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Abstract

Unsupervised Models of Entity Reference Resolution

by

Aria Delier Haghighi

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Dan Klein, Chair

A central aspect of natural language understanding consists of linking information across
multiple sentences and even combining multiple sources (for example: articles, conversations,
blogs and tweets). Understanding this global information structure requires identifying the
people, objects, and events as they evolve over a discourse. While natural language pro-
cessing (NLP) has made great progress on sentence-level tasks such as parsing and machine
translation, far less progress has been made on the processing and understanding of large
units of language such as a document or a conversation.

The initial step in understanding discourse structure is to recognize the entities (people,
artifacts, locations, and organizations) being discussed and track their references through-
out. Entities are referred to in many ways: with proper names (Barack Obama), nominal
descriptions (the president), and pronouns (he or him). Entity reference resolution is the
task of deciding to which entity a textual mention refers.

Entity reference resolution is influenced by a variety of constraints, including syntactic,
discourse, and semantic constraints. Even some of the earliest work (Hobbs, 1977, 1979),
has recognized that while syntactic and discourse constraints can be declaratively specified,
semantic constraints are more elusive. While past work has successfully learned many of the
syntactic and discourse cues, there has yet to be an entity reference resolution system that
exploits semantic cues and operationalizes these observations into a coherent model.

This dissertation presents unified statistical models for entity reference resolution that
can be learned in an unsupervised way (without labeled data) and models soft semantic
constraints probabilistically along with hard grammatical constraints. While the linguistic
insights which underlie this model have been observed in some of the earliest anaphora
resolution literature (Hobbs, 1977, 1979), the machine learning techniques which allow these
cues to be used collectively and effectively are relatively recent (Blei et al., 2003; Teh et al.,
2006; Blei and Frazier, 2009). In particular, our models use recent insights into Bayesian non-
parametric modeling (Teh et al., 2006) to effectively learn entity partition structure when the
number of entities is not known ahead of time. The primary contribution of this dissertation
is combining the linguistic observations of past researchers with modern structured machine
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learning techniques. The models presented herein yield state-of-the-art reference resolution
results against other systems, supervised or unsupervised.

Professor Dan Klein
Dissertation Committee Chair
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To Ramsey: To this day, part of what inspires me is thinking about what you would have
done if you were still here.
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Chapter 1

Introduction

Most natural language processing (NLP) work examines language through a microscope,
analyzing structure at or below the level of individual sentences. However, most of the
information that we care about exists more globally, linking multiple sentences and even
combining multiple sources (for example: articles, conversations, blogs and tweets). Under-
standing this global information requires identifying the people, objects, and events as they
evolve over a discourse. While NLP has made great progress on sentence-level tasks such as
parsing and machine translation, much less progress has been made on the processing and
understanding of large units of language such as a document or a conversation. Understand-
ing this discourse-level of structure is ultimately essential for building systems capable of full
natural language understanding.

The initial step in understanding discourse structure is to recognize the entities (people,
artifacts, locations, and organizations) being discussed and track their references through-
out. Entities are referred to in many ways: with proper names (Barack Obama), nominal
descriptions (the president), and pronouns (he or him). These references, which we call
mentions, are typically realized as noun phrases (NP). Entity reference resolution is the task
of deciding to which entity a textual mention refers. For a concrete example of this task, see
the excerpts in Figure 1.1. In these examples, textual mention boundaries are denoted by
brackets, which we initially treat as given. The entity to which a given mention refers is indi-
cated by color as well as subscript. For instance in Figure 1.1(a), the mentions Weir Group,
corporation, and whose are proper, nominal, and pronominal references (respectively) to
the Weir Group entity.

There has been much research on the task of automatic entity resolution, often called
coreference resolution. Much of the earliest work, (Hobbs, 1977; Sidner, 1979), focused
on the sub-problem of resolving pronoun reference to antecedent references; this sub-task
is often called anaphora resolution. Hobbs (1977) presented a relatively simple algorithm
which for a given referential pronoun searched for a nearby antecedent reference which was
compatible with the pronoun in number and gender. For instance, in Figure 1.1(b), the
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The [Weir Group]1, [whose]1 [headquarters]2 is 
in the [U.S]3, is a specialized [corporation]1.
This [power plant]4,[which]4, will be situated in 
[Jiangsu]5, has a large generation [capacity]6. 

(a)

[The castle]1 in [Camelot]2 remained 
[the residence]3 of [the king]4 until 536 
when [he]4 moved [it]3 to [London]5.

(b)

[Apple]1 says [iPad]2 [sales]3 have topped 
[two million]4 since [it]2 was released. 

(c)

Figure 1.1. Examples of entity reference resolution. The heads of textual mentions
are denoted by brackets and the entity identity is indicated by color and subscript
assignments. Sometimes entity resolution requires semantic information. In (b), we
present an example from Hobbs (1977) meant to illustrate how semantic compatibility
can benefit pronoun resolution. In example (c), we present another example of this
phenomena.

pronoun he is singular and male in gender and any potential antecedent must not conflict
with those values; this rules out castle, Camelot, and residence since those words, as
inanimate objects, are neuter gender in English. Subject to these constraints, the correct
antecedent of the pronoun tended to be close to the pronoun. Hobbs (1977) noted that this
simple procedure seemed to perform quite well,1 but noted that many errors were the result
of semantic incompatibility between pronoun and antecedent. An example sentence that
Hobbs (1977) uses to illustrate this is presented in Figure 1.1(b). The pronoun it is the
direct object of moved. This context is incompatible with castle which is a large object and
unlikely to be moved. The pronoun is incompatible with London and Camelot since those
are specific locations which cannot be moved. Hobbs (1977) provides several other examples
where the context along with our semantic knowledge of the world can aid pronoun reference

1See Chapter 5 where we present a system which elaborates on this simple approach and confirm its
findings.
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disambiguation. However, Hobbs (1977) does not have a concrete procedure for obtaining
the relevant semantics facts for utilizing this information in a pronoun resolution system.

As another example of this phenomenon consider correctly resolving the pronoun it in
Figure 1.1(c). In general, pronouns are coreferent with a ‘close’ mention. In this example
however, there are multiple mentions between the pronoun and the correct antecedent men-
tion iPad. Typically, speakers limit potential referring entities according to evidence from
usage. In this case, whatever entity to which it refers is something which can be released.
The entity type of the closest mention two million is a numerical quantity which are, in
general, unlikely to be released. In contrast, the entity type of the mention iPad is an elec-
tronic product which is likely to be the object of released. However, it is not clear from
this single usage of the term iPad that is an electronic device. Discovering this information
might require synthesizing information across multiple usages of the entity from different
discourses.

There has been much linguistic research on the grammatical constraints which either
ensure or disallow NP coreference. Lees and Kilma (1963) and Langacker (1969) present
constraints on which the relative positions of a pronoun and a potential antecedent prohibit
(or require) the use of a reflexive pronoun (e.g., himself). While much work in automatic
reference resolution has benefitted from this research,2 there has been less work on character-
izing the more heuristic constraints which underlie the semantic compatibility in anaphora
resolution. A notable exception is Kehler et al. (2008), who present psycholinguistic ex-
periments which affirm that coherence-relationships, such as in Hobbs (1979), can override
traditional grammatical preferences in pronoun interpretation.

Despite this recognition for the need to incorporate soft semantic constraints in reference
resolution, there has yet to be an entity reference resolution system which operationalizes
these observations into a coherent model. This dissertation presents unified statistical models
which perform entity reference resolution; these models can be learned in an unsupervised
way (without labeled data) and they are capable of capturing soft semantic constraints
probabilistically along with hard grammatical constraints. The fact that it is unsupervised
allows it to be trained on large unannotated datasets which facilitate learning broad-coverage
semantic information. In particular, we present a model (see Chapter 6) that is able to handle
examples like the iPad example presented earlier.3 This model yields the state-of-the-art
reference resolution results against other systems, supervised or unsupervised.

While the linguistic insights which underlie this model have been observed in some of the
earliest anaphora resolution literature (Hobbs, 1977, 1979), the machine learning techniques
which allow these cues to be used collectively and effectively are relatively recent (Blei et al.,
2003; Teh et al., 2006; Blei and Frazier, 2009). In particular, our models use recent insights
into Bayesian non-parametric modeling (Teh et al., 2006) to effectively learn entity partition
structure when the number of entities is not known ahead of time. The primary contribution
of this dissertation is combining the linguistic observations of past researchers with modern
structured machine learning techniques.

2See Chapter 5, where we exploit many of this constraints.
3While in principle, this model can handle the Hobbs (1977) example, the semantic distinction is in

practice probably too subtle to learn.
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The dissertation as outlined as follows: In Chapter 2, we present a more concrete descrip-
tion of the task as well as evaluation metrics. In Chapter 3, we present a brief overview of
other automatic reference resolution approaches as well as related problems. In Chapter 4,
we present a Bayesian non-parametric generative model of entities and mentions, which can
be learned in an unsupervised fashion. The primary purpose of this chapter is to present a
modeling framework capable of capturing entity reference patterns. In Chapter 5, we present
a simple deterministic system whose goal is to identify the key syntactic and semantic lin-
guistic factors relevant to entity resolution. In Chapter 6, we present a model which combines
the statistical modeling framework presented in Chapter 4 with the empirical insights made
in Chapter 5. Finally, in Chapter 7, we present an application of the modeling framework
described in Chapter 6 to the task of template extraction for information extraction and
demonstrate the efficacy of our entity resolution on an external task.
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Chapter 2

Entity Reference Resolution Task

Overview

In this chapter we present a brief overview of the entity reference resolution task, also
known as coreference resolution. We introduce the task and basic terms we use throughout
(Section 2.1) as well as fully describe the evaluation metrics (Section 2.2). Finally, we discuss
potential applications of entity reference resolution to other natural language processing
problems in Section 2.3.

2.1 Task Definition

We assume we are given an input document D, for which we are given a set of mentions
m1, . . . ,mn; we use m to denote the sequence of mentions. Each mention mi specifies a
span of tokens within the document text. A further constraint is that that the text of
the mention refers to an entity (person, place, vehicle, organization, etc.) as opposed to
an event.1 Typically these entity mentions are realized as noun phrases (NP). The source
of these given mentions will either come from annotated data, a setting we call the gold
mention setting, or will be automatically detected, the system setting. In this work, we
explore the gold mention setting in Chapters 4 and 5 and the system setting in Chapters 6
and 7. Anytime we explore the system setting, we use simple deterministic techniques to
detect mentions from syntactic parse trees (see Section 6.5.2 for a discussion of how this is
done).

1There is not a principled reason to restrict mentions or entities to such objects. In fact, the distinction
between entity and non-entity can sometimes be difficult to discern. The ambiguity of this restriction can
and does lead inconsistent choices when annotators label entity mentions.
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The goal of entity resolution is to cluster a subset of document mentions such that
all mentions within a cluster refer to the same underlying entity. Concretely, an entity
resolution system for a given document proposes a mention clustering C1, . . . , Ck, where each
Ci ⊆ m and no Ci’s contain common elements. This proposed clustering C = (C1, . . . , Ck)
is evaluated against the true annotated clustering, which we denote by C∗ = (C∗1 , . . . , C

∗
k∗).

Importantly, the number of clusters that are proposed (k) and those annotated (k∗) may not
be identical. In the case of gold mention evaluation, the set of mentions in the proposed and
true clustering are identical. However in the system setting, the set of mentions can, and
often do, differ. We defer discussion of evaluating the system setting until Section 2.2.2.

There are many kinds of information a system may associate with a mention in order to
facilitate entity resolution, but are not strictly part of the task, but nonetheless crucial to
most systems. Typically, systems associate a mention type with each mention. There are
three basic mention types: proper, nominal, and pronominal. Proper mentions are canoni-
cally names of an entity, and in most contexts are used to unambiguously identify an entity.
For instance, the mention Barack Obama, is a proper mention reference to the entity Barack
Obama. Nominal mentions are descriptions of an entity. For instance, the 44th president

of the United States of America, is a definite description of the Barack Obama entity.
Some nominal descriptions such as the the 43rd president of the United States of

America uniquely identify an entity, but others such as the the company can describe many
entities. In general, a given nominal mention restricts the set of entities to which it can refer.
Typically, nominal mentions both invoke an entity as well as provide information about that
entity, such as their occupation, or nationality. Pronominal mentions consist of the pronouns
of a language and their primary purpose is to refer to a discourse entity (see Section 2.1.2 for
a class of exceptions); for instance the pronoun he to refer to Barack Obama. Depending on
the language, a pronoun carries different features (often called phi-features in the linguistic
literature), which constrain potential coreferring mentions. In English, pronouns carry a gen-
der feature (male, female, and neuter), which can limit the scope of compatible antecedents.
In other languages, such as Farsi, pronouns do not carry any gender information and this
information cannot be used to limit reference resolution hypothesis. Assigning a mention to
a mention type can be done deterministically assuming we have access to mention tokens.
See Section 5.3 for a description of how this is done.

2.1.1 Why Not Call it Coreference Resolution?

While many refer to this task as coreference resolution, we prefer the name entity reference
resolution because the referents we consider are entities, rather than events or abstract
things. This restriction strongly influences several modeling and pre-processing choices and
is important to reinforce in the task name.
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2.1.2 Non-referring Pronouns

Not all pronouns are referential. Consider the pronoun in: It is raining. It is not
clear that the pronoun of this sentence refers to any entity. Such pronouns are often called
pleonastic or dummy pronouns. Previous work have discussed this issue and proposed suc-
cessful techniques for detecting non-referential pronouns (Hobbs, 1977; Lappin and Leass,
1994; Muller, 2006; Denis and Baldridge, 2007; Bergsma et al., 2008). These non-referential
pronouns are distinct from pronouns which do refer but not to entities, but instead to
events: We argued for hours. It was awful. The it here does refer, but not to an
entity which we will consider in this work. In the gold mention setting, this of course is not
an issue. However, in the system setting experiment (see Chapter 6), we allow pronouns to
be non-referential but do not distinguish between these two cases.

2.2 Evaluation Metrics

Abstractly, evaluating entity resolution involves comparing a proposed mention clustering
C with the true mention clustering C∗. A further issue is that in the system setting, the
mentions in the proposed clustering C may not be an identical set of mentions. Therefore
when evaluating the system setting, we must also have a way to match a proposed mention to
a gold mention as well as know how to deal with mentions missing from the proposal as well
as spurious mentions which cannot be matched to the true set of mentions (see Section 2.2.2
for more details). All of these metrics are intrinsic evaluation which measures the quality of
the induced clusterings. See Chapter 7, where we evaluate the model described in Chapter 6
on the external task of template information extraction.

There are several metrics used in the entity resolution literature and no single metric is
recognized as universally best. We describe the most common metrics which we utilize. We
initially describe these evaluation metrics (Section 2.2.1) in the context of the gold mention
setting where we assume that the set of mentions in the true and proposed clusterings
are identical. In Section 2.2.2, we discuss adopting these evaluation metrics to the system
mention setting.

2.2.1 Gold Mention Evaluation

We will use C∗ = (C∗1 , . . . , C
∗
k∗) to denote the true mention clustering and C =

(C1, . . . , Ck) the proposed system clustering. In this section, we assume the gold mention
setting, so that the set of true and proposed mentions are identical; thus C and C∗ are
clusterings over the same set of elements. We will use C(m) to denote the unique proposed
cluster which contains mention m; similarly C∗(m) denotes the unique true cluster in the
true clustering which contains mention m.

All the metrics we propose are composed of a precision (p) and recall (r) for either each
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mention or each document. In general, a precision measures how much of what we predict
is correct. Recall measures how much of the true annotation did we recover. The specific
definitions of precision and recall will vary according to evaluation metric. We compute
precision and recall for an entire corpus by averaging precision and recall across all mentions
and documents in the corpus. We then compute an F1 measure in the standard way by
taking the harmonic mean of the precision and recall: 2pr

p+r
.

MUC F-Measure

The MUC F-Measure of a document, introduced in Vilain et al. (1995), is the harmonic
mean of the MUC precision and MUC recall. The MUC recall measures the number of
system cluster merging operations needed to cover each true cluster. Concretely, the MUC
recall is given by,

MucRecall(C∗,C) =

∑
C∗∈C∗ |C∗| − CoverSize(C∗,C)∑

C∗∈C∗ |C∗| − 1
(2.1)

where CoverSize(C∗,C) is the number of elements of C needed to cover C∗ and is given by
|∪m∈C∗C−1(m)|; note that CoverSize(C∗,C) ≥ 1 and ≤ |C, so the recall lies in the [0, 1]
range. The MUC precision is obtained by swapping the roles of true and system clusters in
Equation 2.1:

MucPrecision(C∗,C) =

∑
C∈C |C| − CoverSize(C,C∗)∑

C∈C |C| − 1
(2.2)

The MUC F-measure has a major well-known deficiency: it tends to favor systems which
err on the side of merging true clusters rather than splitting them. In the extreme case, if
the system proposes a single cluster for all mentions, it gets a perfect MUC precision and
recall. Nonetheless, if the number of proposed system clusters is not dramatically less than
the number of true clusters, the metric is generally informative.

B3 F-Measure

The B3 F-Measure, introduced in Bagga and Baldwin (1998), assigns a precision and
recall to each true mention; averaging these precision and recalls across true mentions yields
precision and recall statistics for the document. The B3 precision for a true mention m is
given by,

B3 − precision(m) =
|C(m) ∩C∗(m)|
|C(m)| (2.3)

The mention precision measures the fraction of mentions we propose are coreferent with m
over the number we propose are coreferent. The recall is similarly defined,

B3 − recall(m) =
|C(m) ∩C∗(m)|
|C∗(m)| (2.4)
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The document-level B3 precision and recall are the average of mention precisions and
recalls. Note that mention-level precision and recall figures are reported for true mentions.
The B3 metric does not naturally incorporate proposed spurious mentions. However, there
are two variants of B3 due to Stoyanov et al. (2009) which we discuss in Section 2.2.2.

Pairwise F-measure

The pairwise F-measure represents the true and system clusterings as a bag of coreferent
mention pairs; precision and recall are measured in the standard way. Concretely,

Pairs(C) = {(m,m′)|m 6= m′, and m,m′ ∈ C, for some C ∈ C} (2.5)

Then pair precision is given by,

Pair-Precision(C,C∗) =
|Pairs(C) ∩ Pairs(C∗)|

|Pairs(C)| (2.6)

Similarly, the pair recall is given by,

Pair-Recall(C,C∗) =
|Pairs(C) ∩ Pairs(C∗)|

|Pairs(C∗)| (2.7)

A shortcoming of the pairwise F-measure is that it can over-penalize a system for failing to
merge or split a proposed cluster. Suppose a system splits a true cluster into two proposed
clusters each of size n. This counts as O(n2) pairwise recall errors against the system.
Splitting the true cluster may simple result from failing to recognize a nominal description
of an entity and associating subsequent compatible pronouns with this cluster.

CEAF F-measure

The CEAF F-measure, introduced by Luo (2005), assumes a similarity function s(C,C ′)
between two clusters; the CEAF precision and recall depends on the max-matching between
true and proposed clusterings:

a∗ = max
a∈A

∑
C∗∈C∗

s(C∗, a(C∗)) (2.8)

where A is the set of matchings from true to proposed clusterings and a(C∗) is the element
of C that C∗ is matched to. Given this mapping, the CEAF precision for a document is
given by,

CEAF-Precision(C∗,C) =

∑
C∗∈C∗ s(C

∗, a∗(C∗))∑
C∈C s(C,C)

(2.9)

The recall is given by,

CEAF-Recall(C∗,C) =

∑
C∗∈C∗ s(C

∗, a∗(C∗))∑
C∗∈C∗ s(C

∗, C∗)
(2.10)
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The similarity function between clusters we use are the size of the cluster intersection,
i.e s(C,C ′) = |C ∩ C ′|. This choice of similarity function corresponds to φ3 in Luo et al.
(2004); Luo et al. (2004) proposed other similarity functions, but this is the variant that has
been reported in the literature (Rahman and Ng, 2009).

2.2.2 System Mention Evaluation

In the system mention setting, the set of mentions in the true and proposed clusterings
may not be the same. We first must match proposed mention to true mentions based upon
the token spans associated with each (the details on how to match mentions are described
Section 6.5). Once we have matched some proposed mentions to true mentions, there are
two other kinds of mentions that remain: missing mentions are true mentions which have
not been matched by a proposed mention and spurious mentions are proposed mentions
which cannot be matched to a true mentions. Each of the metrics discussed so far must be
adapted to handle both spurious and missing mentions:

MUC F-Measure

The MUC measure can be used if we supplement the proposed clustering with singleton
clusters for missing mentions. Similarly, we add singleton clusters in the true clustering for
each spurious proposed mention. Thus if we fail to propose a mention which matches a
given true mention, the CoverSize(·, ·) in Equation 2.1 is incremented by one to cover the
singleton cluster containing the missed mention. The MUC precision term (Equation 2.2) is
similarly penalized for each spurious mention.

B3 F-Measure

There are two variants, proposed by Stoyanov et al. (2009), of the B3 algorithm for the
system mention setting. The first variant B3All computes the mention precision as follows.
If the proposed mention can be matched to an annotated mention, the precision is identical
to the normal B3 formula (Equation 2.3). If the mention m is spurious, the precision is given
by |C(m)|−1, the size of the proposed cluster containing the spurious mention. So the larger
the cluster to which the spurious mention is included, the lower the precision. The precision
for the document is obtained, as before, by averaging over all proposed mentions.2 Similarly
for the B3 recall, the recall for a missing mention m is given by |C∗(m)|−1, the size of the
true cluster containing the missing mention. Note that this implies no penalty for failing to
annotate a singleton true mention.

2Note that if a spurious mention is in a singleton cluster, the precision associated with it is 1, which will
not harm the precision, but of course can inflate it. Stoyanov et al. (2009) does not discuss this possibility,
but in our implementation we removed singleton spurious mentions from evaluation to avoid inflation. In
practice, we did not find this affected results significantly.
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Stoyanov et al. (2009) also proposed the B3None variant, which simply discards spurious
mentions from the proposed clustering, but penalizes missing mentions by setting the B3 −
Recall to 0.0 for missing mentions; thus one does incur a penalty for missing a mention in
a singleton cluster.

Pairwise F-measure

The only modification to the pairwise F-measure is that when computing the precision we
only consider proposed mention pairs where at least one has been matched to an annotated
mention. Concretely, if we denote the set of true mentions byM, we substitute the mention
pair definition in Equation 2.5, with,

Pairs(C) = {(m,m′)|m 6= m′, and m,m′ ∈ C, for some C ∈ C,

and m or m′ ∈M}

We choose not to penalize a system for declaring that two non-annotated mentions are
coreferent. If we mark an annotated mention as coreferent with an unannotated mention,
we do incur a precision penalty. The definition of Pairs(C∗) is unaltered from the original.

2.3 Potential Applications

There are several potential applications of entity reference resolutions across NLP. In
Chapter 7, we present an application of our main model, see Chapter 6, to template infor-
mation extraction. We provide a brief overview here over other potential applications:

Question Answering

Although most approaches to question answering (QA) involves search for a declarative
variant of a question (Ravichandran and Hovy, 2002), much of the information we glean
requires entity reference resolution to acquire. Consider,

President Barack Obama received the Serve America Act after congress’ vote.
He signed the bill last Thursday. The president said it would greatly increase
service opportunities for the American people.

The answer to the question: Who signed the Serve America Act? is technically contained
within passage, but unless one resolved he and the bill to the appropriate entities, it
cannot be extracted from this text. Depending on the domain and the popularity of the
answer being looked for, the pattern matching approach (Ravichandran and Hovy, 2002)
may not be applicable. See Vicedo and Ferrandez (2000) for a further discussion.
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Machine Translation

Since the pronouns of different languages mark for different properties of the under-
lying entity, translating between some languages correctly requires tracking an entity and
its properties. Consider translating the following sentence of Farsi (and gloss below) into
English:3

person-pro
oo
!"

!"#$#%&

&'(")*%+

,%&-

&.,"'"

law-obj
ganoon-ra

!"

!"#$#%&

&'(")*%+

,%&-

&.,"'"

signed-past
emza-kard

!"

!"#$#%&

&'(")*%+

,%&-

&.,"'"

The first (leftmost) word of the excerpt is a Farsi animate pronoun which does not
mark for the gender of the person. This sentence cannot be accurately translated into
English in isolation, since a faithful translation must render the pronoun as a he or she

and this information isn’t discernible from just this sentence. Of course, sentences such
as this are not uttered in isolation, a translator would, using knowledge of the underlying
entity reference, translate the pronoun appropriately. Automatically doing so requires entity
resolution. Despite problems such as this, the vast majority of statistical machine translation
system translate sentences independently.

Summarization

Entity reference resolution stands to benefit textual summarization in many ways. One
way explored by Nenkova (2008) is to use rewrites of entities in summaries to remove some
of the redundancy of automatic summaries. Chambers and Jurafsky (2009) utilizes reference
resolution in order to build a model of narrative schemas and their participants which has
clear applications to summarization.

3Although Farsi is written right-to-left, the words here are ordered left-to-right for the benefit of the
reader.
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Chapter 3

Related Work and Tasks

In this chapter we provide a brief overview of existing approaches to the entity resolution
task (Section 3.1) as well related tasks (Section 3.2). We only describe the related work and
tasks which are most directly related to the work in this dissertation.

3.1 Related Work

There has been much prior work on statistical approaches to reference resolution (Mc-
Carthy, 1996; Soon et al., 2001; Cardie and Wagstaff, 1999; Ng and Cardie, 2002; Ng, 2005;
Bengston and Roth, 2008). Most of this work has focused on detecting the pairwise rela-
tionship that holds between a mention and its nearest antecedent, a previous mention which
shares the same underlying entity reference. An overview of this line of research is given
in Section 3.1.1. Far less explored are entity-centered models which rather than modeling
compatibility between pairs of mentions, instead models the entity which underlies all refer-
ring mentions (McCallum and Wellner, 2005; Luo et al., 2004; Culotta et al., 2007; Haghighi
and Klein, 2007, 2009; Wick et al., 2009; Haghighi and Klein, 2010; Rahman and Ng, 2009).
This line of research, to which the work in this dissertation belongs, is overviewed in Sec-
tion 3.1.3. Much less explored are unsupervised or lightly-supervised approaches (Cardie
and Wagstaff, 1999; Bhattacharya and Getoor, 2006; Haghighi and Klein, 2007; Poon and
Domingos, 2008; Ng, 2008; Haghighi and Klein, 2009, 2010). An overview of this work can
be found in Section 3.1.3.
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Feature Type Feature Description
Lexical SOON STR Do the strings for mi and mj (discarding deter-

miners)?
Syntactic PRONOUN 1 Is mj a pronoun?

PRONOUN 2 Is mi a pronoun?
DEFINITE 2 Does mi start with a demonstrative determiner

(this,that,these,those)?
NUMBER Do mi and mj agree in syntactic number?
GENDER Do mi and mj agree in syntactic gender?

BOTH PROPER Are mi and mj both proper mentions?
APPOSITIVE Are mi and mj in an appositive relationship.

Semantic WNCLASS Do mi and mj share the same WordNet semantic
class.

ALIAS Is mi an alias for mj?
Positional SENTNUM Number of sentences between mi and mj

Table 3.1. All features used by the Soon et al. (2001) systems. All features are
between a mention mi and a potential antecedent mj. Except for SENTNUM and
WNCLASS, all features are binary.

3.1.1 Pairwise Approaches

The earliest statistical work in entity resolution was dominated by pairwise approaches.
In this approach, a classifier is learned in a supervised manner to determine whether a given
mention is coreferent with a particular antecedent. Concretely, suppose a document consists
of mentions m1, . . . ,mn. We use ai ∈ {1, . . . , i} to represent the anaphor decision for mention
mi. When ai < i, this means that mai is the selected anaphor, and ai = i denotes the event
that the mention has no anaphor (i.e., it is the start of a new entity). Typically, pairwise
systems (see below for exceptions) make independent anaphor decision and then assign a
cluster id, ci, to a mention mi by following anaphor decisions backwards:

ci =

{
i, if ai = i

cai , otherwise
(3.1)

We associate a cluster with the set of mentions assigned the same cluster id. This yields a
proposed mention clustering.

An early important pairwise system, RESOLVE, described in McCarthy (1996), uses
decision trees to determine anaphoricity and a set of features that are still commonly used by
approaches to the present. RESOLVE was designed to be used within an information ex-
traction system; because of this, many of its features are specific to the particular information
extraction domain that was McCarthy (1996)’s final task. In addition to features to ensure
the compatibility of linguistic phi-features (such as number, gender, and animacy), Mc-
Carthy (1996) also discovered that simple token-, sentence- and paragraph-distance features
are useful for good performance. Soon et al. (2001) proposed a similar domain-independent
system which utilized a richer set of features including semantic class features, which yielded
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significant benefits (see Table 3.1 for a full listing). This system has been reproduced and
used as a baseline in many other works (Ng and Cardie, 2002; Luo et al., 2004; Ng, 2005;
Finkel and Manning, 2008). Another important contribution made by Soon et al. (2001) is
how the anaphor decision is cast as a machine learning problem. A positive training example
consists of each mention and the nearest coreferent antecedent. However, it is less clear as
to what should constitute a negative training example. McCarthy (1996) took all pairs of
non-coreferent mentions as negative training examples. A disadvantage of this is that the
number of negative pairs far outweigh the positive and this can negatively affect learning.
Soon et al. (2001) instead only extract negative training pairs for mentions which are suf-
ficiently close to the target mention; specifically, all mentions closer to the target mention
than to the nearest true antecedent.

Ng and Cardie (2002) presented a pairwise system which gave strong improvements over
Soon et al. (2001)’s system. Most of these improvements came from improved NP detection
(using shallow parsing), features for more linguistic constraints (such as binding theory),
as well as the syntactic positions of the mention and the candidate antecedent. This latter
feature encoded an important tendency described in centering-theory (Grosz et al., 1995),
where in a coherent discourse, the subject of a sentence tends to be coreferent with the
subject of the previous sentence.

More recently, Bengston and Roth (2008), presented a pairwise system which added sev-
eral features; specifically, WordNet (Fellbaum, 1998), named entity resolution, and modifier
alignment features.1 Perhaps Bengston and Roth (2008)’s most important contribution was
in breaking down the anaphor decision, ai, by first deciding whether a mention has an an-
tecedent or not (i.e, whether ai < i). First a binary classifier decides whether a mention has
an anaphor. Then a separate antecedent classifier selects amongst the available antecedents.

Many pairwise approaches have noted (Soon et al., 2001; Ng and Cardie, 2002) that errors
have resulted from the lack of global coherency in the entities. As a particular example of
this: both a male pronoun (he) and a female pronoun (she) may select the same proper
mention antecedent.

There have been several approaches to maintain the basic pairwise approach but attempt
to ensure more coherent global structure. McCallum and Wellner (2005) define a graph
on document mentions where edge weights represent pairwise scores; then McCallum and
Wellner (2005) use graph partitioning in order to reconcile pairwise scores into a final coherent
clustering. Ng (2005) instead use a pairwise classifier to generate candidate partitions, but
then re-rank those partitions according to a cluster-level model. Denis and Baldridge (2007)
and Finkel and Manning (2008) use linear programming to ensure at inference time that
basic compatibility holds globally amongst entity mentions. Crucially, these constraints are
only applied at inference and do not affect learning. All these systems crucially rely on
pairwise models to learn mention compatibility.

1The versions of WordNet used by Soon et al. (2001) and Bengston and Roth (2008) differ significantly.
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How this work relates to pairwise approaches

The system proposed in Chapter 5 and the discourse component of the Chapter 6 model
(see Section 6.3.2) are pairwise models, largely similar to those discussed here. The Chapter 5
system differs from the approaches described here in that it is unlearned and deterministic.
The head-matching and agreement features (Section 5.3.1) used in this system are also used
by the earliest pairwise systems (specifically Soon et al. (2001) and Ng and Cardie (2002)).
One key difference here is that we achieve strong performance with these features without
any annotated data to tune feature weights. The experiments which show that syntactic tree
distance outperforms raw token distance as a proxy for discourse salience (Section 5.3.1) are
novel. Syntactic tree distance is implicitly used by systems such as the one described in
Hobbs (1977). The novelty in the Chapter 5 system is the mining of semantic information
specifically for the task of reference resolution. The actual technique used for mining is
broadly similar to other approaches (see Hearst (1992) for instance), but differ in the amount
of data used and the targeted end application.

The discourse module presented in Section 6.3.2 is an unsupervised pairwise model which
uses many of the same features as other pairwise approaches discussed here. Crucially, since
this module is meant to capture only the discourse configurational structure of reference
resolution, no lexical or semantic compatibility features are used since those are handled by
the semantic entity-centered module (see Section 6.3.1).

3.1.2 Entity-Based Approaches

While far less explored than pairwise approaches, entity-based models have enjoyed in-
creasing recent success. We consider a system entity-based if the primary decision made
by the system is whether a mention is compatible with all entity mentions as opposed to a
particular antecedent mention.

Luo et al. (2004) proposed a model where entity clustering is cast as a search problem
in a bell-tree representation of mention partitions.2 In this approach, a classifier goes from
left-to-right across mentions and assigns each mention to an existing entity or creates a new
entity. The binary probability of mention m joining entity e is modeled as a binary decision,
where event L = 0 denotes it is not a member and L = 1 denotes that it is. At any given
hypothesis, there are existing entities e1, . . . , ek. Luo et al. (2004) consider the entities in
order of which is most recently used. For each entity in this list, the model decides whether
or not to link the current mention to that entity, with probability P (L = 1|m, e). If a link
is made, we move on to incorporate the next mentions. Otherwise, the model considers the
next entity. If the mention isn’t linked to any entity, it starts its own cluster.The form of the
probability P (L = 1|m, e) is log-linear and uses arbitrary features between a mention and an
entity. Most of the features used by Luo et al. (2004) are variants of the mention-pairwise

2A bell number, B(n), represents the number of ways to cluster n objects; it is given by 1
e

∑∞
k=0

kn

k! . A
bell-tree is a representation of all possible clusterings over n items, where each leaf of the tree corresponds
to a possible clustering hypothesis.
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features used in Ng and Cardie (2002) except that the for compatibility features, the feature
is active only if the mention is compatible with all current entity mentions. For instance, the
variant of the NUMBER feature (from Table 3.1) used here ensures that all mentions in the
entity share the same number feature (or at least there are no conflicting values). Inference
in this model is difficult because of the complexity of the hypothesis space (all bell-trees over
n mentions).

Haghighi and Klein (2007) proposed the first generative clustering model for the full NP
entity reference resolution problem.3 This model is described fully in Chapter 4. Ng (2008)
proposed several extensions to the approach of Haghighi and Klein (2007) which yielded
significant performance gains. In particular, they utilized the salience components of the
model with only pronominal mentions. Also, in oder to counter-act the bias of popular
entities, Ng (2008) sampled entities for a given mention which which explicitly agreed in
number, gender, and type with the current mention.

Poon and Domingos (2008) propose an unsupervised Markov Logic (Richardson and
Domingos, 2006) approach to entity-based reference resolution which shares many similarities
with Haghighi and Klein (2007). Most of the features used by the model are pairwise features
(such as head-matching as well as appositive features). Importantly, Poon and Domingos
(2008) utilize smarter head-detection and use of syntactic constraints relative to Haghighi
and Klein (2007). These declarative constraints can be directly incorporated into the Markov
Logic framework.

Rahman and Ng (2009) propose an approach similar to Ng (2005), where a base pair-
wise model generates a list of entity partition candidates. In contrast to Ng (2005), there
are a richer set of entity-based features used to rank the entity partitions. These features
are largely variants of common pairwise compatibility feature, but only hold when all the
mentions of an entity are compatible. See Chapter 6 where we more directly compare to this
system.

How this work relates to entity-based approaches

The work in this dissertation is distinct from other entity-based work in that it is unsu-
pervised and generative. This combination facilitates the use of large amounts of unlabeled
data which yields performance gains since semantic information can be learned in tandem
with reference resolution structure (see Chapter 6). In particular, it is the only model ca-
pable of performing within- and cross-document reference resolution. Much of the recent
unsupervised entity reference resolution work (Ng, 2008; Poon and Domingos, 2008) has
been influenced by the work presented in Chapter 4.

3Milch et al. (2005),Daume and Marcu (2005) and Bhattacharya and Getoor (2006) proposed generative
clustering models for the related, but not identical, tasks of proper NP resolution and citation resolution.
See Section 3.2.2.
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3.1.3 Unsupervised Approaches

While less common than supervised approaches, there has been a growth of recent interest
in unsupervised entity reference resolution. While much of the earliest work (Hobbs, 1977,
1979) are technically unsupervised, in fact they are not learned, they do not present quan-
titative evaluation. Cardie and Wagstaff (1999) present the earliest evaluated unsupervised
system. Specifically, they present a clustering model in which distances between mentions
are given by parametrized incompatibility functions; the feature of these distances are sim-
ilar to those used by pairwise approaches (see Section 3.1.1). These pairwise distances are
used as input to a pairwise clustering algorithms. The Cardie and Wagstaff (1999) approach
does several parameters to maximize labeled data performance. It achieved impressive per-
formance relative to existing fully supervised approaches, including McCarthy (1996), which
is fully supervised.

Haghighi and Klein (2007) (see Chapter 4 for a full model description) present an unsu-
pervised Bayesian non-parametric model in which mentions are generated from underlying
latent entity representations. This model also allows for cross-document entity detection
since the underlying model structure allows for entity sharing amongst documents. Ng
(2008) present both extensions to Haghighi and Klein (2007) (see Section 3.1.2) as well pro-
pose a novel unsupervised pairwise model, which utilizes many of the features in Ng and
Cardie (2002). This pairwise model, while unsupervised, is not strictly generative and does
not ensure global consistency amongst entity mentions. Poon and Domingos (2008)’s Markov
Logic model is also unsupervised and incorporates a rich set of linguistic constraints.

How this work relates to other unsupervised approaches

Chapter 4 presents the first unsupervised probabilistic generative model of entity ref-
erence resolution. Importantly, it is the only model which can seamlessly perform within-
and cross-document coreference resolution. In Chapter 6, we present a model which also is
unique in learning and using soft semantic constraints.

3.2 Related Tasks

The abstract problem of deciding when two references reference the same object has
many instantiations ranging from natural language processing to databases. There are many
variants of the entity reference resolution tasks as well as related task which utilize similar
or identical terminology. We describe the related tasks most relevant to this work.
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3.2.1 Pronoun Anaphora Resolution

As mentioned in Section 5.1, anaphora resolution is the task of identifying an antecedent
mention to which a referential pronoun refers. The decisions made by a pronoun anaphora
system are identical to the anaphor decision described in Section 3.1.1, except the decisions
are limited to pronoun mentions and we do not produce or evaluate clusters.

Some of the earliest work in reference resolution focused on pronoun anaphora resolu-
tion (Hobbs, 1977; Lappin and Leass, 1994; Ge et al., 1998). Strictly speaking, a sub-task,
of the full entity reference resolution task, since antecedents are determined by full refer-
ence resolution. Nonetheless, much of the difficulty of full reference resolution reduces to
identifying a coreferring antecedents for each pronoun. One benefit of this task is that it
admits simpler machine learning models; each pronoun decides upon one of a fixed number
of potential antecedents. Although see Denis (2007) for a ranking, rather than classification,
approach. Charniak and Elsner (2009) presents a simple, but highly-effective, EM algo-
rithm for anaphora identification. In contrast, full reference resolution must contend with
combinatorial structure of all possible mention clusterings. However, many of the insights
made on this task, particularly Charniak and Elsner (2009), are incorporated into the models
described here.

3.2.2 Citation Deduplication and Record Linkage

Another thread of entity reference resolution work has focused on the problem of identify-
ing proper name matches between documents (Milch et al., 2005; Bhattacharya and Getoor,
2006; Daume and Marcu, 2005). Much of this work focuses on domains such as the problem
of citation deduplication from papers (Pasula et al., 2003). In this task, the goal is to resolve
citations from academic papers to an underlying database of citations. The complexity in
this task arises from possible variations of author and paper names (e.g., dropping a middle
initial from an author name or determiner from a paper title) as well as possible spelling
errors. Similar problems arise in the management of large databases, where a given record
for an individual may be duplicated with minor surface name variations (Fellegi and Sunter,
1969). Since the mentions considered in this thread of research are almost exclusively proper
mentions, most of the effort in this task is devoted to having rich surface string similarity
features.

This family of tasks shares a lot with the task considered in this dissertation: They are
both clustering problems, where the number of clusters is unknown. In fact, similar machine
learning frameworks as ours have been used to tackle these problems. Milch et al. (2005)
proposed BLOG, a specification for generic generative models in which inference can be
automatically carried out. This framework is also applied to citation de-duplication with
success. Daume and Marcu (2005) proposes a supervised clustering model based on the
Dirichlet Process prior. These models, as ours, are generative ones, since the focus is on
cluster discovery and the data is generally unlabeled.

One key difference between this task and the task considered in this dissertation is the
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context in which mentions appear. In entity reference resolution as considered in this disser-
tation, mentions are situated within a linguistic discourse (e.g., a document); in this context,
nominal and pronominal references are used in addition to full proper names. One significant
source of difficulty in our entity reference resolution problem comes from the simultaneous
resolution of pronouns and nominals as well as proper mentions. The models developed in
subsequent chapters are aimed at modeling the linear discourse structure of a document in
order to aid reference resolution. Much of what makes our task difficult is not present in
these deduplication problems.

On the other hand, much of the difficulty of the deduplication tasks arises from the lack
of consistent surface canonical names; this is not typically present in our task, where names
are, for instance, typically spelled consistently in a given document. So while the machine
learning frameworks between these two areas can be shared, much of the phenomena that is
being modeled differ significantly.
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Chapter 4

Generative Models of Entity

Resolution

4.1 Introduction

Broadly speaking, the process of evoking an entity in natural language can be decom-
posed into two processes. First, speakers directly introduce new entities into discourse, enti-
ties which may be shared across discourses. This initial reference is typically accomplished
with proper or nominal expressions. Second, speakers refer back to entities already intro-
duced. This anaphoric reference is canonically, though of course not always, accomplished
with pronouns, and is governed by linguistic and cognitive processes. In this chapter, we
present a bayesian nonparametric generative model of a document corpus which naturally
connects these two processes, sharing a global set of entities across documents, and then
modeling reference chains inside documents. This chapter is broadly concerned with the
machine learning framework that will facilitate learning entity reference structure, rather
than incorporating known linguistic constraints (this is done in Chapter 5).

Most recent entity reference resolution work has focused on the task of deciding which
mentions (noun phrases) in a document are coreferent. The dominant approach, described
more fully in Section 3.1.1, is to decompose the task into a collection of pairwise coreference
decisions. One then applies discriminative learning methods to pairs of mentions, using
features which encode properties such as distance, syntactic environment, and so on (Soon
et al., 2001; Ng and Cardie, 2002). Although such approaches have been successful, they
have several liabilities. First, rich features require bountiful labeled data, which we do not
have for entity resolution tasks in most domains and languages. Second, entity reference
resolution is inherently a clustering or partitioning task where each cluster contains the
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mention references to a single entity. Naive pairwise methods can and do fail to produce
coherent partitions, for example by making non-transitive decisions. One classic method of
addressing this issue is to take the transitive closures which can result in globally incoherent
entities. In Section 3.1.1, we described recent work which have attempted more sophisticated
techniques to reconcile a pairwise model with ensuring a reasonable global hypothesis. While
these attempts have enjoyed success, it might be more beneficial to explore models which
directly model entity partition structure.

The model presented in this chapter naturally captures both within- and cross-document
entity resolution. At the top, a hierarchical Dirichlet process (Teh et al., 2006) captures
cross-document entity (and parameter) sharing, while, at the bottom, a sequential model of
salience captures within-document sequential structure.1 As a joint model of several kinds
of discourse variables, it can be used to make predictions about either kind of coreference,
though we focus experimentally on the within-document measures. The model presented in
this chapter, at the time of the publication of Haghighi and Klein (2007), achieved the best
entity reference resolution performance for an unsupervised system on the standard MUC-6
test set.

4.2 Experimental Setup

The experimental setup used for the systems in each chapter will differ in a small number
of ways. We briefly describe the experimental methodology used in this chapter. The
experiments in this chapter use the conventions of the the Automatic Context Extraction
(ACE) task (NIST, 2004).

Recall that we assume document in a corpus consists of a set of mentions, typically noun
phrases (NPs). Each mention is a reference to some entity in the domain of discourse. The
entity reference resolution task is to partition the mentions according to referent. Men-
tions can be divided into three basic types, proper mentions (names), nominal mentions
(descriptions), and pronominal mentions (pronouns).

In section 4.3, we present a sequence of increasingly enriched models, motivating each
from shortcomings of the previous. As we go, we will mention performance of each model
on data from ACE 2004 (NIST, 2004). In particular, we will use as our development corpus
the English translations of the Arabic and Chinese treebanks, comprising 95 documents and
about 3905 mentions. This data was used heavily in development for model design and
hyper-parameter selection. In section 4.5, we present results for new test data from MUC-6
on which no tuning or development was performed. This test data will form our basis for
comparison to previous work.

For the experiments in this chapter, we only consider the gold mention setting, described
fully in Section 2.1, where annotated mention spans are provided to the system at training
and test time. Furthermore, we assume that the head word of each mention and the mention

1See Appendix A for a review of the Dirichlet process and its extensions.

22



α

β
K

φ
K

Zi

Hi

J
I

α

β
∞

φ
∞

Zi

Hi

I
J

(a) (b)

Figure 4.1. Graphical model depiction of document level entity models described in
sections 4.3.1 and 4.3.2 respectively. The shaded nodes indicate observed variables.
The ∞ in the plate diagram denotes there is no finite bound on the possible number
of components.

type (proper, nominal, or pronominal) are also provided to the system. This experimental
condition allows us to focus on building and evaluating a model of entity reference resolution
rather than mention detection or NP parsing.

For the ACE data sets, the head and mention type are given as part of the mention
annotation. For the MUC data, the head was crudely chosen to be the rightmost mention
token and the mention type was automatically detected. As Poon and Domingos (2008)
demonstrate, this crude heuristic can certainly be improved upon. We will not assume any
other information to be present in the data beyond the text itself. In particular, unlike
much related work, we do not assume gold named entity recognition (NER) labels, lexical
resources such as WordNet (Fellbaum, 1998), or geographical or geopolitical information
found in gazetteers. Indeed we do not assume observed NER labels or POS tags at all.
The focus of this chapter is to develop the machine learning framework for modeling entity
partition structure rather than focusing on the available resources which are known to benefit
entity reference resolution.

Our primary performance metric will be the MUC F-measure (Vilain et al., 1995), com-
monly used to evaluate coreference systems on a within-document basis; see Section 2.2.1
for a fuller description. Since our system relies on sampling, all results are averaged over five
random runs.
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The Weir Group1, whose2  headquarters3 is in the US4, is a large, specialized corporation5 
investing in the area of electricity generation. This  power plant6, which7  will be situated in 
Rudong8, Jiangsu9, has an annual generation capacity of 2.4 million kilowatts.  

The Weir Group1, whose1  headquarters2 is in the US3, is a large, specialized corporation4 
investing in the area of electricity generation. This  power plant5, which1  will be situated in 
Rudong6, Jiangsu7, has an annual generation capacity of 2.4 million kilowatts.  

(a)

(c)

(b)

The Weir Group1, whose1  headquarters2 is in the US3, is a large, specialized corporation4 
investing in the area of electricity generation. This  power plant5, which5  will be situated in 
Rudong6, Jiangsu7, has an annual generation capacity of 2.4 million kilowatts.  

Figure 4.2. Example output from various models. The output from (a) is from
the infinite mixture model of section 4.3.2. It incorrectly labels both boxed cases
of anaphora. The output from (b) uses the pronoun head model of section 4.3.3. It
correctly labels the first case of anaphora but incorrectly labels the second pronominal
as being coreferent with the dominant document entity The Weir Group. This error
is fixed by adding the salience feature component from section 4.3.4 as can be seen
in (c).

4.3 Coreference Resolution Models

In this section, we present a sequence of generative coreference resolution models for
document corpora. Each model will be motivated from errors made from the last model. All
are statistical mixture models, where the mixture components correspond to entities. As far
as notation, we assume a collection of I documents. We use the random variable Z to refer
to the index of an entity. For a document with n mentions, we use Z = (Z1, . . . , Zn) to refer
to the entity index assignments to the mentions of a document (i.e., Zi is the entity index
of the ith mention).

We will use φz to denote the parameters for an entity z, and φ to refer to the concate-
nation of all such φz. M will refer somewhat loosely to the collection of variables associated
with a mention in our model (such as the head or gender). We will be explicit about the
representation of M and φz shortly.

Our goal will be to find the setting of Z entity indices which maximize the posterior
probability:

Z∗ = arg max
Z

P (Z|M) = arg max
Z

P (Z,M)

= arg max
Z

∫
P (Z,M,φ) dP (φ)

where Z,M, and φ denote all the entity indices, observed values, and parameters of the
model. Note that we take a Bayesian approach in which all parameters are integrated out
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(or sampled). The inference task is thus primarily a search problem over the entity index
assignments Z.

4.3.1 A Finite Mixture Model

Our first, overly simplistic, corpus model is the standard finite mixture of multinomials
shown in Figure 4.1(a). In this model, each document is independent save for some global
hyperparameters. Inside each document, there is a finite mixture model with a fixed number
K of components. The distribution β is drawn from a symmetric Dirichlet distribution with
concentration α. For each mention in the document, we choose a component (an entity
index) z from β. Entity z is then associated with a multinomial emission distribution over
head words with parameters φhZ , which are drawn from a symmetric Dirichlet over possible
mention heads with concentration λH .2 We use V to denote the size of the mention head
vocabulary. This process can be summarized as:

For each document D,

Draw β ∼ Dirichlet(α,K)

For each entity k = 1, . . . , K

φhk ∼ Dirichlet(λH , V )

For each mention head Hi, i = 1, . . . , n

Draw Zi ∼Multinomial(β)

Draw Hi ∼Multinomial(φhZi)

As we describe our models, we simultaneously develop the accompanying Gibbs sampling
procedure to obtain samples from P (Z|M). In principle, one could use the EM algorithm to
perform clustering in this model, but EM will not extend effectively to subsequent models.
For now, all heads H are observed and all parameters (β and φ) can be integrated out
analytically: for details see Teh et al. (2006). The only sampling is for the values of Zi,j, the
entity index of mention j in document i. Using standard notation from the Markov chain
Monte Carlo (MCMC) literature (), we use Z−i,j to denote Z−{Zi,j}, all the entity indicator
variables except for the one being sampled. The relevant conditional distribution is:

P (Zi,j|Z−i,j,H) ∝ P (Zi,j|Z−i,j)P (Hi,j|Z,H−i,j) (4.1)

where Hi,j is the head of mention j in document i. Expanding each term, we have the
contribution of the prior:

P (Zi,j = z|Z−i,j) ∝ nz + α (4.2)

2In general, we will use a subscripted λ to indicate concentration for finite Dirichlet distributions. Unless
otherwise specified, λ concentration parameters will be set to e−4 and omitted from diagrams.
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where nz is the number of elements of Z−i,j with entity index z. Similarly we have for the
contribution of the emissions:

P (Hi,j = h|Z,H−i,j) ∝ nh,z + λH (4.3)

where nh,z is the number of times we have seen head h associated with entity index z in
(Z,H−i,j).

It is worth noting that these sampling equations match those for the latent dirichlet
allocation model (LDA) when using collapsed Gibbs sampling described in Griffiths and
Steyvers (2004).

4.3.2 Infinite Mixture Model

A clear drawback of the finite mixture model is the requirement that we specify a priori
a number of entities K for a document. In general, the number of entities in a document
K is not a known constant, but a random variable. We would like our model to select K in
an effective, principled way. A mechanism for doing so is to replace the finite Dirichlet prior
on β with the non-parametric Dirichlet process (DP) prior (Ferguson, 1973). The Dirichlet
process is a nonparametric Bayesian device which can be used for exactly this purpose; a
review of some of the basic concepts behind the DP and associated techniques can be found
in Appendix A. In particular, in Section A.1.2, we present more of the background for the
infinite mixture model.

Drawing our entity distribution β from a DP with concentration parameter α and using
the stick-breaking representation, we obtain the model in Figure 4.1(b). Doing so gives the
model in Figure 4.1(b). Note that we now list an infinite number of mixture components
in this model since there can be an unbounded number of entities. Rather than a finite β
with a symmetric Dirichlet distribution, in which draws tend to have balanced clusters, we
now have an infinite β. However, most draws will have weights which decay exponentially
quickly in the prior (though not necessarily in the posterior). Therefore, there is a natural
penalty for each cluster which is actually used.

With Z observed during sampling, we can integrate out β and calculate P (Zi,j|Z−i,j)
analytically, using the Chinese restaurant process representation (Aldous, 1985):

P (Zi,j = z|Z−i,j) ∝
{

α, if z = znew
nz, otherwise

(4.4)

where znew is a new entity index not used in Z−i,j and nz is the number of mentions that
have entity index z. Aside from this change, sampling is identical to the finite mixture case,
though with the number of clusters actually occupied in each sample drifting upwards or
downwards. The head emission model is unchanged: heads are emitted using a per-cluster
head distribution.

A particular advantage of the DP prior is that it prefers a few large clusters and sev-
eral smaller “one-off” ones. This roughly reflects the property of newswire text that most
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mentions reference a small set of entities which are the main subject of the article. Another
advantage (discussed in section 4.3.5) is that we can share entities hierarchically among
documents.

This model yielded a 54.5 MUC-F1 on our development data.3 This model is, however,
hopelessly crude, capturing nothing of the structure of entity resolution. Its largest empirical
problem is that, unsurprisingly, pronoun mentions such as he are given their own cluster,
not labeled as coreferent with any non-pronominal mention (see Figure 4.2(a)).

We can isolate the performance of our system on resolving pronouns by measuring the
Pairwise F1 (see Section 2.2.1) on only pronoun to non-pronoun coreference events. On this
evaluation, our system yields 26.4 , confirming the observation that the model is doing a
poor job of recovering patterns of pronoun resolution.

4.3.3 Pronoun Head Model

While an entity-specific multinomial distribution over heads makes sense for proper and
some nominal mention heads, it does not make sense to generate pronominal mentions this
same way. I.e., all entities can be referred to by generic pronouns, the choice of which depends
on properties such as gender, not the specific entity. We use this observation to construct
an enriched emission model in which pronoun emissions depend upon entity properties.

We enrich an entity’s parameters φ to contain not only a distribution over lexical heads φh,
but also distributions (φt, φg, φn) over properties, where φt parametrizes a distribution over
entity types (PER, LOC, ORG, MISC), and φg for gender (MALE, FEMALE, NEUTER),
and φn for number (SG, PL).4 We assume each of these property distributions is drawn from
a symmetric Dirichlet distribution with small concentration parameter in order to encourage
a peaked posterior distribution.

Previously, when an entity z generated a mention, it used to draw a head word from
φhz . It now undergoes a more complex and structured process. It first uses its property
distributions to draw an entity type T , a gender G, a number N from the distributions φt,
φg, and φn, respectively.

Once the properties are fetched, a mention type P is chosen (proper, nominal, pronoun),
according to a global multinomial (again with a symmetric Dirichlet prior and parameter
λP ). This corresponds to the (temporary) assumption that the speaker makes a random
i.i.d. choice at each mention as to the mention type.

Our head model will then generate a head conditioning on the entity, its properties, and
the mention type, as shown in Figure 4.3(b). If P is not a pronoun, the head is drawn directly

3See section 7.3 for inference details.
4It might seem that entities should simply have, for example, a gender g rather than a distribution over

genders φg. There are two reasons to adopt the softer approach. First, one can rationalize it in principle, for
entities like cars or ships whose grammatical gender is not deterministic. However, the real reason is that
inference is simplified. In any event, we found these property distributions to be highly determinized in the
posterior.
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PERS : 0.97,   LOC : 0.01,  ORG: 0.01,  MISC: 0.01 

Entity Type

SING: 0.99, PLURAL: 0.01

Number
     MALE: 0.98, FEM: 0.01, NEUTER: 0.01

Gender

Bush : 0.90,   President : 0.02,  .....
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Figure 4.3. In (a), we have a depiction of an entity and its parameters. In (b),
we have a graphical model depiction of the head model described in section 4.3.3.
For a pronoun mention, the head depends only on the entity type (T), number (N),
and gender (G) draws. For non-pronominal head, our head is drawn from an entity
specific head multinomial in φz The shaded nodes indicate observed variables. The
mention type determines which set of parents are used. The dependence of mention
variable on entity parameters φ and pronoun head model θ are omitted.
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from the entity head multinomial with parameters φhz . Otherwise, it is drawn based on a
global pronoun head distribution conditioning on the entity properties and parametrized by
θ. Formally, it is given by:

P (H|Z, T,G,N, P,φ,θ) ={
P (H|T,G,N,θ), if P =PRO

P (H|φhZ), otherwise

If all T , G, and N variables were observed, it would be straightforward to obtain the
posterior probability of P (H|Z,T,G,H,N,). Although there are many pronoun for which
we know the value of the entity type, gender, and/or number, there are many for which this
value is unobserved (i.e. who or its).
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Figure 4.4. Coreference model at the document level with entity properties as well
the salience lists used for mention type distributions. The diamond nodes indicate
deterministic functions. Shaded nodes indicate observed variables. Although it ap-
pears that each mention head node has many parents, for a given mention type, the
mention head depends on only a small subset. Note that dependencies involving pa-
rameters φ and θ are omitted for clarity. For instance, any non-pronominal mention
head depends only on the entity parent. Diamond-shaped nodes denote variables
which are deterministic given their parents.

Because the entity property draws are not (all) observed, we must now sample the un-
observed ones as well as the entity indicator indices Z. For instance, we could sample Ti,j,
the entity type of pronominal mention j in document i, using,

P (Ti,j|Z,N,G,H,T−i,j) ∝ P (Ti,j|Z)P (Hi,j|T,N,G,H) (4.5)
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Salience Feature Pronoun Proper Nominal
Top 0.75 0.17 0.08
High 0.55 0.28 0.17
Mid 0.39 0.40 0.21
Low 0.20 0.45 0.35
None 0.00 0.88 0.12

Table 4.1. Posterior distribution of mention type given salience feature s, chosen
by bucketing entity activation rank. Each row depicts the probability distribution
over mention types given the salience feature of the entity. This distribution reflects
the intuition that pronouns are preferred for entities which have high salience and
non-pronominal mentions are preferred for inactive entities.

where the posterior distributions on the right hand side are straightforward to compute since
the parameter priors are all finite Dirichlet. Sampling G and N are identical. We opt instead
for a different approach during learning. We integrate out (T,G,N) for each mention and
instead place variational estimates on (φt, φg, φn) (for each entity) and θ. See Section B.1
for details on precisely how this is done.

Of course we have some (prior) information about the relationship between entity type
and pronoun head choice. For example, we expect that he is used for mentions with T =
person. In general, we assume that for each pronominal head we have a list of compatible
entity types, which we encode via the prior on θ. We assume θ is drawn from a Dirichlet
distribution where each pronoun head is given a synthetic count of (1 +λP ) for each (t, g, n)
where t is compatible with the pronoun and given λP otherwise. So while it will be possible
in the posterior to use he to refer to a non-person, it will be biased towards being used with
a person.

This model gives substantially improved predictions: 64.1 MUC-F1 on our development
data. As can be seen in Figure 4.2(b), this model does correct the systematic problem of
pronouns being considered their own entities. However, it still does not have a preference
for associating pronominal references to entities which are in any way local. Indeed, there is
no preference to have a non-pronominal mention precede a pronominal mention.5

When using our pairwise pronoun evaluation, the mode yields 48.0 pairwise F1 (see Sec-
tion 2.2.1). This substantially outperforms the pronoun resolution of Section 4.3.2, indicating
the pronoun head model described here captures pronoun resolution structure more accu-
rately. Although this represents an improvement, there are still several problems with the
model. Chief among these are that the model has no preference for generating pronominal
references which are near their antecedents.

5Although pronominal mentions can be the first to an entity, this is generally not the case.
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4.3.4 Adding Salience

We would like our model to capture how mention types are generated for a given entity
in a robust and somewhat language independent way. The choice of entities may reasonably
be considered to be independent given the mixing weights β, but how we realize an entity
is strongly dependent on context (Ge et al., 1998). To a first approximation, we use proper
and nominal mentions for entities which are not active in the discourse, and pronouns for
entities which are (Ge et al., 1998).

Roughly, the salience of entity represents how active or recent it is in a listener’s memory
(Lappin and Leass, 1994). In this work, we will associate a real-number with each entity that
represents its activity. The higher the activity, the more likely an entity is to be active in
the memory of a listener. We choose to model the salience, or activity score, for all entities
in a discourse.

In order to capture this in our model, we enrich it as shown in Figure 4.4. As we proceed
through a document, generating entities and their mentions, we maintain a list of the active
entities and their saliences, or activity scores.

Every time an entity is mentioned, we increment its activity score by 1, and every time
we move to generate the next mention, all activity scores decay by a constant factor of 0.5.
This gives rise to an ordered list of entity activations, L, where the rank of an entity decays
exponentially as new mentions are generated. We call this list a salience list. Given the cur-
rent salience list, L, we can associate a rank with each possible entity Z. We discretize these
ranks into five buckets: Top (1), High (2-3), Mid (4-6), Low (7+), and None, depending on
the absolute rank, if any, of the entity in the salience list. Given the entity choices Z, both
the list and S are deterministic (see Figure 4.4). We assume that the mention type M is
generated by the salience feature L from a multinomial distribution drawn from a symmetric
Dirichlet distribution.

We note that correctly sampling an entity now requires that we incorporate terms for
how a change will affect all future salience values. This changes our sampling equation for
existing entities:

P (Zi,j = z|Z−i,j) ∝ nz
∏
j′≥j

P (Mi,j′|Si,j′ ,Z) (4.6)

where the product ranges over future mentions in the document and Si,j′ is the value of
future salience feature given the setting of all entities, including setting the current entity
Zi,j to z. A similar equation holds for sampling a new entity. Note that, as discussed below,
this full product can be truncated as an approximation.

This model gives a 71.5 MUC-F1 on our development data. Table 4.1 shows the posterior
distribution of the mention type given the salience feature. This model fixes many anaphora
errors and in particular fixes the second anaphora error in Figure 4.2(c).

On the pairwise pronoun evaluation, the salience model yields 55.2 F1, a strong improve-
ment over the model from the previous section.
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Figure 4.5. Graphical depiction of the hierarchical Dirichlet Process (HDP) reference
resolution model described in section 4.3.5. The dependencies between the global
entity parameters φ and pronoun head parameters θ on the mention observations are
not depicted.

4.3.5 Cross Document Coreference

One advantage to a fully generative approach is that we can allow entities to be shared
between documents in a principled way, giving us the capacity to do cross-document entity
resolution. Many potential downstream applications such as information extraction must
reason about entities across multiple documents. Using an entity resolution system which
naturally models the sharing of entities might ultimately benefit such downstream appli-
cations. Moreover, sharing across documents pools information about the properties of an
entity across documents.6

We can easily link entities across a corpus by assuming that the pool of entities is global,
with global mixing weights β0 drawn from a DP prior with concentration parameter γ. Each
document uses the same global entities, but each has a document-specific distribution βi
drawn from a DP centered on β0 with concentration parameter α. Up to the point where
entities are chosen, this formulation follows the basic hierarchical Dirichlet process prior of
Teh et al. (2006) (see Appendix A.3 for a review). Once the entities are chosen, our model for
the realization of the mentions is as before. This model is depicted graphically in Figure 4.5.

6The degree of cross-document coreference will vary from corpus to corpus.
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Although it is possible to integrate out β0 as we did the individual βi, we instead choose
for efficiency and simplicity to sample the global mixture distribution β0 from the poste-
rior distribution P (β0|Z).7 The mention generation terms in the model and sampler are
unchanged.

In the full hierarchical model, our equation (4.4) for sampling entities, ignoring the
salience component of section 4.3.4, becomes:

P (Zi,j = z|Z−i,j, β0)∝
{

αβu0 , if z = znew
nz + αβz0 , otherwise

(4.7)

where βz0 is the probability of the entity z under the sampled global entity distribution and
βu0 is the unknown component mass of this distribution.

The HDP layer of sharing improves the model’s predictions to 72.5 F1 on our development
data. We should emphasize that our evaluation is of course per-document and does not
reflect cross-document coreference decisions, only the gains through cross-document sharing
(see section 4.6.2). The pronoun pairwise F1 figure raises to 57.5 F1.

4.4 Inference Details

Up until now, we’ve discussed Gibbs sampling, but we are not interested in sampling
from the posterior P (Z|X), but in finding its mode. Although we can use samples from the
posterior to approximate the mode, it is not an ideal approach. Instead of sampling directly
from the posterior distribution, we instead continually bias our entity samples towards en-
tities with higher posterior probabilities. In particular, we sample entities proportional to
exponentiated entity posteriors. The posterior exponent is given by exp ci

k−1 , where i is the
current round number (starting at i = 0), c = 1.5 and k = 20 is the total number of sampling
epochs. This slowly raises the posterior exponent from 1.0 to ec. This procedure is similar
to simulated annealing with the posteriors as a proposal distribution. In our experiments,
we found this procedure to outperform simulated annealing.

We also found sampling the T , G, and N variables to be particularly inefficient, so
instead we opted to integrate these variables out and instead use variational estimates for
θ and the type, gender, and number distributions for each entity. See Section B.1 for full
details. We also found that correctly accounting for the future impact of salience changes
was particularly inefficient. However, ignoring those terms entirely made negligible different
in final accuracy.8

7 We do not give the details here; see Teh et al. (2006) for details on how to implement this component
of the sampler (called “direct assignment” in that reference).

8This corresponds to truncating the product in equation (4.6) at j′ = j.
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(a)

Dataset Num Docs. Prec. Recall F1

MUC-6 60 80.8 52.8 63.9
+dryrun-train 251 79.1 59.7 68.0
+English-nwire 381 80.4 62.4 70.3

(b)

Dataset Prec. Recall F1

ENGLISH-NWIRE 66.7 62.3 64.2
ENGLISH-BNEWS 63.2 61.3 62.3
CHINESE-NWIRE 71.6 63.3 67.2
CHINESE-BNEWS 71.2 61.8 66.2

Table 4.2. Formal Results: Our system evaluated using the MUC model theoretic
measure Vilain et al. (1995). The table in (a) is our performance on the thirty
document MUC-6 formal test set with increasing amounts of training data. In all
cases for the table, we are evaluating on the same thirty document test set which is
included in our training set, since our system in unsupervised. The table in (b) is our
performance on the ACE 2004 training sets.

4.5 Experiments

We present our formal experiments using the full model developed in section 4.3. As in
section 4.3, we use true mention boundaries and evaluate using the MUC F1 measure (Vilain
et al., 1995). All hyper-parameters were tuned on the development set only. The document
concentration parameter α was set by taking a constant proportion of the average number of
mentions in a document across the corpus. This number was chosen to minimize the squared
error between the number of proposed entities and true entities in a document. It was not
tuned to maximize the F1 measure. A document coefficient of 0.4 was chosen. The global
concentration coefficient γ was chosen to be a constant proportion of αM , where M is the
number of documents in the corpus. We found 0.15 to be a good value using the same least-
square procedure. The values for these coefficients were not changed for the experiments in
this section.

4.5.1 MUC-6

Our main evaluation is on the standard MUC-6 formal test set.9 The standard experi-
mental setup for this data is a 30/30 document train/test split. Training our system on all 60

9Since the MUC data is not annotated with mention types, we automatically detect this information in
the same way as Luo et al. (2004). A mention is proper if it is annotated with NER information. It is a
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Head Ent Type Gender Number

Bush: 1.0 PERS MALE SG

AP: 1.0 ORG NEUTER PL

viacom: 0.64, company : 0.36 ORG NEUTER SG

teamsters : 0.22, union: 0.78, MISC NEUTER PL

Table 4.3. Frequent entities occurring across documents along with head distribution
and mode of property distributions.

documents (as this is in an unsupervised system, the unlabeled test documents are present
at training time) of the training and test set, but evaluating only on the test documents gave
63.9 F1 and is labeled MUC-6 in table 4.2(a).

One advantage of an unsupervised approach is that we can easily utilize more data when
learning a model. We demonstrate the effectiveness of this fact by evaluating on the MUC-6
test documents with increasing amounts of unannotated training data. We first add the 191
documents from the MUC-6 dryrun training set (which were not part of the training data
for official MUC-6 evaluation). This model gives 68.0 F1 and is labeled +dryrun-train in
table 4.2(a). We then experiment with adding the ACE English-NWIRE training data,
which is from different corpora than the MUC-6 test set and from a different time period.
This model gives 70.3 F1 and is labeled +English-nwire in table 4.2(a).

Our results on this test set are surprisingly comparable to, though slightly lower than,
some recent supervised systems. McCallum and Wellner (2005) report 73.4 F1 on the formal
MUC-6 test set, which is reasonably close to our best MUC-6 number of 70.3 F1. McCallum
and Wellner (2005) also report a 91.6 F1 on only proper nouns mentions. Our system achieves
a 89.8 F1 when evaluation is restricted to only proper mentions.10 The closest comparable
unsupervised system is Cardie and Wagstaff (1999) who use pairwise NP distances to cluster
document mentions. They report a 53.6 F1 on MUC6 when tuning distance metric weights
to maximize F1 on the development set.

4.5.2 ACE 2004

We also perform experiments on ACE 2004 data. Due to licensing restrictions, we did not
have access to the ACE 2004 formal development and test sets, and so the results presented
are on the training sets.

pronoun if the head is on the list of English pronouns. Otherwise, it is a nominal mention. Note we do not
use the NER information for any purpose but determining whether the mention is proper.

10The best results we know on the MUC-6 test set using the standard setting are due to Luo et al. (2004)
who report a 81.3 F1 (much higher than others). However, it is not clear this is a comparable number,
due to the apparent use of gold NER features, which provide a strong clue to coreference. Regardless, it is
unsurprising that their system, which has many rich features, would outperform ours.

35



We report results on the newswire section (NWIRE in table 4.2b) and the broadcast
news section (BNEWS in table 4.2b). Note that for these datasets, our evaluations include
the prenominal mention type which we did not consider when developing our model. This
mention type is not present in the MUC-6 data.

We also tested our system on the Chinese newswire and broadcast news sections of the
ACE 2004 training sets. We note that our relatively higher performance on Chinese compared
to English is perhaps due to the lack of prenominal mentions in the Chinese data as well as
the presence of fewer pronouns compared to English.

Our ACE results are difficult to compare exactly because we did not have access to the
restricted formal test set. However, we can perform a rough comparison between our results
on the training data (without using the training coreference annotation) to supervised work
which has used the same training data (with coreference annotation) and evaluated on the
formal test set. Denis and Baldridge (2007) report 67.1 F1 and 69.2 F1 on the English NWIRE

and BNEWS respectively using true mention boundaries. While our system underperforms
the supervised systems, its accuracy is nonetheless promising.

4.6 Discussion

We discuss general trends and errors of the model presented in this chapter as well as
discuss external applications.

4.6.1 Error Analysis

The largest source of error in our system is between coreferent proper and nominal
mentions. Emblematic of this kind of error are appositive usages e.g. George W. Bush,
president of the US, visited Idaho. In our system, there is no pressure to label the proper
and nominal mentions as coreferent. Indeed, the system learns that highly salient entities
should not be realized as nominals. In Chapter 5, we present a system which corrects such
errors by using syntactic constraints and a larger source of data. In Chapter 6, we incorporate
this information into the kind of model presented in this chapter.

Another error of this sort can be seen in figure 4.2, where the corporation mention is not
labeled coreferent with the The Weir Group mention. Examples such as these illustrate the
regular (at least in newswire) phenomenon that nominal mentions are used with informative
intent, even when the entity is salient and a pronoun could have been used unambiguously.
This aspect of nominal mentions is entirely unmodeled in our system.
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4.6.2 Global Coreference

Since we do not have labeled cross document coreference data, we cannot evaluate our
system’s cross document performance quantitatively. However, in addition to observing the
within-document gains from sharing shown in section 4.3, we can manually inspect the most
frequently occurring entities in our corpora. Table 4.3 shows some of the most frequently
occurring entities across the English ACE NWIRE corpus. Note that Bush is the most
frequent entity, though his (and others’) nominal cluster president is its own entity. Merging
of proper and nominal clusters does occur as can be seen in table 4.3.

4.6.3 Unsupervised NER

An advantage of a fully generative model is that it can be used to answer multiple kinds
of queries about unobserved variables. One such unobserved variable in our model that is of
interest is the entity type drawn for each proper mention. One such query we can ask is the
entity type of each proper mention. Note that the way an entity becomes associated with
a particular entity type is only via coreference with pronouns which are in turn correlated
with entity types.

We can use our model to perform unsupervised named-entity-recognition (NER) tagging
as follows: For each proper mention we use the mode of the generating entity’s distribution
over entity types. Note that in our model the only way an entity becomes associated with
an entity type is by the pronouns used to refer to it.11 In English, some personal pronouns
are only associated with persons. However, it is more difficult to distinguish the non person
entities (ORG,LOC,MISC). There are some hints however. The pronoun we is typically
associated with organizations and the pronoun there and here are associated with locations.
This information is partially hinted in the prior and partially learned (See Section 4.3.3).

If we evaluate our system as an unsupervised NER tagger for the proper mentions in the
MUC-6 test set, it yields a per-label accuracy of 61.2% (on MUC labels). Although nowhere
near the performance of state-of-the-art systems, this results beats a simple baseline of
always guessing PERSON (the most common entity type) which yields 46.4%. This result is
interesting given that at the outset, we had no intention of inferring entity types whatsoever.

Elsner et al. (2009) has presented an unsupervised NER model which utilizes the in-
sights presented in this section along with adding a mechanism for using distribution cues.
This model yields substantial unsupervised NER accuracies and many of these ideas for
unsupervised NER will impact the model presented in Chapter 6.

11Ge et al. (1998) exploit a similar idea to assign gender to proper mentions.
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4.7 Conclusion

In this chapter we have presented a Bayesian non-parametric model for unsupervised
entity reference resolution. The work presented in this chapter was the first unsupervised
generative model approach to entity reference resolution. It utilizes the infinite mixture
model interpretation of the Dirichlet Process (Teh et al., 2006) in order to flexibly model the
number of entities associated with a document. The hierarchichal Dirichlet process extension
is used to allow model entities to be shared across documents. Global entities are shared
across documents, the number of entities is determined by the model, mention generation
is modeled with a sequential salience model and a model of pronoun-entity association.
Although our model does not perform quite as well as state-of-the-art supervised systems,
its performance is in the same general range despite being unsupervised.

38



Chapter 5

Simple Entity Reference Resolution

with Rich Syntactic and Semantic

Features

5.1 Introduction

In Chapter 4, we presented a machine learning heavy approach to entity reference res-
olution, which made relatively few assumptions and did not directly enforce any known
linguistic constraints. Of course entity reference is influenced by a variety of known con-
straints. Syntactic constraints like the binding theory, the i-within-i filter, and appositive
constructions restrict reference by configuration (Lees and Kilma, 1963; Langacker, 1969).
Semantic constraints like selectional compatibility (e.g. a spokesperson can announce things)
and subsumption (e.g. Microsoft is a company) rule out many possible referents (Hobbs,
1977). Finally, discourse phenomena such as salience and centering theory are assumed to
heavily influence reference preferences (Grosz et al., 1995). As these varied factors have
given rise to a multitude of weak features, recent entity resolution work has focused on how
best to learn to combine them using models over reference structures (Culotta et al., 2007;
Denis and Baldridge, 2007; Klenner and Ailloud, 2007; Bengston and Roth, 2008).

In this chapter, we break from the standard view. Instead, we consider a vastly more
modular system in which coreference is predicted from a deterministic function of a few rich
features and constraints. One of the goals of this system is to separate what constraints and
cues need to be learned and which are simpler to declaratively incorporate. In particular,
we assume a three-step process. First, a self-contained syntactic module carefully represents
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syntactic structures using an augmented parser and extracts syntactic paths from mentions
to potential antecedents. Some of these paths can be ruled in or out by deterministic but
conservative syntactic constraints. Importantly, the bulk of the work in the syntactic module
is in making sure the parses are correctly constructed and used, and this module’s most
important training data is a treebank. Second, a self-contained semantic module evaluates
the semantic compatibility of headwords and individual names. These decisions are made
from compatibility lists extracted from unlabeled data sources such as newswire and web
data. Finally, of the antecedents which remain after rich syntactic and semantic filtering,
reference is chosen to minimize tree distance.

This procedure is trivial where most systems are rich, and so does not need any super-
vised coreference data; in fact, it has no learned or tuned parameters. However, it is rich
in important ways which we argue are marginalized in recent entity resolution work. Inter-
estingly, error analysis from our final system shows that its failures are far more often due
to syntactic failures (e.g. parsing mistakes) and semantic failures (e.g. missing knowledge)
than failure to model discourse phenomena or appropriately weigh conflicting evidence.

One contribution of the system presented in this chapter is the exploration of strong
modularity, including the result that this system beats all previous reported unsupervised
results and approaches the state of the art in supervised ones.1 Another contribution of
this chapter is the error analysis result that, even with substantial syntactic and semantic
richness, the path to greatest improvement appears to be to further improve the syntactic and
semantic modules. Finally, we offer our approach as a very strong, yet easy to implement,
baseline for future reference resolution research. We make no claim that learning to reconcile
disparate features in a joint model offers no benefit, only that it must not be pursued
to the exclusion of rich, non-reference analysis. In fact, the observations made from the
shortcomings of this system will be incorporated into a richer learned model presented in
Chapter 6.

5.2 Experimental Setup

In this chapter, we evaluate our system using the following data sets:

Development: (see Section 5.3)

• ACE2004-ROTH-DEV: Dev set split of the ACE 2004 training set utilized in
Bengston and Roth (2008). The ACE data also annotates pre-nominal mentions which
we map onto nominals. 68 documents and 4,536 mentions.

Testing: (see Section 5.4)

1The model presented in Chapter 6 has, at the time of this writing, the best published performance on
the end-to-end reference resolution task
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• ACE2004-CULOTTA-TEST: Test set split of the ACE 2004 training set utilized in
Culotta et al. (2007) and Bengston and Roth (2008). Consists of 107 documents.2

• ACE2004-NWIRE: ACE 2004 Newswire set to compare against Poon and Domingos
(2008). Consists of 128 documents and 11,413 mentions; intersects with the other ACE
data sets.

• MUC-6-TEST: MUC6 formal evaluation set consisting of 30 documents and 2,068
mentions.

Unlabeled: (see Section 5.3.2)

• BLIPP: 1.8 million sentences of newswire parsed with the Charniak (2000) parser. No
labeled coreference data; used for mining semantic information.

• WIKI: 25k articles of English Wikipedia abstracts parsed by the Klein and Manning
(2003) parser.3 No labeled coreference data; used for mining semantic information.

5.3 System Description

In this section we develop our system and report developmental results on the ACE2004-

ROTH-DEV dataset (see Section 6.5.1); we report pairwise F1 figures here, but report on
all evaluation metrics (described in Section 2.2) in Section 5.4. At a high level, our system
resembles a pairwise coreference model (Soon et al., 2001; Ng and Cardie, 2002; Bengston
and Roth, 2008) described in Section 3.1.1; for each mention mi, we select either a single-best
antecedent amongst the previous mentions m1, . . . ,mi−1, or the NULL mention to indicate
the underlying entity has not yet been evoked. Mentions are linearly ordered according to the
position of the mention head with ties being broken by the larger node coming first. While
much research (Ng and Cardie, 2002; Culotta et al., 2007; Haghighi and Klein, 2007; Poon
and Domingos, 2008; Finkel and Manning, 2008) has explored how to reconcile pairwise
decisions to form coherent clusters, we simply take the transitive closure of our pairwise
decision (as in Soon et al. (2001),Ng and Cardie (2002) and Bengston and Roth (2008))
which can and does cause system errors.

In contrast to these pairwise approaches, our pairwise decisions are not made with a
learned model which outputs a probability or confidence, but instead for each mention mi,
we select an antecedent amongst m1, . . . ,mi−1 or the NULL mention as follows:

• Syntactic Constraint: Based on syntactic configurations, either force or disallow
coreference between the mention and an antecedent. Propagate this constraint (see
Figure 5.4).

2The evaluation set was not made available to non-participants.
3Wikipedia abstracts consist of roughly the first paragraph of the corresponding article
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Figure 5.1. Example sentence which demonstrates where using tree distance rather
than raw distance can be beneficial for for antecedent identification. In this example,
the mention its is closest to America in raw token distance, but is closer to the NP
headed by Nintendo, which is the correct antecedent. For clarity, each mention NP
is labeled with the underlying entity id.

• Semantic/Syntactic Filter: Filter the remaining possible antecedents based upon
compatibility with the mention (see Figure 5.2).

• Selection: Select the ‘closest’ mention from the set of remaining possible antecedents
(see Figure 5.1) or the NULL antecedent if empty.

Initially, there is no syntactic constraint (improved in Section 5.3.1), the antecedent com-
patibility filter allows proper and nominal mentions to corefer only with mentions that have
the same head (improved in Section 5.3.2), and pronouns have no compatibility constraints
(improved in Section 5.3.1). Mention heads are determined by parsing the given mention
span with the Stanford parser (Klein and Manning, 2003) and using the Collins head rules
(Collins, 1999); Poon and Domingos (2008) showed that using syntactic heads strongly out-
performed a simple rightmost headword rule. The mention type is determined by the head
POS tag: proper if the head tag is NNP or NNPS, pronoun if the head tag is PRP, PRP$,
WP, or WP$, and nominal otherwise.

For the selection phase, we order mentions m1, . . . ,mi−1 according to the position of
the head word and select the closest mention that remains after constraint and filtering are
applied. This choice reflects the intuition of Hobbs (1979) and Grosz et al. (1995) that
speakers only use pronominal mentions when there are not intervening compatible mentions.
This system yields a rather low 48.9 pairwise F1 (see BASE-FLAT in Table 5.2). There are
many, primarily recall, errors made choosing antecedents for all mention types which we will
address by adding syntactic and semantic constraints.
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5.3.1 Adding Syntactic Information

In this section, we enrich the syntactic representation and information in our system
to improve results. The model presented in Chapter 4 utilized an extremely crude repre-
sentation of a mention. Essentially, in that chapter, a mention was associated only with a
heuristically-chosen head word. In this chapter, one of our goals will be to have a richer
representation of a mention and its context.

Syntactic Salience

We first focus on fixing the pronoun antecedent choices. A common error arose from
the use of mention head token distance as a poor proxy for discourse salience. For instance
consider the example in Figure 5.1, the mention America is closest to its in flat mention
distance, but syntactically Nintendo of America holds a more prominent syntactic position
relative to the pronoun which, as Hobbs (1977) argues, is key to discourse salience.

Mapping Mentions to Parse Nodes: In order to use the syntactic position of mentions
to determine anaphoricity, we must associate each mention in the document with a parse tree
node. We parse all document sentences with the Stanford parser, and then for each evaluation
mention, we find the largest-span NP which has the previously determined mention head as
its head.4 We call this node the maximum projection of a given noun. Often, this results in
a different, typically larger, mention span than is annotated in the data.

Now that each mention is situated in a parse tree, we utilize the length of the shortest
tree path between mentions as our notion of distance. In particular, this fixes examples such
as those in Figure 5.1 where the true antecedent has many embedded mentions between
itself and the pronoun. This change by itself yields 51.7 pairwise F1 (see BASE-TREE in
Table 5.2), which is small overall, but reduces pairwise pronoun antecedent selection error
from 51.3% to 42.5%.

Agreement Constraints

We now refine our compatibility filtering to incorporate simple agreement constraints
between coreferent mentions. Since we currently allow proper and nominal mentions to
corefer only with matching head mentions, agreement is only a concern for pronouns. Tra-
ditional linguistic theory stipulates that coreferent mentions must agree in number, person,
gender, and entity type (e.g. animacy). Here, we implement person, number and entity type
agreement.5

4If there is no NP headed by a given mention head, we add an NP over just that word.
5Gender agreement, while important for general entity reference resolution, did not contribute to the

errors in our largely newswire data sets.
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Figure 5.2. Example of a coreference decision fixed by agreement constraints (see Sec-
tion 5.3.1). The pronoun them is closest to the site mention, but has an incompatible
number feature with it. The closest (in tree distance, see Section 5.3.1) compatible
mention is The Israelis, which is correct

gore president florida state
bush governor lebanese territory

nation people arafat leader
inc. company aol company

nation country assad president

Table 5.1. Most common recall (missed-link) errors amongst non-pronoun mention
heads on our development set. Detecting compatibility requires semantic knowledge
which we obtain from a large corpus (see Section 5.3.2).

A number feature is assigned to each mention deterministically based on the head and
its POS tag. For entity type, we use NER labels. Ideally, we would like to have information
about the entity type of each referential NP, however this information is not easily obtainable.
Instead, we opt to utilize the Stanford NER tagger (Finkel et al., 2005) over the sentences in
a document and annotate each NP with the NER label assigned to that mention head. For
each mention, when its NP is assigned an NER label we allow it to only be compatible with
that NER label.6 For pronouns, we deterministically assign a set of compatible NER values
(e.g. personal pronouns can only be a PERSON, but its can be an ORGANIZATION or
LOCATION). Since the NER tagger typically does not label non-proper NP heads, we have
no NER compatibility information for nominals.

We incorporate agreement constraints by filtering the set of possible antecedents to those
which have compatible number and NER types with the target mention. This yields 53.4
pairwise F1, and reduces pronoun antecedent errors to 42.5% from 34.4%. An example of
the type of error fixed by these agreement constraints is given by Figure 5.2.

6Or allow it to be compatible with all NER labels if the NER tagger doesn’t predict a label.
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Figure 5.3. NP structure annotation: In (a) we have the raw parse from the Klein and
Manning (2003) parser with the mentions annotated by entity. In (b), we demonstrate
the annotation we have added. NER labels are added to all NP according to the NER
label given to the head (see Section 5.3.1). Appositive NPs are also annotated. Hashes
indicate forced coreferent nodes
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Figure 5.4. Example of interaction between the appositive and i-within-i constraint.
The i-within-i constraint disallows coreference between parent and child NPs unless
the child is an appositive. Hashed numbers indicate ground truth but are not in the
actual trees.

Syntactic Configuration Constraints

Our system has so far focused only on improving pronoun anaphora resolution. However,
a plurality of the errors made by our system are amongst non-pronominal mentions. There
are over twice as many nominal mentions in our development data as pronouns. We take
the approach that in order to align a non-pronominal mention to an antecedent without an
identical head, we require evidence that the mentions are compatible.

Judging compatibility of mentions generally requires semantic knowledge, to which we
return later. However, some syntactic configurations guarantee coreference between men-
tions. The one exploited most in coreference work (Soon et al., 2001; Ng and Cardie, 2002;
Luo et al., 2004; Culotta et al., 2007; Poon and Domingos, 2008; Bengston and Roth, 2008)
is the appositive construction. Here, we represent apposition as a syntactic feature of an NP
indicating that it is coreferent with its parent NP (e.g. it is an exception to the i-within-i
constraint that parent and child NPs cannot be coreferent). We deterministically mark a
node as NP-APPOS (see Figure 5.3) when it is the third child in of a parent NP whose
expansion begins with (NP , NP), and there is not a conjunction in the expansion (to avoid
marking elements in a list as appositive).

Role Appositives: During development, we discovered many errors which involved a vari-
ant of appositives which we call ‘role appositives’ (see painter in Figure 5.3), where an NP
modifying the head NP describes the role of that entity (typically a person entity). There are
several challenges to correctly labeling these role NPs as being appositives. First, the NPs
produced by Treebank parsers are flat and do not have the required internal structure (see
Figure 5.3(a)). While fully solving this problem is difficult, we can heuristically fix many in-
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NP
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America Online Inc. (AOL)
NP
!!!

"""
NP-NNP PRN-NNP

NP#####$$
%%%%%

NP-president CC NP-NNP
[President and C.E.O] Bill Gates

Figure 5.5. Example paths extracted via semantic compatibility mining (see Sec-
tion 5.3.2) along with example instantiations. In both examples the left child NP is
coreferent with the rightmost NP. Each category in the interior of the tree path is
annotated with the head word as well as its subcategorization. The examples given
here collapse multiple instances of extracted paths.

stances of the problem by placing an NP around maximum length sequences of NNP tags or
NN (and JJ) tags within an NP; note that this will fail for many constructions such as U.S.
President Barack Obama, which is analyzed as a flat sequence of proper nouns. Once this
internal NP structure has been added, whether the NP immediately to the left of the head
NP is an appositive depends on the entity type. For instance, Rabbi Ashi is an apposition
but Iranian army is not. Again, a full solution would require its own model, here we mark
as appositions any NPs immediately to the left of a head child NP where the head child NP
is identified as a person by the NER tagger.7

We incorporate NP appositive annotation as a constraint during filtering. Any mention
which corresponds to an appositive node has its set of possible antecedents limited to its
parent. Along with the appositive constraint, we implement the i-within-i constraint that any
non-appositive NP cannot be be coreferent with its parent; this constraint is then propagated
to any node its parent is forced to agree with. The order in which these constraints are
applied is important, as illustrated by the example in Figure 5.4: First the list of possible
antecedents for the appositive NP is constrained to only its parent. Now that all appositives
have been constrained, we apply the i-within-i constraint, which prevents its from having
the NP headed by brand in the set of possible antecedents, and by propagation, also removes
the NP headed by Gitano. This leaves the NP Wal-Mart as the closest compatible mention.

Adding these syntactic constraints to our system yields 55.4 F1, a fairly substantial im-
provement, but many recall errors remain between mentions with differing heads. Resolving
such cases will require external semantic information, which we will automatically acquire
(see Section 5.3.2).

Predicate Nominatives: Another syntactic constraint exploited in Poon and Domingos
(2008) is the predicate nominative construction, where the object of a copular verb (forms
of the verb be) is constrained to corefer with its subject (e.g. Microsoft is a company in

7Arguably, we could also consider right modifying NPs (e.g., [Microsoft [Company]1]1) to be role appos-
itive, but we do not do so here.
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Redmond). While much less frequent than appositive configurations (there are only 17 pred-
icate nominatives in our development set), predicate nominatives are another highly reliable
coreference pattern which we will leverage in Section 5.3.2 to mine semantic knowledge. As
with appositives, we annotate object predicate-nominative NPs and constrain coreference as
before. This yields a minor improvement to 55.5 F1.

Ordering Syntactic Constraints

We use Figure 5.4 to describe the ordering of syntactic constraints. First, we apply syntac-
tic constraints which force coreference: appositives and predicate nominative constructions.
After this pass, the two NPs associated with entity #2 have been marked coreferent. Then
when we search for an antecedent for any mentions which have not located an antecedent;
for instance, the its in Figure 5.4. We then apply the i-within-i filter to remove potential
antecedents. When doing this filter, we remove any antecedent which is a parent of the
current mention, but also any mention which (according to the forced-coreference pass) has
been marked coreferent with that parent. So in the case of Figure 5.4 and the its mention:
we remove the its top brand mention since it is the parent of the mention, but also the
mention headed by Gitano since it is coreferent with the brand mention (the two are in an
appositive relation). This leaves the correct antecedent, Wal-Mart, as a potential antecedent.

5.3.2 Semantic Knowledge

While appositives and related syntactic constructions can resolve some cases of non-
pronominal reference, most cases require semantic knowledge about the various entities as
well as the verbs used in conjunction with those entities to disambiguate references (Kehler
et al., 2008).

However, given a semantically compatible mention head pair, say AOL and company,
one might expect to observe a reliable appositive or predicative-nominative construction
involving these mentions somewhere in a large corpus. In fact, the Wikipedia page for AOL8

has a predicate-nominative construction which supports the compatibility of this head pair:
AOL LLC (formerly America Online) is an American global Internet services and media
company operated by Time Warner.

In order to harvest compatible head pairs, we utilize our BLIPP and WIKI data sets
(see Section 5.2), and for each noun (proper or common) and pronoun, we assign a maximal
NP mention node for each nominal head as in Section 5.3.1; we then annotate appositive
and predicate-nominative NPs as in Section 5.3.1. For any NP which is annotated as an
appositive or predicate-nominative, we extract the head pair of that node and its constrained
antecedent.

The resulting set of compatible head words, while large, covers a little more than half

8http://en.wikipedia.org/wiki/AOL
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MUC B3 Pairwise CEAF
System P R F1 P R F1 P R F1 P R F1

ACE2004-ROTH-DEV
BASIC-FLAT 73.5 66.8 70.0 80.6 68.6 74.1 63.6 39.7 48.9 68.4 68.4 68.4
BASIC-TREE 75.8 68.9 72.2 81.9 69.9 75.4 65.6 42.7 51.7 69.8 69.8 69.8

+SYN-COMPAT 77.8 68.5 72.9 84.1 69.7 76.2 71.0 43.1 53.4 69.8 69.8 69.8
+SYN-CONSTR 78.3 70.5 74.2 84.0 71.0 76.9 71.3 45.4 55.5 70.8 70.8 70.8
+SEM-COMPAT 77.9 74.1 75.9 81.8 74.3 77.9 68.2 51.2 58.5 72.5 72.5 72.5

ACE2004-CULOTTA-TEST
BASIC-FLAT 68.6 60.9 64.5 80.3 68.0 73.6 57.1 30.5 39.8 66.5 66.5 66.5
BASIC-TREE 71.2 63.2 67.0 81.6 69.3 75.0 60.1 34.5 43.9 67.9 67.9 67.9

+SYN-COMPAT 74.6 65.2 69.6 84.2 70.3 76.6 66.7 37.2 47.8 69.2 69.2 69.2
+SYN-CONSTR 74.3 66.4 70.2 83.6 71.0 76.8 66.4 38.0 48.3 69.6 69.6 69.6
+SEM-COMPAT 74.8 77.7 79.6 79.6 78.5 79.0 57.5 57.6 57.5 73.3 73.3 73.3

Supervised Results
Culotta et al. (2007) - - - 86.7 73.2 79.3 - - - - - -

Bengston and Roth (2008) 82.7 69.9 75.8 88.3 74.5 80.8 55.4 63.7 59.2 - - -

MUC6-TEST
+SEM-COMPAT 87.2 77.3 81.9 84.7 67.3 75.0 80.5 57.8 67.3 72.0 72.0 72.0

Unsupervised Results
Poon and Domingos (2008) 83.0 75.8 79.2 - - - 63.0 57.0 60.0 - - -

Supervised Results
Finkel and Manning (2008) 89.7 55.1 68.3 90.9 49.7 64.3 74.1 37.1 49.5 - - -

ACE2004-NWIRE
+SEM-COMPAT 77.0 75.9 76.5 79.4 74.5 76.9 66.9 49.2 56.7 71.5 71.5 71.5

Unsupervised Results
Poon and Domingos (2008) 71.3 70.5 70.9 - - - 62.6 38.9 48.0 - - -

Table 5.2. Experimental Results (See Section 5.4): When comparisons between
systems are presented, the largest result is bolded. The CEAF measure has equal
values for precision, recall, and F1.

of the examples given in Table 5.1. The problem is that these highly-reliable syntactic
configurations are too sparse and cannot capture all the entity information present. For
instance, the first sentence of Wikipedia abstract for Al Gore is:

Albert Arnold “Al” Gore, Jr. is an American environmental activist who served
as the 45th Vice President of the United States from 1993 to 2001 under President
Bill Clinton.

The required lexical pattern X who served as Y is a general appositive-like pattern that
almost surely indicates coreference. Rather than opt to manually create a set of these
coreference patterns as in Hearst (1992), Snow et al. (2005) and Phillips and Riloff (2007).
We We take a simple bootstrapping technique: given a set of mention pairs extracted from
appositives and predicate-nominative configurations, we extract counts over tree fragments
between nodes which have occurred in this set of head pairs (see Figure 5.5); the tree
fragments are formed by annotating the internal nodes in the tree path with the head word
and POS along with the subcategorization. We limit the paths extracted in this way in
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several ways: paths are only allowed to go between adjacent sentences and have a length of
at most 10. We then filter the set of paths to those which occur more than a hundred times
and with at least 10 distinct seed head word pairs.

We allow a non-pronominal mention to match with an antecedent mention if it either is
head identical (our old semantic compatibility) or if the mention head and antecedent pair
appear on list obtained in this way. The vast majority of the extracted fragments are variants
of traditional appositives and predicate-nominatives with some of the structure of the NPs
specified. Extracting appositives from large corpora allow this information to be applied in
documents which do not explicitly use an appositive. However there are some tree fragments
which correspond to the novel coreference patterns (see Figure 5.5) of parenthetical alias as
well as conjunctions of roles in NPs.

We apply our extracted tree fragments to our BLIPP and WIKI data sets and extract a
set of compatible word pairs which match these fragments; these words pairs will be used to
relax the semantic compatibility filter (see the start of the section); mentions are compatible
with prior mentions with the same head or with a semantically compatible head word. This
yields 58.5 pairwise F1 (see SEM-COMPAT in Table 5.2) as well as similar improvements
across other metrics. It is relatively important that the corpora used to induce semantic
compatibility lists include a source such as WIKI since many semantic compatibilities which
are considered background information in newswire, for instance, are explicitly stated in
WIKI.

By and large the word pairs extracted in this way are correct (in particular we now have
coverage for over two-thirds of the head pair recall errors from Table 5.1.) There are however
word-pairs which introduce errors. In particular city-state constructions (e.g. Los Angeles,

California) appears to be an appositive and incorrectly allows our system to have angeles

as an antecedent for california.9 Another common error is that the % symbol is made
compatible with a wide variety of common nouns in the financial domain.

5.4 Experimental Results

We present formal experimental results here (see Table 5.2). We first evaluate our model
on the ACE2004-CULOTTA-TEST dataset used in the state-of-the-art systems from Cu-
lotta et al. (2007) and Bengston and Roth (2008). Both of these systems were supervised
systems discriminatively trained to maximize B3 and used features from many different
structured resources including WordNet, as well as domain-specific features (Culotta et al.,
2007). Our best B3 result of 79.0 is broadly in the range of these results. We should note
that in our work we use neither the gold mention types (we do not model pre-nominals
separately) nor do we use the gold NER tags which Bengston and Roth (2008) does. Across
metrics, the syntactic constraints and semantic compatibility components contribute most
to the overall final result.

9In principle, one can remove these patterns by disallowing appositives between two proper mentions.
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PROPER

NOMINAL

PRONOUN

NULL
TOTAL

PROPER 21/451 8/20 - 72/288 101/759
NOMINAL 16/150 99/432 - 158/351 323/933
PRONOUN 29/149 60/128 15/97 1/2 105/376

Table 5.3. Errors for each type of antecedent decision made by the system on the
development set. Each row is a mention type and the column the predicted mention
type antecedent. The majority of errors are made in the NOMINAL category. The
total number of mentions in each type is given by the denominator in the TOTAL

column.

Mention Type Sem. Compat Syn. Compat Head Intenal NP

NOMINAL 7 - 5 6
PRONOUN 6 3 - 6
PROPER 6 - 3 4

Prag / Disc. Process Error Other Comment
NOMINAL 2 2 1 2 general appos. patterns
PRONOUN 3 3 3 2 cataphora
PROPER 4 4 1

Table 5.4. Error analysis on ACE2004-CULOTTA-TEST data by mention type. The
dominant errors are in either semantic or syntactic compatibility of mentions rather
than discourse phenomena. See Section 5.5.

On the MUC6-TEST dataset, our system outperforms both Poon and Domingos (2008)
(an unsupervised Markov Logic Network system which uses explicit constraints) and Finkel
and Manning (2008) (a supervised system which uses ILP inference to reconcile the pre-
dictions of a pairwise classifier) on all comparable measures.10 Similarly, on the ACE2004-

NWIRE dataset, we also outperform the state-of-the-art unsupervised system of Poon and
Domingos (2008).

Overall, we conclude that our system outperforms state-of-the-art unsupervised systems11

and is in the range of the state-of-the art systems of Culotta et al. (2007) and Bengston and
Roth (2008).

5.5 Error Analysis

There are several general trends to the errors made by our system. Table 5.3 shows the
number of pairwise errors made on MUC6-TEST dataset by mention type; note these errors

10Klenner and Ailloud (2007) took essentially the same approach but did so on non-comparable data.
11Poon and Domingos (2008) outperformed Haghighi and Klein (2007) (presented in Chapter 4). Unfor-

tunately, we cannot compare against Ng (2008) since we do not have access to the version of the ACE data
used in their evaluation.
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are not equally weighted in the final evaluations because of the transitive closure taken at
the end. The most errors are made on nominal mentions with pronouns coming in a distant
second. In particular, we most frequently say a nominal is NULL when it has an antecedent;
this is typically due to not having the necessary semantic knowledge to link a nominal to a
prior expression.

In order to get a more thorough view of the cause of pairwise errors, we examined 20
random errors made in aligning each mention type to an antecedent. We categorized the
errors as follows:

• Sem. Compat: Missing information about the compatibility of two words e.g. pay and
wage. For pronouns, this is used to mean that we incorrectly aligned a pronoun to a
mention with which it is not semantically compatible (e.g. he aligned to board).

• Syn. Compat: Error in assigning linguistic features of nouns for compatibility with
pronouns (e.g. disallowing they to refer to team).

• Head: Errors involving the assumption that mentions with the same head are always
compatible. Includes modifier and specificity errors such as allowing Lebanon and
Southern Lebanon to corefer. This also includes errors of definiteness in nominals
(e.g. the people in the room and Chinese people). Typically, these errors involve a
combination of missing syntactic and semantic information.

• Internal NP: Errors involving lack of internal NP structure to mark role appositives
(see Section 5.3.1).

• Prag. / Disc.: Errors where discourse salience or pragmatics are needed to disam-
biguate mention antecedents.

• Process Error: Errors which involved a tokenization, parse, or NER error.

The result of this error analysis is given in Table 5.4; note that a single error may be
attributed to more than one cause. Despite our efforts in Section 5.3 to add syntactic
and semantic information to our system, the largest source of error is still a combination
of missing semantic information or annotated syntactic structure rather than the lack of
discourse or salience modeling.

Our error analysis suggests that in order to improve the state-of-the-art in coreference
resolution, future research should consider richer syntactic and semantic information than
typically used in current systems.

5.6 Conclusion

This chapter has focused on utilizing richer syntactic and semantic representations to
improve entity resolution performance rather than on machine learning techniques. The
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approach here is not intended as an argument against the more complex,discourse-focused
approaches that typify recent work. Instead, we note that rich syntactic and semantic
processing vastly reduces the need to rely on discourse effects or evidence reconciliation for
reference resolution. Indeed, in Chapter 6 we will further enrich the syntactic and semantic
information used by a system and this approach will in fact yield greater error reductions
than any other route forward.

Nonetheless, the system described in this chapter, despite being relatively simple and
having no tunable parameters or complexity beyond the non-reference complexity of its com-
ponent modules, manages to outperform state-of-the-art unsupervised coreference resolution
and be broadly comparable to state-of-the-art supervised systems.
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Chapter 6

Entity Reference Resolution in a

Modular Entity-Centered Model

6.1 Introduction

Entity reference resolution systems exploit a variety of information sources, ranging from
syntactic and discourse constraints, which are highly configurational, to semantic constraints,
which are highly contingent on lexical meaning and world knowledge. Perhaps because
configurational features are inherently easier to learn from small data sets, past work has
often emphasized them over semantic knowledge.

Of course, all state-of-the-art reference resolution systems have needed to capture seman-
tic compatibility to some degree; indeed, some of the earliest work in reference resolution
(Hobbs, 1977) has recognized this need. For instance, the system presented in Chapter 5
mined semantically compatible head words, which yielded performance gains. As an exam-
ple of nominal headword compatibility, a president can be a leader but cannot be not an
increase. Other past systems, including that in Chapter 5, have computed the compatibility
of specific headword pairs, extracted either from lexical resources (Ng, 2007; Bengston and
Roth, 2008; Rahman and Ng, 2009), web statistics (Yang et al., 2005), or surface syntactic
patterns (Haghighi and Klein, 2009). While this pairwise approach to semantic compatibil-
ity has high precision, it is neither realistic nor scalable to explicitly enumerate all pairs of
compatible word pairs. A more compact approach has been to rely on named-entity recogni-
tion (NER) systems to give coarse-grained entity types for each mention (Soon et al., 2001;
Ng and Cardie, 2002). In this approach, we can prefer, for instance, a personal pronoun,
such as he, to take a proper mention that has been tagged as a person by an NER tagger.
Unfortunately, current systems use small inventories of types and so provide little constraint.
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Another shortcoming of this approach is that NER systems typically tag only proper men-
tions. They do not for instance know whether legislator or desk is more likely to be a
person. The purely type-based approach also fails to capture specific facts about individual
entities (e.g. Obama is a president). In general, coreference errors in state-of-the-art systems
are frequently due to poor models of semantic compatibility (Haghighi and Klein, 2009).

In this chapter, we present an unsupervised generative entity reference resolution model,
broadly along the lines of Chapter 4, which exploits semantic information as well as dis-
course and syntactic configurations. This model combines the strengths of entity-centered
approaches (see Section 3.1.2) with pairwise approaches (see Section 3.1.1).

The semantic consistency of an entity will be ensured by a novel entity-centered semantic
module. This semantic module exploits a large inventory of distributional entity types, in-
cluding standard NER types like person and organization, as well as more refined types
like weapon and vehicle. For each type, distributions over typical heads, modifiers, and
governors are learned from large amounts of unlabeled data, capturing type-level semantic
information (e.g. spokesman is a likely head for a person). In particular, this generalizes
the semantic compatibility approach described in Chapter 5. In addition to representing in-
formation about general types, our model also represents information about specific entities.
Each entity inherits from a type but captures entity-level semantic information (e.g. giant
may be a likely head for the Microsoft entity but not all orgs).

Separately from the type-entity semantic module, a log-linear discourse model captures
discourse and syntactic configurational effects which past work has successfully captured
(Soon et al., 2001; Ng and Cardie, 2002; Bengston and Roth, 2008; Haghighi and Klein,
2009). This discourse component resembles an unsupervised pairwise system, where a given
mention selects an antecedent (or is the first mention of a new entity). Crucially, this pairwise
approach is only used to model the discourse and syntactic patterns (and constraints) of
coreference rather than to be responsible for generating the text of mentions. Mention text
is generated by the semantic module to ensure global semantic consistency.

Finally, a mention model assembles each textual mention by selecting semantically ap-
propriate words from the entities and types. Despite being almost entirely unsupervised, our
model yields the best reported end-to-end results on a range of standard reference resolution
data sets.

6.2 Key Abstractions

In this section we describe the key abstractions of our model. Illustrations of each
abstractions can be found in Figure 6.1.

Mentions: A mention is an observed textual reference to a latent real-world entity.
Mentions are associated with nodes in a parse tree and are typically realized as NPs. There
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Figure 6.1. The key abstractions of our model (Section 6.2). (a) Mentions map
properties (r) to words (wr). (b) Entities map properties (r) to word lists (Lr). (c)
Types map properties (r) to distributions over property words (θr) and the fertilities of
those distributions (fr). For (b) and (c), we only illustrate a subset of the properties.

are three basic forms of mentions:1 proper (denoted NAM), nominal (NOM), and pronominal
(PRO). We will often describe proper and nominal mentions together as referring mentions.

We represent each mention M as a collection of key-value pairs. The keys are called
properties and the values are words. For example, the left mention in Figure 6.1(a) represents
the string Mr. Obama. Under our representation, this mention consists of two key-value
pairs. It has a proper head property, denoted NAM-HEAD, with value Obama. As well as a
nominal modifier, NN-MOD, with value Mr.. The set of properties we consider, denoted R,
includes several varieties of heads, modifiers, and governors (see Section 6.5.2 for details).
Not every mention has a value for every property.

Entities: An entity is a specific individual or object in the world. Entities are always
latent in text. Where a mention has a single word for a given property, an entity has a list
of signature words. Formally, entities are mappings from properties r ∈ R to lists Lr of
‘canonical’ words which that entity uses for that property. For instance in Figure 6.1(b),
the list of nominal heads for the Barack Obama entity includes president. This captures
the tendency of an entity to reuse a small number of ‘cannonical’ words. For instance, for a
person entity, the proper head property,NAM-HEAD, typically corresponds to the last name
of the entity (at least in newswire the tendency is to use the last name to refer to a person).
The nominal head property, NOM-HEAD, typically refers to the role or job a person entity
plays; for the Barack Obama entity, nominal words include president and leader. Other

1In this chapter, to avoid confusion with entity types, we use mention form to refer to mention type.
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person entities can certainly be evoked with these words, but these words are frequently used
to refer to the Barack Obama entity.

Types: Entity reference resolution systems often make a mention / entity distinction;
for instance, this distinction is present in Chapter 4 as well as other entity-based approaches
Section 3.1.2. In this chapter, we extend this hierarchy to include types, which represent
classes of entities (person, organization, and so on). The primary purpose of types is to
allow the sharing of properties across entities and mediate the generation of entities in our
model (see Section 6.3.1 for an elaboration). See Figure 6.1(c) for a concrete example.

Whereas an entity represents a mapping from properties to a list of words, a type is a
mapping from properties to distributions over words. Concretely, we represent each type τ
as a mapping between properties r and pairs of multinomial distributions (θr, fr). Together,
these distributions control the property word lists Lr for entities of that type.

θr is a unigram distribution of words that are semantically licensed for property r. For
instance in the person type, the θr for the NAM-HEAD property represents, roughly, a
distribution over possible last names for people. Similarly, the θr for the NOM-HEAD

property is a distribution over possible roles and generic nominal descriptions for a person
(see Figure 6.1).

fr is a “fertility” distribution over the integers that characterizes entity list lengths. For
example, for the type person, θr for proper heads is quite flat (there are many last names)
but fr is peaked at 1 (people have a single last name). On the other hand, the fr for the
NOM-HEAD distribution is more likely to generate lists of length two or more, since it is
more likely to have two or more words frequently associated with a person entity.

6.3 Generative Model

We now describe our generative model. At the parameter level, we have one parameter
group for the types τ = (φ, τ1, . . . , τt), where φ is a multinomial prior over a fixed number
t over types and the {τi} are the parameters for each individual type, described in greater
detail below. A second group comprises log-linear parameters π over discourse choices, also
described below. Together, these two groups are drawn according to P (τ |λ)P (π|σ2), where
λ and σ2 are a small number of scalar hyper-parameters described fully in Section 6.4.

Conditioned on the parameters (τ ,π), a document is generated as follows: A semantic
module generates a sequence E of entities. E is in principle infinite, though during inference
only a finite number are ever instantiated. A discourse module generates a vector Z which
assigns an entity index Zi to each mention position i. Finally, a mention generation module
independently renders the sequence of mentions (M) from their underlying entities. The
syntactic position and structure of mentions are treated as observed, including the mention
forms (pronominal, etc.). We use X to refer to this ungenerated information. Our model

57



T

Lr

φ

fr θr

ORG: 0.30
 PERS: 0.22
GPE: 0.18
LOC: 0.15
WEA: 0.12
VEH: 0.09

...

T = PERS
0: 0.30
1: 0.25
2: 0.20
3: 0.18

...

PERS

For T = PERS
president: 0.14
 painter: 0.11
senator: 0.10
minister: 0.09
leader: 0.08
official: 0.06

executive: 0.05
...

president 
leader
official

R
E

Figure 6.2. Depiction of the entity generation process (Section 6.3.1). Each entity
draws a type (T ) from φ, and, for each property r ∈ R, forms a word list (Lr) by
choosing a length from T ’s fr distribution and then independently drawing that many
words from T ’s θr distribution. Example values are shown for the person type and
the nominal head property (nom-head).

decomposes as follows:

P (E,Z,M|τ ,π,X) =

P (E|τ ) [Semantic, Section 6.3.1]

P (Z|π,X) [Discourse, Section 6.3.2]

P (M|Z,E, τ ) [Mention, Section 6.3.3]

We detail each of these components in subsequent sections.

6.3.1 Semantic Module

The semantic module is responsible for the probability term P (E|τ ). Specifically, the
semantic module generates a sequence of entities from the underlying type parameters τ .
The entities are generated independently,

P (E|τ ) =
∏
E∈E

P (E|τ ) (6.1)
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Each entity E is generated independently and consists of a type indicator T , as well as a
collection {Lr}r∈R of word lists for each property. We use L to denote this collection of word
lists and so an entity consists of the pair (T, L).

Each entity, E = (T, L) is generated as follows:

Entity Generation

Draw entity type T ∼ φ

For each mention property r ∈ R,

Fetch {(fr, θr)} for τ T
Draw word list length |Lr| ∼ fr

Draw |Lr| words from w ∼ θr

We can also represent this generative process as follows:

P (E = (T, L)|τ ) = P (T |φ)
∏
r∈R

P (Lr|τT ) (6.2)

= P (T |φ)
∏
r∈R

(
P (|Lr||fr)

∏
w∈Lr

P (w|θr)
)

[(fr, θr) from τT ] (6.3)

See Figure 6.2 for an illustration of this process. Each word list Lr is generated by
first drawing a list length from fr and then independently populating that list from the
property’s word distribution θr.

2 Past work has employed broadly similar distributional
models for unsupervised NER of proper mentions (see Collins and Singer (1999) and Elsner
et al. (2009)). However, to our knowledge, this is the first work to also label nominal
expressions as well to incorporate such a model into an entity reference process.

6.3.2 Discourse Module

The discourse module (depicted in Figure 6.3) is responsible for choosing an entity to
evoke at each of the n mention positions. Recall that in our model, the number of mention
positions as well as their syntactic positions are treated as observed (denoted X). Formally,
this module generates an entity assignment vector Z = (Z1, . . . , Zn), where Zi indicates the
entity index for the ith mention position. Most linguistic inquiry characterizes NP anaphora
by the pairwise relations that hold between a mention and its antecedent (Hobbs, 1979;
Kehler et al., 2008). Our discourse module utilizes this pairwise perspective to define each
Zi in terms of an intermediate “antecedent” variable Ai. Ai either points to a previous
antecedent mention position (Ai < i) and “steals” its entity assignment or begins a new

2There is one exception: the sizes of the proper and nominal head property lists are jointly generated,
but their word lists are still independently populated.
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Figure 6.3. Depiction of the discourse module (Section 6.3.2), which generates the
entity assignment vector Z as well as the mention module (Section 6.3.3), which is
responsible for rendering mentions conditioned on entity assignments (Z) and entities
(E).

entity (Ai = i). The choice of Ai is parametrized by affinities sπ(i, j; X) between mention
positions i and j. Formally, this process is described as:

Entity Assignment

For each mention position, i = 1, . . . , n,

Draw antecedent position Ai ∈ {1, . . . , i}:
P (Ai = j|X) ∝ sπ(i, j;X)

Zi =

{
ZAi , if Ai < i

K + 1, otherwise

Here, K denotes the number of entities allocated in the first i-1 mention positions. For each
mention position, the discourse module either: (1) selects a prior antecedent and “steals” its
entity assignment (Ai < i), or (2) begins a new entity (Ai = i). This choice is parametrized
by the antecedent affinities sπ(i, j; X) between mention positions i and j. This process is
an instance of the sequential distance-dependent Chinese Restaurant Process (DD-CRP) of
Blei and Frazier (2009). During inference, we variously exploit both the A and Z represen-
tations (Section 6.4).

For nominal and pronoun mentions, there are several well-studied anaphora cues, includ-
ing centering (Grosz et al., 1995), nearness (Hobbs, 1977), and deterministic constraints,
which have all been utilized in prior coreference work (Soon et al., 2001; Ng and Cardie,
2002). In order to combine these cues, we take a log-linear, feature-based approach and
parametrize sπ(i, j;X) = exp{π>fX(i, j)}, where fX(i, j) is a feature vector over mention
positions i and j, and π is a parameter vector; the features may freely condition on X. We
utilize the following features between a mention and an antecedent: tree distance, sentence
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distance, and the syntactic positions (subject, object, and oblique) of the mention and an-
tecedent. Features for starting a new entity include: a definiteness feature (extracted from
the mention’s determiner), the top CFG rule of the mention parse node, its syntactic role,
and a bias feature. These features are conjoined with the mention form (nominal or pro-
noun). Additionally, we restrict pronoun antecedents to the current and last two sentences,
and the current and last three sentences for nominals. Additionally, we disallow nominals
from having direct pronoun antecedents.

In addition to the above, if a mention is in a deterministic coreference configuration, as
defined in Haghighi and Klein (2009), we force it to take the required antecedent. In general,
antecedent affinities learn to prefer close antecedents in prominent syntactic positions. We
also learn that new entity nominals are typically indefinite or have SBAR complements
(captured by the CFG feature).

In contrast to nominals and pronouns, the choice of entity for a proper mention is
governed more by entity frequency than antecedent distance. We capture this by setting
sπ(i, j; X) in the proper case to 1 for past positions and to a fixed α otherwise. 3

6.3.3 Mention Module

Once the semantic module has generated entities and the discourse model selects entity
assignments, each mention Mi generates word values for a set of observed properties Ri:

Mention Generation

For each mention Mi, i = 1, . . . , n

Fetch (T, {Lr}r∈R) from EZi

Fetch {(fr, θr)}r∈R from τ T
For r ∈ Ri :

w ∼ (1− αr)Uniform(Lr) + (αr)θr

For each property r, there is a hyper-parameter αr which interpolates between selecting
a word from the entity list Lr and drawing from the underlying type property distribution
θr. Intuitively, a small value of αr indicates that an entity prefers to re-use a small number
of words for property r. This is typically the case for proper and nominal heads as well as
modifiers. At the other extreme, setting αr to 1 indicates the property isn’t particular to
the entity itself, but rather only on its type. We set αr to 1 for pronoun heads as well as for
the governor of the head properties.

3As Blei and Frazier (2009) notes, when marginalizing out the Ai in this trivial case, the DD-CRP reduces
to the traditional CRP (Pitman, 2002), so our discourse model roughly matches Haghighi and Klein (2007)
for proper mentions.
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Figure 6.4. Depiction of the discourse module (Section 6.3.2); each random variable
is annotated with an example value. For each mention position, an entity assign-
ment (Zi) is made. Conditioned on entities (EZi), mentions (Mi) are rendered (Sec-
tion 6.3.3). The arrow symbol denotes that a random variable is the parent of all Y
random variables.

6.4 Learning and Inference

We provide a brief description of learning and inference for our model. For a fuller de-
scription, see Section C. Our learning procedure involves finding parameters and assignments
which are likely under our model’s posterior distribution P (E,Z, τ ,π|M,X). The model is
modularized in such a way that running EM on all variables simultaneously would be very
difficult. Therefore, we adopt a variational approach which optimizes various subgroups of
the variables in a round-robin fashion, holding approximations to the others fixed. We first
describe the variable groups, then the updates which optimize them in turn.

Decomposition: We decompose the entity variables E into types, T, one for each entity,
and word lists, L, one for each entity and property. We decompose the mentions M into
referring mentions (propers and nominals), Mr, and pronominal mentions, Mp (with sizes
nr and np respectively). The entity assignments Z are similarly divided into Zr and Zp

components. For pronouns, rather than use Zp, we instead work with the corresponding
antecedent variables, denoted Ap, and marginalize over antecedents to obtain Zp.

With these variable groups, we would like to approximation our model posterior
P (T,L,Zr,Ap, τ ,π|M,X) using a simple factored representation. Our variational approxi-
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mation takes the following form:

Q(T,L,Zr,Ap, τ ,π) = δr(Z
r,L)(

n∏
k=1

qk(Tk)

)(
np∏
i=1

ri(A
p
i )

)
δs(τ )δd(π)

We use a mean field approach to update each of the RHS factors in turn to minimize the
KL-divergence between the current variational posterior and the true model posterior. The
δr, δs, and δd factors place point estimates on a single value, just as in hard EM. Updating
these factors involves finding the value which maximizes the model (expected) log-likelihood
under the other factors. For instance, the δs factor is a point estimate of the type parameters,
and is updated with:4

δs(τ )← argmax
τ

EQ−δs lnP (E,Z,M, τ ,π) (6.4)

where Q−δs denotes all factors of the variational approximation except for the factor being
updated. The ri (pronoun antecedents) and qk (type indicator) factors maintain a soft
approximation and so are slightly more complex. For example, the ri factor update takes
the standard mean field form:

ri(A
p
i ) ∝ exp{EQ−ri lnP (E,Z,M, τ ,π)} (6.5)

We briefly describe the update for each additional factor, omitting details for space (see
Appendix C).

Updating type parameters δs(τ ): The type parameters τ consist of several multinomial
distributions which can be updated by normalizing expected counts as in the EM algorithm.
The prior P (τ |λ) consists of several finite Dirichlet draws for each multinomial, which are
incorporated as pseudocounts.5 Given the entity type variational posteriors {qk(·)}, as well
as the point estimates of the L and Zr elements, we obtain expected counts from each entity’s
attribute word lists and referring mention usages.

Updating discourse parameters δd(π): The learned parameters for the discourse mod-
ule rely on pairwise antecedent counts for assignments to nominal and pronominal mentions.6

Given these expected counts, which can be easily obtained from other factors, the update re-
duces to a weighted maximum entropy problem, which we optimize using LBFGS. The prior
P (π|σ2) is a zero-centered normal distribution with shared diagonal variance σ2, which is
incorporated via L2 regularization during optimization.

4Of course during learning, the argmax is performed over the entire document collection, rather than a
single document.

5See software release for full hyper-parameter details.
6Propers have no learned discourse parameters.
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Updating referring assignments and word lists δr(Z
r,L): The word lists are usu-

ally concatenations of the words used in nominal and proper mentions and so are updated
together with the assignments for those mentions. Updating the δr(Z

r,L) factor involves
finding the referring mention entity assignments, Zr, and property word lists L for instan-
tiated entities which maximize EQ−δr lnP (T,L,Zr,Ap,M, τ ,π). We actually only need to
optimize over Zr, since for any Zr, we can compute the optimal set of property word lists
L. Essentially, for each entity we can compute the Lr which optimizes the probability of the
referring mentions assigned to the entity (indicated by Zr). In practice, the optimal Lr is
just the set of property words in the assigned mentions. 7 Of course enumerating and scoring
all Zr hypotheses is intractable, so we instead utilize a left-to-right sequential beam search.
Each partial hypothesis is an assignment to a prefix of mention positions and is scored as
though it were a complete hypothesis. Hypotheses are extended via adding a new mention
to an existing entity or creating a new one. For our experiments, we limited the number of
hypotheses on the beam to the top fifty and did not notice an improvement in model score
from increasing beam size.

Updating pronominal antecedents ri(A
p
i ) and entity types qk(Tk): These updates are

straightforward instantiations of the mean-field update (C.4).

To produce our final coreference partitions, we assign each referring mention to the entity
given by the δr factor and each pronoun to the most likely entity given by the ri.

6.4.1 Factor Staging

In order to facilitate learning, some factors are initially set to fixed heuristic values
and only learned in later iterations. Initially, the assignment factors δr and {ri} are fixed.
For δr, we use a deterministic entity assignment Zr, similar to the Haghighi and Klein
(2009)’s SYN-CONSTR setting: each referring mention is coreferent with any past mention
with the same head or in a deterministic syntactic configuration (appositives or predicative
nominatives constructions). Forcing appositive coreference is essential for tying proper and
nominal entity type vocabulary. The {ri} factors are heuristically set to place most of their
mass on the closest antecedent by tree distance. During training, we proceed in stages, each
consisting of 5 iterations:

Stage Learned Fixed B3All
1 δs, δd, {qk} {ri},δr 74.6
2 δs, δd, {qk}, δr {ri} 76.3
3 δs, δd, {qk}, δr, {ri} – 78.0

We evaluate our system at the end of stage using the B3All metric on the a05cu development
set (see Section 6.5 for details).

7For any property where αr = 1 (Section 6.3.3), the empty list is trivially optimal.
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MUC B3All B3None Pairwise F1

System P R F1 P R F1 P R F1 P R F1

ACE2004-STOYANOV-TEST
Stoyanov et al. (2009) - - 62.0 - - 76.5 - - 75.4 - - -

Haghighi and Klein (2009) 67.5 61.6 64.4 77.4 69.4 73.2 77.4 67.1 71.3 58.3 44.5 50.5
THIS WORK 67.4 66.6 67.0 81.2 73.3 77.0 80.6 75.2 77.3 59.2 50.3 54.4

ACE2005-STOYANOV-TEST
Stoyanov et al. (2009) - - 67.4 - - 73.7 - - 72.5 - - -

Haghighi and Klein (2009) 73.1 58.8 65.2 82.1 63.9 71.8 81.2 61.6 70.1 66.1 37.9 48.1
THIS WORK 74.6 62.7 68.1 83.2 68.4 75.1 82.7 66.3 73.6 64.3 41.4 50.4

ACE2005-RAHMAN-TEST
Rahman and Ng (2009) 75.4 64.1 69.3 - - - 54.4 70.5 61.4 - - -

Haghighi and Klein (2009) 72.9 60.2 67.0 53.2 73.1 61.6 52.0 72.6 60.6 57.0 44.6 50.0
THIS WORK 77.0 66.9 71.6 55.4 74.8 63.8 54.0 74.7 62.7 60.1 47.7 53.0

Table 6.1. Experimental results with system mentions. All systems except Haghighi
and Klein (2009) and current work are fully supervised. The current work outperforms
all other systems, supervised or unsupervised. For comparison purposes, the B3None
variant used on A05RA is calculated slightly differently than other B3None results;
see Rahman and Ng (2009).

6.5 Experiments

We considered the challenging end-to-end system mention setting, where in addition to
predicting mention partitions, a system must identify the mentions themselves and their
boundaries automatically. Our system deterministically extracts mention boundaries from
parse trees (Section 6.5.2). We utilized no coreference annotation during training, but did
use minimal prototype information to prime the learning of entity types (Section 6.5.3).

6.5.1 Datasets

For evaluation, we used standard coreference data sets derived from the ACE corpora:

• A04CU: Train/dev/test split of the newswire portion of the ACE 2004 training set8

utilized in Culotta et al. (2007), Bengston and Roth (2008) and Stoyanov et al. (2009).
Consists of 90/68/38 documents respectively.

• A05ST: Train/test split of the newswire portion of the ACE 2005 training set utilized
in Stoyanov et al. (2009). Consists of 57/24 documents respectively.

• A05RA: Train/test split of the ACE 2005 training set utilized in Rahman and Ng
(2009). Consists of 482/117 documents respectively.

For all experiments, we evaluated on the dev and test sets above. To train, we included the
text of all documents above, though of course not looking at either their mention boundaries
or reference annotations in any way. We also trained on the following much larger unlabeled
datasets utilized in Haghighi and Klein (2009):

8Due to licensing restriction, the formal ACE test sets are not available to non-participants.
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• BLLIP: 5k articles of newswire parsed with the Charniak (2000) parser.

• WIKI: 8k abstracts of English Wikipedia articles parsed by the Berkeley parser (Petrov
et al., 2006). Articles were selected to have subjects amongst the frequent proper nouns
in the evaluation datasets.

6.5.2 Mention Detection and Properties

Mention boundaries were automatically detected as follows: For each noun or pronoun
(determined by parser POS tag), we associated a mention with the maximal NP projection
of that head or that word itself if no NP can be found.9 This procedure recovers over 90% of
annotated mentions on the A05CU dev set, but also extracts many unannotated “spurious”
mentions (for instance events, times, dates, or abstract nouns) which are not deemed to be
of interest by the ACE annotation conventions. For evaluation, we suppress entities when
the mode of the variational posterior over entity type is not amongst the prototyped entity
types. This process reduces roughly half mention detection precision error by half and rarely
incorrectly suppresses correct mention.

Mention properties were obtained from parse trees using the the Stanford typed depen-
dency extractor (de Marneffe et al., 2006). The mention properties we considered are the
mention head (annotated with mention type), the typed modifiers of the head, and the gov-
ernor of the head (conjoined with the mention’s syntactic position). We discard determiners,
but make use of them in the discourse component (Section 6.3.2) for NP definiteness.

6.5.3 Prototyping Entity Types

While it is possible to learn type distributions in a completely unsupervised fashion, we
found it useful to prime the system with a handful of important types. Rather than relying
on fully supervised data, we took the approach of Haghighi and Klein (2006). For each type
of interest, we provided a (possibly-empty) prototype list of proper and nominal head words,
as well as a list of allowed pronouns. For instance, for the person type we might provide:

NAM Bush, Gore, Hussein
NOM president, minister, official
PRO he, his, she, him, her, you, ...

The prototypes were used as follows: Any entity with a prototype on any proper or nominal
head word attribute list (Section 6.3.1) was constrained to have the specified type; i.e. the
qk factor (Section 6.4) places probability one on that single type. Similarly to Haghighi and
Klein (2007) and Elsner et al. (2009), we biased these types’ pronoun distributions to the
allowed set of pronouns.

9The maximal projection of a word in a parse tree is the highest node in the parse tree which has the
given word as its head as determined by Collins’ head rules (Collins, 1999).
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In general, the choice of entity types to prime with prototypes is a domain-specific ques-
tion. For experiments here, we utilized the types which are annotated in the ACE coreference
data: person (PERS), organization (ORG), geo-political entity (GPE), weapon (WEA), ve-
hicle (VEH), location (LOC), and facility (FAC). Since the person type in ACE conflates
individual persons with groups of people (e.g., soldier vs. soldiers), we added the group
(GROUP) type and generated a prototype specification.10

We obtained our prototype list by extracting at most four common proper and nominal
head words from the newswire portions of the 2004 and 2005 ACE training sets (A04CU

and A05ST); we chose prototype words to be minimally ambiguous with respect to type.11

When there are not at least three proper heads for a type (WEA for instance), we did not
provide any proper prototypes and instead strongly biased the type fertility parameters to
generate empty NAM-HEAD lists.

Because only certain semantic types were annotated under the arbitrary ACE guidelines,
there are many mentions which do not fall into those limited categories. We therefore
prototype (refinements of) the ACE types and then add an equal number of unconstrained
“other” types which are automatically induced. A nice consequence of this approach is that
we can simply run our model on all mentions, discarding at evaluation time any which are
of non-prototyped types.

6.5.4 Evaluation

We evaluated on multiple coreference resolution metrics, as no single one is clearly su-
perior, particularly in dealing with the system mention setting. We utilized MUC (Vilain
et al., 1995), B3All (Stoyanov et al., 2009), B3None (Stoyanov et al., 2009), and Pairwise F1

(see Section 2.2.1 for a fuller description of these metrics). The B3All and B3None are B3

variants (Bagga and Baldwin, 1998) that differ in their treatment of spurious mentions. For
Pairwise F1, precision measures how often pairs of predicted coreferent mentions are in the
same annotated entity. We eliminated any mention pair from this calculation where both
mentions were spurious.12

6.5.5 Results

Table 6.1 shows our results. We compared to two state-of-the-art supervised coreference
systems. The Stoyanov et al. (2009) numbers represent their THRESHOLD ESTIMATION

setting and the Rahman and Ng (2009) numbers represent their highest-performing cluster
ranking model. We also compared to the strong deterministic system of Haghighi and Klein

10These entities are given the GROUP subtype in the ACE annotation.
11Meaning those headwords were assigned to the target type for more than 75% of their usages.
12Note that we are still penalized for marking a spurious mention coreferent with an annotated one.
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(2009).13 Across all data sets, our model, despite being largely unsupervised, consistently
outperforms these systems, which are the best previously reported results on end-to-end
coreference resolution (i.e. including mention detection). Performance on the A05RA dataset
is generally lower because it includes articles from blogs and web forums where parser quality
is significantly degraded.

While Bengston and Roth (2008) do not report on the full system mention task, they do
report on the more optimistic setting where mention detection is performed but non-gold
mentions are removed for evaluation using an oracle. On this more lenient setting, they
report 78.4 B3 on the A04CU test set. Our model yields 80.3.

6.6 Analysis

We now discuss errors and improvements made by our system. One frequent source of
error is the merging of mentions with explicitly contrasting modifiers, such as new president
and old president. While it is not unusual for a single entity to admit multiple modifiers, the
particular modifiers new and old are incompatible in a way that new and popular are not.
Our model does not represent the negative covariance between these modifiers.

We compared our output to the deterministic system of Haghighi and Klein (2009). Many
improvements arise from correctly identifying mentions which are semantically compatible
but which do not explicitly appear in an appositive or predicate-nominative configuration in
the data. For example, analyst and it cannot corefer in our system because it is not a likely
pronoun for the type person.

While the focus of our model is coreference resolution, we can also isolate and evaluate
the type component of our model as an NER system. We test this component by presenting
our learned model with boundary-annotated non-pronominal entities from the A05ST dev
set and querying their predicted type variable T . Doing so yields 83.2 entity classification
accuracy under the mapping between our prototyped types and the coarse ACE types. Note
that this task is substantially more difficult than the unsupervised NER in Elsner et al.
(2009) because the inventory of named entities is larger (7 vs. 3) and because we predict
types over nominal mentions that are more difficult to judge from surface forms. In this
task, the plurality of errors are confusions between the GPE (geo-political entity) and ORG
entity types, which have very similar distributions.

13Haghighi and Klein (2009) reports on true mentions; here, we report performance on automatically
detected mentions.
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Chapter 7

An Entity-Level Approach to

Information Extraction

7.1 Introduction

Template-filling information extraction (IE) systems must merge information across mul-
tiple sentences to identify all role fillers of interest. For instance in the MUC4 terrorism event
extraction task, the entity filling the individual perpetrator role often occurs multiple times,
variously as proper, nominal, or pronominal mentions. However, most template-filling sys-
tems (Freitag and McCallum, 2000; Phillips and Riloff, 2007) assign roles to individual tex-
tual mentions using only local context as evidence, leaving aggregation for post-processing.
While prior work has acknowledged that entity reference resolution and discourse analysis
are integral to accurate role identification, to our knowledge no model has been proposed
which jointly models these phenomena.

In this chapter, we present an application of the model presented in Chapter 6 to
template-filling information extraction. We present an entity-centered approach to template-
filling IE problems. This model jointly merges surface mentions into underlying entities
(coreference resolution) and assigns roles to those discovered entities. In the generative pro-
cess proposed here, document entities are generated for each template role, along with a
set of non-template entities. These entities then generate mentions in a process sensitive to
both lexical and structural properties of the mention. Our joint coreference and entity-level
model outperforms a discriminative mention-level baseline. Moreover, since this model is
generative, it can naturally incorporate unannotated data, which further increases accuracy.

Figure 7.1(a) shows an example template-filling task from the corporate acquisitions
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[S CSR] has said that [S it] has sold [S its]  [B oil 
interests] held in  [A Delhi Fund].  [P Esso Inc.] did not 
disclose how much [P they] paid for [A Dehli].

(a)

(b)

Document
Esso Inc.

PURCHASERACQUIRED

Delhi FundOil and Gas

BUSINESS

CSR Limited

SELLER

Template

Figure 7.1. Example of Corporate Acquisitions role-filling task. In (a), an exam-
ple template specifying the entities playing each domain role. In (b), an example
document with coreferent mentions sharing the same role label. Note that pronoun
mentions provide direct clues to entity roles.

R1 R2 RK

Z1 Z2 Zn

M1 M2
Mn...........

Document

Role Entity Parameters

Mentions

φ

Role 
Priors

E1 E2

M3

Z3 ...........

EK

Other 
Entities

.... ......

Other Entity Parameters

.... ......

Entity Indicators 1

[2: 0.02, 
  1:0.015,

     0: 0.01,...]
MOD-POSS

[investment: 0.02, 
 subsidiary:0.015,
  holding: 0.01,...]

[1: 0.19, 
2:0.14,

     0: 0.08,...]
HEAD-NAM

[Inc.: 0.02, 
 Corp.:0.015,
  Ltd.: 0.01,...]

[2: 0.18, 
3:0.12,

     1: 0.09,...]
GOV-NSUBJ

frθrr

[bought: 0.02, 
 obtained:0.015,

acquired: 0.01,...]

Purchaser Role

Role
Entites

acquisitionMOD-POSS

MOD-NN search, giant

companyHEAD-NOM

HEAD-NAM

Lrr

Google, GOOG

Purchaser Entity

GOV-NSUBJ bought

HEAD-NAM Google

wr

Purchaser Mention

Figure 7.2. Graphical model depiction of our generative model described in Sec-
tion 7.2. Sample values are illustrated for key parameters and latent variables.

domain (Freitag, 1998).1 We have a template of K roles (purchaser, amount, etc.) and
we must identify which entity (if any) fills each role (CSR Limited, etc.). Often such problems
are modeled at the mention level, directly labeling individual mentions as in Figure 7.1(b).
Indeed, in this data set, the mention-level perspective is evident in the gold annotations,
which ignore pronominal references. However, roles in this domain appear in several locations
throughout the document, with pronominal references often being the “give away” mentions.
Therefore, Section 7.2 presents a model in which entities are explicitly modeled, naturally
merging information across all mention types and explicitly representing latent structure
very much like the entity-level template structure from Figure 7.1(a).

1In Freitag (1998), some of these fields are split in two to distinguish a full versus abbreviated name, but
we ignore this distinction. Also we ignore the status field as it doesn’t apply to entities and its meaning is
not consistent.
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7.2 Model

We describe our generative model for a document, which has many similarities to the
coreference-only model presented in Chapter 6, but which integrally models template role-
fillers. We review the basic abstractions we use and modify them to the current application:

Mentions: A mention is an observed textual reference to a latent real-world entity.
Mentions are associated with nodes in a parse tree and are typically realized as NPs. There
are three basic forms of mentions: proper (NAM), nominal (NOM), and pronominal (PRO).
As in Chapter 6, each mention M is represented as collection of key-value pairs. The keys are
called properties and the values are words. The set of properties utilized here, denotedR, are
the same as Haghighi and Klein (2010) and consist of the mention head, its dependencies, and
its governor. See Figure 7.2 for a concrete example. Mention types are trivially determined
from mention head POS tag. All mention properties and their values are observed.

Entities: An entity is a specific individual or object in the world. Entities are always
latent in text. Where a mention has a single word for each property, an entity has a list
of signature words. Formally, entities are mappings from properties r ∈ R to lists Lr of
“canonical” words which that entity uses for that property.

Roles: Our model performs role-filling by assuming that each entity is drawn from an
underlying role. These roles include the K template roles as well as “junk” roles to represent
entities which do not fill a template role (see Section 7.4.2). Each role R is represented
as mapping from between properties r and pairs of multinomials (θr, fr). Together, these
distributions control the lists Lr for entities which instantiate the role. θr is a unigram
distribution of words for property r that are semantically licensed for the role (e.g. being
the subject of “acquired” for the ACQUIRED role). fr is a “fertility” distribution over the
integers that characterizes entity list lengths.

Note that our notion or role corresponds to the entity type presented in Chapter 6.
While the representations of these two elements are identical, the key difference is that
in this work, since we will use labeled data, the parameters of our roles will be biased to
distinguish different kinds of entities.

We first present a broad sketch of our model’s components and then detail each in a
subsequent section. We temporarily assume that all mentions belong to a template role-
filling entity; we lift this restriction in Section 7.4.2. First, a semantic component generates
a sequence of entities E = (E1, . . . , EK), where each Ei is generated from a corresponding role
Ri. We use R = (R1, . . . , RK) to denote the vector of template role parameters. Note that
this work assumes that there is a one-to-one mapping between entities and roles; in particular,
at most one entity can fill each role which is appropriate for the domain considered here.

Once entities have been generated, a discourse component generates which entities will be
evoked in each of the n mention positions. We represent these choices using entity indicators
denoted by Z = (Z1, . . . , Zn). This component utilized a learned global prior φ over roles.
The Zi indicators take values in 1, . . . , K indicating the entity number (and thereby the
role) underlying the ith mention position. Finally, a mention generation component renders
each mention conditioned on the underlying entity and role. Formally, our decomposition is
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similar to the Chapter 6:

P (E,Z,M|R, φ) =(
K∏
i=1

P (Ei|Ri)

)
[Semantic, Sec. 7.2.1](

n∏
j=1

P (Zj|Z<j, φ)

)
[Discourse, Sec. 7.2.2](

n∏
j=1

P (Mj|EZj , RZj)

)
[Mention, Sec. 7.2.3]

7.2.1 Semantic Component

Each role R generates an entity E as follows: for each mention property r, a word list,
Lr, is drawn by first generating a list length from the corresponding fr distribution in R.2

This list is then populated by independent draw from R’s unigram distribution θr. Formally,
for each r ∈ R, an entity word list is drawn according to,3

P (Lr|R) = P (len(Lr)|fr)
∏
w∈Lr

P (w|θr)

7.2.2 Discourse Component

The discourse component draws the entity indicator Zj for the jth mention according to,

P (Zj|Z<j, φ) =

{
P (Zj|φ), if non-pronominal∑

j′ δZj(Zj′)P (j′|j), o.w.

When the jth mention is non-pronominal, we draw Zj from φ, a global prior over the K roles.
When Mj is a pronoun, we first draw an antecedent mention position j′, such that j′ < j,
and then we set Zj = Zj′ . The antecedent position is selected according to the distribution,

P (j′|j) ∝ exp{−γTreeDist(j’,j)}
where TreeDist(j′,j) represents the tree distance between the parse nodes for Mj and Mj′ .

4

Mass is restricted to antecedent mention positions j′ which occur earlier in the same sentence
or in the previous sentence. The sole parameter γ is fixed at 0.1. Were the focus of this task
correctly identifying pronoun antecedents, a more complex model would be necessary.

2There is one exception: the sizes of the proper and nominal head property lists are jointly generated,
but their word lists are still independently populated.

3While in principle, this process can yield word lists with duplicate words, we constrain the model during
inference to not allow that to occur.

4Sentence parse trees are merged into a right-branching document parse tree. This allows us to extend
tree distance to inter-sentence nodes.
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7.2.3 Mention Generation

Once the entity indicator has been drawn, we generate words associated with mention
conditioned on the underlying entity E and role R. For each mention property r associated
with the mention, a word w is drawn utilizing E’s word list Lr as well as the multinomials
(fr, θr) from role R. The word w is drawn according to,

P (w|E,R)=(1− αr)
1 [w ∈ Lr]
len(Lr)

+ αrP (w|θr)

For each property r, there is a hyper-parameter αr which interpolates between selecting a
word uniformly from the entity list Lr and drawing from the underlying role distribution θr.
Intuitively, a small αr indicates that an entity prefers to re-use a small number of words for
property r. This is typically the case for proper and nominal heads as well as modifiers. At
the other extreme, setting αr to 1 indicates the property isn’t particular to the entity itself,
but rather always drawn from the underlying role distribution. We set αr to 1 for pronoun
heads as well as for the governor of the head properties.

7.3 Learning and Inference

Since we will make use of unannotated data (see Section 7.4), we utilize a variational EM
algorithm to learn parameters R and φ. The E-Step requires the posterior P (E,Z|R,M, φ),
which is intractable to compute exactly. We approximate it using a surrogate variational
distribution of the following factored form:

Q(E,Z) =

(
K∏
i=1

qi(Ei)

)(
n∏
j=1

rj(Zj)

)
Each rj(Zj) is a distribution over the entity indicator for mention Mj, which approximates
the true posterior of Zj. Similarly, qi(Ei) approximates the posterior over entity Ei which is
associated with role Ri. As is standard, we iteratively update each component distribution
to minimize KL-divergence, fixing all other distributions:5

qi ← arg min
qi
KL(Q(E,Z)|P (E,Z|M,R, φ)

∝ exp{EQ/qi lnP (E,Z|M,R, φ))}

For example, the update for a non-pronominal entity indicator component rj(·) is given
by: 6

ln rj(z) ∝ EQ/rj lnP (E,Z,M|R, φ)

∝ Eqz ln (P (z|φ)P (Mj|Ez, Rz))

= lnP (z|φ) + Eqz lnP (Mj|Ez, Rz)

5See Liang and Klein (2007) for a primer on variational inference.
6For simplicity of exposition, we omit terms where Mj is an antecedent to a pronoun.
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Ment Acc. Ent. Acc.
INDEP 60.0 43.7
JOINT 64.6 54.2
JOINT+PRO 68.2 57.8

Table 7.1. Results on corporate acquisition tasks with given role mention boundaries.
We report mention role accuracy and entity role accuracy (correctly labeling all entity
mentions).

A similar update is performed on pronominal entity indicator distributions, which we omit
here for space. The update for variational entity distribution is given by:

ln qi(ei) ∝ EQ/qi lnP (E,Z,M|R, φ)

∝ E{rj} ln

P (ei|Ri)
∏
j:Zj=i

P (Mj|ei, Ri)


= lnP (ei|Ri) +

∑
j

rj(i) lnP (Mj|ei, Ri)

It is intractable to enumerate all possible entities ei (each consisting of several sets of words).
We instead limit the support of qi(ei) to several sampled entities. We obtain entity samples
by sampling mention entity indicators according to rj. For a given sample, we assume that
Ei consists of the non-pronominal head words and modifiers of mentions such that Zj has
sampled value i. We utilize 200 such samples.

During each E-Step we perform 5 iterations of updating each variational factor, which
results in an approximate posterior distribution. Using expectations from this approximate
posterior, our M-Step is relatively straightforward. The role parameters Ri are computed
from the qi(ei) and rj(z) distributions, and the global role prior φ from the non-pronominal
components of rj(z).

We note that inference is far simpler in this model relative to Chapter 6 since we assume
a fixed number of entities, one for each possible role.

7.4 Experiments

We present results on the corporate acquisitions task, which consists of 600 annotated
documents split into a 300/300 train/test split. We use 50 training documents as a develop-
ment set. In all documents, proper and (usually) nominal mentions are annotated with roles,
while pronouns are not. We preprocess each document identically to Haghighi and Klein
(2010): we sentence-segment using the OpenNLP toolkit, parse sentences with the Berkeley
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Role Id Overall

P R F1 P R F1

INDEP 79.0 65.5 71.6 48.6 40.3 44.0
JOINT+PRO 80.3 69.2 74.3 53.4 46.4 49.7
BEST 80.1 70.1 74.8 57.3 49.2 52.9

Table 7.2. Results on corporate acquisitions data where mention boundaries are not
provided. Systems must determine which mentions are template role-fillers as well as
label them. Role Id only evaluates the binary decision of whether a mention is a
template role-filler or not. overall includes correctly labeling mentions. Our best
system, see Section 7.4, adds extra unannotated data to our joint+pro system.

Parser (Petrov et al., 2006), and extract mention properties from parse trees as well as from
the Stanford Dependency Extractor (de Marneffe et al., 2006). 7

7.4.1 Gold Role Boundaries

We first consider the simplified task where role mention boundaries are given. We map
each labeled token span in training and test data to a parse tree node that shares the same
head. In this setting, the role-filling task is a collective classification problem, since we know
each mention is filling some role.

As our baseline, INDEP, we built a maximum entropy model which independently clas-
sifies each mention’s role. It uses features as similar as possible to the generative model
(and more), including the head word, typed dependencies of the head, various tree features,
governing word, and several conjunctions of these features as well as coarser versions of lex-
icalized features. This system yields 60.0 mention labeling accuracy (see Table 7.1). The
primary difficulty in classification is the disambiguation amongst the acquired, seller, and
purchaser roles, which have similar internal structure, and differ primarily in their semantic
contexts. The accuracy is 95.5 if the distinctions between these three roles are ignored.
Our entity-centered model, JOINT in Table 7.1, has no latent variables at training time in
this setting, since each role maps to a unique entity. This model yields 64.6, outperforming
INDEP.8

During development, we noted that often the most direct evidence of the role of an entity
was associated with pronoun usage (see the first it in Figure 7.1). Training our model with
pronominal mentions, whose roles are latent variables at training time, improves accuracy to
68.2. While this approach incorrectly assumes that all pronouns have antecedents amongst
our given mentions, this did not appear to degrade performance.

7We would’ve liked to have utilized the MUC-4 dataset, however this data does not have casing informa-
tion, and our approach relies heavily on syntactic parsing.

8We use the mode of the variational posteriors rj(Zj) to make predictions (see Section 7.3).
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7.4.2 Full Task

We now consider the more difficult setting where role mention boundaries are not provided
at test time. In this setting, we automatically extract mentions from a parse tree using a
heuristic approach. Our mention extraction procedure yields 95% recall over annotated role
mentions and 45% precision. Following Patwardhan and Riloff (2009), we match extracted
mentions to labeled spans if the head of the mention matches the labeled span. Using
extracted mentions as input, our task is to label some subset of the mentions with template
roles. Since systems can label mentions as non-role bearing, only recall is critical to mention
extraction. To adapt INDEP to this setting, we first use a binary classifier trained to
distinguish role-bearing mentions. The baseline then classifies mentions which pass this first
phase as before. Similar to Haghighi and Klein (2010), we add ‘junk’ roles to our model to
flexibly model entities that do not correspond to annotated template roles. During training,
extracted mentions which are not matched in the labeled data have posteriors which are
constrained to be amongst the ‘junk’ roles.

We first evaluate role identification (Role Id in Table 7.2), the task of identifying men-
tions which play some role in the template. The binary classifier for INDEP yields 71.6 F1.
Our JOINT+PRO system yields 74.3. On the task of identifying and correctly labeling role
mentions, our model outperforms INDEP as well (Overall in Table 7.2). As our model
is generative, it is straightforward to utilize totally unannotated data. We added 700 fully
unannotated documents from the mergers and acquisitions portion of the Reuters 21857
corpus. Training JOINT+PRO on this data as well as our original training data yields the
best performance (BEST in Table 7.2).9

To our knowledge, the best results on this dataset are from Siefkes (2008), who report 45.9
weighted F1, including the status field we ignore. Since their performance on the status

field (56.3) exceeds this average, it is likely fair to compare their 45.9 F1 (with status)
with our BEST system (without status) evaluated in their slightly stricter way. Our BEST

system yields 51.1.10

7.5 Conclusion

In this chapter, we have presented a joint generative model of reference resolution (from
Chapter 6) and template-filling information extraction. This model makes role decisions at
the entity, rather than at the mention level. This approach naturally incorporates informa-
tion across multiple mentions, incorporates unannotated data, and yields strong performance.
This chapter demonstrated that the entity reference resolution model developed in Chapter 6
can be used to improve the performance on an external downstream application.

9We scaled expected counts from the unlabeled data so that they did not overwhelm those from our
(partially) labeled data.

10We deterministically select mention base NP tokens, excluding determiners, which almost always matches
annotation. This is similar to the post-processing performed in Chapter 6.
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Chapter 8

Conclusion

A persistent theme over the last fifteen years is the decentralization of information. More
than ever, the information diet of the average consumer has substantially diversified; content
about people, organizations, and events is not only spread across multiple discourses, but
multiple sources (blogs, newswire, tweets, conversations, etc.). The task of disambiguating
references to these objects will become increasingly essential to allow a user to discover or
navigate large amounts of information. Models capable of ‘multiplexing’ this data in a largely
unsupervised fashion will be of particular need.

This dissertation has presented advancements in entity reference resolution, which, hope-
fully, might benefit that end. One of its central contributions is that entity reference structure
can be effectively modeled in an unsupervised fashion, allowing our approach to be deployed
to novel domains and, with some alteration, other languages. Furthermore, we hoped we
have demonstrated that entity-based approaches to such problems afford many potential
benefits: ensure consistency amongst mention usages, a coherent way to share entity across
documents, a mechanism for doing potential downstream applications (such as information
extraction in Chapter 7). While much progress has been made in reference resolution, there
remains many improvements to be made. There is still not a model which incorporated
deeper semantic and coherency tendencies (such as those described in Hobbs (1979)), there
is not a satisfactory account of nominals and their communicative intent, nor does this
approach resolve references to events.

The generative models presented here can be used for a variety of NLP tasks where
reasoning about entities or events is part of the task.1 Another possible thread of future
research is inducing a richer representation of entity properties. The model presented in
Chapter 6 uses syntactic relations ,such the proper head, for semantic properties such as
last names. It might be possible with limited supervision to incorporate richer semantic
properties in this model. Beyond improving entity reference resolution performance, the
entity properties induced by this model would be of independent use.

1Indeed, Bejan et al. (2009) present an event-coreference model based upon the work in Chapter 4.
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Our model design has been inspired by a long history of keen linguistic insight and analysis
as well as impressive advancements in structured machine learning techniques. There is a
perceived conflict in NLP between work which exercises significant linguistic insight (typically
in feature design or careful processing) and that which uses sophisticated machine learning.
We hope that one thing we have demonstrated is that elements are not in conflict, and that
modern machine learning techniques can facilitate the expression of linguistic wisdom.
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Appendix A

Overview of Dirichlet Process and
Extensions

This appendix presents a brief overview of the hierarchichal Dirichlet process (HDP) as
well as the Dirichlet Process (DP) which are used in Chapters 4 and 6. Where appropriate,
examples and terminology will be specific to the task of entity reference resolution.

A.1 Dirichlet Process

The Dirichlet process (DP) is a distribution over distributions. The DP is parametrized
by an underlying base distribution G0 as well as a scalar concentration parameter α. We use
G ∼ DP (G0, α) to denote that G is a draw from the DP. While there are many equivalent
descriptions of the DP, the one we initially use is the stick-breaking construction due to
Sethuraman (1994).

Each draw G from a DP is a discrete distribution over a countably infinite number of
samples η1, . . . , ηn, . . .. Each sample, or atom, ηi is drawn from the base distribution G0. We
use η to denote this infinite sequence of samples. The form that G takes is given by,

G(η) =
∞∑
i=1

βi1[η = ηi] (A.1)

where the {βi}∞i=1 coefficients give the probability of selecting sample ηi. Each sample ηi in
turn is drawn from the base distribution G0. The {βi} coefficients form a valid distribution
over the natural numbers: βi ≥ 0 and

∑∞
i=1 βi = 1. When one uses a DP, typically each ηi

represents the parameters of a cluster. Thus βi reflects the probability of selecting the ith
cluster. Essentially, a draw from G represents drawing a cluster index (the βi selected) and
returning the parameters (ηi) associated with that cluster.

The {βi}∞i=1 probabilities are themselves random variables. The random process used
to generate these mixture probabilities is where the stick-breaking construction gets its
name. First, we draw a collection of intermediate random variables {β′i}∞i=1, where each
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β′i ∼ Beta(1, α).1 Then we set βi to be,

βi = β′i

i−1∏
k=1

(1− β′k) (A.2)

Intuitively, the probability of selecting the ith cluster is given by not selecting the first
i − 1 elements (this corresponds to the product in Equation A.2) and then selecting the
ithe component. Note that the α concentration parameter will tend to produce smaller β′i
random variables, which in turn yields βi random variables.

We will use β to denote the countably infinite sequence {βi} and β ∼ StickBreak(α)
denote the random process discussed above for computing the integer distribution encoded
in β. Similarly, we will use η to represent a countable infinite sequence of samples from the
base distribution G0. Since these two sequences characterize a DP draw (see Equation A.1),
we will also denote a DP draw by (β,η) ∼ DP (α,G0).

A.1.1 Chinese Restaurant Process

The Chinese restaurant process (CRP) is a representation of the DP (Aldous, 1985)
that is useful for performing Markov chain Monte Carlo (MCMC) inference. The CRP
is a random process for clustering a collection of items, or, to keep with the metaphor,
customers. The CRP has a single hyper-parameter, α, which, as we will see, is connected to
the concentration parameter from Section A.1. For each customer, we assign the customer
to either one of the current clusters (or tables) or have the customer start a new table.
Let us denote the assignment of customer to a table by Zi for the ith customer. We use
Z1:n to denote the sequence of customer table assignments, where Z1:n is shorthand for the
sequence (Z1, . . . , Zn). We let K = maxi=1,...,n Zi denote the current (random) number of
existing tables. Consider a new customer. The CRP distribution over the next customer
seat assignment, Zn+1, is given by,

P (Zn+1 = k|Z1:n, α) ∝
{
nk where k ≤ K

α where k = K + 1
(A.3)

where nk is the number of Z1, . . . , Zn which have the value k. Essentially, when assigning
a cluster to a new datum, the chance of joining a cluster is proportional to the number of
datums in the cluster as well as some remaining mass (proportional to α) for a customer to
join a new table (K + 1).

The CRP is related to the DP since the posterior in Equation A.3 represents clus-
ter assignment in the DP where the β parameters have been integrated out. Con-
cretely, suppose that β ∼ StickBreak(α) and for each customer, we draw an assignment
Z ∼ Multinomial(β). If the value of Z is ≤ K, we assign the customer to that table.
Otherwise, we assign the customer to a new K + 1 table. Then the posterior probability

1The Beta distribution is a prior over binomial probabilities. The expected value from Beta(1, α) is 1
1+α .
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of P (Zn+1|Z1:n, α) is also given by Equation A.3.2 Note that in this expression, we have
integrated out the unobserved β parameters.

A.1.2 Infinite Mixture Model

The CRP is useful for models which use the DP as an infinite mixture (clustering) model
as we do in Section 4.3.2. In that setting, each cluster corresponds to an entity. Each entity
is associated with parameters φh, a multinomial distribution over possible mention heads.
Our goal with this model is to obtain samples from the posterior P (Z|H), where Z denote
the entity assignments Z1:n for the n mentions and H denotes the n mention heads H1:n.
We use φhi to denote the parameters for entity Ei. Formally, the infinite mixture model is
described by,

Draw (β,φh) ∼ DP (α,G0)

For each mention head i = 1, . . . , n,

Draw Zi|β ∼Multinomial(β)

Hi|Zi ∼Multinomial(φhZi)

The G0 base distribution is responsible for generating new entity parameters φh. In this
model, we take G0 to be Dirichlet(λH , V ) as discussed in Section 4.3.2;3 also V is the size
of the head vocabulary. Our goal during inference is to obtain samples from P (Z|H, α, λH).
We use Gibbs sampling to accomplish this and sample each Zi random variable, treating the
rest as fixed. Since, in this model, the Hi data are exchangeable,4 we can pretend that the
head we are sampling comes last. Without loss of generality, we can assume we are always
sampling the entity indicator Zn+1 for the last head Hn+1. The posterior over Zn+1 is given
by,

P (Zn+1|H1:n+1, Z1:n, α, λH) ∝ P (Zn+1|Z1:n, α)P (Hn+1|Z1:n+1, H1:n, λH) (A.4)

The first term on the right hand side can be computed using the CRP representation from
Equation A.3. The head probability can be computed by integrating over the entity param-
eters for Zn+1,

P (Hn+1|Z1:n+1, H1:n, λH) =

∫
P (φh|Z1:n+1, H1:n, λH)P (Hn+1|φh)dφh (A.5)

This decomposition holds since all heads (Hi) are independent given the head parameters
φh. Since P (Hn+1|φh) is multinomial and P (φh) is Dirichlet, we can exploit conjugacy, which
yields

P (Hn+1 = w|Z1:n+1, H1:n, λH) ∝ nw + λH (A.6)

2Note that there is implicitly a permutation over cluster indices being used to ensure that cluster indices
appear in increasing order without any ‘gaps’.

3The λH , as described in Section 4.3.2, is given by e−4.
4Formally exchangeability means the probability of H1:n is the same for any permutation.
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where nw = |{i : Zi = Zn+1, Hi = w}| is the number of heads given the same entity as Zn+1

with head w.

By repeatedly sampling cluster assignments, we are guaranteed that we will be sampling
from the true posterior over entity assignments.

A.2 Distance-Dependent Chinese Restaurant Process

In Chapter 6, the discourse module used a variant of the Chinese restaurant process
(CRP) presented in Section A.1.1. This variant is called the Distance-dependent CRP and
originates from Blei and Frazier (2009). Recalling the setup from Section A.1.1: Suppose
that there are n customers and we have assigned each a cluster index Zi. We use Z1:n denote
the sequence of existing cluster assignments. Consider the cluster assignment Z∗ to the
n + 1th customer. We also assume that we have a set of distances {di,j} between customer
i and customer j.5 Before selecting a cluster assignment Zn+1, the distance-dependent CRP
(DD-CRP) first selects an antecedent An+1, which takes values between {1, . . . , n, n + 1}.
The antecedent An+1 is selected according to the customer distances,6

P (An+1 = j|α) ∝
{

exp{−dn+1,j}, if j < n+ 1

α, if j = n+ 1
(A.7)

Once the antecedent has been chosen, the cluster assignment is selected according to,

Zn+1 =

{
ZAn+1 , if An+1 < n+ 1

K + 1, otherwise
(A.8)

The cluster assignment is stolen from the antecedent, or if there isn’t an antecedent, the
customer spawns a new cluster. Note that the DD-CRP reduces to the standard CRP if all
the distances are di,j = 0.7

A.2.1 Relationship to Discourse Module in Section 6.3.2

The discourse module described in Section 6.3.2 utilizes the DD-CRP in a particular
way. Rather than directly utilize customer distances, we instead parametrize the ‘affinities’
exp{−di,j} using a standard log-linear probability model. We also parametrize the choice of
starting a new cluster, which diverges from Blei and Frazier (2009)’s presentation. To our
knowledge, there is no existing work which learns parameters for the DD-CRP distances,
but it is a natural extension.

5These distances don’t necessarily come from a distance metric, but only need to satisfy non-negativity
and a relaxed version of the triangle inequality: di,j = 0 and dj,k imply di,k = 0.

6In Blei and Frazier (2009), he uses an arbitrary function to decay distances. This generality isn’t
necessary here, so we do not utilize it.

7This would yield a uniform choice amongst prior antecedents; thus the probability of selecting a particular
cluster is proportional to the number of elements currently in the cluster, matching Equation A.3.
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A.3 Hierarchichal Dirichlet Process

The hierarchichal Dirichlet process (HDP), described more fully in Teh et al. (2006), is
a straightforward extension of the DP (Section A.1). This extension is used in the con-
text of our cross-document entity reference resolution model (See Section 4.3.5). At a high
level, the DP is used to model clustering datasets where each datum is generated from an
underlying cluster component. The HDP is intended to be used when you have multiple
clustering datasets and the cluster components may be shared between different datasets.
For our application of entity reference resolution, the utility of sharing an entity (a clustering
component) across datums (mentions) in different datasets (documents).

The technical means by which this is achieved is relatively straightforward. Recall the
infinite mixture model described in Section A.1.2. In that model, we make a single draw
(β,η) from DP (α,G0) which is used to generate data. Suppose we have m different clus-
tering datasets and for each dataset we draw independent G(1), . . . , G(m) all from the same
underlying distribution DP (α,G0). What it means to ‘share’ a clustering component be-
tween these is that some of cluster component parameters η has mass amongst multiple G(i)

distributions. Since for each G(i), the η parameters are sampled from G0, it suffices that
G0 have a non-zero probability of generating the same atom η multiple times. In general,
for real-valued distributions, this is not the case.8 However, if the underlying G0 is itself a
DP draw, then the probability of drawing the same atom multiple times is non-zero; in fact,
depending on the setting of the concentration parameter, it can be made very likely. The
HDP model thus draws a global distribution G0 ∼ DP (α0, H) using global concentration
parameter α0 and base distribution H. Then for each clustering dataset, a DP draw is made
from DP (α,G0) as in Section A.1.2.

8For instance, the uniform distribution from [0, 1] has probability zero of ever selecting the same value
twice.
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Appendix B

Learning and Inference Details for
Chapter 4 Model

This appendix presents learning and inference details for the model presented in Chap-
ter 4. Specifically, we provide details for the models in Section 4.3.3 and 4.3.5. Learning for
the simpler models from Chapter 4 is fully explained in those sections.

B.1 Details for Pronoun Head Model

This model enriches the representation for the parameters, φ, of an entity. Each entity
draws multinomial distributions: φh (non-pronominal head distribution), φt (type distribu-
tion), φg (gender distribution), and φn (number distribution). The head distribution φh is
drawn from a symmetric Dirichlet with concentration parameter λH .1 The feature distribu-
tions (φt, φg, φt) are drawn from symmetric Dirichlet distributions with the appropriate sizes
(4,3,2 respectively) with a shared concentration parameter. We use φ = (φh, φt, φg, φt) to
collectively denote the parameters for an entity.

We now describe the mention generation module more fully. Each mention M =
(P,H, T,G,N) consists of a mention type (P ), head (H), entity type (T ), gender (G), and
number (N). In addition to entity parameters φ, there are also pronoun parameters θ. As-
suming that φ are the entity parameters for a given mention, mention generation decomposes
as,

P (H,T,G,N |φ,θ) = P (T |φt)P (G|φg)P (N |φn)

{
P (H|φh) if not pronominal

P (H|T,G,N,θ) otherwise

(B.1)
Essentially, the features (T,G,N) are generated from underlying entity parameters. Then,
generating the mention head depends on whether the mention is pronominal or not. If it is not
pronominal, it comes from the entity-specific head distribution φh, otherwise, a pronoun head

1As mentioned in Section 4.3.1, all Dirichlet hyper-parameters are e−4 unless stated otherwise.
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is generated from the pronoun parameters θ conditioned on features (T,G,N). In performing
model inference, rather than sampling (T,G,N), we integrate out these random variables.
Because of this, we can no longer analytically integrate out the (φt, φg, φt) parameters nor
the pronoun parameters θ. We instead opt to estimate these parameters. Specifically, for
each entity we have estimates for (φ̂t, φ̂g, φ̂n) as well as for the global pronoun parameters θ̂.
We use φ̂ to denote the collection of estimated entity feature parameters.2

We now describe how this affects sampling the entity indicator Z for a given mention M .
We will of course condition on other entity indicator samples Z1:n and mention heads H1:n.
If the mention is non-pronominal, the (T,G,N) are independent of the head H and can be
effectively ignored. In this case, sampling is identical as in Section 4.3.2. If the mention is
pronominal on the other hand, we must sum over the latent (T,G,N) variables. Of course
not all (T,G,N) tuples are legal settings; for instance, a non-person (T 6= person) must
have a neuter gender (G = neuter). We use V to denote these valid tuples. In English the
valid tuple constraints are:

• If G is not NEUTER then N cannot be plural

• If T is not PERSON then N must be NEUTER

• If T is PERSON then N cannot be NEUTER

The posterior probability of assigning a given pronoun mention to entity z (Z = z) is given
by:

P (Z = z|Z1:n, H1:n, α, θ̂, φ̂) ∝ P (Z = z|Z1:n, α)P (H|Z = z, θ̂, φ̂) (B.2)

= P (Z = z|Z1:n, α) (B.3) ∑
(T,G,N)∈V

P (T |φ̂tz)P (G|φ̂gz)P (N |φ̂nz )P (H|T,G,N, θ̂)

 (B.4)

The first term on the right hand side can be computed as before using Equation A.3. Each
of the terms in the summation in the second product is simply a ‘lookup’ in the appropriate
parameters. Of course, some pronouns have observed values amongst the (T,G,N) variables;
for instance, we know all values for the pronoun he (person,male,single). In such cases,
we limit the summation over tuples consistent with the observed pronoun feature values.

At the end of each sampling round, we re-estimate the (φ̂t, φ̂g, φ̂n) parameters associated
with each entity as well as the global pronoun parameters θ̂. Note that the only statistics
relevant to these distributions are the (T,G,N) counts associated with each mention usage.
The θ parameters depend on the counts of these triples and the each entity’s (φ̂t, φ̂g, φ̂n)
estimates depend only on the appropriate T ,G, or N count. We compute expected counts
over (T,G,N), denoted C(T,G,N), for each pronoun mention as follows:

C(T,G,N) ∝ P (T |φ̂t)P (G|φ̂g)P (N |φ̂n)P (H|T,G,N, θ̂) (B.5)

2φh is not included in φ̂ since these parameters can still be analytically integrated out and do not require
estimation.
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This computation uses current parameter estimates. The counts C(T,G,N) are normalized
over valid tuples for each pronoun mention. These counts are used to re-estimate parameters
for the next round of sampling entity assignments.

This represents what was done in Haghighi and Klein (2007). It is of course possible to
instead view this inference scheme as a variational approximation, where point-mass esti-
mates are made for all parameters. Without much difficulty, we can amend this approach to
accommodate full variational estimates, yielding a mixed MCMC and variational approach.
In our experiments, this gave no significant difference.

B.2 Cross Document Model

When developing the cross-document model in Section 4.3.5, we utilize the direct sam-
pler described in Teh et al. (2006). At a high level in this sampler, the CRP representation
(see Section A.1.1) is used at the document level and the stick-breaking representation (Sec-
tion A.1) is used at the global level.

In this approach, we directly sample the global entity index for each entity assignment.
In order to do this, while we marginalize out CRP parameters at the document level, the β
random variables in Figure 4.5, we instead sample the global entity mixture probabilities,
β0 random variables in Figure 4.5. In describing this model in Section 4.3.5, we left details
out about how to sample the global entity distribution β0 given entity assignments at the
document level.3

There is a subtle issue in sampling β0 from document entity counts. Suppose at the
document level we have two mentions assigned to a given entity. We do not know from this
information alone, whether both of those counts originated from the document DP drawing
from the parent global distribution, or whether one came from the global distribution and
the other from the ‘reuse’ of the entity at the document level. Given only the document
entity counts, we do not maintain this information and must sample it. Suppose we observe
m counts of an entity within a document. We can sample the number of times the use of the
entity was the result of a parent draw. We can sample this quantity, denoted m′, as follows:

m′ ← 1
for i = 2 to m do

if CoinFlip( α0

α0+i−1) then
m′ ← m′ + 1

end if
return m′

end for

These entity counts m′ are aggregated for all entities across all documents. We use
m1, . . . ,mK to denote the summed counts for all K instantiated entities (K is of course

3This sampling scheme is also present in Finkel et al. (2007) as well.
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random but determined by entity assignments). Then we sample

(β0
0 , . . . , β

1
0 , β

u
0 ) ∼ Dirichlet(m1, . . . ,mK , α0) (B.6)

where βi0 is the global entity probability for entity i and βu0 is the mass left in the global distri-
bution for unobserved entities. These probabilities are used in the direct sampler equations
in Equation 4.7.
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Appendix C

Learning and Inference Details for
Chapter 6 Model

This appendix presents inference details from Section 6.4, repeating some content as
necessary. Our learning procedure involves finding parameters and assignments which are
likely under our model’s posterior distribution P (E,Z, τ ,π|M,X). We approximate this
posterior using variational inference.

Our variational approximation decomposes model variables to facilitate learning. We
split each entity E into a type T and a collection of lists L. Each entity L consists of a
collection of lists Lr for each property. We use T for the collection of types and L for the
collection of all entity word lists. Note that there at most n entities in a document since there
are that many mentions. the entity variables. We decompose the mentions M into referring
mentions (propers and nominals), Mr, and pronominal mentions, Mp (with sizes nr and np
respectively). The entity assignments Z are similarly divided into Zr and Zp components
(with sizes nr and np respectively). For pronouns, rather than use Zp, we instead work with
the corresponding antecedent variables, denoted Ap, and marginalize over antecedents to
obtain Zp.

Given these variable decomposition, our variational approximation takes the form,

P (E,Z, τ ,π|M,X) ≈ Q(E,Z, τ ,π) (C.1)

= δr(Z
r,L)δs(τ )δd(π) (C.2)(

n∏
k=1

qk(Tk)

)(
np∏
i=1

ri(A
p
i )

)
(C.3)

The δr, δs, and δd factors place point estimates on a single value, just as in hard EM. The
{qi} and {rj} are full variational factor distributions over the appropriate random variable.
Mean-field inference optimizes each factor in turn, keeping the others fixed. Each update to
a factor q takes the form:

q ← arg min
q
KL(Q(E,Z, τ ,π)|P (E,Z, τ ,π|M,X)) (C.4)
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In the case of a mean-field decomposition, this update takes the form:

q(x) ∝ exp
{
EQ/q lnP (E,Z, τ ,π,M, x|X)

}
(C.5)

where Q/q represents the variational approximation factors except the currently updated
q. In essence, the new variational probability of the q(x) is proportional to plugging x into
the log-likelihood of the model and computing the expected log-likelihood given the other
variational factor estimates. For a point-mass factor, the update must just find the setting of
x which maximizes the right hand side above. The above updates are simplified in practice
since any term in the model likelihood which do not depend on the updated variables can
be safely ignored. The only model factors that are relevant are those in the markov blanket
of the random variable.

We now fully provide more details regarding each factor update:

Updating type parameters δs(τ ): The type parameters τ consist of several multinomial
distributions which can be updated by normalizing expected counts as in the EM algorithm.
The prior P (τ |λ) consists of several finite Dirichlet draws for each multinomial, which are
incorporated as pseudocounts. The relevant distribution hyper-parameters are: The θr pa-
rameters are drawn from a symmetric Dirichlet distribution with a concentration of 1. The
fr distribution is drawn from a 21-dimensional asymmetric Dirichlet with concentrations set
to 10−0.5k, where k = 0, . . . , 20 is the list length. This initially encourages all lists to be short.
The φ distribution is drawn from a symmetric Dirichlet with concentration 10 to encourage
the type prior not to be too skewed.

We fully describe how expected counts are obtained for parameters (θr, fr) for a fixed
property r (say NAM-HEAD) and for a fixed type T . Suppose we have the δr(Z

r,L)
estimate for all entities. This factor encodes concrete referring mention entity assignments
and the (deterministically obtained word lists L, see below for more details). For each entity

list L(i) ∈ L and for each word w ∈ L(i)
r , we accrue a qi(T ) count of that word to reflect the

uncertainty over the entity type. Similarly, for each list L
(i)
r we accrue an observation of the

list length |L(i)
r | towards the expected sufficient statistics for the fr distribution. For each

referring mention, we look at the (possibly empty) set of word(s) associated with property
r. Then for the entity list Lr associated with that entity and property, we compute the
expected count,

(αr)θr
Uniform(Lr) + (αr)θr

and accrue that towards the expected counts for the new θr estimate. This count reflects
the expected count of whether given word usage came from the entity list or from the type
unigram distribution. Note that if the property r has αr = 0, we do not bother with this step.
Likewise, when αr = 1, as is the case for pronoun and governor properties, we increment the
appropriate θr sufficient statistics by qi(T ).

In the particular case of a pronoun mention mp
j . We loop over potential antecedents Apj

and potential types T and increment the appropriate θr distributions by rj(A
p
j)qZr

A
p
j

(T ).
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Updating discourse parameters δd(π): The learned parameters for the discourse mod-
ule rely on pairwise antecedent counts for assignments to nominal and pronominal mentions.1

Given these expected counts, which can be easily obtained from other factors, the update
reduces to a weighted maximum entropy problem, which we optimize using LBFGS. This
problem is very similar to the sort described by Berg-Kirkpatrick et al. (2010).

For a single pronoun, we present the form this problem takes. Consider a pronoun. We
have a current estimate rj(A

p) over the potential antecedents. We treat the variational
posterior over Apj as fractional observed counts. We use ĉ(Apj) to denote these ‘empirical’
counts. As a model, our discourse component, for any setting of the parameters π has a
model distribution over Apj given by,

Pπ(Apj = i) ∝ exp{πTf(i, j)} (C.6)

for antecedent positions i.2 Then we select π to maximize the model log-likelihood of our
observed counts:

arg max
π

∑
i

ĉ(i) logPπ(Apj = i) (C.7)

Of course when we update π, we collect counts from all antecedent choices from all pronom-
inal and nominal mentions. For pronominal mentions, we take such expected counts directly
from ri(A

p
i ). For nominals mentions, which may only have proper and nominal antecedents,

we compute Q−δd(A
r
i ), which involves normalizing the antecedent prior over antecedent men-

tions assigned to the same entity as the current mention.

We also assume that P (π|σ2) is a zero-centered normal distribution with shared diagonal
variance σ2, which is incorporated via L2 regularization during optimization of the above
criterion. We set σ2 = 0.5 for all experiments.

Updating δr(Z
r,L): We utilize a sequential beam search to find an approximation to

the optimal referring mention entity assignments as well as the entity word lists of each
instantiated entity. At the ith step of the search, we maintain a set of hypotheses over
Zr
<i = (Zr

1 , . . . , Z
r
i−1). We associate a Zr

<i hypothesis, with the optimal entity lists, L, given
the hypothesis entity assignments. Essentially, given entity assignments to mentions, we
can compute the optimal word list for each attribute based on attribute word frequencies in
assigned mentions and current parameters τ . This depends on the fact that all attributes
associated with pronoun mentions have αr set to 1 (Section 6.3.3), and thus have no en-
tity word lists. We also marginalize over antecedent random variables Ai. We extend this
hypothesis to one over Zr

<i+1, by adding M r
i to an existing entity in Zr

<i or by starting a
new one. We can compute the score of these hypotheses efficiently by only computing the
delta score associated with incorporating a new mention into an existing hypothesis. For
our experiments, we limited the number of hypotheses on the beam to the top fifty and
did not notice an improvement in model score from increasing beam size. Many of these

1Propers have no learned discourse parameters.
2Recall pronouns are not allowed to start their own cluster and can only select from mention positions

and the last two sentences.
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computations can done efficiently by caching and sharing computations amongst hypotheses
with similar partition structure.

Updating pronominal antecedents ri(A
p
i ) and entity types qk(Tk): These updates

are straightforward instantiations of the mean-field update (C.4). The pronoun antecedent
update is given by,

ln ri(A
p
i = j) ∝ lnP (Api = j|π)+
n∑
k=1

Q−ri(Zj = k)Eqk logP (Mi|Ek)

The Q−ri(Zj = k) term is the probability of the potential antecedent Mj being assigned
to entity k. If Mj is a referring mention then Q−ri(Zj = k) = 1[Zr

j = k], using the
factor δ(Zr,L); there is only one entity that has mass for this mention in the variational
posterior approximation. If the antecedent is a pronoun, we can recursively compute the
entity assignment distribution by looking at this antecedent’s antecedent. Since pronouns
are not allowed to initiate a pronoun, this process terminates.

The type factor is applied to each of the entities and is given by,

ln qk(Tk = t) ∝ logP (Tk = t|φ) + logP (L(k)|Tk = t, τ )
n∑
i=1

Q−qk(Zi = k) logP (Mi|L(k), Tk = t, τt)

The summation term loops over all mentions and weighs the variation probability of that
mention being assigned the current entity. The logP (Mi|L(k), Tk = t, τt) term utilizes the
current estimate L(k) of the entity lists associated with the entity.

Updates are performed until convergence. To produce our final coreference partitions,
we assign each referring mention to the entity given by the δr factor and each pronoun to
the most likely entity given by the ri.
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