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Abstract ple, engineers at Google consider the current state of re-
covery testing to be behind the timeg,[whereas oth-

As the cloud era begins and failures become comers believe that large-scale recovery remains underspec-
monplace, the fate and destiny of availability, reliabil- ified [4]. These deficiencies leave us with an important
ity and performance are in the hands of failure recov- question: How can we verify the correctness of cloud
ery. Unfortunately, recovery problems still take place, systems in how they deal with the wide variety of possi-
causing downtimes, data loss, and many other problemsle failure modes?

We propose a new testing framework for cloud recovery: Tg address this question, we present two advance-
FATE (Failure Testing Service) anBESTINI (Declara-  ments in the current state-of-the-art of testing. First, we
tive Testing Specifications). WIHATE, recovery is sys- introduce BTE (Failure Testing Service). Unlike exist-
tematically tested in the face of multiple failures. With ing frameworks where multiple failures are only exer-
DESTINI, correct recovery is specified clearly, concisely, ¢ised randomly§, 34, 37], FATE is designed tsystemat-
and precisely. We have deployed our framework in thregca|ly push cloud systems into many possible failure sce-
cloud systems (HDFS, ZooKeeper, and Cassandra), ejarios. FATE achieves this by employinfgilure IDs as a
plored over 40,000 failure scenarios, wrote 74 specifica-new abstraction for exploring failures. Using failure IDs,
tions, found 16 new bugs, and reproduced 51 old bugs. Fate has exercised over 40,000 unique failure scenarios,
and uncovers a new challenge: the exponential explosion
1 Introduction of multiple failures. To the best of our knowledge, we
are the first to address this in a more systematic way than
Large-scale computing and data storage systems, includandom approaches. We do so by introducing novel pri-
ing clusters within Google9], Amazon EC2 {], and oritization strategies that explore non-similar failuce s
elsewhere, are becoming a dominant platform for amarios first. This approach allows developers to explore
increasing variety of applications and services. Thesdlistinct recovery behaviors an order of magnitude faster
“cloud” systems are comprised of thousands of low-endcompared to a brute-force approach.
machines (to take advantage of economies of s&le [ Second, we introduce E5TINI (Declarative Testing
16]) and thus require sophisticated and often complexSpecifications), which addresses the second half of the
distributed software to mask the underlying (and perhapghallenge in recovery testing: specification of expected
increasingly) poor reliability of commodity PCs, disks, behavior, to support proper testing of the recovery code
and memories4, 9, 15, 17]. that is exercised by FATE. With existing approaches,
A critical factor in the availability, reliability, and per  specifications are cumbersome and difficult to write, and
formance of cloud services is thus how they react to fail-thus present a barrier to usage in practicg 3, 24, 31,
ure. Unfortunately, failure recovery has proven to be38§]. To address this, BsTINI employs a relational logic
challenging in these systems. For example, in 2009language that enables developers to write clear, concise,
a large telecommunications provider reported a seriouand precise recovery specifications; we have written 74
data-loss incidentZ6], and a similar incident occurred checks, each of which is typically about 5 lines of code.

within a popular social-networking sit@@]. Bug reposi-  In addition, we present several design patterns to help de-
tories of open-source cloud software hint at similar prob-velopers specify recovery. For example, developers can
lems PJ. easily capture facts and build expectations, write spec-

Practitioners continue to bemoan their inability to ad-ifications from different viewsd.g, global, client, data
equately address these recovery problems. For exanservers) and thus catch bugs closer to the source, express



Problems Count Definitions and Examples

Incorrect 68 Recovery exists but it is still incorrect (exaes are given throughout the paper).

Absent 14  Unanticipated failures.f, corrupt metadata is not detected).

Coarse 7 A corrupt field causes a whole-machine shut downgdAdisk (out of many) shuts down a node.
Late 2 Afailure not being detected/notified directtyd, because of missing interrupt or wrong design).
Implications  Count Definitions and Examples

Data loss 13 Unrecoverable data loegy( loss of metadata or blocks).

Unavailability 48 Inaccessible blocks/nodes, failed jobgrations, prolonged timeouts/downtimes.

Corruption 19 Accessible data but the attributes/conteat® been altered not as expected.

Unreliability 8 Reduced reliabilityd.g, a corrupt replica is not replaced with the other good reglic
Performance 3 Increased latency or reduced bandwidgh due to late recovery or under-replicated blocks)

Table 1: Bug/Issue Study of Recovery Problems and Implications.

different types of violationsg.g, data-loss, availability), etc.) [7], which other practitioners also agree with ].

and incorporate different types of failuresd, crashes, They also emphasized that, as cloud services often de-

network partitions). pend on each other, a recovery problem in one service
The rest of the paper is organized as follows. First,could permeate others, affecting overall availability and

we dissect recovery problems in more detg#l)( Next,  reliability [7]. To conclude, cloud systems fafrequent

we define our concrete goakadjj, and present the design multipleanddiversefailures @, 6,7, 9, 15]. Yet, recovery

and implementation of &7E (§4) and DESTINI (§5). We  implementations are rarely tested with complex failures

then close with evaluation§®) and conclusiongy). and are not rigorously specified, [6].

2 Extended Motivation:

2.2 Lens #2: Study of Bug/lssue Reports
Recovery Problems

These anecdotes hint at the importance and complex-
This section presents a study of recovery problemsty of failure handling, but offer few specifics on how
through three different lenses. First, we recap accountg address the problem. Fortunately, many open-source
of issues that cloud practitioners have shared in the litcloud projects €.g, ZooKeeper 18], CassandraZ?],
erature ¢2.1). Since these stories do not reflect details,HDFS [32]) publicly share in great detail real issues
we study bug/issue reports of modern open-source clougncountered in the field. Therefore, we performed an
systems §2.2). Finally, to get more insights, we dissect in-depth study of HDFS bug/issue repor®.[ There
a failure recovery protocokg.3). We close this section are more than 1300 issues spanning 4 years of opera-
by reviewing the state-of-the-art of testirfi (4). tion (April 2006 to July 2010). We scan all issues and
study the ones that pertain to recovery problems due to
hardware failures. In total, there are 91 issues. Table
presents the variety of recovery problems that we found,

As well-known practitioners and academics have statedincluding their significant implications.

“the future is a world of failures everywherel]]; “re- Beyond these quantitative findings, we also made sev-
liability has to come from the software9]; “recov-  eral observations. First, most of the internal protocols
ery must be a first-class operatior8][ These are but already anticipate failures. However, they do not cover
a glimpse of the urgency of the importance of failure all possible failures, and thus exhibit problems in prac-
recovery as we enter the cloud era. Yet, practitionergice. Second, the number of reported issues due to multi-
still observe recovery problems in the field. The en-ple failures is still small. In this regard, excluding our 5
gineers of Google’s Chubby system, for example, re-submissions, the developers only had reported 3 issues,
ported data loss on four occasions due to database recowhich mostly arose in live deployments rather than sys-
ery errors b]. In another paper, they reported anothertematic testing. Finally, recovery issues appear not only
imperfect recovery that brought down the whole sys-in the early years of the development but also recently,
tem [6]. After they tested Chubby with random multiple suggesting the lack of adoptable tools that can exercise
failures, they found more problems. BigTable engineerdailures automatically. Reports from other cloud sys-
also stated that cloud systems see all kinds of failures¢ems such as Cassandra and ZooKeeper also raise similar
(e.g, crashes, bad disks, network partitions, corruptionsproblems, implications, and observations.

2.1 Lens #1: Practitioners’ Experiences



— » ~ e Data-Transfer Recovery Bug: Figure 1b shows a
(a) ' —— [ —— ] — x bug in the data-transfer recovery protocol; there is one
specific code segment that performs a bad error han-

dling of failed data transfersga). This bug makes the

0 D 23 1 2> X< client wrongly exclude the good node (Node2) and in-
. X L L clude the dead node (Node3) in the next pipeline cre-
) o ation E2b). Since Node3 is dead, the client recreates
() n Ty . : 1 F5X e the pipeline only with the first nodes%c). If the first
mi’fm O O o node also crashes at this point (a multiple-failure sce-
' nario), no valid blocks are stored. This implementation
_ ; bug reduces availabilityi.e., due to unmasked failures).
0 valid X crash setup I W -
block ~ msg O e alsp foun_d data-loss bugs in the append protocol due
-~ invalid —ux_network data to multiple failures §6.2.7).
""" block failure transfer

e Setup-Stage Recovery: Finally, Figure 1c shows
_ _ how the setup-stage recovery is different than the data-
Figure 1. HDFS Write Recovery Protocol.  w, ¢, transfer recovery. Here, the client first creates a pipeline
R1/2, and numeric letters represent the namenode, client, rackrom two nodes in Rack1 and one in Rack®4). How-
number, and datanodes respectively. The client alwayssstar ever, due to the rack partitioning1), the client asks
the activity to the namenode first before to the datanodes.  the namenode again for a new fresh pipelise) (vs.
the continue-on-surviving-nodes approach). The reason
] is that the client has not transferred any bytes, and thus
2.3 Lens #3: Write Recovery Protocol could start streaming from the beginning. After asking
_ _ _ the namenode in several retries (not shown), the pipeline
Given so many recovery issues, one might wonder whagontains only nodes in Rackdop). At the end, all repli-
the inherent complexities are. To answer this, we discas only reside in one rack, which is correct because only
sect the anatomy of HDFS write recovery. As a back-one rack is reachable during writgd].
ground, HDFS prowdes tW(.) write mte_rfaces: write and ¢ Replication Monitor Bug: Although the previous case
append. There is no overwrite. The write protocol essen: : . . ;
: ; . . . is correct, it reveals a crucial design bug in the back-
tially looks simple, but when different failures come into e . . :
: : ; .~ ground replication monitor. This monitor unfortunately
the picture, recovery complexity becomes evident. Fig- . .
- ; : only checks the number of replicas mdtthe locations.
urel shows the write recovery protocol with three differ- N .
: . . Thus, even after the partitioning is lifted, the replicas ar
ent failure scenarios. Throughout the paper, we will use . ; . .
. not migrated to multiple racks. This design bug greatly
HDFS terminology lflocks datanodes/nodesand na- S .
. . reduces the block availability if Rackl is completely un-
menodg[32] instead of GoogleFS terminology (chunks, )
reachable (more if5.2.3.
chunk servers, and mastet)].

e Data-Transfer Recovery: Figure 1a shows a client
contacting the namenode to get a list of datanodes t

To sum up, we have illustrated the complexity of re-
govery by showing how different failure scenarios lead
store three replicas of a blockd). The client then ini- to different recovery behaviors. There are more problems

tiates the setup stage by creating a pipeline containin%”th'n_ this prc_)tocol and other_ p_rotocols. W't.hOUt an ap-
the nodes through which the setup message is st ( ropriate testl_ng frame_zwork,_|t is hard to verify recovery
After the client receives setup acks from all the nodes, icorrectness; in one d|scu55|or_1 of a newly prop(‘)‘sed r’e-
starts the data transfer stage and waits for transfer ackKPVery design, a developer raised a comment: I, dont
from all the nodes<2). However, within this stage, see any proof of correctness. How do we know this will
the third node crashesda). What Figurela shows is not lead to the same or other problem&{? [

the correct behavior of data-transfer recovery. That is,

the client recreates the pipeline by excluding the dead

node and continues transferring the bytes from the last

good offset £2b); a background replication monitor will 2.4  Current State of the Art: Does It Help?
regenerate the third replica in the future. The design

decision behind this “continue-on-surviving-nodes” ap-In the last three sections, we presented our motivation
proach (vs. creating a fresh 3-node pipeline) is that thdor powerful testing frameworks for cloud systems. A
client cannot retransfer a big block.§, tens of MB)  natural question to ask is whether existing frameworks
through a fresh pipeline from the beginning because ittan help. We answer this question in two parts: failure
only has a sliding window cache (5 MB by default). exploration and system specifications.



2.4.1 Failure Exploration plex and unsurprisingly buggy f]. Finally, fsck can be
Devel i dt ; it_test considered as “invariant-like” specificatiorise(, it only
evelopers are accustomed 1o easy-lo-use unitlesting, o oy s the state of the file system, but notekientghat

frameV\I/orF S th_r fault-TJtect:onftpurp(_)seT, tunlt tel_sts_ta(rjqead to the state). As we will see later, specifying recov-
severely limited; a unit test often simulates a limite ery requires “behavioral” specifications.

number of scenarios. As a result, the code is bloated; . . )
the HDFS unit test is over 20 KLOC (almost as big as Another advanced checking approach is WiDS [

HDFS) but by no means covers the space of failure sce?4’ 37]. As the target system runs, WIDS interposes and

. . . . . .. checks the system'’s internal states. However, it employs
narios. In particular, it exercises very few scenarios with

multiple failures. When it comes to injecting multiple a scripting language that still requires a check to be writ-

. . L - ten in tens of lines of code?B, 24]. Furthermore, their
variety of failures, one common practice is to inject a se-. . : L ) ]
interposition mechanism might introduce another issue:

guence ofandomfailures as part of the unit tess,[34]. . ) . o
. : the checks are built by interposing specific implementa-
To improve common practices, recent work has pro-,. . . i
; S tion functions, and if these functions evolve, the checks
posed more exhaustive fault-injection frameworks. For T
must be modified. The authors have acknowledged but
example, the authors of AFEX and LFI observe that the L
X ) e not addressed this issuzj.

number of possible failure scenarios is “infinitd’y 27]. F ks for declarati ificati .

Thus, AFEX and LFI automatically prioritize “high- rameworks for declarative specifications exist(

impact targets”€.g, unchecked system calls, tests likely Pip [31], P2 Monitor [33]). P2 Monitor only works if the

to fail). So far, they target non-distributed systems am?argfat system Is w_ntten in the same Iangulam:[ P'p.
do not address multiple failures in detail. _aC|I|tates declarative checks, but a check is still writte

Recent system model-checkers have also proposed the Over 40 lines on averag&]]. Also, these systems

. . . are not integrated with a failure service, and thus cannot
addition of failures as part of the state exploration Stratethorou hlv test recover
gies RO, 36, 37, 38. Modist, for example, is capa- gnly Y-

ble of exercising different combinations of failuresd, Ove:all, v_\{e f(lnund n% framgwork that enable_sf_det\_/el—
crashes, network failuresB]]. As we discuss later, opers to write clear and concise recovery specifications

exploring multiple failures creates a combinatorial eX_for_re_aI-worId implementations of today's cloud _syst_er_ns.
plosion problem. This problem has not been addresseﬁXIStIng work use approaches that could resultin big im-

by the Modist authors, and thus they provide a ran_pIementations of the specifications. Managing hundreds
dom mode for exploring multiple failures. Overall, we of them becomes complicated, and they must also evolve

found no work that attempts to systematically exploreasI thte Sﬁte_m ev?lyes. _'{_hus, n p_][_a Ctt'.c e,gdevilopers are
multiple-failure scenarios, something that cloud system§e uctant to invest in writing specificationg][- hence

face more often than other distributed systems in théhe number of written speC|f|cat|0_ns s typically small
past 4, 9, 15, 17]. and does not scale to the complexity of the system.

2.4.2 System Specifications 3 Goals

Failure injection addresses only half of the challenge in
recovery testing: exercising recovery code. In addition,To address the aforementioned challenges, we present
proper tests require specificationsexdpected behavior a new testing framework for cloud systemsaTE and
from those code paths. In the absence of such specPESTINI We first present our concrete goals here.
fications, the only behaviors that can be automaticallye Target systems and usersWe primarily target cloud
detected are those that interrupt testing (e.g. system faisystems as they experience a wide variety of failures at a
ures). One easy way is to write extra checks as part ofigher rate than any other systems in the pa3jt [How-
a unit test. Developers often take this approach, but thever, our framework is generic for other distributed sys-
problem is there are many specifications to write, and items. Our targets so far are HDF®[, ZooKeeper 18]
they are written in imperative languagesgd, Java) the and Cassandr&f]. We mainly use HDFS as our exam-
code is bloated. For these reasons, the number of writteple in the paper. In terms of users, we target experienced
specifications is usually small. system developers, with the goal of improving their abil-
Some model checkers use existing consistency checkty to efficiently generate tests and specifications.
such as fsck 38|, a powerful tool that contains hun- e Seamless integration:Our approach requires source
dreds of consistency checks. However, it has some drawcode availability. However, for adoptability, our frame-
backs. First, fsck is only powerful if the system is maturework should not modify the code base significantly. This
enough; developers add more checks across years of dis-accomplished by leveraging mature interposition tech-
velopment. Second, fsck is also often written in imper-nology .9, AspectJ). Currently our framework can be
ative languages, and thus its implementations are conintegrated to any distributed systems written in Java.



e Rapid and systematic exploration of failures: Our /O 1D Fields Values

framework should help cloud system developers explore ~ Static  Func. call  :  OutputStream.flush()
multiple-failure scenarios automatically and more sys- __ Source File : BlockRecv.java (line 45)
tematically than random approaches. However, a com- Dynamic Sézzklgace E N%Z‘; ;ta‘:k trace)
plete systematic exploration brings a new challenge: a . -

. . - . . . Domain  Source : Node2
massive combinatorial explosion of failures, which takes o ;

th | h g f K specific  Dest. . Nodel
tens of hours to explore. Thus, our testing framewor Net. Mesg. : Setup Ack

must also be equipped with smart exploration strategies —gzilure ID = hash (/01D + Crash ) = 2849067135
(e.g, prioritizing non-similar failure scenarios first).
* Numerous detailed recovery §pecifications|dgally, Table 2: A Failure ID. A failure ID comprises an I/O ID
q§ve_lopers Showd. be able to write as mf’:l_ny qetalled.Spe%Tus the injected failure (e.g., crash). Hash is used to mé@o
|f|cat_|ons as possible. The more spemﬁc_a‘uons written,e . o 1D For space, some fields are not shown.
the finer bug reports produced, the less time needed for
debugging. To realize this, our framework must meet two
requirements. First, the specifications must be developebnd, from the perspective of a node in distributed sys-
friendly (i.e., concise, fast to write, yet easy to under-tems, 1/O points are critical points that either change its
stand). Otherwise, developers will be reluctant to invesinternal states or make a change to its outside werlgl (
in writing specifications. Second, our framework mustdisks, other nodes). Finally, /O points are basic oper-
facilitate “behavioral” specifications. We note that ex- ations in distributed systems, and hence an abstraction
isting work often focuses on “invariant-like” specifica- built on these points can be used for broader purposes.
tions. This is not adequate because recovery behaves di§-Static and dynamic information: For each I/O point,
ferently under different failure scenarios, and while re-1/0 ID is generated from the stati@.g, system call,
covery is still ongoing, the system is likely to go through source file) and dynamic informatioe.(, stack trace,
transient states where some invariants are not satisfied.node ID) available at the point. Dynamic information
are useful to increase failure coverage. For example, re-
. . . covery might behave differently if a failure happens in
4 FATE: Failure Testing Service different nodesd.g, first vs. last node in the pipeline).
e Domain-specific information: To increase failure
Within a distributed execution, there are many pointscoverage further, an I/O ID carries domain-specific infor-
in place and time where system components could failmation; a common 1/0 point could write to different file
Thus, our goal is to exercise failures more methodicallytypes or send messages to different nodeseE inter-
than random approaches. To achieve this, we presemjosition mechanism provides runtime information avail-
three contributions: a failure abstraction for express-aple at an I/O point such as the target 1y, file names,
ing failure scenarios§f#.1), a ready-to-use failure ser- |p addresses) and the 1/O buffer.d, network packet,
vice which can be integrated seamlessly to cloud sysfile buffer). To convert these raw information into a more
tems €4.2), and novel failure prioritization strategies that meaningful contexte.g, “Setup Ack” in Table2), FATE
speed up testing time by an order of magnituie3). provides an interface that developers can implement. If
the interface is empty,AFE can still run, but failure cov-
erage could be sacrificed.
e Possible failure modes:Given an I/O ID, RATE gen-
FATE’s ultimate goal is to exercise as many combinationserates a list of possible failures that could happen before
of failures as possible. In a sense, this is similar to modefnd after. For example AFE could throw a bad-disk ex-
checking which explores different sequences of stateszeption before a disk write, or crash a node after the node
One key technique employed in system model checkergeceives a message. Currently, we support failures such
is to record the hashes of the explored states. Similarlys crash, permanent disk failure, disk corruption, node-
in our case, we introduce the conceptfaifure IDs, an  level and rack-level network partitioning, and transient
abstraction for failure scenarios which can be hashed anthilure. We leave I/O reordering for future work.
recorded in history. A failure ID is composed of an I/O
ID and the injected fa|ll_Jre (Tab®. B_elow we describe 4.2 Architecture
these subcomponents in more detail.
¢ 1/O points: To construct a failure ID, we choose I1/O We built FATE with an aim towards quick and seamless
points {.e., system/library calls that perform disk or net- integration to our target systems. FigWalepicts the
work 1/0s) as failure points, mainly for three reasons.four components of &Te: workload driver, failure sur-
First, hardware failures manifest into failed I/Os. Sec-face, failure server, and filters.

4.1 Failure IDs: Abstraction For Failures



4.2.1 Workload Driver, Failure Surface, and Server

Workload Driver Failure
while (server injects I
new failurelDs) {

runWorkload();

// ex: hdfs.write

Instrumented HDFS
; Q00

We first instrument the target systemd, HDFS) by in-
serting a “failure surface”. There are many possible lay-
ersto insert a failure surface.g, inside a system library |}
or at the VMM layer). We do this between the target sys-
tem and the OS librarye(g, Java SDK), for two reasons.
First, at this layer, rich domain-specific information is
available. Second, by leveraging mature instrumentation
technology €.g, AspectJ), adding the surface requires4-2.3 Filters

No Fail?

Figure 2: FATE Architecture.

no modification to the code base.

FATE uses information carried in I/O and failure IDs to

The failure surface has two important jobs. First, atimplement filters at the server side. A filter can be used
each 1/0 point, it builds the I/O ID. Second, it needs toto regenerate a particular failure scenario or to reduce

check if a persistent failure injected in the past affedts th
I/O point (e.g, network partitioning). If so, the surface

the failure space. For example, a developer could insert
a filter that allows crash-only failures, failures only on

returns an error to emulate the failure without the needsome specific 1/0s, or any failures only at datanodes.
to talk to the server. Otherwise, it sends the 1/O ID to the

server and receives a failure decision.

4.3 Failure Exploration Strategy

The workload driver is where the developer attaches

the workload to be testeé (g, write, append, or some se-

Running RATE in brute-force mode is impractical and

quence of operations, including the pre- and post-setupdime consuming. As an example, we have run the append
and specifies the maximum number of failures injecteoorotocol with a filter that allows crash-only failures on
per run. As the workload runs, the failure server receivedlisk I/Os in datanodes. With this filter, injecting two fail-
/0 IDs from the failure surface, combines the /O IDs Ures per run gives 45 failure IDs to exercise, which leads

with possible failures into failure IDs, and makes fail-

us to 1199 combinations that take more than 2 hours to

ure decisions based on the failure history. The workloadun- Without the filter ke., including network 1/Os and

failure scenario.

4.2.2 Brute-Force Failure Exploration

By default, FATE runs in brute-force mode. Thatisafe

This introduces the problem of exponential explosion of
multiple failures, which has to be addressed given the
fact that we are dealing with large code base where an
experiment could take more than 5 seconds pereum, (
due to pre- and post-setup overheads).

Among the 1199 experiments, 116 failed; if recovery
is perfect, all experiments should be successful. Debug-

systematically explores all possible combinations of ob-ging all of them led us to 3 bugs as the root causes. Now,

served failure IDs. This is done vfailure lockingand
failure history As an example, consider four failure IDs
A, B, C, andD, not known apriori. For two-failure scenar-
ios, FATE should exerciséB in one run,AC in another
run, and so on. With failure locking, after the first run,
the first failure is locked ta\ (Lock[1] = A) such that
in the next run BTE only injectsA for the first failure.
For the second failure, since the lock is emptydk [2]

= (), the server will inject any new failuree(g, C) as
long as the combinatiore(g, AC) has not been exercised
(in general, forN-failure combinations, KTE only uses
lock[1..N-1]; lock[N] is always empty). If BRTE
does not observe a new combination that starts wjth
the first failure is unlocked anal is recorded in history
(history[1]={A}) such that in the next runAFE can
exercise other combinations that do not start wite.g,
BC). With this brute-force mode AFE has exercised over
more than 40,00@niquecombinations of one, two and
three failure IDs €.g, A, BC, andACD).

we can concretely define the challenggan FATE ex-
ercise a much smaller number of combinations and find
distinct bugs fasterThis section provides some answers
to this challenge. To the best of our knowledge, we are
the first to address this issue in the context of distributed
systems. Thus, we also hope that this challenge attracts
system researches to present other alternatives.

To address this challenge, we have studied the prop-
erties of multiple failures (for simplicity, we begin with
two-failure scenarios). A pair of two failures can be cate-
gorized into two typespairwise dependerandpairwise
independentailures. Below, we describe each category
along with the prioritization strategies. Due to space con-
straints, we could not show the detailed pseudo-code, and
thus we only present the algorithms at a high-level. We
will evaluate the algorithms in Sectidh3. We also em-
phasize that our proposed strategies are built on top of
the information carried in failure IDs, and hence display
the power of failure IDs abstraction.
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Figure 3: Prioritization of Pairwise Dependent and Independent Failres.
4.3.1 Pairwise Dependent Failures mands to the datanodes to report their blocks to the na-

menode, and waits until all datanodes receive a null com-
A pair of failure IDs is dependent if the second ID is mand {.e., no background jobs to run).
Observed)nly if the failure on the first ID ignjected Going back to Figur@a, the created mappings be-
observing the occurrence of a failure ID does not necestween the first failures and their subsequent failure IDs
sarily mean that the failure must be injected. The keyare: {po— E}, {B— E}, {C— E, F}, and{D— E, F}. The
here is to use observed 1/Os to capture path coveraggcovery behaviors then are clustered into i}, and
information (this is an acceptable assumption since W&, r}. Finally, for each recovery cluster, we pick only
are dealing with distributed systems where recovery espne failure ID on which the cluster is dependent. The fi-
sentially manifests into 1/Os). FiguBa illustrates some  ng| prioritized combinations are marked with bold edges
combinations of dependent failure IDs. For example, in Figure3a. That is, BTE only exercisesAE, CE, and
is dependent oa orD (i.e., F will never be observed un-  cr. Note thatE is exercised as a second failure twice be-

lessC or D is injected). The brute-force algorithm will - cause it appears in different recovery clusters.
inefficiently exercise all six possible combinations,

BE, CE, DE, CF, andDF.

To prioritize dependent failure IDs, we introduce a
strategy that we caliecovery-behavior clusteringThe A pair of failure IDs is independent if the second ID is
goal is to prioritize “non-similar” failure scenarios first gpserved even if the first ID igot injected. This case
The intuition is that non-similar failure scenarios typi- is often observed when the same piece of code runs in
cally lead to different recovery behaviors, and recoveryyargjiel, which is a common characteristic found in dis-
behaviors can be represented as a sequence of failufgputed systemss(g, two phase commit, leader election,
IDs. Thus, to perform the clustering, we first run a com-4pgs write and append). Figusb illustrates a scenario
plete set of experiments witbnly onefailure per run, \yhere the same I/O pointsandB are executed concur-
and in each run we record tisabsequerfailure IDs. rently in three nodes.€., A1, A2, A3, B1, B2, B3). Let's

We formally define subsequent failure IDs as all ob-name these two I/O pointsandB as static failure points,
served IDs after the injected failure up to the point whereor SF P in short (as they exclude node ID). With brute-
the system enters trgable state That is, recording re-  force exploration, ETE produces 24 combinations (the
covery only up to the end of the protoca.§, write) 12 bi-directional edges in Figui@b). In more general,
is not enough. This is because a failed 1/O could leavehere areS F P2 x N(N — 1) combinations, wher&/ and
some “garbage” that is only cleaned up by some backs 7P are the number of nodes and static failure points re-
ground protocols. For example, a failed 1/O could leavespectively. To reduce this quadratic growth, we introduce
a block with an old generation timestamp that should bewo levels of prioritization: one for reduciny (N — 1)
cleaned up by the background replication monitor (out-and the other fo6.F P2.
side the scope of the write protocol). Moreover, different  Tg reduceN (N — 1), we leverage the property sfm-
failures could leave different types of garbage, and thusnetric code(i.e., the same code that runs concurrently
lead to different recovery behaviors of the backgroundn different nodes). Because of this property, if a pair
protocols. By capturing subsequent failure IDs until theof failures has been exercised at two static failure points
stable state, we ensure more fine-grained clustering.  of two specific nodes, it is not necessary to exercise the

The exact definition of stable state might be differentsame pair for other pairs of nodes. For example B2
across different systems. For HDFS, our definition ofhas been exercised, it is not necessary to\nB8, A2B1,
stable state is: &7E reboots dead nodes if any, removes A2B3, and so on. As a result, we have redudédV — 1)
transient failuresd.g, network partitioning), sends com- (i.e., any combinations of two nodes) to just one( a

4.3.2 Pairwise Independent Failures



pair of two nodes); thé&v does not matter anymore.

DESTINI
stateY(...) :- cnpEv(...), stateX(...);

Although the first level of reduction is significant,
FATE still hits the S F P? bottleneck as illustrated in Fig-
ure3c. Here, instead of having two static failure points,
there are four, which leads to 16 combinations. To re-

duceSF P2, we utilize the behavior clustering algorithm / >
. . . : i D| |FATE
used in the dependent case. Put simply, the goal is to re-

duceSF P to SF P.jystered, Which will reduce the input
to the quadratic explosior (g, from 4 to 2 resulting in 4
uni-directional edges as depicted in Fig@d. In prac- )
tice, we have seen a reduction from fifte@A P to eight Figure 4: DESTINI Architecture.
L(;’F‘I)clustered-

5.1 Architecture

At the heart of IESTINI is Datalog, a declarative rela-
4.4 Summary tional logic language. We chose the Datalog style as it

has been successfully used for building distributed sys-
We have introduced failure IDs as a new abstraction fotems [, 25 and for verifying some aspects of system
exploring failures, which we believe is general enoughcorrectnessd.g, security L2, 30]). Unlike much of that
to be used for other purposesd, incorporated to other work, we are not using Datalog to implement system in-
testing frameworks such as model checkers, to build priternals, but only to write correctness specifications that
oritization policies, etc.). Second, we have built a ready-are checked relatively rarely. Hence we are less depen-
to-use failure service. Deploying\FE is relatively easy;  dent on the efficiency of current Datalog engines, which
a developer could quickly do that without the domain- are still evolving B].
specific component. For example, we have porteteF In terms of the architecture, 3 TINI is designed such
to two other systems in just a few hours. To increasethat developers can build specifications from minimal in-
failure coverage, one can incrementally add the domainformation. To support this, ESTINIcomprises three fea-
specific fields of failure IDs. Finally, we are the first tures as depicted in Figu#e First, it interposes network
to present prioritization strategies for exploring muiip and disk protocols and translates the available informa-
failures in distributed systems. Our approaches are nafon into Datalog events(g, cnpEv). Second, it records
sound; however by experience, all bugs found with brutefailure scenarios by havingafFe inform DESTINI about
force are also found with prioritization (more§6.3). If  failure events€.g, fatekv). This highlights that ETE
developers have the time and resource, they could falhnd DEsTINI must work hand in hand, a valuable prop-
back to brute-force mode for more confidence. So farerty that is apparent throughout our examples. Finally,
we have only explained our algorithms for two-failure basedonly on events, it records facts, deduces expecta-
scenarios. We have generalized them to three-failure, buitons of how the system should behave in the future, and
cannot present them due to space constraint. compares the two.

5.1.1 Rule Syntax

5 DESTINI' Declarative Testing In DESTINI, spec_|f|cat|on§ are formglly wnttgn .aS Data-
o ) log rules. Arule is essentially a logical relation:
SpeCIflcatlonS errX(P1,P2,P3) :- cnpEv(P1), NOT-IN stateY(P1,P2,_),

P2 == img, P3 := Util.strLib(P2);

After failures are injected, developers still need to ver- This Datalog rule consists of a head tabker)

ify system correctness. As described in the motivationand predicate tables in the bodysprv and statey).
(82.4), DESTINI attempts to improve the state-of-the- The head is evaluated when the body is true. Tu-
art of writing system specifications. In the following ple variables begin with an upper-case letter)( A
sections, we first describe the architectu§g.), then  don’t care variable is represented with an underscore
present some exampldi(2), and finally summarize the (). A comma between predicates represents conjunc-
advantagessb.3). Currently, we target recovery bugs tion. “:=" is for assignments. We also provide some
that reduce availability .g, unmasked failures, fail- helper libraries ftil.strLib() to manipulate strings).
stop) and reliability €.g, data-loss, inconsistency). We Lower case variablesifg) represent integer or string
leave performance and scalability bugs for future work. constants. All upper case lettengo(-1In) are Datalog



keywords. Events are in italic. To help readers trackwithin the data-transfer staggdteCrashNode happens
where events originate from, an event name begins witlat stg==2 in rule a4). The data transfer stage is deduced
one of these labelscnp, dnp, cdp, ddp, fs, which  inrulesa5-a8: the second stage begins after all acks from
stand for client-namenode, datanode-namenode, clienthe setup phase have been received.

datanode, datanode-datanode, and file system protocolsBefore moving on, we emphasize two important ob-
respectively (Figurd). Non-event (non-italic) heads and servations here. First, this example shows howg-
predicates are essentially database tables with primargnd DESTINI must work hand in hand. That is, recovery
keys defined in some schemas (not shown). A table thadpecifications require a failure service to exercise them,
starts witherr represents an error €., if a specification  and a failure service requires specifications of expected
is broken, the error table is non-empty, implying the ex-failure handling. Second, with logic programming, de-
istence of one or more bugs). velopers can easily build expectations only from events.
e Facts: The fact &ctualNodes) is also built from events
(a9-al6), more specifically, by tracking the locations of
valid replicas. A valid replica can be tracked with two
This section presents the powerful features @fsDINI pieces of information: the block’s latest generation time
via four examples of HDFS recovery specifications. Instamp, which ESTINI tracks by interposing two inter-
the first example, we present five important compo-faces &9 andal(), and meta/checksum files with the
nents of recovery specification$5(2.7). To help com- latest generation timestamp, which are obtainable from
plex debugging process, the second example shows hofile operations§11-a15). With this information, we can
developers can incrementally add tighter specification$uild the runtime fact: the nodes that store the valid repli-
(§5.2.9. The third example presents specifications thatcas of the block416).

incorporate a different type of failure than the first two ¢ Check timings: The final step is to compare the ex-
examples{5.2.3. Finally, we illustrate how developers pectation and the fact. We underline that the timing of
can refine existing specification§s(2.4. the check is important because we are specifygugv-

ery behaviors unlike invariants which must be true at
all time. Not paying attention to this will result in false
warnings {.e., there is a period of time when recovery is
DEesTINI facilitates five important elements of recovery ongoing and specifications are not met). Thus, we need
specifications: checks, expectations, facts, precise failprecise events to signal check times. In this example, the
ure events, and check timings. Here, we present theseheck time is at block completiordpcompiete in al).
elements by specifying the data-transfer recovery proto-

col (Figure_la); this recovery is correct if _vali_d replicas 5.2.2 Debugging with Tighter Specifications

are stored in the surviving nodes of the pipeline.

e Checks: To catch violations of data-transfer recov- The rules in the previous section capture the high-level
ery, we start with a simple high-leveheck(al), which  objective of HDFS data-transfer recovery. After we ran
says “upon block completion, throw an error if there is FATE to cover the first crash scenario in Figue (for

a node that is expected to store a valid replica, but actusimplicity of explanation, we exclude the second crash),
ally does not.” This rule shows how a check is composedule al throws an error due to a bug that wrongly ex-
of three elements: thexpectatior(expectediodes), fact  cludes the good second node (Figdiein §2.3). Al-

5.2 DesTINI Examples

5.2.1 Specifying Data-Transfer Recovery

(actualNodes), andcheck timing cnpComplete). though, the check unearths the bug, it doespigpoint
e Expectations: The expectationskpectedNodes) isde-  the bug {.e., answewhythe violation is thrown).
duced from protocol eventa?-a8). First, without any To help this debugging process, we added more de-

failure, the expectation is to have the replicas in all thetailed specifications. In particular, from the events that
nodes in the pipelinea@); information about pipeline DESTINI logs, we observed that the client excludes the
nodes are accessible from the setup reply from the nasecond node in the next pipeline, which is possible if the
menode to the clienta@). However, if there is a crash, client receives a bad ack. Thus, we wrote another check
the expectation changes: the crashed node should be ré31) which says “throw an error if the client receives a
moved from the expected nodesd. This implies that bad ack for a live node”tl’s predicates are specified
an expectation is also basedfailure events in b2 andb3). Note that this check is written from the

o Failure events: Failures in different stages result in client’s view while ruleal from theglobal view

different recovery behaviors. Thus, we must know pre- The new check catches the bug closer to the source,
cisely when failures occur. For data-transfer recoveryput also raises a new question: Why does the client re-
we need to capture the current stage of the write proeeive a bad ack for the second node? One logical ex-
cess and only change the expectation if a crash occunglanation is because the first node cannot communicate



Time, Events, and Errors 5.2.3 Specifying Rack-Aware Replication Policy
t1: Client asks the namenode for a block ID and the nodes.

cnpGetBlkPipe (usrFile, blk.x, gsi, 1, Ni); In this example, we write specifications for HDFS rack-
cnpGetBlkPipe (usrFile, blk.x, gsl, 2, N2); aware replication policy, an important policy for high
cnpGetBlkPipe (usrFile, blkx, gsi, 3, N3); availability [10, 32]. Unlike previous examples, this ex-
t2: Setup stage begins (pipeline nodes setup the files). ample incorporates network partitioning failure mode.
fsCreate (N1, tmp/blk x.gsl.meta); According to the HDFS architect87), the write pro-
fsCreate (N2, tmp/blkx.gsl.meta); tocol should ensure that block replicas are spread across

fsCreate (N3, tmp/blk_x_gsi.meta);
t3: Client receives setup acks. Data transfer begins.
cdpSetupAck (blk-x, 1, OK);
cdpSetupAck (blk_x, 2, 0K);
cdpSetupAck (blk-x, 3, OK);

a minimum of two available racks. But, if only one rack
is reachable, it is acceptable to use one rack temporar-
ily. To express this, rulelthrows a warning if a block’s
rack could reach another rack, but the block’s rack count

t4: FATE crashes N3Got error (ba). ?s one (rule$2—c4 provide topology information, which
fateCrashlode (N3); is initialized when the cluster starts and updated when
errBadConnect (N1, N2); // should be good FATE creates a rack partition). This warning becomes a

t5: Client receives an errorneous a¢kot error (b1). hard erroonlyif it is true upon block completiorcd) or
cdpDatadck (2, Error); stable statedf). Note again how these timings are im-
errBadAck (2, N2); // should be good portant to prevent false errors; while recovery is ongoing,

t6: Recovery begins. Get new generation time stamp. replicas are still being re-shuffled into multiple racks.
dnpNeztGenStamp (blk.x, gs2); With these checks, BsTINI found the bug in Fig-

t7: Only N1 continues and finalizes the files. ure 1c (§2.3), a critical bug that could greatly reduce

fsCreate (N1, tmp/blk_x_gs2.meta);
fsRename (N1, tmp/blk_x_gs2.meta,
current/blk_x_gs2.meta) ;

availability: all replicas of a block are stored in a sin-
gle rack. More specifically, the bug does not violate the
8 Client marks completiorGot error (a1). completion rqle (because the racks are still partitioned).
enpComplete (blk.x); But, it does violate tr_u_a stlablg state rule because even af-
errDataRec (blk.x, N2); // should exist ter the network partitioning is removed, the replication
monitor does not re-shuffle the replicas.

Table 3: A Timeline of DESTINI Execution.  The . -
table shows the timeline of runtime events (italic) and o 2-2-4  Refining Specifications

(shaded). Tighter specifications capture the bug earlier in|4 the second examplé%.2.9, we demonstrated how
time. The tuples (strings/integers) are real entries (@table  jeyelopers camcrementally addietailed specifications.
names). For space, we do not show block-file creations (bujp this section, we briefly show how developers ezfine
only meta files) nor how the rules in Tablé are populated. existing specifications (an extensive description can be
found in our short papeff]).
Here, we specify the HDFS log-recovery process in
order to catch data-loss bugs in this protocol. The high-
to the second node. Thus, we easily added many checkevel check §1) is fairly simple: “a user file is lost if it
that catch unexpected bad connections sudidawhich ~ does not exist at the namenode.” To capture the facts, we
finally pinpoints the bug: the second node, upon seeingvrote ruled2 which says at any time user files should
a failed connection to the crashed third node, incorrectlyexist in the union of all the three namenode files used in
closes the streams connected to the first node; note thiag recovery.” With these rules, we found a data-loss bug
this check is written from thdatanode’s view that accidentally deletes the metadata of user files. But,
the error is only throwrat the endof the log recovery
In summary, more detailed specifications prove to beprocessi(e., the rules are not detailed enough to pinpoint
valuable for assisting developers with complex debugthe bug). We then refined ruti2 to reflect in detail the
ging process. This is unlikely to happen if a check im-four stages of the proces#3to d5). That is, depending
plementation is long. But with BSTINI, a check can on the stage, user files are expected to be in a different
be expressed naturally in a small number of logical re-subset of the three files. With these refined specifications,
lations. Moreover, checks can be written from differentthe data-loss bug was captured in between stage 3 and 4.
views (e.g, global, client and datanode as showraih
b1, b4 respectively)_. Tabl8® shows a time_line of Whe_n 5.3 Summary of Advantages
these checks are violated. As shown, tighter specifica-
tions essentially fill the “explanation gaps” between theThroughoutthe examples, we have shown the advantages
injected failure and the wrong final state of the system. of DESTINI: it facilitates checks, expectations, facts,
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Section5.2.1 Data-Transfer Recovery Specifications
al errDataRec (B, N) cnpComplete (B), expectedNodes (B, N), NOT-IN actualNodes (B, N);
a2 pipeNodes (B, Pos, N) cnpGetBlkPipe (UFile, B, Gs, Pos, N);
a3 expectedNodes (B, N) pipeNodes (B, Pos, N);
ad DEL expectedNodes (B, N) fateCrashNode (N), pipeStage (B, Stg), Stg == 2,
expectedNodes (B, N);
a5 setupAcks (B, Pos, Ack) cdpSetupAck (B, Pos, Ack);
a6 goodAcksCnt (B, COUNT<Ack>) setupAcks (B, Pos, Ack), Ack == ’0K’;
a7 nodesCnt (B, COUNT<Node>) pipeNodes (B, _, N, .);
a8 pipeStage (B, Stg) nodesCnt (NCnt), goodAcksCnt (ACnt), NCnt == Acnt, Stg := 2;
a9 blkGenStamp (B, Gs) dnpNexztGenStamp (B, Gs);
al0  blkGenStamp (B, Gs) cnpGetBlkPipe (UFile, B, Gs, _, );
all diskFiles (N, File) fsCreate (N, File);
al2 diskFiles (N, Dst) fsRename (N, Src, Dst), diskFiles (N, Src, Type);
al3 DEL diskFiles (N, Src) fsRename (N, Src, Dst), diskFiles (N, Src, Type);
ald fileTypes (N, File, Type) diskFiles(N, File), Type := Util.getType(File);
al5 blkMetas (N, B, Gs) fileTypes (N, File, Type), Type == metafile,
B := Util.getBlk(File), Gs := Util.getGs(File);
alé actualNodes (B, N) blkMetas (N, B, Gs), blkGenStamp (B, Gs);
Section5.2.2 Tighter Specifications for Data-Transfer Recovery
bl errBadAck (Pos, N) cdpDatadck (Pos, ’Error’), pipeNodes (B, Pos, N), liveNodes (N);
b2 liveNodes (N) dnpRegistration (N);
b3 DEL 1liveNodes (N) fateCrashNode (N);
b4 errBadConnect (N, TgtN) ddpDataTransfer (N, TgtN, Status), liveNodes (TgtN),
Status == terminated;
Section5.2.3 Rack-Aware Policy Specifications
cl warnSingleRack (B) rackCnt (B, 1), actualRacks (B, R), connectedRacks (R, OtherR);
c2 actualRacks (B, R) actualNodes (B, N), nodeRackMap (N, R);
c3 rackCnt (B, COUNT<R>) actualRacks (B, R);
cd DEL connectedRacks (R1, R2) fatePartitionRacks (R1, R2);
c5 erriRackOnCompletion (B) cnpComplete (B), warnSingleRack (B);
c6 erriRackOnStableState (B) fateStableState (_), warnSingleRack (B);
Section5.2.4 Refining Log-Recovery Specifications
d1 errLostUFile (UFile) expectedUFile (UFile), NOT-IN ufileInNameNode (UFile);
d2 ufileInNameNode (UFile) ** ufileInNnFile(F, NnFile), (NnFile == img || NnFile == log ||
NnFile == img2);
d3 ufileInNameNode (UFile) ufileInNnFile (F, img2), logRecStage (Stg), Stg == 4;
44 ufileInNameNode (UFile) ufileInNnFile (F, img) , logRecStage (Stg), Stg != 4;
1) ufileInNameNode (UFile) ufileInNnFile (F, log) , logRecStage (Stg), Stg != 4;

Table 4: Sample Specifications. The table lists all the rules we wrote to specify the problamSection5.2; RulesaX, bX,
cX, anddx are for Section$.2.1 5.2.2 5.2.3 and5.2.4respectively. All logical relations are built only from eus (in italic). The
shaded rows indicate checks that catch violations. A chielyes starts witherr. Tuple variables, Gs, N, Pos, R, Stg, NnFile,
andUFile are abbreviations for block, generation timestamp, nodsijton, rack, stage, namenode file, and user file respdgtive
others should be self-explanatory. Each table has primaggidefined in a schema (not showri}.) Ruledz2 is refined ind3 to
d5; these rules are described more in our short papEs][
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failure events, and precise timings; specifications can bgears B5]. As a note, Google FS also supports append,
written from different views €.g, global, client, datan- but its authors did not share their internal desig@| |
ode); different types of violations can be specifiedy( The experiment setup was that a block has three repli-
availability, data-loss); different types of failures da®  cas in three nodes, and thus should survive two failures.
incorporated €.g, crashes, partitioning); and specifica- On append, the three nodes form a pipeline. N1 starts a
tions can be incrementally added or refined. Overallthread that streams the new bytes to N2 and then N1 ap-
the resulting specifications are clear, concise, and prepends the bytes to its block. N2 crashes at this point, and
cise, which potentially attracts developers to write manyN1 sends a bad ack to the client, but does not stop the
specifications to ease complex debugging process, fahread. Before the client continues streaming via a new
both present and future related bugs. All of these argipeline, all surviving nodes (N1 and N3) must agree on
feasible due to three important properties cf4¥INI: the same block offset (thgmcoffset process). In this
the interposition mechanism that translates disk and nefprocess, each node stops the writing thread, verifies that
work events; the use of relational logic language whichthe block’s in-memory and on-disk lengths are the same,
enables us to deduce complex states only from eventfiroadcasts the offset, and picks the smallest offset. How-
and the inclusion of failure events from the collaborationever, N1 might have not updated the block’s in-memory
with FATE. length, and thus throws an exception resulting in the new
pipeline containing only N3. Then, N3 crashes, and the
. pipeline is empty. The append fails, but worse, the block
6 Evaluation in N1 (still alive) becomes “trapped?.€., inaccessible).
After FATE ran all the background protocols.§, lease
recovery), the block is still trapped and permanently in-
accessible. We have submitted a fix for this bRl [

We evaluate KTE and DESTINI in several aspects: the
general usability for cloud system$6(1), the ability to
catch multiple-failure bugs§6.2), the efficiency of our
prioritization strategiessg.3), the number of specifica-
tions we have written and their reusability6(4), the 6.2.2 Combinations of Different Failures
number of new bugs we have found and old bugs repro;

duced €6 d the impl i lexi We have also found a new data-loss bug due to a se-
uced §6.5), and the implementation complexig.g). quence oflifferentfailure modes, more specifically, tran-

sient disk failure (#1), crash (#2), and disk corruption
6.1 Target Systems and Protocols (#3) at the namenode. The experiment setup was that the
We have integrated A and DeESTINI to three cloud ngmenode has three- replicas of _mgtadata -f|Ies on three
i . disks, and one disk is flaky (exhibits transient failures
systems: HDFS v0.20.0 and v0.20.2+320 (the latter is : .
. and corruptions). When users store new files, the na-
released in Feb. 2010 and used by Cloudera and Face- : : .
menode logs them to all the disks. If a digkd, Disk1)
book), ZooKeeper v3.2.2 (Dec. 2009), and C"jlssandr'?eturns atransient write error (#1), the namenode will ex-
v0.6.1 (Apr. 2010). We have run our framework on four '

. . clude this disk; future writes will be logged to the other
HDFS workloads (log recovery, write, append, and reIOII"[wo disks {.e., Disk1 will contain stale data). Then, the

c_atlon monitor), one ZooKeeper workload (Iea_der eIeC'namenode crashes after several updates (#2). When the
tion), and one Cassandra workload (key-value insert). L .
namenode reboots, it will load metadata from the disk
) _ that has the latest update time. Unfortunately, the file that
6.2 Multiple-Failure Bugs carries this information is not protected by a checksum.

. . . Thus, if this file is corrupted (#3) such that the update
The uniqueness of our framework is the ability to exploretime of Diskl becomes more recent than the other two,

multiple failures systematically, and thus catch corner- .
case multiple-failure bugs. Here, we describe two out ofhen the namenode will load stale data, and flush the stale

. . . data to the other two disks, wiping out all recent updates.
five multiple-failure bugs that we found. . .

One could argue that this case is rare, but cloud-scale de-
ployments cause rare bugs to surface; a similar case of
6.2.1 Append Bugs corruption did occur in practic]. Moreover, data-loss

We begin with a multiple-failure bug in the HDFS ap- bUgs are serious one2q, 28, 29.

pend protocol. Unlike write, append is more complex

because it must a_tomically mutate bIo_ck replicas]| 6.3 Prioritization Efficiency

HDFS developers implement append with a custom pro-

tocol; their latest append design was written in a 19-pag&Vvhen FATE was first deployed without prioritization,
document of prose specification®l]. Append was fi- we exercised over 40,000 unique combinations of fail-
nally supported after being a top user demand for threaires, which combine into 80-hour of testing time. Thou-
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Workload #F STR #EXP FAIL  BUGS Type Framework #Chks Lines/Chk

Append 2 BF 1199 116 3 ] D3S 23 10 53

PR 112 17 3 D/l Pip[3]] 44 43
Append 3 BF 7720 **3693 *3 S/l WiDS [24] 15 22
S 5 FI;F; g;i 1;5 g D/D P2 Monitor B3] 11 12

I

PR 19 >7 5 D/ DESTINI 74 5
Write 3 BF 3221 911 *2

PR 333 82 2 Table 6: DESTINI vs. Related Work. The table com-

paresDESTINI with related work. D, S, and | represent declar-
ative, scripting, and imperative languages respectivghy. im-
plies specifications in X language for systems in Y language.
We divide existing work into three classes (S/I, D/D, D/I).

Table 5: Prioritization Efficiency. The columns from left
to right are the number of injected failures per run (F), expl
ration strategy (STR), combinations/experiments (EXdlgd

experiments (FAIL), and bugs found (BUGS). BF and PR stands

for brute-force and prioritization respectively. Note thae ¢ -hecks to be written in smaller lines of code. We want

bug counts are only due to two and three failures and depend, hote that the number of specifications we have writ-

on the filter (i.e., there are more bugs than shown).Bugs in ey 50 far only represents six recovery protocols; there

three-failure experiments are the same as in two-failureson are more that can be specified. As time progresses, we

(*") This high number is due to a design bug; we used triagingpejieve the simplicity offered by BsTini will open the

to help us classify the bugs (not shown). possibility of having hundreds of specifications along
with more recovery specification patterns.

sands of experiments failed (probably only due to tens of l.TObslhct)W k:ﬁw ourtstyle of writing s;;guﬂcatm(;ni 'T ap-
bugs). This was an overwhelming situation which forty- P'¢aDle 10 other systems, we present in more detall some

nately unfolded into a good outcome: new strategies fOPpeC|f|cat|ons we wrote for ZooKeeper and Cassandra.

multiple-failure prioritization.
To evaluate our strategies, we first focused only on twd®-4.1  ZooKeeper

protocols (write and append) because we need to COMp/e have integrated our framework to ZooKeep]]

pare the brute-force with the prioritization results. More We picked two reported bugs in the version we analyzed.
specifically, for each method, we count the number OfLet’s say three nodes N1, N2, and N3, participate in a
combinations and the number of distinct bugs. Our hopg, . yer election anii(N1) < id(N2) < id(N3). If N3

is that the latter is the same for brute-force and prior-¢ 5qheg at any point n this process, the expected behavior
itization. Table5 shows the result of running the two o have N1 and N2 form a 2-quorum. However, there is

WO.I‘|(|0ad.S W'th two and three fa|I_ures perrun, and W_'th a bug that does not anticipate N3 crashing at a particular
3 I|ghn/(\;e|ght f_lILer (crha}sr;_-lonly :lalluresbon df'ik I/O? In point, which causes N1 and N2 to continue nominating
atanodes); without this filter, the number of brute- OrCeN3 in ever-increasing rounds. As a result, the election

experiments is too large to debug. In short, the tabl
shows that our p.r|0r|t|zat|0n strategies reducg the tota vailable. To catch this bug, we wrote an invariant viola-
number of experiments by an order of magnitude, an

¢ . b issing. Acai ion “a node chooses a winner of a round without ensur-
rom our experience no bugs are missing. Again, we Can|'ng that the chosen leader has in itself voted in the round”

not prove that our approach is soun_d; developers COUIge]). The other bug involves multiple failures and can be
fall back to brute-force for more confidence. caught with an addition of just one chea[; we simply
reuse the same relationqteRnd) from the first bug. So
far, we have written 12 rules for ZooKeeper.

rocess never terminates and the cluster never becomes

6.4 Specifications

In the last six months, we have written 74 checks on tog?l: zkBugl (Id, Xid, Zxid, Leader, Round) :-
of 174 rules for a total of 351 lines (65 checks for HDFS, ¥inner (Id, Xid, Zxid, Round, Leader),
2 for ZooKeeper, and 7 for Cassandra). We want to em- ;:z;gozngoggé Xid, Zxid, Round2),
phasize thag; 5 ratio displays how BSTINI empow- NOT-TN voteRnd (Id, Xid, Leader, Zxid, Round);
ers specification reusée€., building more checks on top
of existing rules). As a comparison, the ratio for our first ¢5. ,xBug2 (Peer, Amnesiac, Xid, zxid) :-
check §5.2.1in Table4) is 16:1, but the ratio now is 3:1. voteRnd (Peer, Xid, Peer, Zxid, _),
Table 6 compares BsTINI with other related work. voteRnd (Peer, Xid, Amnesiac, -1, _),

The table highlights that BsTINI allows a large number Zxid != -1;
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6.4.2 Cassandra in Java. The domain-specific parts are 422, 253, and
357 lines for HDFS, ZooKeeper and Cassandra respec-
We have also done the same for Cassan@@, [and  yye\y: the part for HDFS is bigger because HDFS was
picked three reported bugs in the version we analyzed, ,\ frst target. EsTINI's implementation cost comes
In Cass_andra, the. key-value insert protocol allows USerfom the translation mechanis$5(1). The generic part
to specify a consistency level such @, quorum, OF s 506 ines. The domain-specific parts are 732 (more
all, which ensures that the client waits until the key- complete), 23, and 35 lines for HDFS, ZooKeeper, and
value has beer_1 flushed on at Iea_st one, le_f 1’_ or all Neassandra respectivelyatE and DESTINI interpose the
nodes respectively. These are simple specifications, byl oot systems with Aspectd (no modification to the code
again, due to complex implementation, bugs exist an¢,55e) However, it was necessary to slightly modify the
break the rules. For example, at leval, Cassandra systems (less than 100 lines) for two purposes: defer-

cou!d incorrectly return a Success even when only Or"?ing background tasks while the workload is running and
replica has been completed (which can be caught by ru'@ending stable-state commands

f1). FATE is able to reproduce the failure scenarios and
DEsTINI is equipped with 7 checks (in 12 rules) to catch

consistency-level related bugs. 7 Conclusion and Future Work

f1: cassandraBugl (Key, Cnt, CLevel) :-
keyNodeCnt (Key, Cnt), Cnt < repFactor,
keyCLevel (Key, CLevel), CLevel == ’All,
insertComplete (Key, Status), Status == ’0K’;

The scale of cloud systems —in terms of both infrastruc-
ture and workload — makes failure handling an urgent
challenge for system developers. To assist developers in
addressing this challenge, we have presented:fand
DEsTINI as a new framework for cloud recovery testing.
6.5 New Bugs and Old Bugs Reproduced  we believe that developers need bofiTE and DESTINI

We have tested HDFS for over eight months and submitgs a unified framework: recovery specifications require

ted 16 new bugs, out of which, 7 led to design buigs,( a failure service to exercise them, and a failure service
; gs, e ! gn bugs, requires specifications of expected failure handling.
require protocol modifications) and 9 led to implemen- ; o Lo
tation bugs. All have been confirmed by the developers Overall, we have presented five specific contributions:
: . . . e A ready-to-use testing framework that exercises
For Cassandra and ZooKeeper, we just began integrat- : : . .
ing our framework to these systems roughly two months ][n.lljltlpleganureg sysfte_lmatlcally via the use of a new
ago. Recently, we observed some failed experiments, but ailure a st_ra(_:t_|on_( ailure IDS.)' _
since we do not have the chance to debug all of them, we e The first prioritization strategies for exploring mul-
have no new buas to report ' tiple failures in distributed systems, which explore
To further shogw the ppowér of our framework. we ad- distinct recovery behaviors an order of magnitude
dress two challenges: Camfe reproduce all the fail- Elsfter than akbfrute-fc_lrce apprq?cht._ . |
ure scenarios of old bugs? Care®rini facilitate spec- ¢ tionr:IrT(‘)eV\ilgrlanOL;memv%hiscpheglnlgglleosn(je:\?eﬁ) rZrz- to
ifications that catch the bugs? The idea is that before write cle(?;lr andgcong;ciée [ECOVEIY S ecificatiorF])s
proposing our framework for catching unknown bugs, . - ysp e
we wanted to feel confident that it is expressive enough * Design paiterns for writing recovery spe_C|f|cat|ons
to capture known bugs. We went through the 91 HDFS _(e.g, how tp <_:apture facts, bl%"d expectations, Spec-
recovery issuesg@.2) and selected 74 that relate to our 'tfy chgck t|m|ngts, (?.);fpressttdlﬁerer}tfty:aes of \:'Ola'
target workloads§6.1). FATE is able to reproduce all of _I|_cr>]ns, mcc;gpor;’:\ N II eren yp(:s ortal urlfst, etﬁ')'
them; as a proof, we have created 22 filters (155 lines * 'de Iresu Z (i e:jpp yltng ouLDrggnezworK N reed
in Java) to reproduce all the scenarios. Furthermore, we VC\:” € y-udse cloud systems ( » £OOKEEper, an
have written checks that could catch 46 old bugs; since assan rf”‘)' . -
some of the old bugs have been fixed in the version wi Beyond finding problems in existing systems, we be-

analyzed, we introduced artificial bugs to test our speci-'eve such testing is also useful in helping to generate

fications. For ZooKeeper and Cassandra, we have repr(?—ew ideas on how to build robu_st, recoverable. sy_stems.
duced a total of five bugs. Only through further careful testing and analysis will the

next generation of cloud systems meet their demands.

6.6 FATE and DESTINI Complexity 8 Acknowledgments
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