c ≥ 0. Each source is

observed with an isolated encoder, which sends sends an index message to a central decoder. The decoder

requires reconstructingy3 with a specific quadratic distortion.

In [1], Slepian and Wolf showed that in the distributed source coding problem, if the decoder requires

all sources with no distortion, then the random-binning scheme achieves the optimal rate region. The

Slepian-Wolf result suggests a natural encoding scheme forthe lossy distributed source coding. In this

scheme, first the sources are quantized and transformed to discrete sources and then Slepian-Wolf scheme

This is an extended version of the paper submitted to the IEEEInternational Symposium on Information Theory (ISIT), 2010
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efficiently exploits the correlation of the quantized sources to minimize the rates. In [2], it is shown that

for two Gaussian sources, this scheme of quantization-binning (Q-B) achieves some parts of the rate-

distortion boundaries. In addition, in [3], [4], it is proven that this scheme is optimal for a special form

of distributed lossy source coding problems known as CEO problem. This result has been extended to the

case, where the observation noises of the CEO problem are correlated with a specific tree structure [5].

In [6], it is proven that Q-B scheme achieves the entire rate-distortion region for two jointly Gaussian

sources(y1, y2). Moreover, it is shown that if one wishes to reconstructy1 + cy2, c ≥ 0, with certain

distortion, then Q-B is optimal. However, in [7], it is shownthat if the objective is to reconstructy1−cy2,

Q-B scheme is not optimal and a lattice-based scheme outperforms Q-B scheme in some scenarios. The

scheme of [7] is motivated by an important result due to Korner and Marton, who showed that if the

objective is to reproduce the modulo-two sum of two binary sources, observed by two isolated encoders,

then linear coding achieves optimal performance, while random binning is strictly sub-optimal.

In [8], a linear finite-field deterministic model has been proposed to simplify understanding the key

elements of the multi-user information theory. It is also suggested that the binary expansion model is

used for source coding problems [8]. In [9], the connection of the deterministic (lossless) and the non-

deterministic models (lossy) has been exploited to approximate the rate region of the Gaussian symmetric

multiple description coding. In [10], the binary expansionmodel is used to show that Q-B is an appropriate

scheme to approximate the rate-distortion region of a classof sources, with tree-structured three Gaussian

sources.

In this paper, we start with developing a binary expansion model of the original Gaussian problem. This

model by itself is a distributed lossy source coding problem, which demonstrates the connection among

the sources in a simple and explicit way. Solving the associated source coding problem for the binary

expansion model provides sensible intuition to develop schemes which achieve within a bounded gap of

the rate-distortion region. Treating each source as a multi-layer input, we develop the achievable schemes

based on the following observations: (i) Some middle layersof input are not needed at the decoder, while

some upper and lower layers are required. Therefore, in an efficient achievable scheme, the encoders should

avoid reporting these layers, otherwise the gap from the rate-distortion region becomes unbounded. (ii) The

isolated encoders must employ certain network coding operations between the upper and lower layers of the

inputs. These linear operations substantially reduce the load of reporting the required layers individually.

In addition, in the underlying structure of the inputs, there are some unwanted information which is like

interference, in the sense that it is combined with requiredinformation and each isolated encoder cannot

avoid sending it by pre-elimination. The network coding operations will align these interference terms,

such that at the decoder, these terms will be canceled out in the process reconstruction. (iii) The structured
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quantization enables the encoders to have access to the layers of inputs to pre-eliminate the unwanted

layers.

II. PROBLEM FORMULATION

Let {y1(t), y2(t), y3(t)}n
t=1 be a sequence of independent and identically distributed (i.i.d.) Gaussian

random variables. It is assumed that(y1(t), y2(t), y3(t)) has zero mean, the covariance of(y1, y2), denoted

by K(y1,y2) is equal to,

Ky =




1 ρ

ρ 1


 . (1)

In addition, we assume thaty3(t) = y1(t) − cy2(t). Here in this paper, we assumeρ ≥ 0 and alsoc ≥ 0.

In the problem of the distributed source coding, there are three non-cooperative encoders, where the

jth encoder observes{yj(t)}n
t=1, and sends a message, chosen from{1, 2, . . . ,Mj}, to the centralized

decoder. The decoder receives the messages from the three encoders and estimates{ŷ3(t)}n
t=1.

We define∆ as∆ = 1
n

∑n
t=1E[(yn

3 (t)− ŷn
3 (t))2]. The rate-distortion tuple(R1, R2, R3, d) is admissible,

if for every ǫ > 0 and for a sufficiently largen, there exists a seven-tuple(n,M1,M2,M3,∆3), such that
1
n

log(Mj) ≤ Rj + ǫ, for j = 1, 2, 3, and∆ ≤ d+ ǫ. Without loss of generality, we assume that0 ≤ c ≤ 1.

It is easy to see that any other cases can be transformed into this canonical form through some simple

scaling of y3 and distortiond. In [11], it is shown that forR3 = 0 and ρ ≤ c, the scheme of [7] is

within a bounded gap from the rate-distortion region. In addition, in [11], it is proven that ifR3 = 0 and

c ≤ min{ 1
2ρ
, ρ}, Quantization-and-Binning scheme achieves within a bounded gap from an outer-bound

in R1 +R2.

In this paper, we first consider the missing case, where1
2ρ

≤ c ≤ ρ. To clarify the interaction among

the sources, we develop a binary expansion model. This modelis simple to follow, but still rich enough

to demonstrate the features of the problem. Using this model, we show that a specific interference

management technique is need to achieve within a bounded gapof the rate-distortion region. Then, we

focus on the cases, wherec ≤ min{ 1
2ρ
, ρ} andc ≥ ρ, and approximate the rate-distortion region within a

bounded gap.

III. D ISTRIBUTED CODING FOR THE BINARY-EXPANSION MODEL FOR 1
2ρ

≤ c ≤ ρ

Since the correlation betweeny1 and y2 is equal toρ, we can writey1 = ρy2 +
√

1 − ρ2z, where

z ∼ N (0, 1) andz is independent fromy2. We definer such that

ρ = 1 − 2−2r. (2)
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In addition, we definex asx = ρy2. Noting thatc ≤ ρ, we defineδ such that,

c

ρ
= 1 − 2−δ. (3)

In connection with the Gaussian problem, we introduce a simpler problem, which preserves many aspects

of the original problem, but is easier to understand. In the new problemy1, x and z are all uniformly

distributed in[0, 1]. Therefore,x andz have the binary expansion representations as

x =0.x[1]x[2]x[3] . . . , (4)

z =0.z[1]z[2]z[3] . . . . (5)

In addition, we replacer and δ with the closest integers. The connection ofy1 and x is modeled as

y1 = x⊕ 2−rz. More precisely,

y1 = 0.y
[1]
1 y

[2]
1 y

[3]
1 . . . = 0.x[1]x[2]x[3] . . . x[r](x[r+1] ⊕ z[1])(z[r+2] ⊕ z[2]) . . . . (6)

where⊕ represents the bitwise modulo two addition. In the originalproblem, we havey3 = y1 − cy2 =

(y1 − x) + (1− c
ρ
)x. This equation is modeled asy3 = 2−δx⊕ 2−rz in the binary expansion model. This

model is pictorially shown in Fig. 1.

We defineb as b = −1
2
log2 d. In the binary expansion model,b is replaced with the closest integer.

Moreover, it is interpreted that the decoder needs theb most significant bits (MSBs) ofy3 after the

radix point. In this model, the objective of distributed-source-coding problem is to find the the region for

(R1, R2, R3) such that the decoder can recover up to theb MSBs of y3 after the radix point.

Here, we consider two cases,δ ≤ r andδ ≥ r.

Case One –δ ≤ r: In this case, among theb MSBs of y3, the firstδ bits are always zero. Therefore,

the decoder requires the remaining(b − δ)+ non-zero MSBs. These bits are shown by BlockC1 in the

binary expansion ofy3, depicted in Fig. 1. In this figure, we assumeb ≥ δ andb ≤ r + δ.

Clearly, a simple achievable rate-vector is(R1, R2, R3) = (0, 0, (b − δ)+), denoted byP1. In this

achievable rate, the third encoder sends BlockC1 while the first and second encoders stay silent.

Now, let us consider a more exciting case, whereR3 is zero, and only the first and second encoders

are allowed to pass messages to the decoder. The first question to be answered is which parts ofy1 andx

are relevant to reconstruct BlockC1 at the decoder. In other words, the question is which bits ofy1 and

x have a possible role in the reconstruction of BlockC1. By a simple comparison, it is easy to see that

the first(b− δ)+ bits of y1 andx, shown in BlockA1 andB1 in Fig. 1, are relevant. In addition, we note

that z[1] . . . z[(b−r)+] are appeared in the construction of BlockC1, while only BlockA2 of y1 has these

bits in its structure, and therefore BlockA2 is also important. This makes BlockB2 relevant as well. The
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x[1] x[2] x[r] x[r+1]

z[1]

⊕
z[b−r]

x[b−δ]x[r−δ]. . . x[r−δ+1] . . . x[b−δ+1] . . . . . . x[b]

. . .

x[1] x[2] x[r] x[r+1]x[b−δ]x[r−δ]. . . x[r−δ+1] . . . x[b−δ+1] . . . . . . x[b]

x[1] x[2]

z[1]

⊕
z[b−r]

x[b−δ]x[r−δ]. . . x[r−δ+1] . . . x[b−δ+1] . . .

. . .

C1

y3 = 2−δx+ 2−rz

A1 A2

B1 B2

y1 = x+ 2−rz

x

Fig. 1. Binary Expansion Model for Case I:r ≥ δ

reason is that BlockA2 is combined with the bits of BlockB2, and without having BlockB2, Block A2

reveals no information aboutz[1] . . . z[(b−r)+].

Regarding the above statements, we have the following interesting observation.

Observation One: To reconstructy3 with the required resolution, the decoder does not need some

middle-layers ofy1 andx. More precisely, the decoder does not needy
[b−δ+1]
1 . . . y

[r]
1 andx[b−δ+1] . . . x[r],

while it needs some upper and lower layers ofy1 andx.

The next question is how to efficiently send enough information to the decoder, such that the decoder

can reproducey3 with the required resolution. One simple approach is as follows. Encoder one sends

Block A2 and encoder two sends BlocksB1 andB2. Then, the decoder forms2−δB1 ⊕ (A2 ⊖ B2), to

reconstruct BlockC1 as follows.

2−δB1⊕(A2 ⊖ B2) (7)

=2−δ[0.x[1] . . . x[(b−δ)+]] ⊕
(
2−r[0.y

[r+1]
1 . . . y

[b]
1 ] ⊖ 2−r[0.x[r+1] . . . x[b]]

)
(8)

=2−δ[0.x[1] . . . x[(b−δ)+]] ⊕ 2−r
(
[0.y

[r+1]
1 . . . y

[b]
1 ] ⊖ [0.x[r+1] . . . x[b]]

)
(9)

=2−δ[0.x[1] . . . x[(b−δ)+]] ⊕ 2−r
({

[0.x[r+1] . . . x[b]] ⊕ [0.z[1] . . . z[(b−r)+]]
}

(10)

⊖[0.x[r+1] . . . x[b]]
)

(11)

=2−δ[0.x[1] . . . x[(b−δ)+]] ⊕ 2−r[0.z[1] . . . z[(b−r)+]], (12)

where⊕ and ⊖ respectively represent bit-wise addition and subtraction, which are basically the same

operations. However, we use different notations to resemble the corresponding operations for the original
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x[1] x[2] x[b−δ]x[r−δ]. . . x[r−δ+1] . . .

B1

x[r+1] . . . x[b]

B2

x[r+1]

z[1]

⊕
z[b−r]

. . . x[b]

. . .

A2

⊖

R1 = |A2| = (b− r)+

R2 = |2−δB1 ⊖ B2| = (b− δ)+

Fig. 2. Achievable Scheme for Case One (r > δ), P2 = (R1, R2, R3) = ((b − r)+, (b − δ)+, 0)

Gaussian problem. With this scheme, we achieve(R1, R2, R3) = (|A2|, |B1 ∪ B2|, 0) = ((b − r)+, (b −
δ)+ + (b− r)+ − (r + δ − b)+, 0).

We notice that in the above equations, bits0.x[r+1] . . . x[b] are like interferencein the sense that these

bits are basically unwanted at the decoder, and canceled outin the final result. The only reason that Block

B2 = [x[r+1] . . . x[b]] is reported to the decoder is that the decoder can recover bits [0.z[1] . . . z[(b−r)+]] from

Block A2. On the other hand, the decoder does not need[0.z[1] . . . z[(b−r)+]] by itself, but it needs the

addition of these bits with0.x[r−δ+1] . . . x[b−δ]. Now the question is if we can improve the performance of

the achievable scheme regarding the above statements. The answer is yes. In the new scheme, the encoder

two reports2−δB1⊖B2, instead of sendingB1 andB2 separately, while encoder one still sendsA2. In this

case, the decoder forms(2−δB1 ⊖B2)⊕A2, which is equal to2−δB1 ⊕ (A2 ⊖B2). It is important to note

that the linear operation2−δB1 ⊖ B2 is formed such that the interference bits are aligned and canceled

out in the final addition. In this case, we achieve the rate vector (R1, R2, R3) = (|A2|, |B1 ⊖ 2δB2|, 0) =

((b−r)+, (b−δ)+, 0), denoted byP2. Note that the reduction inR2 is unbounded. This encoding procedure

has been shown in Fig. 2.

Therefore, we have the following observation:

Observation Two: Alignment and network coding among the layers of each sourcecan improve the

achievable scheme.

Since BlocksA1 andB1 are identical, then the load of transmitting part ofB1 can be shifted from

encoder two to encoder one. Relying on this observation, we can develop the achievable scheme shown in

Fig. 3. This scheme achieves the rate vector(R1, R2, R3) = (|2−δA1⊕A2|, |B2|, 0) = ((b−δ)+, (b−r)+, 0),

denoted byP3, which has the same sum-rate asP2.

Let us obtain an achievable rate vector in a cut of the region,whereR1 = 0. In this case, encoder

three has to send bits ofy[r−δ+1]
3 . . . y

[(b−δ)+]
3 . The reason is that these bits havez[1] . . . z[(b−r)+] in their
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x[1] x[2] x[r−δ]. . .

Part ofA1

⊕

x[r+1] . . . x[b]

B2

x[r+1]

z[1]

⊕

z[b−r]

. . . x[b]

. . .

A2R1 = (b− δ)+

R2 = |B2| = (b− r)+

x[b−δ]x[r−δ+1] . . .

⊕

0 0

Part ofB1

Fig. 3. Achievable Scheme for Case One (r > δ), P3 = (R1, R2, R3) = ((b − δ)+, (b − r)+, 0)

construction, andx has no information about them. Therefore,R3 ≥ (b− r)+. About the bitsy[1]
3 . . . y

[r−δ]
3

one of encoders two or three can send it. If encoder two sends these bits, we achieve the rate vector

(R1, R2, R3) = (0, r − δ, (b − r)+), denoted byP4. If encoder three sends these bits, then we achieve

(R1, R2, R3) = (0, 0, (b− δ)+) which is basicallyP1.

Similarly, by settingR2 = 0, the rate vector(R1, R2, R3) = (r − δ, 0, (b − r)+), denoted byP5 is

achievable. Using time-sharing among the achievable rate vectors, we will have the achievable region

shown in Fig. 4.

This region is defined by the following six inequalities,

R1 ≥ 0, (13)

R2 ≥ 0, (14)

R3 ≥ 0, (15)

R1 +R3 ≥ (b− r)+, (16)

R2 +R3 ≥ (b− r)+, (17)

R1 + R2 +R3 ≥ (b− δ)+, (18)

R1 +R2 + 2R3 ≥ (b− r)+ + (b− δ)+. (19)

Case Two:r ≤ δ

For this case, the binary expansion ofy1, x, andy3 are shown in Fig. 5. BlockC1 is what the decoder

requires. Clearly, the rate vector(R1, R2, R3) = (0, 0, (b − r)+), denoted byP ′
1, is achievable. Again,

it is more exciting to consider the case whereR3 = 0. To reconstruct BlockC1, BlocksA1, A2 from
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P1 = (0, 0, b− δ)

R3

P4 = (0, (r − δ)+, (b− r)+)

P5 = ((r − δ)+, 0, (b− r)+)

P3 = ((b− δ)+, (b− r)+, 0)

P2 = ((b− r)+, (b− δ)+, 0)

R2

R1

Fig. 4. Achievable Region for the Binary Expansion Model forCase One:δ ≤ r

y1, and BlocksB1 and B2 from x are relevant. Therefore, here we have the same observation that

some middle-layers ofy1 and x are not important. If decoder has access toA2, B1, andB2, it can

recovery3 within the required resolution by forming2−δB1 ⊕ (A2 ⊖ B2). Similar to Case 1, the second

encoder can send2−δB1 ⊖ B2 to reduce its rate. Then as shown in Fig. 6, we achieve the ratevector

(R1, R2, R3) = ((b − r)+, (b − r)+, 0), denoted byP ′
2. Another approach is that encoder one sends

2−δA1 ⊕ A2, while encoder two sendsB2, as shown in Fig. 7. Here, we achieve rate vectorP ′
3, as

(R1, R2, R3) = ((b− r)+, (b− r)+, 0), which is basically the same asP ′
2. Therefore, in this case, the two

of the corner pointsP1 andP2 we have in Case 1 collapse into one corner pointP ′
2 = P ′

3.

Let us consider the cut of the region, whereR1 = 0. We note that in this case, encoder three has to

send all the bits in BlockC1. The reason is that BlockC1 hasz[1] . . . z[(b−r)+] in its construction, whilex

has no information about these bits. In other words, if encoder three does not send some bits of BlockC1,

then it is impossible for the decoder to reconstruct those bits from information received from the second

encoder. Therefore, the achievable rate vector is(R1, R2, R3) = (0, 0, (b − r)+), which is basically the

same asP ′
1. We have the same situation whereR2 = 0. Therefore, three of the corner pointsP1, P2, and

P3 of Case 1 collapse to one corner pointP ′
1 in Case 2.

Time sharing between the two rate vectors(R1, R2, R3) = ((b − r)+, (b − r)+, 0) and (R1, R2, R3) =

(0, 0, (b− r)+), we derive the achievable region shown in Fig 8.
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x[1] x[r] x[r+1]x[b−δ]. . . x[b−δ+1] . . . . . . x[b]

A1 A2

. . .x[δ+1]x[δ]

z[1]

⊕

z[b−r]. . . z[δ−r+1]z[δ−r] . . .

C1

x[1] x[b−δ]. . . x[b−δ+1] . . .

y3 = 2−δx+ 2−rz

z[1]

⊕

z[b−r]. . . z[δ−r+1]z[δ−r] . . .

x[1] x[r] x[r+1]x[b−δ]. . . x[b−δ+1] . . . . . . x[b]

B1 B2

. . .x[δ+1]x[δ]

y1 = x+ 2−rz

x

Fig. 5. Binary Expansion Model for Case Two:r ≤ δ

The achievable region for the case thatr ≤ δ is defined by the following inequalities,

R1 ≥ 0, (20)

R2 ≥ 0, (21)

R3 ≥ 0, (22)

R1 +R3 ≥ (b− r)+, (23)

R2 +R3 ≥ (b− r)+, (24)

We note that the following inequality is dominated by the last two inequalities, however it touches the

rate region at one point,

R1 +R2 +R3 ≥ (b− r)+. (25)

The two achievable regions that we derived for Case 1 and Case2 can be unified by the regionRin,
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x[r+1] . . . x[b]

A2

. . .x[δ+1]x[δ]

z[1]

⊕

z[b−r]. . . z[δ−r+1]z[δ−r] . . .

R1 = |A2| = (b− r)+

x[r+1] . . . x[b]

B2

. . .x[δ+1]x[δ]

x[1] x[b−δ]. . .

B1

⊖

R2 = |2−δB1 ⊖ B2| = (b− r)+

Fig. 6. Achievable Scheme for Case Two (r ≤ δ), P ′

2 = (R1, R2, R3) = ((b − r)+, (b − r)+, 0)

x[r+1] . . . x[b]

A2

. . .x[δ+1]x[δ]

z[1]

⊕
z[b−r]. . . z[δ−r+1]z[δ−r] . . .

x[r+1] . . . x[b]

B2

. . .x[δ+1]x[δ]

x[1] x[b−δ]. . .

A1

⊕

R1 = |2−δA1 ⊕ A2| = (b− r)+

R2 = |B2| = (b− r)+

Fig. 7. Achievable Scheme for Case Two (r ≤ δ), P ′

3 = (R1, R2, R3) = ((b − r)+, (b − r)+, 0)

defined as union of all(R1, R2, R3) ∈ R
3, satisfying:

R1 ≥ 0, (26)

R2 ≥ 0, (27)

R3 ≥ 0, (28)

R1 +R3 ≥ (b− r)+, (29)

R2 +R3 ≥ (b− r)+, (30)

R1 +R2 +R3 ≥ max{(b− δ)+, (b− r)+}, (31)

R1 +R2 + 2R3 ≥ (b− r)+ + (b− δ)+. (32)
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P ′
1 = (0, 0, (b− r)+)

R3

R2

R1

P ′
2 = P ′

3 = ((b− r)+, (b− r)+, 0)

Fig. 8. Achievable Region for the Binary Expansion Model forCase Two:r ≤ δ

A. Outer-Bounds for Binary Expansion Model

Here we first try cut-set outer bounds as the most well-known outer-bounds. For anyS ⊂ {1, 2, 3}, the

cut-set lower-bound on
∑

j∈S Rj, is derived by assuming that a central encoder observes the sources in

S, and sends an index to the decoder such thaty3 is able to be reconstructed with the target resolution,

while all yi, i ∈ Sc, are perfectly available at the decoder as the side information.

It is easy to see that inequalities (26) to (31) are derived byusing cut-set outer bound. Therefore, to

show the optimality of (26)-(32), we need to prove (32) is tight. In Theorem 1, we will prove a similar

outer-bound for the Gaussian problem. Using similar arguments, we can show that (32) is tight as well.

Therefore, the regionRin indeed characterizes the rate-distortion region of the binary-expansion model.

IV. OUTER BOUNDS FOR THEGAUSSIAN SOURCES

The analysis of the binary expansion model supports the conjecture that the cut-set outer-bounds are

useful to characterize some parts of the region within a bounded gap. It is easy to derive the cut-set
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outer-bounds as follows.

R1 ≥ φ(1) = 0, (33)

R2 ≥ φ(2) = 0, (34)

R3 ≥ φ(3) = 0, (35)

R1 +R2 ≥ φ(1, 2) = 0, (36)

R1 +R3 ≥ φ(1, 3) =
1

2
log+

2

1 − ρ2

d
, (37)

R2 +R3 ≥ φ(2, 3) =
1

2
log+

2

c2(1 − ρ2)

d
, (38)

R1 +R2 +R3 ≥ φ(1, 2, 3) =
1

2
log+

2

1 + c2 − 2cρ

d
. (39)

However, from the binary expansion model, we learn that an extra lower-bound onR1 + R2 + 2R3 is

needed to approximate the region. In the following Theorem,we present the new bound for Gaussian

sources.

Theorem 1

R1 +R2 + 2R3 ≥ ψ =
1

2
log+

2

1 − ρ

d
+

1

2
log+

2

c2(1 − ρ)

d
+

1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

. (40)

Proof: To have intuition the proof of this outer-bound, let us consider the case, wherey1 andy2 are

independent, i.e.ρ = 0. In this case, it is easy to see that the inequality (40) can bederived by adding

two cut-set inequalities (37) and (38). This observation helps us to prove the inequality for the case that

ρ 6= 0. For this case, we introduce a random variablex̃ ∼ N (0, 1), such that

y1 = η1x̃+
√

1 − η2
1z1, (41)

y2 = η2x̃+
√

1 − η2
2z2, (42)

where for0 ≤ η1 ≤ 1 and 0 ≤ η2 ≤ 1, η1η2 = ρ, z1 ∼ N (0, 1), z2 ∼ N (0, 1), and x̃, z1, and z2 are

mutually independent. We note thaty1 andy2, given x̃, are independent again. This observation suggests

that we may be able to prove (40), by developing two inequalities forR1 +R3 andR2 + R3, extracting

the contribution of̃x, and then add the two inequalities. In what follows, we elaborate the proof.

Assume that encoderj sends messageMj to the decoder, then we have,

n(R1 +R3) ≥ H(M1) +H(M3)

≥ H(M1,M3|M2)

= H(M1,M3|M2, x̃(1 : n)) + I(M1,M3; x̃(1 : n)|M2),
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and

n(R2 +R3) ≥ H(M2) +H(M3)

= H(M2|M1) +H(M3) + I(M1;M2)

≥ H(M2|M1) +H(M3|M1) + I(M1;M2)

≥ H(M2,M3|M1) + I(M1;M2)

= H(M2,M3|M1, x̃(1 : n)) + I(M2,M3; x̃(1 : n)|M1) + I(M1;M2).

Therefore,

n(R1 +R2 + 2R3) ≥

I(M1,M3; x̃(1 : n)|M2) + I(M2,M3; x̃(1 : n)|M1) + I(M1;M2)

+H(M1,M3|M2, x̃(1 : n)) +H(M2,M3|M1, x̃(1 : n)).

On the other hand, we have,

I(M1,M3; x̃(1 : n)|M2)+I(M2,M3; x̃(1 : n)|M1) + I(M1;M2)

=I(M1,M2,M3; x̃(1 : n)) − I(M2; x̃(1 : n)) + I(M2; x̃(1 : n)|M1)

+I(M3; x̃(1 : n)|M1,M2) + I(M1;M2)

(a)

≥I(M1,M2,M3; x̃(1 : n)) −H(M2) +H(M2|x̃(1 : n))

+H(M2|M1) −H(M2|M1, x̃(1 : n)) + I(M1;M2)

=I(M1,M2,M3; x̃(1 : n)) −H(M2|M1, x̃(1 : n)) +H(M2|x̃(1 : n))

(b)

≥I(M1,M2,M3; x̃(1 : n)),

where (a) follows fromI(M3; x̃(1 : n)|M1,M2) ≥ 0, and (b) relies onI(M2;M1|x̃(1 : n)) ≥ 0

In addition, we have,

H(M1,M3|M2, x̃(1 : n)) ≥H(M1,M3|M2, x̃(1 : n), y2(1 : n))

≥I(M1,M3; y1(1 : n)|M2, x̃(1 : n), y2(1 : n)).

Similarly,

H(M2,M3|M1, x̃(1 : n)) ≥ I(M2,M3; y2(1 : n)|M1, x̃(1 : n), y1(1 : n)).

HavingMj , j = 1, 2, 3, the decoder reconstructŝy3(1 : n), such that,

E[
1

n

n∑

i=1

(ŷ3(i) − y3(i))
2] ≤ d+ ǫ (43)
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for some smallǫ.

Then, we have the following three observations:

Observation 1: The decoder can reconstruct(η1−cη2)x̃ with distortion(
√
d+
√

1 − η2
1 + c2(1 − η2

2))
2.

We note that,

y3 = (η1 − cη2)x̃+
√

1 − η2
1z1 − c

√
1 − η2

2z2. (44)

We useŷ3 as an estimation for(η1 − cη2)x̃. We have,

1

n
E[

n∑

i=1

[ŷ3(i) − (η1 − cη2)x̃(i)]
2]

=
1

n

n∑

i=1

E[ŷ3(i) − y3(i) +
√

1 − η2
1z1(i) − c

√
1 − η2

2z2(i)]
2

≤1

n

n∑

i=1

{
(
E[(ŷ3(i) − y3(i))

2]
) 1

2 +

(
E[(
√

1 − η2
1z1(i) − c

√
1 − η2

2z2(i))
2]

) 1
2

}2

≤





(
1

n

n∑

i=1

E
[
(ŷ3(i) − y3(i))

2
]
) 1

2

+

(
1

n

n∑

i=1

E

[
(
√

1 − η2
1z1(i) − c

√
1 − η2

2z2(i))
2

]) 1
2





2

≤(
√
d+ ǫ+

√
1 − η2

1 + c2(1 − η2
2))

2

≤(
√
d+

√
1 − η2

1 + c2(1 − η2
2))

2 + ǫ̂,

for a small ǫ̂ ≥ 0.

As a result,

I(M1,M2,M3; x̃(1 : n)) ≥ n

2
log+

2

(η1 − cη2)
2

(
√
d+

√
1 − η2

1 + c2(1 − η2
2))

2
. (45)

Observation 2: If x̃(1 : n) and y2(1 : n) are available at the decoder in addition toMj , j = 1, 2, 3,

then
√

1 − η2
1z1 can be reconstructed with distortiond.

We note that

y3 = y1 − cy2 = η1x̃+
√

1 − η2
1z1 − cy2. (46)

We form
√

1 − η2
1 ẑ1(i) = ŷ3(i) − η1x̃(i) + cy2(i) as an estimation for

√
1 − η2

1z1(i). Then, it is easy to

confirm the Observation 2. Therefore,

I(M1,M3; y1(1 : n)|M2, x̃(1 : n), y2(1 : n)) = I(M1,M2,M3;
√

1 − η2
1z1|x̃(1 : n), y2(1 : n)) (47)

≥ n

2
log+

2

1 − η2
1

d
. (48)

Similarly we have the following observation.

Observation 3: If x̃(1 : n) and y1(1 : n) are available at the decoder in addition toMj , j = 1, 2, 3,

thenc
√

1 − η2
2z2 can be reconstructed with distortiond.
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Therefore,

I(M2,M3; y2(1 : n)|M1, x̃(1 : n), y1(1 : n)) = I(M1,M2,M3;
√

1 − η2
2z2|x̃(1 : n), y1(1 : n)) (49)

≥ n

2
log+

2

c2(1 − η2
2)

d
. (50)

Therefore, we have

n(R1 +R2 + 2R3) ≥I(M1,M2,M3; x̃(1 : n)) + I(M1,M3; y1(1 : n)|M2, x̃(1 : n), y2(1 : n))

+I(M2,M3; y2(1 : n)|M2, x̃(1 : n), y1(1 : n))

≥ log+
2

(η1 − cη2)
2

(
√
d+

√
1 − η2

1 + c2(1 − η2
2))

2
+
n

2
log+

2

1 − η2
1

d
+
n

2
log+

2

c2(1 − η2
2)

d
.

By choosingη1 = η2 =
√
ρ, the result follows.

Note that this outer-bound is general, and does not depend onthe condition 1
2ρ

≤ c ≤ ρ.

V. ACHIEVABLE SCHEME FOR 1
2ρ

≤ c ≤ ρ

In this section, efficient achievable schemes are developedinspired by the result from the binary

expansion model. Here, corresponding to any corner point ofthe regions, depicted Fig. 4 and Fig. 8,

we suggest an achievable rate vector for the original Gaussian problem.

A. Achievable Scheme Corresponding toP2 in Fig. 4 andP ′
2 in Fig. 8

Let us focus on the achievable scheme which is inspired by theschemes showed in Fig. 2 and Fig. 6

for the binary expansion model. This achievable scheme corresponds to pointP2 in Fig. 4 and pointP ′
2

in Fig. 8. In Fig. 9, the block diagram of this achievable scheme is shown. To clarify this achievable

scheme, the role of each lattice has been shown in Fig. 10. We note that in Fig. 9, the quantizerΛM

and subtraction after it form the operationmod ΛM . In this figure, we have lattices3.ΛM which is not

justified by binary expansion model. The role of these lattices will be explained later.

All the front quantizesΛF1, ΛF2, andΛF3 are fine lattice-quantizers with the second momentsaroundd.

The precise choices of the second moments will be given later. The quantizerΛM has the second moment

σ2
ΛM

which is around the covariance ofy1 − ρy2 i.e. 1 − ρ2. The coarse quantizerΛC has the second

momentσ2
ΛC

around the covariance ofy1 − cy2 which is 1 + c2 − 2cρ. Roughly speaking, if the second

moment of a quantizer isσ2, it quantizes the input with the resolution of−1
2
log2 σ

2 bits after the radix

point. It is insightful to letd = 2−2b, ρ = 1− 2−2r, andc = 1− 2−δ and check that the binary expansion

model shown in Fig. 10 matches with the achievable scheme of Fig. 9.

In what follows, we elaborate the achievable scheme. In Fig.9, we have some chains of nested lattices

ΛF1 ⊂ ΛM ⊂ ΛC . In addition, we have eitherΛF2 ⊂ ΛF3 ⊂ ΛM ⊂ ΛC or ΛF3 ⊂ ΛF2 ⊂ ΛM ⊂ ΛC . In
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this paper, we assume that all lattices are simultaneously good channel and source lattice codes. To see

definition of the good lattices, refer to [12] and to find the proof of the existence of such chains of nested

lattices, see [7, Appendix B].

Let un
i be mutually independent random vectors uniformly distributed in the Voronoi regions ofΛFi

,

for i = 1, 2, 3. The second moment ofΛFi
is denoted byσ2

ΛFi
.

We defineen
ΛFi

as the error of the quantizerΛFi
, i.e.

en
ΛF1

=QΛF1
(yn

1 + un
1) − (yn

1 + un
1), (51)

en
ΛF2

=QΛF1
(ρyn

2 + un
2) − (ρyn

2 + un
2), (52)

en
ΛF3

=QΛF3
((c− ρ)yn

3 + un
3) − ((c− ρ)yn

3 + un
3). (53)

We have the following facts abouten
ΛFi

, i = 1, 2, 3.

Fact 1: Rememberun
i is uniformly distributed in the Voronoi region ofΛFi

. Then it is easy to show thaten
ΛFi

has the same distribution asun
i and is independent of the input of the latticeΛFi

[13].

Fact 2: SinceΛFi
is an optimal lattice, then asn → ∞, thenen

ΛF1
converges to a white Gaussian noise in

Kullback-Leibler distance sense [13].

Fact 3: In addition,en
ΛF1

− en
ΛF2

and en
ΛF1

− en
ΛF2

− en
ΛF3

tend to a white Gaussian noise in Kullback-Leibler

divergence sense [7].

We definezn as

zn = QΛF1
(yn

1 + un
1) −QΛF2

(ρyn
2 + un

2) = yn
1 − ρyn

2 + en
ΛF1

− en
ΛF2

, (54)

Then, then we have,

1

n
E‖zn‖ = 2(1 − ρ) + σ2

ΛF1
+ σ2

ΛF2
, (55)

where we use the fact that the second moment of the latticeΛFi
is σ2

ΛFi
, and alsoyn

1 − ρyn
2 , en

ΛF1
, en

ΛF2

are mutually independent (Fact 1). We chooseΛM a good channel-code lattice with the second moment

of,

σ2
ΛM

= 2(1 − ρ) + σ2
ΛF1

+ σ2
ΛF2

. (56)

Fact 4: Sinceen
ΛF1

− en
ΛF2

tends to an i.i.d. Gaussian random process, thenzn converges to an i.i.d. Gaussian

random process as well. Since latticeΛM is a good channel code, then the probability thatzn is not

in the Voronoi region ofΛM goes to zero exponentially fast, asn → ∞ and the effect of deviation

of en
ΛF1

− en
ΛF2

from Gaussian on that probability is sub-exponential [7].

As we will see later, at the decoder requiresQΛM
[QΛF1

(yn
1 +un

1 )]−QΛM
[QΛF2

(ρyn
2 +un

2 )] to reconstruct

ŷ3. In Fact 4, we stated thatQΛF1
(yn

1 + un
1)−QΛF2

(ρyn
2 + un

2) is in the Voronoi region of the latticeΛM .

Then, it is easy to show the following fact.
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Fact 5: QΛM
[QΛF1

(yn
1 + un

1 )] −QΛM
[QΛF2

(ρyn
2 + un

2)] is in Voronoi region of3.ΛM . We define3.ΛM as the

lattice with generating matrix which is equal to3 times of generating matrix ofΛM .

Therefore,Θ1, shown in Fig. 9, is equal to,

Θ1 = R3.ΛM

(
R3.ΛM

QΛM
[QΛF1

(yn
1 + un

1 )] − R3.ΛM
QΛM

[QΛF2
(ρyn

2 + un
2 )]
)

(57)

(a)
= R3.ΛM

(
QΛM

[QΛF1
(yn

1 + un
1 )] −QΛM

[QΛF2
(ρyn

2 + un
2)]
)

(58)

(b)
.
= QΛM

[QΛF1
(yn

1 + un
1)] −QΛM

[QΛF2
(ρyn

2 + un
2 )], (59)

where (a) relies on the properties of lattices, and (b) is based on Fact 5. In fact the probability that (b)

is not valid goes to zero exponentially fast asn → ∞. Here, we use the short-hand notationRΛ(x) for

x mod Λ.

Let us define

Πn = zn −QΛF3
((c− ρ)yn

2 + un
3) (60)

= zn − (c− ρ)yn
2 − en

ΛF3
(61)

= yn
3 + en

ΛF1
− en

ΛF2
− en

ΛF3
, (62)

where zn is defined in (54). Then from Facts 1, 2, and 3,Πn converges to an i.i.d. Gaussian random

sequence, with covariance

1

n
E‖Πn‖ = 1 + c2 − 2cρ+ σ2

ΛF1
+ σ2

ΛF2
+ σ2

ΛF3
. (63)

We chooseσ2
ΛC

as

σ2
ΛC

=
1

n
E‖Πn‖ = 1 + c2 − 2cρ+ σ2

ΛF1
+ σ2

ΛF2
+ σ2

ΛF3
. (64)

Fact 6: SinceΛC is a good channel code andΠn converges to an i.i.d. Gaussian, then the probability that

Πn is not in the Voronoi region ofΛC goes to zero exponentially fast asn→ ∞.

Now we are ready to evaluate the output of the encoder.

ŷn
3 = ηRΛC

[
RΛM

(
QΛF1

(yn
1 + un

1)
)

− RΛC

{
RΛM

(QΛF2
(ρyn

2 + un
2 )) +QΛF2

((c− ρ)yn
2 + un

3)
}

+ un
1 − un

2 − un
3 + Θ1

]

(a)
= ηRΛC

[
RΛM

(QΛF1
(yn

1 + un
1)) − RΛM

(QΛF2
(ρyn

2 + un
2)) −QΛF3

((c− ρ)yn
2 + un

3) + un
1 − un

2 − un
3 + Θ1

]

(b)
.
= ηRΛC

[
QΛF1

(yn
1 + un

1 ) −QΛF2
(ρyn

2 + un
2 ) −QΛF3

((c− ρ)yn
2 + un

3 ) + un
1 − un

2 − un
3

]

(c)
= ηRΛC

[
yn

3 + en
ΛF1

− en
ΛF2

− en
ΛF3

]

(d)
.
= η(yn

3 + en
ΛF1

− en
ΛF2

− en
ΛF3

),



18

where (a) follows from properties of the operationR and (b) follows from (57). In fact, the probability

that (b) is not valid goes to zero exponentially fast asn→ ∞. (c) follows from the definition ofen
ΛFi

and

(d) relies on Fact 6.

We chooseη as

η =
σ2

y3

σ2
Λy3

+ σ2
ΛF1

+ σ2
ΛF2

+ σ2
ΛF3

. (65)

Then, the distortion of the achievable scheme is1
n
E‖yn

3 − ŷn
3‖. We chooseσ2

ΛFi
, i = 1, 2, 3, such that

1
n
E‖yn

3 − ŷn
3‖ is equal to the target distortiond, i.e.

d =
1

n
E‖yn

3 − ŷn
3‖ =

σ2
y3

(σ2
ΛF1

+ σ2
ΛF2

+ σ2
ΛF3

)

σ2
Λy3

+ σ2
ΛF1

+ σ2
ΛF2

+ σ2
ΛF3

. (66)

Then, we can rewireη as

η =
σ2

y3
− d

σ2
y3

. (67)

Refereing to Fig. 9,R1 andR2 have two components:

R1 = R11 +R12, (68)

R2 = R21 +R22. (69)

We have

R21 = R12 =
σ2

3.ΛM

σ2
ΛM

= log2 3. (70)

In addition, we have

R11 =
1

2
log2

σ2
ΛM

σ2
ΛF1

=
1

2
log2

2(1 − ρ) + σ2
ΛF1

+ σ2
ΛF2

σ2
ΛF1

. (71)

and,

R22 =
1

2
log2

σ2
ΛC

min{σ2
ΛF2

, σ2
ΛF3

} =
1

2
log2

1 + c2 − 2cρ+ σ2
ΛF1

+ σ2
ΛF2

+ σ2
ΛF3

min{σ2
ΛF2

, σ2
ΛF3

} . (72)

Then, we have the following result.

Theorem 2 Any rate vector(R1, R2, 0) that satisfies(68)-(72) is achievable.

Let us choose a particular achievable rate vectorPG
2 = (R

(2)
1 , R

(2)
2 , 0), by choosingσ2

ΛF1
= σ2

ΛF2
=

σ2
ΛF3

= q. Then from (66), we have

q =
σ2

y3
d

3(σ2
y3
− d)

. (73)
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y1

u1

ΛF1

ΛF2

ΛM

modΛC+

mod3.ΛM

ρy2

u2

(c− ρ)y2

u3

ΛF3+

+ +
−

ΛM

modΛC

mod3.ΛM

+ +
− +

−

−u3

+ +

−u2

+

−u1

modΛC+

R12

R11

R22

R21

mod3.ΛM

Θ1

−
η

ŷ3

Fig. 9. Achievable Scheme forP G
2

Therefore, we have,

R
(2)
11 =

1

2
log+

2 (2 +
6(1 − ρ)(σ2

y3
− d)

σ2
y3
d

), (74)

R
(2)
22 =

1

2
log+

2

3σ2
y3

d
. (75)

Lemma 3 For the achievable pointPG
2 = (R

(2)
1 , R

(2)
2 , 0), we have

(i) R
(2)
1 − φ(1, 3) ≤ 1

2
log2 72 = 3.08 bits per sample.

(ii) R
(2)
2 − φ(2, 3) ≤ 1

2
log2 108 = 3.38 bits per sample, if1 − c ≤ √

1 − ρ.

(iii) R
(2)
1 +R

(2)
2 − ψ ≤ 3 log2 3 + 1

2
log2 12(1 +

√
5)2 = 8.44 bits per sample, if1 − c ≥ √

1 − ρ.

Proof: Refer to Appendix A.

B. Achievable Scheme Corresponding toP3 in Fig. 4 andP ′
3 in Fig. 8

Here we focus on another achievable scheme which corresponds to the achievable scheme shown in

Fig. 3, or the corner pointP3 in Fig. 4 for the binary expansion model whenr ≥ δ. Refereing to Fig. 10,

we note that in the first achievable scheme, bitsx[1] . . . x[r−δ] is sent by the second encoder. However,

the first encoder has access to these bits and can take care of it. Shifting the responsibility of sending

these bits from encoder one to encoder two, we obtain anothercorner point of the region, referred asP3.

Obviously, this statement is valid for caser ≥ δ. In the Gaussian case, we modify the achievable scheme

of Fig. 9 to form the achievable scheme of Fig. 11, for the casewhere1− c ≥ √
1 − ρ. The role of each

lattice has been shown in the binary expansion model in Fig. 12.

All the facts, equations and definitions from (51) to (57) arevalid for the second achievable scheme.

We note that the input of mod 2.ΛM is the summation of outputs of twomod ΛM blocks. Therefore,

this summation is evidently in the Voronoi region of the lattice mod 2.ΛM . Therefore, the operation
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x[1] x[2] x[r] x[r+1]

z[1]

⊕
z[b−r]

x[b−δ]x[r−δ]. . . x[r−δ+1] . . . x[b−δ+1] . . . . . . x[b]

. . .

A1 A2

x[1] x[2] x[b−δ]x[r−δ]. . . x[r−δ+1] . . . x[b−δ+1] . . .

B1

x[1] x[2] x[r] x[r+1]x[b−δ]x[r−δ]. . . x[r−δ+1] . . . x[b−δ+1] . . . . . . x[b]

B1

(ρ− c)y2

ρy2

y1

ΛF1
modΛM

ΛF3

ΛF2modΛM

modΛC

Fig. 10. The Role of Each Lattice of Fig. 9 on Binary ExpansionModel

mod 2.ΛM does not do any thing and can be eliminated. We just use it hereto show how the rates are

calculated.

In what follows, we use the short-hand notationµ = c−ρ. We know thatµyn
1 is almost surely is in the

Voronoi region of a good lattice code for channel with secondmomentµ2. On the other hand, we have,

QΛM
(µyn

1 ) = µyn
1 − RΛM

(µyn
1 ). (76)

Therefore, it is easy to see thatQΛM
(µyn

1 ) is almost surely in the Voronoi region of a good latticeΛĈ

with the second momentσ2
Ĉ

, if

σ2
Ĉ
≥ (|µ| + σΛM

)2. (77)

Then, the probability that the equation

RΛ
Ĉ
QΛM

(µyn
1 )

.
= QΛM

(µyn
1 ) (78)

is not valid goes to zero exponentially fast asn→ 0. We chooseσ2
Ĉ

as

σ2
Λ

Ĉ
= max{(|µ| + σΛM

)2, σ2
ΛC

}. (79)
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Therefore,Θ2, shown in Fig. 11, is equal to

Θ2 :=RΛD

[
RΛ

Ĉ
QΛM

(µyn
1 ) − RΛD

QΛM
QΛF3

(µyn
2 + un

3)
]

(80)

(a)
.
=RΛD

[
QΛM

(µyn
1 ) − RΛD

QΛM
QΛF3

(µyn
2 + un

3 )
]

(b)
=RΛD

[
QΛM

(µyn
1 ) −QΛM

QΛF3
(µyn

2 + un
3 )
]

(c)
=RΛD

[
µyn

1 −RΛM
(µyn

1 ) −QΛF3
(µyn

2 + un
3 ) +RΛM

QΛF3
(µyn

2 + un
3)
]

(d)
=RΛD

[
µyn

1 −RΛM
(µyn

1 ) − µyn
2 − un

3 − en
ΛF3

+RΛM
QΛF3

(µyn
2 + un

3 )
]

=RΛD

[
µ(yn

1 − yn
2 ) − RΛM

(µyn
1 ) − un

3 − en
ΛF3

+RΛM
QΛF3

(µyn
2 + un

3)
]

(e)
.
=µ(yn

1 − yn
2 ) −RΛM

(µyn
1 ) − un

3 − en
ΛF3

+RΛM
QΛF3

(µyn
2 + un

3),

where (a) is based on (78), (b) is based on the basic property of the operationRΛD
, (c) follows from

µyn
1 = RΛM

(µyn
1 ) +QΛM

(µyn
1 ), andQΛF3

(µyn
2 + un

3 ) = RΛM
QΛF3

(µyn
2 + un

3 ) +QΛM
QΛF3

(µyn
2 + un

3), and

(d) is based on (53). In addition, the probability that (e) isnot correct goes to zero exponentially fast, as

n→ ∞. The reason is that we chooseΛD as a good lattice for channel code with the second moment,

σ2
ΛD

=
(
2σΛM

+ |µ|
√

2(1 − ρ) + 2σΛF3

)2

. (81)

Then, from Fig. 11, we have

ŷn
3 =ηRΛ

Ĉ

[
RΛM

QΛF1
(yn

1 + un
1 ) − RΛC

QΛM
(µyn

1 )

− RΛM
QΛF2

(ρyn
2 + un

2) − RΛM
QΛF3

(µyn
2 + un

3 ) − un
1 + un

2 + un
3 + Θ1 + Θ2

]

(a)
.
=ηRΛ

Ĉ

[
RΛM

QΛF1
(yn

1 + un
1 ) −QΛM

(µyn
1 )

− RΛM
QΛF2

(ρyn
2 + un

2) − RΛM
QΛF3

(µyn
2 + un

3 ) − un
1 + un

2 + un
3 + Θ1 + Θ2

]

(b)
.
=ηRΛ

Ĉ

[
RΛM

QΛF1
(yn

1 + un
1 ) − RΛM

QΛF2
(ρyn

2 + un
2) − un

1 + un
2 + Θ1 − µyn

2 − en
ΛF3

]

(c)
.
=ηRΛ

Ĉ

[
QΛF1

(yn
1 + un

1) −QΛF2
(ρyn

2 + un
2 ) − un

1 + un
2 − µyn

2 − en
ΛF3

]

(d)
=η(yn

3 + en
ΛF1

− en
ΛF2

− en
ΛF3

),

where (a) is based on (78), (b) follows from (80), andµyn
1 = RΛM

(µyn
1 ) +QΛM

(µyn
1 ), (c) relies on (57)

andQΛF2
(ρyn

2 +un
2 ) = RΛM

QΛF2
(ρyn

2 +un
2)+QΛM

QΛF2
(ρyn

2 +un
2 ), andQΛF1

(yn
1 +un

1) = RΛM
QΛF1

(yn
1 +

un
1) +QΛM

QΛF1
(yn

1 + un
1 ), finally (d) is based in (51)-(53).

Again here we chooseη as (65). In addition, the distortion of the scheme is derivedby (66).
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Refereing to Fig. 11,R1 andR2 are equal to:

R1 = R11 +R12 + R13, (82)

R2 = R21 +R22 + R23, (83)

where

R11 =
1

2
log2

σ2
ΛM

σ2
ΛF1

, (84)

R12 = R21 =
1

2
log2

σ2
3.ΛM

σ2
ΛM

= log2 3, (85)

R13 =
1

2
log2

σ2
Λ

Ĉ

σ2
ΛM

, (86)

R22 =
1

2
log2

σ2
2.ΛM

min{σ2
ΛF2

, σ2
ΛF3

} = 1 +
1

2
log2

σ2
ΛM

min{σ2
ΛF2

, σ2
ΛF3

} , (87)

R23 =
1

2
log2

σ2
ΛD

σ2
ΛM

. (88)

Theorem 4 The rate vectors(R1, R2, 0) which satisfy(82)–(88), are achievable.

Let focus on a specific rate vectorPG
3 = (R

(3)
1 , R

(3)
2 , 0), achieved by choosingσ2

ΛF1
= σ2

ΛF2
= σ2

ΛF3
= q.

Then from (66), we have

q =
σ2

y3
d

3(σ2
y3
− d)

. (89)

Therefore, we have,

R
(3)
11 =

1

2
log2(2 +

6(1 − ρ)(σ2
y3
− d)

σ2
y3
d

), (90)

R
(3)
22 =

1

2
log2(2 +

6(1 − ρ)(σ2
y3
− d)

σ2
y3
d

) + 1. (91)
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y1

u1

ΛF1

ΛM

+ΛF2

mod2.ΛM+

mod3.ΛM

ρy2

u2

(c− ρ)y2

u3

ΛF3+

+
−

ΛM mod3.ΛM1

+ +
− +

−

−u3

+ +

−u2

+

−u1

+

mod3.ΛM

η

Θ1

modΛD

ΛM(c− ρ)y1 modΛĈ

ΛM

+
−

modΛD

Θ2

+ +
−

−

modΛ
Ĉ

R13

R12

R11

R21

R22

R23

−

Fig. 11. Achievable Scheme forP G
3

In this case, we have

R
(3)
23 =

1

2
log2

σ2
ΛD

σ2
ΛM

(92)

(a)
= log2

2σΛM
+ (ρ− c)

√
2(1 − ρ) + 2

√
q

σΛM

(93)

(b)
= log2

(
2 +

(ρ− c)
√

2(1 − ρ) + 2
√
q√

2(1 − ρ) + 2q

)
(94)

= log2

(
2 +

(ρ− c)
√

2(1 − ρ)√
2(1 − ρ) + 2q

+
2
√
q√

2(1 − ρ) + 2q

)
(95)

≤ log2

(
2 +

(ρ− c)
√

2(1 − ρ)√
2(1 − ρ)

+
2
√
q√

2q

)
(96)

(c)

≤ log2

(
2 + 0.5 +

√
2
)

= log2

(
2.5 +

√
2
)
< 2, (97)

where (a) and (b) follow from (56) and (81), respectively, and (c) is based onρ− c ≤ 1
2
, for 1

2ρ
≤ c ≤ ρ.

Lemma 5 If 1 − c ≥ √
1 − ρ, then we have,

(i) R
(3)
2 − φ(2, 3) ≤ log2 3 + 3 + 1

2
log2 28 = 6.98 bits per sample.

(ii) R
(3)
1 +R

(3)
2 − ψ ≤ 12.42 bits per sample.

Proof: Refer to Appendix B.



24

x[1] x[2] 0x[r−δ]. . . 0 . . . 0

A1

(ρ− c)y1

modΛC ΛM

x[1] x[2] x[b−δ]x[r−δ]. . . x[r−δ+1] . . . x[b−δ+1] . . .

B1

x[1] x[2] x[r] x[r+1]x[b−δ]x[r−δ]. . . x[r−δ+1] . . . x[b−δ+1] . . . . . . x[b]

B1

(ρ− c)y2

ρy2

ΛF3

ΛF2

modΛM

x[1] x[2] x[r] x[r+1]

z[1]

⊕
z[b−r]

x[b−δ]x[r−δ]. . . x[r−δ+1] . . . x[b−δ+1] . . . . . . x[b]

. . .

A1 A2

y1

ΛF1modΛM

modΛM

modΛ2.M

⊕

Fig. 12. The Role of Each Lattice of Fig. 11 on Binary Expansion Model

C. Achievable Scheme Corresponding toP1 in Fig. 4 andP ′
1 in Fig. 8

It is obvious that the rate vectorPG
1 = (0, 0, R

(1)
3 ), where

R
(1)
3 =

1

2
log2

σ2
y3

d
, (98)

is achievable.

Lemma 6 If 1 − c ≤ √
1 − ρ, then

(i) R
(1)
3 − φ(1, 3) ≤ 0.30 bits per sample.

(ii) R
(1)
3 − φ(2, 3) ≤ 1.21 bits per sample.

Proof: Refer to Appendix C.



25

D. Achievable Scheme Corresponding toP5 in Fig. 4 andP ′
5 in Fig. 8

Let us find achievable rate vectors, for whichR2 = 0. From [2], we know the quantization-and-binning

scheme achieves all rate vectors(R1, 0, R3), satisfying

R3 =
1

2
log+

2

σ2
y3

(
1 − ρ2

13 + ρ2
13e

−2R1
)

d
. (99)

Let us choose a particular rate vectorPG
5 = (R

(5)
1 , 0, R

(5)
3 ) from the above sets of achievable rates, as

R
(5)
1 =

1

2
log2

σ2
y3

d
− 1

2
log+

2

σ2
y3

(1 − ρ2
13)

d
= min

{
1

2
log2

σ2
y3

d
,
1

2
log2

1

1 − ρ2
13

}
, (100)

and

R
(5)
3 =

1

2
log+

2

σ2
y3

(
1 − ρ2

13 + ρ2
13e

−2R
(5)
1

)

d
. (101)

Lemma 7 If 1 − c ≥ √
1 − ρ, then we have

(i) R
(5)
3 − φ(2, 3) ≤ 1 bits per samples.

(ii) R
(5)
1 +R

(5)
3 − φ(1, 2, 3) ≤ 1 bits per samples.

(ii) R
(5)
1 + 2R

(5)
3 − ψ ≤ 6.2 bits per samples.

Proof: Refer to Appendix D.

E. Achievable Scheme Corresponding toP4 in Fig. 4 andP ′
4 in Fig. 8

Similarly, we can find achievable rate vectors for whichR1 = 0. Again from [2], we know that the

quantization-and-binning scheme achieves all rate vectors (0, R2, R3), satisfying

R3 =
1

2
log+

2

σ2
y3

(
1 − ρ2

23 + ρ2
23e

−2R2
)

d
. (102)

A particular rate vectorPG
4 = (0, R

(4)
2 , R

(4)
3 ) from the above sets of achievable rates is obtained by

R
(4)
2 =

1

2
log2

σ2
y3

d
− 1

2
log+

2

σ2
y3

(1 − ρ2
23)

d
, (103)

and

R
(4)
3 =

1

2
log+

2

σ2
y3

(
1 − ρ2

23 + ρ2
43e

−2R
(4)
1

)

d
. (104)

Lemma 8 If 1 − c ≥ √
1 − ρ, then we have

(i) R
(4)
3 − φ(1, 3) ≤ 1 bits per samples.

(ii) R
(4)
2 +R

(4)
3 − φ(1, 2, 3) ≤ 1 bits per samples.

(ii) R
(4)
1 + 2R

(4)
3 − ψ ≤ 5.84 bits per samples.

Proof: Refer to Appendix E.
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VI. BOUNDED GAP RESULT FOR 1
2ρ

≤ c ≤ ρ

Therefore, we have the following results.

Theorem 9 If 1
2ρ

≤ c ≤ ρ, and 1 − c ≥ √
1 − ρ, then,

• PG
1 = (0, 0, R

(1)
3 ) has a zero gap from the outer-boundsR1 = 0,R2 = 0, andR1+R2+R3 = φ(1, 2, 3).

• PG
2 = (R

(2)
1 , R

(2)
2 , 0) has a bounded gap from the outer-boundsR1+R3 = φ(1, 3), R1+R2+2R3 = ψ,

andR3 = 0.

• PG
3 = (R

(3)
1 , R

(3)
2 , 0) has a bounded gap from the outer-boundsR2+R3 = φ(2, 3), R1+R2+2R3 = ψ,

andR3 = 0.

• PG
4 = (0, R

(4)
2 , R

(4)
3 ) has a bounded gap from the outer-boundsR1 +R3 = φ(1, 3), R1 +R2 +R3 =

φ(1, 2, 3), R1 +R2 + 2R3 = ψ, andR1 = 0.

• PG
5 = (R

(5)
1 , 0, R

(5)
3 ) has a bounded gap from the outer-boundsR2 +R3 = φ(2, 3), R1 +R2 +R3 =

φ(1, 2, 3), R1 +R2 + 2R3 = ψ, andR2 = 0.

Therefore, the convex hull of the achievable rate vectorsPG
i , i = 1, 2, 3, 4, 5, is within a bounded gap

from the outer-bound formed by the cut-set outer-bounds(33)-(39), and also the outer-bound(40).

Theorem 10 If 1
2ρ

≤ c ≤ ρ, and 1 − c ≤ √
1 − ρ, then,

• PG
1 = (0, 0, R

(1)
3 ) has a bounded gap from the outer-boundsR1 + R3 = φ(1, 3), R2 + R3 = φ(2, 3),

R1 = 0, andR2 = 0.

• PG
2 = (R

(2)
1 , R

(2)
2 , 0) has a bounded gap from the outer-boundsR1 +R3 = φ(1, 3), R2 +R3 = φ(2, 3),

andR3 = 0.

Therefore, the convex hull of the achievable rate vectorsPG
i , i = 1, 2, is within a bounded gap from the

outer-bound formed by the of cut-set outer-bounds(33)-(38).

VII. RATE DISTORTION REGION FORc ≤ { 1
2ρ
, ρ}.

Here in this section, we assume thatc ≤ min{ 1
2ρ
, ρ}. Therefore,

c ≤ min{ρ, 1

2ρ
} ≤ max min{ρ, 1

2ρ
} =

√
2

2
. (105)

Here again, we first characterize the rate region for the corresponding binary expansion model.

A. Rate-Distortion Region for The Binary-Expansion Model

1) The Binary-Expansion Model:Since the correlation betweeny1 andy2 is equal toρ, we can write

y1 = ρy2 +
√

1 − ρ2z, wherez ∼ N (0, 1) andz is independent fromy2. We definer such that

ρ = 1 − 2−2r. (106)
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x[1] x[r] x[r+1]x[b−β]. . . x[b−β+1] . . . . . . x[b]. . .x[r+β+1]x[r+β]
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⊕

z[b−r]. . . z[β+1]z[β] . . .

x[1] x[r] x[r+1]x[β]. . . x[β+1] . . . . . . x[b]. . .x[r+β+1]x[r+β]

y1 = x+ 2−rz

x

x[1] x[r] x[r+1]x[β]. . . x[β+1] . . . . . . x[b]. . .x[r+β+1]x[r+β]

z[1]

⊕

z[b−r]. . . z[β+1]z[β] . . .

x[1] x[r] x[r+1]x[r−β]. . . x[r−β+1] . . . . . . x[b−β]. . .x[b−β+1]x[b−β]

y3 = (1 + 2−β)x+ 2−rz

⊕

A1 A2 A3

B2B1

C1 C2 C3

x[b−β] x[b−β+1]

x[b−β] x[b−β+1] . . .

x[b−β] x[b−β+1] . . .

z[b−r−β] . . .

. . .z[b−r−β]

Fig. 13. Binary Expansion Model forc ≤ { 1
2ρ

, ρ}

In addition, we definex asx = ρy2. Noting thatc ≤ ρ, we defineβ such that,

c

ρ
= 2−β. (107)

In connection with the Gaussian problem, we introduce a binary expansion model. In this model,y1, x and

z are all uniformly distributed in[0, 1], with binary expansion representations, as detailed in Section III.

In addition, we replacer and β with the closest integers. The connection ofy1 and x is modeled as

y1 = x⊕ 2−rz. In the Gaussian problem, we have

y3 = y1 − cy2 = (y1 − x) + (1 − c

ρ
)x. (108)

This equation is modeled asy3 = 2−rz ⊕ x⊖ 2−βx in the binary expansion model, as shown in Fig. 13.

2) Achievable Region for the Binary Expansion Model:The achievable region for the binary expansion

model is shown Fig. 14, where we have

P̄1 = (0, 0, b) , (109)

P̄2 =
(
(b− r)+, b+ (b− β − r)+ − (b− r)+, 0

)
, (110)

P̄3 =
(
b, (b− β − r)+, 0

)
, (111)

P̄4 =
(
0, b− (b− r)+, (b− r)+

)
, (112)

P̄5 =
(
b− (b− r − β)+, 0, (b− r − β)+

)
, (113)

P̄6 =
(
(b− r)+ − (b− r − β)+, b− (b− r)+, (b− r − β)+

)
. (114)
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P̄1

R3

P̄4

P̄5

P̄3

P̄2

R2

R1

P̄6

Fig. 14. Achievable Region of the Binary Expansion Model, Corresponding to the Casec ≤ { 1
2ρ

, ρ}

Referring to Fig. 13, we list the schemes to achieve the corner points of Fig. 14, as follows.

• To achieveP̄1: encoder 3 sendsC1, C2, andC3.

• To achieveP̄2: encoder 1 sendsA2, andA3, and encoder 2 sendsB1.

• To achieveP̄3: encoder 1 sendsA1, A2, andA3, and encoder 2 sendsB2.

• To achieveP̄4: encoder 2 sendsB1, encoder 3 sendsC2, andC3 (Note that havingB1, the decoder

can reconstructC1).

• To achieveP̄5: encoder 1 sendsA1 andA2, and encoder 3 sendsC3.

• To achieveP̄6: encoder 1 sendsA2, encoder 2 sendsB1, and encoder 3 sendsC3.

One can observe that the concatenation of quantization and binning can achieve all the corner points

as follows.

To achieveP̄1, P̄4, P̄5, andP̄6,

• form v1 as the quantized version ofy1 with resolutionmin{r + β, b} bits after the radix point.

• form v2 as the quantized version ofx = ρy2 with resolutionmin{r, b} bits after the radix point.

• form v3 as the quantized version ofy1 with resolutionb bits after the radix point.

• use the distributed lossless source coding scheme (Slepian-Wolf) to reportv1, v2, andv3 to the decoder.

It is easy to see that̄P1, P̄4, P̄5, and P̄6 are the corner points of the above scheme.

To achieveP̄2, P̄3,

• form v1 as the quantized version ofy1 with resolutionb bits after the radix point.

• form v2 as the quantized version ofx = ρy2 with resolution(b− β)+ bits after the radix point.

• use the distributed lossless source coding scheme (Slepian-Wolf) to reportu1 andu2 to the decoder.
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It is easy to see that̄P2 and P̄3 are the corner points of this scheme.

The rate regionRin can be characterized as union of all(R1, R2, R3) ∈ R
3, satisfying:

R1 ≥ 0, (115)

R2 ≥ 0, (116)

R3 ≥ 0, (117)

R1 +R3 ≥ (b− r)+, (118)

R2 +R3 ≥ (b− r − β)+, (119)

R1 +R2 +R3 ≥ b, (120)

R1 +R2 + 2R3 ≥ b+ (b− r − β)+. (121)

3) Outer Bounds:The inequalities (115)-(120) match with the cut-set outer bounds. In addition,

following the arguments of the proof of Theorem 1, we can showthat (121) is tight. Therefore,Rin

is indeed the rate-distortion region of the developed binary-expansion-model.

B. Achievable Scheme for the Jointly Gaussian Sources

Motivated by the results from the binary expansion model, weconjecture that using Quantization-and-

Binning scheme, we can achieve within a bounded gap of the rate-distortion region. In this sub-section,

corresponding to each corner point of the region, shown in Fig. 14, we introduce an achievable rate vector

for the Gaussian problem, using Quantization-and-Binningscheme.

1) Achievable Scheme Corresponding toP̄1 in Fig. 14: We chooseP̄G
1 = (0, 0, R̄

(1)
3 ) equal toPG

1 in

Sub-Section V-C, i.e.

R̄
(1)
3 =

1

2
log2

σ2
y3

d
. (122)

2) Achievable Scheme Corresponding toP̄5 in Fig. 14: We chooseP̄G
5 = (R̄

(5)
1 , 0, R̄

(5)
3 ) equal toPG

5

in Sub-Section V-D.

Lemma 11 We have

(i) R̄
(5)
3 − φ(2, 3) ≤ 1 bits per samples.

(ii) R̄
(5)
1 + R̄

(5)
3 − φ(1, 2, 3) ≤ 1 bits per samples.

(iii) If c2(1−ρ2)
d

≥ 1, R̄(5)
1 + 2R̄

(5)
3 − ψ ≤ 5 bits per samples.

(iv) If c2(1−ρ2)
d

≤ 1, R̄(5)
3 ≤ 0.5 bits per samples.

Proof: Refer to Appendix G.
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3) Achievable Scheme Corresponding toP̄4 in Fig. 14: We chooseP̄G
4 = (0, R̄

(4)
2 , R̄

(4)
3 ) equal toPG

4

in Sub-Section V-E.

Lemma 12 We have

(i) R̄
(4)
3 − φ(1, 3) ≤ 1 bits per samples.

(ii) R̄
(4)
2 + R̄

(4)
3 − φ(1, 2, 3) ≤ 1 bits per samples.

Proof: Refer to Appendix H.

4) Achievable Scheme Corresponding toP̄6 in Fig. 14: Corresponding tōP6, we introduce the achiev-

able rate vector̄PG
6 = (R̄

(6)
1 , R̄

(6)
2 , R̄

(6)
3 ) as follows.

In this scheme, we quantize sourceyj to vj, with the quadratic distortiondj, j = 1, 2, 3, where,

d1 = max{c2(1 − ρ), d}, (123)

d2 = max{1 − ρ, d}, (124)

d3 =d. (125)

Then we use Slepian-Wolf scheme to report the quantized version of the sources to the decoder. Since

v3 will be available at the decoder, with vanishing probability of error, therefore, the decoder hasy3 with

the quadratic distortiond3 = d. The test channels for the quantization part are as follows:

vj = ηjyj + wj, (126)

wherewj ∼ N (0, 1 − η2
j ), andzj is independent ofyj, and

η1 =
√

1 − d1, (127)

η2 =
√

1 − d2, (128)

η3 =

√
1 − d3

σ2
y3

. (129)

Then, from Burger-Tung theorem, we can show that the following rate vector is achievable,

R̄
(6)
3 =I (y1, y2, y3; u1, u2, u3|u1, u2) = I (y1, y2, y3; u1, u2, u3) − I (y1, y2; u1, u2) , (130)

R̄
(6)
1 =I (y1, y2; u1, u2|u2) = I (y1, y2; u1, u2) − I (y2; u2) , (131)

R̄
(6)
2 =I (y2; u2) , (132)

where

I (y1, y2, y3; u1, u2, u3) (133)

=
1

2
log2

(
1 +

1 − d1

d1

+
1 − d2

d2

+
σ2

y3
− d3

d3

(134)

+
(1 − ρ2)(1 − d1)(1 − d2)

d1d2

+
c2(1 − ρ2)

σ2
y3

(1 − d1)(σ
2
y3
− d3)

d1d3

+
1 − ρ2

σ2
y3

(1 − d2)(σ
2
y3
− d3)

d2d3

)
, (135)
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I (y1, y2; u1, u2) =
1

2
log2

(
1 +

1 − d1

d1

+
1 − d2

d2

+
(1 − ρ2)(1 − d1)(1 − d2)

d1d2

)
, (136)

and

I (y2; u2) =
1

2
log2

1

d2

. (137)

Lemma 13 We have

(i) R̄
(6)
1 + R̄

(6)
2 + R̄

(6)
3 − φ(1, 2, 3) ≤ 3.28 bits per sample.

(ii) R̄
(6)
1 + R̄

(6)
3 − φ(1, 3) ≤ 1

2
log2 7 bits per sample.

(iii) If c2(1−ρ2)
d

≥ 1, R̄(6)
1 + R̄

(6)
2 + 2R̄

(6)
3 − ψ ≤ 6.82 bits per samples.

(iv) If c2(1−ρ2)
d

≤ 1, R̄(6)
3 ≤ 1

2
log2 9 bits per samples.

Proof: Refer to Appendix I

5) Achievable Scheme Corresponding toP̄2 and P̄3 in Fig. 14: Corresponding toP̄2 and P̄3, we

introduce the achievable rate vectorP̄G
2 = (R̄

(2)
1 , R̄

(2)
2 , 0) and P̄G

2 = (R̄
(3)
1 , R̄

(3)
2 , 0) as follows. Here, we

quantize sourceyj to vj, with quadratic distortiondj , j = 1, 2, where,

d1 =
d

4
, (138)

d2 =min{ d

4c2
, 1}. (139)

Then we use Slepian-Wolf scheme to report the quantized version of y1 andy2 to the decoder. It is easy

to see that, with vanishing probability of error, the decoder can reconstructy3 with quadratic distortion

d3 = d. The test channels for the quantization part are as follows:

vj = ηjyj + wj, (140)

wherewj ∼ N (0, 1 − η2
j ), andzj is independent ofyj, and

η1 =
√

1 − d1, (141)

η2 =
√

1 − d2. (142)

Then, we have

R̄
(2)
1 =I (y1, y2; u1, u2|u2) = I (y1, y2; u1, u2) − I (y2; u2) , (143)

R̄
(2)
2 =I (y2; u2) , (144)

and

R̄
(3)
2 =I (y1, y2; u1, u2|u1) = I (y1, y2; u1, u2) − I (y1; u1) , (145)

R̄
(3)
1 =I (y1; u1) , (146)
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where

I (y1, y2; u1, u2) =
1

2
log2

(
1 +

1 − d1

d1
+

1 − d2

d2
+

(1 − ρ2)(1 − d1)(1 − d2)

d1d2

)
, (147)

I (y2; u2) =
1

2
log2

1

d2
, (148)

I (y1; u1) =
1

2
log2

1

d1
. (149)

Lemma 14 If c2(1−ρ2)
d

≥ 1, then

(i) R̄
(2)
1 + R̄

(2)
2 − ψ = R̄

(3)
1 + R̄

(3)
2 − ψ ≤ 5.66 bits per sample.

(ii) R̄
(2)
1 − φ(1, 3) ≤ 2.16 bits per sample.

(ii) R̄
(3)
2 − φ(2, 3) ≤ 2.16 bits per sample.

Proof: Refer to Appendix J.

C. Bounded Gap Result

From the results detailed in the pervious subsection, we have the following conclusions.

Theorem 15 If c ≤ min{ρ, 1
2ρ
}, and c2(1−ρ2)

d
≥ 1, then,

• P̄G
1 = (0, 0, R̄

(1)
3 ) has zero gap from the outer-boundsR1 = 0, R2 = 0, andR1 +R2 +R3 = φ(1, 2, 3).

• P̄G
2 = (R̄

(2)
1 , R̄

(2)
2 , 0) has a bounded gap from the outer-boundsR1+R3 = φ(1, 3), R1+R2+2R3 = ψ,

andR3 = 0.

• P̄G
3 = (R̄

(3)
1 , R̄

(3)
2 , 0) has a bounded gap from the outer-boundsR2+R3 = φ(2, 3), R1+R2+2R3 = ψ,

andR3 = 0.

• P̄G
4 = (0, R̄

(4)
2 , R̄

(4)
3 ) has a bounded gap from the outer-boundsR1 +R3 = φ(1, 3), R1 +R2 +R3 =

φ(1, 2, 3), andR1 = 0.

• P̄G
5 = (R̄

(5)
1 , 0, R̄

(5)
3 ) has a bounded gap from the outer-boundsR2 +R3 = φ(2, 3), R1 +R2 +R3 =

φ(1, 2, 3), R1 +R2 + 2R3 = ψ, andR2 = 0.

• P̄G
6 = (R̄

(6)
1 , R̄

(6)
2 , R̄

(6
3 ) has a bounded gap from the outer-boundsR1 +R3 = φ(1, 3), R1 +R2 +R3 =

φ(1, 2, 3), R1 +R2 + 2R3 = ψ.

Therefore, the convex hull of the achievable rate vectorsP̄G
i , i = 1, . . . , 6, is within a bounded gap from

the outer-bounds formed by the cut-set outer-bounds(33)-(39), and also the outer-bound(40).

Theorem 16 If c ≤ min{ρ, 1
2ρ
}, and c2(1−ρ2)

d
≤ 1, then,

• P̄G
1 = (0, 0, R̄

(1)
3 ) has a zero gap from the outer-boundsR1 = 0,R2 = 0, andR1+R2+R3 = φ(1, 2, 3).
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• P̄G
4 = (0, R̄

(4)
2 , R̄

(4)
3 ) has a bounded gap from the outer-boundsR1 +R3 = φ(1, 3), R1 +R2 +R3 =

φ(1, 2, 3), andR1 = 0.

• P̄G
5 = (R̄

(5)
1 , 0, R̄

(5)
3 ) has a bounded gap from the outer-boundsR1 + R2 + R3 = φ(1, 2, 3), R2 = 0,

andR3 = 0.

• P̄G
6 = (R̄

(6)
1 , R̄

(6)
2 , R̄

(6
3 ) has a bounded gap from the outer-boundsR1 +R3 = φ(1, 3), R1 +R2 +R3 =

φ(1, 2, 3), andR3 = 0.

Therefore, the convex hull of the achievable rate vectorsP̄G
i , i = 1, 4, 5, 6, is within a bounded gap from

the outer-bound formed by the cut-set outer-bounds(33)-(39).

VIII. R ATE DISTORTION REGION FORρ ≤ c.

Since this case is well-understood, we directly explain theresult for the Gaussian sources. Here we

consider two cases, whereρ ≤ 1
2

andρ ≥ 1
2
.

A. Case One:ρ ≥ 1
2

Obviously in this case, the rate vectorP̂G
1 = (0, 0, R̂

(1)
3 ) is achievable, where,

R̂
(1)
3 =

1

2
log2

σ2
y3

d
. (150)

In addition, in [7], it is shown that̂PG
2 = (R̂

(2)
1 , R̂

(2)
2 , 0) is achievable, where

R̂
(2)
1 = R̂

(2)
2 =

1

2
log2

2σ2
y3

d
. (151)

Lemma 17 If ρ ≥ 1
2

(i) R̂
(1)
3 − φ(1, 3) ≤ 1

2
log2

4
3

bits per sample.

(ii) R̂
(1)
3 − φ(2, 3) ≤ 1 bits per sample.

(iii) R̂
(2)
1 − φ(1, 3) ≤ 1

2
log2

8
3

bits per sample.

(iv) R̂
(2)
2 − φ(2, 3) ≤ 1.5 bits per sample.

Proof: Please refer to Appendix K.

Therefore, refereing to Fig. 15, we have,

Theorem 18 If c ≥ ρ and ρ ≥ 1
2
, then

• P̂G
1 has a bounded gap from the outer-boundsR1 + R3 = φ(1, 3), R2 + R3 = φ(2, 3), R1 = 0, and

R2 = 0.

• P̂G
2 has a bounded gap from the outer-boundsR1 +R3 = φ(1, 3), R2 +R3 = φ(2, 3), andR3 = 0.

Therefore, the convex hull of the achievable rate vectorsP̂i, i = 1, 2, is within a bounded gap from the

outer-bound formed by the cut-set outer-bounds(33)-(38).
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R3

R2

R1

b

b

P̂1

P̂2

Fig. 15. Outer-Bounds for Caseρ ≤ c andρ ≥ 0.5

B. Case Two:ρ ≤ 1
2

Ignoring the advantage of the correlation betweeny1 andy2, one can easy see thatP̃G
2 = (R̃

(2)
1 , R̃

(2)
2 , 0)

is achievable, where

R̃
(2)
1 =

1

2
log2

4

d
, (152)

R̃
(2)
2 =

1

2
log+

2

4c2

d
. (153)

Lemma 19 If ρ ≤ 1
2

(i) R̃
(2)
1 − φ(1, 3) ≤ 1

2
log2

16
3

bits per sample.

(ii) R̃
(2)
2 − φ(2, 3) ≤ 1

2
log2

16
3

bits per sample.

Proof: Directly follows.

In addition, we consider the rate vectorP̃G
5 = (R̃

(5)
1 , 0, R̃

(5)
2 ), the same asPG

5 in Subsection V-D.

Lemma 20 If ρ ≤ 1
2
, then we have

(i) R̃
(5)
3 − φ(2, 3) ≤ 1 bits per samples.

(ii) R̃
(5)
1 + R̃

(5)
3 − φ(1, 3) ≤ 1 bits per samples.

Proof: Refer to Appendix L.

In addition, consider the achievable rate vectorP̃G
1 = (0, 0, R̃

(1)
3 ), where

R̃
(1)
3 =

1

2
log2

σ2
y3

d
. (154)

Lemma 21 If ρ ≤ 1
2
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R3

R2

R1

b

b

P̃1

P̃2

b
P̃5

Fig. 16. Outer-Bounds for Caseρ ≤ c andρ ≤ 0.5

(i) R̃
(1)
3 − φ(1, 3) ≤ 1

2
bits per sample.

Proof:

R̃
(1)
3 −φ(1, 3)

≤1

2
log2

σ2
y3

d
− 1

2
log+

2

(1 − ρ2)

d

≤ 1

2
log2

σ2
y3

(1 − ρ2)
(a)

≤ 1

2
log2

(1 + c)

1 + ρ
≤ 0.5,

Then, refereing to Fig. 16, we have,

Theorem 22 If c ≥ ρ and ρ ≤ 1
2
, then

• P̃G
1 has a bounded gap from the outer-boundsR1 +R3 = φ(1, 3), R1 = 0, andR2 = 0.

• P̃G
5 has a bounded gap from the outer-boundsR1 +R3 = φ(1, 3), R2 +R3 = φ(2, 3), andR2 = 0.

• P̃G
2 has a bounded gap from the outer-boundsR1 +R3 = φ(1, 3), R2 +R3 = φ(2, 3), andR3 = 0.

Therefore, the convex hull of the achievable rate vectorsP̃G
i , i = 1, 2, 3, is within a bounded gap from

the outer-bound formed by the cut-set outer-bounds(33), (34), (34),(37), and (38).



36

APPENDIX A

PROOF OFLEMMA 3

Part (i):

If d ≤ 1 − ρ2,

R
(2)
1 − φ(1, 3) =

1

2
log+

2

2σ2
y3
d+ 6(1 − ρ)(σ2

y3
− d)

σ2
y3
d

+ log2 3 − 1

2
log2

1 − ρ2

d

≤1

2
log+

2

2σ2
y3

(1 − ρ2) + 6(1 − ρ)(σ2
y3
− d)

σ2
y3
d

+ log2 3 − 1

2
log2

1 − ρ2

d

≤1

2
log2 8 + log2 3.

On the other hand, ifd ≥ 1 − ρ2,

R
(2)
1 − φ(1, 3) =

1

2
log+

2

2σ2
y3
d+ 6(1 − ρ)(σ2

y3
− d)

σ2
y3
d

+ log2 3

1

2
log+

2

2σ2
y3
d+ 6d(σ2

y3
− d)

σ2
y3
d

+ log2 3

≤1

2
log2 8 + log2 3.

Part (ii):

Since we assume that1 − c ≤ √
1 − ρ, then it is easy to see that

σ2
y3

= 1 + c2 − 2cρ = (1 − c)2 + 2c(1 − ρ) ≤ (1 − ρ)(1 + 2c). (155)

Then, we have

R
(2)
2 − φ(2, 3) =

1

2
log+

2

3σ2
y3

d
+ log2 3 − 1

2
log+

2

c2(1 − ρ2)

d
(156)

≤1

2
log2

3σ2
y3

c2(1 − ρ2)
+ log2 3 (157)

(a)

≤ 1

2
log2

3(1 + 2c)

c2(1 + ρ)
+ log2 3 (158)

(b)

≤1

2
log2

3(1 + 2c)

c2 + 0.5c
+ log2 3, (159)

(c)

≤1

2
log2 12 + log2 3, (160)

where (a) follows from (155) and (b) relies on the fact thatcρ ≥ 0.5, and (c) is based onc ≥ 0.5
ρ

≥ 0.5.

Part (iii): Using the proof of part (i) it is easy to see that

R
(2)
1 − 1

2
log+

2

1 − ρ

d
≤ 1

2
log2 8 + log2 3.
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If d ≤ c2(1 − ρ), then

R
(2)
2 − 1

2
log+

2

c2(1 − ρ)

d
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

= log2 3 +
1

2
log+

2

3σ2
y3

d
− 1

2
log+

2

c2(1 − ρ)

d
− 1

2
log2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

≤ log2 3 +
1

2
log2

3σ2
y3

c2(1 − ρ)
− 1

2
log2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(a)

≤ log2 3 +
1

2
log2

3σ2
y3

c2(1 − ρ)
− 1

2
log2

ρ(1 − c)2

(c
√

1 − ρ+
√

(1 − ρ)(1 + c2))2

= log2 3 +
1

2
log2

3σ2
y3

c2
− 1

2
log2

ρ(1 − c)2

(c+
√

1 + c2)2

(b)

≤ log2 3 +
1

2
log2

9(c+
√

1 + c2)2

c2ρ
(c)

≤ log2 3 +
1

2
log2 18(1 +

√
5)2,

where (a) relies on assumptiond ≤ c2(1 − ρ), and (b) is based on1 − c ≥ √
1 − ρ and

σ2
y3

(1 − c)2
=

1 + c2 − 2cρ

(1 − c)2
= 1 +

2c(1 − ρ)

(1 − c)2
≤ 1 + 2c ≤ 3. (161)

Moreover, (c) follows from the fact thatc ≥ 1
2ρ

≥ 1
2
, andρ ≥ 1

2c
≥ 1

2
.

Otherwise, ifd ≥ c2(1 − ρ), then

R
(2)
2 − 1

2
log+

2

c2(1 − ρ)

d
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(162)

= log2 3 +
1

2
log+

2

3σ2
y3

d
− 1

2
log2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(163)

= log2 3 +
1

2
log2

(
3σ2

y3

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

d

)
(164)

(a)

≤ log2 3 +
1

2
log2


18

(
1 +

√
(1 − ρ)(1 + c2)

d

)2

 (165)

(b)

≤ log2 3 +
1

2
log2


18

(
1 +

√
1 + c2

c2

)2

 (166)

(c)

≤ log2 3 +
1

2
log2 18(1 +

√
5)2, (167)

where (a) is based onρ ≥ 1
2c

≥ 1
2

and (161), (b) relies ond ≥ c2(1− ρ), and (c) is based on the fact that

c ≥ 1
2ρ

≥ 1
2
.
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APPENDIX B

PROOF OFLEMMA 5

Part (i):

R
(3)
22 − φ(2, 3) (168)

=1 +
1

2
log2(2 +

6(1 − ρ)(σ2
y3
− d)

σ2
y3
d

) − log+
2

c2(1 − ρ2)

d
(169)

=1 +
1

2
log2

(
2 +

6(1 − ρ)(σ2
y3
− d)

σ2
y3
d

min{1, d

c2(1 − ρ2)
}
)

(170)

=1 +
1

2
log2

(
2 +

6(σ2
y3
− d)

σ2
y3
c2

)
(171)

≤1 +
1

2
log2

(
2 +

6

c2

)
(a)

≤ 1 +
1

2
log2 (2 + 12) = 1 +

1

2
log2 28, (172)

where (a) is based onc ≥ 1
2ρ

≥ 1
2
. Therefore,

R
(3)
2 − φ(2, 3) = R21 +R22 +R23 − φ(2, 3) = log2 3 + 3 +

1

2
log2 (28) . (173)

Part(ii):

Similar to part (i), it is easy to show that

R
(3)
22 − 1

2
log+

2

c2(1 − ρ)

d
(174)

=1 +
1

2
log2(2 +

6(1 − ρ)(σ2
y3
− d)

σ2
y3
d

) − log+
2

c2(1 − ρ)

d
(175)

=1 +
1

2
log2

(
2 +

6(1 − ρ)(σ2
y3
− d)

σ2
y3
d

min{1, d

c2(1 − ρ)
}
)

(176)

=1 +
1

2
log2

(
2 +

6(σ2
y3
− d)

σ2
y3
c2

)
(177)

≤1 +
1

2
log2

(
2 +

6

c2

)
≤ 1 +

1

2
log2 (2 + 24) = 1 +

1

2
log2 26. (178)
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Similarly, we have

R
(3)
11 − 1

2
log+

2

1 − ρ

d
(179)

=
1

2
log2(2 +

6(1 − ρ)(σ2
y3
− d)

σ2
y3
d

) − 1

2
log+

2

1 − ρ

d
(180)

=
1

2
log2

(
2 +

6(1 − ρ)(σ2
y3
− d)

σ2
y3
d

min{1, d

1 − ρ
}
)

(181)

=
1

2
log2

(
2 +

6(σ2
y3
− d)

σ2
y3

)
(182)

≤1

2
log2 (2 + 6) ≤ 1

2
log2 8. (183)

From (79) and (86), we have,

R
(3)
13 =

1

2
log2

σ2
Λ

Ĉ

σ2
ΛM

= max

{
1

2
log2

(ρ− c+ σΛM
)2

σ2
ΛM

,
1

2
log2

σ2
ΛC

σ2
ΛM

}
. (184)

On the other hand, we have

1

2
log2

(ρ− c+ σΛM
)2

σ2
ΛM

− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(185)

= log2

ρ− c+ σΛM

σΛM

− log+
2

√
ρ(1 − c)√

d+
√

(1 − ρ)(1 + c2)
(186)

≤ log2

(
1 +

ρ− c√
2(1 − ρ) + 2q

√
d+

√
(1 − ρ)(1 + c2)√
ρ(1 − c)

)
(187)

(a)

≤ log2

(
1 +

1√
2(1 − ρ) + 2q

√
d+

√
(1 − ρ)(1 + c2)√

ρ

)
(188)

(b)

≤ log2


1 +

1√
2(1 − ρ) + 2d

3

√
d+

√
(1 − ρ)(1 + c2)√

ρ


 (189)

= log2



1 +

√
d

√
ρ
√

2(1 − ρ) + 2d
3

+

√
(1 − ρ)(1 + c2)

√
ρ
√

2(1 − ρ) + 2d
3



 (190)

(c)

≤ log2

(
1 +

√
3 +

√
(1 − ρ)(1 + c2)
√
ρ
√

2(1 − ρ)

)
(191)

= log2

(
1 +

√
3 +

√
(1 + c2)√

2ρ

)
(192)

(d)

≤ log2

(
1 +

√
3 +

√
(1 + c2)√

2c

)
= log2

(
1 +

√
3 +

√
5

2

)
, (193)

where (a) is based onρ− c ≤ 1 − c, (b) follows from
σ2

y3
d

3(σ2
y3

−d)
≥ d

3
, (c) is based onρ ≥ 1

2c
≥ 1

2
, and (d)

is due toc ≤ ρ.
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In addition, we have

1

2
log2

σ2
ΛC

σ2
ΛM

− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(194)

=
1

2
log2

σ2
y3

+ 3q

2(1 − ρ) + 2q
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(195)

(a)

≤ 1

2
log2

σ4
y3

(2(1 − ρ))(σ2
y3
− d) + 2

3
dσ2

y3

− 1

2
log2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(196)

=
1

2
log2

(
σ4

y3

(2(1 − ρ))(σ2
y3
− d) + 2

3
dσ2

y3

(
√
d+

√
(1 − ρ)(1 + c2))2

ρ(1 − c)2

)
(197)

(b)

≤ 1

2
log2

(
(1 + 2c)σ2

y3

(2(1 − ρ))(σ2
y3
− d) + 2

3
dσ2

y3

(
√
d+

√
(1 − ρ)(1 + c2))2

ρ

)
(198)

=
1

2
log2

(
(1 + 2c)

(2(1 − ρ))(1 − d
σ2

y3

) + 2
3
d

(
√
d+

√
(1 − ρ)(1 + c2))2

ρ

)
(199)

(c)

≤ log2


2

√
d+

√
(1 − ρ)(1 + c2)√

(2(1 − ρ))(1 − d
σ2

y3

) + 2
3
d


 (200)

= log2


2

√
d√

(2(1 − ρ))(1 − d
σ2

y3

) + 2
3
d

+ 2

√
(1 − ρ)(1 + c2)√

(2(1 − ρ))(1 − d
σ2

y3

) + 2
3
d


 (201)

= log2


√

6 + 2

√
(1 − ρ)(1 + c2)√

(2(1 − ρ))(1 − d
σ2

y3

) + 2
3
d


 , (202)

where (a) is due to the particular choice ofq in (73), (b) follows from the assumption that1−c ≥ √
1 − ρ,

and

σ2
y3

= 1 + c2 − 2cρ = (1 − c)2 + 2c(1 − ρ) ≥ (1 − ρ) + 2c(1 − ρ) = (1 − ρ)(1 + 2c). (203)

Inequality (c) is based on1+2c
ρ

≥ 1+2c
c

≥ 4, asρ ≥ c ≥ 1
2ρ

≥ 1
2
.

Here we consider two cases whered ≤ σ2
y3

2
, or d >

σ2
y3

2
. If d ≤ 1

2
σ2

y3
, then1 − d

σ2
y3

≥ 1
2
, then we have,

R.H.S (202)≤ log2


√

6 + 2

√
(1 − ρ)(1 + c2)√

1 − ρ+ 2
3
d


 (204)

≤ log2

(
√

6 + 2

√
(1 − ρ)(1 + c2)√

1 − ρ

)
(205)

≤ log2

(√
6 + 2(1 + c2)

)
(206)

(a)

≤ log2

(√
2(
√

3 + 2)
)
, (207)

where (a) is based on1+c2

1+c
≤ 1, for c ≤ 1.
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Otherwise, ifd > 1
2
σ2

y3
, then

R.H.S (202)≤ log2


√

6 + 2

√
(1 − ρ)(1 + c2)√

2
3
d


 (208)

≤ log2



√
6 + 2

√
(1 − ρ)(1 + c2)√

1
3
σ2

y3



 (209)

(a)

≤ log2


√

6 + 2

√
(1 − ρ)(1 + c2)√
1
3
(1 − ρ)(1 + 2c)


 (210)

(b)

≤ log2

(√
6 + 2

√
2
)
, (211)

where (a) follows from (203), and (b) is based on
√

(1−ρ)(1+c2)√
1
3
(1−ρ)(1+2c)

≤
√

2. for 0.5 ≤ c ≤ 1.

Therefore, we have

R
(3)
1 +R

(3)
2 − ψ (212)

≤ 3 +
1

2
log2 26 +

1

2
log2 8 + max

{
log2

(
1 +

√
3 +

√
5

4

)
, log2

(√
6 + 2

√
2
)}

+ 2 log2 3 (213)

= 12.42 bits per sample. (214)

APPENDIX C

PROOF OFLEMMA 6

We note that if1 − c ≤ √
1 − ρ, thenσ2

y3
= 1 + c2 − 2cρ = (1 − c)2 + 2c(1 − ρ) ≤ (1 − ρ)(1 + 2c).

Using this inequality, we can prove both parts, as follows.

Part (i):

We have

R
(1)
3 − φ(1, 3) =

1

2
log2

σ2
y3

d
− 1

2
log+

2

1 − ρ2

d
(215)

≤1

2
log2

(1 − ρ)(1 + 2c)

d
− 1

2
log+

2

1 − ρ2

d
(216)

≤1

2
log2

(1 + 2c)

1 + ρ
≤ 1

2
log2 1.5, (217)

where we use the fact that0.5 ≤ 1
2ρ

≤ c ≤ ρ.

Part (ii): We have

R
(1)
3 − φ(1, 3) =

1

2
log2

σ2
y3

d
− 1

2
log+

2

c2(1 − ρ2)

d
(218)

≤1

2
log2

(1 − ρ)(1 + 2c)

d
− 1

2
log+

2

c2(1 − ρ2)

d
(219)

≤1

2
log2

(1 + 2c)

c2(1 + ρ)
≤ 1

2
log2

16

3
, (220)



42

where we use the fact that0.5 ≤ 1
2ρ

≤ c ≤ ρ.

APPENDIX D

PROOF OFLEMMA 7

If d ≤ σ2
y3

(1 − ρ2
13), then

R
(5)
1 =

1

2
log2

1

1 − ρ2
13

, (221)

R
(5)
3 =

1

2
log+

2

σ2
y3

(1 − ρ4
13)

d
, (222)

otherwise ifd ≥ σ2
y3

(1 − ρ2
13), then

R
(5)
1 =

1

2
log2

σ2
y3

d
, (223)

R
(5)
3 =

1

2
log+

2

(
σ2

y3
(1 − ρ2

13)

d
+ ρ2

13

)
. (224)

Part (i):

It is easy to see that

φ(2, 3) =
1

2
log+

2

σ2
y3

(1 − ρ2
13)

d
. (225)

Therefore,d ≤ σ2
y3

(1 − ρ2
13),

R
(5)
3 − φ(2, 3) =

1

2
log+

2

σ2
y3

(1 − ρ4
13)

d
− 1

2
log+

2

σ2
y3

(1 − ρ2
13)

d
≤ 1

2
log+

2 (1 + ρ2
13) ≤ 1, (226)

otherwise ifd ≥ σ2
y3

(1 − ρ2
13), then

R
(5)
3 − φ(2, 3) =

1

2
log+

2

(
σ2

y3
(1 − ρ2

13)

d
+ ρ2

13

)
− 1

2
log+

2

σ2
y3

(1 − ρ2
13)

d
(227)

=
1

2
log+

2

(
σ2

y3
(1 − ρ2

13)

d
+ ρ2

13

)
≤ 1

2
log2

(
1 + ρ2

13

)
≤ 1. (228)

Part (ii):

It is easy to see that

φ(1, 2, 3) =
1

2
log+

2

σ2
y3

d
. (229)

If d ≤ σ2
y3

(1 − ρ2
13), then

R
(5)
1 +R

(5)
3 −φ(1, 2, 3)

=
1

2
log2

1

1 − ρ2
13

+
1

2
log+

2

σ2
y3

(1 − ρ4
13)

d
− 1

2
log2

σ2
y3

d
≤ 1

2
log2(1 + ρ2

13) ≤ 1.
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Otherwise ifd ≥ σ2
y3

(1 − ρ2
13), then

R
(5)
1 +R

(5)
3 −φ(1, 2, 3)

=
1

2
log2

σ2
y3

d
+

1

2
log+

2

(
σ2

y3
(1 − ρ2

13)

d
+ ρ2

13

)
− 1

2
log2

σ2
y3

d
=

1

2
log+

2

(
1 + ρ2

13

)
≤ 1.

Part (iii):

From (40), we have,

ψ =
1

2
log+

2

1 − ρ

d
+

1

2
log+

2

c2(1 − ρ)

d
+

1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

. (230)

Then, we have

1

2
log+

2

c2(1 − ρ)

d
=

1

2
log+

2

σ2
y3

(1 − ρ2
13)

d(1 + ρ)
. (231)

In addition,

1

2
log+

2

(1 − ρ)

d
=

1

2
log+

2

σ2
y3

(1 − ρ2
13)

dc2(1 + ρ)
. (232)

Then, using the proof of part (i), it is easy to see that

R
(5)
3 − 1

2
log+

2

c2(1 − ρ)

d
≤ 2, (233)

and

R
(5)
3 − 1

2
log+

2

(1 − ρ)

d
≤ 2. (234)

Moreover, ifd ≤ σ2
y3

(1 − ρ2
13) = c2(1 − ρ2), then

R
(5)
1 − 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(235)

=
1

2
log+

2

1

1 − ρ2
13

− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(236)

=
1

2
log+

2

σ2
y3

c2(1 − ρ2)
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(237)

(a)

≤ 1

2
log+

2

(1 + 2c)(
√
d+

√
(1 − ρ)(1 + c2))2

c2ρ(1 − ρ2)
(238)

(b)

≤ 1

2
log+

2

(1 + 2c)(
√
c2(1 − ρ2) +

√
(1 − ρ)(1 + c2))2

c2ρ(1 − ρ2)
(239)

=
1

2
log+

2

(1 + 2c)(
√
c2(1 + ρ) +

√
1 + c2)2

c2ρ(1 + ρ)

(c)

≤ 2.2, (240)

where (a) is based on (161), (b) follows from the assumptiond ≤ σ2
y3

(1 − ρ2
13) = c2(1 − ρ2), and (c)

relies on0.5 ≤ 1
2ρ

≤ c ≤ ρ.
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Moreover, ifd ≥ σ2
y3

(1 − ρ2
13) = c2(1 − ρ2), then

R
(5)
1 − 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(241)

=
1

2
log2

σ2
y3

d
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(242)

(a)

≤ 1

2
log2

(1 + 2c)(
√
d+

√
(1 − ρ)(1 + c2))2

dρ
(243)

(b)

≤ 1

2
log2


(1 + 2c)

ρ

[
1 +

√
1 + c2

c2(1 + ρ)

]2

 ≤ 2.2, (244)

where (a) is based on (161), (b) follows from the assumptiond ≤ σ2
y3

(1 − ρ2
13) = c2(1 − ρ2), and (c)

relies on0.5 ≤ 1
2ρ

≤ c ≤ ρ.

APPENDIX E

PROOF OFLEMMA 8

If d ≤ σ2
y3

(1 − ρ2
13), then

R
(4)
1 =

1

2
log2

1

1 − ρ2
23

, (245)

R
(4)
3 =

1

2
log+

2

σ2
y3

(1 − ρ4
23)

d
, (246)

otherwise ifd ≥ σ2
y3

(1 − ρ2
23), then

R
(4)
1 =

1

2
log2

σ2
y3

d
, (247)

R
(4)
3 =

1

2
log+

2

(
σ2

y3
(1 − ρ2

23)

d
+ ρ2

23

)
. (248)

In addition, it is easy to show,

φ(1, 3) =
1

2
log+

2

σ2
y3

(1 − ρ2
13)

d
. (249)

Then, similar to the proof of Lemma 7, we can prove part (i) andpart (ii). In addition, we can show that

R
(4)
3 − 1

2
log+

2

c2(1 − ρ)

d
≤ 2, (250)

and

R
(4)
3 − 1

2
log+

2

(1 − ρ)

d
≤ 2. (251)
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Moreover, ifd ≤ σ2
y3

(1 − ρ2
23) = 1 − ρ2, then

R
(4)
1 − 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(252)

=
1

2
log+

2

1

1 − ρ2
13

− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(253)

=
1

2
log+

2

σ2
y3

1 − ρ2
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(254)

(a)

≤ 1

2
log+

2

(1 + 2c)(
√
d+

√
(1 − ρ)(1 + c2))2

ρ(1 − ρ2)
(255)

(b)

≤ 1

2
log+

2

(1 + 2c)(
√

1 − ρ2 +
√

(1 − ρ)(1 + c2))2

ρ(1 − ρ2)
(256)

=
1

2
log+

2

(1 + 2c)(
√

1 + ρ+
√

1 + c2)2

ρ(1 + ρ)

(c)

≤ 1.84, (257)

where (a) is based on (161), (b) follows from the assumptiond ≤ σ2
y3

(1 − ρ2
23) = 1 − ρ2, and (c) relies

on 0.5 ≤ 1
2ρ

≤ c ≤ ρ.

Moreover, ifd ≥ σ2
y3

(1 − ρ2
23) = 1 − ρ2, then

R
(4)
1 − 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(258)

=
1

2
log2

σ2
y3

d
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(259)

(a)

≤ 1

2
log2

(1 + 2c)(
√
d+

√
(1 − ρ)(1 + c2))2

dρ
(260)

(b)

≤ 1

2
log2


(1 + 2c)

ρ

[
1 +

√
1 + c2

1 + ρ

]2

 ≤ 1.84, (261)

where (a) is based on (161), (b) follows from the assumptiond ≤ σ2
y3

(1 − ρ2
23) = 1 − ρ2, and (c) relies

on 0.5 ≤ 1
2ρ

≤ c ≤ ρ.

APPENDIX F

AN INEQUALITY

Lemma 23 If c ≤ min{ρ, 1
2ρ
} and d ≤ c2(1 − ρ2), then

1

2
log2

1

(1 − ρ)
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

≤ 3. (262)

Proof: First, we note thatc ≤ min{ρ, 1
2ρ
} ≤ 1√

2
. In addition, we have

d ≤ c2(1 − ρ2) ≤ 1

2
(1 − ρ2) ≤ 1 − ρ. (263)
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If ρ(1 − c)2 ≥ (
√
d+

√
(1 − ρ)(1 + c2))2, then

1

2
log2

1

(1 − ρ)
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(264)

≤1

2
log2

1

(1 − ρ)
− 1

2
log2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

, (265)

=
1

2
log2



 1

ρ(1 − c)2

(√
d

1 − ρ
+
√

1 + c2

)2


 (266)

(a)

≤ 1

2
log2


2

(
1 +

√
3

2

)2

 = 1.654, (267)

where (a) follows from the factc ≤
√

2
2

. In addition, if ρ(1 − c)2 ≥ (
√
d+

√
(1 − ρ)(1 + c2))2, then we

haveρ ≥ (1 − ρ)(1 + c2), and therefore,ρ ≥ 1+c2

2+c2
≥ 1

2
.

On the other hand, ifρ(1 − c)2 ≤ (
√
d +

√
(1 − ρ)(1 + c2))2, andρ > 0.9, then sinced ≤ 1 − ρ we

have,

ρ(1 − c)2 ≤ (1 − ρ)(1 +
√

1 + c2)2.

Therefore,

1

2
log2

1

(1 − ρ)
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(268)

=
1

2
log2

1

1 − ρ
(269)

≤1

2
log2

(1 +
√

1 + c2)2

ρ(1 − c)2

(a)

≤ 3.00, (270)

where (a) relies onc ≤
√

2
2

.

In addition, if ρ(1 − c)2 ≤ (
√
d+

√
(1 − ρ)(1 + c2))2, andρ > 0.9, then

1

2
log2

1

(1 − ρ)
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(271)

=
1

2
log2

1

1 − ρ
≤ 1.66. (272)

APPENDIX G

PROOF OFLEMMA 11

If d ≤ σ2
y3

(1 − ρ2
13), then

R̄
(5)
1 =

1

2
log2

1

1 − ρ2
13

, (273)

R̄
(5)
3 =

1

2
log+

2

σ2
y3

(1 − ρ4
13)

d
, (274)
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otherwise ifd ≥ σ2
y3

(1 − ρ2
13), then

R̄
(5)
1 =

1

2
log2

σ2
y3

d
, (275)

R̄
(5)
3 =

1

2
log+

2

(
σ2

y3
(1 − ρ2

13)

d
+ ρ2

13

)
. (276)

Part (i):

The proof is the same as the proof of Lemma 7-Part (i).

Part (ii):

The proof is the same as the proof of Lemma 7-Part (ii).

Part (iii):

We note thatσ2
y3

(1 − ρ2
13) = c2(1 − ρ2). Then,

d ≤ σ2
y3

(
1 − ρ2

13

)
= c2(1 − ρ2) ≤ 1

2
(1 − ρ2) ≤ (1 − ρ), (277)

which follows fromc ≤
√

2
2

.

From (40), we have,

ψ =
1

2
log+

2

1 − ρ

d
+

1

2
log+

2

c2(1 − ρ)

d
+

1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

. (278)

It is easy to see that,

R̄
(5)
3 − 1

2
log+

2

c2(1 − ρ)

d
≤1

2
log+

2

2c2(1 − ρ2)

d
− 1

2
log+

2

c2(1 − ρ)

d
≤ 1. (279)

In addition, we have

R̄
(5)
1 + R̄

(5)
3 − 1

2
log+

2

1 − ρ

d
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(280)

=
1

2
log2

1

1 − ρ2
13

+
1

2
log+

2

σ2
y3

(1 − ρ4
13)

d
− 1

2
log2

1 − ρ

d
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(281)

(a)

≤ 1

2
log2

σ2
y3

c2(1 − ρ2)
+

1

2
log+

2

2c2(1 − ρ2)

d
− 1

2
log2

1 − ρ

d
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(282)

=
1

2
log2

2σ2
y3

(1 − ρ)
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(b)

≤ 4 (283)

where (a) follows from1 + ρ2
23 ≤ 2, and (b) is based on Lemma 23 and alsoσ2

y3
≤ 2.

Part (iv):

R̄
(5)
3 =

1

2
log+

2

(
σ2

y3
(1 − ρ2

13)

d
+ ρ2

13

)
=

1

2
log+

2

(
c2(1 − ρ2)

d
+ ρ2

13

)
≤ 1

2
log+

2

(
1 + ρ2

13

)
≤ 0.5. (284)
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APPENDIX H

PROOF OFLEMMA 12

If d ≤ σ2
y3

(1 − ρ2
23), then

R̄
(4)
2 =

1

2
log2

1

1 − ρ2
23

, (285)

R̄
(4)
3 =

1

2
log+

2

σ2
y3

(1 − ρ4
23)

d
, (286)

otherwise ifd ≥ σ2
y3

(1 − ρ2
23), then

R̄
(4)
1 =

1

2
log2

σ2
y3

d
, (287)

R̄
(4)
3 =

1

2
log+

2

(
σ2

y3
(1 − ρ2

23)

d
+ ρ2

23

)
. (288)

Part (i):

The proof is the same as the proof of Lemma 8-Part (i).

Part (ii):

The proof is the same as the proof of Lemma 8-Part (ii).

APPENDIX I

PROOF OFLEMMA 13

Part (i):

R̄
(6)
1 + R̄

(6)
2 + R̄

(6)
3 − φ(1, 2, 3) (289)

= I (y1, y2, y3; u1, u2, u3) − φ(1, 2, 3) (290)

≤ 1

2
log2

(
1

d1

+
1

d2

+
σ2

y3

d3

+
1 − ρ2

d1d2

+
c2(1 − ρ2)

d1d3

+
1 − ρ2

d2d3

)
− 1

2
log2

σ2
y3

d3

(291)

(a)

≤ 1

2
log2

(
2

σ2
y3

+ 1 +
3(1 + ρ)

σ2
y3

)
(b)

≤ 3.28, (292)

where (a) follows simply from (123)-(125), and (b) relies on

σ2
y3

= (1 − c)2 + 2c(1 − ρ) ≥ (1 − c)2 ≥
(

1 −
√

2

2

)2

, (293)

and (105).

Part (ii):
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R̄
(6)
1 + R̄

(6)
3 − φ(1, 3) (294)

= I (y1, y2, y3; u1, u2, u3) − I(y2; u2) − φ(1, 3) (295)

≤ 1

2
log2

(
1

d1

+
1

d2

+
σ2

y3

d3

+
1 − ρ2

d1d2

+
c2(1 − ρ2)

d1d3

+
1 − ρ2

d2d3

)
− 1

2
log2

1

d2

− 1

2
log+

2

1 − ρ2

d
(296)

≤ 1

2
log2

(
d2

d1

+ 1 +
σ2

y3
d2

d
+

1 − ρ2

d1

+
c2(1 − ρ2)d2

d1d3

+
1 − ρ2

d

)
− 1

2
log+

2

1 − ρ2

d

(a)

≤ 1

2
log2 7, (297)

where (a) relies on (123)-(125).

Part (iii):

Let us assume thatd ≤ c2(1 − ρ), then from (123)-(125), we haved1 = c2(1 − ρ) andd2 = 1 − ρ.

In addition,

I (y1, y2, y3; u1, u2, u3) (298)

≤ 1

2
log2

(
1

d1

+
1

d2

+
σ2

y3

d3

+
1 − ρ2

d1d2

+
c2(1 − ρ2)

d1d3

+
1 − ρ2

d2d3

)
(299)

≤ 1

2
log2

(
1

c2(1 − ρ)
+

1

1 − ρ
+
σ2

y3

d
+

1 + ρ

c2(1 − ρ)
+

1 + ρ

d
+

1 + ρ

d

)
(300)

≤ 1

2
log2

(
4

c2(1 − ρ)
+

6

d

)
≤ 1

2
log2

(
10

d

)
. (301)

Moreover,

I (y1, y2; u1, u2) =
1

2
log2

(
1

d1
+

1 − d2

d2
+

(1 − ρ2)(1 − d1)(1 − d2)

d1d2

)
(302)

≥ 1

2
log2

(
1

c2(1 − ρ)

)
. (303)

Then

R̄
(6)
1 + R̄

(6)
2 + 2R̄

(6)
3 − ψ (304)

= 2I (y1, y2, y3; u1, u2, u3) − I (y1, y2; u1, u2) − ψ (305)

≤ log2

(
10

d

)
− 1

2
log2

(
1

c2(1 − ρ)

)
(306)

− 1

2
log2

1 − ρ

d
− 1

2
log2

c2(1 − ρ)

d
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(307)

≤ 1

2
log2

(
100

1 − ρ

)
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(a)

≤ 6.32, (308)

where (a) follows from Lemma 23.

Now let us assume thatc2(1 − ρ) ≤ d ≤ c2(1 − ρ2), then

d ≤ c2(1 − ρ2) ≤ 1

2
(1 − ρ2) ≤ 1 − ρ, (309)
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which is based in (105). Therefore, from (123)-(125), we have d1 = d and d2 = 1 − ρ. Then, we can

easily show that

I (y1, y2, y3; u1, u2, u3) ≤
1

2
log2

(
10

d

)
. (310)

Moreover,

I (y1, y2; u1, u2) =
1

2
log2

(
1

d1
+

1 − d2

d2
+

(1 − ρ2)(1 − d1)(1 − d2)

d1d2

)
(311)

≥ 1

2
log2

1

d
≥ 1

2
log2

(
1

c2(1 − ρ2)

)
. (312)

Then,

R̄
(6)
1 + R̄

(6)
2 + 2R̄

(6)
3 − ψ (313)

= 2I (y1, y2, y3; u1, u2, u3) − I (y1, y2; u1, u2) − ψ (314)

≤ log2

(
10

d

)
− 1

2
log2

(
1

c2(1 − ρ2)

)
(315)

− 1

2
log2

1 − ρ

d
− 1

2
log+

2

c2(1 − ρ)

d
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(316)

≤ 1

2
log2

(
100(1 + ρ)

1 − ρ

)
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

≤ 6.82, (317)

where (a) follows from Lemma 23.

Part (iv):

R̄
(6)
3 = I (y1, y2, y3; u1, u2, u3) − I (y1, y2; u1, u2) (318)

≤ 1

2
log2

(
1

d1

+
1

d2

+
σ2

y3

d3

+
1 − ρ2

d1d2

+
c2(1 − ρ2)

d1d3

+
1 − ρ2

d2d3

)
− 1

2
log2

(
1

d1

)
(319)

≤ 1

2
log2

(
1 +

d1

d2

+
σ2

y3
d1

d3

+
1 − ρ2

d2

+
c2(1 − ρ2)

d3

+
d1(1 − ρ2)

d2d3

)
(320)

≤ 1

2
log2

(
1 + 1 +

σ2
y3

1 + ρ
+ 1 + ρ+ 1 + 1 + ρ

)
≤ 1

2
log2 9. (321)

APPENDIX J

PROOF OFLEMMA 14

Sinced ≤ c2(1 − ρ2), therefore,d ≤ c2, then,d2 = d
4c2

.

Part (i):

d ≤ c2(1 − ρ2) ≤ 1

2
(1 − ρ2) ≤ 1 − ρ, (322)
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where we use (105).

Let us assume thatd ≤ c2(1 − ρ), then we have

R̄
(2)
1 + R̄

(2)
2 − ψ = I (y1, y2; u1, u2) − ψ (323)

≤ 1

2
log2

(
1

d1

+
1

d2

+
1 − ρ2

d1d2

)
− 1

2
log+

2

1 − ρ

d
(324)

− 1

2
log+

2

c2(1 − ρ)

d
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(325)

≤ 1

2
log2

(
4

d
+

4c2

d
+

16c2(1 − ρ2)

d2

)
− 1

2
log2

1 − ρ

d
(326)

− 1

2
log2

c2(1 − ρ)

d
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(327)

(a)

≤ 1

2
log2

(
40c2(1 − ρ)

d2

)
− 1

2
log2

1 − ρ

d
(328)

− 1

2
log2

c2(1 − ρ)

d
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(329)

(b)
=

1

2
log2

(
40

1 − ρ

)
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

≤ 5.66, (330)

where (a) follows from the assumption thatd ≤ c2(1 − ρ), and (b) is based on Lemma 23.

On the other hand, ifc2(1 − ρ) ≤ d ≤ c2(1 − ρ2), then we have

R̄
(2)
1 + R̄

(2)
2 − ψ = I (y1, y2; u1, u2) − ψ (331)

≤ 1

2
log2

(
1

d1
+

1

d2
+

1 − ρ2

d1d2

)
− 1

2
log+

2

1 − ρ

d
(332)

− 1

2
log+

2

c2(1 − ρ)

d
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(333)

≤ 1

2
log2

(
4

d
+

4c2

d
+

16c2(1 − ρ2)

d2

)
− 1

2
log2

1 − ρ

d
(334)

− 1

2
log2

c2(1 − ρ)

d
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(335)

(a)

≤ 1

2
log2

(
40c2(1 − ρ2)

d2

)
− 1

2
log2

1 − ρ

d
(336)

− 1

2
log2

c2(1 − ρ)

d
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

(337)

(b)
=

1

2
log2

(
80

1 − ρ

)
− 1

2
log+

2

ρ(1 − c)2

(
√
d+

√
(1 − ρ)(1 + c2))2

≤ 6.16, (338)

where (a) follows from the assumption thatd ≤ c2(1 − ρ2), and (b) is based on Lemma 23.

Part (ii):

In part (i), we proved that

I (y1, y2; u1, u2) ≤
1

2
log2

80c2(1 − ρ)

d2
(339)
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R̄
(2)
1 − φ(1, 3) = I (y1, y2; u1, u2) − I (y2; u2) − ψ(1, 3) (340)

≤ 1

2
log2

80c2(1 − ρ)

d2
− 1

2
log2

4c2

d
− 1

2
log+

2

1 − ρ2

d
(341)

≤ 1

2
log2

20(1 − ρ)

d
− 1

2
log+

2

1 − ρ2

d
≤ 1

2
log2 20 = 2.16. (342)

Part (iii):

R̄
(1)
2 − φ(2, 3) = I (y1, y2; u1, u2) − I (y1; u1) − ψ(2, 3) (343)

≤ 1

2
log2

80c2(1 − ρ)

d2
− 1

2
log2

4

d
− 1

2
log+

2

c2(1 − ρ2)

d
(344)

≤ 1

2
log2

20c2(1 − ρ)

d
− 1

2
log+

2

1 − ρ2

d
≤ 1

2
log2 20 = 2.16. (345)

APPENDIX K

PROOF OFLEMMA 17

We note that ifc ≥ ρ, then,

σ2
y3

= 1 + c2 − 2cρ = (1 − c)2 + 2c(1 − ρ) ≤ (1 − ρ)(1 − c) + 2c(1 − ρ) = (1 − ρ)(1 + c) ≤ 2(1 − ρ).

(346)

Part (i):

R̂
(1)
3 − φ(1, 3) (347)

=
1

2
log2

σ2
y3

d
− 1

2
log+

2

(1 − ρ2)

d
(348)

=
1

2
log2

σ2
y3

d
− 1

2
log+

2

(1 − ρ2)

d
(349)

≤ 1

2
log2

(1 + c)(1 − ρ)

d
− 1

2
log2

(1 − ρ2)

d
(350)

≤ 1

2
log2

(1 + c)

1 + ρ
≤ 1

2
log2

4

3
. (351)

Part (ii):

R̂
(1)
3 − φ(2, 3) (352)

=
1

2
log2

σ2
y3

d
− 1

2
log+

2

c2(1 − ρ2)

d
(353)

=
1

2
log2

σ2
y3

d
− 1

2
log+

2

c2(1 − ρ2)

d
(354)

≤ 1

2
log2

(1 + c)(1 − ρ)

d
− 1

2
log2

c2(1 − ρ2)

d
(355)

≤ 1

2
log2

(1 + c)

c2(1 + ρ)
≤ 1. (356)

Proofs of parts (iii) and (iv) are the same as the proof of parts (i) and (ii).
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APPENDIX L

PROOF OFLEMMA 20

Part (i) follows from the proof of Lemma 7, part (i).

Part (ii):

If d ≤ σ2
y3

(1 − ρ2
13), then

R̃
(5)
1 + R̃

(5)
3 −φ(1, 3)

=
1

2
log2

1

1 − ρ2
13

+
1

2
log+

2

σ2
y3

(1 − ρ4
13)

d
− 1

2
log+

2

(1 − ρ2)

d

≤ 1

2
log2

σ2
y3

(1 + ρ2
13)

(1 − ρ2)
(a)

≤ 1

2
log2

(1 + c)(1 + ρ2
13)

1 + ρ
≤ 1,

where (a) follows from (346).

Otherwise ifd ≥ σ2
y3

(1 − ρ2
13), then

R̃
(5)
1 + R̃

(5)
3 − φ(1, 3)

≤ 1

2
log2

σ2
y3

d
+

1

2
log+

2

(
σ2

y3
(1 − ρ2

13)

d
+ ρ2

13

)
− 1

2
log2

(1 − ρ2)

d

=
1

2
log2

σ2
y3

(1 − ρ2)
+

1

2
log+

2

(
1 + ρ2

13

)

(a)

≤ 1

2
log2

(1 + c)(1 + ρ2
13)

1 + ρ
≤ 1,

where (a) follows from (346).
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