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Abstract

In information theoretic analysis of communication over MIMO broadcast channels, two extreme assumptions about availability

of the channel state information (CSI) at the base station are usually made; either perfect CSI is available at the transmitter, or

no CSI is available at all. However, in practical systems, there is usually CSI feedback but the feedback is subject to delays.

Conventionally, this issue is alleviated through prediction of the current CSI using the available outdated one. However, as the

delay becomes larger or the coherent time becomes smaller, the prediction-based schemes fail and offer no gain beyond noCSI

case. This observation supports the popular belief that in such cases, delayed feedback is not useful at all.

In this paper, we disprove this conjecture and show that evenwhen the delay is arbitrary large or the coherent time is arbitrary

small, channel feedback can still unboundedly improve the throughput. Indeed, the delayed feedback can increase the degree of

freedom (DoF) of the channel. In particular, we focus on a time-varying Gaussian broadcast channels withk transmit antennas

andk single-antenna users and assume that users causally have the perfect CSI, but transmitter receives CSI with some delays. We

show that even if the channel state varies independently over time, the degrees of freedom of k

1+ 1
2
+...+ 1

k

is achievable. Moreover,

we establish that if all users experience CSI, with identical distribution, varying independently over time, then thisis the optimal

DoF.

I. I NTRODUCTION

In multiple-antenna broadcast channels, a base station, equipped with more than one antenna, services multiple users

simultaneously. The base station relies on the knowledge ofchannel state information (CSI) to manage or cancel out the

cross interference among concurrent data streams. Consequently, the assumption about the knowledge of the base station about

CSI would strongly affect the rate region that the base station can support.

In information theoretic analysis of multiple-antenna broadcast channels, it is mainly assumed that the channel is time–

invariant and frequency flat, where the perfect CSI is available at the transmitter (CSIT) and all receivers (CSIR). Under

such assumptions, the capacity of multiple-antenna Gaussian broadcast channel is well understood. Initially in [1], followed

by [2]–[4], it is shown that dirty-paper coding with Gaussian input distribution can achieve the sum-capacity. Later in[5], it

is shown that this scheme achieves the entire capacity region [5]. Using the result of [2]–[5], it is easy to see that degrees

of freedom (DoF) of the multiple-antenna broadcast channelwith perfect CSIT and CSIR is the minimum of the number of

transmit antennas, and total number of receive antennas. The full DoF of the channel can be achieved using simple precoding

techniques such as zero-forcing schemes.

Another extreme assumption is the case where the perfect CSIis available at the receivers but not available at the base

station. In this case, the capacity or even DoF of the channelis generally unknown. In [6], it is shown in a system with

two-antenna base station and two single-antenna receivers, where channel realization are time varying, under some general
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conditions, DoF is upper-bounded by43 . This outer-bound is valid if the base station has a quantized version of the channel

state information with non-vanishing quantization error.However, in terms of achievability, no scheme has been reported to

attain any DoF greater that one, under the assumptions of [6], and therefore there is an unbounded gap between the best

available outer-bound and inner-bound for the throughput of the system. However, in some particular cases, the gap of DoF is

closed. The first one is the case where both channel vectors have the same marginal distributions, In this case, the channel is

degenerate and the optimal DoF is just one [1]. This result has been extended to a more general isotropic channel in [7]. The

second case is compound broadcast channels with anM -antenna base station andK single antenna users, where the channel of

each user is selected from a finite set. It is shown that the DoFof that channel is MK
M+K−1 , almost surely, where the cardinality

of each set is greater thanM [8], [9]. The scheme of [8], [9] is based on ignoring the cooperation among transmit antennas,

and using the idea of interference alignment over rational field proposed in [10] for time-invariant frequency-flat channels.

In practical systems, we do not have any of the above extreme cases. Generally, the CSI is estimated at the side of the

receivers, and then fed back to the base station, through a finite-rate feedback channel. Therefore, the access of the base station

to the accurate channel state is limited by two factors:

• Quantization Error:The limited rate of feedback channel restricts the accuracyof the CSI at the base station. However,

if the rate of feedback linearly increases withlog2(SNR), then zero-forcing scheme can still achieve the full DoF of the

channel [11]. Therefore, if the data-rate of feedback is high enough, we can still mitigate interference effectively.

• Delay: Generally in wireless systems, the CSI is provided to the base station with some delays. The delay comes from

the fact that, the users need some times to receive pilots, estimate CSI, and then feed it back to the base station in a

relatively long coding block. Therefore, when the channel information arrives to the base station, the channel state has

already changed. Therefore, the base station has always access to the outdated channel information which may not be

good enough for interference management. There is considerable number of literature dealing with this problem through

exploiting the channel correlation in time to predict the channel state information. However, as the coherent time of the

channels becomes smaller, due to higher mobility for example, then the current state of the channel reveals no reliable

information about the future states, and therefore the schemes relying on channel prediction offers no gain beyond no–CSIT

gain. That observation suggest that in fast fading environment, the delayed channel feedback is not useful at all.

Here in this work, we focus on the second issue and show that, contrary to popular belief, even if the channel state information

are completely independent in time, the delayed channel feedback can still be extremely useful. More precisely, the outdated

channel information at the base station can change the DoF ofthe channel.

The capacity of the channels with feedback is first considered by Shannon [12]. He proved that in memoryless point-to-

point channel, feedback does not improve the capacity. In [13], Schalkwijk and Kailath proposed a novel approach based on

iteratively improving the error at the receiver and showed that feedback can improve the error exponent for the point-to-point

memoryless channels. In [14], it is shown that in memorylessphysically broadcast degraded channels, feedback cannot enlarge

the capacity region. In [15], the scheme of Schalkwijk and Kailath has been extended to show that feedback can increase the

capacity region of the single-antenna two-user broadcast channel, but just boundedly. We note that the single-antennaGaussian

channel is statistically, but not physically, degraded. For outer-bound in [15], the original channel is improved by giving the

received signal of one user to the other user as a genie and forming a physically degraded broadcast channel. Then as shown

in [14] feedback is not helpful for the resultant degraded broadcast channel and thus the capacity region can be computed.

In [16], a signaling scheme is proposed for a broadcast channel with two packet erasure receivers where the transmitter receives
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acknowledgement feedback from both receivers. The signaling scheme is as follows. The transmitter sends packages for each

receiver separately. If a packet is received by the intendedreceiver, then no extra effort is needed for that packet. Butif a

packet is received by the non-intended receiver, that receiver keeps that packet for later coding opportunity as follows. Let

say packetx1 intended for user one is received by user two, and packetx2 intended by user two is received by user one.

In this case, the transmitter sends(x1 XOR x2). Then if user one receives it, it can recoverx1 by subtractingx2, and if

user two receives it, it can recoverx2 by subtractingx1. The XOR scheme has been initially proposed back in 1993 in [17]

for a broadcast channel with several packet erasure receivers and acknowledgement feedback, where all receivers requires all

messages. In [18], the outer-bound of [15] is used to show that the scheme of [16] is optimal. In [19], the idea of [16] is

extended to more than two users, when all users have identical erasure probability. What we are doing here in this paper has

been motivated by the results of [16]–[19] for packet erasure channels. Moreover, these results have some connection with

the concept of index coding as well.

Here we assume that the channel state information is changing fast over time. Indeed, the channel realization at each time

is statistically independent from the channel realizationat other times. In addition, the base station has channel information

with some finite delays. Therefore, always the base station has outdated channel information. Still, we will show that wecan

achieve DoF more than one.

II. PROBLEM FORMULATION

We consider a complex broadcast channel withM transmit antennas andK receivers, each equipped with a single antenna.

In flat fading environment, this channel can be modeled as,

y[r](m) = h
[r]†(m)x(m) + z[r](m), r = 1, . . . ,K, (1)

wherex(m) ∈ CM×1, E(x†(m)x(m)) ≤ P , zs(m) ∼ C(0, 1) and the sequencesz[r](m)’s are i.i.d. and mutually independent.

In addition,h[r]†(m) = [h
[r]
1 (m), . . . , h

[r]
M (m)] ∈ C1×M . We defineH(m) asH(m) = [h[r](m), . . . ,h[r](m)].

We assume that the channel state information of each receiver is available to that receiver at each time, but is availableto

the base station and other receivers with some finite unit delay. Without loss of generality, we assume that this delay is one

unit.

Let us defineE asE = {1, 2, . . . ,K}. We assume that for any subsetS of the users,S ⊂ E , the base station has a message

W [S] with rateR[S]. For example, messageW [{1,2}], or simplyW [1,2], is for users one and two. We defined[S], as

d[S] = lim
P→∞

R[S]

log2(P )
. (2)

If |S| = q, then we callW [S] as a degree–q message or a message with degreeq. We defineq–degrees of freedom,

DoFq(M,K), as

DoFq(M,K) = lim
P→∞

max
R̄∈C(P )

∑

S,|S|≥q

R[S]

log2(P )
, (3)

whereC(P ) denotes the capacity region of the channel, andR̄ ∈ R
(2K−1)×1 denotes the vector of the message rates for each

subset of users. It is easy to see that

DoFq(M,K) = lim
P→∞

max
R̄∈C(P )

∑

S,|S|=q

R[S]

log2(P )
. (4)

We note thatDoF1(M,K) is the well-known notion as the DoF of the channel.

In this paper, we denote the achievedq–degrees of freedom by DoFq(M,K). Apparently, DoFq(M,K) ≤ DoFq(M,K).
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III. C ONTRIBUTIONS

Theorem 1 If M ≥ K − j + 1, thenDoFj(M,K) is given by

K − j + 1

j

1

DoFj(M,K)
=

1

j
+

1

j + 1
+ . . .+

1

K
. (5)

In particular, if M = K, then

DoF1(K,K) =
K

1 + 1
2 + . . .+ 1

K

. (6)

For example,DoF1(2, 2) = 4
3 and DoF1(3, 3) = 18

11 , which are greater than one. Without channel feedback, the channel is

degenerate andDoF1(K,K) is just one. In addition, since the channel states are independent over time, then predicting the

channel state and then using conventional schemes like zero-forcing is not an option. The scheme is based on going through

some phases, where in each phase, some side-information is provided to the users, which are efficiently exploited in the future

phases.

Theorem 2 In the channel, modeled in Section II, DoFj(M,K), for j = 1, . . . ,K, is achievable, where where DoFK(M,K) =

1 and

qj + 1

j

1

DoFj(M,K)
=

1

j
+

qj

j + 1

1

DoFj+1(M,K)
, (7)

whereqj = min{M − 1,K − j}.

This theorem extends the achievable scheme of 1 to the cases,whereM < K − j + 1.

Theorem 3 In broadcast channel, modeled in Section II, we have
(
K−1
j−1

)

min{1,M}
+

(
K−2
j−1

)

min{2,M}
+ . . .+

(
j−1
j−1

)

min{K − j + 1,M}
≥

(
n
j

)

DoFj(M,K)
(8)

This theorem provides an outer-bound for the DoF of the channel. This outer-bound is based on providing specific genie to some

users and enhance the channel to a physically degraded broadcast channel. In physically degraded channel, feedback does not

improve the capacity and therefore can be ignored. We show that this outer–bound is tight for the case whereM ≥ K− j+1.

IV. A CHIEVABLE SCHEME FORTHEOREM 1

In this section, we explain the achievable scheme for the case that number of transmit antennas are the same with the number

of users, i.e.M = K. For simplicity, we first explain the idea for two special cases:M = K = 2 andM = K = 3.

A. Achievable Scheme forM = K = 2

In this subsection, we explain the achievable scheme for thecase whereM = K = 2. In particular, we show that the DoF

of 4
3 is achievable. We explain the achievable scheme from three different perspectives:

1) Interference Alignment using Outdated CSIT

2) Exploiting Side-Information

3) Generating Higher-Degree Messages
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1) Interference Alignment using Outdated CSIT: Let u[r]
1 andu

[r]
2 be two independently encoded Gaussian codewords,

each carries one degree of freedom, intended for userr, r = 1, 2. The proposed communication scheme is performed in two

phases, which totally take three time slots as follows:

Phase One: Feeding the Receivers:This phase has two sub-phases, each sub-phase includes one time slot.

The first sub-phase, including just one time-slot, atm = 1, is dedicated to user one. At this sub-phase, the base station

transmits the two data streams,u
[1]
1 andu[1]

2 , intended for user one, i.e.

x(1) =




u
[1]
1

u
[1]
2



 . (9)

At receivers, we have:

y[1](1) = h
[1]
1 (1)u

[1]
1 + h

[1]
2 (1)u

[1]
2 + z[1](1), (10)

y[2](1) = h
[2]
1 (1)u

[1]
1 + h

[2]
2 (1)u

[1]
2 + z[2](1). (11)

Therefore, user one receives a noisy version of a linear combination from desired signals, while user two overhears a noisy

version of an equation from interference data streamsu
[1]
1 and u

[1]
2 . User two saves the overheard equation for later usage,

although it only carries interference information.

The second sub-phase of phase one, which includes just time-slot, at m = 2, is dedicated to the second user. In this

sub-phase, the base station transmits data streams intended for user two, i.e.

x(2) =




u
[2]
1

u
[2]
2



 . (12)

At receivers, we have:

y[1](2) = h
[1]
1 (2)u

[2]
1 + h

[1]
2 (2)u

[2]
2 + z[1](2), (13)

y[2](2) = h
[2]
1 (2)u

[2]
1 + h

[2]
2 (2)u

[2]
2 + z[2](2). (14)

Therefore, user two receives a noisy version of an equation from desired signals, while user one overhears an equation from

interference data streams of user two. Again, user one savesoverheard message for future usage.

Now we have a key observation: If user one has the overheard equation by user two, then it has enough equations to resolve

its own messages. Similarly, if user two has the overheard equation by user one, then it has enough equations to resolve its

own message. Therefore, the main mission of the second phaseis to swap these two overheard equations through the base

station.

Phase Two: Swapping Overheard Equations:This phase includes one sub-phase, which takes one time slot, at m = 3. In

this time, the base station transmits a linear combination of the overheard equations. We note that at this time transmitter is

aware of the channel state information atm = 1 andm = 2, therefore, it can from the overheard equations.

As a particular example,x(3) is formed as,

x(3) =




1

0





(

h
[2]
1 (1)u

[1]
1 + h

[2]
2 (1)u

[1]
2 + h

[1]
1 (2)u

[2]
1 + h

[1]
2 (2)u

[2]
2

)

. (15)

At receivers, we have,

y[1](3) = h
[1]
1 (3)

(

h
[2]
1 (1)u

[1]
1 + h

[2]
2 (1)u

[1]
2 + h

[1]
1 (2)u

[2]
1 + h

[1]
2 (2)u

[2]
2

)

+ z[1](3), (16)

y[2](3) = h
[2]
1 (3)

(

h
[2]
1 (1)u

[1]
1 + h

[2]
2 (1)u

[1]
2 + h

[1]
1 (2)u

[2]
1 + h

[1]
2 (2)u

[2]
2

)

+ z[2](3). (17)
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Putting together the symbols received by user one over the three time slots, we have,







y[1](1)

y[1](2)

y[1](3)







=








h
[1]
1 (1) h

[1]
2 (1)

0 0

h
[1]
1 (3)h

[2]
1 (1) h

[1]
1 (3)h

[2]
2 (1)








︸ ︷︷ ︸

Rank Two




u
[2]
1

u
[1]
2



+








0 0

h
[1]
1 (2) h

[1]
2 (2)

h
[1]
1 (3)h

[1]
1 (2) h

[1]
1 (3)h

[1]
2 (2)








︸ ︷︷ ︸

Rank One




u
[1]
1

u
[2]
2



+








z[1](1)

z[1](2)

z[1](3)







.

(18)

Then it is easy to see that at user one, the two interference streamsu[2]
1 andu[2]

2 arrived at the same directions, and therefore

u
[2]
1 andu[2]

2 are aligned. It means that from the first user’s perspective,the two variablesu[2]
1 andu[2]

2 collapse to one variable,

which is h[1]
1 u

[2]
1 + h

[2]
1 u

[2]
2 . Eliminating variableh[1]

1 u
[2]
1 + h

[2]
1 u

[2]
2 from (18), we have,




y[1](1)

y[1](3)− h
[1]
1 (3)y[1](2)



 =




h
[1]
1 (1) h

[1]
2 (1)

h
[1]
1 (3)h

[2]
1 (1) h

[1]
1 (3)h

[2]
2 (1)








u
[1]
1

u
[1]
2



+




z[1](1)

z[1](3)− h
[1]
1 (3)z[1](2)



 . (19)

It is easy to see that as long ash[1]
1 (3) 6= 0 and h

[1]
1 (1)h

[2]
2 (1) − h

[1]
2 (1)h

[2]
1 (1) 6= 0, then the desired data streams are not

aligned at receiver one and can support the two desired data streams. We note that ath[1]
1 (1)h

[2]
2 (1) − h

[1]
2 (1)h

[2]
1 (1) is the

determinant of the channel matrixH(1). Indeed, in this scheme, user one borrows the antenna of the second user at time slot

m = 1 to be able to support two data streams.

Similarly, we have







y[2](1)

y[2](2)

y[2](3)







=








0 0

h
[2]
1 (2) h

[2]
2 (2)

h
[2]
1 (3)h

[1]
1 (2) h

[2]
1 (3)h

[1]
2 (2)








︸ ︷︷ ︸

Rank Two




u
[2]
1

u
[2]
2



+








h
[2]
1 (1) h

[2]
2 (1)

0 0

h
[2]
1 (3)h

[2]
1 (1) h

[2]
1 (3)h

[2]
2 (1)








︸ ︷︷ ︸

Rank One




u
[1]
1

u
[1]
2



+








z[2](1)

z[2](2)

z[2](3)







.

(20)

Again at user two, the two interference streamsu
[1]
1 andu[1]

2 arrived at the same directions, and therefore are aligned. Then,

we have,



y[2](2)

y[2](3)− h
[2]
1 (3)y[1](1)



 =




h
[2]
1 (2) h

[2]
2 (2)

h
[2]
1 (3)h

[1]
1 (2) h

[2]
1 (3)h

[1]
2 (2)








u
[2]
1

u
[2]
2



+




z[2](1)

z[2](3)− h
[2]
1 (3)z[1](1)



 . (21)

Similarly, as long ash[2]
1 (3) 6= 0 anddet(H(2)) 6= 0, then the desired data streams are not aligned at receiver two and can be

resolved. Indeed, in this scheme, user two borrows the antenna of the first user at time slotm = 2 to be able to support two

data streams.

2) Exploiting Side-Information: So far, we have investigated the proposed solution as an alignment technique using outdated

CSI. Now, we revisit the problem as a side information problem.

As explained above, the algorithm has two phases, where phase one has two sub-phases and each sub-phase dedicated to

one of the users and takes only one time slot. For simplicity let us define some short-hand notations. In phasep, we denote

the sub-phase dedicated to the set of usersS as S-Ph(p;S). For example, the sub-phase of phase one dedicated to user one is

denoted by S-Ph(1; {1}) or simply S-Ph(1; 1). In addition, we defineL[r]
t (p;S) as the linear combination of transmitted signal

received by userr in the tth time slot of the sub-phase S-Ph(p;S). If a sub-phase has only one time slot, then we dropt for

simplicity and useL[r](p;S). For example, the linear combination received by user 2 in the only time slot of S-Ph(1; 1) is

denoted byL[2]
1 (1; {1}) or simplyL[2](1; {1}), or even in a more simpler form ofL[2](1; 1).
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TABLE I

SIGNALING SCHEME FORM = K = 2

Phase 1 (Feeding the Receivers) 2 ( Swapping Information )

Sub-Phase S-Ph(1;1) S-Ph(1;2) S-Ph(2; 1 ,2)

m 1 2 3

Tx 1 u
[1]
1 u

[2]
1 L[2](1; 1) + L[1](1; 2)

Tx 2 u
[1]
2 u

[2]
2 0

y[1](m) − z[1](m) L[1](1; 1) L[1](1; 2) L[1](2; 1, 2) = h
[1]
1 (3)(L[2](1; 1) + L[1](1; 2))

y[2](m) − z[2](m) L[2](1; 1) L[2](1; 2) L[2](2; 1, 2) = h
[2]
1 (3)(L[2](1; 1) + L[1](1; 2))

The transmission scheme has been summarized in Table I. We note that ifH(1) is full rank, then there is a one-to-one map

between(u[1]
1 , u

[1]
2 ) and(L[1](1; 1), L[2](1; 1)). Similarly, if H(2) is full rank, then there is a one-to-one map between(u

[2]
1 , u

[2]
2 )

and (L[1](1; 2), L[2](1; 2)). Therefore, one can call(L[1](1; 1), L[2](1; 1)) as the symbols desired by user one. Similarly, one

can say that user two requires to resolve(L[1](1; 2), L[2](1; 2)), instead ofu[2]
1 andu[2]

2 . By the end of the first phase, user one

has (noisy version of) desired signalL[1](1; 1), while user two has the (noisy version of) desired signalL[2](1; 2). Meanwhile,

user one overhears (a noisy version of)L[1](1; 2), as interference, while user two requires it. Similarly user two overhears

(a noisy version of)L[2](1; 1), as interference, while user one needs it. In the second phase, users one and two exploit

the availability of side information to swapL[1](1; 2) andL[2](1; 1) in just one time slot. In this phase, base station sends

L[1](1; 2) + L[2](1; 1). User one already has a noisy version ofL[1](1; 2), therefore, it can cancel out the contribution of

L[1](1; 2) from y[1](1; 3), and provide a noisy version ofL[2](1; 1). Therefore, it hasL[1;1](1)+ z[1](1) from the first time-slot

andh[1]
1 (3)L[2](1; 1) + z[1](3)− h

[1]
1 (1)z[2](1) from the last time-slot. We have similar situation for user two.

Remark: In this scheme, we assume that in the first time slot, transmitantenna one sendsu[1]
1 and transmit antenna two

sendsu[1]
2 . However, antenna one and two can sends any random linear combination ofu[1]

1 andu[1]
2 . Therefore, for example,

we can have

x(1) = A(1)




u
[1]
1

u
[1]
2



 , (22)

whereA(1) ∈ C
2×2 is randomly selected matrices. Similar statement is true for the second time slots. At time slotm = 3, we

sendL[1](1; 2) + L[2](1; 1). However, we can send any combination of combinationL[1](1; 2) andL[2](1; 1). In other words,

x(3) = A(3)




L[1](1; 2)

L[2](1; 1)



 , (23)

whereA(3) ∈ C2×2 is randomly selected matrices. However, we can limit the choice of A(3) to rank one matrices, while

rank two matrices also work.

Remark: We note that only the number of independent noisy equations that each user has is important. As long as the

variance of the noise of each equation is upper bounded and greater that a constant positive number, it does not affect DoF.

Therefore, in what follows, we ignore noise and try to count the number of independent equations.

3) Generating Higher Degree Messages: We can observe the achievable scheme from another perspective. Remember

in the second phase, we send a linear combination ofL[1](2; 2) and L[2](1; 1), e.g. L[1](2; 2) + L[2](1; 1), to both users.

Indeed, we can considerL[1](2; 2) + L[2](1; 1) as a degree two symbols, required by both receivers. Let us define u[1,2] as

u[1,2] = L[1](2; 2) + L[2](1; 1). Clearly, we need 1
DoF2(2,2)

time slots to deliveru[1,2] to both receivers. Therefore, in total, we
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need2 + 1
DoF2(2,1)

to deliver four data streamsu[1]
1 , u[1]

2 , u[2]
1 , andu[2]

2 to the designated receivers. Thus, we have,

DoF1(2, 2) =
4

2 + 1
DoF2(2,2)

, (24)

or

2

DoF1(2, 2)
= 1 +

1

DoF2(2, 2)
. (25)

It is easy to see that we can achieve DoF2(2, 2) = 1 by simply sendingu[1,2] to both receivers. Therefore, DoF1(2, 2) =
4
3 is

achievable.

Indeed, Phase One deals with two messages with degree one foreach receiver. It takes two time slots to deliver one desired

equation to each of the receivers. Therefore, each receiverneeds one more equation to resolve the desired signals. If weignore

the overheard equations, we need two more time slots to deliver one more equation to each receiver and yield the DoF of one.

However, by exploiting the overheard equations, we can forma symbol with degree two. Delivering one symbol with degree

two to both receivers takes only one time slot, however, it provides one useful equation to each of the users. Therefore using

this scheme, we save one time slot and achieve DoF1(2, 2) =
4
3 rather than4

4 .

B. Three Transmit antennas, Three Receivers

In this section, we show how we achieve DoF of 3
1+ 1

2+
1
3

= 18
11 for the channel with three-antenna base station and three

single-antenna receivers. As explained in the previous subsection, we can observe the achievable scheme in three different

perspective. However, we found the last perspective simpler to follow. Therefore, in the rest of the paper, we just explain the

algorithm based on the third perspective.

The achievable scheme has three phases. Phase One takes messages with degree one and generates degree two messages.

Phase Two takes degree two symbol and generates degree threemessages. The last phase takes degree three messages and

deliver them to all three users.

Phase One:

Phase one is based a sub-algorithm with takes three messagesfor each user and generate three symbols with degree two.

Assume thatu[r]
1 , u[r]

2 , andu[r]
3 represent three data streams, independently Gaussian encoded, each carries one DoF for userr,

r = 1, 2, 3. Therefore, in total, there are9 data streams. The sub-algorithm has three sub-phases, where each sub-phase takes

only one time slot and is dedicated to one of the users. In S-Ph(1; 1), the base station sends random linear combinations of

u
[1]
1 , u[1]

2 , andu[1]
3 over the three antennas. Similarly, in S-Ph(1; 2), the base station sends random linear combinations ofu

[2]
1 ,

u
[2]
2 , andu[2]

3 over the three antennas. In S-Ph(1; 3), the base station sends random linear combinations ofu
[3]
1 , u[3]

2 , andu[3]
3

over the three antennas. In Table II, this phase has been detailed, where to be specific, we assume that in S-Ph(1; r), transmit

antennai transmitsu[r]
i .

So far the algorithm has taken three time slots and deliveredthree desired equations to the designated receivers. Therefore,

in terms of counting the desired equations, the algorithm delivers one equation per time slot which is natural progress.If we

ignore the overheard equations, then we need six more time slots to deliver the messages, which yields DoF of one. However,

as seen in the previous example, the overheard equations canhelp us to improve the degrees of freedom.

Let us focus on the sub-phase dedicated to user one, i.e. S-Ph(1; 1). Then, we have the following important observations:

• The three equationsL[1](1; 1), L[2](1; 1), andL[3](1; 1) forms three linearly independent equations ofu
[1]
1 , u[1]

2 , andu[1]
3 ,

almost surely. In the particular example of Table II, ifH(1) is full rank, thenL[1](1; 1), L[2](1; 1), andL[3](1; 1) are

linearly independent.
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TABLE II

SIGNALING SCHEME FORM = K = 3, PHASE ONE

Phase 1 (Feeding the Receivers)

Sub-Phase S-Ph(1; 1) S-Ph(1; 2) S-Ph(1; 3)

Tx 1 u
[1]
1 u

[2]
1 u

[3]
1

Tx 2 u
[1]
2 u

[2]
2 u

[3]
2

Tx 3 u
[1]
3 u

[2]
3 u

[3]
3

y[1](m) − z[1](m) L[1](1; 1) L[1](1; 2) L[1](1; 3)

y[2](m) − z[2](m) L[2](1; 1) L[2](1; 2) L[2](1; 3)

y[3](m) − z[3](m) L[3](1; 1) L[3](1; 2) L[3](1; 3)

• If we somehow deliver the overheard equationsL[2](1; 1) and L[3](1; 1) to user one, then it has enough equations to

resolveu[1]
1 , u[1]

2 , andu[1]
3 .

• The two overheard equationsL[2](1; 1) andL[3](1; 1) plus the equation received by user one i.e.L[1](1; 1), fully represent

the original data streams. Therefore, the information required to be resolved is already available at the receivers’ sides,

but not exactly at the desired receiver.

We have similar observations about the received equations in S-Ph(1; 2) and S-Ph(1; 3). Remember that originally the

objective was to deliveru[r]
1 , u[r]

2 , andu[r]
3 to userr. After these three transmissions, we can redefine the objective. The new

objective is to deliver (i) the overheard equationsL[2](1; 1) andL[3](1; 1) to user one, (2) the overheard equationsL[1](1; 2)

andL[3](1; 2) to user two, and (3) the overheard equationsL[1](1; 3) andL[2](1; 3) to user three.

Let us defineu[1,2] as a random linear combination ofL[2](1; 1) andL[1](1; 2). To be specific, letu[1,2] = L[2](1; 1) +

L[1](1; 2). Then we have the following observations:

• If user one hasu[1,2], then it can use the saved overheard equationL[1](1; 2) to formu[1,2]−L[1](1; 2), which isL[2](1; 1).

RememberL[2](1; 1) is a desired equation for user one.

• If user two hasu[1,2], then it can used the saved overheard equationL[2](1; 1) to formu[1,2]−L[2](1; 1), which isL[1](1; 2).

Again rememberL[1](1; 2) is a desired equation for user two.

Therefore,u[1,2] is desired by both users one and two. Similarly, we defineu[1,3] asu[1,3] = L[3](1; 1) + L[1](1; 3), which is

desired by user one and three. In addition, we define,u[2,3] asu[2,3] = L[3](1; 2) + L[2](1; 3), which is desired by users two

and three. We note that if user one hasu[1,3] andu[1,3], then it has enough equations to resolve the original data streamsu[1]
1 ,

u
[1]
2 , andu[1]

3 . Similarly, it is enough that user two hasu[1,2] andu[2,3], and user three hasu[1,3] andu[2,3]. Therefore, again,

we can redefine the objective as deliveringu[1,2] to users one and two,u[1,3] to users one and three, andu[2,3] to users two and

three. We note that accomplishing this target, i.e. delivering these three degree-two messages takes3
DoF2

time slots, whatever

DoF2 is. Recall that so far, the algorithm takes three time slots,and needs 3
DoF2

more time slots to deliver the original9 degree

one messages. Therefore, we have

DoF1(3, 3) =
9

3 + 3
DoF2(3,3)

, (26)

or

3

DoF1(3, 3)
= 1 +

1

DoF2(3, 3)
, (27)

It is trivially easy to achieve DoF2(3, 3) of one, and therefore achieve DoF1(3, 3) of 3
2 which is already greater than one.

However, as we will show, we can do better.
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Phase Two:

Phase One of the algorithm takes degree–one messages and generates some degree–two symbols to be delivered. Phase Two

deals with degree–two symbols, and generates some degree three messages.

Assume thatu[1,2]
1 andu[1,2]

2 represent two symbols that are desired by both users one and two. Similarly,u[1,3]
1 andu[1,3]

2 are

required by both users one and three, andu
[2,3]
1 andu[2,3]

2 are required by both users two and three. Therefore, in total, there

are 6 degree–two symbols. We notice that Phase One generatesonly three degree–two symbols. Two provide 6 degree–two

symbols, we can simply repeat Phase One twice. Phase Two has three sub-phases, where each sub-phase takes only one time

slot and is dedicated to one pair of the users. More precisely, in S-Ph(2;S), |S| = 2, the base station sends random linear

combinations ofu[S]
1 andu[S]

2 at least over two transmit antennas.

As an example, let us focus on in S-Ph(2; 1, 2), in which base station sends random linear combinations ofu
[1,2]
1 andu[1,2]

2

using at least two of the transmit antennas. To be specific, asshown in Table III, we can assume that transmit antennai sends

u
[1,2]
i , for i = 1, 2. Again,L[r](2; 1, 2) represent the linear combination of transmitted signals received by userr. Referring to

Table III, we have the following important observations:

• L[1](2; 1, 2) andL[3](1; 1, 2) form two linearly independent equations ofu
[1,2]
1 andu[1,2]

2 , almost surely.

• Similarly, L[2](2; 1, 2) andL[3](2; 1, 2) form two linearly independent equations ofu
[1,2]
1 andu[1,2]

2 , almost surely.

• If L[3](2; 1, 2) is somehow delivered to both users one and two, then both users have enough equations to resolveu
[1,2]
1

andu
[1,2]
2 . Therefore,L[3](2; 1, 2) which is overheard and saved by user three is simultaneity useful for users one and

two.

We have similar observations about the received equations in S-Ph(2; 1, 3) and S-Ph(2; 2, 3). Therefore, after these three

transmissions, we can redefine the objective of the rest of the algorithm as delivering (i)L[3](2; 1, 2) to users one and two, (ii)

L[2](2; 1, 3) to users one and three, and (iii)L[1](2; 2, 3) to users two and three.

Let us defineu[1,2,3]
1 andu[1,2,3]

2 as two random linear combinations ofL[3](2; 1, 2) andL[2](2; 1, 3), andL[1](2; 2, 3). For

example, letu[1,2,3]
1 = L[3](2; 1, 2)+L[2](2; 1, 3)+L[1](2; 2, 3), andu[1,2,3]

2 = L[3](2; 1, 2)+ 1.8L[2](2; 1, 3)+ 2.3L[1](2; 2, 3).

Then, we have the following observations:

• If we somehow deliveru[1,2,3]
1 andu

[1,2,3]
2 to user one, then it uses the saved overheard equationL[1](2; 2, 3) to form

u
[1,2,3]
1 − L[1](2, 3) andu

[1,2,3]
2 − 2.3L[1](2; 2, 3) as two linearly independent equations ofL[3](2; 1, 2) andL[2](2; 1, 3).

ResolvingL[3](2; 1, 2) andL[2](2; 1, 3), user one has enough equations to deriveu
[1,2]
1 , u[1,2]

2 , u[1,3]
1 , andu[1,3]

2 .

We have similar observations about user two and three. Therefore, it is enough to deliveru[1,2,3]
1 andu[1,2,3]

1 to all three users.

Delivering these two degree-three symbols to all three users takes 2
DoF3(3,3)

, whatever DoF3(3, 3) is. Recall that Phase Two

deals with 6 degree-two messages, takes three time slots, and generates two degree-three messages, therefore, we have

DoF2(3, 3) =
6

3 + 2
DoF3(3,3)

, (28)

or

1

DoF2(3, 3)
=

1

2
+

1

3DoF3(3, 3)
. (29)

Phase Three:

Phase Three deals with degree three messages. This phase is very simple. Assume thatu[1,2,3] is required by all three users.

Then, base station can use only one transmit antenna and sendu[1,2,3]. All three receivers will receive a noisy version of
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TABLE III

SIGNALING SCHEME FORM = K = 3, PHASE TWO

Phase 2, (Swapping Side Information)

Sub-Phase S-Ph(2; 1, 2) S-Ph(2; 1, 3) S-Ph(2; 2, 3)

Tx 1 u
[1,2]
1 u

[1,3]
1 u

[2,3]
1

Tx 2 u
[1,2]
2 u

[1,3]
2 u

[2,3]
2

Tx 3 0 0 0

y[1](m)− z[1](m) L[1](2; 1, 2) L[1](2; 1, 3) L[1](2; 2, 3)

y[2](m)− z[2](m) L[2](2; 1, 2) L[2](2; 1, 3) L[2](2; 2, 3)

y[3](m)− z[3](m) L[3](2; 1, 2) L[3](2; 1, 3) L[3](2; 2, 3)

u[1,2,3]. Therefore, we use one time slot to send one degree-three symbols. Therefore,

DoF3(3, 3) = 1. (30)

From (26), (28), and (30), we conclude that DoF1(3, 3) =
18
11 and DoF2(3, 3) = 6

5 .

C. M = k transmit antennas andK = k Users

In this section, we explain the achievable scheme for the general case whereM = K = k, and we prove the total DoF of

k
1+ 1

2+
1
3+...+ 1

k

is achievable. The algorithm is based on a concatenation ofk sub-algorithms. Each sub-algorithm takes symbols

with degreej and generates some symbols with degreej +1. We repeat this sub-algorithm forj = 1 to j = k− 1. For j = k

the sub-algorithm is simple and generates no more messages.

The sub-algorithm takes(k−j+1)
(
k
j

)
symbols with degreej, and givesj

(
k

j+1

)
symbols with degreej+1. The sub-algorithm

has
(
k
j

)
sub-phases, where each sub-phase takes only one time-slot and is dedicated to a subset of usersS, |S| = j. We denote

the sub-phase dedicated to the subsetS by S-Ph(j;S). In S-Ph(j;S), the base station sends random linear combinations of

the k− j +1 symbolsu[S]
1 , u

[S]
2 , . . . , u

[S]
k−j+1, designated for all users inS. The base station utilizes at leastM − j +1 of the

transmit antennas.

The linear combination of the transmitted symbols receivedby userr is denoted byL[r](j;S). Let us focus on the linear

combinations of the transmitted symbols, received by all users, in S-Ph(j;S). We have the following observations:

• For everyr ∈ S, theM−j+1 equations including one equationL[r](j;S) and theM−j overheard equationsL[r′](j;S),

r′ ∈ E\S are linearly independent equations ofM − j+1 symbolsu[S]
1 , u

[S]
2 , . . . , u

[S]
k−j+1. This relies on the fact that the

base station uses at leastj + 1 transmit antennas.

• For anyr, r ∈ S, if we somehow deliver theM − j equationsL[r′](j;S), r′ ∈ E\S to userr, then userr hask − j + 1

linearly independent equations to resolve allk − j + 1 symbolsu[S]
1 , u

[S]
2 , . . . , u

[S]
k−j+1.

• Having the above two observations, we can say that the overheard equation by userr′, r′ ∈ E\S is simultaneously useful

for all users inS.

After repeating the above transmission scheme for allS, whereS ⊂ E and |S| = j, then we have another important

observation. Consider a subsetŜ of the users, where|Ŝ| = j + 1. Then each userr′, r′ ∈ Ŝ, has a overheard equation

L[r′](j; Ŝ\{r′}), which is simultaneity useful for all users in̂S\{r′}. We note that the base station is aware of these overheard

equations. For everŷS ⊂ E , |Ŝ| = j + 1, the base station formsj random linear combinations ofL[r′](j; Ŝ\{r′}), r′ ∈ Ŝ,

denoted byu[Ŝ]
1 , u

[Ŝ]
2 , . . . , u

[Ŝ]
j . We note thatu[Ŝ]

τ , 1 ≤ τ ≤ j, is simultaneously useful for all users in̂S. Indeed, eachr in
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Ŝ, can subtract the contribution ofL[r](j; Ŝ\{r}) from u
[Ŝ]
τ , τ = 1, . . . , j, and formj linearly independent combinations of

L[r′](j; Ŝ\{r′}). r′ ∈ Ŝ\{r}. Using the above procedure, the base stations formsj
(

k
j+1

)
symbols with degreej + 1. The

important observation is that if thesej
(

k
j+1

)
symbols are delivered to the designated receivers, the eachreceivers will have

enough equations to resolve all designated messages with degreej. Deliveringj
(

k
j+1

)
degreej+1 symbols takes

j( k

j+1)
DoFj+1(K,K) .

Since the sub-algorithm starts with(k − j + 1)
(
k
j

)
symbols with degreej, and takes

(
k
j

)
time slots, and generatesj

(
k

j+1

)

symbols with degreej + 1, then we have

DoFj(K,K) =
(k − j + 1)

(
k
j

)

(
k
j

)
+

j( k

j+1)
DoFj+1(K,K)

, (31)

or

k − j + 1

j

1

DoFj(K,K)
=

1

j
+

k − j

j + 1

1

DoFj+1(K,K)
, (32)

It is also easy to see that DoFk(K,K) = 1 is achievable. Therefore, we have

k − j + 1

j

1

DoFj(K,K)
=

1

j
+

1

j + 1
+ . . .+

1

k
. (33)

In particular,

k

DoFj(K,K)
= 1 +

1

2
+ . . .+

1

k
. (34)

Therefore the achievablity of Theorem 1 is proved.

V. OUTER-BOUND

In this section, we aim to prove Theorem 3. In this theorem, wefocus on thej–DoF of the channel. Therefore, we assume

for every subset of usersS with cardinalityj, transmitter has a messageW [S], with rateR[S] and degrees of freedomd[S].

Remember in Section II, we assume that the channel state information of each user is available to that user causally at each

time, while it is available to all other nodes with one delay.We call this channel as original channel and denote its capacity

asCOriginal. As an outer-bound, we consider the capacity of a channel, referred asimproved channel onewith capacity region

C1
Improved, in which the channel state information of each user is available toall receivers causally at each time. Therefore, at

time m, userr has(yr(t),H(t)), t = 1, . . . ,m, for any r, 1 ≤ r ≤ K. On the other hand, in the improved channel one, the

base station has the channel state information and receivedsignals with one delay. Therefore, at timem, the base station has

(y1(t), . . . , yK(t),H(t)), t = 1, . . . ,m− 1. Obviously,COriginal ⊂ C1
Improved. We upgrade theimproved channel oneeven further

as follows.

Considerπ as a permutation of the setS = {1, 2, . . . ,K}. We form aK–user broadcast channel fromimproved channel one,

by giving the output of the receiverπ(i) to usersπ(j), j = i+1, . . . ,K, for all i = 1, . . . ,K−1. Therefore, we have an upgraded

broadcast channel, referred asimproved channel twowith K receivers as
[
yπ(1)(m),H(m)

]
,
[
yπ(1)(m), yπ(2)(m),H(m)

]
, . . .,

[
yπ(1)(m), yπ(2)(m), . . . , yπ(K)(m),H(m)

]
. We denote the capacity of the resultant channel as⊂ C2

Improved(π). Apparently,

COriginal ⊂ C1
Improved⊂ C2

Improved(π). Moreover, it is easy to see that the improved channel two is physically degraded.

In the improved channel two, consider messageW [S], which is required by allj users listed inS. Let i∗ be the smallest

integer whereπ(i∗) ∈ S. Then, due to the degradedness of the channel, ifW [S] is decoded by userπ(i∗), then it can be

decoded by all other users inS. Therefore, we can assume thatW [S] is just required by userπ(i∗). Using this argument, we

can reduce the requirements to the following: userπ(1) requires all messagesW [S], whereπ(1) ∈ S andS ∈ E . Similarly,

userπ(2) requires all messagesW [S], whereπ(2) ∈ S andS ⊂ E\{π(1)}. We follow the same argument for all users.
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According to [14], feedback does not improve the capacity ofthe physically degraded broadcast channels. Consequently,

we focus on the capacity region of the improved channel two without feedback. On the other hand, for broadcast channels

without feedback, the capacity region is only a function of marginal distributions. Therefore, we can ignoring the coupling

between the receivers in the second improved channel. Thus,we have a broadcast channel where userπ(i) has i antennas,

where the distributions of the channels between the transmitter and any of the receive antennas are identical. Moreoveruser

π(i) is interested in all messagesW [S], whereπ(i) ∈ S, |S| = j, andS ⊂ E\{π(1), π(2), . . . , π(i− 1)}.

Therefore, according to [20], extended by [21], one can conclude that

1

min{1,M}

∑

|S|=j
S⊂E

π(1)∈S

d[S] +
1

min{2,M}

∑

|S|=j
S⊂E\{π(1)}

π(2)∈S

d[S] + . . .+
1

min{K − j + 1,M}

∑

|S|=j
S⊂E\{π(1),...π(K−j)}

π(K−j+1)∈S

d[S] ≤ 1. (35)

By applying the same procedure for any permutation of the set{1, 2, . . . ,K} and add all of theK! resulting inequalities,

the theorem follows.

Corollary 1 If M ≥ K − j + 1, then

K − j + 1

jDoFj(M,K)
≥

1

j
+

1

j + 1
+ . . .+

1

K
, (36)

no matter how largeM is.

The proof follows from Theorem 3. This corollary provides the converse for Theorem 3.

VI. A CHIEVABLE SCHEME FORTHEOREM 2

In Section IV, we explain the achievable scheme forDoF1(M,K), whenM ≥ K. More generally, we derivedDoF1(M,K),

whenM ≥ K− j+1. In this section, we first explain why the achievable scheme of Section IV does not work for degree-one

messages where whereM < K. In general, the scheme of Section IV fails for degree–j messages, whereM < K − j + 1.

Then, we show how we can extend that approach to these cases. We first focus on the case whereM = 2 andK = 3.

A. M = 2,K = 3

From Theorem 1, we knowDoF2(2, 3) = 6
5 and DoF2(2, 3) = 1. However, we do not know whatDoF1(2, 3) is. Clearly,

DoF2(2, 3) ≥ DoF1(2, 2) = 4
3 , which can be simply achieved by ignoring one the receivers.The question is if we can achieve

more than4
3 . Note that from the outer–bound, we have DoF2(2, 3) ≤

3
2 .

First let us try the scheme of Section IV. In the first phase, wehave three sub-phases, where each sub-phase is dedicated

to one of the receivers. In S-Ph(1; 1), the base station sends linear combinations of three symbols u
[1]
1 , u[1]

2 , andu[1]
3 over the

two transmit antennas. Then, we observe that

• The three equationsL[1](1; 1), L[2](1; 1), andL[3](1; 1) are not linearly independent. The reason is that we have onlytwo

transmit antennas.

• Even if we somehow deliver the overheard equationsL[2](1; 1) andL[3](1; 1) to user one, then it does not have enough

equations to resolveu[1]
1 , u[1]

2 , andu[1]
3 .

These observations shows whenM < K, then the scheme Section IV for degree–one messages fails. Similarly, if M < K−j+1,

then that scheme fails for degree–j messages. Now let us modify that scheme by sending linear combinations of just two symbols

u
[1]
1 andu[1]

2 in S-Ph(1; 1). Then, in this case, we have the following observations:
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• The equationsL[1](1; 1) andL[2](1; 1) forms two linearly independent equations ofu
[1]
1 andu[1]

2 . This is also true for two

equations ofL[1](1; 1) andL[3](1; 1).

• If we somehow deliver one the the overheard equations S-Ph(1; 1), e.g.L[3](1; 1), to user one, then it has enough equations

to resolveu[1]
1 andu[1]

2 .

Therefore it seems that, from the two overheard equationsL[2](1; 1) andL[3](1; 1), only one of them is useful for user one.

From this observation, one may suggest that we should ignoreone of the users, and apply the achievable scheme for a system

with two transmit antennas and two users and achieve DoF1(2, 2) of 4
3 . Remember that if we have three transmit antennas and

two users the optimal DoF1(3, 2) is the same as DoF1(2, 2) = 4
3 , thus, the extra transmit antenna does not improve DoF. On

the other hand, we know that in conventional MIMO broadcast channel with perfect CSIR and CSIT, the DoF is determined

by min{M,K}. Therefore, we may suggest that one extra user does not improve the DoF for channel with delayed feedback,

i.e. DoF1(2, 3) is again4
3 . Here, we show that this suggestion is not true. In other words, unlike MIMO broadcast channel with

perfect CSIR and CSIT, the DoF of the MIMO broadcast channel with delayed feedback is not a function ofmin{M,K}.

The whole point is that we may not be able to exploit the extra user in the first phase, however we can enjoy the extra user

for the next phases.

The achievable scheme is as follows. Again there are thee sub-phases, where each sub-phase is dedicated to one of the

users, however each sub-phase includes two time-slots. In S-Ph(1; r), base stations sends random linear combinations of four

symbolsu[r]
1 , u[r]

2 , u[r]
3 , and,u[r]

4 . One particular choice has been shown in Table IV. Let us focus on S-Ph(1; 1). Then, we

have the following observations:

• User one already has two independent linear equations ofu
[1]
1 , u[1]

2 , u[1]
3 , and,u[1]

4 . Therefore, it needs two more equations.

• The four overheard equations in S-Ph(1), i.e. L[2]
1 (1; 1), L[2]

2 (1; 1), L[3]
1 (1; 1), andL[3]

2 (1; 1) are not linearly independent

from what user one has already received, i.e.L
[1]
1 (1; 1) andL[1]

2 (1; 1).

• We can purify the four overheard equations in S-Ph(1; 1) and form two equations that are linearly independent with

L
[1]
1 (1; 1) and L

[1]
2 (1; 1). For example, user two can form̂L[2](1; 1) as a random linear combination ofL[2]

1 (1; 1) and

L
[2]
2 (1; 1). Similarly, user two can form̂L[3](1; 1) as a random linear combination ofL[3]

1 (1; 1) andL
[3]
2 (1; 1). Refer to

Table V.

• If somehow deliver̂L[2](1; 1) andL̂[3](1; 1) to user one, then it has enough equations to resolveu
[1]
1 , u[1]

2 , u[1]
3 , and,u[1]

4 .

Similarly, we can purify the overheard equations in S-Ph(1; 2) and S-Ph(1; 3). The rest of the algorithm is the same as Phase

One of the case where we have three transmit antennas and three users. We defineu[1,2] as a random linear combination of

L̂[2](1; 1) andL̂[1](1; 2). Similarly, we defineu[1,3] as a random linear combination ofL̂[3](1; 1) andL̂[1](1; 3), and alsou[2,3]

as a random linear combination ofL̂[3](1; 2) and L̂[2](1; 3). Therefore, Phase One starts with 12 degree-one messages, takes

6 time slots, and generates 3 degree-two symbols. Therefore, we have

DoF1(2, 3) =
12

6 + 3
DoF2(2,3)

, (37)

or

4

DoF1(2, 3)
= 2 +

1

DoF2(3, 3)
. (38)

We can use the algorithm presented in Section IV to deliver degree–two symbols. Remember that the optimalDoF2(2, 3) is

6
5 . Therefore, we can achieve DoF1(2, 3) =

24
17 , which is greater than DoF1(2, 2) = 4

3 . Therefore, the extra user still improves
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TABLE IV

SIGNALING SCHEME FORM = 2, K = 3, PHASE ONE

Phase 1 (Feeding the Receivers)

Sub-Phase S-Ph(1) S-Ph(2) S-Ph(3)

Tx 1 u
[1]
1 u

[1]
3 u

[2]
1 u

[2]
4 u

[3]
1 u

[3]
3

Tx 2 u
[1]
2 u

[1]
4 u

[2]
2 u

[2]
4 u

[3]
2 u

[3]
4

y[1](m) − z[1](m) L
[1]
1 (1; 1) L

[1]
2 (1; 1) L

[1]
1 (1; 2) L

[1]
2 (1; 2) L

[1]
1 (1; 3) L

[1]
2 (1; 3)

y[2](m) − z[2](m) L
[2]
1 (1; 1) L

[2]
2 (1; 1) L

[2]
1 (1; 2) L

[2]
2 (1; 2) L

[2]
1 (1; 3) L

[2]
2 (1; 3)

y[3](m) − z[3](m) L
[3]
1 (1; 1) L

[3]
2 (1; 1) L

[3]
1 (1; 2) L

[3]
2 (1; 2) L

[3]
1 (1; 3) L

[3]
2 (1; 3)

TABLE V

SIGNALING SCHEME FORM = 2, K = 3, PHASE ONE, PURIFIED OVERHEARD EQUATIONS

Phase 1 (Feeding the Receivers)

Sub-Phase S-Ph(1; 1) S-Ph(1; 2) S-Ph(1; 3)

Tx 1 u
[1]
1 u

[1]
3 u

[2]
1 u

[2]
3 u

[3]
1 u

[3]
3

Tx 2 u
[1]
2

u
[1]
4

u
[2]
2

u
[2]
4

u
[3]
2

u
[3]
4

y[1](m) − z[1](m) L
[1]
1

(1; 1) L
[1]
2

(1; 1) L̂[1](1; 2) = 1.2L
[1]
1

(1; 2) + 1.8L
[1]
2

(1; 2) L̂[1](1; 3) = −1.3L
[1]
1

(1; 3) + 0.5L
[1]
2

(1; 3)

y[2](m) − z[2](m) L̂[2](1; 1) = −L
[2]
1 (1; 1) + 3.3L

[2]
2 (1; 1) L

[2]
1 (1; 2) L

[2]
2 (1; 2) L̂[2](1; 3) = −3L

[2]
1 (1; 3) + 4.1L

[2]
2 (1; 3)

y[3](m) − z[3](m) L̂[3](1; 1) = 0.4L
[3]
1

(1; 1) + 0.8L
[3]
2

(1; 1) L̂[3](1; 2) = L
[3]
1

(1; 2) + L
[3]
2

(1; 2) L
[3]
1

(1; 3) L
[3]
2

(1; 3)

the DoF. This is in contrary with the case where there extra transmit antenna with respect to the number users is not useful

in terms of DoF. However, we notice that DoF1(2, 3) =
24
17 is less that32 = 24

16 which is suggested by the outer–bound.

B. Proof of Theorem 2

This achievable scheme is based on a sub-algorithm which takes messages with degreej, and gives messages with degree

j + 1.

Let us defineqj as qj = min{M − 1,K − j}. In addition, we defineαj as the largest common factor ofqj andK − j.

The sub-algorithm has
(
K
j

)
sub-phases, where every subsetS of the users with|S| = j has a dedicated sub-phase, denoted by

denoted by S-Ph(j;S). Each sub-phase takesK−j
αj

time-slots. In S-Ph(j;S), the base station sends random linear combinations

of βj =
(qj+1)(K−j)

αj
symbolsu[S]

1 , u
[S]
2 , . . . , u

[S]
βj

, designated for all users inS. The base station uses at leastqj + 1 of the

transmit antennas. The linear combination of the transmitted symbols received by userr, in the t-th time slot of S-Ph(j;S),

is denoted byL[r]
t (j;S). Focusing on a particular subset of usersS, and the corresponding sub-phase S-Ph(j;S), we have the

following observations:

• For everyr, r ∈ S, and t, t ∈ {1, 2, . . . , K−j
αj

}, theK − j + 1 equationsL[r′]
t (j;S), r′ ∈ {r} ∪ E\S are NOT linearly

independent. The reason is that|{r}∪E\S| = K− j+1, while the number of transmit antennasM is less thanK− j+1.

Indeed, among theK − j overheard equationsL[r′]
t (j;S), r′ ∈ {r} ∪ E\S, we can only findqj equations that are

simultaneously useful to userr, for anyr in S. Therefore, the(K−j)2

α
overheard equations in S-Ph(j;S), are representing

only qj(K−j)
α

equations that are useful for any userr, r ∈ S.

• Therefore, we need to purify the overheard equations. To this end, each userr′, r′ ∈ E\S, forms qj
αj

random linear

combinations ofL[r′]
t (j;S), t = 1, . . . , K−j

α
. The resultant equations are denoted byL̂

[r′]
1 (j;S), L̂

[r′]
2 (j;S), . . . , L̂

[r′]
qj

αj

(j;S).

It is easy to see that for everyr, the following (qj+1)(K−j)
αj

equations are linearly independent:L
[r]
t (j;S), t = 1, . . . , K−j

αj
,

andL̂[r′]

t̂
(j;S), r′ ∈ E\S andt̂ ∈ 1, . . . ,

qj
αj

. Therefore, if we givêL[r′]

t̂
(j;S), r′ ∈ E\S andt̂ ∈ 1, . . . ,

qj
αj

to userr, r ∈ S,

then it will haveβj =
(qj+1)(K−j)

αj
linearly independent equations to resolve all desired variablesu[S]

1 , u
[S]
2 , . . . , u

[S]
βj

. In

other words, we have adequacy of overheard equations.
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• The purified overheard equations by userr′, r′ ∈ E\S, are simultaneously useful for all users inS.

After repeating the above transmission for allS, S ⊂ E , then we have another important property. Consider a subsetŜ,

Ŝ ⊂ E and |Ŝ| = j + 1. Then each userr′, r′ ∈ Ŝ, has qj
αj

purified overheard equation̂L[r′]
t (j; Ŝ\{r′}), t = 1, . . . ,

qj
αj

which

are simultaneity useful for all users in̂S\{r′}. We note that the base station is aware of these purified overheard equations. For

every Ŝ ⊂ E , |Ŝ| = j + 1, the base station formsj qj
αj

random linear combinations of̂L[r′]
t (j; Ŝ\{r′}), r′ ∈ Ŝ, t = 1, . . . ,

qj
αj

,

denoted byu[Ŝ]
1 , u

[Ŝ]
2 , . . . , u

[Ŝ]

j
qj

αj

. We note thatu[Ŝ]
τ , 1 ≤ τ ≤ j

qj
αj

, is simultaneously useful for all users in̂S. Indeed, each user

r, r ∈ Ŝ, can subtract the contributions of̂L[r]
t (j; Ŝ\{r}), t = 1, . . . ,

qj
αj

from u
[Ŝ]
τ , τ = 1, . . . , j

qj
αj

, and formj
qj
αj

linearly

independent combinations of̂L[r′]
t (j; Ŝ\{r′}), r′ ∈ Ŝ\{r}, t = 1, . . . ,

qj
αj

. Using the above procedure, the base stations forms

j
qj
αj

(
K
j+1

)
symbols with degreej + 1. The important observation is if thesej qj

αj

(
K
j+1

)
symbols are delivered to the designated

receivers, then each receivers will have enough equations to resolve all designated messages with degreej. Deliveringj qj
αj

(
K
j+1

)

degreej + 1 symbols takes
j

qj

αj
( K

j+1)
DoFj+1(M,K) . Since the sub-algorithm starts with(K − j)

qj+1
αj

(
K
j

)
symbols with degreej, and

takesK−j
αj

(
K
j

)
time slots, and generatesj qj

αj

(
K
j+1

)
messages with degreej + 1, then we have

DoFj(M,K) =
(K − j)

qj+1
αj

(
K
j

)

K−j
αj

(
K
j

)
+

j
qj

αj
( K

j+1)
DoFj+1(M,K)

, (39)

or

qj + 1

j

1

DoFj(M,K)
=

1

j
+

qj

j + 1

1

DoFj+1(M,K)
. (40)

Therefore Theorem 2 has been proven.

VII. I MPROVED SCHEME FORM = 2

Recall that the scheme of Section VI achieves DoF1 of 24
17 for M = 2 and K = 3. The achieved DoF is greater that

DoF2(2, 2) = 4
3 , which shows that we could exploit the extra number of users with respect to the number of transmit antennas.

However, it is sill smaller than32 which is suggested by the outer–bound. Now the question is whether the achievable scheme

or the outer–bound is loose.

First let us have an interesting observation. In Table IV, let us hypothetically assume thatL[2](1; 1) ≡ L[3](1; 1). Of course by

no mean this assumption is valid. Similarly let us assume that L[1](1; 2) ≡ L[3](1; 2) andL[1](1; 3) ≡ L[2](1; 3). Then, we could

defineu[1,2,3] as a random linear combination ofL[2](1; 1), L[1](1; 2), andL[1](1; 3), e.g.,L[2](1; 1) + L[1](1; 2) + L[1](1; 3),

Then it is easy to see thatu[1,2,3] was simultaneously useful for all three users.For example,if we deliver u[1,2,3] to user

one, then it can use the saved overheard equationsL[1](1; 2) andL[1](1; 3) to form u[1,2,3] − L[1](1; 2)− L[1](1; 3) which is

L[2](1; 1), and then resolveu[1]
1 andu[1]

2 . Similar statement is valid for users two and three. Therefore, this phase would start

with 6 degree–one messages, takes 3 time-slots, and generates one degree–one symbol. Then, we had DoF3(2, 3) =
6

4+ 1
DoF3(2,3)

.

Since DoF3(2, 3) is optimally one, then we could achieve DoF3(2, 3) =
6
4 = 3

2 and meet the outer–bound. This observation

supports this conjecture that the outer–bound is tight under some unrealistic assumptions, and therefore it is loose ingeneral.

However, in what follows, we show that forM = 2 and K = 3, the outer–bound is tight and the achievable scheme of

Section VI is loose.

A. Alternative Scheme forM = K = 2

Here first, we explain an alternative optimal solution forM = 2 andK = 2. Again Phase One of the algorithm deals

with degree-one messages. Let us assume that the base station hasu[1]
1 andu

[1]
2 for user one andu[2]

1 andu
[2]
2 for user two.



17

TABLE VI

SIGNALING SCHEME FORM = K = 2

Phase 1 (Feeding the Receivers)

Sub-Phase S-Ph(1;1,2)

Tx 1 u
[1]
1 + u

[2]
1

Tx 2 u
[1]
2 + u

[2]
2

y[1](m) − z[1](m) L[1](1; 1, 2) = L[1](1; 1, 2; 1) + L[1](1; 1, 2; 2)

y[2](m) − z[2](m) L[2](1; 1, 2) = L[2](1; 1, 2; 1) + L[2](1; 1, 2; 2)

However, Phase One has only one sub-phase, which is dedicated to both users. We denote this sub-phase of the phase one

with S-Ph(1; 1, 2). In S-Ph(1; 1, 2), we send random linear combinations of all four symbolsu
[1]
1 , u[1]

2 , u[2]
1 andu[2]

2 . The linear

combination of transmitted symbols received by userr is denoted byL[r](1; 1, 2). We note thatL[r](1; 1, 2) is a summation

of two terms, the first term is a linear combination ofu
[1]
1 and u

[1]
2 , denoted byL[r](1; 1, 2; 1) and the second term is a

linear combination ofu[2]
1 andu[2]

2 , denoted byL[r](1; 1, 2; 2). Therefore,L[r](1; 1, 2) = L[r](1; 1, 2; 1) + L[r](1; 1, 2; 2) (See

Table VI).

Then, we have the following observation:

• If we somehow giveL[1](1; 1, 2; 2) andL[2](1; 1, 2; 1) to user one, then user one has two linearly independent equations

L[1](1; {1, 2}) − L[1](1; 1, 2; 2) and L[2](1; 1, 2; 1). Noting that user one already hasL[1](1; 1, 2) = L[1](1; 1, 2; 1) +

L[1](1; 1, 2; 2), then it is enough to give itL[1](1; 1, 2; 2) andL[2](1; 1, 2; 1).

• If user two hasL[1](2; 1, 2; 2) andL[2](1; 1, 2; 1), then it has enough equations to resolveu
[2]
1 andu[2]

2 . Noting that user

two already hasL[2](1; 1, 2; 1) + L[2](1; 1, 2; 2), then it is enough to give user two the two equationsL[1](1; 1, 2; 2) and

L[2](1; 1, 2; 1).

In other words, both users one and two wantL[1](1; 1, 2; 2) andL[2](1; 1, 2; 1). Therefore, we can define degree-two symbols

u
[1,2]
1 andu[1,2]

2 as

u
[1,2]
1 = L[1](1; 1, 2; 2), (41)

u
[1,2]
2 = L[2](1; 1, 2; 1). (42)

In summary, this sub-algorithm starts with 4 degree–one messages, takes one time-slot, and provides two degree–two symbols.

Therefore, we have

DoF1(2, 2) =
4

1 + 2
DoF2(2,2)

. (43)

We know how to achieve DoF2(2, 2) = 1. Therefore, we again achieve DoF1(2, 2) =
4
3 .

B. Alternative Scheme for First Phase ofM = 2, K = k

Here, we explain a sub-algorithm for the systems with 2 transmit antennas, which takes degree one messages and gives

degree two symbols. This sub-algorithm leads to an optimal scheme for systems withM = 2 andK = 3.

This sub-algorithm has
(
k
2

)
sub-phases, where each sub-phase takes only one time slots and is dedicated to a pair of users.

Let us focus on the sub-phase dedicated to users one and two, denoted by S-Ph(1; 1, 2). This sub-phase is exactly the same

as Phase One of the algorithm explained in Subsection VI. It takes four symbols of degree one and generate two message of

degree two. Note that in this algorithm we ignore the overheard equations by user 3 toK in S-Ph(1; 1, 2). We apply similar
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TABLE VII

SIGNALING SCHEME FORM = 2, K = 4, j = 2

Phase 2

Sub-Phase S-Ph(2;1,2,3)

Tx 1 u
[1,2]
1 + u

[1,3]
1

Tx 2 u
[1,2]
2 + u

[1,3]
2

y[1](m) − z[1](m) L[1](2; 1, 2, 3) = L[1](1; 1, 2, 3; 1, 2) + L[1](1; 1, 2, 3; 1, 3)

y[2](m) − z[2](m) L[2](2; 1, 2, 3) = L[2](1; 1, 2, 3; 1, 2) + L[2](1; 1, 2, 3; 1, 3)

y[3](m) − z[3](m) L[3](2; 1, 2, 3) = L[3](1; 1, 2, 3; 1, 2) + L[3](1; 1, 2, 3; 1, 3)

y[4](m) − z[4](m) L[4](2; 1, 2, 3) = L[4](1; 1, 2, 3; 1, 2) + L[4](1; 1, 2, 3; 1, 3)

scheme for any other pair of users. Therefore, in total, thisscheme takes4
(
K
2

)
data streams with degree one, takes

(
K
2

)
time

slots, and generates2
(
K
2

)
symbols with degree two. Therefore, we have

DoF1(2,K) =
4
(
K
2

)

(
K
2

)
+

2(K2 )
DoF2(2,K)

, (44)

or

4

DoF1(2,K)
= 1 +

2

DoF2(2,K)
. (45)

In Section IV, it is shown that the optimalDoF2(2, 3) = 6
5 is achievable. Then using (43), we can see that DoF2(2, 3) =

3
2

is achievable which meets the outer–bound. This result showthat the scheme of Section IV is not optimal.

C. Infinite–Horizon SchemeM = 2, K = k

In Subsection VII-A, we presented a scheme which achieves the optimal DoF forM = 2 andK = 3. Now let us focus

on the general case withK number of users. As a first example, let us focus on the system with M = 2 andK = 4. For

this channel, in Section IV, it is shown that the optimalDoF3(2, 4) = 8
7 and DoF4(2, 4) = 1. Now the question is what the

optimal DoF2(2, 4) and DoF1(2, 4) are. The outer–bound suggests thatDoF2(2, 4) ≤ 4
3 andDoF1(2, 4) ≤ 8

5 . The interesting

fact is that if we can achieve DoF2(2, 4) of 4
3 , then we can use the scheme of Subsection VII-A to achieve DoF1(2, 4) of 8

5 .

In this section, we explain a scheme which achieves the DoF2(2, 4) of 14
11 . This is still strictly less than the outer–bound of

4
3 . However, it is greater than2419 which is what we can achieve using the scheme of Section VI. The important difference is

that this scheme is infinite-horizon.

Let us assume thatu[1,2]
1 and u

[1,2]
2 for users one and two andu[1,3]

1 and u
[1,3]
2 for users one and three. In sub-phase

S-Ph(2; 1, 2, 3), we send linear combination of all these four messages. Refer to Table VII for specific choices of transmission.

Then, if (i) users one, two and three haveL[2](1; 1, 2, 3; 1, 3) andL[3](1; 1, 2, 3; 1, 2), (ii) user one hasL[4](2; 1, 2, 3) =

L[4](1; 1, 2, 3; 1, 2)+L[4](1; 1, 2, 3; 1, 3) which is available at user four, then user one and two can decodeu[1,2]
1 andu[1,2]

2 and

user one and three can decodeu
[1,3]
1 andu[1,3]

2 . We can defineL[2](1; 1, 2, 3; 1, 3) andL[3](1; 1, 2, 3; 1, 2) as two degree–three

symbols. In addition, following the ideas of Section IV, we can treatL[4](2; 1, 2, 3) as a half of a degree–two symbol.

Therefore, this sub-algorithm takes 4 degree-two symbols,takes one time slots, and generates two degree–three symbols,

and half degree–two symbol. We can repeat this scheme iteratively over many degree-two symbols, and divide the number of

degree–two messages by 8 in each iteration. As a fixed point, this scheme achieves DoF2(2, 4) as the solution of the following

equation.

DoF2(2, 4) =
4

1 + 2
DoF3(2,4)

+ 0.5
DoF2(2,4)

. (46)



19

From Section IV, we knowDoF3(2, 4) = 8
7 . Then, the fixed point of the above equation is DoF2(2, 4) =

14
11 . Then, using

the sub-algorithm of Subsection VII-B, we can achieve DoF2(2, 4) =
14
9 . This scheme can be extended to degreej messages

for a system with two transmit antennas andK receiver.
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