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Abstract
In order to reduce building energy consumption, we

need a global, accurate view of the building. Many
modern buildings have a sensing infrastructure that
can be used to do fine-grained accounting and under-
stand the complex interactions between systems and
spaces. However, through our experience with an active,
campus-wide Building Management System (BMS)
system, we observe that BMSs are not well suited for
this task.

In buildings, there is a fundamental relationship be-
tween systems and spaces. The Integrated Sensor-
Stream Storage System (IS4) captures this relationship
by constructing a resource hierarchy that names mea-
surement instruments relative to their context. This al-
lows us to bring together systems and spaces through
the instruments within them. Furthermore, IS4 keeps
track of changes in the hierarchy over time. It is also de-
signed to simplify data acquisition and exploits the nam-
ing structure for simpler, context-dependent queries. We
have implemented IS4 and are currently using it to mon-
itor Cory Hall at UC Berkeley as well as independent
deployments at Samsung, Intel, and Lawrence Berkeley
National Laboratory.

Categories and Subject Descriptors
E.2 [Data]: Data Storage Representations; D.4.7

[Software]: Operating Systems Organization and De-
sign

General Terms
Design, Implementation, Storage, Metadata
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1 Introduction
Buildings consume 72% of the electricity produced

in the United States [5] and although most mod-
ern buildings are heavily instrumented with sensors,
they perform poorly from an energy-efficiency perspec-
tive [6]. Building management systems (BMS) col-
lect and use the data from building sensor deployments.
However, BMS’s are primarily used to allow building
managers to remotely manage a building and quickly
identify problems, such as a clogged vent or a broken
fan. More sophisticated data analysis is done externally
by exporting the data.

Close examination of the data only takes place when
the building is re-commissioned every few years. Per-
formance is examined and the suggested changes are
implemented. This process is much too slow to react
to changes in the building as they occur, allowing in-
efficiencies to develop and remain for extended peri-
ods. Furthermore, in using an actual campus-wide BMS
system, we found the exported format difficult to deci-
pher. The supervisory control and data acquisition sys-
tem (SCADA) – a sub-system of the BMS that manages
the sensor data – exports the data as hundreds of files,
tagged with their metadata. Moreover, the files are not
self-contained and must be used in conjunction with the
graphical interface in order to interpret them correctly.
This makes it very difficult to construct a global view of
the building.

In buildings, there is a fundamental relationship
between spaces and systems and this relationship is
brought together through the measurement instruments
within them. SCADA attempts to capture this relation-
ship in the file tags that are used, but it fails at cap-
turing all the information through the tags alone. In
this paper, we introduce a data management system for
physical data in buildings that addresses the issues in
current SCADA architectures. Our system – the Inte-
grated Sensor-Stream Storage System (IS4) – captures
this fundamental relationship and provides mechanisms
for querying and managing the data over time.

Our naming scheme naturally fits into a RESTful ar-
chitecture [7]; where names become URIs and queries
are constructed with HTTP methods. IS4 also provides a
publish-subscribe facility to export the data. Our system
captures the relationship between spaces and systems by
combining naming and querying. One can query the re-



source hierarchy as well as the timeseries data. Through
this combination you get the context and location from
the name and the data from device streams.

IS4 is currently used to monitor Cory Hall – 7-story,
10,000 square meter building on the UC Berkeley cam-
pus. The current instance is collecting data from over
3700 live data streams produced by over 50 electrical
meters. Our next deployment will include 150 more data
streams from 50 ACme meters [10] at Lawrence Berke-
ley National Laboratory. It is also being used in external
deployments at Intel and Samsung.

2 Related Work
The individual components of IS4 have all been

addressed in previous work [2, 3]. IS4’s combina-
tion of certain components is novel for understanding
and managing building energy consumption. Microsoft
SenseWeb provides an integrated sensing and querying
infrastructure for sensor data [11]. Interaction with the
system is through a .NET API where users create ob-
jects that represent sensors. SenseWeb also provides
a staged stream-processing query facility. In contrast,
IS4’s RESTful architecture exposes sensors and their
context through the URI structure; providing a simple
query interface for the sensor data.

Pachube [1] is a web application that collects sensor
data using HTTP and Javascript object notation (JSON).
It also provide facilities that allow you to visualize the
published data. IS4 decouples the visualization facil-
ity from IS4 itself. Allowing application developers to
write applications that use IS4, rather than rely on the
specific web interface.

Pubsubhubbub [8] is a pub-sub system for atom
and RSS feeds. To make sensor feeds available they
must be converted to atom or RSS. Pubsubhubbub de-
fines a distributed architecture for publishers (pubs) and
subscription hubs that feed to published data to sub-
scribers. IS4 provides similar facilities and can be set
up in a distributed fashion. IS4 explicitly manages the
data/metadata relationship through naming and opera-
tional semantics; a resource structure that explicitly ref-
erences components of the building.

3 Motivation
In order to analyze a data stream you need to un-

derstand its context. By context we mean the location
of the measurement instrument that produces the stream
and the type of measurement it is making. In a building
deployment, it is also necessary to know how it relates
to sub-systems in the building. Fundamentally, the rela-
tionship between spaces and systems is brought together
by the instruments within them. For example, the envi-
ronment is maintained by the HVAC system, which is
powered by the electrical system and both may share a
power meter at the location where they are connected.
There is also a thermostat in a room that triggers the
HVAC system. The data streams produced by the power
meter and the thermostat allow us to infer the relation-
ship between the systems and spaces.

In order to obtain the necessary readings, we interpret
the metadata for the streams of interest, make associa-
tions between them, and extract only the streams that are
related before we do any analysis. In SCADA the asso-
ciation task is unsystematic. In this section, we describe
how the data and metadata are organized in SCADA and
problems with its exportation. We present a system-
atic approach for making and tracking associations over
time.

3.1 SCADA data management
SCADA systems tag exported data files with the lo-

cation of the instrument that produced the data, the sys-
tem to which it is connected, and the measurement type.
Figure 1 shows how the tag is typically constructed. The
prefix characters reference the building, the integer fol-
lowing refers to the system using its identifier, the next
few characters reference the room, and the final char-
acters reference the measurement type. To attain more
information about the device, the user interacts with the
graphical interface, locates the sensor through a series of
clicks, and finds the associated metadata. The user may
also view the data over a given time interval and have it
displayed as a graph.

Figure 1. SCADA data tag example and
data/metadata reference structure. The struc-
ture must be well known before the data can be
properly interpreted.

Querying the data from outside the SCADA sys-
tem requires that you 1) export the data, 2) learn the
data/metadata reference structure, 3) design a schema
based on the reference structure, and finally 4) import
the data into a database. In these systems, there is
a loose coupling between the data and the metadata.
However, because of their relationship, we argue that
they should be kept more systematically interdependent.
Changes in the building structure (or deployment) must
be reflected in the SCADA system to maintain the in-
tegrity of the interpretation of the data. However, since
this is not done systematically, changes are difficult to
keep track of and detailed data analysis loses integrity
over time.

3.2 Tracking evolution
It is not uncommon for the structure of the building

to deviate from its original design. Not only are there
difference between design and implementation – due to
unanticipated issues at design time – but over time, the
building may serve different purposes. The electrical
engineering building on our campus was built over 50



years ago. Since then, it has gone through multiple dra-
matic changes. Two extra floors have been added, one
as mezzanine between floors, and one as a new floor at
the top of the building. These changes forced the en-
gineers to re-organize the electric load tree and a new
HVAC system was installed along with the old one.

Besides structural changes, measurement instru-
ments and system labels change as well. For exam-
ple, if an electrical panel is moved from one location
to another, the label on the panel is changed. This is
often missed and it must be noted by the building man-
ager. Measurement and actuation instruments may be
removed, replaced, or added and must be re-associated
with their new context. Again, this is generally noted by
the building manager. In addition, small changes occur
several times a week. Set-points are changed, sched-
ules are changed, and all of it affects the behavior of the
building and its energy consumption. If these changes
are not properly tracked and analyzed, operational inef-
ficiencies will be introduced.

3.3 SCADA design issues
Based on our assessment of the SCADA system used

in the buildings on our campus we see various problems
that need to be addressed in future system designs:

1. Data and metadata are distributed across the
file content, file names, and the user inter-
face. This makes it very difficult to interpret the
data without detailed knowledge of the particular
SCADA instance and building it was designed for.

2. Changes in the building require updating the
user interface and the reference structure be-
tween the data and the metadata. Systematic
tracking of data/metadata changes and association
are necessary to ease overall management.

3. Changes are not systematically recorded. With-
out systematic record keeping, its is easy to lose
track of the context of the data that was collected.

In the remaining sections we discuss our
data/metadata naming scheme and describe several
mechanisms for querying the collected data, querying
across measurement points, finding interdependencies
between systems in the building, and keeping track of
changes over time.

4 IS4 System Design
IS4 has a web-services architecture and follows the

principals behind RESTful services. The exchange for-
mat is JSON. IS4 provides references to resources that
represent physical and logical entities and offers a his-
torical and streaming query interface.

In this section we introduce the naming convention
for the contextual information in the building. We show
the hierarchical decomposition of spaces, the electrical
load tree, and both sides of the Humidity Ventilation
and Air Conditioning (HVAC) system (wet and dry).
We also show how devices are named using this con-

vention. We introduce join-points – devices named in
multiple namespaces – and show how they are used to
infer relationships between systems and spaces. Finally,
we describe the query facility and show how the hier-
archical organization of the metadata, join-points, and
sensor data is used to understand complex processes in
the building.

4.1 Namespaces
IS4 defines various resource types and rules for

their hierarchical composition. The arrangement of
resources in the hierarchy are named with a URI.
Each resource hierarchy is organized with the build-
ing at the root. The children of the /is4/<building>
resource are the divided into spaces, the load tree,
and the HVAC system. 1 All the children of
/is4/<building> refer to different things within the
building. For example, /is4/<building>/spaces,
/is4/<building>/lt, and /is4/<building>/hvac
refer to the spaces, the electrical load tree, and the
HVAC system, respectively. Each hierarchical names-
pace is treated as its own tree. We refer to them as trees
and sub-trees hereafter. The HVAC namespace is di-
vided into two sub-trees – HVAC wet, which is com-
posed of references to the side of the HVAC system that
moves water or steam around the building, and HVAC
dry which moves air around the building.

At the leaves of each sub-tree are devices and their
data streams. The same device may be referenced
by multiple sub-trees, therefore the leaves become the
point of intersection between sub-systems. Resource
nodes that refer to space/system entities also contain
a /devices child, whose children are the devices at-
tached to that space/system. In IS4, we call a data
stream a publisher and the children of a device are
resource nodes that refer to a particular publisher of
that device. The name of a publisher is constructed as
.../devices/<device>/<publisher>.

Each namespace sub-tree can only contain a device-
instance once. This ensures that each device has a
unique name in that namespace. However, devices may
be referred to across namespaces. This allows it to be
named according to any context it belongs to and to
draw links across namespaces. Given these links, we
query and infer relationships between namespaces.

4.1.1 Physical spaces
The hierarchy of spaces in a building is partitioned

by /<floor> or /<suite>. The children of either
is /<area> or /<room>. Both contain the devices
resources. The /<room> resource node may have
/<area>-type children, but not vice-versa. Suites are
like floors, except floors can contain more than one
suite. Both suites and floors have one or more rooms.
This hierarchy is derived from a web application that

1In the text we differentiate between explicit resource node
names and names that are set by the user by include < and >
on either end of the resource node that can be named by the
user. The name in between refers to the resource node’s type.



manages spaces called EveryBuilding [9]. Figure 2
demonstrates and example.

Figure 2. Spatial resource hierarchy.

4.1.2 The electrical load tree
The electrical load tree is the structure within a build-

ing that carries electricity to all electrical devices. It also
powers the components that are part of the HVAC sys-
tem and all plug loads throughout the building. Each
resource node in the load tree namespace is called an el-
ement. In order to keep the resource hierarchy simple,
we only have two types of resource nodes: a panel and a
load. Panels have other panels as children. A panel may
contain devices. A load may also contain devices, but a
load has no other children. Figure 3 shows an example
of the electrical load tree URI.

Figure 3. Eletric load tree resource hierarchy.

4.1.3 HVAC wet
The HVAC system controls the environment directly

by moving air and controlling temperature through-
out the building. Part of the system uses water (or
steam) and contains various measurement/actuation in-
struments. We define the elements under /hvac wet.
The elements include a CT (cooling tower), pump, and
a Chiller. Although it is not connected hierarchically,
the HVAC system is set up in discernable stages that de-
compose naturally into a hierarchy when partitioned into
two pieces. One piece represents the source side of an
element and the other represents the return side of the
element. Each physical element is represented by two
resources. For example the cooling tower is represented
by CT source and CT return.

Similar to the other namespace hierarchies, devices
can be contained within each element. Figure 4 shows
an example of the hvac wet namespace.

Figure 4. HVAC wet resource hierarchy.

4.1.4 HVAC dry
Another part of the HVAC system controls the move-

ment, temperature, filtering, and mixing of air through-
out the building. This sub-system is also instrumented
with measurement/actuation devices. The setup is ex-
actly like the hvac wet side except with dry-side ele-
ments. The dry elements include AHU (air handling unit),
fan, heater, and AC. Instead of source and return, we
use the supply and exhaust. Figure 5 show an example
of the hvac dry resource URI.

Figure 5. HVAC dry resource hierarchy.

4.1.5 Resource properties
Since IS4 has a RESTful architecture, the resources

themselves respond to standard HTTP requests. As
such, not only do you POST your data to a publisher re-
source or query it with a GET request that may include
some parameters, you may also post the associated prop-
erties of the resource depending on its type. For exam-
ple, a panel element in the electric load tree has contains
voltage, ampage, and phase properties. You may query
against these properties as well as the data streams col-
lected from publishers. In the next section we describe
some query features and how they can be used to dis-
cover interdependencies.

4.2 Join-points
Resources are virtual references to physical entities

in the building. By managing each sub-tree as a stan-
dalone tree we acknowledge that namespaces are inde-
pendent. However, we want to uncover their relation-
ships. As mentioned in section 4.1, every device must
be unique to its sub-tree. However, more than one sub-
tree may refer to the same device. When two or more
sub-trees reference the same device, we refer to that de-
vice as a join-point. Join-points are used to explicitly
identify places where systems/spaces have a direct rela-
tionship. Figure 8 shows how join-points logically link
our namespaces.

Join-points also allow us to reason the relationship
between join-points and their neighboring measurement
instruments. This is important for understanding com-
plex inter-relationships through sensor data across de-
vices in a similar contextual setting. Next we describe
the query facility and show how the combination of join-
points, temporal, and structural queries makes it easier
to deduce inter-dependencies among physical entities.

4.3 Query interface
IS4 provides multiple query modalities for querying

the attributes of resource nodes, querying the structure
of the namespaces, and querying the data collected from
the measurement devices. It also offers a query facility



Figure 6. Join-points are devices at the leaves of at
least two sub-trees in our namespaces. These points
of intersection are important for identifying the rela-
tionship between systems and/or spaces in the build-
ing.

that lets your query the hierarchical structure over time
similar to the work in [4, 12]. Figure 7 shows an exam-
ple of this kind of query. Notice how the hierarchical
structure is used to identify the devices of interest and
their associated data streams. The ability to query the
namespace structure is useful for drawing direct com-
parisons.

4.3.1 State discovery queries – an example

Figure 7. Queries traverse the resource sub-trees as-
sociated with each building. This figure shows how
the timeseries data for each device at the building-
space room level are extracted for cross-correlation.

Not all spaces in the building serve the same pur-
pose. Some house people while others contain machine
or equipment. Usually this means their environments
are maintained independently. Problems arise when this
assumption does not hold and they are usually difficult
to detect. For example, someone may leave a door open

between independent spaces or a wall may have been
removed without accounting for their independence. An
example of independent spaces are a computer machine
room and an office. The computer machine room is
maintained at a lower temperature that the office.

Today, this is detected when someone complains
about the temperature. The building manager checks he
SCADA interface and walks around until he/she finds
that the problem; perhaps a door left open. With IS4 you
could write a script that queries the data streams of all
the rooms in that area and correlates their readings over
time. This is done by running a cousins query for all
the cousin-nodes of the join-points between the spaces
and the system. The cousin nodes in the hierarchy of the
join-point might be relevant since they are either in the
same location or on the same sub-system in the building.
The data from devices in with similar or related context
might reveal an important underlying relationship.

Figure 7 shows how the query would be constructed
for a device called dev. The results returned from IS4
would contain all the data points for publishers as-
sociated with the cousin-devices of dev. The cross-
correlation function is not a component currently in IS4,
however data returned from the query could either be
fed to an external processing component or a computa-
tion resource.

4.3.2 Snapshots
Like source control, we keep timestamped version

of the resource hierarchy. Whenever changes are made
to the resources, such as adding/removing a device or
a publisher, creating/remove a resource node, etc, we
timestamps the entire tree and save it. Their associate
data is also serialized, timestamped, and saved. This is
useful for running timeseries queries with respect to the
right contextual information. This keeps the integrity of
data interpretation intact.

Figure 8. Snapshots are taken each time there are
changes made to the resource hierarchy. Changes oc-
cur when devices are remove/added or the structure
of building itself changes and that change is inputed
into IS4.

5 Comparison with other systems
IS4 makes several contributions in the space of build-

ing data and metadata management:

1. Naming of measurement instruments, buildings,
systems, and spaces and capturing their relation-
ship by composition.



2. Type-semantics for the resource types and their
construction.

3. Binding of measurement instruments and their con-
text and tracking their relationship over time.

These contributions address the issues in current
building management systems. The data is combined
in a resource-oriented architecture, where the resources
maintain resource-type specific metadata information
and the resource name is constructed following system-
atic construction rules. This makes is easy to fetch and
update the information associated with the data, instru-
ments, functions, and context. Changes in the building
only require an update to the name in IS4 that refers
thing that changed and snapshots allow you to track
these changes as they occur.

O MM RS S Query
H RT G

Relational DB + + - - + - -
Pachube + + - - + - -

Pubsubhubbub + + - - - - -
SCADA - + + - - - -

IS4 + + + + + + +

Table 1. IS4 offers all the necessary features to
address the issues in current systems that monitor
building deployments: Open (O) architecture, meta-
data management (MM), resource semantics (RS),
metadata and resource snapshots (S), historical (H),
real time (RT), and graphical (G) query capabilities.

Table 1 compares IS4 with similar systems. We com-
pared these system across various features, including an
open architecture, metadata management, resource se-
mantics, deployment snapshots, and querying facilities.
Most of the other systems were not made specifically for
managing building data, but could have been potentially
tailored to serve that purpose. However, we found that a
re-design was necessary, as the combination of features
and capabilities contained in IS4 were necessary to ad-
dress the data management issues in this space.

6 Lessons Learned
In buildings, understanding the relationship between

systems and spaces is crucial for reducing energy con-
sumption. Activities within spaces directly affects the
energy consumed by the HVAC and electricity sys-
tems supporting them. Through our experience with
a campus-wide BMS, we observed that their relation-
ship can captured through the measurement instruments
within them. We also learned that no current system
captures this relationship effectively.

IS4 brings together systems and spaces through a
combination of naming and querying. We name sys-
tems, spaces, and devices hierarchically. The name itself
describes the relationship between building entities and
the placement of devices. The element properties de-
scribes the entities themselves and the data shows its be-
havior. By querying the naming structure and the data,

we naturally combine the physical structure and behav-
ior of the system over time.

A RESTful architecture naturally falls from our nam-
ing and querying scheme. Resources fit into a URI struc-
ture and HTTP methods provide the calls to those re-
sources. We are currently using our system in Cory Hall
at UC Berkeley, as well as external deployments done
by Samsung, Intel, Electricite de France, and Lawrence
Berkeley National Laboratory. These will serve as
useful instances for which to test the effectiveness of
data/metadata management approach. For future work
we will quantify the performance of IS4 and address the
open security questions left unanswered in the current
release.
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