
Toward an error handling mechanism for timing errors
with Java Pathfinder and Ptolemy II

Shanna-Shaye Forbes

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-123

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-123.html

September 7, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was conducted with support from a Jenkins Pre-doctoral
Fellowship Mini Grant Award.

Toward an error handling mechanism for timing errors

with Java Pathfinder and Ptolemy II

Shanna-Shaye Forbes∗

University of California, Berkeley, CA 94702

Project Mentor: Johann Schumann†

SGT/NASA Ames, Moffit Field, CA 94035

Designing effective error handling systems in an embedded software system is essential
for acceptable and reliable functionality in cases of errors and for the recovery from faults.
Errors in the error handling system can cause catastrophic failures of the software, lead to
mission failures and can endanger human life. We take a principled approach of extending
a model of computation (MoC) with timing semantics for embedded systems by an error
handling mechanism for timing errors in model-based design. As a apart of the mechanism
we use Java PathFinder (JPF), a model checker developed at NASA Ames. This work
presents our attempt during a summer project as we use JPF along with the Ptolemy II
modeling and simulation framework, developed at UC Berkeley, with the goal of speeding
up the design process of a correct and adequate error handling mechanism for timing errors
for a model of computation with timing semantics.

I. Introduction

It is extremely important that one identifies and is capable of handling error cases before deploying
embedded software. In an effort to avoid possible mistakes with a newly designed NASA rocket or spacecraft,
we take a principled approach of extending a model of computation (MoC) for embedded systems, which
features timing semantics, by an error handling mechanism for timing errors. We use the NASA Ames model
checking tool Java PathFinder (JPF) for automatic verification.

Commonly used models of computation or programming languages do not include an error handling
mechanism for timing errors. Thus, how errors and specifically timing errors are managed can vary dramat-
ically which can easily lead to major software problems. A model of computation, which specifies an error
handling mechanism is necessary for mission critical software. An interesting option to consider is the use
software model checking before code generation.

A model of computation is used to provide execution semantics as well as timing guarantees for the
specification. Augmenting a specification language or a model of computation for real-time embedded systems
with error handling mechanisms, is a very important step in designing robust specifications. This is necessary
to ensure correct possibly degraded behavior in the event of timing errors or other faults in the system . We
prototype an implementation of the error handling mechanism for timing errors in the simulator, we generate
Java code for the model and use the Java PathFinder to detect uncaught errors to allow the designer to
correct them, and we generate C code4 to run on an embedded platform. This is done in Ptolemy II for
Giotto, a model of computation for the periodic execution of tasks.

∗Department of Electrical Engineering and Computer Sciences.
This preliminary project was conducted with funding from NASA JPFP mini grant with guidance from Johann Schumann and
Edward A. Lee
†Research Scientist, Robust Software Engineering,Intelligent Systems Division.

1 of 8

American Institute of Aeronautics and Astronautics

II. Goal

A. High Level Goal

Modeling Environment

Model of Computation
with Timing Semantics

Specification
Language

Timing
Manager

Model
Checking

Compiler

ISA

Architecture

Application

Figure 1. Timing Semantics at all levels

The high level goal, shown in Figure 1,
that extends beyond this project is to
provide a cohesive environment that in-
cludes timing semantics at each level be-
ginning with the specification level and
ending at the architecture level.

B. Project Goal

Our objective in this project is to
provide the model checking compo-
nent of our high level goal. In this
project we use the Java PathFinder
model checker developed at NASA
Ames.

III. Background

We are working with an implemen-
tation of the Giotto model of computa-
tion implemented in Ptolemy II, we use
Ptolemy II as our model-based design en-
vironment, and we use Java PathFinder to model check the specification.

A. Giotto

Giotto is a programming model for embedded control systems,5 and is most useful for hard real-time speci-
fications that are periodic and feature multi-modal behavior. Examples include fly-by-wire or brake-by-wire
where the responses of the system must be periodic and there are multiple modes of operation. Examples
of common modes of operation in the automobiles include startup, cruise control, normal operation, and a
degraded operation mode in case of partial equipment failure.

(a) Task Invocation. Reused with permission5 (b) Graphical Representation of task communica-
tion in a mode. Reused with permission5

Figure 2. Giotto Mode and Tasks

In Giotto, a task, graphically represented in Figure 2(a), is the basic functional unit. If multiple tasks
need to be run concurrently, they are put in a mode, as are t1 and t2 shown in Figure 2(b). Each task has a
set of ports P , with input ports (In ⊆ P), output ports(Out ⊆ P), and maintains its state through private
ports (Priv ⊆ P). Tasks in a mode, i.e. ti, tj , have distinct input ports, In(ti) ∩ In(tj) = ∅ for each two
tasks ti and tj of a mode. All input ports are distinct from all other input ports; however, tasks may share
output ports as long as they are not invoked in the same mode. Task inputs are read only at the beginning

2 of 8

American Institute of Aeronautics and Astronautics

of a period and task outputs are written only at the end of the period. The output can be computed at
any time but should only be provided to other tasks or to the outside world at specified times.5 The task’s
function f specifies what should be done with the inputs to produce the outputs. If several tasks are to be
executed concurrently, they are included in a mode, and a system can change from one mode of operation to
another at multiple points during the model’s execution. Each mode has a period (π) as well as a frequency
(ωt) that specifies how many times the task should be executed within a mode period. In the mode shown
in Figure 2(b), task 1 executes once every 10ms, and task 2 executes once every 5ms. Each mode also has
guards that specify a mode switch frequency. The mode switch frequency specifies how many times within
a period the possibility of a mode switch should be checked and taken if possible. Since it is possible to
interrupt a task’s execution when switching from one mode to another, one must ensure that a task that can
be interrupted in one mode is present in the next mode so it can continue its execution.

Communication between tasks is done via ports in Giotto. Ports are specific locations in memory or
variables dedicated to storing information. Drivers specify which output values should be copied to specific
ports and which port values should be copied from a port to an input. Ports hold their value over time until
they are updated by a driver. Sensor ports are updated by the environment, and actuator ports and task
ports are updated by the program.5 Task ports communicate data between concurrent tasks and can also
be used to communicate between modes in the event of a mode switch. Mode ports are given a value every
time the mode is entered.5 In Figure 2(b), o1 − o5 are mode ports. o1 is read when the mode begins and
o2− o5 are updated every 10ms and can be used to pass information from one mode to another in the event
of a mode switch. In Figure 2(b), fi specifies the actions that should be taken on the inputs to produce
outputs, wact specifies actuation frequency, and di specifies drivers which move information from ports to
inputs, or from outputs to an actuator.

B. Ptolemy II

Ptolemy II8 is an open source modeling and simulation framework being developed at the University of
California-Berkeley that supports model-based design. Ptolemy II facilitates actor oriented and object
oriented modeling. Actor oriented modeling is an alternative to the established object oriented methodology
where objects are manipulated. Instead actors allow actions to take place on the evolving data which flows
through them.3 Ptolemy II facilitates the modeling and simulation of the design of systems whose behavior
is governed by directors implemented in the Ptolemy II framework.

In Ptolemy II, when an actor fires, its behavior for a particular model of computation is governed by a
director which is specified for the particular model of computation. A designer can select the director that
specifies the desired behavior of a model, and then create and simulate their model. In Ptolemy II actors are
governed by an abstract semantics, which are rules that dictate how an actor should behave. A simplification
of the abstract semantics as it applies to Giotto includes pre-initialization, initialization, firing, and wrap-up.
During pre-initialization in simulation, the Giotto director determines whether the frequencies specified by
the actors are permissible. During initialization the ports and actors are assigned their specified default
values. After initialization, actors are executed in the firing stage.

In addition to being a modeling and simulation framework, Ptolemy II also features an extensible C and
Java code generation framework for multiple models of computation.

1. Giotto in Ptolemy II

The Giotto model of computation is implemented as a domain in the Ptolemy II simulation and modeling
environment. A Giotto model is created with a Giotto director in Ptolemy II. The period π of the mode
is specified as the period parameter to the director and the frequency of each task ωt is specified as a
frequency parameter to each Ptolemy II actor. If no values for the period and actor frequencies are provided
as parameters, default values are assumed.2

In5 a mode in Giotto consists of all tasks to be run concurrently with a particular period. In Ptolemy
II, a mode is slightly different but allows all models expressible in.5 Ptolemy II allows the use of hierarchy
that proves to be very convenient in the specification of control behavior. In addition it also reduces the
number of distinct mode combination specifications that are necessary in .5 A Ptolemy II mode is specified
inside a finite state machine modal model and improves the flattened specification present in5 with the use
of hierarchy. In Ptolemy II, tasks, which are referred to as actors, at the same level of hierarchy execute
concurrently and a modal model contains tasks that should be switched when a guard is enabled. If it is

3 of 8

American Institute of Aeronautics and Astronautics

desirable to have three tasks: A, B, and C, where task A is always running and task C should replace task
B when a certain condition is met, a designer could specify that in Ptolemy II as is shown in Figure 4. The
lower portion of Figure 4 shows how the model is specified with Ptolemy II and the upper portion of the
figure shows the logical execution times of each task based on their frequencies, and on the period parameter
π of the Giotto director.

Ptolemy II allows hierarchy through the use of composite actors. A composite actor contains actors and
in some cases a director. If no director is present inside the composite actor the actor is transparent. If
however there is a director present inside a composite actor the frequencies of the tasks inside the composite
actor are all interpreted to be relative to the frequency of the composite actor itself. If a composite actor
with frequency 2 contains a Giotto director, and a task with frequency 3, the interpreted frequency of the
task inside a composite actor is 6.

Each Giotto model is expected to specify a period as an attribute to the Giotto director, the frequency
of each task as an attribute to each actor, as well as initial values for outputs. If Giotto directors are used
inside a composite actor, the period of the top most Giotto director is used, but the frequencies of the tasks
inside the composite actor are relative to the frequency of the composite actor.

Figure 3. Simple Giotto model in Ptolemy II with three actors

For the purposes of simulation it is also possible to set the number of times you wish to have the model
run. This can be specified as a parameter called iterations to the Giotto director. It should be noted that
since Ptolemy II allows hierarchical models, if another Giotto director is specified within a composite actor,
only the topmost Giotto director’s period parameter is used along with the frequency parameters of each
director and actor.

Mode 1 Mode 2

Mode 1

Task B Task B

Task A

∏
0.5∏

0

∏

∏
0.5∏0 0.25∏

Mode 2

Task A

Task C Task C Task C Task C

0.75∏

∏

frequency = 1 frequency = 1

frequency = 2 frequency = 4

Figure 4. Hierarchy

4 of 8

American Institute of Aeronautics and Astronautics

C. Model Checking

In the past few years, model checking has been used to determine more causes of errors than traditional
testing. In traditional testing, inputs are provided to a program and the the input is run through a single
path in the program being tested. Model checking allows you to test automatically if a model of a system
meets a certain specification9 by exploring all possible paths in a program. Model checking is often used to
check a program for deadlocks as well as other potentially crippling issues.

A well known use of model checking is the identification of possible deadlock in an implementation of the
dining philosophers problem. In the dining philosopher problem, shown in Figure 5, a philosopher’s three
tasks are to eat, sleep, and think. Each philosopher needs two utensils to eat and they release their utensil
after they finish eating. If each philosopher picks up the utensil to their right and then the utensil to their
left, and all the philosophers attempt to eat at the same time, there would be a deadlock. No philosopher
will release their utensil until after they have eaten and as a result all will starve. The use of a model checker
on this problem will check all possible interleavings to decide if the order of the tasks each philosopher does
as well as the order in which they acquire utensils can lead to a deadlock.

Figure 5. Dining Philosophers

D. Java PathFinder(JPF)

Java PathFinder (JPF)a,developed at NASA Ames, is an explicit state software model checker for Java
programs, which automatically checks safety and liveness properties of the code, e.g., deadlock freedom or
absence of race conditions in multi-threaded programs. JPF is highly flexible and can be customized for
many purposes including automatic generation of test cases, testing of graphical user interfaces, or symbolic
execution and is actively used within NASA and in industry. JPF supports the full functionality of the Java
programming language; and, as is seen with other model checkers and verification tools, large problems yield
a large state space to explore. Since we target embedded platforms, we use the RTEmbed JPF extension
since it has features particular to an embedded platform.

1. JPF-RTEmbed extension

JPF RTEmbed is an extension to the Java PathFinder core developed by Pavel Parzek as a specific extension
of JPF for embedded systems using Real-Time Specification for Java. RTEmbed circumvents some of the
issues that lead to state explosion in general Java programs by limiting the thread yield points to be checked
to the general yield points used in embedded systems.7 This is possible because they use the green threading
model7 which allows fined grained control. As a result, instead of having to treat every Java byte code as
a thread yield point which must be checked, it is able to limit thread yield points to “the acquisition and
release of monitors, calls of methods of the thread class, as well as calls of wait and notify”.7 RTEmbed also
has enforcement of thread priorities, but does not have a precise model of real-time and execution time of
instructions on a particular platform.7

Though it does not have a precise model of real-time, its current timing model provides a good first step
in our approach.

ahttp://javapathfinder.sourceforge.net

5 of 8

American Institute of Aeronautics and Astronautics

http://javapathfinder.sourceforge.net

IV. Theory and Design

A. Theory

Our goal in designing the Giotto timing manager is to provide capabilities not generally present in the MoC
specification as well as to introduce real time to model time generally present in the MoC specification.
Giotto does not specify what should happen if a task takes more than the mode’s period (π) divided by the
task’s frequency (wt) to execute. We provide the user with a means of modifying the execution behavior if
timing constraints are violated, if not it behalves as previously specified.

To enable this facility we explored aspect oriented programming6 as well as the decorator pattern.1“Whenever
two properties being programmed must compose differently and yet be coordinate, we say that they cross-cut
each other. Because general procedure language provide only one composition mechanism, the programmer
must do the co-composition manually, leading to complexity and tangling in the code.6” Generally aspects
“cannot cleanly encapsulate in a generalized procedure. Aspects tend not to be units of systems functional
decomposition, but rather to be properties that affect the performance or synthesis of components in sys-
tematic ways”.6 Aspect Oriented Programming is generally used instead of having the programmer do
co-composition manually.

A decorator pattern adds, defines, or specifies features or attributes of components when brought into a
model, and the decorated aspects of a component are removed when the decorator is removed.

B. Design

The Giotto timing manager uses a piggyback mechanism in Ptolemy II that allows the timing manager’s
preinitialize,initialize, fire, postfire, etc methods to be executed right before the execution of each of the
respective Ptolemy methods. As a result the timing managers’s prefire methods is fired before the MoC
director’s prefire method. We decorate all the actors seen by the timing manager with WCET, ET, and
grace. In the timing managers’s fire method each actor’s execution time is randomly set as a variant of
the initially annotated actors WCET. This allows each firing to have a different execution and also explore
values above and below the WCET.

In the current timing manager, we compare the cumulative execution times(ET) of all actors fired at a
particular tick to the predicted cumulative worst case execution time(WCET) of the actors after the firing of
the actors. If the cumulative ET is larger than the cumulative WCET, the timing manger denotes an error
in the model and calls the handle model error method. Handle model error traverses the model hierarchy to
the first place it encounters a means of dealing with the error. In our case, if the Giotto Model is specified
inside a modal model, the handle model error method sets the modal model’s model error flag. Inside the
modal model the model’s designer can specify what should occur if a model error is detected by creating an
error transition from the current refinement (tasks in a mode) to the error detected/degraded refinement.
The user has the option to select any transition as an error transition and it is automatically annotated with
the required guard and set action, shown in Figure 6(b).

(a) Timing Manager (b) Error Transition

Figure 6. Timing Manager and Error Transition

Since models can be composed hierarchically, we use model checking to determine if there are issue in the
design of the model. In our case if the user forgets to specify an error transition when there is potential for
a timing error. We use JPF for verification even though we later generate C code for embedded platforms

6 of 8

American Institute of Aeronautics and Astronautics

because, while Java PathFinder verifies all code, if we used the spin model checker with embedded C code
we could run the embedded C code, however we would not be able to verify it. As a result, we generate Java
code that mirrors the generated C code and verify the Java code with Java PathFinder.

1. Timing manager in the generated code

The timing manager manifests itself in the generated code in the portion of the code generated for the
scheduler. Here we check to see if a completed task took longer than the specified time. If an error is
detected and the timing manger was enclosed inside a modal model we set the model error flag for that
modal model. If it is not the case that it is inside a modal model we simply throw an exception. The model
checker then checks to see if there are any uncaught or unhanded exceptions in the generated Java code.

V. Results

Giotto Model
Giotto Director

Timing
Manager

Ptolemy II
Code

Generation
Framework

Java Program

.

.

.

S
C
H
E
D
U
L
E
R

Java Path
Finder

JPF‐RTEmbed

Ptolemy II

Figure 7. Ptolemy II to Java PathFinder Workflow

We created the timing manager to add real time to model time present in the Giotto MoC, and we
extended the Ptolemy II Java code generation framework to generate Java code for the Giotto MoC as well
as for modal models. We also augmented the code generation framework to generate Java code able to
run on JPF-RTEmbed. After making these changes were were able to do preliminary runs as well as later
running a very simplified experiment. This project took the first steps toward completing the Ptolemy II to
Java PathFinder work flow shown in Figure 7. Currently the only unimplemented portion is the reporting
of an error detected by the model checker back to the user.

A. Discussion, and Conclusions

In addition to extending the framework shown in Figure 7, we successfully checked a small and simple model
shown in Figure 8 for possible timing errors.

The exploration of JPF as the model checking arm of the MoC extension indicated possible usefulness of
a model checker in the extension. During our experiments we discovered that:

• The notion of timing in JPF-RTEmbed was not what we initially expected

• Due to the notion of timing present we discovered it was possible for our scheduler to starve task
threads

• If there was no direct communication between threads the model checker often opted not the run the
thread not directly communicated with

7 of 8

American Institute of Aeronautics and Astronautics

Figure 8. Simple Example with two actors

Though our experiments did not turn out as expected, the present work shows a lot of potential and we
will continue extending our work even after the completion of the mini grant and attempt to resolve some
of the issues which occurred.

References

1Decorator pattern. http://c2.com/cgi/wiki?DecoratorPattern.
2C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng. Heterogeneous concurrent modeling and design

in java (volume 3: Ptolemy ii domains). Technical Report UCB/EECS-2008-37, EECS Department, University of California,
Berkeley, Apr 2008.

3Edward A. Lee. Center for Hybrid and Embedded Software Systems Seminar on Model Engineering, October 21 2008.
4S.-S. Forbes. Real-time c code generation in ptolemy ii for the giotto model of computation. Master’s thesis, EECS

Department, University of California, Berkeley, May 2009.
5T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A time-triggered language for embedded programming. volume

91(1) of Proceedings of the IEEE, pages 84–99, 2003.
6G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented Pro-

gramming. Proceedings of the European Conference on Object-Oriented Programming(ECOOP), Finland, LNCS(1241), June
1997.

7Pavel Parzek. The RTEmbed Extension for JPF: Checking Programs for Real-Time and Embeded Systems, October 21
2009.

8The Ptolemy Project. http://ptolemy.eecs.berkeley.edu/. Accessed : April 14, 2010.
9Wikipedia. Model Checking. http://en.wikipedia.org/wiki/Model_checking, 2010.

8 of 8

American Institute of Aeronautics and Astronautics

http://c2.com/cgi/wiki?DecoratorPattern
http://en.wikipedia.org/wiki/Model_checking

	Introduction
	Goal
	High Level Goal
	Project Goal

	Background
	Giotto
	Ptolemy II
	Giotto in Ptolemy II

	Model Checking
	Java PathFinder(JPF)
	JPF-RTEmbed extension

	Theory and Design
	Theory
	Design
	Timing manager in the generated code

	Results
	Discussion, and Conclusions

