
Safe Feature Elimination in Sparse Supervised

Learning

Laurent El Ghaoui
Vivian Viallon
Tarek Rabbani

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-126

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-126.html

September 21, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Safe Feature Elimination
in Sparse Supervised Learning

Laurent El Ghaoui elghaoui@eecs.berkeley.edu

Vivian Viallon viallon@eecs.berkeley.edu

Tarek Rabbani rabbani@eecs.berkeley.edu

Department of EECS

University of California

Berkeley, CA 94720

Date: September 17, 2010

Abstract
We investigate fast methods that allow to quickly eliminate variables (features) in supervised
learning problems involving a convex loss function and a l1-norm penalty, leading to a potentially
substantial reduction in the number of variables prior to running the supervised learning algorithm.
The methods are not heuristic: they only eliminate features that are guaranteed to be absent after
solving the learning problem. Our framework applies to a large class of problems, including support
vector machine classification, logistic regression and least-squares.

The complexity of the feature elimination step is negligible compared to the typical computa-
tional effort involved in the sparse supervised learning problem: it grows linearly with the number
of features times the number of examples, with much better count if data is sparse. We apply our
method to data sets arising in text classification and observe a dramatic reduction of the dimen-
sionality, hence in computational effort required to solve the learning problem, especially when
very sparse classifiers are sought. Our method allows to immediately extend the scope of existing
algorithms, allowing us to run them on data sets of sizes that were out of their reach before.

Keywords: Sparse classification, sparse regression, LASSO, feature elimination.

1

Contents

1 Introduction 3

2 Problem Setting 4

3 Generic Case 4
3.1 Dual problem . 5
3.2 Basic idea . 5
3.3 Lower bound γ obtained by dual scaling . 6
3.4 A specific dual point θ0 . 6
3.5 Recursive SAFE . 7

4 LASSO 7
4.1 Test, γ given . 8
4.2 Basic SAFE-LASSO theorem . 8
4.3 Starting from another dual point . 9
4.4 LASSO, with intercept . 10

5 Hinge Loss 10
5.1 Test, γ given . 11
5.2 SAFE-SVM theorem . 11

6 Logistic Loss 13
6.1 Test, γ given . 14
6.2 Obtaining a dual feasible point . 14
6.3 A specific example of a dual point . 14
6.4 Solving the bisection problem . 15
6.5 Algorithm summary . 15

7 Numerical results 16
7.1 PubMed abstracts data . 16
7.2 New York Times headlines data . 17

A Expression of P (γ, x) 19

B SAFE test for SVM 20
B.1 Computing Phi(γ, x) . 20
B.2 Computing Φ(x+, x−) . 22
B.3 SAFE-SVM test . 23

C Computing Plog(γ, x) via an interior-point method 25

D On thresholding methods for LASSO 25
D.1 Real data examples . 27

2

1. Introduction

In recent years, “sparse” classification or regression problems, which involve an l1-norm penalty on
the problem variables, have been increasingly popular, due to their ability to strike a useful trade-off
between a loss on the training data and predictive accuracy, and at the same time encouraging
sparsity of the classification or regression optimal coefficients.

Several efficient algorithms have been developed for l1-penalized regression or classification prob-
lems: in Kim et al. (2007); Efron et al. (2004); Candès and Romberg (2006); Donoho and Tsaig
(2008); Park and Hastie (2007); Friedman et al. (2007) for the LASSO problem (which corresponds
to the squared loss function), in Park and Hastie (2007); Friedman et al. (2007); Koh et al. (2007);
Genkin et al. (2007); Lee et al. (2006); Goodman (2004); Roth (2004) for the case of logistic regression
and related generalized linear models, in Fan et al. (2008); Bi et al. (2003); Fung and Mangasarian
(2004); Zhu et al. (2003) for the case of support vector machines (hinge loss). However, the com-
plexity of these algorithms, when it is known, grows fast with the number of variables. For example,
the interior-point method in Kim et al. (2007) has a worst-case complexity of O(n2m+m3), where
n is the number of variables (features) and m that of data points. Hence it is of interest to be able
to efficiently eliminate features in a pre-processing step.

Feature selection methods are often used to accomplish dimensionality reduction, and are of
utmost relevance for data sets of massive dimension, see for example Fan and Lv (2010). These
methods, when used as a pre-processing step, have been referred to in the literature as screening
procedures Fan and Lv (2010, 2008). They typically rely on univariate models to score features,
independently of each other, and are usually computationally fast. Classical procedures are based
on correlation coefficients, two-sample t-statistics or chi-square statistics Fan and Lv (2010); see also
Forman (2003) and the references therein for an overview in the specific case of text classification.
Most screening methods might remove features that could otherwise have been selected by the
regression or classification algorithm. However, some of them were recently shown to enjoy the
so-called “sure screening” property Fan and Lv (2008): under some technical conditions, no relevant
feature is removed, with probability tending to one.

Screening procedures typically ignore the specific classification task to be solved after feature
elimination. In this paper, we propose to remove features based on the supervised learning problem
considered. Our approach works on a large class of convex classification or regression problems,
and eliminates features based on both the structure of the loss function and the problem data.
The features are eliminated according to a sufficient, in general conservative, condition. Hence, we
never remove features unless they are guaranteed to be absent if one were to solve the full-fledged
classification or regression problem. The complexity of our SAFE (SAfe Feature Elimination) method
grows as O(mn), where m is the number of training points, and n the number of (features), with
improved counts when the data matrix is sparse. Our test becomes more aggressive at removing
features as the penalty parameter grows.

The specific application we have in mind involves large data sets of text documents, and sparse
matrices based on occurrence, or other score, of words or terms in these documents. We seek
extremely sparse optimal coefficient vectors, even if that means operating at values of the penalty
parameter that are substantially larger than those dictated by a pure concern for predictive accuracy.
The fact that we need to operate at high values of this parameter opens the hope that, at least for
the application considered, the number of features eliminated by using our fast test is high enough to
allow a dramatic reduction in computing time and memory requirements. Our experimental results
indicate that for many of these data sets, we do observe a dramatic reduction in the number of
variables, typically by an order of magnitude or more, expanding the reach of existing algorithms
for large-scale data.

The paper is organized as follows. In section 2, we introduce a generic formalism for classification
and regression, covering the squared, logistic, and hinge loss functions. Section 3 describes the feature
elimination method for generic loss functions. Section 4 provides details of the generic method in

3

loss function f(ξ) conjugate function f∗(ϑ) domain of f∗

squared fsq(ξ) = (1/2)ξ2 (1/2)ϑ2 R
logistic flog(ξ) = log(1 + e−ξ) (−ϑ) log(−ϑ) + (ϑ+ 1) log(ϑ+ 1) [−1, 0]m

hinge fhi(ξ) = (1− ξ)+ −ϑ [−1, 0]m

Table 1: Expression for the conjugate of popular loss functions, adopting the convention 0 log 0 = 0
for the logistic loss.

the specific case of the squared loss function; section 5 and 6 focus on the hinge and loss functions,
respectively. Section 7 illustrates the approach in the context of text classification, and empirically
demonstrates that, when the classifier sought should be extremely sparse, the approach provides a
substantial reduction in problem size.

Notation. We use 1 to denotes a vector of ones, with size inferred from context. For a scalar a,
a+ denotes the positive part of a. For a vector a, this operation is component-wise, so that 1Ta+ is
the sum of the positive elements in a. We take the convention that a sum over an empty index sets,
such as

∑k
i=1 ai with k ≤ 0, is zero.

2. Problem Setting

We consider a generic supervised learning problem of the form

P(λ) : φ(λ) := min
w,v

m∑
i=1

f(aTi w + biv + ci) + λ‖w‖1, (1)

where the loss function f is convex, ai ∈ Rn, i = 1, . . . ,m, b, c ∈ Rm are given, and λ > 0 is a penalty
parameter encouraging sparsity of the vector w. We define the feature matrix A := [a1, . . . , am] ∈
Rn×m, and denote its k-th row by xk ∈ Rm, k = 1, . . . , n, so that AT = [xT1 , . . . , x

T
n].

Our formalism covers the well-known LASSO problem (see, e.g Efron et al. (2004))

φsq(λ) := min
w

1

2

m∑
i=1

(aTi w − yi)2 + λ‖w‖1, (2)

for which the loss function is the squared loss: f = fsq, with fsq(ξ) = (1/2)ξ2, with ai ∈ Rn,
i = 1, . . . , n the data points, c = −y is the (negative) response vector, and b = 0. Logistic regression
and support vector machine classification models as also covered in by our formalism, as detailed in
sections 6 and 5, respectively.

We will denote by f∗ the conjugate of the loss function f , which is the extended-value convex
function defined as

f∗(ϑ) := max
ξ

ξϑ− f(ξ).

Beyond convexity, we make a few mild assumptions about the loss function f . First, we assume that
it is non-negative everywhere, and that it is closed (its epigraph is closed), so that f∗∗ = f . These
assumptions are met with the squared, logistic and hinge loss functions, as well as other popular
loss functions. The conjugate of the three loss functions: squared, logistic and hinge, which we
henceforth refer to with the subscripts lo, hi and sq, are given in Table 1.

3. Generic Case

In this section, we describe the basic idea as it applies to the generic sparse supervised learning
problem (1).

4

3.1 Dual problem

The first step is to devise the dual of problem (1), which is

P(λ) : φ(λ) = max
θ

G(θ) : θT b = 0, |θTxk| ≤ λ, k = 1, . . . , n, (3)

where

G(θ) := cT θ −
m∑
i=1

f∗(θi) (4)

is the dual function, which is, by construction, concave. We assume that strong duality holds and
primal and dual optimal points are attained. Due to the optimality conditions for the problem (see
Boyd and Vandenberghe (2004)), constraints for which |θTxk| < λ at optimum correspond to a zero
element in the primal variable: wk = 0.

3.2 Basic idea

Assume that a lower bound γ on the optimal value of the learning problem φ(λ) is known: γ ≤ φ(λ).
(Without loss of generality, we can assume that 0 ≤ γ ≤

∑m
i=1 f(ci).) Since γ is a lower bound on

the dual function, we can safely add the corresponding lower bound constraint in the dual problem:

φ(λ) := max
θ

G(θ) : G(θ) ≥ γ, θT b = 0, |θTxk| ≤ λ, k = 1, . . . , n.

This implies that the test

λ > T (γ, xk) := max
θ
|θTxk| : G(θ) ≥ γ, θT b = 0 (5)

allows to eliminate the k-th feature. Figure 1 illustrates the basic idea.

θ ∗

G(θ) = G(θ ∗)

G(θ) = γ

θ 0

A

B

Figure 1: The basic idea of safe feature elimination, with a given lower bound γ. The feasible
set of the dual problem is the shaded polytope. Two level sets of the dual function are
shown, one corresponds to the optimal value and the other to the given lower bound γ.
Constraints (A) and (B) (in green) are safely eliminated, but some inactive constraints (in
red) are not. Here, θ0 corresponds to the unconstrained maximum of the dual function.

For a given x ∈ Rm, and γ ∈ R, we have

T (γ, x) = max(P (γ, x), P (γ,−x)),

5

where P (γ, x) is the optimal value of a convex optimization problem with two constraints only:

P (γ, x) := max
θ

θTx : G(θ) ≥ γ, θT b = 0. (6)

Since P (γ, x) decreases when γ increases, the closer φ(λ) is to its lower bound γ, the more aggressive
(accurate) our test is.

By construction, the dual function G is decomposable as a sum of functions of one variable only.
This particular structure allows to solve problem (6) very efficiently, using for example interior-point
methods, for a large class of loss functions f . Alternatively, we can express the problem in dual form
as a convex optimization problem with two scalar variables:

P (γ, x) = min
µ>0, ν

−γµ+ µ

m∑
i=1

f

(
xi + µci + νbi

µ

)
. (7)

Note that the expression above involves the perspective of the function f , which is convex (see Boyd
and Vandenberghe (2004)). For many loss functions f , the above problem can be efficiently solved
using a variety of methods for convex optimization, in (close to) O(m) time. We can also set the
variable ν = 0, leading to a simple bisection problem over µ. This amounts to ignore the constraint
θT b = 0 in the definition of P (γ, x), resulting in a more conservative test. More generally, any
pair (µ, ν) with µ > 0 generates an upper bound on P (γ, x), which in turn corresponds to a valid,
perhaps conservative, test.

3.3 Lower bound γ obtained by dual scaling

One way to get a lower bound γ is to find a dual point θ that is feasible for the dual problem P(λ),
and then set γ = G(θ).

To get a dual feasible point, we can solve the problem for a higher value of λ0 ≥ λ of the
penalty parameter. (In the specific case examined below, we will see how to set λ0 so that the
vector w = 0 at optimum.) This provides a dual point θ0 that is feasible for P(λ0), which satisfies
λ0 = ‖Xθ0‖∞. In turn, θ0 can be scaled so as to become feasible for P(λ). Precisely, we set θ = sθ0,
with ‖Xθ‖∞ ≤ λ equivalent to |s| ≤ λ/λ0. In order to find the best possible scaling factor s, we
solve the one-dimensional, convex problem

γ(λ) := max
s

G(sθ0) : |s| ≤ λ

λ0
. (8)

Under mild conditions on the loss function f , the above problem can be solved by bisection in O(m)
time. By construction, γ(λ) is a lower bound on φ(λ). We proceed by computing the quantities
P (γ(λ), x) (via expression (7)), T (γ(λ), x) for x = ±xk, k = 1, . . . , n, and apply the test (5).
Assuming θ0 is already available, the complexity of our test, when used on all the n features, grows
as O(nm), with a better count if the data is sparse.

3.4 A specific dual point θ0

We can generate an initial point θ0 by solving the problem with w = 0. We get

min
v

m∑
i=1

f(biv + ci) = min
v

max
θ

θT (bv + c)−
m∑
i=1

f∗(θi) = max
θ : bT θ=0

G(θ).

Solving the one-dimensional problem above can be often done in closed-form, or by bisection, in
O(m). Choosing θ0 to be any optimal for the corresponding dual problem (the one on the right-
hand side) generates a point that is dual feasible for it, that is, G(θ0) is finite, and bT θ0 = 0. The
above specific construction is illustrated in Figure 2.

6

θ 0

G(θ) = G(θ ∗)

G(θ) = γ

O

θ

A

B

C

Figure 2: Safe feature elimination based on scaling the dual point θ0 that is optimal for the problem
where all features (constraints) can be removed. This choice leads to a better lower bound
γ over that in Fig. 1, as now an additional constraint (C) is removed.

The point θ0 satisfies all the constraints of problem P(λ), except perhaps for the constraint
‖Xθ0‖∞ ≤ λ. Hence, if λ ≥ λmax := ‖Xθ0‖∞, then w = 0 (and θ0) is optimal for P(λ). Note
that, since θ0 may not be uniquely defined, λmax may not necessarily be the smallest value for which
w = 0 is optimal for the primal problem.

3.5 Recursive SAFE

In many applications, we are interested in solving problem (3) for a given sequence of λ values.
Alternatively, our objective is to find, using a binary search on λ, a value of λ that yields a certain
cardinality (number of non-zero coefficients) of the optimal classifier. In both cases, we can use
SAFE in order to reduce the overall computational load.

For example, if we want to solve the problem for a given sequence of decreasing λ values, say
λ1 ≥ . . . ≥ λN , then at each step we can use the previously computed solution to find a bound γ.
Specifically, if we have solved problem P(λt) for some t ≥ 1, and are able to find a corresponding
optimal dual point θt, then we can use the scaling method of section 3.4 to find a bound γt+1 on
the problem P(λt+1).

In the context of binary search, we maintain upper and lower bounds on a “target” value of λ.
For each upper bound, we proceed by scaling as before. For lower values of λ, no scaling is necessary,
since the feasible set of the dual problem P(λ0) is contained in that of problem P(λ) if λ ≥ λ0.
However, we can still improve the corresponding bound γ by scaling, that is, solving problem (8)
with λ ≥ λ0.

In both cases, we can potentially improve the bound by scaling all the dual points we have
obtained so far, and choosing our bound γ to be the smallest of each corresponding bound.

4. LASSO

In this section we apply the approach outlined before to the LASSO problem (2). The dual problem
is

φsq(λ) = max
θ

Gsq(θ) : |θTxk| ≤ λ, k = 1, . . . , n,

where xk is the k-th row of the n×m matrix X := [a1, . . . , am], and

Gsq(θ) := −yT θ − 1

2
θT θ =

1

2
yT y − 1

2
‖θ + y‖22.

7

The following relationship holds between optimal primal and dual variables w, θ:

θ = XTw − y. (9)

4.1 Test, γ given

Let us first examine the case when a lower bound γ on the problem is known: γ ≤ φ(λ). Without
loss of generality, we may assume γ ∈ [0, γmax], where γmax := (1/2)yT y. Since z = 0, the quantity
defined in (7) is given by

Psq(γ, x) = min
µ>0
−γµ+ µ

m∑
i=1

fsq

(
xi − µyi

µ

)
= min

µ>0
−γµ+

1

2µ
‖x− µy‖22

= min
µ>0

µ

2
(yT y − 2γ) +

1

2µ
xTx− yTx

= ‖x‖2 ·
√
yT y − 2γ − yTx,

where we have exploited γ ≤ γmax = (1/2)yT y. We obtain

Tsq(γ, x) = max(Psq(γ, x), Psq(γ,−x)) = |yTx|+D(γ)‖x‖2, where D(γ) :=
√
yT y − 2γ.

Our test for removing the k-th feature passes if

λ > |yTxk|+
√
yT y − 2γ · ‖xk‖2. (10)

4.2 Basic SAFE-LASSO theorem

Let us now examine a basic choice for the lower bound γ, based on the “dual scaling” approach
described in section 3.4, and on choosing λ0 such that w = 0 is optimal for P(λ0).

We first find the smallest value λmax of λ above which we can guarantee that w = 0 is optimal
for P(λ). Due to the optimality condition (9), w = 0 is optimal implies that θmax := −y is optimal
for the dual problem, hence it is feasible, which in turn implies

λ ≥ λmax := max
1≤j≤n

|xTj y| = ‖Xy‖∞.

Conversely, if the above condition holds, then the point θ = θmax = −y is dual feasible, and achieves
the value attained for w = 0 (namely, yT y/2), which proves that the latter is primal optimal.

We follow the scaling technique of section 3.4 with λ0 = λmax, and assuming λ ≤ λmax from now
on. We proceed by scaling the dual point θmax = −y, which is feasible for Psq(λmax), so that the
scaled version θ = sθmax is feasible for Psq(λ). The corresponding lower bound γ is found by solving

γ(λ) = max
s

Gsq(sθmax) : |s| ≤ λ

λmax
.

With θmax = −y, and

Gsq(−sy) =
1

2
yT y − 1

2
‖y − sy‖22 =

1

2
yT y(1− (1− s)2),

the above problem can solved in closed form:

γ(λ) =
1

2
yT y

(
1−

(
1− λ

λmax

)2
)
, D(λ) :=

√
yT y − 2γ(λ) = ‖y‖2

λmax − λ
λmax

,

8

with the optimal scaling equal to s∗ = λ/λmax. Our criterion to remove the k-th feature from
problem P(λ) becomes

λ > |yTxk|+D(λ)‖xk‖2 = |yTxk|+ ‖y‖2‖xk‖2 ·
λmax − λ
λmax

.

The test can be summarized as follows.

Theorem 1 (Basic SAFE-LASSO) For the LASSO problem (2), and denoting by xk the k-th
row of the matrix X, the condition

λ > ρkλmax, with ρk :=
‖y‖2‖xk‖2 + |yTxk|
‖y‖2‖xk‖2 + λmax

, λmax := max
1≤j≤n

|yTxj |, (11)

allows to safely remove the k-th feature.

The complexity of running this test through all the features is O(mn), with a better count if
the data is sparse. The main computational burden in the test is actually independent of λ, and
can be done once and for all: it suffices to rank features according to the values of ρk, k = 1, . . . , n.
Note that this test accurately predicts the value of λ = λmax for which all the features can be safely
removed, that is, w = 0 at the optimum for Psq(λ).

In the case of scaled data sets, for which ‖xk‖2 = 1 for every k, the expression above has a
convenient geometrical interpretation:

ρk =
1 + | cosαk|

1 + max
1≤j≤n

| cosαj |
, (12)

where αk is the angle between the k-feature and the response vector y. Our test then consists in
eliminating features based on how closely they are aligned with the response, relative to the most
closely aligned feature. For scaled data sets, our test is very similar to standard correlation-based
feature selection Fan and Lv (2008); in fact, for scaled data sets, the ranking of features it produces is
then exactly the same. The big difference here is that our test is not a heuristic, as it only eliminates
features that are guaranteed to be absent when solving the full-fledged sparse supervised learning
problem.

4.3 Starting from another dual point

As explained in the generic case in section 3.4, we can start from an arbitrary dual point θ0 that is
feasible for Psq(λ0), where λ0 ≥ λ is given (the previous section corresponds to λ0 = λmax). One
way to generate such a point is to start with w0 that is optimal for Psq(λ0) in primal form. Then
the point

θ0 := XTw0 − y

is optimal for the dual problem Psq(λ0), and satisfies λ0 = ‖Xθ0‖∞. To avoid trivialities, we assume
θ0 6= 0, λ0 > 0.

To find the lower bound γ, we use the scaled feasible dual point θ(s) := sθ0, where s ∈ R is
constrained so that ‖Xθ(s)‖∞ ≤ λ, that is, |s| ≤ λ/λ0. We then set γ according to

γ(λ) = max
s

{
Gsq(sθ0) : |s| ≤ λ

λ0

}
= max

s

{
β0s−

1

2
s2α0 : |s| ≤ λ

λ0

}
,

where α0 := θT0 θ0 > 0, β0 := |yT θ0|. We obtain

γ(λ) =
β2
0

2α0

(
1−

(
1− α0

β0

λ

λ0

)2

+

)
.

9

The test takes the form (10), with γ(λ) given above:

λ > |xTk y|+D(λ)‖xk‖2, D(λ)2 := yT y − 2γ(λ) = min
s

{
‖y − sθ0‖22 : |s| ≤ λ

λ0

}
= α0

(
β0
α0
− λ

λ0

)2

+

+ yT y − β2
0/α0.

(13)

There is a closed-form expression of the form λ > ρkλ0, where ρk ∈ [0, 1] depends on θ0, y via α0, β0,
λ0, and also on |yTxk|, ‖xk‖2. Note that, for given λ the value of γ(λ) can be computed only once
as we run the test through all the features. The complexity of running this test through all the
features is again O(mn), or less for sparse data.

Our result can be summarized as follows.

Theorem 2 (SAFE-LASSO) Consider the LASSO problem Psq(λ) in (2). Let λ0 ≥ λ be a value
for which a dual point θ0 ∈ Rm that is optimal for Psq(λ0) is known, so that in particular λ0 =
‖Xθ0‖∞ ≥ λ. Denote by xk the k-th row of the matrix X. The condition

λ > |xTk y|+D(λ)‖xk‖2, with D(λ) = α0

(
β0
α0
− λ

λ0

)2

+

+ yT y − β2
0/α0, (14)

with α0 := θT0 θ0, β0 := |yT θ0|, allows to safely remove the k-th feature.

The theorem reduces the basic SAFE-LASSO test of theorem 1, with the choice θ0 = θmax = −y,
λ0 = λmax = ‖Xy‖∞.

4.4 LASSO, with intercept

The LASSO with intercept case corresponds to a slight modification of the LASSO problem (2).
More precisely, it corresponds to the general problem (1), with f = fsq, ai ∈ Rn, i = 1, . . . , n
the data points, c = −y is the (negative) response vector, and bi = 1, i = 1, . . . , n. Therefore, it
expresses as

φ(λ) := min
w,v

1

2

m∑
i=1

(aTi w + v − yi)2 + λ‖w‖1. (15)

As before we define the data matrix X = [a1, . . . , am].
Since the intercept coefficient v is not penalized, we can solve the problem with w fixed, and

obtain the optimality condition

v = y −XT
w, (16)

where y = (1/m)1T y, and X = (1/m)X1 with 1 the vector of ones of appropriate size. This implies
that the LASSO with intercept problem reduces to one without intercept, with data (X, y) replaced
with its centered version (Xcent, ycent), where Xcent := X −X1T , ycent := y − y1.

In particular, safe feature elimination rules in the LASSO with intercept case are similar to the
rules we obtained for the LASSO without intercept, with (xk, y) replaced by its centered version
(xk − xk1, y − y1), where xk = (1/m)xTk 1. Note that even if X is sparse, Xcent is generally not
sparse; however, since Xcent is a rank-one modification of the matrix X, it is straightforward to
exploit sparsity.

5. Hinge Loss

We turn to the sparse support vector machine classification problem:

Phi(λ) : φhi(λ) := min
w,v

m∑
i=1

(1− yi(zTi w + v))+ + λ‖w‖1, (17)

10

where zi ∈ Rn, i = 1, . . . ,m are the data points, and y ∈ {−1, 1}m is the label vector. The above
is a special case of the generic problem (1), where f = fhi is the hinge loss, b = y, c = 0, and the
feature matrix A is given by A = [y1z1, . . . , ymzm], so that xk = [y1z1(k), . . . , ymzm(k)]T .

We denote by I+, I− the set of indices corresponding to the positive and negative classes, respec-
tively, and denote by m± = |I±| the associated cardinalities. We define m := min(m+,m−). Finally,
for a generic data vector x, we set x± = (xi)i∈I± ∈ Rm± , k = 1, . . . , n, the vectors corresponding to
each one of the classes.

The dual problem takes the form

φhi(λ) := max
θ
−1T θ : − 1 ≤ θ ≤ 0, θT y = 0, |θTxk| ≤ λ, k = 1, . . . , n. (18)

5.1 Test, γ given

Let γ be a lower bound on φhi(λ). The optimal value obtained upon setting w = 0 in (17) is given
by

min
v

m∑
i=1

(1− yiv)+ = 2 min(m+,m−) := γmax. (19)

Hence, without loss of generality, we may assume 0 ≤ γ ≤ γmax.

The feature elimination test hinges on the quantity

Phi(γ, x) = max
θ

θTx : − 1T θ ≥ γ, θT y = 0, −1 ≤ θ ≤ 0

= min
µ>0, ν

−γµ+ µ

m∑
i=1

fhi

(
xi − νyi

µ

)
= min

µ>0, ν
−γµ+

m∑
i=1

(µ+ νyi − xi)+.

(20)

In appendix B.1, we show that for any x, the quantity P (γ, x) is finite if and only if 0 ≤ γ ≤ γmax,
and can be computed in O(m logm), or less with sparse data, via a closed-form expression. That
expression is simpler to state for Phi(γ,−x):

Phi(γ,−x) =

bγ/2c∑
j=1

x̄j − (
γ

2
− bγ

2
c)(x̄bγ/2c+1)+ +

m∑
j=bγ/2c+1

(x̄j)+, 0 ≤ γ ≤ γmax = 2m,

x̄j := x+[j] + x−[j], j = 1, . . . ,m,

with x[j] the j-th largest element in a vector x, and with the convention a sum over an empty index
set is zero. Note that in particular, since γmax = 2m:

Phi(γmax,−x) =

m∑
i=1

(x+[j] + x−[j]).

5.2 SAFE-SVM theorem

Following the construction proposed in section 3.4 for the generic case, we select γ = Ghi(θ), where
the point θ is feasible for (18), and can found by the scaling method outlined in section 3.3, as
follows. The method starts with the assumption that there is a value λ0 ≥ λ for which we know the
optimal value γ0 of Phi(λ0).

Specific choices for λ0, γ0. Let us first detail how we can find such values λ0, γ0.

11

We can set a value λ0 such that λ > λ0 ensures that w = 0 is optimal for the primal problem (17).
The value that results in the least conservative test is λ0 = λmax, where λmax is the smallest value
of λ above which w = 0 is optimal:

λmax := min
θ
‖Xθ‖∞ : − θT1 ≥ γmax, θT y = 0, −1 ≤ θ ≤ 0. (21)

Since λmax may be relatively expensive to compute, we can settle for an upper bound λmax on λmax.
One choice for λmax is based on the test derived in the previous section: we ask that it passes for
all the features when λ = λmax and γ = γmax. That is, we set

λmax = max
1≤k≤n

max (Phi(γmax, xk), Phi(γmax,−xk))

= max
1≤k≤n

max

(
m∑
i=1

(x+k)[j] + (x−k)[j],

m∑
i=1

(−x+k)[j] + (−x−k)[j]

)
.

(22)

By construction, we have λmax ≥ λmax, in fact:

λmax = max
1≤k≤n

max
θ
|xTk θ| : − θT1 ≥ γmax, θT y = 0, −1 ≤ θ ≤ 0

= max
θ
‖Xθ‖∞ : − θT1 ≥ γmax, θT y = 0, −1 ≤ θ ≤ 0,

The two values λmax, λmax coincide if the feasible set is a singleton, that is, when m+ = m−. On
the whole interval λ0 ∈ [λmax, λmax], the optimal value of problem Phi(λ0) is γmax.

Dual scaling. The remainder of our analysis applies to any value λ0 for which we know the optimal
value γ0 ∈ [0, γmax] of the problem Phi(λ0).

Let θ0 be a corresponding optimal dual point (as seen shortly, the value of θ0 is irrelevant, as
we will only need to know γ0 = −1T θ0). We now scale the point θ0 to make it feasible for Phi(λ),
where λ (0 ≤ λ ≤ λ0) is given. The scaled dual point is obtained as θ = sθ0, with s solution to (8).
We obtain the optimal scaling s = λ/λ0, and since γ0 = −1T θ0, the corresponding bound is

γ(λ) = −1T (sθ0) = sγ0 = γ0
λ

λ0
.

Our test takes the form

λ > max (Phi(γ(λ), x), Phi(γ(λ),−x)) .

Let us look at the condition λ > Phi(γ(λ),−x):

∃ µ ≥ 0, ν : λ > −γ(λ)µ+

m∑
i=1

(µ+ νyi + xi)+,

which is equivalent to:

λ > min
µ≥0,ν

m∑
i=1

(µ+ νyi + xi)+

1 + (γ0/λ0)µ
.

The problem of minimizing the above objective function over variable ν has a closed-form solution.
In appendix B.2, we show that for any vectors x± ∈ Rm± , we have

Φ(x+, x−) := min
ν

m+∑
i=1

(x+i + ν)+ +

m−∑
i=1

(x−i − ν)+ =

m∑
i=1

(x+[i] + x−[i])+,

12

with x[j] the j-th largest element in a vector x. Thus, the test becomes

λ > min
µ≥0

m∑
i=1

(2µ+ x+[i] + x−[i])+

1 + (γ0/λ0)µ
.

Setting κ = λ0/(λ0 + γ0µ), we obtain the following formulation for our test:

λ > min
0≤κ≤1

m∑
i=1

((1− κ)
2λ0
γ0

+ κ(x+[i] + x−[i]))+ =
2λ0
γ0

G(
γ0

2λ0
x), (23)

where xi := x+[i] + x−[i], i = 1, . . . ,m, and for z ∈ Rm, we define

G(z) := min
0≤κ≤1

m∑
i=1

(1− κ+ κzi)+.

We show in appendix B.3 that G(z) admits a closed-form expression, which can be computed in
O(d log d), where d is the number of non-zero elements in vector z. By construction, the test removes
all the features if we set λ0 = λmax, γ0 = γmax, and when λ > λmax.

Theorem 3 (SAFE-SVM) Consider the SVM problem Phi(λ) in (17). Denote by xk the k-th row
of the matrix [y1z1, . . . , ymzm], and let I± := {i : yi = ±1}, m± := |I±|, m := min(m+,m−), and
γmax := 2m. Let λ0 ≥ λ be a value for which the optimal value γ0 ∈ [0, γmax] of Psq(λ0) is known.
The following condition allows to remove the k-th feature vector xk:

λ >
2λ0
γ0

max

(
G(

γ0
2λ0

xk), G(
γ0

2λ0
xk)

)
, (24)

where (xk)i := (xk)+[i] + (xk)−[i], (xk)i := (−xk)+[i] + (−xk)−[i], i = 1, . . . ,m, and for z ∈ Rm:

G(z) = min
z

1

1− z

p∑
i=1

(zi − z)+ : z ∈ {−∞, 0, (zj)j : zj<0}

A specific choice for λ0 is λmax given by (22), with corresponding optimal value γ0 = γmax.

6. Logistic Loss

We now consider the sparse logistic regression problem:

Plo(λ) : φlo(λ) := min
w,v

m∑
i=1

log
(
1 + exp(−yi(zTi w + v))

)
+ λ‖w‖1, (25)

with the same notation as in section 5. The dual problem takes the form

φhi(λ) := max
θ

m∑
i=1

(
θi log(−θi)− (1 + θi)

T log(1 + θi)
)

: −1 ≤ θ ≤ 0, θT y = 0,
|θTxk| ≤ λ, k = 1, . . . , n.

(26)

13

6.1 Test, γ given

Assume that we know a lower bound on the problem, γ ≤ φ(λ). Since 0 ≤ φ(λ) ≤ m log 2, we may
assume that γ ∈ [0,m log 2] without loss of generality. We proceed to formulate problem (7). For
given x ∈ Rm, and γ ∈ R, we have

Plog(γ, x) = min
µ>0, ν

−γµ+ µ

m∑
i=1

flog

(
xi + yiν

µ

)
, (27)

which can be computed in O(m) by two-dimensional search, or by the dual interior-point method
described in appendix. (As mentioned before, an alternative, resulting in a more conservative test,
is to fix ν, for example ν = 0.) Our test to eliminate the k-th feature takes the form

λ > Tlog(γ, xk) := max(Plog(γ, xk), Plog(γ,−xk)).

If γ is known, the complexity of running this test through all the features is O(nm). (In fact, the
terms in the objective function that correspond to zero elements of x are of two types, involving
flog(±ν/µ). This means that the effective dimension of problem (27) is the cardinality d of vector
x, which in many applications is much smaller than m.)

6.2 Obtaining a dual feasible point

We can construct dual feasible points based on scaling one obtained by choice of a primal point
(classifier weight) w0. This in turn leads to other possible choices for the bound γ.

For w0 ∈ Rn given, we solve the one-dimensional, convex problem

v0 := arg min
b

m∑
i=1

flog(yix
T
i w0 + yib).

This problem can be solved by bisection in O(m) time Kim et al. (2007). At optimum, the derivative
of the objective is zero, hence yT θ0 = 0, where

θ0(i) := − 1

1 + exp(yixTi w0 + yiv0)
, i = 1, . . . ,m.

Now apply the scaling method seen before, and set γ by solving problem (8).

6.3 A specific example of a dual point

A convenient, specific choice in the above construction is to set w0 = 0. Then, the intercept v0 can
be explicitly computed, as v0 = log(m+/m−), where m± = |{i : yi = ±1}| are the class cardinalities.
The corresponding dual point θ0 is

θ0(i) =

 −
m−
m

(yi = +1)

−m+

m
(yi = −1),

i = 1, . . . ,m. (28)

The corresponding value of λ0 is (see Kim et al. (2007)):

λ0 := ‖AT θ0‖∞ = max
1≤k≤n

|θT0 xk|.

We now compute γ(λ) by solving problem (8), which expresses as

γ(λ) = max
|s|≤λ/λ0

Glog(sθ0) = max
|s|≤λ/λ0

−m+f
∗
log(−sm−

m
)−m−f∗log(−sm+

m
). (29)

The above can be solved analytically: it can be shown that s = λ/λ0 is optimal.

14

6.4 Solving the bisection problem

In this section, we are given c ∈ Rm, γ ∈ (0,m log 2), and we consider the problem

F ∗ := min
µ>0

F (µ) := −γµ+ µ

m∑
i=1

flog(c(i)/µ). (30)

Problem (30) corresponds to the problem (27), with ν set to a fixed value, and c(i) = yixi, i =
1, . . . ,m. We assume that c(i) 6= 0 for every i, and that κ := m log 2 − γ > 0. Observe that
F ∗ ≤ F0 := limµ→0+ F (µ) = 1T c+, where c+ is the positive part of vector c.

To solve this problem via bisection, we initialize the interval of confidence to be [0, µu], with µu
set as follows. Using the inequality log(1 + e−x) ≥ log 2 − (1/2)x+, which is valid for every x, we
obtain that for every µ > 0:

F (µ) ≥ −γµ+ µ

m∑
i=1

(
log 2− (c(i))+

2µ

)
= κµ− 1

2
1T c+.

We can now identify a value µu such that for every µ ≥ µu, we have F (µ) ≥ F0: it suffices to ensure
κµ− (1/2)1T c+ ≥ F0, that is,

µ ≥ µu :=
(1/2)1T c+ + F0

κ
=

3

2

1T c+
m log 2− γ

.

6.5 Algorithm summary

An algorithm to check if a given feature can be removed from a sparse logistic regression problem
works as follows.

Given: λ, k (1 ≤ k ≤ n), flog(x) = log(1 + e−x), f∗log(ϑ) = (−ϑ) log(−ϑ) + (ϑ+ 1) log(ϑ+ 1).

1. Set λ0 = max
1≤k≤n

|θT0 xk|, where θ0(i) = −m−/m (yi = +1), θ0(i) = −m+/m (yi = −1),

i = 1, . . . ,m.

2. Set

γ(λ) := −m+f
∗
log(− λ

λ0

m−
m

)−m−f∗log(− λ

λ0

m+

m
).

3. Solve via bisection a pair of one-dimensional convex optimization problems

Pε = min
µ>0
−γ(λ)µ+ µ

m∑
i=1

flog(εyi(xk)i/µ) (ε = ±1),

each with initial interval [0, µu], with

µu =
3

2

m∑
i=1

(εyi(xk)i)+

m log 2− γ
.

4. If λ > max(P+, P−), the k-th feature can be safely removed.

15

7. Numerical results

In this section we report experiments1 where we used SAFE prior to several sparse classification
methods. We report on two kinds of experiments, which corresponds to the two main benefits of
SAFE. One kind, in our opinion the most important, shows how memory limitations can be reduced,
by allowing to treat larger data sets. The other seeks to measure how much computational time is
saved.

In both cases, we have used a variety of available algorithms for sparse classification problems.
We will use acronyms to refer to the following methods: IPM-LASSO stands for the Interior-Point
Method for LASSO described in Kim et al. (2007); IPM-Logistic to that proposed in Koh et al. (2007)
for sparse logistic regression; GLMNET corresponds to the Generalized Linear Model algorithm
described in Friedman et al. (2010).

Since some methods (such as IPM ones) do not deliver exact zero coefficients, the issue arises as
to how to evaluate the cardinality of classifier vectors. In appendix D, we discuss some issue related
to thresholding the coefficients in IPM methods.

In our experiments, we have focused on LASSO problems for text classification. We use the
acronym SAFE1 to refer to the basic safe test of theorem 1, and SAFE2 for safe test of theorem 2.

7.1 PubMed abstracts data

We have applied safe feature elimination procedure to a large data set which cannot be loaded into
Matlab on our machine. This data set consists of medical journal abstracts represented in a bag-
of-words format, where stop words have been eliminated, and capitalization removed. The number
of features is n = 127, 025 and the number of documents is m = 1, 000, 000. There is a total of
82, 209, 586 non-zeros in the matrix, with an average of about 645 non-zeros per feature.

0.04 0.06 0.08 0.1 0.2 0.4 0.64
1

10

100

44,000

120,000

!/!max

N
um

be
r o

f F
ea

tu
re

s

Original
Memory limit
SaFE1
SaFE2
LASSO

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

Features

Ti
m

e
(h

ou
rs

)

IPM with SaFE1
IPM with SaFE2

Figure 3: Left panel: In blue, the original number of features. In dashed-red, the number of features
that can be loaded into matlab wihtout memory problems. In purple, the number of
features obtained via IPM-LASSO, as a function of the parameter λ. In red, the number
of features not eliminated by SAFE1. In green, the number of features not eliminated by
SAFE2. Right panel: computational time needed to solve the IPM-LASSO after SAFE1
and SAFE2, as a function of the number of active features at the optimum

In some applications such as Gawalt et al. (2010), the goal is to learn a short list of terms that
are predictive of the appearance of a given query term (say, “lung”) in an abstract, producing a

1. In our experiments, we have used an Apple Mac Pro 64-bit workstation, with two 2.26 GHz Quad-Core Intel Xeon
processors, 8 MB on-chip shared L3 cache per processor, with 6 GB SDRAM, operating at 1066 MHz.

16

summarization of the query term across many documents. To be manageable by a human reader,
the list of predictive terms should be very short (say with at most 100 terms) with respect to the
size of the dictionary (which is in our case about 130, 000). To produce such a short list, we use
sparse supervised learning with large values of the penalty parameter λ.

The LASSO problem for the full-sized matrix can not be solved using IPM-LASSO or any other
method because of memory limitations. However, for large values of the penalty parameter λ, the
SAFE methods eliminate enough features for the data matrix to be loaded and the LASSO problem
to be solved.

Figure 3 shows that SAFE methods remove enough features to solve the LASSO problem. The
left panel shows how many features we eliminate as a function of the ratio λ/λmax, over a range such
that the data matrix can be loaded. SAFE1 reaches the memory limit at λ/λmax = 0.04 The right
panel shows the computational time needed to solve the IPM-LASSO, for the data matrix obtained
after SAFE1 and SAFE2. Using SAFE2 we obtain 94 features at the optimum for λ/λmax = 0.04.

7.2 New York Times headlines data

This data set involves headlines from The New York Times, spanning a period of about 20 years
(from 1985 to 2007). The raw text has been processed into numerical form using a bag-of-words
representation. The number of features is n = 159, 943 and the number of documents is m =
3, 241, 260. There is a total of 14, 083, 676 non-zeros in the matrix, with an average of about 90
non-zeros per feature (word).

0.02 0.1 1
1

10

100

1,000

10,000

50,000

160,000

!/!max

N
um

be
r o

f F
ea

tu
re

s

Original
FFE
LASSO

100 101 102

1

2

3

4

5

6

Features

Ti
m

e
(h

ou
rs

)

IPM
IPM with FFE

Figure 4: Left panel: In blue, the original number of features. In red, the number of features obtained
via IPM-LASSO, as a function of of the ratio λ/λmax. In green, the number of features
not eliminated by SAFE1. Right panel: computational time for solving the IPM-LASSO
before and after SAFE1 as function of the number of active features at the optimum

Results on the whole data set. Figure 4 shows that SAFE1 is effective at removing a very large
number of features. The left panel shows how many features we eliminate as a function of the ratio
λ/λmax, over a range such that LASSO ends up with about 375 features or less; we end up reducing
the number of features by a third or more. For 50 features the size reduction factor is one order of
magnitude. The right panel shows how much computational time is saved as a result: we compare
the time needed to solve the IPM-LASSO, for the full-sized data matrix, and for the matrix obtained
after SAFE1 (the timing results include the time required to perform the test, which is negligible).
For 375 features, we slash the time needed to solve the LASSO problem by a factor of 3; that ratio
averages to about 2, and peaks to about 30 when 5 features are required.

17

Results on multiple subsets. In Gawalt et al. (2010), the objective was to exhibit a list of N
features depicting the image of some topic (such as “China” for instance) in news media (typical
values of N are 20, 50 and 100). Our aim was here to assess whether the pruning technique might
be useful in this context. Given a data set - that is a response variable, or topic, and a matrix of
features - several methods can be used to exhibit the desired list of N relevant features. First, we can
solve a sparse regression model on a predefined grid of λ values, of the form [λmin, . . . , λmax], where
λmin expresses as a fraction of λmax (typical values are λmin = λmax/100 or λmin = λmax/1000).
This grid describes a schedule of λ values. Another approach, that can be computationally much
faster, relies on a binary search: given values of λmax and λmin (where λmin has to be such that the
model obtained by solving the problem with λ = λmin returns more than N non-zero coefficients),
we solve the problem for λ = λ1 := (λmin + λmax)/2. If the corresponding number of non-zero
coefficients is greater than N , then we solve the problem for λ = λ′2 = (λ1 + λmax)/2, otherwise
we solve the problem for λ = λ′′2 = (λ1 + λmin)/2, and so on. We generally exit the loop when the
number of non-zero coefficients lies between, say, N − 2 and N + 2. The choice of λmin is crucial
for computation times matters: the smaller λmin, the longer the whole process (since computation
time of most `1-penalized methods dramatically increase as λ approaches 0). In addition to this
“standard” binary search, we also considered a customized binary search: starting from λ(1) = λmax,
for k = 2, . . . ,K, we solve the problem for λ(k) = λ(k−1)/τ , for some τ > 1, until a model with more
than 20 non-zero coefficient is obtained. We then set λmin = λ(K) and perform the standard binary
search on the range [λmin, λmax]. In our experiments, we set τ = 5. Note that the K−1 steps needed
to get the value λ(K) are generally cheap and, if τ is small enough, λ(K) is a sharp lower-bound
on the desired λ value. For these problems involving several values of λ, we have used the method
outlined in section 3.5, where we take advantage of previously computed bounds as we proceed in
our λ-search.

Rather than assessing the pruning method once on the whole dataset, we decided here to split
this data set and analyze each year separately. This resulted in 23 subsets over which we compared
the computational times needed to solve (i) IPM-LASSO, (ii) IPM-LASSO after SAFE1 and (iii)
IPM-LASSO after SAFE2. These three methods were compared under the three settings described
above: a given schedule of λ, the standard binary search and the customized binary search. Summary
of the results obtained over the 23 subsets for topic “China”, are given in Figures 5 and 6. When
appropriate, λmin was set to λmax/1000. Lasso needed, on average, one hour and a half. to compute
the 50 problems corresponding to values of λ on the grid of 50 equally-spaced values (on a log-scale)
[λmin, . . . , λmax]. As for the standard binary search, it needed 6 minutes, 11 minutes, and 16 minutes
for reaching a model with 20, 50 and 100 features respectively. For the customized binary search,
these values reduced up to 4 minutes, 7 minutes, and 13 minutes. respectively.

Overall, we observed dramatic computational time savings when using SAFE2 (and, to a lower
extent, SAFE1): in most situations, the saving correspond to 30 to 60% of the computational time
needed for plain IPM-LASSO.

Acknowledgments

We would like to acknowledge support for this project from the National Science Foundation (under
grants SES-0835531, CMMI-0969923) and Google. Useful comments from Bin Yu and Jinzhu Jia
have greatly improved this report.

18

Figure 5: Left panel: In red, the proportion of features (as a fraction of the total number of features)
obtained via LASSO, as a function of the parameter λ/λmax. In blue, the number of
features not eliminated by SAFE1. In green, the number of features not eliminated by
SAFE2. Solid lines represent the means while shaded area represent the ranges obtained
on the 23 subsets. Right panel: computational savings obtained by solving IPM-LASSO
after SAFE2, as a function of the number of active features at the optimum: percent ratio
of the computational time needed to solve IPM-LASSO after SAFE2 to the computational
time needed to solve IPM-LASSO. In blue, computational time for each number of active
features at optimum. In green, cumulative computational time up to each number of
active features at optimum.

0.7

0.75

0.8

0.85

0.9

0.95

1

SAFE1 20 SAFE2 20 SAFE1 50 SAFE2 50 SAFE1 100 SAFE2 100

0.5

0.6

0.7

0.8

0.9

1

SAFE1 20 SAFE2 20 SAFE1 50 SAFE2 50 SAFE1 100 SAFE2 100

Figure 6: Computational time savings when solving the standard binary search (left panel) and the
customized binary search (right panel). Distribution of the ratio of the time needed for
lasso to the time needed for IPM-LASSO after SAFE1 and IPM-LASSO after SAFE2,
when the objective is to obtain N = 20, 50 or 100 active features at optimum.

Appendix A. Expression of P (γ, x)

We show that the quantity P (γ, x) defined in (6) can be expressed in dual form (7). This is a simple
consequence of duality:

P (γ, x) = max
θ

θTx : G(θ) ≥ γ, θT b = 0

= max
θ

min
µ>0, ν

θTx+ µ(G(θ)− γ)− νθT b

= min
µ>0, ν

max
θ

θTx+ µ(−yT θ −
m∑
i=1

f∗(θ(i))− γ)− νθT b

= min
µ>0, ν

−γµ+ max
θ

θT (x− µy − νz)− µ
m∑
i=1

f∗(θ(i))

= min
µ>0, ν

−γµ+ µ

(
max
θ

1

µ
θT (x− µy − νz)−

m∑
i=1

f∗(θ(i))

)
= min

µ>0, ν
−γµ+ µ

m∑
i=1

f

(
xi − µy(i)− νbi

µ

)
.

19

Appendix B. SAFE test for SVM

In this section, we examine various optimization problems involving polyhedral functions in one or
two variables, which arise in section 5.1 for the computation of Phi(γ, x) as well as in the SAFE-SVM
theorem of section 5.2.

B.1 Computing Phi(γ, x)

We first focus on the specific problem of computing the quantity defined in (20). To simplify notation,
we will consider the problem of computing Phi(γ,−x), that is:

Phi(γ,−x) = min
µ≥0, ν

−γµ+

m∑
i=1

(µ+ νyi + xi)+, (31)

where y ∈ {−1, 1}m, x ∈ Rm and γ are given, with 0 ≤ γ ≤ γ0 := 2 min(m+,m−). Here, I± := {i :
yi = ±1}, and x+ = (xi)i∈I+ , x− = (xi)i∈I− , m± = |I±|, and m = min(m+,m−). Without loss of
generality, we assume that both x+, x− are both sorted in descending order: x±1 ≥ . . . ≥ x±m±

.

Using α = µ+ ν, β = µ− ν, we have

Phi(γ,−x) = min
α+β≥0

−γ
2

(α+ β) +

m+∑
i=1

(x+i + α)+ +

m−∑
i=1

(x−i + β)+

= min
α, β

max
t≥0
−γ

2
(α+ β) +

m+∑
i=1

(x+i + α)+ +

m−∑
i=1

(x−i + β)+ − t(α+ β)

= max
t≥0

min
α, β
−(
γ

2
+ t)(α+ β) +

m+∑
i=1

(x+i + α)+ +

m−∑
i=1

(x−i + β)+

= max
t≥0

F (
γ

2
+ t, x+) + F (

γ

2
+ t, x−),

(32)

where, for h ∈ R and x ∈ Rp, x1 ≥ . . . ≥ xp, we set

F (h, x) := min
z
−hz +

p∑
i=1

(z + xi)+, (33)

Expression of the function F . If h > p, then with z → +∞ we obtain F (h, x) = −∞. Similarly,
if h < 0, then z → −∞ yields F (h, x) = −∞. When 0 ≤ h ≤ p, we proceed by expressing F in dual
form:

F (h, x) = max
u

uTx : 0 ≤ u ≤ 1, uT1 = h.

If h = p, then the only feasible point is u = 1, so that F (p, x) = 1Tx. If 0 ≤ h < 1, choosing
u1 = h, u2 = . . . = up = 0, we obtain the lower bound F (h, x) ≥ hx1, which is attained with
z = −x1.

Assume now that 1 ≤ h < p. Let h = q + r, with q = bhc the integer part of h, and 0 ≤ r < 1.
Choosing u1 = . . . = uq = 1, uq+1 = r, we obtain the lower bound

F (h, x) ≥
q∑
j=1

xj + rxq+1,

which is attained by choosing z = −xq+1 in the expression (33).

20

To summarize:

F (h, x) =

hx1 if 0 ≤ h < 1,
bhc∑
j=1

xj + (h− bhc)xbhc+1 if 1 ≤ h < p,

p∑
j=1

xj if h = p,

−∞ otherwise.

(34)

A more compact expression, valid for 0 ≤ h ≤ p if we set xp+1 = xp and assume that a sum over an
empty index sets is zero, is

F (h, x) =

bhc∑
j=1

xj + (h− bhc)xbhc+1, 0 ≤ h ≤ p.

Note that F (·, x) is the piece-wise linear function that interpolates the sum of the h largest elements
of x at the integer break points h = 0, . . . , p.

Expression of Phi(γ,−x). We start with the expression found in (32):

Phi(γ,−x) = max
t≥0

F (
γ

2
+ t, x+) + F (

γ

2
+ t, x−).

Since the domain of F (·, x+) + F (·, x−) is [0,m], and with 0 ≤ γ/2 ≤ γ0/2 = m, we get

Phi(γ,−x) = max
γ/2≤h≤m

G(h, x+, x−) := F (h, x+) + F (h, x−).

Since F (·, x) with x ∈ Rp is a piece-wise linear function with break points at 0, . . . , p, a maximizer
of G(·, x+, x−) over [γ/2,m] lies in {γ/2, bγ/2c+ 1, . . . ,m}. Thus,

Phi(γ,−x) = max

(
G(
γ

2
, x+, x−), max

h∈{bγ/2c+1,...,m}
G(h, x+, x−)

)
.

Let us examine the second term, and introduce the notation x̄j := x+j + x−j , j = 1, . . . ,m:

max
h∈{bγ/2c+1,...,m}

G(h, x+, x−) = max
h∈{bγ/2c+1,...,m}

h∑
j=1

(x+j + x−j)

=

bγ/2c+1∑
j=1

x̄j +

m∑
j=bγ/2c+2

(x̄j)+,

with the convention that sums over empty index sets are zero. Since

G(
γ

2
, x+, x−) =

bγ/2c∑
j=1

x̄j + (
γ

2
− bγ

2
c)x̄bγ/2c+1,

we obtain

Phi(γ,−x) =

bγ/2c∑
j=1

x̄j + max

(
γ

2
− bγ

2
c)x̄bγ/2c+1, x̄bγ/2c+1 +

m∑
j=bγ/2c+2

(x̄j)+

 .

21

An equivalent expression is:

Phi(γ,−x) =

bγ/2c∑
j=1

x̄j − (
γ

2
− bγ

2
c)(−x̄bγ/2c+1)+ +

m∑
j=bγ/2c+1

(x̄j)+, 0 ≤ γ ≤ 2m,

x̄j := x+j + x−j , j = 1, . . . ,m.

The function Phi(·,−x) linearly interpolates the values obtained for γ = 2q with q integer in
{0, . . . ,m}:

Phi(2q,−x) =

q∑
j=1

x̄j +

m∑
j=q+1

(x̄j)+.

B.2 Computing Φ(x+, x−)

Let us consider the problem of computing

Φ(x+, x−) := min
ν

m+∑
i=1

(x+i + ν)+ +

m−∑
i=1

(x−i − ν)+,

with x± ∈ Rm± , x±1 ≥ . . . ≥ x±m±
, given. We can express Φ(x+, x−) in terms of the function F

defined in (33):

Φ(x+, x−) = min
ν+,ν−

∑
i∈I+

(x+i + ν+)+ +
∑
i∈I−

(x−i − ν
−)+ : ν+ = ν−

= max
h

min
ν+,ν−

−h(ν+ − ν−) +
∑
i∈I+

(x+i + ν+)+ +
∑
i∈I−

(x−i − ν
−)+

= max
h

min
ν+,ν−

−hν+ +
∑
i∈I+

(x+i + ν+)+ + hν− +
∑
i∈I−

(x−i − ν
−)+

= max
h

min
ν
−hν +

∑
i∈I+

(x+i + ν)+

+

min
ν
−hν +

∑
i∈I−

(x−i + ν)+

 (ν+ = −ν− = ν)

= max
h

F (h, x+) + F (h, x−)

= max
0≤h≤m

F (h, x+) + F (h, x−)

= max(A,B,C),

where F is defined in (33), and

A = max
0≤h<1

F (h, x+) + F (h, x−), B := max
1≤h<m

F (h, x+) + F (h, x−)), C = F (m,x+) + F (m,x−).

We have

A := max
0≤h<1

F (h, x+) + F (h, x−) = max
0≤h<1

h(x+1 + x−1) = (x+1 + x−1)+.

Next:

B = max
1≤h<m

F (h, x+) + F (h, x−)

= max
q∈{1,...,m−1},r∈[0,1[

q∑
i=1

(x+i + x−i) + r(x+q+1 + x−q+1)

= max
q∈{1,...,m−1}

q∑
i=1

(x+i + x−i) + (x+q+1 + x−q+1)+

= (x+1 + x−1) +

m∑
i=2

(x+i + x−i)+.

22

Observe that

B ≥ C =

m∑
i=1

(x+i + x−i).

Moreover, if (x+1 + x−1) ≥ 0, then B =
∑m
i=1(x+i + x−i)+ ≥ A. On the other hand, if x+1 + x−1 ≤ 0,

then x+i + x−i ≤ 0 for 2 ≤ j ≤ m, and A =
∑m
i=1(x+i + x−i)+ ≥ x+1 + x−1 = B. In all cases,

Φ(x+, x−) = max(A,B,C) =

m∑
i=1

(x+i + x−i)+.

B.3 SAFE-SVM test

Now we consider the problem that arises in the SAFE-SVM test (23):

G(z) := min
0≤κ≤1

p∑
i=1

(1− κ+ κzi)+,

where z ∈ Rp is given. (The SAFE-SVM condition (23) involves zi = γ0/(2λ0)(x+[i] + x−[i]), i =

1, . . . , p := m.) We develop an algorithm to compute the quantity G(z), the complexity of which
grows as O(d log d), where d is (less than) the number of non-zero elements in z.

Define I± = {i : ±zi > 0}, k := |I+|, h := |I−|, l = I0, l := |I0|.

If k = 0, I+ is empty, and κ = 1 achieves the lower bound of 0 for G(z). If k > 0 and h = 0,
that is, k+ l = p, then I− is empty, and an optimal κ is attained in {0, 1}. In both cases (I+ or I−
empty), we can write

G(z) = min
κ∈{0,1}

p∑
i=1

(1− κ+ κzi)+ = min (p, S+) , S+ :=
∑
i∈I+

zi,

with the convention that a sum over an empty index set is zero.

Next we proceed with the assumption that k 6= 0 and h 6= 0. Let us re-order the elements of I−
in decreasing fashion, so that zi > 0 = zk+1 = . . . = zk+l > zk+l+1 ≥ . . . ≥ zp, for every i ∈ I+.
(The case when I0 is empty will be handled simply by setting l = 0 in our formulae.) We have

G(z) = k + l + min
0≤κ≤1

{
κα+

p∑
i=k+l+1

(1− κ+ κzi)+

}
,

where, α := S+−k− l. The minimum in the above is attained at κ = 0, 1 or one of the break points
1/(1 − zj) ∈ (0, 1), where j ∈ {k + l + 1, . . . , p}. At κ = 0, 1, the objective function of the original
problem takes the values S+, p, respectively. The value of the same objective function at the break

23

point κ = 1/(1− zj), j = k + l + 1, . . . , p, is k + l +Gj(z), where

Gj(z) :=
α

1− zj
+

p∑
i=k+l+1

(
zi − zj
1− zj

)
+

=
α

1− zj
+

1

1− zj

j−1∑
i=k+l+1

(zi − zj)

=
1

1− zj

(
α− (j − k − l − 1)zj +

j−1∑
i=k+l+1

zi

)

=
1

1− zj

(
S+ − (j − 1)zj − (k + l)(1− zj) +

j−1∑
i=k+l+1

zi

)

= −(k + l) +
1

1− zj

(
j−1∑
i=1

zi − (j − 1)zj

)
.

This allows us to write

G(z) = min

(
p,

k∑
i=1

zi, min
j∈{k+l+1,...,p}

1

1− zj

(
j−1∑
i=1

zi − (j − 1)zj

))
.

The expression is valid when k + l = p (h = 0, I− is empty), l = 0 (I0 is empty), or k = 0 (I+ is
empty) with the convention that the sum (resp. minimum) over an empty index set is 0 (resp. +∞).

We can summarize the result with the compact formula:

G(z) = min
z

1

1− z

p∑
i=1

(zi − z)+ : z ∈ {−∞, 0, (zj)j : zj<0}.

Let us detail an algorithm for computing G(z). Assume h > 0. The quantity

G(z) := min
k+l+1≤j≤p

(Gj(z))

can be evaluated in less than O(h), via the following recursion:

Gj+1(z) =
1− zj

1− zj+1
Gj(z)− j

zj+1 − zj
1− zj+1

Gj+1(z) = min(Gj(z), Gj+1(z))
, j = k + l + 1, . . . , p, (35)

with initial values

Gk+l+1(z) = Gk+l+1(z) =
1

1− zk+l+1

(
k+l∑
i=1

zi − (k + l)zk+l+1

)
.

On exit, G(z) = Gp.
Our algorithm is as follows.

Algorithm for the evaluation of G(z).

1. Find the index sets I+, I−, I0, and their respective cardinalities k, h, l.

2. If k = 0, set G(z) = 0 and exit.

24

3. Set S+ =
∑k
i=1 zi.

4. If h = 0, set G(z) = min(p, S+), and exit.

5. If h > 0, order the negative elements of z, and evaluate G(z) by the recursion (35). Set
G(z) = min(p, S+, G(z)) and exit.

The complexity of evaluating G(z) thus grows in O(k+h log h), which is less than O(d log d), where
d = k + h is the number of non-zero elements in z.

Appendix C. Computing Plog(γ, x) via an interior-point method

We consider the problem (27) which arises with the logistic loss. We can use a generic interior-point
method Boyd and Vandenberghe (2004), and exploit the decomposable structure of the dual function
Glog. The algorithm is based on solving, via a variant of Newton’s method, a sequence of linearly
constrained problems of the form

min
θ

τxT θ + log(Glog(θ)− γ) +

m∑
i=1

log(−θ − θ2) : zT θ = 0,

where τ > 0 is a parameter that is increased as the algorithm progresses, and the last terms
correspond to domain constraints θ ∈ [−1, 0]m. As an initial point, we can take the point θ generated
by scaling, as explained in section 3. Each iteration of the algorithm involves solving a linear system
in variable δ, of the form Hδ = h, with H is a rank-two modification to the Hessian of the objective
function in the problem above. It is easily verified that the matrix H has a “diagonal plus rank-two”
structure, that is, it can be written as H = D − ggT − vvT , where the m×m matrix D is diagonal
and g, v ∈ Rm are computed in O(m). The matrix H can be formed, as the associated linear system
solved, in O(m) time. Since the number of iterations for this problem with two constraints grows as
log(1/ε)O(1), the total complexity of the algorithm is log(1/ε)O(m) (ε is the absolute accuracy at
which the interior-point method computes the objective). We note that memory requirements for
this method also grow as O(m).

Appendix D. On thresholding methods for LASSO

Sparse classification algorithms may return a classifier vector w with many small, but not exactly
zero, elements. This implies that we need to choose a thresholding rule to decide which elements to
set to zero. In this section, we discuss an issue related to the thresholding rule originally proposed
for the IPM-Logistic algorithm in Koh et al. (2007), and propose a new thresholding rule.

The KKT thresholding rule. Recall that the primal problem for LASSO is

φ(λ) = min
w

1

2
‖XTw − y‖22 + λ‖w‖1. (36)

Observing that the KKT conditions imply that, at optimum, (X(XTw−y))k = λsign(wk), with the
convention sign(0) ∈ [−1, 1], and following the ideas of Koh et al. (2007), the following thresholding
rule can be proposed: at optimum, set component wk to 0 whenever

|(X(XTw − y))k| ≤ 0.9999λ. (37)

We refer to this rule as the “KKT” rule.
The IPM-LASSO algorithm takes as input a “duality gap” parameter ε, which controls the

relative accuracy on the objective. When comparing the IPM code results with other algorithms

25

such as GLMNET, we observed chaotic behaviors when applying the KKT rule, especially when
the duality gap parameter ε was not small enough. More surprisingly, when this parameter is not
small enough, some components wk with absolute values not close to 0 can be thresholded. This
suggests that the KKT rule should only be used for problems solved with a small enough duality
gap ε. However, setting the duality gap to a small value can dramatically slow down computations.
In our experiments, changing the duality gap from ε = 10−4 to 10−6 (resp. 10−8) increased the
computational time by 30% to 40% (resp. 50 to 100%).

An alternative method. We propose an alternative thresholding rule, which is based on con-
trolling the perturbation of the objective function that is induced by thresholding.

Assume that we have solved the LASSO problem above, with a given duality gap parameter ε. If
we denote by w∗ the classifier vector delivered by the IPM-LASSO algorithm, w∗ is ε-sub-optimal,
that is, achieves a value

φ∗ =
1

2
‖XTw∗ − y‖22 + λ‖w∗‖1,

with 0 ≤ φ∗ − φ(λ) ≤ εφ(λ).
For a given threshold τ > 0, consider the thresholded vector w̃(τ) defined as

w̃k(τ) =

{
0 if |w∗k| ≤ τ,
w∗k otherwise,

k = 1, . . . , n.

We have w̃(τ) = w∗ + δ(τ) where the vector of perturbation δ(τ) is such that

δk(τ) =

{
−w∗k if |w∗k| ≤ τ,
0 otherwise,

k = 1, . . . , n.

Note that, by construction, we have ‖w∗‖1 = ‖w∗ + δ‖1 + ‖δ‖1. Also note that if w∗ is sparse, so is
δ.

Let us now denote by φτ the LASSO objective that we obtain upon replacing the optimum
classifier w∗ with its thresholded version w̃(τ) = w∗ + δ(τ):

φτ :=
1

2
‖XT (w∗ + δ(τ))− y‖22 + λ‖w∗ + δ(τ)‖1.

Since w(τ) is (trivially) feasible for the primal problem, we have φτ ≥ φ(λ). On the other hand,

φτ =
1

2
‖XTw∗ − y‖22 + λ‖w∗ + δ(τ)‖1 +

1

2
‖XT δ(τ)‖22 + δ(τ)TX(XTw∗ − y)

≤ 1

2
‖XTw∗ − y‖22 + λ‖w∗‖1 +

1

2
‖XT δ(τ)‖22 + δ(τ)TX(XTw∗ − y).

For a given α > 1, the condition

C(τ) :=
1

2
‖XT δ(τ)‖2 + δ(τ)TX(XTw∗ − y) ≤ κφ∗, κ :=

1 + αε

1 + ε
− 1 ≥ 0, (38)

allows to write
φ(λ) ≤ φτ ≤ (1 + αε)φ(λ).

The condition (38) then implies that the thresholded classifier is sub-optimal, with relative accuracy
αε.

Our proposed thresholding rule is based on the condition (38). Precisely, we choose the parameter
α > 0, then we set the threshold level τ by solving, via line search, the largest threshold τ allowed
by condition (38):

τα = arg max
τ≥0

{
τ : ‖XT δ(τ)‖2 ≤

(√
1 + αε

1 + ε
− 1

)
‖XTw∗ − y‖2

}
.

26

The larger α is, the more elements the rule allows to set to zero; at the same time, the more
degradation in the objective will be observed: precisely, the new relative accuracy is bounded by αε.
The rule also depends on the duality gap parameter ε. We refer to the thresholding rule as TR(α)
in the sequel. In practice, we observe that the value α = 2 works well, in a sense made more precise
below.

The complexity of the rule is O(mn). More precisely, the optimal dual variable θ∗ = XTw∗ − y
is returned by IPM-LASSO. The matrix Xθ∗ = X(XTw∗ − y) is computed once for all in O(mn).
We then sort the optimal vector w∗ so that |w∗(1)| ≤ . . . ≤ |w∗(n)|, and set τ = τ0 = |w∗(n)|, so that

δk(τ0) = −w∗k and w̃k(τ0) = 0 for all k = 1, . . . , n. The productXT δ(τ0) is computed in O(mn), while
the product δ(τ0)T (Xθ∗) is computed in O(n). If the quantity C(τ0) = 1

2‖X
T δ(τ0)‖2 + δ(τ0)T (Xθ∗)

is greater than κφ?, then we set τ = τ1 = |w∗(n−1)|. We have δk(τ1) = δk(τ0) for any k 6= (n) and

δ(n)(τ1) = 0. Therefore, C(τ1) can be deduced from C(τ0) in O(n). We proceed by successively
setting τk = |w∗(n−k)| until we reach a threshold τk such that C(τk) ≤ κφ∗.

Simulation study. We conducted a simple simulation study to evaluate our proposal and compare
it to the KKT thresholding rule. Both methods were further compared to the results returned by
the glmnet R package. The latter algorithm returns hard zeros in the classifier coefficients, and
we have chosen the corresponding sparsity pattern as the “ground truth”, which the IPM-LASSO
should recover.

We first experimented with synthetic data. We generated samples of the pair (X, y) for various
values of (m,n). We present the results for (m,n) = (5000, 2500) and (m,n) = (100, 500). The
number s of relevant features was set to min(m,n/2). Features were drawn from independent
N (0, 1) distributions and y was computed as y = XTw + ξ, where ξ ∼ N (0, 0.2) and w is a vector
of Rn with first s components equal to 0.1 + 1/s and remaining n− s components set to 0. Because
glmnet includes an unpenalized intercept while Boyd’s method does not, both y and X were centered
before applying either methods to make their results comparable.

Results are presented on Figures 7. First, the KKT thresholding rule was observed to be very
chaotic when the duality gap was set to ε = 10−4 (we recall here that the default value for the
duality gap in Boyd’s MATLAB implementation is ε = 10−3), while it was way better when duality
gap was set to ε = 10−8 (somehow justifying our choice of considering the sparsity pattern returned
by glmnet as the ground truth). Therefore, for applications where computational time is not critical,
running Boyd’s IPM method and applying Boyd’s thresholding rule should yield appropriate results.
However, when computational time matters, passing the duality gap from, say, 10−4 to 10−8, is not a
viable option. Next, regarding our proposal, we observed that it was significantly better than Boyd’s
thresholding rule when the duality gap was set to 10−4 and equivalent to Boyd’s thresholding rule
for a duality gap of 10−8. Interestingly, setting α = 1.5 in (38) generally enabled to achieved very
good results for low values of λ, but lead to irregular results for higher values of λ (in the case
m = 100, results were unstable for the whole range of λ values we considered). Overall, the choices
α = 2, 3 and 4 lead to acceptable results. A little irregularity remained with α = 2 for high values
of λ, but this choice of α performed the best for lower values of λ. As for choices α = 3 and α = 4,
it is noteworthy that the results were all the better as the dimension n was low.

D.1 Real data examples

We also applied our proposal and compared it to KKT rule (37) on real data sets arising in text
classification. More precisely, we used the New York Times headlines data set presented in the
Numerical results Section. For illustration, we present here results we obtained for the topic ”China”
and the year 1985. We successively ran IPM-LASSO method with duality gap set to 10−4 and 10−8

and compare the number of active features returned after applying KKT thresholding rule (37) and
TR (1.5), TR (2), TR (3) and TR (4). Results are presented on Figure 8. Because we could not
applied glmnet on this data set, the ground truth was considered as the result of KKT rule, when

27

10
−2

10
−1

10
0

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

λ/λ
max

P
ro

po
rt

io
n

of
 F

ea
tu

re
s

Boyd
TR(1.5)
TR(2)
TR(3)
TR(4)
TR(5)

10
−2

10
−1

10
0

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

λ/λ
max

P
ro

po
rt

io
n

of
 F

ea
tu

re
s

Boyd
TR(1.5)
TR(2)
TR(3)
TR(4)
TR(5)

10
−1

10
0

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

λ/λ
max

P
ro

po
rt

io
n

of
 F

ea
tu

re
s

Boyd
TR(1.5)
TR(2)
TR(3)
TR(4)
TR(5)

10
−1

10
0

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

λ/λ
max

P
ro

po
rt

io
n

of
 F

ea
tu

re
s

Boyd
TR(1.5)
TR(2)
TR(3)
TR(4)
TR(5)

Figure 7: Comparison of several thresholding rules on synthetic data: the case m = 5000, n = 100
(top panel) and m = 100, n = 500 (bottom panel) with duality gap in Boyd’s IPM method
set to (i) 10−4 (left panel) and (iii) 10−8 (right panel). The curves represent the differences
between the number of active features returned after each thresholding method and the
one returned by glmnet (this difference is further divided by the total number of features
n). The graphs present the results attached to six thresholding rules: the one proposed
by Koh et al. (2007) and five versions of our proposal, corresponding to setting α in (38)
to 1.5, 2, 3, 4 and 5 respectively. Overall, these results suggest that by setting α ∈ (2, 5),
our rule is less sensitive to the value of the duality gap parameter in IPM-LASSO than is
the rule proposed by Koh et al. (2007).

28

10
−2

10
−1

10
0

−600

−500

−400

−300

−200

−100

0

λ/λ
max

D
iff

er
en

ce
s

be
tw

ee
n

ca
rd

in
al

iti
es

 o
f s

pa
rs

ity
 p

at
te

rn
s

Boyd
TR(1.5)
TR(2)
TR(3)
TR(4)

10
−2

10
−1

10
0

−600

−500

−400

−300

−200

−100

0

λ/λ
max

D
iff

er
en

ce
s

be
tw

ee
n

ca
rd

in
al

iti
es

 o
f s

pa
rs

ity
 p

at
te

rn
s

Boyd
TR(1.5)
TR(2)
TR(3)
TR(4)

Figure 8: Comparison of several thresholding rules on the NYT headlines data set for the topic
”China” and year 1985. Duality gap in IPM-LASSO was successively set to 10−4 (left
panel) and 10−8 (right panel). The curves represent the differences between the number of
active features returned after each thresholding method and the one returned by the KKT
rule when duality gap was set to 10−10. The graphs present the results attached to five
thresholding rules: the KKT rule and four versions of our rule, corresponding to setting
α in (38) to 1.5, 2, 3 and 4 respectively. Results obtained following our proposal appear
to be less sensitive to the value of the duality gap used in IPM-LASSO. For instance, for
the value λ = λmax/1000, the KKT rule returns 1758 active feature when the duality gap
is set to 10−4 while it returns 2357 features for a duality gap of 10−8.

applied to the model returned by IPM-LASSO ran with duality gap set to 10−10. Applying KKT
rule on the model built with a duality gap of 10−4 lead to very misleading results again, especially for
low values of λ. In this very high-dimensional setting (n = 38377 here), our rule generally resulted
in a slight ”underestimation” of the true number of active features for the lowest values of λ when
the duality gap was set to 10−4. This suggests that the “optimal” α for our rule might depend on
both n and λ when the duality gap is not small enough. However, we still observed that our proposal
significantly improved upon KKT rule when the duality gap was set to 10−4.

References

Jinbo Bi, Kristin P. Bennet, Mark Embrechts, Curt M. Breneman, and Minghu Song. Dimensionality
reduction via sparse support vector machines. J. Mach. Learn. Res., 3:1229–1243, 2003.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, New
York, NY, USA, 2004. ISBN 0521833787.

Emmanuel Candès and Justin Romberg. l1-magic: A collection of matlab routines for
solving the convex optimization programs central to compressive sampling. Available:
http://www.acm.caltech.edu/l1magic/, 2006.

David L. Donoho and Yaakov Tsaig. Fast solution of l1-norm minimization problems when the
solution may be sparse. IEEE Trans. Inform. Theory, 54(11):4789–4812, 2008.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression (with
discussion). Ann. Statist., 32:407–499, 2004.

29

Jianqing Fan and Jinchi Lv. Sure independence screening for ultrahigh dimensional feature space.
J. Roy. Statist. Soc. Ser. B, 70(5):849–911, 2008.

Jianqing Fan and Jinchi Lv. A selective overview of variable selection in high dimensional feature
space. Statist. Sinica, 20:101–148, 2010.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A
library for large linear classification. J. Mach. Learn. Res., 9:1871–1874, 2008.

George Forman. An extensive empirical study of feature selection metrics for text classification. J.
Mach. Learn. Res., 3:1289–1305, 2003.

Jerome Friedman, Trevor Hastie, Holger Höfling, and Robert Tibshirani. Pathwise coordinate opti-
mization. Ann. Appl. Statist., 1(2):302–332, 2007.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010. URL
http://www.jstatsoft.org/v33/i01/.

Glenn M. Fung and O. L. Mangasarian. A feature selection Newton method for support vector
machine classification. Comput. Optim. Appl., 28(2):185–202, 2004.

Brian Gawalt, Jinzhu Jia, Luke Miratrix, Laurent El Ghaoui, Bin Yu, and Sophie Clavier. Discov-
ering word associations in news media via feature selection and sparse classification. In MIR ’10:
Proceedings of the international conference on Multimedia information retrieval, pages 211–220,
2010.

Alexander Genkin, David D. Lewis, and David Madigan. Large-scale Bayesian logistic regression for
text categorization. Technometrics, 49(3):291–304, 2007.

Joshua Goodman. Exponential priors for maximum entropy models. Proc. of the Annual Meetings
of the Association for Computational Linguistics, 2004.

Seung-Jean Kim, Kwangmoo Koh, Michael Lustig, Stephen Boyd, and Dimitry Gorinevsky. An
interior-point method for large-scale l1-regularized least squares. IEEE J. Select. Top. Sign.
Process., 1(4):606–617, 2007.

Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd. An interior-point method for large-scale
l1-regularized logistic regression. JMLR, 8:1519–1555, 2007.

Su-In Lee, Honglak Lee, Pieter Abbeel, and Andrew Y. Ng. Efficient l1-regularized logistic regression.
Proc. of the 21st National Conference on Artificial Intelligence (AAAI-06), 2006.

Mee Young Park and Trevor Hastie. L1-regularization path algorithm for generalized linear models.
J. R. Stat. Soc. Ser. B Stat. Methodol., 69(4):659–677, 2007.

Volker Roth. The generalized LASSO. IEEE Transactions on Neural Networks, 15(1):16–28, 2004.

Ji Zhu, Saharon Rosset, Trevor Hastie, and Rob Tibshirani. 1-norm support vector machines. In
NIPS, 2003.

30

