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Abstract

We consider a problem of distributed lossy source coding Witee jointly Gaussian sourcég, y», y3), wherey; and
yo are positively correlatedys = y1 — cy2, ¢ > 0, and the decoder requires reconstructipgvith a target distortion. Inspired
by results from the binary expansion model, the rate—distoregion of this problem is characterized within a bouwhdep.
Treating each source as a multi-layer input, it is shownttmatayers required by the decoder are combined with somead®u
information, referred as interference. Therefore, theaasibility of a source coding algorithm is not only to elimate the
redundancy among the inputs, but also to manage the indaer It is shown that the interference can be effectivelyagad
through some linear operations among the input layers.riagpansion model demonstrates that some middle layeys of
andy» are not needed at the decoder, while some upper and loweslaye required. Structured (Lattice) quantizers enable
the encoders to pre-eliminate unnecessary layers. Whilkenossless distributed source coding cut-set outer baatight,
it is shown that in the lossy ones, even for binary expansiodlets, this outer-bound has an unbounded gap with the rate

distortion region. To prove the bounded-gap result, a neterdoound is established.

. INTRODUCTION

In this paper, we investigate a distributed lossy sourcengpgroblem with three jointly Gaussian
sources(y1, y2, y3), Wherey, andy, are positively correlated angh = y; — cy2, ¢ > 0. Each source is
observed with an isolated encoder, which sends sends ax lineégsage to a central decoder. The decoder
requires reconstructings with a specific quadratic distortion.

In [1], Slepian and Wolf showed that in the distributed seucoding problem, if the decoder requires
all sources with no distortion, then the random-binningessl achieves the optimal rate region. The
Slepian-Wolf result suggests a natural encoding scheméh#otossy distributed source coding. In this

scheme, first the sources are quantized and transformeddet# sources and then Slepian-Wolf scheme

This is an extended version of the paper submitted to the |EEEnational Symposium on Information Theory (ISIT), 201



efficiently exploits the correlation of the quantized s@a#¢o minimize the rates. In [2], it is shown that
for two Gaussian sources, this scheme of quantizationtign(Q-B) achieves some parts of the rate-
distortion boundaries. In addition, in [3], [4], it is pravehat this scheme is optimal for a special form
of distributed lossy source coding problems known as CE®Ipro. This result has been extended to the
case, where the observation noises of the CEO problem arelated with a specific tree structure [5].
In [6], it is proven that Q-B scheme achieves the entire digéartion region for two jointly Gaussian
sources(yi, y2). Moreover, it is shown that if one wishes to reconstryctt- cy,, ¢ > 0, with certain
distortion, then Q-B is optimal. However, in [7], it is showmat if the objective is to reconstrugt — cys,
Q-B scheme is not optimal and a lattice-based scheme oatpesfQ-B scheme in some scenarios. The
scheme of [7] is motivated by an important result due to Koraed Marton, who showed that if the
objective is to reproduce the modulo-two sum of two binaryrees, observed by two isolated encoders,
then linear coding achieves optimal performance, whileloam binning is strictly sub-optimal.

In [8], a linear finite-field deterministic model has been gmsed to simplify understanding the key
elements of the multi-user information theory. It is alsggested that the binary expansion model is
used for source coding problems [8]. In [9], the connectibrthe deterministic (lossless) and the non-
deterministic models (lossy) has been exploited to apprate the rate region of the Gaussian symmetric
multiple description coding. In [10], the binary expansiondel is used to show that Q-B is an appropriate
scheme to approximate the rate-distortion region of a @assurces, with tree-structured three Gaussian
sources.

In this paper, we start with developing a binary expansiod@hof the original Gaussian problem. This
model by itself is a distributed lossy source coding problarhich demonstrates the connection among
the sources in a simple and explicit way. Solving the assedigource coding problem for the binary
expansion model provides sensible intuition to develogsws which achieve within a bounded gap of
the rate-distortion region. Treating each source as a #aylér input, we develop the achievable schemes
based on the following observations: (i) Some middle lapéimput are not needed at the decoder, while
some upper and lower layers are required. Therefore, infemeat achievable scheme, the encoders should
avoid reporting these layers, otherwise the gap from thedatortion region becomes unbounded. (ii) The
isolated encoders must employ certain network coding dipasabetween the upper and lower layers of the
inputs. These linear operations substantially reducedae bf reporting the required layers individually.
In addition, in the underlying structure of the inputs, thare some unwanted information which is like
interference, in the sense that it is combined with requinéormation and each isolated encoder cannot
avoid sending it by pre-elimination. The network coding i@ens will align these interference terms,

such that at the decoder, these terms will be canceled obeiprocess reconstruction. (iii) The structured



guantization enables the encoders to have access to thes lafyéputs to pre-eliminate the unwanted

layers.

[I. PROBLEM FORMULATION

Let {y1(%),v2(%),ys(t)}7-, be a sequence of independent and identically distributéd.)i Gaussian
random variables. It is assumed thiat(¢), y2(t), y3(t)) has zero mean, the covariance(9f, y-), denoted

by Ky, ) is equal to,
K, = . (1)

In addition, we assume that(t) = y1(t) — cy2(t). Here in this paper, we assurmpe> 0 and alsoc > 0.

In the problem of the distributed source coding, there areetmon-cooperative encoders, where the
j'" encoder observe$y;(t)}7_;, and sends a message, chosen fione, ..., M,}, to the centralized
decoder. The decoder receives the messages from the tlvedees and estimatdg;(¢)}7 ;.

We defineA asA = 1 3" | E[(y5(t) — 95 (t))?]. The rate-distortion tupléR;, R, R, d) is admissible,
if for every e > 0 and for a sufficiently large:, there exists a seven-tuple, M;, Ms, M3, A3), such that
~log(M;) < Rj+e¢ for j =1,2,3, andA < d+e. Without loss of generality, we assume that ¢ < 1.

It is easy to see that any other cases can be transformedhistaanonical form through some simple
scaling ofy; and distortiond. In [11], it is shown that forkR; = 0 andp < ¢, the scheme of [7] is
within a bounded gap from the rate-distortion region. Iniadd, in [11], it is proven that ifR; = 0 and

c < min{;—p,p}, Quantization-and-Binning scheme achieves within a bedngap from an outer-bound
in R; + R,.

In this paper, we first consider the missing case, W@%rg ¢ < p. To clarify the interaction among
the sources, we develop a binary expansion model. This medamnple to follow, but still rich enough
to demonstrate the features of the problem. Using this madel show that a specific interference
management technique is need to achieve within a boundedafgtye rate-distortion region. Then, we
focus on the cases, whete< min{;—p, p} andc > p, and approximate the rate-distortion region within a

bounded gap.

[1l. DISTRIBUTED CODING FOR THE BINARY-EXPANSION MODEL FOR2—1P <c<p

Since the correlation betwean and y, is equal top, we can writey; = pys + /1 — p?z, where
2z ~N(0,1) and z is independent frony,. We definer such that

p=1-277, (2)



In addition, we definer asx = pys. Noting thatc < p, we definej such that,
C

i 1—279. €))

In connection with the Gaussian problem, we introduce a Enm@oblem, which preserves many aspects
of the original problem, but is easier to understand. In the problemy;,  and z are all uniformly

distributed in[0, 1]. Therefore,x and z have the binary expansion representations as

z =0.zMBgB 4)

7z =008 (5)

In addition, we replace:- and § with the closest integers. The connectionigfand = is modeled as

1 = x @ 27 "z. More precisely,
Yy = o.yP]y{?}yE’] o= 0.2l g (gt g SN G2 g SRy (6)

where® represents the bitwise modulo two addition. In the origimalblem, we have;s = y; — cys =
(y1 —x)+ (1 — g)x. This equation is modeled ag = 27z @ 27"z in the binary expansion model. This
model is pictorially shown in Fig. 1.

We defineb asbh = —% log, d. In the binary expansion modél,is replaced with the closest integer.
Moreover, it is interpreted that the decoder needs tthmost significant bits (MSBs) ofj; after the
radix point. In this model, the objective of distributediste-coding problem is to find the the region for
(R, Rs, R3) such that the decoder can recover up to#tHdSBs of y; after the radix point.

Here, we consider two cases< r andé > r.

Case One —¢ < r: In this case, among the MSBs of y3, the first bits are always zero. Therefore,
the decoder requires the remainifig— 6)* non-zero MSBs. These bits are shown by Bldckin the
binary expansion ofj;, depicted in Fig. 1. In this figure, we assume 6 andb < r + .

Clearly, a simple achievable rate-vector (B, R2, R3) = (0,0,(b — 0)*), denoted byP;. In this
achievable rate, the third encoder sends Blogkwhile the first and second encoders stay silent.

Now, let us consider a more exciting case, whéxeis zero, and only the first and second encoders
are allowed to pass messages to the decoder. The first questi® answered is which parts @f andx
are relevant to reconstruct BloeK, at the decoder. In other words, the question is which bitg, cdnd
x have a possible role in the reconstruction of Blgck By a simple comparison, it is easy to see that
the first(b — §)* bits of y; andz, shown in BlockA; and B; in Fig. 1, are relevant. In addition, we note
that 21!l ... zl=")"] are appeared in the construction of Blo€k, while only Block 4, of y; has these

bits in its structure, and therefore Block is also important. This makes Blodk, relevant as well. The
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Fig. 1. Binary Expansion Model for Case:> §

reason is that Blockd, is combined with the bits of Block3,, and without having BlockB,, Block A,
reveals no information about!! . .. (=71,

Regarding the above statements, we have the followingestielg observation.

Observation One: To reconstructy; with the required resolution, the decoder does not need some
middle-layers ofy; andz. More precisely, the decoder does not need’ ™ ...y and zb-0+11 30,
while it needs some upper and lower layersypfand x.

The next question is how to efficiently send enough infororato the decoder, such that the decoder
can reproducey; with the required resolution. One simple approach is aofal Encoder one sends
Block A, and encoder two sends Block® and B,. Then, the decoder forn& B, @ (A, © By), to
reconstruct Block”; as follows.

27B1®(A; © By) 7)
=270[0.al ol @ (2 [0l gl o 2 0.l L ) (8)
o504l g o <[0.y¥+1] M el ‘x[m]) 9)
=270(0.0l ol @ 2 ({[0.al et @ 0.2 0] (10)
@[O.x[’”ﬂ} .. .x[b]]> (11)
LB Chs SO S WS (ol (12)

where @& and © respectively represent bit-wise addition and subtractiich are basically the same

operations. However, we use different notations to resertii# corresponding operations for the original
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Fig. 2. Achievable Scheme for Case Onex§), P> = (R1,R2, R3) = ((b—7)",(b—6)*,0)

Gaussian problem. With this scheme, we achiéile, Rs, R3) = (|As|, |B1 U By],0) = ((b—7)*, (b —
NT+b—r)t—(r+35—0)",0).

We notice that in the above equations, Wits!"*! ... 2! are likeinterferencein the sense that these
bits are basically unwanted at the decoder, and canceleid the final result. The only reason that Block
B, = [zI"+1 ... 2] is reported to the decoder is that the decoder can recowejohit! . . . 2((*-")"1] from
Block A,. On the other hand, the decoder does not nged! ... :[*-")7]] by itself, but it needs the
addition of these bits witld.zl"=2+1 _ z[’=9 Now the question is if we can improve the performance of
the achievable scheme regarding the above statementsn$herais yes. In the new scheme, the encoder
two reports2— B, © B,, instead of sending; and B, separately, while encoder one still sentis In this
case, the decoder forni8° B, © B,) ® Ay, which is equal t2 °B; @ (A, © B,). It is important to note
that the linear operatiod—°B; © B, is formed such that the interference bits are aligned andeted
out in the final addition. In this case, we achieve the ratdorg@?;, Ry, R3) = (|As|,|B1 © 2°By],0) =
((b—r)*,(b—48)",0), denoted byP,. Note that the reduction iR, is unbounded. This encoding procedure
has been shown in Fig. 2.

Therefore, we have the following observation:

Observation Two: Alignment and network coding among the layers of each socareimprove the
achievable scheme.

Since BlocksA; and B; are identical, then the load of transmitting part Bf can be shifted from
encoder two to encoder one. Relying on this observation,amedevelop the achievable scheme shown in
Fig. 3. This scheme achieves the rate ve¢for, Ry, Rs) = (|27°A1® Ay, | Bsl,0) = ((b—0)T, (b—7)",0),
denoted byP;, which has the same sum-rate &s

Let us obtain an achievable rate vector in a cut of the regidrere R; = 0. In this case, encoder
three has to send bits aff " ... y{*="] The reason is that these bits hav8 ... z(t="") in their
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@

Ry =|By| = (b—r)* | 21l | |$[b] |

B,

Fig. 3. Achievable Scheme for Case Onex{ 6), Ps = (R, Rz, Rs) = ((b—6)*, (b—r)*,0)
construction, and: has no information about them. Thereforg, > (b—r)*. About the bitsy ...y~
one of encoders two or three can send it. If encoder two semesetbits, we achieve the rate vector
(R1, Ry, R3) = (0,7 — 6, (b — r)T), denoted byP;. If encoder three sends these bits, then we achieve
(R1, R2, R3) = (0,0, (b—d)*) which is basicallyP;.

Similarly, by settingR, = 0, the rate vecto(R;, Ry, R3) = (r — 0,0, (b — r)*), denoted byP; is
achievable. Using time-sharing among the achievable rat¢oxs, we will have the achievable region
shown in Fig. 4.

This region is defined by the following six inequalities,

Ry >0, (13)

Ry >0, (14)

Rs >0, (15)
Ri+Rs>(b—r)", (16)

Ro+ Rz > (b—r)*, (17)
Ri+Ry+ Ry > (b—0)T, (18)
Ri+Ry+2R3 > (b—r)t +(b—0)". (19)

Case Two:r <9
For this case, the binary expansionigf =, andys are shown in Fig. 5. BlockK’; is what the decoder
requires. Clearly, the rate vectoR;, R,, R3) = (0,0, (b — r)*), denoted byP/, is achievable. Again,

it is more exciting to consider the case whetg = 0. To reconstruct Block”;, Blocks A;, A, from



Fig. 4. Achievable Region for the Binary Expansion Model @ase Oned < r

11, and Blocks B; and B, from = are relevant. Therefore, here we have the same observdtain t
some middle-layers of;, and xz are not important. If decoder has accessAg B;, and Bs, it can
recoverys within the required resolution by forming B, @ (4, © B,). Similar to Case 1, the second
encoder can sen?°B; © B, to reduce its rate. Then as shown in Fig. 6, we achieve thevett®r
(Ri,Ro,R3) = ((b—r)",(b—1r)*,0), denoted byP;. Another approach is that encoder one sends
279A; @ A,, while encoder two send®,, as shown in Fig. 7. Here, we achieve rate ved®y as
(R1, Ra, R3) = ((b—7r)*,(b—1r)",0), which is basically the same d3. Therefore, in this case, the two
of the corner pointd?, and P, we have in Case 1 collapse into one corner péiht= P;.

Let us consider the cut of the region, wheRe = 0. We note that in this case, encoder three has to
send all the bits in Block?;. The reason is that Block; hasz" ... :(=""Tin its construction, whiler
has no information about these bits. In other words, if erctlree does not send some bits of Black
then it is impossible for the decoder to reconstruct those foom information received from the second
encoder. Therefore, the achievable rate vectqiAs, Rz, R3) = (0,0, (b — r)*), which is basically the
same asP/. We have the same situation whelg = 0. Therefore, three of the corner points, P, and
P; of Case 1 collapse to one corner pofftin Case 2.

Time sharing between the two rate vect0rd,, Ry, R3) = ((b— )%, (b —r)",0) and (Ry, Ry, R3) =

(0,0, (b—r)*), we derive the achievable region shown in Fig 8.
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Fig. 5. Binary Expansion Model for Case Two< §

The achievable region for the case that ¢ is defined by the following inequalities,

R, >0, (20)
Ry >0, (21)
Rs >0, (22)
Ri+Ry>(b—r)", (23)
Ro+ Ry > (b—r)", (24)

We note that the following inequality is dominated by thet lago inequalities, however it touches the

rate region at one point,
R1+R2+R3Z(b—’f’)+. (25)

The two achievable regions that we derived for Case 1 and Casa be unified by the regioR,,,
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Fig. 6. Achievable Scheme for Case Two< 6), Ps = (R1, R2, R3) = ((b—7)*, (b—7)",0)

A
| x[l]| |I[b—6]
)
|m[r+1]| |I[5] |I/[5+1]| . | 410
S7]
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Ry = 2704, @ Ay = (b—r)+ A2
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Fig. 7. Achievable Scheme for Case Two< ), Ps = (R1, R2, R3) = ((b—r)*, (b—7)",0)

defined as union of allR, R,, R3) € R3, satisfying:

Ri+Rs>(b—1)

Ry+Rs > (b—r)",
Ri+ Ry + Ry > max{(b—9)", (b—r)"},
Ri+Ry+2R3 > (b—r)" +(b—9)".

10

(26)
(27)
(28)
(29)
(30)
(31)
(32)
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Fig. 8. Achievable Region for the Binary Expansion Model @ase Two:r < §

A. Outer-Bounds for Binary Expansion Model

Here we first try cut-set outer bounds as the most well-knouterebounds. For any C {1, 2, 3}, the

cut-set lower-bound of)._. R;, is derived by assuming that a central encoder observesotirees in

jeS
S, and sends an index to the decoder such ghas able to be reconstructed with the target resolution,
while all y;, i € S¢, are perfectly available at the decoder as the side infoomat

It is easy to see that inequalities (26) to (31) are derivedifing cut-set outer bound. Therefore, to
show the optimality of (26)-(32), we need to prove (32) idhtign Theorem 1, we will prove a similar
outer-bound for the Gaussian problem. Using similar argusjeve can show that (32) is tight as well.

Therefore, the regiofk;,, indeed characterizes the rate-distortion region of tharyiexpansion model.

IV. OUTER BOUNDS FOR THEGAUSSIAN SOURCES

The analysis of the binary expansion model supports theectunje that the cut-set outer-bounds are

useful to characterize some parts of the region within a dedngap. It is easy to derive the cut-set
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outer-bounds as follows.

Rs > ¢(3) =0, (35)
1 1—p?
R+ Ry > 6(1,3) = 5 logf d'o , (37)
1 2 1— 2
Ry + Ry > 6(2,3) = 5 log] C(%dp), (38)
1. 1+ =2¢p
Ri+Ry+ R3 > ¢(1,2,3) = §log2 —aq (39)

However, from the binary expansion model, we learn that amadewer-bound onRk; + R, + 2R3 is

needed to approximate the region. In the following Theorem,present the new bound for Gaussian

sources.
Theorem 1
1 1—p 1 Al-p) 1 p(1—c)?
Ry + Ry + 2R3 > ¢ = — logy —— + = log ———* + = logy . (40
b Sy T e T e ey

Proof: To have intuition the proof of this outer-bound, let us cdesithe case, wherg andy, are
independent, i.ep = 0. In this case, it is easy to see that the inequality (40) cadéseved by adding
two cut-set inequalities (37) and (38). This observatiolpses to prove the inequality for the case that

p # 0. For this case, we introduce a random variable N (0, 1), such that

Y1 =mi + /1 —niz, (41)

Yo =T + /1 — 1329, (42)

i

where for0 < n; <1 and0 <1y <1, mne = p, 21 ~ N(0,1), 20 ~ N(0,1), and z, z;, and z, are
mutually independent. We note that andy,, givenz, are independent again. This observation suggests
that we may be able to prove (40), by developing two ineqgealifor R, + R; and R, + R3, extracting

the contribution ofz, and then add the two inequalities. In what follows, we etatethe proof.

Assume that encodgr sends messagi/; to the decoder, then we have,
> H(My, M3|Ms)
= H(Ml, M3|M2, i’(l : n)) + I(Ml, Mg, .i'(l : TZ>|M2),
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and
n(Ry + R3) > H(Ms) + H(Ms)
= H (M| M) + H(Ms) + I(M;y; M)
> H(M,|My) + H(Ms|M,) + I(My; My)
> H(Ms, M3|My) + I(My; M)
= H(My, Ms| My, %(1 : n)) + I(My, Ms; Z(1 : n)|My) + I(My; Ms).
Therefore,

n(Ry + Ry + 2R;) >
I(My, Ms; 2(1 : n)|Ms) + I(My, Ms; Z(1 : n)|My) + 1(My; M)
+ H(My, M3|Ma, &(1 : n)) + H(My, M3| My, Z(1 : n)).
On the other hand, we have,

I(My, M3; 2(1 : n)|Ma)+1(Msy, Ms; (1 : n)|My) + I(My; M)
=I(My, My, M3;%(1 :n)) — [(Ma; Z(1 : n)) + I(Ms; Z(1 : n)| M)
+1(Ms;2(1 2 n)| My, My) + I(My; My)
(gl(Ml, My, M3; 2(1 : n)) — H(My) + H(Ms|Z(1 : n))
+H (My|My) — H(My|My, (1 :n)) + I(My; M)
=I1(My, My, M3;7(1 : n)) — H(My|My,%(1 :n)) + H(Ms|Z(1: n))
2 1My, My, My (1 ),

where (a) follows from/ (Mj3; z(1 : n)| My, My) > 0, and (b) relies on (My; M;|Z(1:n)) >0

In addition, we have,

H(Ml,M3|M2,i’(]_ : n)) 2H(M1,M3|M2,ZINZ'(1 : n),y2(1 : n))
zl(Ml,Mg,yl(]_ : ’)’L)|M2,Zl~§'(]_ : ’)’L),yg(]_ : ’)’L))

Similarly,
H(My, M3|My,2(1:n)) > I(My, Ms;ys(1:n)| My, 2(1:n),y1(1 : n)).

Having M;, j = 1,2, 3, the decoder reconstrucfg(1 : n), such that,

LS (650 — us(i)] < d + ¢ (43)
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for some smalk.

Then, we have the following three observations:

Observation 1: The decoder can reconstruget —cn,)# with distortion(vVd++/1 — n? + c2(1 — n3))>.

We note that,
ys = (1 — cn2)T + V31— niz1 — e\ 1 —n3z. (44)

We usejj; as an estimation fofn, — cn,)z. We have,

B [3500) — (m — )0}

=1

o ) (it o))
<(Vd+e+ \/1 — i+ (1 —n3))?
(VA1 + (1 - ) + &,

for a smallée > 0.
As a result,
(m — cnp)?
(Vd+ 1=+ E1-13))*
Observation 2: If Z(1 : n) andyy(1 : n) are available at the decoder in addition6, j = 1,2, 3,
then /1 — n?z, can be reconstructed with distortiahn

We note that
Ys = Y1 — Yo = mT + /1 —niz — cyo. (46)

We form /1 — n?21(i) = 93(i) — mZ (i) + cya(i) as an estimation fox/1 — n?z,(:). Then, it is easy to
confirm the Observation 2. Therefore,

I(My, M3;y1(1:n)|[ Mo, 2(1 : n),y2(1:m)) = I(My, Moy, M3; A/ 1 —n221|2(1 : n),y2(1 : n)) 47

1—n?
logy —— (48)

I(Ml,Mg,Mg;i’(l : n)) log2 (45)

=2

A%

n
2
Similarly we have the following observation.
Observation 3: If (1 : n) andy,(1 : n) are available at the decoder in additioni6, j = 1,2,3,
thency/1 — 732, can be reconstructed with distortiain
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Therefore,

I(My, My;ya(1:m)[ My, 2(1:n),ya(1 2 m)) = I(My, Mo, Ma; (/1 = n32|2(1:m),yi(1:n))  (49)
+ M (50)
5 )

Therefore, we have

n(Ry + Ro + 2R3) >1(My, Mo, M3;%(1 : n)) 4+ I(My, Ms;y1(1 : n)|Ma, Z(1 : n), y2(1 : n))
+I(M2, M37y2(1 . n)|M2,i(1 . n),yl(l . n))

_ 2 1 — n2 n 02(1 _ n2)
> logt (m — cmp) +Elo+71+—lo+72.
S WA Tomr et ope 2T d 2T
By choosingn; = 1, = /p, the result follows. [ |

Note that this outer-bound is general, and does not depertda)nonditionQ—; <c<p.

V. ACHIEVABLE SCHEME FOR2—1P <c<p

In this section, efficient achievable schemes are developsgired by the result from the binary
expansion model. Here, corresponding to any corner poirthefregions, depicted Fig. 4 and Fig. 8,

we suggest an achievable rate vector for the original Gangsioblem.

A. Achievable Scheme CorrespondingRpin Fig. 4 and P, in Fig. 8

Let us focus on the achievable scheme which is inspired bys¢hemes showed in Fig. 2 and Fig. 6
for the binary expansion model. This achievable schemesspands to poinf, in Fig. 4 and pointP,
in Fig. 8. In Fig. 9, the block diagram of this achievable sukeis shown. To clarify this achievable
scheme, the role of each lattice has been shown in Fig. 10. M¢é that in Fig. 9, the quantizet,,
and subtraction after it form the operatiomod A,,. In this figure, we have lattices A, which is not
justified by binary expansion model. The role of these latiwill be explained later.

All the front quantizes\ 1, Ar,, andA g, are fine lattice-quantizers with the second momentsindd.
The precise choices of the second moments will be given [aker quantizer\ ), has the second moment
o—iM which is around the covariance gf — py, i.e. 1 — p?. The coarse quantizek. has the second
momentaic around the covariance @f — cy, which is 1 + ¢* — 2¢p. Roughly speaking, if the second
moment of a quantizer is?, it quantizes the input with the resolution ef% log, 0% bits after the radix
point. It is insightful to letd = 272, p =1 —272", andc = 1 — 279 and check that the binary expansion
model shown in Fig. 10 matches with the achievable schemeagofor

In what follows, we elaborate the achievable scheme. In %igve have some chains of nested lattices
Ap, C Ay C Ac. In addition, we have eithekp, C Ap, C Ay C Ac Or A, C A, C Ay C Ae. In
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this paper, we assume that all lattices are simultaneouwsdg ghannel and source lattice codes. To see
definition of the good lattices, refer to [12] and to find thegdrof the existence of such chains of nested
lattices, see [7, Appendix B].

Let u? be mutually independent random vectors uniformly distebuin the Voronoi regions of .,
for i = 1,2,3. The second moment of, is denoted bwiFi.

We definec}  as the error of the quantizéyr,, i.e.

Erp, =Quap (U1 +uf) — (7' +uy), (51)
rp, =Qnr, (py3 +uy) — (py3 + u3), (52)
rp, =Qnp, (= p)ys +uz) — ((c = p)ys + ug). (53)

We have the following facts aboui;ﬁFi, 1=1,2,3.
Fact 1: Remembex is uniformly distributed in the Voronoi region dfx,. Then it is easy to show thai;ﬁFZ_
has the same distribution a§ and is independent of the input of the lattide, [13].
Fact 2: SinceAp, is an optimal lattice, then as — oo, then eXFl converges to a white Gaussian noise in

Kullback-Leibler distance sense [13].

Fact 3: In addition,eXF1 —€Rp, and €Ap, ~ €Rp, ~ CAn, tend to a white Gaussian noise in Kullback-Leibler
divergence sense [7].

We definez" as

2" = Qap, (U1 +uy) — Qug, (pys +u3) =yi — pys + ey, — e, (54)

Then, then we have,

1 n 2 2

~E[" =21 - p) + 0%, +03,,. (55)
where we use the fact that the second moment of the lattjcds UIQ\FZ-’ and alsoy} — py?, €rp 1 CRp,
are mutually independent (Fact 1). We chodsg a good channel-code lattice with the second moment
of,

Fact 4: SincezeXFl — €4, tends to an i.i.d. Gaussian random process, t#feconverges to an i.i.d. Gaussian
random process as well. Since lattitg; is a good channel code, then the probability tiHais not
in the Voronoi region ofA;; goes to zero exponentially fast, as— oo and the effect of deviation
of eXFl — GXFQ from Gaussian on that probability is sub-exponential [7].
As we will see later, at the decoder requi@s,, [Qa ., (y7 +ui)] —Qay [@Qar, (py3 +us)] to reconstruct

gs. In Fact 4, we stated tha,,, (yi' +uy) — Qap, (py3 + u3) is in the Voronoi region of the lattic .
Then, it is easy to show the following fact.
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Fact 5: Qa,, [Qap, (U7 +ut)] — Qi [@ag, (py5 + u3)] is in Voronoi region of3.A,,. We define3. Ay, as the
lattice with generating matrix which is equal 3otimes of generating matrix of ;.

Therefore,©, shown in Fig. 9, is equal to,

@1 = R3-AM (R3-AM QAM [QAFl (y? + u?)] - R3-AM QAM [QAF2 (py; + ug)]) (57)
D Ranss (QurQua, 07 + )] = Qs [Qa, (o +u3))) (58)
(0)
= QAIVI [QApl (y? + urll)] - QA]VI [QAF2 (py; + ug)]v (59)

where (a) relies on the properties of lattices, and (b) itbam Fact 5. In fact the probability that (b)
is not valid goes to zero exponentially fastias— oo. Here, we use the short-hand notatiBn(z) for
x mod A.

Let us define

II" = 2" — Qap, ((c — p)ys +uz) (60)
=2" = (c—p)yy — €}, (61)
= yy + eXFl — eXFQ — eXFB, (62)

where 2" is defined in (54). Then from Facts 1, 2, andIB! converges to an i.i.d. Gaussian random

sequence, with covariance

1

EEHH"H =14 —2cp+ 012\F1 + Uin + 012\F3. (63)
We chooser} . as

or = —]EHH”H =1+c —2cp+UAF +O’AF +O’AF (64)

C

Fact 6: SinceAq is a good channel code and® converges to an i.i.d. Gaussian, then the probability that

I1™ is not in the Voronoi region of\ goes to zero exponentially fast as— oc.

Now we are ready to evaluate the output of the encoder.

?/g = nRAC [RAM (QAFl (y? + U?))
— Ra {Ray (Qap, (pys + i) + Quap (¢ — p)ys 4+ uf) } + uf — uf —uf + @1}

= nRAC _RAM (QAFl (y? + u?)) - R/\M(QAF2 (py; + ug)) QAF3 (( )y2 + US) + ul - ug + 64

= nRx. _QAF1 (1 +ul) — Qag, (py5 +us) — Qap, (¢ — p)ys +ug) +uy —uy Ug}

7 n n _,n _n
= nRy, _y3 + CAp, ~ CAp, 6AF3]

n n n n
- n(yS _I_ 6AF1 - 6AF2 - eAF3)7



18

where (a) follows from properties of the operatiéhand (b) follows from (57). In fact, the probability
that (b) is not valid goes to zero exponentially fastias> co. (c) follows from the definition ot} ~and
(d) relies on Fact 6.

We choose; as

0.2

Y3
0-12\@/3 + 012\F1 T 0[2‘172 T alz\F:s

Then, the distortion of the achievable scheme i8||y5 — 4. We choosery_, i = 1,2,3, such that

LE|yy — g3l is equal to the target distortiad i.e.

2

1 o2 (0% +03 +o0%))
d=—Blly; - gl| = " (66)
n O-Ayg_‘_O-AFl_‘_UAFg_‘_O‘AFg
Then, we can rewire) as
ol —d
_ Yy
n= (67)
Y3
Refereing to Fig. 9R; and R, have two components:
Ry = Ri1 + Rya, (68)
Ry = Ry1 + Ros. (69)
We have
Ug-A]M
Ry1 = Rip = 72 = log, 3. (70)
Ay
In addition, we have
1 o2 1 2(1—p) +o3x, +o034
Ry = = log, QM = —log, 5 Ary Ay (72)
2 T 2 Thp
1 1
and,
1 o2 1 1+c—2cp+03i +o03% +o03
Ros = —log, — 2AC — = = log, - 2AF1 5 Aty Aty (72)
2 mln{UAF2 : O‘AFS} 2 mm{aAF2 , O’AFS}

Then, we have the following result.

Theorem 2 Any rate vector{ R, R,,0) that satisfieq68)-(72) is achievable.

Let us choose a particular achievable rate vedgr = (R§2),R§2),0), by choosingaiF1 = 0'12\F2 =
o—?\Fg = ¢. Then from (66), we have
Oy d

3(02 —d)

Y3

q= (73)
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: U Ay m0d3.AA[ “—:—<L‘ :
i - Lo 3.0, | :

" :_,ggﬂ Ar ’- (L modAc [t A o, !
e R O—-jraanc D
T T T T T T T T —u :
| 2 AM mod3 A\[ + 2 : :

Py —&—E Ap, —I——Gg—‘_ ' R E E
i ?— modA¢ : 2 :
(c—p)yg:—‘gﬁ—» Ap, : : —Uy —Us :
Fig. 9. Achievable Scheme faP$
Therefore, we have,
2
@ _ 1 . 60—y, —d
Ry = 2 logy (2 + Uzgd : ), (74)
1 302
Ry = S logy —P. (75)
Lemma 3 For the achievable poinP¢ = (R\”, RY,0), we have
(i) R? —o(1,3) < $log, 72 = 3.08 bits per sample.
(i) Réz) — ¢(2,3) < 1 log, 108 = 3.38 bits per sample, it —c < /T —p.
(iiiy R + RS — 4 < 3log, 3+ Llog, 12(1 + v/5)? = 8.44 bits per sample, il — ¢ > /T — .
Proof: Refer to Appendix A. [ |

B. Achievable Scheme CorrespondingApin Fig. 4 and P; in Fig. 8

Here we focus on another achievable scheme which corresponthe achievable scheme shown in
Fig. 3, or the corner poinP; in Fig. 4 for the binary expansion model when> §. Refereing to Fig. 10,
we note that in the first achievable scheme, bits. .. z"~9 is sent by the second encoder. However,
the first encoder has access to these bits and can take careSwifting the responsibility of sending
these bits from encoder one to encoder two, we obtain anotreer point of the region, referred &3%.
Obviously, this statement is valid for cage> §. In the Gaussian case, we modify the achievable scheme
of Fig. 9 to form the achievable scheme of Fig. 11, for the a@serel — ¢ > /1 — p. The role of each
lattice has been shown in the binary expansion model in FAg. 1

All the facts, equations and definitions from (51) to (57) aaéid for the second achievable scheme.
We note that the input of mod 2.A,, is the summation of outputs of twomod A,; blocks. Therefore,

this summation is evidently in the Voronoi region of theit mod 2.A,,. Therefore, the operation
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mOdAA,{ Ap1
Ay ™ A, “
m | L |x[2J | lr—o] l,[r—6+11| |x[b—ﬁ1 I[b75+1]| |x[r1 $[7-+1]| |l,[b1 |
) | |Z[b—r] |
L -
modA¢ Aps
Ead -y
(p — )y D | 12 | R I[’r—§+1]| |x[h—5] /[b76+1]| |
B] -
> <
0Y2 | 1] | 12 | =] w[r—6+1]| N I[b—6+l]| |$[r] z[r+l]| |x[b] |
By
L <
o mod A, Apo

Fig. 10. The Role of Each Lattice of Fig. 9 on Binary Expansidodel

mod 2.A,; does not do any thing and can be eliminated. We just use ittoesbow how the rates are
calculated.
In what follows, we use the short-hand notatjor= ¢ — p. We know thatuy} is almost surely is in the

Voronoi region of a good lattice code for channel with secamamenty?. On the other hand, we have,

QAM (:uy?) - :uy? - RAM (:uy?) (76)

Therefore, it is easy to see th@t,,, (1y7) is almost surely in the Voronoi region of a good lattitg
with the second moment?., if

0% > (|ul + oay)” (77)
Then, the probability that the equation
R, Qan (1y) = Quay (197) (78)
is not valid goes to zero exponentially fastias— 0. We ChOOSQf% as

U/ZXC = maX{(|:u| + UANI)27 U/ZXC}' (79)
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Therefore,©,, shown in Fig. 11, is equal to
O :=Rx, :RA@QAM (hyr') — Bap Qan Qap, (B3 + U?)} (80)
=R, :QAM(uy?) — RapQnn Qar, (Hys + ug)}
DR [ Qs (1) — Qs Qar, (19 + u3)]
DB |97 = By (197) = Qi (3 +5) + Ry, Qnp, (1 +13)]

=Ry, _/”Ly? — Ry, (:uy?) — pyy — ug — eXFS + Ry, QAF;; (Myg + ug):|

=Ry, _:u(y? - yg) — Ra,, (:Uy?) - ug - eXFfi + RA]VIQAFS (:uy; + ug)]

::u(yl - y?) - RAM (:Uy?) - ug - 6XF3 + RA]VIQAFS (:uy; + ug)v

where (a) is based on (78), (b) is based on the basic propétiyeooperationR,,, (c) follows from
Pyt = Ra,, (,Uy?) + QAM (:Uy?)’ andQAFS (:uyg +ug) = RAMQAFS (:uyg + ug) + QA]VIQAFS (,Uyg + ug)’ and
(d) is based on (53). In addition, the probability that (ehat correct goes to zero exponentially fast, as

n — oo. The reason is that we choode, as a good lattice for channel code with the second moment,

2
o3, = (20n, + V20— p) + 200, ) (81)

Then, from Fig. 11, we have

B =nRag [ R @ar, (07 + ) = BacQu,, (1y?)

— Ry Qi (3 +105) = Ry Qe (195 + ) — i+ 5+ + 1 + 0,
(a)
inR/\@ |:RA]M QApl (y? + u?) — Qay (:uy?)

— Ry, Qup, (00 +13) — Ry, Qi (i + ) — i +uf + uff + Oy + @2]

(b)
=nhx, [RAM Qap, (Y1 +uf) — BayQap, (pys + uy) — uf +ug + 01 — pys — EXFJ

(©)
=nRx,, [QAFl (1 +ul) — Quag, (pys +us) — uf +uy — pys — €XF3]

)

\¢) n n n n
_n(y3 _I_ 6AF1 - eAF2 - eAF;;)’

where (a) is based on (78), (b) follows from (80), amg|' = Ry, (1y}) + Qa,, (1y}), (c) relies on (57)

andQAF2 (pyg + ug) = RAM QAF2 (pyg + ug) + QAM QAF2 (py? + ug)’ andQApl (y? + u?) = RAM QAFl (y? +
ul) + Qun Qar, (Y + ut), finally (d) is based in (51)-(53).
Again here we chooseg as (65). In addition, the distortion of the scheme is deribgd66).
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Refereing to Fig. 11R; and R, are equal to:

Ry = Ry + Rya + Ry, (82)
Ry = Ry + Ras + Ros, (83)
where
1 2
Ry = - log, U;\M ) (84)
2 OXp,
1 o3
Ry = Ry = 2 log, 3'2AM = log, 3, (85)
Ay
2
1 OA .
Ris = - logy 5. (86)
2 Try
1 03 A 1 o}
R22 = — log - M =1 + = IOg " M s (87)
2 2 mm{cf/z\p2 : sz\FS} 2 2 mm{aiF2 ) aiFS}
1 o3
Ras = B) log, ;\D . (88)
Ap

Theorem 4 The rate vectorg Ry, Ry, 0) which satisfy(82)(88), are achievable.

Let focus on a specific rate vect®® = (R R{Y 0), achieved by choosing}, =o%, = ai& =q.

Fa

Then from (66), we have

= _oyd (89)
3(cZ —d)
Therefore, we have,
2
(3) _ 11 5 6(1 — p)(oy, —d)
Rll 2 0 2( + O_;fsd )7 (90)
@ 1 6(1—p)(op, —d)

Y3
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Fig. 11. Achievable Scheme fdp{

In this case, we have

2
® _1, . %
Ry B 082 Ulz\M
@log QUAM_'_(p_C)\/2<1_p>+2\/a
? OAm
), (p—0)v2(1 —p) +2y/4q
= 108, +
21— p) + 2¢
— 2(1 — 2
g, (24 2= OVET=7) Vi
2(1—p)+2q 2(1—p)+2q
— 2(1 — 2
ctog, (24 2= NV=7) ﬂ)

VIR er

(©)
< log, <2 +0.5 + \/§> = log, (2.5 + \/5) <2,

modAg

23

(92)

(93)

(94)

(95)

(96)

(97)

where (a) and (b) follow from (56) and (81), respectivelyd &) is based op — ¢ < % for QL <c<p.

Lemma 5 If 1 —c¢ > +/1— p, then we have,
() R — $(2,3) <log,3+ 3+ Llog, 28 = 6.98 bits per sample
(i) Rf’) + Ré?’) — 1) < 12.42 bits per sample

Proof: Refer to Appendix B.

o —
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Fig. 12. The Role of Each Lattice of Fig. 11 on Binary Expansidodel

C. Achievable Scheme Corresponding/oin Fig. 4 and P| in Fig. 8

It is obvious that the rate vectd?® = (0,0, Rél)), where

y 1 o,
Ri(%) = 510g2 %a

is achievable.

Lemma 6 If 1 —c¢ < /11— p, then
i) R — ¢(1,3) < 0.30 bits per sample.
(i) R — ¢(2,3) < 1.21 bits per sample.

Proof: Refer to Appendix C.

(98)

24
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D. Achievable Scheme Correspondingfoin Fig. 4 and P; in Fig. 8

Let us find achievable rate vectors, for whigh = 0. From [2], we know the quantization-and-binning
scheme achieves all rate vectdes, , 0, R3), satisfying
102 (1=t phye®)

Ry = B logy — d (99)
Let us choose a particular rate vectef = (Rf), 0, R§5)) from the above sets of achievable rates, as
1oy 1 o (I=pfy) (1. op 1 1
REE’) = 5 10g2 % — 5 log; Zj?’# = min {5 10g2 %, 5 10g2 1_7%} s (100)
and
1 ay (1 — pis+ P%36‘2R§5)>
Y3
Ry = 5 logs y (101)
Lemma 7 If 1 —c¢ > /1 — p, then we have
(i) R — ¢(2,3) <1 bits per samples.
(i) R + RY) —¢(1,2,3) < 1 bits per samples.
(i) Rf) + 2R§5) — 1 < 6.2 bits per samples.
Proof: Refer to Appendix D. [ |

E. Achievable Scheme CorrespondingRpin Fig. 4 and P; in Fig. 8

Similarly, we can find achievable rate vectors for whigh = 0. Again from [2], we know that the

quantization-and-binning scheme achieves all rate ve¢tor,, R;), satisfying

2 —2R2)

on, (1= phs + phse
d
A particular rate vecto’{ = (0, R§4), R§4)) from the above sets of achievable rates is obtained by

1. oy 1 oy (1—p3)

(102)

1
Ry = 2 logy

Ry = 3 logy = — 2 log} (103)
and
1. . % (1 — P33+ pi3€‘2R54)>
RY = 5 logs o y (104)

Lemma 8 If 1 — ¢ > /1 — p, then we have

() R — #(1,3) < 1 bits per samples.

(i) RSV + RY — ¢(1,2,3) < 1 bits per samples.
(i) R§4) + 2R§4) — 1 < 5.84 bits per samples.

Proof: Refer to Appendix E. [ |
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VI. BOUNDED GAP RESULT FOR2—1p <c<p

Therefore, we have the following results.

Theorem 9 If 5~ <c<p, and 1—c¢>+/T—p, then,
« PE = (0,0, R(l ) has a zero gap from the outer-bounfls = 0, R, = 0, and R+ Rs+R3 = ¢(1, 2, 3).
« PS¢ =(RP, R, 0) has a bounded gap from the outer-bouriis+ Rs = ¢(1,3), Ry + Ra+2R;3 = 1,
and R; = 0.
o PY = (R, R 0) has a bounded gap from the outer-bourdtist R; = ¢(2, 3), Ry + Ro+2R;3 = 1,
and R; = 0.
« PG =(0,R", R") has a bounded gap from the outer-bounféls+ Rs = ¢(1,3), R, + Ro + R3 =
#(1,2,3), Ry + Ry + 2R3 = ¢, and Ry = 0.
« P¢ = (R, 0,R) has a bounded gap from the outer-bounfls+ Rs = ¢(2,3), Ry + Ry + Rs =
#(1,2,3), Ry + Ry + 2R3 = ¢, and Ry = 0.
Therefore, the convex hull of the achievable rate vecfrs i = 1,2,3,4,5, is within a bounded gap
from the outer-bound formed by the cut-set outer-bouB83%(39), and also the outer-boun@O).

Theorem 10 If - S <c<p, and 1 —c < +/1T—p, then,
« PF=1(0,0 R3 ) has a bounded gap from the outer-bou@s+ R; = ¢(1,3), Ry + Rs = ¢(2,3),
Ry =0, and R, = 0.
o PF= (Rg2 ,R2 ,0) has a bounded gap from the outer-bouitist+ R; = ¢(1, 3), R+ Rs = ¢(2, 3),
and R; = 0.
Therefore, the convex hull of the achievable rate vecféffs i = 1,2, is within a bounded gap from the
outer-bound formed by the of cut-set outer-bou(R)}-(38).

VIl. RATE DISTORTION REGION FORc¢ < {2—1p,p}.
Here in this section, we assume that min{ﬁ, p}. Therefore,
1, V2
5

1
¢ < min{p, %} < max min{p, %} = (105)

Here again, we first characterize the rate region for theesponding binary expansion model.

A. Rate-Distortion Region for The Binary-Expansion Model

1) The Binary-Expansion ModelSince the correlation between andys, is equal top, we can write
y1 = py2 + /1 — p*z, wherez ~ N (0,1) and z is independent fromy,. We definer such that

p=1-277 (106)
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L | |I[a] ll,[ﬂ+1] | |x["] z[r+l]| |z[r+ﬂ]|x[r+3+1]| |$[b—ﬂ] I[b43+1]| | JL-[h]| |
N
Ch Cy Cy
20 | |z[ﬂ] |:r["+1] | | 2 | plr+1] | |I[r+ﬁ] r[”@“]| |I[b—ﬂ] |l.[b—ﬁ+1]| | 2101 |
57
) | |Z[91 Z[a+11| |Z[b—r—ﬂ1| | o] |
D
| L | |:L,[r—ﬂ] w[mfs+1]| | Ir] I['r+l]| |x[1,7,g]|w[;,,ﬁ+1]| | T |

ys=(1+2")z+27"2

Fig. 13. Binary Expansion Model far < {ﬁm}

In addition, we definer asz = py,. Noting thatc < p, we definej such that,

£_98 (107)
p
In connection with the Gaussian problem, we introduce arpiagpansion model. In this model,, = and
z are all uniformly distributed irf0, 1], with binary expansion representations, as detailed iti@ed|.
In addition, we replace: and  with the closest integers. The connectionyefand = is modeled as
y1 = @ 27"z, In the Gaussian problem, we have

c
ys=1 —cyp = (1 —x) + (1 - ;)x (108)

This equation is modeled ag = 27"z ® =z © 27 %z in the binary expansion model, as shown in Fig. 13.
2) Achievable Region for the Binary Expansion ModEghe achievable region for the binary expansion

model is shown Fig. 14, where we have

= (0, 0, b), (109)
Po=(b—r)" b+ (b-F-r)" = (b—r)*, 0), (110)
Py=(, b—p—r)", 0), (111)
Pi=(0,b—0-r" (b-r"), (112)
Ps=(b—(b—r—B)", 0, (b—1—05)"), (113)
Ps=(b—r)T=(b—r=0)" b=(b—r)", (b—r—p)"). (114)
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Fig. 14. Achievable Region of the Binary Expansion Modelrr€sponding to the Case< {%,p}

Referring to Fig. 13, we list the schemes to achieve the cquomts of Fig. 14, as follows.

. To achieveP;: encoder 3 send§, C,, andCs.

. To achieveP,: encoder 1 sendd,, and A;, and encoder 2 sends;.

. To achievePs: encoder 1 sendd;, A,, and A5, and encoder 2 sends,.

. To achieveP;: encoder 2 send®;, encoder 3 send§,, andC; (Note that havingB;, the decoder

can reconstruct’;).

. To achieveP;: encoder 1 sendd; and A,, and encoder 3 sends;.

. To achieveP;: encoder 1 sendd,, encoder 2 sendB;, and encoder 3 sends;.

One can observe that the concatenation of quantization smmihg can achieve all the corner points
as follows.

To achieveP,, P,, P;, and P;,

. form v; as the quantized version gf with resolutionmin{r + /3, b} bits after the radix point.

. form v, as the quantized version af= py, with resolutionmin{r, b} bits after the radix point.

« form v3 as the quantized version gf with resolutiond bits after the radix point.

« use the distributed lossless source coding scheme (Stgyadihn to reportvy, v9, andws to the decoder.
It is easy to see thaP,, P,, Ps, and Ps are the corner points of the above scheme.

To achieveP,, Ps,

. form v; as the quantized version gf with resolutiond bits after the radix point.

. form v, as the quantized version af= py, with resolution(b — 5)* bits after the radix point.

« use the distributed lossless source coding scheme (SHyiadh to reportu; andu, to the decoder.
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It is easy to see thaP, and P; are the corner points of this scheme.

The rate regiorR;, can be characterized as union of @it;, Ry, R3) € R?, satisfying:

Ry >0, (115)
Ry >0, (116)

R3 > 0, (117)

Ri+ Ry > (b—1)", (118)
Ry+Rs > (b—7r—0)7, (119)

Ry + Ry + Rs > b, (120)
Ri+Ry+2R3>b+ (b—r—p)*. (121)

3) Outer Bounds: The inequalities (115)-(120) match with the cut-set outeurims. In addition,
following the arguments of the proof of Theorem 1, we can slibat (121) is tight. ThereforeR;,

is indeed the rate-distortion region of the developed husapansion-model.

B. Achievable Scheme for the Jointly Gaussian Sources

Motivated by the results from the binary expansion model,cagjecture that using Quantization-and-
Binning scheme, we can achieve within a bounded gap of tleediatortion region. In this sub-section,
corresponding to each corner point of the region, showngn H, we introduce an achievable rate vector
for the Gaussian problem, using Quantization-and-Binmicigeme.

1) Achievable Scheme CorrespondingRoin Fig. 14: We chooseP? = (0,0, RY") equal toPC in

Sub-Section V-C, i.e.
_ 1 o2
RV = 3 log, %
2) Achievable Scheme Correspondingftpin Fig. 14: We choosePS = (R0, RY)) equal toP¢
in Sub-Section V-D.

(122)

Lemma 11 We have

() R — ¢(2,3) <1 bits per samples.

(i) R + RY — ¢(1,2,3) < 1 bits per samples.
(iii) If CQ(%’F) > 1, R + 2R — 4 < 5 bits per samples.
(iv) If <02 <1, RY) < 0.5 bits per samples.

Proof: Refer to Appendix G. [ ]
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3) Achievable Scheme Correspondingitpin Fig. 14: We chooseP¢ = (0, R\, R\") equal to P&
in Sub-Section V-E.

Lemma 12 We have
(i) RYY — ¢(1,3) < 1 bits per samples.
(i) R+ R — ¢(1,2,3) <1 bits per samples.

Proof: Refer to Appendix H. [ |
4) Achievable Scheme CorrespondingApin Fig. 14: Corresponding toP;, we introduce the achiev-
able rate vecto¢ = (R% R\ R{") as follows.

In this scheme, we quantize sourgeto v;, with the quadratic distortion;, j = 1,2, 3, where,

dy =max{c*(1 — p),d}, (123)
dy =max{l — p,d}, (124)
ds —d. (125)

Then we use Slepian-Wolf scheme to report the quantizedovers the sources to the decoder. Since
vz Will be available at the decoder, with vanishing probapibt error, therefore, the decoder haswith

the quadratic distortiom; = d. The test channels for the quantization part are as follows:
v; = 1;y; + W, (126)
wherew; ~ N'(0,1 —7?), andz; is independent of;;, and
m=v1-d, (127)
e =V1-ds, (128)
I (129)

Then, from Burger-Tung theorem, we can show that the foligwiate vector is achievable,

Réﬁ) =1 (y1,Y2, y3; w1, g, uluy, uz) = I (y1, Y2, Ys; w1, ua, uz) — I (Y1, ya; s, ua) , (130)
jo) =1 (y1,Y2; w1, uzluz) = I (Y1, y2; ur, uz) — I (y2;u2) , (131)
RY =TI (yo; us) (132)

where
I (y1,y2, y3; ur, ug, us) (133)
L e 19

N (135)

(1= —d)(1—d) | 1= (1= d)(o}, —ds) | 1 p* (1= (o}, — )
d1d2 0'53 dldg 02 dgdg ’

Y3
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(136)

and

1 1

I (y2;u9) = 3 log, d—2 (137)

Lemma 13 We have
() RY +RY + RY — ¢(1,2,3) < 3.28 bits per sample.
(i) RO+ RY —¢(1,3) < Llog,7 bits per sample.
iy 1f <02 > 1, RO 4 RE 1+ 2R — ¢ < 6.82 bits per samples.
(iv) If U= <1, RY < Llog, 9 bits per samples.
Proof: Refer to Appendix | [ |
5) Achievable Scheme Corresponding Bp and P; in Fig. 14: Corresponding toP, and Ps;, we
introduce the achievable rate vectsf = (R, R{?,0) and P¢ = (R, R{¥,0) as follows. Here, we
quantize source; to v;, with quadratic distortionl;, j = 1,2, where,
dy =— (138)
(139)

dy :min{4—02, 1}.

Then we use Slepian-Wolf scheme to report the quantizedoveds y; andy, to the decoder. It is easy
to see that, with vanishing probability of error, the deaodan reconstrucys with quadratic distortion

ds = d. The test channels for the quantization part are as follows:
V5 = N;Y; + Wy, (140)
wherew; ~ N'(0,1 —7?), andz; is independent ofj;, and

m=v 1— dl, (141)
2 =V 1-— d2. (142)

Then, we have

REZ) =1 (Y1, Y2; ur, uzuz) = I (Y1, y2; ur, ug) — I (yo; u2), (143)

R =1 (ygsus) (144
and

Rég) =1 (Y1, yo; w1, ualur) = I (Y1, y2; ur, uz) — I (y1;u1), (145)

RY =I (y1;w), (146)
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where

1 l—di  1-dy (1-p*)(1—di)(1~dy)
. _ 1 147
I (y1, yo; u, ug) 5 log, <1 + 4 + a5 + did, ; (147)
1 1
I (y2;u9) = 3 log, &’ (148)
1 1
I (yr;u1) = 2 log, a (149)
Lemma 14 If 02(%;”2) > 1, then
(i) R® +RP —y=RY +RYY — 1+ < 5.66 bits per sample.
(i) R —¢(1,3) < 2.16 bits per sample.
(i) RS — ¢(2,3) < 2.16 bits per sample.
Proof: Refer to Appendix J. [ |

C. Bounded Gap Result

From the results detailed in the pervious subsection, we lia following conclusions.

Theorem 15 If ¢ < min{p, 5}, and ‘32(%”2) > 1, then,
« P¢=(0,0,R") has zero gap from the outer-bounfts = 0, R, = 0, and Ry + Ry + Rs = ¢(1,2, 3).
« PS¢ = (RP, R, 0) has a bounded gap from the outer-boutis+ Rs = ¢(1,3), Ry + Ra+2R;3 = 1,
and R; = 0.
« PS¢ = (R R 0)has abounded gap from the outer-bourkis+ Rs = ¢(2,3), Ry + Ry+2R;3 = 1,
and R; = 0.
« PG =(0,R", R") has a bounded gap from the outer-boun@ls+ R5 = ¢(1,3), R, + Ro + R3 =
#(1,2,3), and R, = 0.
« PS¢ = (R, 0,R) has a bounded gap from the outer-boun@ls+ R = ¢(2,3), R, + Ro + R3 =
#(1,2,3), Ry + Ry + 2R3 = ¢, and Ry, = 0.
« PG = (R RY R{) has abounded gap from the outer-bouritis+ R; = ¢(1,3), Ry + Ry + Rs =
#(1,2,3), Ry + Ry + 2R3 = 1.
Therefore, the convex hull of the achievable rate vecfeffsi = 1,. .., 6, is within a bounded gap from
the outer-bounds formed by the cut-set outer-bou38%(39), and also the outer-boun(O0).

Theorem 16 If ¢ < min{p, 5-}, and CQ(%’P) < 1, then,

« P¢=(0,0,R") has a zero gap from the outer-bounlis = 0, R, = 0, and R+ Ry+Rs = ¢(1,2, 3).
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« PG =(0,R", R") has a bounded gap from the outer-boun@ls+ Rs = ¢(1,3), R, + Ro + R3 =
¢(1,2,3), and R, = 0.
. P¢ = (RP,0,RY) has a bounded gap from the outer-bour@s+ R + Ry = ¢(1,2,3), Ry = 0,
and R; = 0.
« PG = (R RY R{) has abounded gap from the outer-bouritis+ R; = ¢(1,3), Ry + Ry + Rs =
®(1,2,3), and R3 = 0.
Therefore, the convex hull of the achievable rate vecfeffsi = 1,4, 5,6, is within a bounded gap from

the outer-bound formed by the cut-set outer-bou{d83-(39).

VIll. RATE DISTORTION REGION FORp < c.

Since this case is well-understood, we directly explainrggult for the Gaussian sources. Here we

consider two cases, where< 1 andp > 1.

. 1
A. Case Onep > 5

Obviously in this case, the rate vectBf' = (0,0, R(l)) is achievable, where,
2

AW = Lo, i (150)
DR d
In addition, in [7], it is shown tha’¢ = (R, k{”,0) is achievable, where
. R 1 202
RP =RY = 5 log, —~. (151)

N[

Lemma 17 If p >

() B —¢(1,3) < log,? bits per sample.
(i) R” —¢(2,3) <1 bits per sample.
(i) R — ¢(1,3) < Llog, ¢ bits per sample.
(iv) R — ¢(2,3) < 1.5 bits per sample.
Proof: Please refer to Appendix K. [ |

Therefore, refereing to Fig. 15, we have,

Theorem 18 1f ¢ > p and p > 1, then
. ]510 has a bounded gap from the outer-bourfds+ R3 = ¢(1,3), Ry + R3 = ¢(2,3), R, = 0, and
Ry =0.
« P¢ has a bounded gap from the outer-bourfdls+ Rs = ¢(1,3), R, + Rs = ¢(2,3), and R; = 0.
Therefore, the convex hull of the achievable rate vecférs = 1,2, is within a bounded gap from the

outer-bound formed by the cut-set outer-bou(@3)-(38).
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Ry

Ry

Fig. 15. Outer-Bounds for Cage< c andp > 0.5

B. Case Twop < 1

Ignoring the advantage of the correlation betwgemndys, one can easy see thaf = (R\”, R\, 0)

is achievable, where

RP = %log2 %, (152)
R = %log; 4%. (153)
Lemma 19 If p < 3
() R® —¢(1,3) < Llog, 1 bits per sample.
(i) RS —¢(2,3) < Llog, 1% bits per sample.
Proof: Directly follows. [ ]

In addition, we consider the rate vectBf = (R® 0, RY)), the same a®¢ in Subsection V-D.
1 2 5

Lemma 20 If p < 1, then we have
(i) R — ¢(2,3) <1 bits per samples.
(i) R + RY) — ¢(1,3) <1 bits per samples.

Proof: Refer to Appendix L.

In addition, consider the achievable rate vedRt =

7
3 2

Lemma 21 If p < 3

1
= - log,

|
(0,0, RS"), where
0.2
%. (154)
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R
2}
ﬁ‘ﬁ. // \\
By
Ry
Fig. 16. Outer-Bounds for Case< c andp < 0.5
() R —¢(1,3) <1 bits per sample.
Proof:
1
R —¢(1,3)
1 ol 1 (1—p?)
<glon "~ glost
1 o2
S - log Y3
2 777 (1= p?)
@1 (1+c¢)
< =1 <0.5

Then, refereing to Fig. 16, we have,

Theorem 22 If ¢ > p andp < 3, then

. ]310 has a bounded gap from the outer-boungis+ R3 = ¢(1,3), Ry =0, and R, = 0.

. ]35G has a bounded gap from the outer-boun@is+ R3 = ¢(1,3), Ry + R3 = ¢(2,3), and Ry, = 0.

. PS¢ has a bounded gap from the outer-bourféis+ Rs = ¢(1,3), Ry + Rs = ¢(2,3), and R = 0.
Therefore, the convex hull of the achievable rate vecfefrs i = 1,2,3, is within a bounded gap from
the outer-bound formed by the cut-set outer-bouf®B, (34), (34),(37), and (38).
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APPENDIX A

PROOF OFLEMMA 3

Part (i):
If d<1-p?
1., 2034+ 6(1—p)(2, — d) L1
(2) Tys P
— ¢(1,3) == 1o log, 3 — =1
R = 6(1,3) =5 logy o7 d +1logy 3 — 5 logy —
1. . 200 (1= p*)+6(1—p)og, —d) 1 1— p?
<=lo Y3 1 - =1
2 oz old +logy 3 2 %827y
1
§§ log, 8 + log, 3.
On the other hand, il > 1 — p?,
@ 1., 200 d+6(1—p)(oy, —d)
Ry — ¢(1,3) 51 g 7 d Tus +log, 3
1., 202d+6d(o2, —d)
—logy + log, 3
2 ggd
1
§§ log, 8 + log, 3.
Part (ii):
Since we assume that— ¢ < /1 — p, then it is easy to see that
053 =1+ —2cp=(1-c)*+2c(1—p) <(1-p)(1+2c). (155)
Then, we have
1. 3o, A(1—p)
R — ¢(2,3) = log; =" 3-3 1og+ — (156)
1 302
1 — B 1] 157
gZ 2(1 p)+og23 (5)
(a)l 3(1+2¢)
<-log, +log, 3 (158)
272 2(14p)
®)1 3(1 4 2¢)
<-1lo 1
=9 g2 2+05 Og237 ( 59)
(01
< 5 log, 12 4 log, 3, (160)

where (a) follows from (155) and (b) relies on the fact that> 0.5, and (c) is based on> %5 > 0.5.
Part (iii): Using the proof of part (i) it is easy to see that

1 1-— 1
Rgz) — 5 log; Tp S 5 10g2 8 + 10g2 3.
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If d <c*(1-—p), then

R( B _1 + (1 —p) B llong —c)?
2 d (Vd + \/ — )1+ 2))?
1o 3oy 1. P*l-p) 1 p(1—c)
—logy 3+ = logf —% — ~logf ——= — ~1lo
gZ 2 g2 d 2 g2 d 2 g2 \/_—l— \/ 1 — p 1+ Cz))z
1 ol 1 p(1—c)?
<log, 3 + = log, —— % —
B3+ 5o e T T Ao pa s )
(a) 1 307 L 1—
<log, 3 + = log, # P — o)
2 (I=p) 21 BTt VI =p)(1+ )2
1 | p(1 —c)?
=log, 3+ - lo —log,
g2 5 g2 9 ( TAr e 2)?
() 1 V142
<log, 3 +  log, (C_l_ + )
2 c2p

(c) 1
<logy 3 + ; log, 18(1 + V5)?,

where (a) relies on assumptiah< ¢*(1 — p), and (b) is based oh— ¢ > /T — p and

o 1+c2—2cp 2¢(1—p
(1_?/30)2: -0 :1+%<1+2c<3 (161)

Moreover, (c) follows from the fact that > 5 - > s,andp > - > 2.
Otherwise, ifd > ¢*(1 — p), then

2

‘A-p) 1 p(1—c)
RO _Ljogr CE=P) 1 (162)
*o2 d 2% (i /A plr )
1 307, 1 p(1—c)?
=log, 3 + = logs 163
g2 2 g2 d gz \/’_‘_ \/ 1 _p 1 —|—C2))2 ( )
1 302, (Vd+ /(1= p)(1+c2))?
—1 | s 164
Og2 3 + 2 ng ,0(1 . 0)2 d ( 6 )
2
(a) 1 1—p)(1+c?
< log, 3+ ; log, 18<1+\/( p)o(i H))) (165)
(b) 1 Tre\’
<log, 3+ log, | 18 (1 4/ EE ) ) (166)
C
© 1 ,
<log, 3+ 5 log, 18(1 + V5)2, (167)

where (a) is based om > i > % and (161), (b) relies od > ¢*(1 — p), and (c) is based on the fact that

c> 5 >3



APPENDIX B

PROOF OFLEMMA 5

Part (i):

RS — ¢(2,3)

1 6(1 — p)(c2, —d) A(1 - p?)
=14+ =1 2 Ys — x
+ 2 Og2( + U§3d ) 10g2 d
1 6(1— p)(oy, —d) d
=14+ =1 2 Ys 1 _
+ 5 log, ( + 224 min{1, 1= ,02)})
1 6(c;, —d)
=1+ §log2 (2 -+ W)

1 6\ @ 1 1
<15 logy (24 5 ) < 1+ 5logy (2+12) =1+ 5 log, 28,

where (a) is based on> . > ;. Therefore,

1
RS — $(2,3) = Roy + Ra + Rog — 6(2,3) = logy 3 + 3 + 5 log, (28) .
Part(ii):
Similar to part (i), it is easy to show that
3 |1 (1 —p)

Ry, — 5 logy
2 d
| 6(1 - p)(o2, — d) A1 p)
=1 21 2 Y3 o +
=+ 2 OgQ( + Uggd ) 1 2 d
1 6(1 — p)(oy, — d) d
=1+ - log, (2 us in{1
+3 0g2< + 22.d min{ ’02(1—p)}>
1 6(c2 —d)
—1 4 - log, 2+ —2
+glom (24 £ )
6
<1+§log2 (24—;) <1+ =log,(2+24) =1+ =log, 26
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(168)

(169)

(170)

(171)

(172)

(173)

(174)

(175)

(176)

(177)

(178)



Similarly, we have

1 1—p
Ry — 5 logy —+

2 d
1 6(1—p)(c2 —d). 1 1—p
— 2 1ogy(2 s — Zlogt —*
2 0g>(2 + o2.d ) 9 982 Ty
1 6(1—p)(oy, —d) d
_5 10g2 (2 —+ 02 d mln{l, 1——p}

g (o 9

Y3

1 1
§§ log, (2+6) < 2 log, 8.

From (79) and (86), we have,

o2 2
1 (p—c+on,,)? O‘A
RO = Liog, The _ 2 ) Loy The L
On the other hand, we have
(p—c+on,) p(l —c)?
—log ML —log
2 ? U/Z\M ’ \/7 \/ l—p 1+C2))
_ 1—
= log, 2~ TAu T logy il C)
OAy Vd++/(1T=p)(1+c2)
— 1-p)1 2)
<log, |1+ p—c Vd+ \/ +c
2(1—=p)+2q 1 )
(a) 1 1-p)(1 2)
2 log, [ 1+ Vid + \/ ) +c?)
2(1—p)+2q
(b) 1 1-p)(1 2)
<log, | 1+ v+ \/ +c)
—p)+ %

VDI )
\f p)+ﬂ Vo 2(L=p)+ %

<1og2 <1+f+ ><1+Cz)>

N

V(I +e?)
1+V3+ NeT, )>

<log2 <1+\/_+ <\1/%C)> = log, (1%—@%—?),

= log,

where (a) is based op— ¢ < 1 — ¢, (b) follows from ﬁ >4, (c) is based omp >

is due toc < p.

39

(179)

(180)

(181)

(182)

(183)

(184)

(185)

(186)

(187)

(188)

(189)

(190)

(191)

(192)

(193)

, and (d)
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In addition, we have

1 o U/2XC B 1 + /0(1 — C)Z
2, 2 (Vi - s oy .
1 o2 +3q L. p(l— 0)2
TRy 2 (Vd+ /A= p) 1+ 2))? (199)
@1 Ty p(l—c)’
< 21 2o (2(1 —p))(0‘2 — d) 2 1,2 g2 \/* \/<1 ) (1 +02>)2 (196)
1 033 \/_+ \/ 1— 1 2))2
3 82 ((2(1 ZN@E, — ) + 2o g ) (197)
®) 1 (1+26) Vid + \/(1 p)(1+ c2))?
< 5108;2 <<2(1 _ p))(0_2 _ d) 2d0'2 0 ) (198)
I (1+2c) (Vd+ /(1= p)(1+c2))?
_2lg2<(2(1 -5+ 3 p ) (199)
glogQ ) Vd+ /0 =p)1+3) (200)
JRO=p)(1 = 35) +3d
—log, | 2 vd Lo VA +e) (201)
JRO=( =35 +3d /0 -p)(1 ) +3d
= log, | V6 +2 V- + ) , (202)
JRO=p)(1 =) +3d

where (a) is due to the particular choiceqah (73), (b) follows from the assumption that-¢ > /1 — p,
and

or, =1+ =2cp=(1=c)+2c(1—p) > (1=p)+2c(1—p)=(1-p)(1+2c). (203)
Inequality (c) is based o#ﬁ—zc > 12 > 4, aSp >c> o 2 3
Here we consider two cases Whe#e< y’ , ord > 5’ Afd < % j thenl — 0% > % then we have,
1 2
R.H.S (202)< log, Vot oY —p+c) (204)
1—p+ 2d
1 2
<log, <f+2 )( “)) (205)
VI—p
log, (V6 +2(1+¢2) ) (206)
1o g (V2(V3+2)), (207)

where (a) is based oft< < 1, for ¢ < 1.



Otherwise, ifd > 02 , then

(0)
< log, (\/6+ 2\/§> ,
where (a) follows from (203), and (b) is based ((11_”))((1;:2)) < V2. for0.5 <c<1.
A ¢

Therefore, we have

RY + Ry —

1 1 )
S3+§10g226+§log28+max{log2 <1+\/§+ \/2) ,log, <\/6+2\/§)}+210g23

= 12.42 bits per sample

APPENDIX C

PROOF OFLEMMA 6
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(208)

(209)

(210)

(211)

(212)
(213)

(214)

We note that ifl —c < /T —p, theno? =14+ ¢ —2cp = (1 —¢)*> +2c¢(1 = p) < (1 = p)(1 + 20).

Using this inequality, we can prove both parts, as follows.

Part (i):
We have
RY — (1, 3) :% log, 0'753 - %log; 1 _dpz
S% log, (11—:2:) < %bgz 15

where we use the fact that5 < 2—1p <c<op.
Part (ii): We have

1 ol 1 (1 — p?)
R = 6(1,3) =3 logy 2 — S logs
1 (1—-p)(1+2¢) 1 A1 - p?)
<=1 — ~logy
=g 0% d 2 7% Ty
1 (1+2) 1. 16
~1 < —log, —
=9 089 02(1 +p) =9 089 3 )

(215)
(216)

(217)

(218)
(219)

(220)
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where we use the fact thats < - S < c<p.

APPENDIX D

PROOF OFLEMMA 7

If d <o} (1-pi,), then

R ; log, 7 _1 (221)
R :% log; M, (222)
otherwise ifd > o, (1 — pi;), then
RY ; log, U; (223)
Ry % logy ((%p@ + pig) - (224)
Part (i):
It is easy to see that
6(2,3) = L log] % <1d— Pis) (225)
Therefore,d < o7, (1 — ply),
Ry — ¢(2,3) = %logr} % (1~ pta) (1d_ fha) _ %lo s Tl Pr) (1d_ Ay) %logi(l + 1) < 1, (226)
otherwise ifd > o7, (1 — pi;), then
B~ o(2.9) =g logt (PO ) - L rogy ) (227)
—%1 gr (M +/)?3) < %108;2 (1+pf3) <1 (228)
Part (ii):
It is easy to see that
¢(1,2,3) = = log] %@%. (229)
If d <o (1-pi;), then
RP + R _¢(1,2,3)
:% log, 1%% + %1()%; M ; log, UdZS <3 1032(1 + p%?,) <1



Otherwise ifd > o7 (1 — pi;), then

RY + RY —¢(1,2,3)

1. o’ oy, (1= pis) Oy _
=5 log, % + 5 5 10%; <7y3 d + P%s) > log, =% d 1032 (1+p
Part (iii):
From (40), we have,
I, ;1-=p 1 Al—-p) 1 p(1 —c)?
= —logd —— + ~logy ——— + ~log; :
¥ 2 d 2 2 d g 082 \/E+\/ p)(1+ 2))?

Then, we have

1. ,1—-p) 1. o2 (1—pk)

1 + =] + Y3
%82 Ty 2 %82 T4+ p)
In addition,
1—p) 1 on, (1= pf3)

21 + ( i + 313—

2 %% Ty 2 %82 421+ p)
Then, using the proof of part (i), it is easy to see that

2
R 2 ¢ d -7
and
1 (1-p)

Moreover, ifd < o7 (1 — pis) = (1 — p?), then

e 1, 4 p(1—c)?
Ry 5 1089 =2
2 (Vs T+ )
1 1 1 p(1— c)?
— Zlogf — — Zlog}
2 gzl—P%?; 2 % (Vd+ /(1 = p)(1+ c2))2
1 + 053 1 (1_C>

_510g2m 1g2 \/_—l-\/l— YA+ )2
(T4 20)(Vd+ /(1= p)(1 + c2))?
p(l—p)
L (1420 (/A1 = p2) + /(1= p)(1+2))?
c2p(1—p2)
_ L (420 +p) +VI+P)? O 59
p(1+p) ’
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(230)

(231)

(232)

(233)

(234)

(235)

(236)

(237)

(238)

(239)

(240)

where (a) is based on (161), (b) follows from the assumpiion o, (1 — pi;) = ¢*(1 — p*), and (c)

relies on0.5 < 5~ S <c<p.
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Moreover, ifd > o2 (1 — pis) = (1 — p?), then

1 p(l—c)
RY — Zlogf (241)
b2 2<¢8+¢<1—p )(1+c2))?
1 ol 1 (1 — c)
= —log, & — 510 242
(a) 1+ 2¢) 1— 1 2
< llog2 (14 2c¢) \/74- \/ +c )) (243)
2 dp
2
®) 1 (14 2¢) 1+ ¢2
<21 = — | | <22 244
=~ 2 Y 2 02(1+p) ) = ) ( )

where (a) is based on (161), (b) follows from the assumption o7, (1 — p3;3) = ¢*(1 — p?), and (c)

relies on0.5 < 5~ S <c<p.

APPENDIX E

PROOF OFLEMMA 8

If d <oy (1-piy), then
1

1
4
R; =5 log, T2 7z (245)
1 > (1= p3
RO =L jogy Tl = n) (246)
2 d
otherwise ifd > o; (1 — p33), then
1 or.
RWY = 5 logs 22, (247)
RS = log} (w + ,033) . (248)
In addition, it is easy to show,
1 > (1—p?
5(1,3) = L1t Tu L =) (249)
2 d
Then, similar to the proof of Lemma 7, we can prove part (i) pad (ii). In addition, we can show that
1 2(1 —
I S Ut DR (250)
2 d
and
1 1-—
R — 5 logs ( . P) <o, (251)
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Moreover, ifd < o2 (1 — p33) = 1 — p?, then

@ _ 1 o+ Pl — o) 252
" = 5 loe, (Vd+ /(1 = p)(1 + c?))? )
1 1 1 p(1 —c)?
R TUES DS Sy 253
2 B T T 2 (i L L B 9
1 053 1 p(1—c)
—glm T g gl (Vd+ /(1= p)(1 +2))? o
(%)llg (1+ 20)( f+\/1— (1+c2)? (255)
2 p(1 = p?)
(gb)llg; (1+20)(v/1 =2+ /(A =p)(1+A2))? (256)
2 p(1—p?)
PR | A L - SN (257)
2 p(1+p)

where (a) is based on (161), (b) follows from the assumpiieh o, (1 — p35) = 1 — p?, and (c) relies
on 0.5 < < c < p.
Moreover, ifd > o} (1—p33) =1—p?, then

1 p(1—c)?
RY — S log] (258)
’ \/_—l-\/l—p )1+ 2))?
1 ol 1 (1 —c)
= Jlog 72— Lo 259
@1, (142 1— )1+ 2
& Liog, 1129 f*“ ”)) (260)
2 dp
2
®) 2
2 Lo, [ L2 L) <15, (261)
2 p 1+p

where (a) is based on (161), (b) follows from the assumpiieh o, (1 — p35) = 1 — p?, and (c) relies
on 0.5 < < c < p.

APPENDIX F

AN INEQUALITY

Lemma 23 If ¢ < min{p, 5;} andd < (1 — p?), then

1 1 1 p(l—c)?
—log 10 5 (262)
2 (1—-p) (Vd+/(T=p)d+ )
Proof: First, we note that < min{p, 2—p} < %. In addition, we have
1
d<c(l-p)<(1=p) <1-p. (263)
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If p(1—c)? > (Vd++/(1—p)(1+c2))? then

1 L p(1 —c)?
2B T 2 (Vi TG D) (264)
_1 11 p(1—c)?
28T, T Vi+/A-pd+e)? (265)
B 2
1 1 d
~3lon, |~ ( Csvive } (266)

@1 3\
<glog, |2(1+4/5 ) | = 1654, (267)

where (a) follows from the fact < ? In addition, if p(1 — ¢)? > (Vd + /(1 — p)(1 + ¢2))?, then we

havep > (1 — p)(1 + c?), and thereforep > 1< > 1.

On the other hand, if(1 — ¢)? < (Vd + /(1 — p)(1+¢?))?, andp > 0.9, then sinced < 1 — p we

have,
p(1=c)? <(1—=p)1+V1+e)2
Therefore,
1 1 1 p(1 = c)?
log —logs (268)
2 (1—p) 2 7 (Vi /U-p)(Il+))2
1 1
:§log21 (269)
2)2 (a)
<L 1og, ““HC) < 3.00, (270)
2 p(1 —c)?

where (a) relies om < ¥2,

In addition, if p(1 — ¢)? < ( f+\/ 1—p)(1+c2)?% andp > 0.9, then
1 1 p(1—c)?
—log, — —l ogy (271)
2 (1—) Wi+ /A -p)(A+2)
1 1
=—log, —— < 1. 272
5 089 1_ 66. (272)
|
APPENDIX G
PROOF OFLEMMA 11
If d <oy (1-piy), then
—;5) 1 1
B =21 27
Iy To %27 o 02 (273)
_ 1 2 (1—-pf
R = log} %, (1= p15) - Pis) (274)



otherwise ifd > o7 (1 — pi;), then

2
R® =21
1 08y —— d

1
2
R <Siogs (L2 )
Part (i):
The proof is the same as the proof of Lemma 7-Part (i).
Part (ii):
The proof is the same as the proof of Lemma 7-Part (ii).
Part (iii):
We note thatr?, (1 — pi;) = ¢*(1 — p*). Then,

d< o, (1-pls) =c*(1-p") <

which follows frome < @

From (40), we have,

¢——1 —+—1

It is easy to see that,

2 2 2 2
_(5)_11 +C<1_p)<11 +2C(1—p)_11 +C(1—p)<1
In addition, we have
_ 1 1—p 1 p(1—c)?
R(5)+R(5)——10 + - +
1 P2 d 2 7 (Vd+ V(1= p)(1+c2))?

1 1 1 ol (1—pfs) 1 1—-p 1 p(1—c)?
= log, ——— + = logf " _ Zlog, =L Zlogf

2 BT T T 2 d P (VAT -1+ &)
(@)1 2 1 22(1—p?) 1 1— 1 1—
§_10g2 - O-y.i - _'_ 1 ;— C( p>—_10 ) p 1 + ( C)

2 (1=p*) 2 d 2 d (Vd+ /(1= p)(1 + 2))>

1 2053 Lo+ p(1 —c)? (2

=—log — log
27 (1-p) P Wi+ /A -p+ D))
where (a) follows froml + p32, < 2, and (b) is based on Lemma 23 and ad%g)g 2.
Part (iv):

_ 1 o2 (1—pi) 1 A(1—p? 1
B st (PO L ) Loy (P02 ) < g (42 <05

d

\)

a7

(275)

(276)

(277)

(278)

(279)

(280)

(281)

(282)

(283)

(284)
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APPENDIX H

PROOF OFLEMMA 12

If d <o} (1—p3), then

_ 1 1
RY = =3 log, gy (285)
_ 2 (1 5
R L jogr Tu L= P) (286)
2 d
otherwise ifd > o7 (1 — p3;), then
_y 1 oy,
R =5 log, £ ' (287)
_ 1 1—p2
Ry = log; (% + pég) - (288)
Part (i):
The proof is the same as the proof of Lemma 8-Part (i).
Part (ii):
The proof is the same as the proof of Lemma 8-Part (ii).
APPENDIX |
PROOF OFLEMMA 13
Part (i):
R+ RO+ RY — 4(1,2,3) (289)
](y17y27y37u17u27u3) ¢(17273) (290)
1 1 1 ol 1—p* E1—=pY) 1-p 1 o2
<21 il _Y — =1 U 291
=908 <d1 Tt T hd T dd s ) 2 %827y, (291)
(a) 1 2 1
€ Zlog, (—2+1+3( +p)) < 3.98, (292)
2 Uys ays
where (a) follows simply from (123)-(125), and (b) relies on
2
2
oo, =1—c)+2c(1—p)>(1—c)P> (1 — g) : (293)

and (105).
Part (ii):
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R+ RY — ¢(1,3) (294)

= I (y1,y2, y3; u1, ug, uz) — I(yo;uz) — ¢(1,3) (295)
1 1 1 ol 1—p* AE1-pY) 1-p 1 1 1 1—p?

<1 4B — Zlog, — — = logf —— 296

=908 <d1 TG T ad T dd T s ) 2 82y, T 2% Ty (296)
1 dy oidy 1—p* Al—pHdy 1—p? 1 1—p* @1

<1 24142 — ~logs < —log,7, (297

_2Og2<d1++ d T4 T dd T d g loge —— = glog T, (297)

where (a) relies on (123)-(125).
Part (iii):

Let us assume that < ¢*(1 — p), then from (123)-(125), we havwé = c*(1 — p) andd, =1 — p.

In addition,

I (y1, Y2, y3; U1, U2, u3) (298)
1 11 o2, 1—p* E1-pY) 1-p?
< -1 — -4+ 299
_20g2<d1+d2+d3+d1d2+ 0vds —l—d2d3) ( )
1 1 1 o’ 1+p 1+p 1+p
<=1 %
=3 <C2(1—p) T, Tea—p T d ) (300)
1 4 6 1 10
<= - 1)<z ).
_210g2<02(1_p)+d)_210g2<d) (301)
Moreover,
' 1 1 1-dy  (1-p)(1—=di)(1—dy)
I (y1, y2; ur, ug) = 5 log, <d1 + & + il (302)
> Liog, (1 — (303)
2% \ea )
Then
R+ RO + 2R —y (304)
= 21 (Y1, Yo, y3; U1, U, uz) — I (Y1, yo2; U, Uz) — (305)
10 1 1
< )z
<ton,(7) - 31 (7= (306)
1 1—p 1 Al-p) 1 p(1 —c)?
— —log, —— — = log, ———~ — —log} 307
A e N () o0
1 100 1 p(1 —0)2 (a)
< ~log <—) — —logg < 6.32, (308)
277 \1-p) 277 (Vi /T =)+ )2

where (a) follows from Lemma 23.

Now let us assume that(1 — p) < d < (1 — p?), then

d<P(1—p)<s(1-p)<1—p, (309)

N~
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which is based in (105). Therefore, from (123)-(125), weehdv = d andd; = 1 — p. Then, we can
easily show that

1 10
I (y1, Y2, ys; ur, ug, uz) < 2 log, ( d) . (310)
Moreover,
1 1 1-dy  (1-p)(1—=d)(1—dy)
I =1 — 11
(y17y27u17u2) 2 089 <d1 + d2 + d1d2 (3 )
1 1 1 1
> —log, - > =1 — . 312
=9 g2 d =9 ng <C2(1 _p2)) ( )
Then,
R® + RY 4 2R —y (313)
= 21 (y1, Y2, Y3; U1, Uz, uz) — I (Y1, y2; w1, ug) — ¥ (314)
10 1 1
<1 — ) —=1 —_— 315
<o (1) =508 (3 m) 51
1 1- 1 Al-p) 1 p(1—c)?
—=1o ———1 7——10Jr 316
2T TR T T I T 10
)2
< Liog, (M) ~ Lyogy Pl — ) < 6.82, (317)
2 L=p ) 277 (VA A=)+ @)
where (a) follows from Lemma 23.
Part (iv):
Réﬁ) =1 (Y1, Y2, y3; u1, uz, uz) — I (y1,Y2; u1, ug) (318)
1 1 1 o2 1—p* A(1—pY) 1-p? 1 1
<=1 - L — =1 — 319
=508 (dl A 2 Tad T dd  dds ) 2% \G (319)
1 d1 ordi  1—p*  A(1—p?)  di(1—p?
<21 ys 320
—2°g2< L N (320)
1 o)
< = 1+1 1 321
_210g2<1—|—1+1+p—|—1+p+ + —i—p) 2og29 (321)
APPENDIX J
PROOF OFLEMMA 14
Sinced < ¢*(1— p?), therefored < ¢?, then,d;, = ;5
Part (i):
2 2 1
d <(l-—p)<51-p)<1-p, (322)



where we use (105).
Let us assume that < c*(1 — p), then we have

Rgz) + Réz) — =1 (Y1, Y25 U1, u2) —

1 11 1-p2\ 1 1—p
< Zlog, [ —+ — — —logi —+
_20g2(d1+d2+ dldg) 2 %2 7]

1o c(1l-p) 1 p(1 —c)?
— —logy —— — =~ log;

2" d 27 (Vd+ V(1= p)(1+2))2

1 4 4t 162 (1 - p?) 1 1—p
<logy (-4 — 422 "PJ))_ “jpe, —F
_20g2<d+d+ & ) 3 %52 g

1 2(1 — 1 1—c)?
__10g20( p) L ogs p(l—c¢)

2 d 2 (Vd+ /1 = p)(1+2))?
(@ 1 40c¢%(1 — p) 1 1—p
< glog (T) ~gloe T

1 Al-p) 1 p(1—c)?

lo — —logs

2% 2 % (Vd++/(1=p)(1+¢2))?

1 4 1 1—
© 2 1og, (—0) ~logf p—cf < 5.66,

2 1—p (Vd + /(1= p)(1 + 2))2

where (a) follows from the assumption that ¢?(1 — p), and (b) is based on Lemma 23.
On the other hand, if*(1 — p) < d < (1 — p?), then we have

R?) + Rf) — =1 (y1,Yo; U1, ug) —

1 11 1—p? 1 1—p
<=1 — + = — —logi —~=
—2°g2(d1+d2+ dldg) 2982 7
1 (1 — 1 1 —c)?
diogt T g A
2 d 2 (Vd+ /1= p)(1+ )
1 4 4 1641 — p?) 1 1—p
<=1 -t ——— ) — =1
—2°g2(d+d+ P ) 3 %827
1 (1 — 1 1 —c)?
oy P Diog Ao
2 d 2 7 (Vi JA-p+ )
@ 1 40c%(1 — p?) 1 1—p
< =1 —— ) — =1
=9 0g9 < d2 ) 2 0g9 d
1 2(1 — 1 1—c¢)?
Liog, C0=2) L) p(1 o)
2 d 2 (Vd+/0-p(1+A))
1 1 1-—
® —log, <ﬂ) —log + d C) < 6.16,
2 L—p (Vd+ /(1 =p)(1+ 2))?
where (a) follows from the assumption tha (1 — p?), and (b) is based on Lemma 23.
Part (ii):
In part (i), we proved that
1 80c%(1 —
](y17y2;u17u2) S 510g2 <d2 p)

51

(323)

(324)
(325)
(326)
(327)
(328)
(329)

(330)

(331)

(332)
(333)
(334)
(335)
(336)
(337)

(338)

(339)
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Rﬁz) — ¢(1,3) = I (y1, y2; w1, uz) — I (y2;u2) — ¥(1,3) (340)

_%@W ;logZ%——l l_dp2 (341)
< ; log, %‘;p) - ; logy 1Tp 3 log, 20 = 2.16. (342)
Part (iii):
R — ¢(2,3) = I (y1, yos ug, uz) — I (y1;u1) — (2, 3) (343)
< %10 278002(;2_ ) ;log %— %1 ;Cz(lgpz) (344)
< %log2 %}l_p) %mg; L _dp2 < %logz 20 = 2.16. (345)
APPENDIX K

PROOF OFLEMMA 17

We note that ifc > p, then,

oy =14+ —=2cp=(1—-¢c)’+2c(1—p) <1 —p)(1—c)+2c(1—p)=(1—p)(1+c)<2(1—p).

(346)
Part (i):
RS — ¢(1,3) (347)
= %log2 %53 — %loggr (1 —d,oz) (348)
_ %logz % - %mg; a _dp2> (349)
< Liog, UHIAZA) 1, P (350)
< %ng (i i;) < %logz % (351)
Part (ii):
R — ¢(2,3) (352)
= %bgz 07% — %log; 762(1; 7) (353)
—%1 g2;§3—%1 o 02(1d_p2) (354)
<L, Uxdlzn) 1y, - 355)
< 3 log, 2(2110/))) <1 (356)

Proofs of parts (iii) and (iv) are the same as the proof ofpéjtand (ii).
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APPENDIX L

PROOF OFLEMMA 20
Part (i) follows from the proof of Lemma 7, part (i).
Part (ii):
If d <o (1-piy), then
R® + RY —¢(1,3)
1 1 o (l=piy) 1 (1=p%)

-1 —1 — 1

g k2T T om d 2 %2 Ty
llog 5:3(1+p13)
2 (1=p%)

(a) 2

=35 1+p -

where (a) follows from (346).
Otherwise ifd > o, (1 — pi;), then

where (a) follows from (346).
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