
Interactive Simulation of Surgical Needle Insertion and

Steering

Nuttapong Chentanez

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-129

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-129.html

October 5, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

We thank members of the Berkeley Graphics Group and the Automation
Lab for their helpful comments. We thank Allison Okamura, Noah Cowan,
Robert Webster III, Landon Unninayar, and Vinutha Kallem at Johns
Hopkins for the tissue phantom video, Judy Hoffman for marker tracking
code, James Demmel and Samuel Webb Williams for discussions about
sparse matrix solvers, Vincent Duindam of Intuitive Surgical and Jean
Pouliot, I-Chow Joe Hsu, and Adam Cunha of UCSF for advice on prostate
treatment. This work was supported in part by California MICRO 08-077,
NSF Award CCF-0635381, NIH Award 1R01EB-006435-01A1, the UC Lab
Fees Research Program, and by support from NVIDIA, Pixar, Autodesk,
Intel, and Sony.

Interactive Simulation of Surgical Needle Insertion and Steering

by

Nuttapong Chentanez

B.S. (University of Michigan) 2005
M.S. (University of California, Berkeley) 2007

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

2

Committee in charge:
Professor James F. O’Brien, Chair

Professor Ken Goldberg
Professor Jonathan Shewchuk

Professor Sara McMains

Fall 2010

The dissertation of Nuttapong Chentanez is approved:

Chair Date

Date

Date

Date

University of California, Berkeley

Fall 2010

Interactive Simulation of Surgical Needle Insertion and Steering

Copyright 2010

by

Nuttapong Chentanez

1

Abstract

Interactive Simulation of Surgical Needle Insertion and Steering

by

Nuttapong Chentanez

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor James F. O’Brien, Chair

We present algorithms for simulating and visualizing the insertion and steering of needles through

deformable tissues for surgical training and planning. Needle insertion is an essential component of

many clinical procedures such as biopsies, injections, neurosurgery, and brachytherapy cancer treat-

ment. The success of these procedures depends on accurate guidance of the needle tip to a clinical

target while avoiding vital tissues. Needle insertion deforms body tissues, making accurate place-

ment difficult. Our interactive needle insertion simulator models the coupling between a flexible

needle and deformable tissue. We introduce (1) a novel algorithm for local remeshing that quickly

enforces the conformity of a tetrahedral mesh to a curvilinear needle path, enabling accurate com-

putation of contact forces, (2) an efficient method for coupling a 3D finite element simulation with a

1D inextensible rod with stick-slip friction, and (3) optimizations that reduce the computation time

for physically based simulations. We can realistically and interactively simulate needle insertion

into a prostate mesh of 13,375 tetrahedra and 2,763 vertices at a 25 Hz frame rate on an 8-core 3.0

GHz Intel Xeon PC. The simulation models prostate brachytherapy with needles of varying stiff-

ness, steering needles around obstacles, and supports motion planning for robotic needle insertion.

We evaluate the accuracy of the simulation by comparing against real-world experiments in which

flexible, steerable needles were inserted into gel tissue phantoms.

2

Professor James F. O’Brien
Dissertation Committee Chair

i

To my family and close friends,

for all your support throughout my years as a student.

ii

Contents

1 Introduction 1

2 Background 5
2.1 Tissue Constitutive Model and Discretization . 5
2.2 Needle Constitutive Model and Discretization . 9
2.3 Time Integration . 11
2.4 Mesh Generation . 11

3 Previous Work 14
3.1 Elastic Solid Simulation . 14
3.2 Elastic Rod Simulation . 16
3.3 Needle Insertion Simulation . 16
3.4 Forces During Needle Insertion . 17
3.5 Remeshing . 18

4 Simulation Overview 19
4.1 Simulation Mesh . 19
4.2 Simulation Step . 20
4.3 Implicit Newmark Time Integration . 21

5 Tissue Force Computation 23
5.1 Deformation Gradient . 23
5.2 First Piola–Kirchhoff Stress . 23
5.3 Rotation-Invariant and Isotropic Constitutive Model 24
5.4 Damping Force . 25
5.5 Jacobian Computation . 25

6 Needle Force Computation 26
6.1 Energies of an Elastic Rod . 26

6.1.1 Potential Energy . 26
6.1.2 Dissipation Energy . 29

6.2 Discrete Energies . 30
6.2.1 Discrete Potential Energy . 30

iii

6.2.2 Discrete Dissipation Energy . 32
6.3 Force and Jacobian Computation . 32

7 Forces Between Tissue and Needle 33
7.1 Static and Dynamic Friction . 33
7.2 Viscous Friction . 35
7.3 Cutting Force and Capsule Puncture Effect . 37
7.4 Normal Force . 38

8 Tissue-Needle Coupling and Cutting 39
8.1 Friction States . 39
8.2 Coupled Linear System . 40
8.3 Solving the Coupled Linear System . 41
8.4 Linear Complementarity Problem (LCP) Formulation 42
8.5 Coupled system derivations . 43

8.5.1 All Static Friction Case . 43
8.5.2 General Case . 44

9 Remeshing and Reparameterization 46
9.1 Needle Tip Remeshing . 46

9.1.1 Tip Remeshing Algorithm . 47
9.1.2 Tip Remeshing Algorithm Analysis . 52

9.2 Needle Reparameterization . 52
9.2.1 Needle Node Splitting and Merging . 54

10 Bevel tip and Base Manipulation 56
10.1 An Extension to Handle a Bevel Tip Needle . 56
10.2 Needle Manipulations . 57

11 Optimizations 59
11.1 Accelerating the LCP Solver . 59
11.2 Parallel Sparse Conjugate Gradients . 60
11.3 Dynamic Update of Sparse Matrix . 61
11.4 Parallel Incremental Jacobian Update . 62

12 Results and Discussion 64
12.1 Examples . 64

12.1.1 Prostate Brachytherapy . 64
12.1.2 Obstacle Avoidance . 65
12.1.3 Evaluation . 65
12.1.4 Running Time . 66

12.2 Applications . 67
12.2.1 Feedback Control for Steerable Needles on Helical Paths in 3D Deformable

Tissue . 67
12.2.2 Guiding Medical Needles with Single-Point Tissue Manipulation 68

12.3 Future Work . 69

iv

Bibliography 83

v

Acknowledgments

I would like to first thanks my advisor Prof. James O’Brien for guiding me through my graduate

study, giving constructive comments to my poor presentation early in my study, reading and improv-

ing my rough drafts of papers, teaching me good taste in graphics, encouraging me when things did

not go as planned, pushing me when things needed to be done quickly and letting me explore freely

during the initial phase of research. I would like to also thanks Prof. Jonathan Shewchuk for giving

me excellent suggestions about research, teaching two of the best classes I’ve ever taken in com-

putational geometry and mesh generation, helping me revise and sometimes rewrite several of my

papers which made them shine an order of magnitude more. I would like to thanks Prof. Ken Gold-

berg for introducing me to the needle steering project and the follow–up works, giving me great

suggestions about how to improve my presentations and papers, and being an impeccable example

of how to manage a research group with lots of students working on many projects. I would like

to also thanks Prof. Sara McMains for teaching me GPGPU programming, giving me great advice

about searching the literature, asking me great questions during my talks and for reviewing drafts

of my thesis.

I would like to also thanks all of my fellow students co-authors: Bryan Feldman, Tolga Goktekin,

Bryan Klingner, Ron Alterovitz, Kris Hauser, Daniel Ritchie, Lita Cho and François Labelle for

their ideas, help, support, suggestions, and criticisms throughout all the research I got involved in. I

would like to also thank many graduate and undergraduate students in the Berkeley Graphics Group

and the Automation Group for their help and their great friendships during my years at Berkeley.

Notably, Bryan Feldman for giving me great advice during my first two years at Berkeley, Tolga

Goktekin for his kind help many times during my internship at Pixar, Pushkar Joshi for welcoming

me to Berkeley and for his help and suggestions many times throughout the years.

Finally, I would like to thank my parents, my fiancée, my brother, my grandmother and all my close

friends for their love and support during my years of studying abroad. Their encouragement helps

bring me up when things are rough in my life throughout my study.

1

Chapter 1

Introduction

Needle insertion is an essential component of many clinical procedures such as biopsies, injections,

neurosurgery, and brachytherapy cancer treatment [1]. The success of these procedures depends on

how closely the needle tip is maneuvered to the target. It is crucial that the needle avoid bone, critical

structures, and organs [34]. Unfortunately, needle insertion deforms body tissues enough that poor

accuracy is the norm in practice. For example, experienced physicians inserting radioactive seeds

into the prostate gland for brachytherapy prostate cancer treatment experience average placement

errors of 6.3 mm, about 15% of the prostate’s diameter [63].

Computer simulations of needle insertion procedures enable physicians and other clinicians to train

in a controlled environment that exposes them to both common and rare patient cases without risks

to patient safety. Studies indicate that surgical skills learned using computational simulators directly

improve operating room performance by significantly decreasing procedure time and reducing the

frequency of medical errors by up to sixfold compared to traditional training [56, 55, 24]. Surgical

simulations also have uses for pre-operative planning [4, 64].

We present a new simulator that models tissue deformation, needle elasticity, and their interaction.

It allows us to realistically simulate the deflections that occur as thin needles travel through inho-

mogeneous tissues. A motivation for modeling needle elasticity is a new class of flexible, steerable

needles recently developed in collaboration between Prof. Ken Goldberg’s group at University of

California at Berkeley and Prof. Allison Okamura’s group at Johns Hopkins University [74, 72].

These bevel-tip steerable needles have a flexible shaft that curves as it penetrates soft tissue, due

2

Figure 1.1: a) Trajectory of various bevel tip needles with different radii of curvature. b) A
schematic view of the bevel tip. c) The needle can be steered by rotating its base. d) Needle
trajectory with 180-degree base rotation in the middle. (Copyright Johns Hopkins University, 2005)

to asymmetric forces exerted at the needle’s bevel tip. By twisting the needle as it is inserted, a

physician can steer its tip around obstacles to reach clinical targets in soft tissues [5, 7], see Figure

1.1. It is not easy to learn how to control steerable needles, and realistic training simulations will

accelerate their deployment in clinical practice.

Several impediments make it difficult to simulate the interaction between a needle and soft tissues:

a static spatial discretization (e.g. a fixed finite element mesh) does not easily support the accurate

computation of contact forces and needle steering; the mismatch between needle stiffness and tissue

stiffness hinders numerical stability; and for training applications, the simulation must run at inter-

active rates. To address these challenges, I introduce (1) a novel algorithm for local remeshing, (2)

an efficient algorithm for coupling a 3D finite element simulation and a 1D elastic rod simulation

with stick-slip friction, and (3) several generally applicable optimizations for reducing computa-

tion time for physically based simulations. The algorithm is published in the proceedings of ACM

SIGGRAPH 2009 [15].

Our remeshing algorithm efficiently relocates and creates nodes so that they lie along a curvilinear

needle path in a volumetric mesh, enabling the simulation to apply cutting and frictional forces along

3

the needle shaft at mesh nodes while maintaining a high-quality tetrahedral mesh for computing tis-

sue deformations. Our optimizations include accelerating the solution of the linear complementarity

problem for node friction states, using a parallel conjugate gradient method on sparse matrices, ef-

ficiently updating the stiffness matrix structure in response to remeshing, and using a parallel lazy

update of Jacobian matrices for tetrahedral elements.

Together, these algorithms and enhancements enable us to realistically simulate needle insertion in

the prostate at interactive frame rates. We achieve frame rates of 25 Hz on an 8-core 3.0 GHz Intel

Xeon PC for a prostate mesh of 13,375 tetrahedra and 2,763 vertices. We use realistic material prop-

erties for human tissue, making it more challenging than the more compliant materials for which

real-time performance is usually reported. We present simulations of prostate brachytherapy with

needles of different stiffness, simulations of needles steered around obstacles, and two applications

to motion planning for robotic needle insertion. Throughout our trials, our remeshing procedure

consistently maintained high mesh quality. We evaluate the accuracy of the simulator using data

extracted from real-world experiments in which flexible, steerable needles were inserted into gel

tissue phantoms. The simulated and real-world deformations are qualitatively and quantitatively

similar.

4

Figure 1.2: Screenshots from our prostate brachytherapy simulator. A needle is inserted from
the left through the epidermis and dermis into the prostate gland. a) Bevel-tip flexible needle. b)
Symmetric-tip stiff needle.

5

Chapter 2

Background

In this chapter, we first provide the background on tissue and needle continuum models as well

as their discretizations. Then we introduce a time integration method for numerically evolving the

discrete representations over time. Finally, we discuss how we obtain a volume discretization of the

tissue from a given surface representation.

2.1 Tissue Constitutive Model and Discretization

Tissue can be modeled as an elastic solid, which is characterized by a time-dependent function

φ : Ω ⊂ �3 → �3, where Ω is a closed set representing the region in space occupied by the

undeformed tissue. φ maps a point u ∈ �3 representing undeformed material coordinates to a point

x ∈ �3 representing deformed world coordinates as illustrated in Figure 2.1. The internal force in

an elastic solid is fully characterized by stress. Stress is a measure of force density on a surface,

which is the force divided by the area of the surface. Cauchy stress σ is defined by a 3× 3 tensor:

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 (2.1)

as illustrated in Figure 2.2a. We can then compute the traction, t = σn, which is the force per unit

area over an arbitrary oriented infinitesimal surface patch with the unit normal n, shown in Figure

2.2b.

6

World SpaceMaterial Space

u φ(u)
x

Ω

Figure 2.1: The undeformed elastic solid occupies the space Ω ⊂ �3. Any deformation of the solid
can be described by a time-dependent mapping φ, which maps a point u in the material space to
point x in the world space.

Figure 2.2: a) Components of the Cauchy stress tensor σ at a given point. b) Traction t at a given
point depends on σ and the normal vector n.

7

Ωi

xi

Figure 2.3: Discretization of a 2D tissue into a triangle mesh. The position of node i is xi. Its FVM
integration region Ωi, shown in grey, is bounded by the lines connecting the midpoints of the edges
around node i to the midpoints of the triangles around node i.

The stress of an elastic solid at a given point is determined by three components: the deformation

gradient ∂φ
∂u , the tissue material properties and the constitutive model at that point. More commonly,

stress is expressed in terms of strain �, which can also easily be computed from the deformation

gradient. As Chapter 5 discusses, we compute the stress directly from the deformation gradient, for

efficiency and robustness.

For ease of exposition, we use 2D as an example of the derivation of the governing equations of

the elastic solid discretized by a Finite Volume Method (FVM) [37], following Terran et al. [65].

Extension to 3D is straightforward and is discussed later on. The elastic solid occupies a domain

Ω ⊂ �2. We discretize Ω into a triangle mesh consisting of nodes and triangles. Each node i is

surrounded by a region Ωi as shown in Figure 2.3. The mass of the node i is

mi =

�

Ωi

ρ dx (2.2)

where ρ is the density of the solid. The total force on this region is

d

dt

�

Ωi

ρv dx = Fi =

�

∂Ωi

t dS =

�

∂Ωi

σn dS (2.3)

where dS is an infinitesimal line on ∂Ωi.

The first identity states that the time derivative of momentum equals force. The second identity

follows from Gauss’s theorem. The last identity follows from t = σn.

8

The integral can be evaluated by summing up the contributions from the surrounding triangles.

Figure 2.4a shows one of the triangles, its two edges ∂T1 and ∂T2 and the two edges of ∂Ωi inside

the triangle, labeled ∂Ω1 and ∂Ω2. As will be clear in Chapter 5, using the first-order FVM to

discretize the domain Ω assigns a constant stress, σ, inside each triangle. Because σ is constant

and the integral of the unit normal over any closed boundary is zero (following from the divergence

theorem), we have
�

∂Ω1

σn dS +

�

∂Ω2

σn dS +

�

∂T1

σn dS +

�

∂T2

σn dS = 0, (2.4)
�

∂Ω1

σn dS +

�

∂Ω2

σn dS = −
�

∂T1

σn dS −
�

∂T2

σn dS. (2.5)

Therefore, we evaluate the integral of σn over ∂Ω1 and ∂Ω2 by instead evaluating along ∂T1 and

∂T2. The equations also show that the integral over any smooth path inside the triangle such as

the one shown in Figure 2.4b would yield an identical result, given that the path connects the same

pair of points on the two triangle edges, e1 and e2, incident on xi. Choosing an arbitrary path that

connects the mid-points of e1 and e2, the integral becomes simply −σn
e1
2 +−σn

e2
2 , where n1 and

n2 are the normal vectors of the edges e1 and e2 respectively. Hence, the force contribution on node

i from this triangle can be updated as

Fi+= Fi −
1

2
σ(|e1|n1 + |e2|n2), (2.6)

where |e1| and |e2| are the lengths of the edges, e1 and e2 respectively.

We extend the result to 3D space by replacing the line integral with the surface integral and replacing

the area integral with the volume integral. For each tetrahedron, three faces contribute one-third of

their force to a given node, hence we update the force on node xi with

Fi+= Fi −
1

3
σ(a1n1 + a2n2 + a3n3) (2.7)

where the ai and the ni are the area and the normal vector of the faces of a given tetrahedron incident

to node i.

One could use Equation 2.7 in computing the tissue force on each node by first computing σ inside

each tetrahedron. However, in practice we can rewrite Equation 2.7 in terms of a different stress

measure, which permits a significant amount of precomputation that can improve the performance

greatly. The precomputation is discussed in more detail in Chapter 5. The damping of the material’s

vibration over time will also be discussed there. External force can be added to each node to model

the tissue interaction with the outside world.

9

xi xi

n1

n2

e1 e2∂T1 ∂T2

∂Ω1 ∂Ω2

a) b)

Figure 2.4: a) A subset of region Ωi inside a triangle. b) The integral of the normal along any
arbitrary path connecting the midpoints of the two edges is the same regardless of the path.

2.2 Needle Constitutive Model and Discretization

We model the needle as a one-dimensional elastic rod, described by a curve Γ in 3D space. Let x(s),

v(s), and a(s) ∈ �3 be the position, velocity and acceleration along the curve Γ parameterized by

arclength. We will describe the dynamic of an elastic rod using the energy formulation presented

by Spillmann and Teschner [61]. There are several types of energies associated with a given elastic

rod: T (Γ) is the kinetic energy, which increases as the whole or part of the elastic rod moves faster.

It is given by

T =

�

Γ
ρπr

2
v · v ds (2.8)

where ρ and r are the density and the radius of the rod respectively. E(Γ) is the potential energy,

which consists of bending, stretching and twisting energy. Another important energy is the dissi-

pation energy D(Γ), which models the internal friction and viscoelastic behavior of the rod. The

expressions for E(Γ) and D(Γ) are more complicated than T (Γ) and are discussed in more details

in Chapter 6.

We can view the dynamic of the elastic rod as the conversion between these energies over time.

Mathematically, this process is characterized by a critical point of the Lagrangian L = T −E +D.

Using the calculus of variations, we obtain the equation of motion of an elastic rod,

d

dt

∂T

∂v
− ∂T

∂x
+

∂E

∂x
+

∂D

∂v
= 0. (2.9)

10

... Γ̃

xn−1

x1

x0
x(s)

Γ

Figure 2.5: An elastic rod represented by the curve Γ(s) can be discretized ito a piecewise linear
curve Γ̃, which is fully described by x0 . . .xn−1.

To numerically solve for the dynamic equilibrium, we discretize the elastic rod into piecewise linear

segments as shown in Figure 2.5. Let xi, vi, ai ∈ �3 be the position, the velocity, and the accel-

eration of node i of the elastic rod, respectively, where 0 ≤ i < n. The curve Γ is approximated

as

Γ̃ =
n−2�

i=0

Γ̃i, (2.10)

Γ̃i = {x : ∃t ∈ [0, 1],x = txi + (1− t)xi+1}. (2.11)

We can express the energies in term of these discrete variables through symbolic integration and

compute the appropriate partial derivatives to give

F = Ma, (2.12)

F = −dE(Γ)

dx
− dD(Γ)

dv
, (2.13)

where M is the mass matrix, F is the vector of the internal forces at all the nodes, x and v are the

vectors resulting from concatenating xi and vi respectively. Note that a arises in the expression

for the time derivative of v. To simulate needle interaction with the outside world, we add external

forces such as gravity and friction to the equation.

11

2.3 Time Integration

Once the acceleration of each node is determined, we numerically integrate it forward in time to

obtain the velocity and the position. One of the simplest time integration methods is explicit Euler

integration, which consist of the two equations

v
k+1
i = v

k
i +∆ta

k
i , (2.14)

x
k+1
i = x

k
i +∆tv

k
i , (2.15)

where k is the current time index and ∆t is the size of the time step. For a sufficiently small ∆t,

and sufficiently large damping, one could use explicit Euler integration to advance the simulation

forward from time index k to k + 1. The position and the velocity at time index k + 1 result in a

different internal force and hence a different nodal acceleration. We could then continue the sim-

ulation to time index k + 2, and so on. Unfortunately, for practical values of tissue and needle

material properties and ∆t, the explicit Euler integrator tends to be unstable. Therefore, our simula-

tor uses a more sophisticated time integration technique called implicit Newmark integration, which

is discussed in Section 4.3.

In this formulation, the needle and the tissue are not yet coupled. In general, they exert friction

forces and normal forces on each other. We discuss the role of these forces and how we model them

in Chapter 7.

2.4 Mesh Generation

As discussed in Section 2.1, we discretize the region in 3D space occupied by the tissue into a

tetrahedral mesh. The most common representation of a surface in computer graphics is a polygonal

mesh. Figure 2.6a shows two polygonal meshes that represent a prostate gland and the tissue around

it. Our goal is to generate a tetrahedral mesh whose triangular faces conform to the prostate surface

embedded inside. We first convert each polygonal mesh into a signed distance field using the method

presented by Bærentzen and Aanæs [9]. We pick a convention that the signed distance field is

positive outside the surface, negative inside the surface and zero on the surface. Suppose the signed

distance functions of the exterior surface and the prostate are dE(x) and dP (x) respectively. We

12

can combine the two functions to get

d(x) = max(dE(x),−dP (x)), (2.16)

which is negative inside the region between the exterior and the prostate and positive everywhere

else. Then we generate a tetrahedral mesh using the isosurface stuffing algorithm developed by

Labelle and Shewchuk [36]. Isosurface stuffing takes as input a bounding box and a signed distance

function d(x). It outputs a tetrahedral mesh that represents the region inside the bounding box with

an internal boundary separating the negative and positive regions of d(x), as shown in Figure 2.6b.

The algorithm first overlays a tetrahedral background grid over the bounding box. Then it snaps

some of the nodes that are close to the zero-contour onto the contour. Finally, it splits all tetrahedra

that span both the positive and the negative regions. We further modify the output tetrahedral mesh

by throwing away the tetrahedra whose centers of mass lie outside the exterior surface. The resulting

mesh is shown in Figure 2.6c. The mesh is now ready to be used by our simulator.

We could extend this approach to handle multiple internal organs in a straightforward manner. In

some cases, generating a conforming tetrahedral mesh is not feasible, such as when organs are too

small. We simply then alter the tissue properties of the tetrahedra intersecting the organs based on

the amount of the overlapped volume. A more sophisticated approach based on numerical coarsen-

ing of elastic stress tensor presented by Lily et al.[32] can be employed for this purpose as well.

Other tetrahedral mesh generation techniques such as the advancing front method developed by Ito

et al. [30] could be used to generate the tetrahedral mesh as well. However, they are more difficult

to implement than isosurface stuffing. Another benefit of isosurface stuffing is has a theoretical

guarantee on the quality of the mesh it generates, which is crucial for the stability and accuracy of

the simulation, while other mesh generation algorithms do not.

13

Figure 2.6: Mesh generation. a) Surface triangular meshes representing a male prostate and the
tissue around it. b) Isosurface stuffing generates a two-sided tetrahedral mesh that encloses the
bounding box of the mesh and conforms to the surfaces. Cutaway view is shown to expose the
internal tetrahedra. c) Tetrahedra that are outside the exterior surface are removed. The remaining
tetrahedra are used in our simulator.

14

Chapter 3

Previous Work

This dissertation draws material from several fields to develop the algorithm for simulating the

coupled tissue and needle interaction. In this chapter, we first discuss previous work on elastic

solid and elastic rod simulations, which are the basis of our simulator. Next, we will discuss other

needle insertion simulations. Then we discuss the related work on measuring the tip and the friction

forces during needle penetration and retraction, which are modeled in our simulator. Finally, we

discuss previous work in remeshing, which motivates the development of our needle tip remeshing

algorithm.

3.1 Elastic Solid Simulation

Elasticity theory is used to derive the constitutive model that represents the relationship between

stress and strain in a deformable solid. An excellent introduction to this field can be found in a

textbook by Fung [23]. Terzopoulos’s seminal paper [67] in 1987 introduced deformable body

simulation based on elasticity theory to the computer graphics community. It is based on a Finite

Difference Method (FDM) where the partial differential equation that governs the behavior of an

elastic body is discretized on a regular cubical grid. The Finite Element Method (FEM) [16] was

introduced to computer graphics by Terzopoulos and Fleischer [66] in 1988 and was later extended

to simulate brittle fracture by O’Brien and Hodgins [45]. They discretize the elastic body with a

tetrahedral mesh, which can conform better to an arbitrary domain shape than a cubical grid and

15

can vary in size. They derive the governing equations using a quadratic Green strain, which is

rotation-invariant. However, the simulated material becomes relatively less stiff when subject to

compression compared to when it is undeformed. Therefore, the elements become inverted quite

easily, which can cause the simulation to become unstable, namely the nodes positions and velocities

grow without bound. Muller and Gross [42] use a linear Cauchy strain to derive the governing

equations, which would not become weaker under compression, but is not rotation-invariant and

thus will result in a bulging artifact when the object is rotated. They circumvent the artifact by

using a co-rotational approach [22] where each element is rotated to a reference frame before the

elastic force is computed and the resulting force is rotated back to the original space. Nonetheless,

the method still becomes unstable when an element is inverted during the simulation. Irving et

al. [29] use the linear Finite Volume Method (FVM) to simulate the deformation of an elastic

body, which is shown by Teran et al. [65] to be equivalent to the linear FEM. However, the FVM

has a more intuitive geometric interpretation than the FEM. It can also handle element inversion

robustly by first decomposing the deformation gradient of each tetrahedron with the singular value

decomposition (SVD). If any of the eigenvalues is negative, which implies that the tetrahedron is

inverted, the algorithm makes it positive and negates the corresponding eigenvector. The modified

deformation gradient is then used to compute the elastic force. The modification introduces an

artificial force that acts to uninvert the element. The method can robustly handle large deformations

and can easily be extended to handle anisotropic and nonlinear materials. Therefore, we use it as

the basis of our tissue simulator.

Several open-source surgical simulation toolkits have been developed for soft tissue deformations.

GiPSi [14] can simulate deformable bodies using either FEM or mass-spring models. A more re-

cent framework is the Simulation Open Framework Architecture (SOFA) [3], which can simulate

deformable bodies, rigid bodies, and particle-based fluids. In addition to simulating the tissue de-

formations, a surgery simulator must also model the tool-tissue interactions. FEM with tetrahedral

remeshing was used to simulate soft-tissue cutting by Nienhuys and Stappen [43]. They split the

tetrahedra along the cutting plane and remove the resulting tetrahedra that are badly shaped. Picin-

bono et al. [51] simulates deformable bodies in realtime by using linear elasticity when the tissue

deformation is small and nonlinear elasticity when the deformation is large. Lindlad and Turkiyyah

[38] use the discontinuous basis FEM to handle the cutting of elements, by aligning the discontinu-

ities with the cut plane.

16

3.2 Elastic Rod Simulation

The needle can be modeled as a 1D elastic rod that bends and twists in 3D space. The elastic rod

is governed by Cosserat theory, which is well investigated in the field of nonlinear elasticity. An

excellent introduction to the theory is in the book by Antman [8]. The governing equations of the

elastic rod can be discretized onto line elements with FEM as discussed in detail in the books by

Simo [59] and Cao [52].

In the computer graphics community, Cosserat theory was first introduced by Pai [47], who solves a

Boundary Value Problem (BVP) in each time step. However, the method was very computationally

demanding, and had no guarantee on the running time complexity. A significant improvement has

been made by Bertails et al. [13] to make the simulation run in O(n2) per time step, where n is

the number of nodes, by making several simplifying assumptions. Bertails [12] later sped up the

computation to O(n). Loock and Schömer [39] use length springs, angular springs, and torsional

springs to simulate an elastic rod that resists stretching, bending, and twisting. The static equilibrium

of a rod modeled by joined elements, where each element has position and orientation represented

by a quaternion, is solved by Gregoire et al. [26]. It was later augmented to include dynamics

and solved in O(n) by Spillmann and Teschner [61]. The quarternions and the positions are not

independent and must be constrained in certain degrees of freedom to agree with one another. This

significantly complicates the implicit integration implementation. Bergou et al. [11] compute the

Bishop frame of the curve representing the rod, which is twist-free and represent the torsion of

the rod by storing the angle of the rod twist from the Bishop frame, thus eliminating the use of

quaternion. They assume that the twist wave propagates at an infinite speed through the rod. This

allows the twist to be treated as a static problem and greatly simplifies the computation. Our needle

simulator builds upon both the work of Spillmann and Teschner [61] and Bergou et al. [11].

3.3 Needle Insertion Simulation

Abolhassani et al. [1] survey recent work on needle insertion modeling and simulation. A physically-

based simulation for the insertion of rigid needles into 2D tissue is developed by Alterovitz et al.

[6]. The work uses the FEM to simulate tissue and employs a local mesh modification algorithm to

ensure that the tissue mesh has nodes along the needle shaft. Flexible symmetric-tip needle inser-

17

tion into 2D tissue is considered by DiMaio and Salcudean [20]. They model the tissue as a linear

elastic material and use Cauchy strain to measure the tissue deformation. This generates a constant

stiffness matrix, which allows them to pre-compute the inverse of the matrix and use it to directly

solve for the tissue deformation. They employ a local mesh modification to ensure that the tissue

and the needle share nodes, then modify the inverse of the stiffness matrix accordingly with a simple

rank-one update. Alterovitz et al. [5] simulates the insertion of a non-stiff bevel tip needle into 2D

tissue, where the needle follows a curved path and not resist the tissue deformation.

For 3D tissues, simulations of the insertion of rigid needles have been developed using the mass-

spring model [40] and the non-physically-based chain-mail model [70]. They do not employ mesh

modification; they simply distribute the needle force to the nearby tissue nodes with non-physical

distributions such as a Gaussian distribution. Nienhuys and Stappen [44] use FEM and recursive

refinement of the tissue mesh until the mesh nodes are very close to the needle shaft. The recursive

refinement creates many small tetrahedra, which significantly increase the simulation time. Goksel

et al. [25] simulate 3D rigid needle insertion in linear elastic tissues with local remeshing by node

snapping and face splitting. Their mesh modification algorithm occasionally generates badly shaped

tetrahedra, which adversely affect the robustness of the simulation. Dehghan and Salcudean [19]

extend this method to support nonlinear materials. We know of no prior work that can accurately

simulate the coupled tissue and needle deformation in 3D interactively.

3.4 Forces During Needle Insertion

Several researchers have made measurements of the forces between the tissue and the needle during

a needle insertion into real material. Simone and Okamura [60] propose that three forces play

key roles during a needle insertion, namely, stiffness, friction and cutting forces. They measure

these forces during a needle insertion into a bovine liver and provide model equations for these

forces based on a least-squares fit with the experimental data. They also observe that the cutting

force increases sharply as the needle approaches the membrane of the liver. O’Leary et al. [46]

make further measurements with a similar experimental setup and conclude that the friction force

consists of a Coulomb friction component, which does not depend on velocity, and a viscous friction

component, which increases with the relative velocity of the tissue and the needle. Crouch et al. [17]

optimize several simulation parameters to match the simulation result with their experimental data

18

to determine the coefficient of the viscous friction force. We include these forces in our simulator.

3.5 Remeshing

During simulation, the tissue node that corresponds to the needle tip moves in the material space

when the needle penetrates or retracts. Eventually, the tetrahedra surrounding the tip node become

badly shaped or inverted. To ensure good mesh quality, which is crucial for the robustness of the

simulator, one needs to remesh the tissue. Paloc et al. [49] use Delaunay refinement [57] and a vertex

decimation algorithm for hole filling [54] to handle surgical cutting. However, a node repositioning

operation, which is necessary to make the needle share the tip node with the tissue, is not considered

in their work. Klinger and Shewchuk [33] present an effective local mesh improvement method,

which is successfully used for a dynamic simulation of elastoplastic solids by Wicke et al. [75].

The method could be adapted for remeshing, but it is too expensive for real-time applications.

A local remeshing algorithm that considers node repositions and node additions is presented by

Goksel et al. [25], but preserving the quality of the mesh is not considered in their work. Our new

remeshing algorithm builds on this body of work by using additional remeshing operations (edge

and tetrahedron splitting) and by choosing operations based on mesh quality, not on geometric

heuristics.

Alternatively, different meshes can be tied together by binding constraints without remeshing, as

Sifakis et al. [58] do. However, in real tissues, the deformation gradient around the needle shaft is

discontinuous, with a near-singularity at the needle tip. Therefore, it is essential for accuracy that

our volume mesh conform to the needle, and especially that it have a node at the needle tip. Non-

conforming approaches distribute the needle forces onto nearby nodes, so the largest deformation

does not coincide with the needle and the piecewise constant strains are inaccurate for elements that

intersect the needle. While the bulk tissue behavior would be similar away from the needle, the

needle path would be quite different.

19

Chapter 4

Simulation Overview

We present an overview of our simulator in this chapter. We first describe the requirements of the

tissue and the needle simulation meshes. Then we describe how the simulator preceeds in each time

step. Finally I describe implicit Newmark integration and derive the linear systems that relate forces

to nodal accelerations, which must be computed in each time step.

4.1 Simulation Mesh

We model the tissue elasticity with constitutive equations discretized over a tetrahedral mesh by the

Finite Element Method (FEM). The needle has a small diameter, so we model it as a 1D elastic

rod, following DiMaio and Salcudean [21]. We denote the tetrahedral tissue mesh by T̂ . The

needle is represented by a mesh �T comprising a subset of the edges of T̂ , plus additional edges that

represent the portion of the needle outside the tissue, as Figure 4.1 shows. We dynamically update

the tetrahedral mesh so that it always conforms to the needle, as described in Section 9.1.

Throughout the simulation, we maintain for each node of T̂ both a material position (recording the

geometry of the undeformed mesh) and a world position (recording the deformed mesh). Let uk
i ,

x
k
i , vk

i , aki ∈ R3 denote the material position, world position, velocity, and acceleration of the ith

node at time index k. We omit the node index to refer to a vector of properties for all the nodes. We

omit the time index to refer to the current time. We use carets (̂) to denote tissue properties, and

tildes (̃) for needle properties.

20

Figure 4.1: The needle mesh (red) and tissue mesh (black). The large red nodes and bold red edges
belong to both meshes and couple the two objects.

4.2 Simulation Step

Algorithm 1 summarizes the execution of one simulation step. The simulation step begins by eval-

uating the internal forces and their Jacobians at the mesh nodes of the tissue and the needle. The

Jacobians are used later in the solution step. Our choices of tissue and needle forces will be dis-

cussed in Chapter 5 and 6 respectively.

Algorithm 1 Needle simulation (one time step)
1: Compute tissue forces F̂, needle forces F̃, Jacobians ∂F/∂x and ∂F/∂v for both tissue and

needle (Chapter 5 and 6) and forces between tissue and needle (Chapter 7)

2: Solve the friction states and nodal accelerations that simultaneously satisfy the coupled system

8.1 and the inequalities 8.8, 8.9, and 8.10.

3: Update the positions and velocities of tissue and needle (Section 4.3)

4: if the needle tip is cutting or retracting then
5: Remesh around the tip (Section 9.1)

6: end if
7: Reparameterize the needle (Section 9.2)

21

The next step is to solve for the acceleration of each node in both meshes. Tissue and needle exert

normal forces and various friction forces on each other, as discussed in Chapter 7. We model the

friction along the needle shaft with a stick-slip friction model. Each node shared by the two meshes

is in either a static or dynamic friction state. Static friction implies that the needle and tissue are

moving in lockstep at the node; dynamic friction implies that they are sliding against each other.

These friction states are not known in advance and must be solved for. We discuss how to solve for

them in Chapter 8.

The needle tip also needs special care as it can either retract from the tissue or cut through the

tissue. In these cases, the material coordinates of the needle tip and the corresponding tissue node

move. This can cause tetrahedra near the tip to distort and become badly shaped and unsuitable for

simulation. Hence, we perform local remeshing near the tip node to ensure that we have a good

quality mesh, as discussed in Section 9.1. Finally, the needle dynamic friction nodes can slide

away from the corresponding tissue nodes. To restore the needle and tissue nodes’ conformity, we

reposition the needle nodes to match the tissue nodes and transfer all the physical quantitities by

interpolation, as discussed in Section 9.2.

4.3 Implicit Newmark Time Integration

Our simulator uses Newmark’s method to specify how the velocity and position of a given tissue or

needle node should be updated given the acceleration and Newton’s law of motion, which relates

the internal and the external forces to the nodal accelerations.

Let n be the number of nodes in the (tissue or needle) mesh. We integrate the node positions

x ∈ R3n and velocities v ∈ R3n over time with Newmark’s method,

x
k+1 = x

k +�tv
k +�t

2

��
1

2
− β

�
a
k + βa

k+1

�
, (4.1)

v
k+1 = v

k +�t

�
(1− γ)ak + γa

k+1
�
, (4.2)

where �t is the time step, 0 ≤ β ≤ 0.5, and 0 ≤ γ ≤ 1. (All our simulation results use β = 0.25

and γ = 0.5.) We obtain the accelerations ak+1 ∈ R3n by solving Newton’s equation of motion

F(xk+1
,v

k+1) = Ma
k+1

, (4.3)

22

where M ∈ R3n×3n is the mass matrix and F(·) ∈ R3n is the sum of all internal forces such

as stiffness and damping forces and external forces such as gravity. Because Equation (4.3) is

nonlinear, we linearize it with one Newton–Raphson iteration; i.e. by solving

F(xk
,v

k) +
∂F

∂x
(xk+1 − x

k) +
∂F

∂v
(vk+1 − v

k) ≈ Ma
k+1

, (4.4)

where ∂F/∂x, ∂F/∂v ∈ R3n×3n are the Jacobian matrices of force with respect to position and

velocity, evaluated at (xk,vk).

Ignoring for now the coupling between the needle and the tissue, we substitute (4.1) and (4.2) into
(4.4):

F(xk,vk) +
∂F

∂x

�
�tvk + �t2

��
1

2
− β

�
ak + βak+1

��
+

∂F

∂v

�
�t

�
(1 − γ) ak + γak+1

��
= Mak+1, (4.5)

�
M − β�t2

∂F

∂x
− γ�t

∂F

∂v

�
ak+1 = F(xk,vk) +

∂F

∂x

�
�tvk + �t2

��
1

2
− β

�
ak

��
+

∂F

∂v

�
�t

�
(1 − γ) ak

��
, (4.6)

Aak+1 = b, (4.7)

where A = M−β�t2 ∂F
∂x−γ�t ∂F∂v and b = F(xk,vk)+ ∂F

∂x

�
�tvk +�t2

��
1
2 − β

�
ak

��
+ ∂F

∂v

�
�t

�
(1− γ)ak

��
.

We can obtain the linear system for the tissue and needle nodes’ accelerations, respectively, as

Ââ
k+1 = b̂, (4.8)

Ãã
∗k+1 = b̃. (4.9)

The asterisk indicates that ã∗k+1 is a temporary quantity, because we still need to perform remeshing

as explained in Section 9.2. Having solved for âk+1 and ã
∗k+1, we obtain x̂

k+1, v̂k+1, x̃∗k+1, and

ṽ
∗k+1 from Equations (4.1) and (4.2).

The sparsity of Â is unstructured. Each non-zero entry corresponds to a pair of nodes in the tissue

mesh that are connected by an edge. Ã has bandwidth 5 (measured in 3 × 3 blocks) because each

needle node has nonzero entries for the two nodes before and after it on the needle. We assemble

both matrices and store Â with a block compressed sparse row format and Ã with a block banded

format.

In the next two chapters, we will discuss how our simulator computes the tissue forces (F̂) and their

Jacobians (∂F̂∂x̂ and ∂F̂
∂v̂) and the needle forces (F̃) and their Jacobians (∂F̃∂x̃ and ∂F̃

∂ṽ). We then use

them to compute b̂ and b̃ and assemble Â and Ã.

23

Chapter 5

Tissue Force Computation

This chapter describes how the tissue forces F̂ are computed in the simulation. We first define the

deformation gradient and then explain how it can be used to compute stress. We then describe a

constitutive model for computing elastic forces and damping forces. Finally, we discuss how to

compute Jacobians of the forces.

5.1 Deformation Gradient

The material position and world position of a point inside a tissue are related by a mapping φ(u) =

x. The deformation gradient is denoted by D(u) = ∂φ
∂u . The tissue mesh T̂ induces a piecewise

linear approximation of φ; φ is approximated as a linear function over each tetrahedron, as shown

in Figure 5.1. This approximation has a constant deformation gradient in each tetrahedron, which

can be computed as D = [x1 − x0,x2 − x0,x3 − x0][u1 −u0,u2 −u0,u3 −u0]−1, where ui and

xi denote the material coordinate and world coodinate of node i of the tetrahedron respectively.

5.2 First Piola–Kirchhoff Stress

The stress at a given point of an elastic material is determined by the deformation gradient. Our

simulator uses the first Piola–Kirchhoff stress P, which maps the area- weighted normal in material

24

u0 u1

u2

u3

x0

x1

x2

x3

Material Space World Space

Figure 5.1: A locally linear mapping φ. A material space position u is mapped to the world space
positionx with x = x0 + D(u − u0), where D = [x1 − x0,x2 − x0,x3 − x0][u1 − u0,u2 −
u0,u3 − u0]−1.

space to the traction in world space. Once P is determined inside a tetrahedron, it is used to compute

the force Fi on a node i incident to the tetrahedron as Fi = −P(a1n1 + a2n2 + a3n3), where

ajnj is the area-weighted normal in material space of face j incident to the node. Due to the law of

conservation of momentum, F0 = −(F1 + F2 + F3). We loop through each tetrahedron, compute

its force contribution to the adjacent four nodes, and sum the forces at each of the nodes.

5.3 Rotation-Invariant and Isotropic Constitutive Model

Rigid transformations do not change the behavior of an elastic rod. This fact can be stated mathe-

matically as P(UD) = UP(D) where P is the function that maps D to the Piola–Kirchhoff stress

and U is an arbitrary rotation matrix. Moreover, we use an isotropic constitutive model for the

tissue, which implies that the tissue is equally stretchable in all directions. Mathematically, it can

be stated as P(DV
T) = P(D)VT, where V is a rotation matrix. Therefore, for an anisotropic

material, we can compute a singular value decomposition (SVD) of D = UD̂V
T and express P as

P(D) = UP̂(D̂)VT, where P̂ is a diagonal matrix function of the diagonal deformation gradient

D̂.

The U and V must be chosen so that detU = detV = 1 so that U and V are rotation matrices.

25

When the tetrahedron is flat (detD ∼ 0) or inverted (detD < 0) in world space, special care is

needed in choosing U, V and the singular values. Irving et al. [29] use the rule of thumb that the

resulting force must act to un-invert the tetrahedron. The linear constitutive model relates P̂ to D̂

as

P̂ = 2µ(D̂− I) + λtr(D̂− I), (5.1)

where µ and λ are the Lamé Constants. We use Equation 5.1 to compute P̂, then compute P and

finally obtain F.

5.4 Damping Force

The damping force is computed with the velocity gradient, Ḋ = U
∂v
∂uV

T, where ∂v
∂u = [v1 −

v0,v2 − v0,v3 − v0][u1 − u0,u2 − u0,u3 − u0]−1 and vi is the velocity of the node i of the

tetrahedron. We first form the stress rate Ṗ = φ(Ḋ + Ḋ
T) + ψtr(Ḋ)I. Ṗ can then be multiplied

with the area weighted normal to obtain the damping force.

5.5 Jacobian Computation

To evaluate the Jacobians of the tissue forces, we differentiate the force expressions with respect to

x and v. We hold the SVD rotation matrices constant during the differentiation, following Irving et

al. [29], so we can obtain the closed-form expressions for the Jacobians.

As an alternative to the method discussed in this chapter, one could use the co-rotational approach

presented by Muller and Gross [42] to compute the tissue force and jacobian. Other components of

the simulator described in this thesis can be used without any change.

26

Chapter 6

Needle Force Computation

In this chapter, we describe how to compute the needle forces, F̃. Our bending and twisting force

computations follow Bergou et al. [11]. The needle is inextensible, but instead of enforcing inexten-

sibility by projection, we use the method of Spillmann and Teschner [61] that applies compensatory

stretching forces. We summarize our combined approach in this chapter.

6.1 Energies of an Elastic Rod

We model the needle as a one-dimensional elastic rod, which can be described by a curve Γ in 3D

space (see Figure 6.1 left). Let x(s), v(s) ∈ �3 be the position and velocity along the curve Γ

parameterized by the arclength from the base of the undeformed rod. In addition to the position

and velocity, we define an orthogonal material frame {t(s),m1(s),m2(s)} along the curve, where

t(s) = x(s)
||x(s)|| , and m

1(s) and m
2(s) store the local orientation of the elastic rod’s material. We

denote the derivative with respect to s as prime (�). Throughout this chapter, we refer to κ = t
� as

the curvature vector.

6.1.1 Potential Energy

The Kirchhoff theory of elastic rods can be used to compute the potential energy stored in the curve

Γ, which consists of three terms: stretching energy, bending energy and twisting energy.

27

...

Γ̃

xn−1

x1

x0

x(s)

Γ

t(s)

θ(s)

u(s)

v(s)

t(s) xi

ui

m1
i

m2
i

m1(s)

m2(s)

vi θi
m1(s)

m2(s)

Figure 6.1: An elastic rod represented by a curve Γ can be discretized into a piecewise linear curve
Γ̃. Γ can be represented by position x(s) and material frame {t(s),m1(s),m2(s)}. The curve
has a natural twist-free Bishop frame {t(s),u(s),v(s)}. The material frame can alternatively be
represented simply as θ(s), the angle to rotate the material frame onto the Bishop frame about
the axis t(s). Γ̃ can be represented by xi and material frame {ti,m1

i ,m
2
i }. Its Bishop frame is

{ti,ui,vi}. Similar to the continuous counterpart, the material frame forms an angle of θi radians
with the Bishop frame.

28

Stretching Energy

The stretching energy Estretch is

Estretch =
1

2

�

Γ
Ks · (||x�||− 1) ds, (6.1)

where Ks is the stretching stiffness, which can be computed from Young’s modulus, Es, with

Ks = Esπr
2, where r is the radius of the rod. This energy measures how much the rod stretches or

compresses from the rest length.

Bending Energy

The bending energy Ebend is

Ebend =
1

2

�

Γ
Kb||κ||2 ds, (6.2)

where Kb is the bending stiffness. This energy measures how much the rod bends, i.e. the more the

rod bends the larger its curvature becomes.

Twisting Energy

The twisting energy is

Etwist =
1

2

�

Γ
Ktm

2
ds, (6.3)

where Kt is the twisting stiffness and m = m
1� · m2, which measures how much the orthogonal

frame twists along the curve. We can see that Etwist only depends on the dot product. This motivates

Bergou et al. [11] to seek an equivalent expression in term of reduced coordinates.

Given a curve in 3D, one can find a twist-free frame called a Bishop frame {t(s),u(s),v(s)}, such

that the frame has zero twist at all points, i.e. u
� · v = −v

� · u = 0. Assigning a frame to one

point on the curve will uniquely determine the Bishop frame throughout the curve. In our simulator,

we assign the frame at the needle base. The evolution of the orthogonal frame while traversing the

29

curve can be described as

t
� = Ω× t, (6.4)

u
� = Ω× u, (6.5)

v
� = Ω× v, (6.6)

where Ω(s) is the Darboux vector of the frame, which signifies the axis and the speed of rotation

of the orthogonal frame along the curve. For the Bishop frame, since u
� · v = 0, the first and the

second equations imply that Ω = t× t
� which is the binormal of the curve.

Given a vector w at a given point on the curve, one can transport it to another point on the curve by

integrating the ODE x
� = κb × x. This is referred to by Bergou et al. [11] as parallel transport.

Infinitesimally, it can be interpreted as a rotation about the binormal (t× t
�) of the curve, which we

will make use of in the discrete case.

The twist-free Bishop frame allows one to represent the twist of the curve using a simple parame-

terization. Let θ(s) be the scalar function that measures the rotation about the tangential axis of the

material frame relative to the Bishop frame (see Figure 6.1, left). We have

m
1 = cos θ · u+ sin θ · v, (6.7)

m
2 = − sin θ · u+ cos θ · v. (6.8)

Since m = m
1� · m2 and u

� · v = 0, we have m(s) = θ�(s). Therefore, we express the twisting

energy as

Etwist =
1

2

�

Γ
Kt(θ

�)2 ds. (6.9)

6.1.2 Dissipation Energy

We also model the dissipation of energy due to internal friction and the viscoelastic effect of the rod

following Spillmann and Teschner [61]. The internal friction damps away the relative translational

velocity of the rod, vrel = 1
||x�||2 (v

� · x�)x�. The dissipation energy is

D =
1

2

�

Γ
Kd||vrel||2 ds, (6.10)

where Kd is the damping coefficient.

30

6.2 Discrete Energies

We discretize the curve Γ into a series of vertices xi, 0 ≤ i < n, where n is the number of nodes (see

Figure 6.1, right), with velocity vi. Define a sequence of edges ei = xi+1−xi for 0 ≤ i < n−1 and

discrete material frames for each edge, {ti,m1
i ,m

2
i }, where ti =

ei
||ei|| . We express the energies

using these discrete variables as shown below. After that, we can take appropriate derivatives to

obtain the expressions for the forces on the nodes.

Let the length of edge i be li = ||ei||, and the average length of the two edges adjacent to a node i

be hi =
li−1+li

2 . We denotes the quantities associated with the elastic rod in its rest configuration

with a bar (̄). For example, l̄i denotes the rest length of edge i.

6.2.1 Discrete Potential Energy

We derive the expressions for the discrete potential energies of the Kirchoff rod by assuming that

the integrand is constant in each edge. The integral then becomes the sum over all edges.

Discrete Stretching Energy

The discrete stretching energy is

E
dis
stretch =

1

2

n−2�

i=0

Ks l̄i

�
li

l̄i
− 1

�2

. (6.11)

Discrete Bending Energy

To compute the discrete bending energy, we need to obtain an estimate for the curvature. Following

Bergou et al. [11], we define (κb)i = 2ei−1×ei
l̄i−1 l̄i+ei−1·ei

. We can then express the discrete bending

energy as

E
dis
bend =

1

2

n−2�

i=0

Kb

����
(κb)i
h̄i

����
2

h̄i =
n−2�

i=0

2Kb
�(κb)i�2

h̄i
. (6.12)

31

Discrete Twisting Energy

To formulate the discrete twisting energy, we first define the concept of discrete parallel transport

and the Bishop frame, so that we can express the twist in term of the angle of deviation from the

twist-free frame, similar to the continuous case.

We can define the parallel transport operator that transports the vector residing at a node i − 1 to

node i as a rotation Pi about (κb)i where Pi satisfies

Pi(ti−1) = ti, (6.13)

Pi(ti−1 × ti) = ti−1 × ti. (6.14)

The Bishop frame of the discrete curve can then be defined by transporting a unit vector u0 orthog-

onal to t
0 by using Pi’s operators, namely,

ui = Pi(ui−1), (6.15)

vi = ti × ui. (6.16)

We need to maintain that u0 ⊥ t0 throughout the simulation. However, after a simulation step, t0
will change (unless the first needle segment simply translates) and u0 will no longer be perpendic-

ular to t0. We can update u0 by parallel transporting it in time with the rotation operator that will

rotate the old t0 to the new t0.

Let θi denote the angle needed to rotate the Bishop frame to the discrete material frame at node i.

Similar to the continuous case, we have

m
1
i = cos θi · ui + sin θi · vi, (6.17)

m
2
i = − sin θi · ui + cos θi · vi. (6.18)

The discrete twisting energy is

E
dis
twist =

1

2

n−2�

i=1

Kt

�
θi − θi−1

l̄i

�2

l̄i. (6.19)

32

6.2.2 Discrete Dissipation Energy

The discrete dissipation energy is

D
dis =

1

2

n−2�

i=0

Kd||vrel
i ||2 l̄i, (6.20)

where v
rel
i is the relative tangential velocity

v
rel
i =

1

||x�
i||2

(v�
i · x�

i)x
�
i (6.21)

=
1

l3i

(xi+1 − xi)((vi+1 − vi) · (xi+1 − xi)) (6.22)

assuming that ||x�
i||2 ≈ 1, which is valid because the needle length only barely changes during

simulation.

6.3 Force and Jacobian Computation

We obtain the force F̃ on the needle nodes by computing the derivatives of the energies as

F̃i = −dEdis

dxi
− dDdis

dxi
(6.23)

where Edis = Edis
stretch+Edis

bend+Edis
twist. The total derivatives can be computed in a straightforward

manner, except for the twisting term, as θ implicitly depends on x. Moreover, assuming that the twist

wave propagates at infinite speed in the rod, one can compute θi at each time step by minimizing

Edis subject to the boundary conditions of the rod. We refer the reader to Bergou et al. [11] for the

details about these computations.

From the expression 6.23 for F̃, we can compute the Jacobians ∂F̃
∂x and ∂F̃

∂v directly. One caveat

is that the Jacobians of the twisting force is asymmetric. To avoid solving an asymmetric linear

system, we set the contribution of the twisting force to Jacobians to zero. During the Newmark time

integration, where we linearized the forces about the current state, setting the Jacobian to zero is

equivalent to treating the twisting force explicitly because it will not depend on the next state.

33

Chapter 7

Forces Between Tissue and Needle

Various forces including the normal force, friction forces and the cutting force play key roles during

needle insertion. These forces are applied to the needle and the tissue in equal magnitude but

opposite directions. In this chapter, we will describe these forces in details and show examples of

situations where they are prominent. Figure 7.1 shows the cutaway view of a simulated tissue. The

checkerboard texture is used to show the internal deformation. The red region represents a stiffer

material than the gray region. The needle is blue. Other figures throughout this chapter demonstrate

various scenarios to demonstrate the role of the forces. They show the screenshots of the tissue and

the needle during simulations.

7.1 Static and Dynamic Friction

When the needle is pushed or pulled, the relative motion of the tissue and the needle is initially

resisted by the static friction force. The force grows larger as needed to resist the relative movement.

However, this force can only reach a certain threshold before the needle and tissue start to slide

relative to each other. Crouch et al. [17] observe this behavior and determine that the threshold is

proportional to the length of the needle inside the tissue.

Once the needle and the tissue start to slide, the force is equal to the dynamic friction. O’Leary et

al. [46] observe that this is roughly equal to the static friction threshold. This friction force remains

at the threshold until the relative velocity of the tissue and the needle is zero. The static friction

34

red

grey

Figure 7.1: Left: The surface of two types of tissues are rendered during the middle of a simulation.
The needle is shown as a thick line. Middle: Cutaway view of the tetrahedral mesh. Right: A thin
slice of the mesh is shown with a checkerboard texture for visualizing the deformation.

red

grey

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 7.2: This figure demonstates a situation when the static friction threshold is high. The
viscous force and the cutting force are zero. The needle is inserted at a constant speed. Because the
needle tends to stick to the tissue, the tissue deformation around the needle shaft is large.

35

red

grey

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 7.3: This figure demonstates a situation when the static friction threshold is low. The viscous
force and the cutting force are zero. The needle is inserted at a constant speed. Because the needle
can slide through tissue easily, the tissue deformation around the needle shaft is relatively small.

threshold fi at node i is modeled in the simulator as fi = fperlenhi, where fperlen is the needle-

tissue friction per unit length and hi is the average length of the two edges adjoining the node i

in the needle mesh. This threshold is used to check whether the coupled tissue and needle nodes

should slip away from each other or not in Section 8.4. Figure 7.2 and 7.3 demonstrate situations

when the static friction threshold is large and small, respectively.

7.2 Viscous Friction

Simone et al. [60] observed that the friction force increases linearly with the relative velocity of the

tissue and the needle. This is the so-called viscous effect, which occurs because of the increase in

the surface area of the tissue through which the needle passes over a unit time step as the relative

velocity increases. A situation when the viscous friction plays a key role is shown in Figure 7.4.

We model this friction by fvis
i = ηhi(ṽi − v̂i) · ti, where ti is the tangent vector at node i and η is

the viscous friction coefficient. Recall that carets (̂) denote tissue properties, and tildes (̃) denote

needle properties. This force is added as an external force to the coupled needle and tissue nodes,

with equal magnitude but opposite direction.

36

red

grey

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 7.4: This figure demonstates the effect of the viscous friction. The static friction threshold is
small in this case while the viscous friction coefficient is high. The cutting force is zero. The needle
is inserted at a constant speed halfway and then held still. Large tissue deformation occurs during
the first half of the simulation, when the relative velocity between tissue and needle is large. Once
the relative velocity decreases, the needle slides through tissue easily due to the decreasing viscous
friction.

37

red

grey

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 7.5: This figure demonstrates the capsule puncture effect. The static friction threshold is
small. The viscous friction is zero. The cutting force is high when the needle attempts to penetrate
through the membrane between air and the tissue and the membrane between two types of tissue.
The needle is inserted with constant velocity. Notice how the tissue deformation is large before the
initial penetration. Once the needle cuts through the capsule, the cutting force drops significantly,
which allow the tissue to slide back along the needle. A similar effect appears during the second
membrane penetration, albeit less noticable, because it is deeper inside the tissue.

7.3 Cutting Force and Capsule Puncture Effect

To penetrate through the tissue, the needle must overcome the resistance of the tissue. This re-

sistance can be modeled by the cutting force. The force is applied at the tip of the needle. It is

especially large when the needle attempts to penetrate through the membrane surrounding an organ.

Simone et al. [60] observed this sharp force increase during the experiment of inserting a needle

into a porcine liver and called it the capsule puncture effect.

Our simulator models the cutting force fcut as a function that maps the material position of the

needle tip to the magnitude of the force. To capture the capsule puncture effect, fcut is at its peak

inside the thin membrane separating two organs. Figure 7.5 shows the capsule puncture effect

during a needle insertion. The cutting force is taken into account at the needle tip when the needle

is penetrating, but not when the needle is retracting (see Section 8.4).

38

red

grey

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 7.6: This figure demonstrates the lateral motion of the needle, which causes the tissue to
deform in the same lateral direction. The needle is inserted at a constant velocity, while the needle
base moves up and down in a periodic motion.

7.4 Normal Force

During the needle insertion into tissue, if one moves the needle base laterally, the needle bends and

the tissue deforms in the same lateral direction due to the normal force that they exert on each other.

In practice, the tissue is tough enough to prevent the needle from slicing through laterally. We made

this non-slicing assumption in our simulator to simplify the remeshing process considerably. In the

situation demonstrated in Figure 7.6, the needle is both pushed forward and moved laterally. The

normal forces act as Lagrange multipliers to the coupled tissue and needle nodes and are solved for

in each time step, as explained in Section 8.2.

39

Chapter 8

Tissue-Needle Coupling and Cutting

In this chapter, we formulate the coupling of the tissue and the needle through stick-slip friction and

normal forces as a Linear Complementarity Problem (LCP) that must be solved in each simulation

step. We first describe the friction states that each needle node can be in. We then formulate

the coupled linear system of tissue and needle’ accelerations by introducing the coupling forces

as Lagrange multipliers, with an assumption that the friction states are known. Then we discuss

how the linear system can be solved effectively with the Conjugate Gradient method (CG). We

next discuss the additional inequality constraints that the stick-slip friction model impose on the

coupled system. These inequalities lead to an LCP formulation whose solution determines the

correct friction states. Finally, we discuss how we solve the LCP efficiently.

8.1 Friction States

Each node i of �T has a friction state si which is one of FREE, STATIC, DYNAMIC−, or DYNAMIC+.

The sign of dynamic friction indicates the direction in which the needle is sliding along the tissue

at that node. The FREE nodes are not in the tissue. The other nodes, which are shared by the

tissue mesh T and the needle mesh �T , are called coupling nodes. Assume that each coupling

node has the same index in both meshes. Recall that uk
i , xk

i , vk
i , aki ∈ R3 denote the material

position, world position, velocity, and acceleration of the ith node at time index k. Carets (̂) denote

tissue properties, and tildes (̃) denote needle properties. Also, an asterisk indicates a temporary

40

quantity which requires reparameterization before we can continue to simulate the next time step,

as explained in Section 9.2.

8.2 Coupled Linear System

If we know every state si, we can solve the coupled equations with Lagrange multipliers, introducing

for each coupling node i an additional variable ci ∈ R3, the constraint force required to satisfy the

stick-slip constraint. This force acts upon tissue and needle nodes i in equal magnitude but opposite

directions. To accommodate dynamic friction and sliding of the needle, we express ci in a local

coordinate system of the needle, in which the first axis is the unit vector ti that is tangential to

the needle at node i. We approximate the tangent as ti = NORMALIZE(NORMALIZE(x̃i − x̃i−1)+

NORMALIZE(x̃i+1 − x̃i)), where NORMALIZE(u) = u
�u� . Let Ri ∈ R3×3 be the rotation matrix

that transforms from local coordinates to world coordinates, so that Rici is the constraint force at

the coupling node i in world coordinates. Therefore, the first component of ci is the tangential force.

For a DYNAMIC node, we set the first column of Ri to zero, thus ignoring the tangential constraint

force in direction ti. The second and third components of ci represent the normal force that the

needle and the tissue exert on each other.

The coupled system is

Â 0 ŴR

0 Ã −W̃R

(ŴR)T −(W̃R)T Z

â
k+1

ã
∗k+1

c

 =

b̂+ ŴRd

b̃− W̃Rd

e

 . (8.1)

See Section 8.5 for the derivation. The first two rows are Equations (4.8) and (4.9) augmented with

the constraint forces. Here, di is [0, 0, 0]T for a STATIC node and [sifi, 0, 0]T for a DYNAMIC node,

si is 1 for DYNAMIC+ or −1 for DYNAMIC−, fi is the magnitude of dynamic friction (possibly

including a cutting force fcut at the needle tip), and Ŵ and W̃ are 0–1 matrices that map coupling

nodes to the tissue nodes and needle nodes, respectively. Thus, for a dynamic node i, the unknown

tangential component of the constraint force ci on the left-hand side is supplanted by the known

friction ±fi on the right, because the first column of Ri is zero.

The third row of Equation (8.1) constrains the coupling nodes to have the same positions in the

tissue and needle meshes, except that a node in a dynamic friction state permits the needle to slide

41

tangentially relative to the tissue. If si is STATIC, we constrain x̂i and x̃i to be identical. If it is

DYNAMIC, we constrain them to agree in the directions orthogonal to ti. Thus, Z is a diagonal

matrix in which a diagonal entry is 1 for the tangential component of a DYNAMIC node and 0

otherwise, and e = −(ŴR)T
�

1
�tβ v̂

k +
(1
2−β)
β â

k

�
+ (W̃R)T

�
1

�tβ ṽ
∗k +

(1
2−β)
β ã

∗k
�

is the

right-hand side of the equation found by substituting Equation (4.1) into

(ŴR)T(x̂k+1 − x̂
k)− (W̃R)T(x̃∗k+1 − x̃

∗k) = 0 (8.2)

and moving the terms that include â
k+1 and ã

∗k+1 to the left-hand side as follows

(ŴR)T
�

�tv̂k + �t2
�� 1

2
− β

�

âk + βâk+1
��

− (W̃R)T
�

�tṽ∗k + �t2
�� 1

2
− β

�

ã∗k + βã∗k+1
��

= 0, (8.3)

(ŴR)T�tv̂k + (ŴR)T�t2
� 1

2
− β

�

âk + (ŴR)T�t2βâk+1 − (W̃R)T�tṽ∗k − (W̃R)T�t2
� 1

2
− β

�

ã∗k − (W̃R)T�t2βã∗k+1 = 0, (8.4)

(ŴR)T�t2βâk+1 − (W̃R)T�t2βã∗k+1 = −(ŴR)T�tv̂k − (ŴR)T�t2
� 1

2
− β

�

âk + (W̃R)T�tṽ∗k + (W̃R)T�t2
� 1

2
− β

�

ã∗k, (8.5)

(ŴR)Tâk+1 − (W̃R)Tã∗k+1 = −(ŴR)T
1

�tβ
v̂k − (ŴR)T

�
1
2 − β

�

β
âk + (W̃R)T

1

�tβ
ṽ∗k + (W̃R)T

�
1
2 − β

�

β
ã∗k, (8.6)

(ŴR)Tâk+1 − (W̃R)Tã∗k+1 = −(ŴR)T

1

�tβ
v̂k +

�
1
2 − β

�

β
âk

 + (W̃R)T

1

�tβ
ṽ∗k +

�
1
2 − β

�

β
ã∗k

 . (8.7)

Note that the columns having a 1 on Z’s diagonal are the same columns of R that we set to zero.

8.3 Solving the Coupled Linear System

The coupled system (8.1) is symmetric but indefinite. Indefinite systems usually cannot be solved

by the conjugate gradient method (CG), and require algorithms like MINRES or SYMMLQ [48],

which are about twice as expensive per iteration. Nevertheless, we find that CG effectively solves

our system (8.1) to the desired tolerance in practice. Marcia [41] makes the same observation for

linear systems similar to ours, and provides a partial explanation. He experiments with solving

an indefinite but symmetric linear system of the form
�

A C

CT 0

�
where A is a positive definite

matrix and found that CG converges faster than MINRES and SYMMLQ, but with non-smooth

convergence rate. He also proposes a fix to CG, by using a novel pivoting strategy in the matrix

factorization, implicitly done in each iteration of CG. It requires only a small constant more flops

per iteration than CG but result in much smoother convergence rate for a symmetric indefinite

matrix. The method reduces to CG for a positive definite matrix. His approach can be applied to

solve our linear system as well.

42

8.4 Linear Complementarity Problem (LCP) Formulation

Up to this point, we assume that all the states si are known. In practice, however, si are not known

in advance (except the FREE ones). We must guess them, then guess again if we are wrong. We have

guessed right if they satisfy the following constraints. For a STATIC node i other than the needle tip,

− fi ≤ [1 0 0]T · ci ≤ fi, (8.8)

where fi is the static friction threshold, which experimentally is the same as the dynamic friction

magnitude (see Section 7.1). For a STATIC needle tip i,

− (fi + fcut) ≤ [1 0 0]T · ci ≤ fi. (8.9)

For a DYNAMIC node i (needle tip or not),

siti ·
�
(x̂k+1

i − x̂
k
i)− (x̃∗k+1

i − x̃
∗k
i)

�
≥ 0; (8.10)

that is, the relative tangential movement between tissue and needle DYNAMIC coupling nodes must

not change direction.

The equations and constraints together form a linear complementarity problem (LCP). Given q

coupling nodes, there are 3q possible settings of the friction states. The LCP has the potential to

take exponential running time. Each wrong guess requires us to solve the linear system again, so

even a moderate number of wrong guesses can kill real-time performance. Fortunately, the system

has temporal coherence, and a good initial guess is to take the friction states from the previous time

step. If these are wrong, we make local changes (driven by the constraints that are not satisfied) and

usually find the correct states within a few trials. An advantage of our formulation (8.1) is that we

can update it quickly when our guess of the friction states si change. No structural change of the

matrix and no memory allocation are needed for each wrong guess.

Pseudocode for our LCP solver appears in Section 11.1, which discusses our method for updating

the friction states and several optimizations that accelerate this computation.

43

8.5 Coupled system derivations

8.5.1 All Static Friction Case

To derived Equation 8.1, we start with the non-coupled system of equations of the tissue and the

needle,

Ââ
k+1 = b̂, (8.11)

Ãã
∗k+1 = b̃. (8.12)

We assume for now that all the coupling nodes are STATIC to simplify the derivation, and extend

it to the general case later on. We first introduce the coupling force ci ∈ �3 as a new unknown.

It is in the local coordinate of each coupling node, where the first coordinate is along the tangent

direction. Let Ri ∈ �3×3 be the rotation matrix that transforms space from local coordinates to

world coordinates, so that Rici is the constraint force at the coupling node i in world coordinates.

We also let Ŵ and W̃ be the 0-1 matrices that map coupling nodes to the tissue nodes and needle

nodes, respectively. We can add the constraint forces with equal magnitude but opposite directions

to the tissue and the needle system as

Ââ
k+1 + ŴRc = b̂, (8.13)

Ãã
∗k+1 − W̃Rc = b̃. (8.14)

We also need to add more equations to the system to constrain the position of each pair of corre-

sponding needle and tissue coupling nodes i at the end of the time step to match (we assume they

have the same index in both meshes):

x̂
k+1
i − x̃

∗k+1
i = 0. (8.15)

From Newmark’s Equation 4.1, we have

x̂
k+1
i = x̂

k
i +�tv̂

k
i +�t

2((
1

2
− β)âki + βâ

k+1
i), (8.16)

x̃
∗k+1
i = x̃

k
i +�tṽ

k
i +�t

2((
1

2
− β)ãki + βã

∗k+1
i). (8.17)

Substituting Equations 8.16 and 8.17 into Equation 8.15, we have

x̂k
i +�tv̂k

i +�t2((
1
2
− β)âk

i + βâk+1
i)− x̃k

i +�tṽk
i +�t2((

1
2
− β)ãk

i + βã∗k+1
i) = 0, (8.18)

44

which simplifies to

â
k+1
i − ã

∗k+1
i = qi, (8.19)

which we can expressed as

Ŵ
T
â
k+1 − W̃

T
ã
∗k+1 = q. (8.20)

We multiply both sides of this equation with R
T to give

R
T
Ŵ

T
â
k+1 −R

T
W̃

T
ã
∗k+1 = R

T
q. (8.21)

Notice that the Equations 8.13, 8.14, and 8.21 form a symmetric linear system

Â 0 ŴR

0 Ã −W̃R

(ŴR)T −(W̃R)T 0

â
k+1

ã
∗k+1

c

 =

b̂

b̃

R
T
q

 . (8.22)

We solve this system to obtain â
k+1, ã∗k+1 and c.

8.5.2 General Case

So far, we assumed that all coupling nodes are STATIC. For the general case that some nodes are

DYNAMIC+ or DYNAMIC−, we make a few modifications to Equation 8.22. If a node i is a dynamic

friction node, we already know the value of ci1 (fi for DYNAMIC+ and −fi for DYNAMIC−).

Therefore, we can remove ci1 from the system as a degree of freedom. We could simply perform

substitution and remove the corresponding rows and columns of the matrix. However, this would

require resizing the matrix, which would be inefficient for our interactive application. We hence

instead do the following. First, we zero out the first column of Ri, so that ci1 is ignored, if i is a

dynamic friction node. We then let di be [0, 0, 0]T for a STATIC node or [ci1, 0, 0]T for a DYNAMIC

node. Then we modify Equation 8.22 to

Â 0 ŴR

0 Ã −W̃R

(ŴR)T −(W̃R)T 0

â
k+1

ã
∗k+1

c

 =

b̂+ ŴRd

b̃− W̃Rd

R
T
q

 . (8.23)

This system is singular because the rows and columns corresponding to the first coordinate of a

dynamic node are 0. To make it non-singular, we let Z be a diagonal matrix in which a diagonal

45

entry corresponding to the first coordinate of a dynamic node is 1 and is 0 otherwise and modify the

system to:

Â 0 ŴR

0 Ã −W̃R

(ŴR)T −(W̃R)T Z

â
k+1

ã
∗k+1

c

 =

b̂+ ŴRd

b̃− W̃Rd

R
T
q

 . (8.24)

Letting e = R
T
q, we have Equation 8.1.

46

Chapter 9

Remeshing and Reparameterization

After a simulated time step, some of the DYNAMIC coupling nodes of T and �T are no longer coin-

cident. However, our coupling method requires coupling nodes to have the same positions in both

meshes. Thus, we dynamically adapt the meshes after each time step, which is the subject of this

chapter. Our mesh adaptation consists of two steps: needle tip remeshing and needle reparameteri-

zation.

9.1 Needle Tip Remeshing

When the needle tip node is DYNAMIC, we change the tissue mesh T , sometimes topologically, so

that it has a node at the new location of the needle tip. Mesh changes occur only near the needle tip,

and are quite inexpensive. We skip this step if the tip node is STATIC.

The goals of needle tip remeshing are to make T conform to the needle, to have tetrahedra of as

high quality as possible, and to do so quickly. We remesh in material space by applying one of the

candidate operations depicted in Figure 9.1: the node snap, the edge split, the face split, and the

tetrahedron split.

47

Figure 9.1: Mesh operations: node snap, edge split (upper right), face split (lower left), tetrahedron
split. The needle tip unew is at the red circle. The simplex the operation acts on is green.

9.1.1 Tip Remeshing Algorithm

Two ideas govern our remeshing algorithm. First, we choose among candidate operations by directly

measuring the quality of the tetrahedra that would be created by each operation, and selecting the

operation that maximizes the quality of the worst tetrahedron. Second, we maintain a stack of all

the operations that have changed the mesh topology (i.e. all operations except node snaps), and we

consider undoing the most recent operation before applying a new one. The stack is particularly

important when the needle is retracted; our procedure is designed so that once the needle is fully

withdrawn from the body, the tissue mesh will have returned to its original topology. We thereby

prevent the accumulation of mesh quality degradation when the needle is inserted and withdrawn

multiple times. Even when the needle is being inserted, the ability to undo the previous operation

and replace it with a new one often offers better mesh quality.

Evaluating Remeshing Operations

For each candidate operation, we evaluate each new tetrahedron with a quality measure equal to

its signed volume divided by the cube of its root-mean-squared edge length [50]. This measure is

zero for a degenerate tetrahedron, and maximized by an equilateral tetrahedron. Various tetrahedra

48

Figure 9.2: Various tetrahedra and their corresponding normalized quality, where the quality of
equilateral tetrahedron is 1. a) Bad quality tetrahedra, clockwise from top left: wedge, needle, cap,
and sliver. b) Good quality tetrahedra.

Figure 9.3: A small tetrahedral mesh with 31 tetrahedra and its corresponding normalized quality
vector.

49

and their qualities are shown in Figure 9.2. We have found this measure to be both a good reflec-

tion of a tetrahedron’s fitness for finite element simulation and amenable to numerical optimization

[33]. Tetrahedron quality is always computed from material (not world) coordinates. Let R be the

mesh region comprising the union of all tetrahedra that can be deleted or changed by the candidate

operations. The quality vector of the tetrahedra in R is a list of the tetrahedron qualities, sorted

from worst to best. The quality vector of a tetrahedral mesh is shown in Figure 9.3. Our algorithm

chooses the operation that lexicographically maximizes that quality vector (that is, it maximizes the

worst tetrahedron, breaking ties by maximizing the second-worst, then the third-worst, etc.).

Candidate Remeshing Operations For Needle Penetration

If the needle is penetrating tissue, we generate a set of candidate operations as follows. Let unew be

the new position of the needle tip in material space. (We obtain unew by barycentric interpolation

from the needle tip position in world space, and we obtain a tissue velocity and acceleration for it

the same way.) We consider fifteen standard operations that transform the tetrahedron that contains

unew: four node snaps, six edge splits, four face splits, and one tetrahedron split. Each operation

places the new node or snapped node at unew. We also consider composite operations that first undo

the operation atop the stack, then apply a new standard operation.

Legal Candidate Operations

Candidate operations that would change the mesh boundary are discarded, except when the needle

first penetrates the skin. Operations that fail to properly connect the needle nodes are also discarded.

Let u1 and u2 be the old positions in material space of the needle tip and the needle node next to

the tip, respectively; see Figure 9.4. The needle nodes remain properly connected by the operations

that snap u1 to unew, that create an edge connecting u1 to unew, or that delete u1 and create an edge

connecting u2 to unew. (Undoing the top stack operation entails deleting u1 from both T and �T .)

Tip’s Neighbor Node Optimization

Because the needle moves only a small distance during a time step, unew tends to be close to u1 or

u2, often producing a short edge that compromises the mesh quality. We avoid this pitfall by moving

50

u1u2 unew

Figure 9.4: The red edges and nodes are part of the needle shaft. The old positions in material
space of the needle tip and the node next to the tip are denoted as u1 and u2 respectively. The new
position of the needle tip is denoted by unew. The green face is split, creating a new needle tip node.
We move the old needle tip node back along the needle shaft to maximize the mesh quality.

u1 to the optimal position on the segment unewu2, or (if the operation deletes u1) by moving u2 to

the optimal position on the segment unewu3; see Figure 9.4. (To respect the needle curvature, we

could have searched along the energy-minimizing curve that Spillmann and Teschner [62] use, but

we find that placing the node on the segment is good enough.) The “optimal” position is the one that

maximizes the minimum quality among the tetrahedra that adjoin the moved node. We approximate

it by sampling a number of points (10 in our implementation) along the segment and compute the

quality of the resulting mesh if we were to reposition u2 there. We then choose the position that

yields the best mesh quality. This repositioning is part of the candidate operation, and is taken into

account when the best operation is chosen.

Candidate Remeshing Operations For Needle Retraction

Needle retraction uses somewhat different candidate operations. The only operation we consider

that does not delete the needle tip u1 from the needle mesh is a node snap that moves u1 to unew.

The other candidate operations delete u1 as follows. If u1 was created by the operation on top of

the stack, then the stack is popped and that operation is undone, deleting u1 from both T and �T ;

otherwise, u1 was placed by a node snap, in which case we delete it from the needle mesh �T only.

In either case, one of the standard operations subsequently creates a node at unew, or snaps a node

there. If u1 survives in the tissue mesh, it tends to be close to unew, so we subsequently optimize

the position of u1 (but not u2) as part of the candidate operation. Because u1 no longer lies on the

needle, it can move freely. We approximate the optimum placement of u1 by uniformly sampling

along the ray that originates at unew, points directly away from u2 and terminates at the closest

intersection with a face of a tetrahedron in T . In our implementation, we choose the position that

51

maximizes the mesh quality among the 10 samples.

Our remeshing procedure is summarized in Algorithm 2. Figure 9.5 depicts mesh modifications

during needle insertion. The remeshing algorithm relies on the assumption that the needle tip will

not move much further than an element’s width in a single time step. If we needed to accommodate

larger needle movements in a single step, then the large motion could be broken down into smaller

substeps with multiple applications of the inexpensive remeshing algorithm.

Algorithm 2 Tissue remeshing at the needle tip
1: /* Build set S of candidate operations */
2: S ← { node snap, moving needle tip u1 to unew}
3: t ← tetrahedron in T containing unew
4: if s1 = DYNAMIC+ (the needle is penetrating) then
5: S ← S ∪ set of standard operations on t that place a node (other than u1) at unew that is

connected to u1, then optimize the position of u1 constrained to lie on unewu2
6: end if
7: if u1 was created by the operation atop the stack then
8: tundo ← tetrahedron that will contain unew if the operation atop the stack is undone
9: S ← S ∪ set of operations that undo the top stack operation, then perform a standard

operation on tundo that places a node at unew that is connected to (or is) u2, then optimize
the position of the needle node adjoining unew

10: else if s1 = DYNAMIC− (the needle is retracting) then
11: S ← S ∪ set of standard operations on t that place a node at unew that is connected to (or

is) u2, then freely optimize the position of u1.
12: end if
13: T � ← set of tetrahedra deleted/changed by operations in S

14: for each candidate operation o ∈ S do
15: Compute the quality vector for the tetrahedra created by o and the tetrahedra in T � not

deleted by o

16: end for
17: Perform operation that maximizes the quality vector
18: if optimal operation undoes the top stack operation then
19: Pop the stack
20: end if
21: if optimal operation includes a face/edge/tetrahedron split then
22: Push the split operation onto the stack
23: end if

52

Figure 9.5: Cutaway views of the changing mesh at several times during a simulation. The most
recently changed tetrahedra (around the needle tip) are highlighted in blue.

9.1.2 Tip Remeshing Algorithm Analysis

Because of the restricted demands of our application, our remesher is effective at maintaining ele-

ment quality: in all the simulations we have run, after the first twenty time steps, the mesh quality

does not drop below 0.7 times the quality of the worst tetrahedron in the initial mesh and no tetra-

hedron’s dihedral angle has been smaller than 10.3◦ or larger than 160.0◦. During the first few time

steps after the needle punctures the skin, it is impossible to prevent the presence of a very short edge

connecting the needle tip to the mesh surface, with flat tetrahedra adjoining it; but at all other times,

tetrahedron quality is good.

Remeshing cannot always fix inverted elements, but that’s not an impediment, because if an element

has become inverted, the accuracy and stability of the solution are already compromised. If the

needle tip moves beyond its 1-ring neighborhood in a single time step, a tetrahedral element may

become inverted. The quality of the mesh resulting from moving the needle tip to a new position in

a single step is shown in Figure 9.6. It is visible from the figure that the mesh quality tends to be

above zero when the needle does not move too much in a single remeshing step.

In general, we observe from experiments that the algorithm generates mesh with good enough qual-

ity even after many cycles of the needle insertion and retraction.

9.2 Needle Reparameterization

Our needle tip remeshing procedure ensures that the tissue mesh has a sequence of nodes and edges

that corresponds to the part of the needle inside the tissue. These nodes will be the coupling nodes

53

0.00

0.13

0.25

0.38

0.50

0.63

0.75

0.88

1.00

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Figure 9.6: Leftmost: Snapshot of simulation in world space. Left middle: Cutaway mesh in
material space. Green box shows the region that represents the two right plots. Right middle:
Quality of the worst tetrahedron (clamping negative quality to 0, color coded) vs. possible position
of the needle tip in the next time step, in the case of needle retraction. Rightmost: Quality of the
worst tetrahedron vs. possible position of the needle tip, in the case of needle penetration.

54

in the next time step, and their positions are determined by the tissue mesh; that is, x̃k+1
i = x̂

k+1
i .

The FREE nodes’ positions are determined by the solution to Equation (8.1); that is, x̃k+1
i = x̃

∗k+1
i .

The needle sliding at a DYNAMIC node implies that it no longer represents the same point on the

needle as it did before the time step. Moreover, remeshing creates and deletes nodes, and the

simulation does not keep the needle perfectly inextensible, so the needle length varies slightly.

Therefore, we reparametrize the needle and interpolate physical quantities from before to after the

time step.

We parametrize each node i existing before the time step by its distance d∗i from the base of the nee-

dle, and each node j existing after by its distance dj from the base after the time step. (We compute

these distances as sums of line segment lengths, but one could use the arc length of an interpolating

curve instead.) Because the needle is not perfectly inextensible, we scale all the distances after the

time step so the values of d∗ and d at the needle tip are equal.

To compute the acceleration ãj at node j after a time step, we build an interpolating function g(·)
such that g(d∗i) = ã

∗
i , where the right-hand side comes from the solution of Equation (8.1), then

set ãj = g(dj), as illustrated in Figure 9.7. We use Akima’s interpolation [2] to construct the

interpolating functions for the parameters used in the needle force computations of Bergou et al.[11]

and Spillmann and Teschner [61], such as the twist angle θi (the angle of deviation from the Bishop

frame at node i) and the rest curvature ω̄i. Akima’s interpolation function is a piecewise cubic C1

continuous polynomial. Each piece is constructed from only next neighbor points and hence is very

efficient. We treat the rest lengths l̄j of the needle edges as a special case, by first constructing

L̄∗
0 = 0, L̄∗

i =
�i

1 l̄
∗
i , then using Akima’s interpolation for L̄, then setting l̄q = L̄q − L̄q−1. We

use piecewise linear interpolation for velocity and acceleration, since Akima’s interpolation is not

monotonic and could compromise stability.

9.2.1 Needle Node Splitting and Merging

A needle edge outside the tissue can become too short or too long in two places: where the needle

exits the guide sleeve (see Section 10.2), and where the needle enters the tissue. Thus, we merge

nodes that are too close together (shorter than half the minimum initial edge length), moving a FREE

node onto the node on the surface of the tissue or the end of the sleeve; and we split edges that are

too long (over four times the maximum initial edge length), all before reparameterizing. To split an

edge, we place a new node at the midpoint of an interpolating cubic curve.

55

Figure 9.7: Needle reparameterization. The numbers are d∗ (top) and d (bottom). The red arrows
indicate which old nodes and new nodes’ quantities are related via piecewise linear interpolation.

56

Chapter 10

Bevel tip and Base Manipulation

The simulation method described so far suffices to model a needle whose tip is symmetric, causing

it to penetrate tissue in a straight line. However, surgeons can more easily circumvent obstacles

by using bevel-tip needles that move on curved paths because the beveled tip compresses tissue

asymmetrically [74]. In this chapter, we will describe the extension necessary for simulating a

bevel tip needle. There are three manipulations that can be used to control the needle: rotating its

base, inserting or retracting the needle through the guide sleeve, and moving the catheter. We will

also explain how the simulator can support these manipulations.

10.1 An Extension to Handle a Bevel Tip Needle

Bevel-tip needles can move on curved paths because the beveled tip compresses tissue asymmetri-

cally. As shown in Figure 10.1a, the needle moves from left to right and the bevel tip cut though

the tissue and compress the portion of the tissue above it. The compressed tissue hence exerts an

elastic force on the needle and causes it to bend. This phenomenon occurs at a scale too small for

the tetrahedral mesh to simulate directly.

Instead, we approximate the effect by adding a displacement to the needle tip material coordinate

unew. This will induce an elastic force that will push the tip of the needle laterally. The displacement

is added along the second axis of the local coordinate frame of the needle tip, m2 as defined by

Bergou et al. [11], which correspond to the direction that the needle supposed to bend transformed

into the material coordinate. The magnitude of the displacement is h = d tanψ, where d is the

57

Material space World space

time t

time t+!t

a) b)

Tissue elastic force

h

d

d

h

!

!

Figure 10.1: a) As the needle penetrates the tissue, the bevel tip compresses the tissue in one
direction more than the other, inducing an asymmetric elastic tissue force that causes the needle
to bend. As the needle moves a distance d, it displaces the tissue on one side by a distance of
h = d tanψ. b) The current tip position appears as a blue circle. The new tip position appears as a
hollow red circle. The new tip position is displaced to the solid red circle in material space, but not
in world space. This displacement simulates a strain near the needle tip that will bend the needle in
subsequent time steps.

distance the tip moves along the tangential direction ti during the current time step, and ψ is the

bevel angle depicted in Figure 10.1b.

The amount of the needle bending depends on the stiffness of tissue because for the same displace-

ment, stiffer tissue exerts more elastic force on the needle tip and hence the needle will bend more.

This is consistent with the observation made by Webster et al. [73] on the insertion of a Nitinol

needle into artificial tissue phantoms.

10.2 Needle Manipulations

Steerable needles offer four control parameters to the surgeon as shown in Figure 10.2:

1. vsleeve, the rigid-body velocity of the sleeve that holds the base of the needle.

58

Figure 10.2: Four manipulations: 1) moving the sleeve that holds needle base with velocity vsleeve;
2) changing the orientation of the sleeve with angular velocity ωsleeve; 3) inserting needle with speed
vinsert, which will be negative for retraction; 4) twisting the needle with speed φ.

2. ωsleeve, the rigid-body angular velocity of the sleeve.

3. vinsert, the speed at which the needle advances from the guide sleeve.

4. φ, the twisting speed of the needle which will be positive for counter-clockwise twisting and

negative for clockwise twisting.

The position and the orientation of the sleeve are integrated over time in a similar fashion to the

rigid body simulation presented by Baraff in [10]. The portion of the needle inside the sleeve is

mechanically constrained to move with the sleeve. To facilitate this in our simulator, we add two

nodes to the needle mesh and fix their velocities that of the sleeve determined by vsleeve and ωsleeve.

We must constrain two nodes because the direction of the edge at the base of the needle is dictated

by the sleeve orientation.

To push/retract the needle out through the sleeve, we increase/decrease the rest length of the second

edge (just outside the sleeve) by vinsert�t. We split the edge if it is longer than lmax and merge the

two end points of the edge if it is shorter than lmin. This ensures that the needle mesh is suitable for

simulation. We use lmax = 1 cm and lmin = 2 mm in our experiments.

To rotate the base, we add φ�t to θi at the needle’s base node i. The needle simulation propagates

this rotation to the bevel tip appropriately.

59

Chapter 11

Optimizations

To achieve interactive performance for a reasonably high-resolution simulation mesh, we employ

several optimization techniques. First we discuss how we accelerate the LCP solver, which is the

bottleneck of the simulation. We then discuss how we optimize the conjugate gradient computation.

We next explain how we update the non-zero pattern of the sparse matrix dynamically. Finally, we

describe how we incrementally update the Jacobian matrices.

11.1 Accelerating the LCP Solver

The simulation’s bottleneck is solving linear complementarity problems. The speed of solving LCP

depends crucially on rapidly determining the friction state variables si. Empirically, these values

are temporally coherent if the needle is manipulated smoothly (as it should be for this application).

The obvious strategy for guessing the states works well: presume that the state variables remain

the same from time step to time step. However, needle reparametrization means that there is not

necessarily a one-to-one mapping from nodes in one time step to nodes in another. We guess the

state at each new node by using the nearest node from the previous time step.

After solving the coupled system (8.1) for a set of friction states, we check if the constraints (8.8, 8.9,

and 8.10) are satisfied. If not, we try to alter the state of each node whose constraint is not satisfied

using the following rules. If the node is DYNAMIC, change it to STATIC. If the node is STATIC,

change it to DYNAMIC with its sign determined by the coupling constraint force [1 0 0]T · ci.

To avoid trying the same configuration twice, we record those we have tried. If we are about to

60

try one we have already tried, we instead try the next configuration in lexicographic order, with the

node at the tissue entry point acting as the least significant “digit.”

With this heuristic, we find a consistent set of friction states in fewer than 1.2 trials on average in

our examples. Temporal coherence is lost when the needle switches from cutting to withdrawing,

in which case many iterations might be required to find a consistent configuration. We devised two

additional optimizations to keep the frame rate high during these transitions.

Our conjugate gradient solver is always initialized with the solution from the previous (unsuccess-

ful) trial. This simple trick significantly cuts down the number of iterations the conjuage gradient

method takes to converge to a tolerance τsol (by a factor of twenty in our prostate examples). Inter-

estingly, we did not attain speedups by initializing the solver to the solution from the previous time

step.

We took this optimization a step further by deciding whether to change state variables before the

solver fully converges. As soon as the conjugate gradient residual drops below a tolerance τcheck

(which is larger than τsol), we check if any constraints are violated, and switch state variables im-

mediately if they are. In our simulation results, τcheck = 10−3 and τsol = 10−5.

Finally, if a consistent configuration isn’t found within ten trials, we simply accept the last con-

figuration to ensure real-time performance. In our prostate example, our solver found a consistent

configuration within ten trials for 99.6% of the time steps. For those that fail, the resulting forces

and accelerations are close to the true solution. Moreover, the simulator is likely to find the con-

sistent configuration within the next few time steps, because of the warm start. Our LCP solver is

summarized in Algorithm 3.

11.2 Parallel Sparse Conjugate Gradients

We use the OpenMP conjugate gradient implementation, which parallelizes the sparse matrix mul-

tiplication and all the vector operations. To improve the cache performance of sparse matrix access,

we order the tissue mesh nodes with a reverse Cuthill–McKee ordering [18], which puts the nonzero

entries close to the diagonal.

We avoid building a new sparse matrix for each solution by treating the coupling terms separately

from the other terms in the matrix multiplication. In Equation (8.1), the matrices Â and Ã are fixed

61

Algorithm 3 Solve the coupled system, yielding the friction states and the tissue and needle accel-
erations

1: Guess friction states si from previous time step
2: Initialize solution to 0
3: for numTrials ← 0 to maxTrials do
4: Solve linear system (8.1) to tolerance τcheck

5: if the constraints (8.8), (8.9), and (8.10) are satisfied then
6: Continue solving linear system to tolerance τsol

7: if the constraints (8.8), (8.9), and (8.10) are satisfied then
8: return solution
9: end if

10: end if
11: Change friction states si to something new (see §11.1)
12: /* Next iteration will reuse solution from this trial */
13: end for
14: Solve linear system (8.1) to tolerance τsol

15: return (approximate) solution

during an LCP solution, whereas R and Z vary with the coupling states. We never assemble the

third row or column of (8.1); we perform that portion of the matrix-vector multiplication element

by element.

We also experimented with a diagonal preconditioner which does not seem to speedup the conver-

gence. Incomplete Cholesky Factorization can cut down the number of iterations significantly, but

it cost more per iteration and we also need to build it. Using TAUCS [68] for the factorization, we

determine experimentally that it does not yield an overall speed improvement.

11.3 Dynamic Update of Sparse Matrix

We store Â with a dynamic compressed sparse row (CSR) format that can be updated to reflect

tissue remeshing without being reassembled from scratch. The rows of the matrix are stored in a

resizable array. Each compressed row of the matrix is stored in a separate resizable array that can

be resized to accommodate new edges.

The helper data structures that allow efficient update to the matrix consist of a node free list Lg, a

hash table H(i, j) that stores the index of the non-zero corresponding to the matrix entry (i, j) in

the compressed row i and edge free lists Li for node i.

62

As tetrahedra are deleted, created, and modified, we update their contributions to Â. A node addi-

tion can be done by checking if Lg is empty, if so, we add an extra row entry and push to L
g. We

then pop the node’s index from L
g. A node i deletion causes an entire row i and column i to be

set to zero. It is done by first looping through row i and zero out (i, j) and (j, i) (which is done

efficiently by looking up H(j, i)), then update the free list Li and Lj , and finally push i to the free

list Lg. An edge (i, j) update is done by checking H(i, j) if the edge exists, if so, we simply update

it. If not, we check if Li is empty, if so, we add an extra edge entry to row i and push to Li. We

then pop the new edge from Li, update H(i, j) and then update the entry value.

For efficiency, we do not reallocate memory for a resizable array every time a new node (or edge in

a row) is added. We instead reallocate by doubling the physical size of the array and maintain the

current size of the array explicitly. Effectively, this will require only one memory allocation once

every time the number of nodes (or edges in a row) is doubled and is amortized to a small constant

time per new node (or edge) addition.

Moreover, unused column entries in an active row are set to zero. Because remeshing changes only

a small portion of the mesh, the time consumed by these zero entries is negligible compared to

rebuilding the matrix. The most common remeshing operation is to snap a node to the needle tip,

which entails no change to the sparse matrix structure.

11.4 Parallel Incremental Jacobian Update

We also parallelize the computation of the forces and the Jacobian matrices. To reduce lock con-

tention, we partition the mesh with METIS [31], so that the entries modified by one thread do not

overlap much with those of any other.

We observe that the Jacobians tend to change slowly over time, because most tetrahedra deform

little during a time step. Therefore, we only update a tetrahedron’s Jacobian matrix’s contributions

to Â (as determined by Equation (4.4)) when it has changed enough since its last update. The test

is whether

e =

�
max
i,j

|�Uij |max
i,j

|�Vij |
�2

max
i,j

|Nij |max
i,j

|Bij |max(λ,α) (11.1)

exceeds a threshold ethres, where U and V are the SVD rotation matrices mentioned in Section 5.3,

N is a matrix whose columns are area-weighted normal vectors to the tetrahedron faces, and B is

63

ethres % updated F&J (ms) Total frame time (ms) % rel error
0 100.00 12.42 36.30 0.00

100 7.96 3.83 29.90 0.06
1000 3.65 2.52 28.92 0.19

10000 0.58 2.12 28.64 0.16

Table 11.1: For several values of ethres, the % of tetrahedra whose Jacobian matrices are updated per
time step, the time required for the force and Jacobian computations (F&J), the total frame time, and
the relative error in the tip position after four seconds of needle insertion (200 time steps). Values
are for the prostate mesh (∼13,375 tetrahedra) running with seven threads on an 8-core processor.
The relative error for ethres of 10000 is less than that of 1000 just by chance.

the tetrahedron’s barycentric matrix. λ and α are the second coefficients for computing the Piola–

Kirchhoff stress and the damping stress in Irving et al. [29], respectively. Equation 11.1 is an

approximate upper bound on the change in any entry of the Jacobian matrix due to changes in U

and V , for both the elastic and damping forces. Table 11.1 shows the running time reductions and

the relative errors in needle tip position caused by lazy updating for several values of ethres. Lazy

updating reduces the tissue force and Jacobian computation time by 83% and the frame time by

20%, with no more than a 0.2% relative error in the needle tip position.

64

Chapter 12

Results and Discussion

We implemented the simulator in C++ and use it to simulate various scenarios. First, we simulate

the prostate brachytherapy, where the needle is inserted to plant radioactive seeds in the prostrate.

We then demonstrate the steering capability of the bevel tip needle in an artifical example with

two cylindrical obstacles. We then verify the simulation result against a real world experiment on

inserting a needle into a tissue phantom. We next discuss two applications of the simulator in motion

planning research projects and finally suggest future directions for the research.

12.1 Examples

The video accompanying this thesis can be downloaded at http://graphics.cs.berkeley.

edu/papers/Chentanez-ISN-2009-08/Chentanez2009-ISN-hires.mov

12.1.1 Prostate Brachytherapy

Figure 12.1 illustrates our simulations of a prostate cancer brachytherapy procedure, wherein a

needle implants radioactive seeds in the prostrate gland, for both a flexible bevel-tip needle (a)

and a stiff symmetric-tip needle (b). We use isosurface stuffing [36] to generate a tetrahedral

mesh encompassing an anatomically accurate model of the epidermis, dermis, hypodermis, ure-

thra, prostate, perineum, pelvic bone, bulbourethral glands, vasa deferentia, seminal vesicles, and

bladder. The external mesh boundary conforms to the skin, and internal triangular faces conform to

the prostate boundary, separating regions with dissimilar material properties. Material parameters

65

for the prostate and other tissues are inferred from Krouskop et al. [35]. The bone is constrained

not to move. Figure 12.2 and Figure 12.3 show screenshots from the animation of the needle being

inserted into and removed from the tissue for the bevel tip flexible needle and the symmetric tip stiff

needle, respectively. The needles are manipulated both gently and vigorously, to demonstrate the

simulator’s stability.

12.1.2 Obstacle Avoidance

We also constructed an artificial example, shown in Figure 12.4, where we simulate the ability of

the bevel-tip flexible needle to be steered by rotating its base to avoid fixed cylindrical obstacles and

hit a target in a deformable tissue. Figure 12.5 and Figure 12.6 show screenshots of the obstacle

avoidance animation from the side view and from the back view respectively.

12.1.3 Evaluation

To evaluate our simulator, we compare the simulated insertion of steerable needles into gel tissue

phantoms with real-world experiments performed at Johns Hopkins University in 2005, as shown

in Figure 12.7. In these experiments, a robotic device [73] inserts a bevel-tip flexible needle of

diameter 0.83 mm into a 27.1 × 26.5 × 3.9 cm gelatin block. Fiducial markers are placed on the

surface of the gel phantom to track the deformations. The material’s Young’s modulus (E) and

Poisson’s ratio (v) were measured using compression tests on 1.77× 1.77× 1.77 cm samples. The

average and standard deviation (S.D.) are Ē = 125.89 kPa with S.D. = 15.551 kPa and v̄ = 0.453

with S.D. = 0.007. We use the average values in our simulation.

The remaining simulation parameters (tissue damping, needle parameters) were tuned by hand to

match a single-bend experiment, where the needle is inserted and retracted from the tissue without

twisting. The same parameters are then used without re-tuning in the second double-bend exper-

iment, where the needle is twisted 180◦ halfway through insertion. Figure 12.8 and Figure 12.9

show the screenshots of the videos with the simulated markers and needles overlaid on top for the

single-bend and the double-bend experiments respectively.

We ran the simulation, tracked the positions of simulated markers as computed by barycentric inter-

polation on the tetrahedra, and compared their positions to the physical markers in the experiment.

66

Ē − 2 S.D. Ē−S.D. Ē Ē+S.D. Ē + 2 S.D.

v̄ − 2 S.D. 0.924 0.763 0.741 0.795 0.888

v̄−S.D. 0.919 0.768 0.755 0.801 0.885

v̄ 0.916 0.761 0.753 0.809 0.893

v̄+S.D. 0.910 0.759 0.755 0.814 0.894

v̄ + 2 S.D. 0.900 0.761 0.752 0.842 0.929

Table 12.1: Sensitivity of the marker positions’ error with respect to the changes in E and v, for the
single-bend experiment. E and v are varied from −2 S.D. to +2 S.D. from the average values. We
can see that the error is relatively more sensitive to the change in E than in v.

The trajectory of the real needle and the simulated needle match to video resolution for both experi-

ments. The root-mean-squared error of the marker positions over time in the single-bend experiment

is 0.75 mm, with 88.3% of errors under 1 mm, and 97.8% of errors under 2 mm. The root-mean-

squared error in the double-bend example is 1.3 mm, with 90.5% of errors under 2 mm, and 97.2%

of errors under 3 mm. Figure 12.10 shows the histogram of the marker tracking error of both experi-

ments. The maximum error over all markers and all time steps for the single-bend experiment is 4.5

mm; for the double-bend, it is 5.3 mm. The simulation also matches the experiments qualitatively,

as the companion video shows. Some of the marker error is attributable to the vision algorithm. It

fails to track several markers (which we exclude from the videos), and several others are tracked

incorrectly so they appear to jitter about. We also ran multiple simulations that varied the values of

E and v up to 2 standard deviations to explore how sensitive the marker position errors were with

respect to the changes in E and v. The resulting errors are shown in Tables 12.1 and 12.2. We can

see that the error is relatively more sensitive to the change in E than in v. The error is also lower

when v is slightly lower than v̄ for both the single-bend and the double-bend experiments. The error

is also lower when we set E to be slightly higher than Ē in the double-bend experiment.

12.1.4 Running Time

All timings in are on an 8-core 3.0 GHz Intel Xeon with 16 GB RAM. Table 12.3 gives the running

times for the different simulations discussed in this section. Observe that speeds for the steerable

needle simulation in prostate tissue range from about 7 frames per second on one core to about 25

frames per second on seven cores. The LCP solver dominates the running time, whereas the local

67

Ē − 2 S.D. Ē−S.D. Ē Ē+S.D. Ē + 2 S.D.

v̄ − 2 S.D. 1.684 1.445 1.276 1.262 1.313

v̄−S.D. 1.702 1.427 1.295 1.265 1.334

v̄ 1.721 1.468 1.309 1.290 1.340

v̄+S.D. 1.762 1.465 1.308 1.304 1.344

v̄ + 2 S.D. 1.758 1.511 1.365 1.426 1.406

Table 12.2: Sensitivity of the marker positions’ error with respect to the changes in E and v, for the
double-bend experiment. E and v are varied from −2 S.D. to +2 S.D. from the average values. We
can see that the error is relatively more sensitive to the change in E than in v.

remeshing step takes a negligible amount of time. Table 12.4 shows the number of LCP trials per

time step and the number of conjugate gradient iterations per linear solution for each example.

12.2 Applications

Our simulator has successfully been used in various surgical planning research as described briefly

below.

12.2.1 Feedback Control for Steerable Needles on Helical Paths in 3D Deformable
Tissue

During the writing of this thesis, members of our project group have developed feedback control

software that uses our simulator to maneuver a steerable needle to a target in a deformable tissue.

Figure 12.11 shows several states during needle insertion. The light blue helical paths are trajecto-

ries chosen by the planner at different instants in time.

The planner assumes that the needle will be inserted with constant velocity and constant base ro-

tation speed which would result in a helical path if the tissue did not deform. Given the current

position and orientation of the needle tip, the planner determines the helical path that intersects the

target or is closest to the target using branch-and-bound and interval analysis techniques. It then

uses the corresponding insertion speed and rotation speed as the control signal. In the next time

step, due to the tissue deformation (computed by our simulator), and the uncertainty in measure-

68

Name Threads Total ms LCP Tissue Simulation Needle Simulation Remeshing

Prostate, Flexible Needle 1 130.9 108.8 13.4 1.3 0.5

Prostate, Flexible Needle 2 77.7 62.3 7.7 1.6 0.5

Prostate, Flexible Needle 3 64.1 51.1 4.7 1.4 0.4

Prostate, Flexible Needle 4 56.6 44.8 3.9 1.4 0.7

Prostate, Flexible Needle 5 47.6 36.7 3.3 1.8 0.4

Prostate, Flexible Needle 6 39.6 28.8 3.0 1.4 0.5

Prostate, Flexible Needle 7 38.5 28.3 2.2 1.4 0.3

Prostate, Stiff Needle 7 38.2 28.7 2.1 1.1 0.5

Two Cylinders 7 24.0 14.4 1.9 0.6 0.9

single-bend 7 22.8 13.2 1.1 0.4 0.9

double-bend 7 33.0 23.6 1.1 0.5 0.5

Table 12.3: Timings (ms) for several examples with different numbers of threads. Examples in-
clude the prostate mesh with flexible bevel-tip needle or stiff symmetric-tip needle, the two-cylinder
example, and the tissue phantom verification experiments with single-bend and double-bend. The
frame time (Total) is divided into the LCP solution (LCP), the force and Jacobian computations for
tissue (Tissue) and needle (Needle), and remeshing and needle reparameterization (Remesh). The
number of tetrahedra/vertices for prostate, two cylinders, and tissue phantoms are 13,375/2,763,
3,248/813, and 2,280/672, respectively.

ments, the needle position and orientation may deviate from the predicted result. The plan is then

recomputed and the new control signal would be used to make trajectory corrections. This feedback

loop is repeated until the tip reach the target or the distance of the tip to the target can no longer be

decreased. The detailed description of the algorithm and the discussion about its accuracy can be

found in the paper by Hauser et al. [28].

12.2.2 Guiding Medical Needles with Single-Point Tissue Manipulation

Our simulator is also used in the work on guiding the medical needle using an external manipulation.

It is an 3D extension of a work on 2D needle guiding by Torabi et al. [69].

The paper discusses the problem of steering a rigid needle during prostate brachytherapy by pushing

the tissue externally using various types of manipulators. It considers moving a single manipulator

69

LCP CG

Name Min Average Max Min Average Max

Prostate, Flexible Needle 1 1.41 10 18 205 652

Prostate, Stiff Needle 1 1.23 4 12 225 536

Two Cylinders 1 1.02 2 42 213 474

single-bend 1 1.17 4 46 234 343

double-bend 1 1.04 3 54 413 686

Table 12.4: Minimum, average, maximum number of trials required for the LCP solver and number
of conjugate gradient (CG) iterations for each linear solution for examples running on seven threads.

at a time. The algorithm proceeds in phases, where in each phase, the controller tries to move

the position of one point inside a tissue, so called point of interest, onto the needle path. In the

initial phases, the goal is to move sensitive tissues away from the needle path to avoid them being

damaged by the needle. In the final phase, the target location is the point of interest and is moved

onto the needle path. In each phase, the controller determines the force at the manipulator based

on the manipulator force profile and the tissue model and uses PI feedback to attempt to reduce the

distance between the point of interest and the needle path.

The algorithm uses a stochastic optimization to pick the needle path that minimizes the cost of the

plan which takes into consideration the amount of force required to complete it. For each candidate

needle path, the algorithm chooses the points of interest by intersecting a cylinder around the needle

path with the geometry of the sensitive tissues and selects the points that locally maximize the

penetration depth. It then selects the manipulation point and the type of manipulator to use for each

point of interest by minimizing a cost metric.

Torabi and his colleagues are now working on using our simulator to extend the result to 3D for both

rigid needle and steerable needle. The screenshots from a preliminary result are shown in Figure

12.12.

12.3 Future Work

There are several interesting ways to extend the versatility of our simulator. The biomedical com-

munity is considering needles with pre-bent tips, giving them a much smaller turning radius [53].

70

Because the bend is not at the needle tip, simulating the needle entails placing a mesh node at a

fixed location in the needle that moves with the needle. This necessitates a change to our remesh-

ing algorithm that makes it difficult to maintain high mesh quality. The pre-bent tip can damage

the tissue near the tip when the needle is twisted. The damage is also likely to happen at a scale

below what the simulation mesh can capture. To approximate the effect of the damage on the tissue

deformation, the material properties of the tissue near the tip may need to be modified.

A second extension would be to use graded meshes, which would allow us to model a larger tissue

yet have higher resolution near the needle. The tissue mesh would initially be relatively coarse.

When the needle comes into contact with the tissue, the tissue mesh is then refined near the needle

tip to be able to capture the delicate interactions of the tissue and the needle. When the needle is

retracted, the tissue mesh is coarsened again to speed up the running time and reduce memory usage.

The difficulty of this extension is to deal with the interaction between the tissue mesh refinement

and the local remeshing algorithm while ensuring a good mesh quality.

A third extension would be to model the torsional stiffness of the needle and the torsional friction

that couples a twisting needle to the surrounding tissue. These are responsible for the lag in the

amount of twist of the needle tip compared to the needle base observed by Webster et al. [71]. Cur-

rently, we treat only sliding friction. To treat torsional friction as well, we would have to reformulate

the force computation and take torque around the needle shaft into account. One may also need to

introduce the torsional friction state at each of the shared nodes.

A fourth extension would be to extend the remeshing to support the simulation of a procedure in

which several needles are inserted to fix the tissue in place. Our simulator can already handle

simulating multiple needles that never touch common elements or are inserted one at a time and

retracted in the reverse order. More general uses would require a more sophisticated remeshing

algorithm that keeps track of the stack of operations for each needle separately. When a mesh

modification operation is considered, one must check if the operation would invalidate any of the

operation in the stacks. If so, either the operation must be disallowed or a modification to the

invalidated stack must be done.

The techniques reported in this thesis may also apply to simulating surgical sutures and staples

where similar one-dimensional structures penetrate into soft tissue which was considered in a recent

work by Guébert et al. [27].

71

Figure 12.1: Screenshots from our prostate brachytherapy simulator. A needle is inserted from
the left through the epidermis and dermis into the prostate gland. a) Bevel-tip flexible needle. b)
Symmetric-tip stiff needle.

72

Figure 12.2: Screenshots of the animation of prostate brachytherapy with a bevel tip flexible needle.
The tissue deformation is visualized with the gray lattice.

73

Figure 12.3: Screenshots of the animation of prostate brachytherapy with a symmetric tip stiff
needle. The tissue deformation is visualized with the gray lattice.

74

Figure 12.4: An example showing the bevel-tip flexible needle steering to avoid two fixed cylindri-
cal obstacles. The base of the needle is rotated to change the direction of bending.

75

Figure 12.5: Screenshots of an animation of needle insertion into an artificial tissue with two
embedded cylindrical obstacles (side view). The example demonstrates the ability of the bevel-tip
steerable needle to avoid an obstacle. The tissue deformation is visualized with the gray lattice.

76

Figure 12.6: Screenshots of an animation of needle insertion into an artificial tissue with two
embedded cylindrical obstacles (back view). The example demonstrates the ability of the bevel-tip
steerable needle to avoid an obstacle. The tissue deformation is visualized with the gray lattice.

77

Physical markers

Simulated markers

Figure 12.7: Comparison of our simulation with two experiments. The simulated needle appears
in yellow. The white squares are the physical markers, and the red dots are the simulated markers.
Our root-mean-squared simulation error (compared with the experiment) is 0.75 mm for the single-
bend experiment (left), and 1.30 mm for the double-bend experiment (right). The double-bend
experiment used the single-bend parameters without re-tuning.

78

Figure 12.8: Screenshots of our simulator result rendered on top of a real-world experiment of
inserting a bevel tip needle into a gel phantom.

79

Figure 12.9: Screenshots of our simulator result rendered on top of a real-world experiment of
inserting a bevel tip needle into a gel phantom. The needle is twisted 180◦ halfway through insertion.

80

Figure 12.10: Histogram of the marker tracking error for the single-bend (top) and the double-bend
(bottom) needle insertion experiments.

81

Figure 12.11: Screenshots of an animation showing how the planning algorithm finds a path by
which a steerable needle can reach a target. The thin blue curve shows the current predicted trajec-
tory, ignoring tissue deformation.

82

Figure 12.12: A planning algorithm computes the needle insertion location, the manipulation loca-
tion and the force that should be applied to deform the tissue externally so that the needle insertion
can reach the target. The figure shows the screenshots during a simulation where the tissue is ma-
nipulated at a single point on the bottom right.

83

Bibliography

[1] Niki Abolhassani, Rajni V. Patel, and Mehrdad Moallem. Needle insertion into soft tissue: A

survey. Medical Engineering & Physics, 29(4):413–431, May 2007.

[2] Hiroshi Akima. A new method of interpolation and smooth curve fitting based on local proce-

dures. J. ACM, 17(4):589–602, October 1970.

[3] Jérémie Allard, Stéphane Cotin, Franćois Faure, Pierre-Jean Bensoussan, Franćois Poyer,

Christian Duriez, Hervé Delingette, and Laurent Grisoni. SOFA—An open source frame-

work for medical simulation. In Medicine Meets Virtual Reality 15, pages 13–18. IOS Press,

February 2007.

[4] Ron Alterovitz and Ken Goldberg. Motion Planning in Medicine: Optimization and Simu-

lation Algorithms for Image-Guided Procedures, volume 50 of Springer Tracts in Advanced

Robotics. Springer, Berlin, Germany, 2008.

[5] Ron Alterovitz, Ken Goldberg, and Allison M. Okamura. Planning for steerable bevel-tip

needle insertion through 2D soft tissue with obstacles. In IEEE International Conference on

Robotics and Automation, pages 1652–1657, April 2005.

[6] Ron Alterovitz, Jean Pouliot, Richard Taschereau, I-Chow Hsu, and Ken Goldberg. Simulating

needle insertion and radioactive seed implantation for prostate brachytherapy. In Medicine

Meets Virtual Reality 11, pages 19–25. IOS Press, January 2003.

[7] Ron Alterovitz, Thierry Siméon, and Ken Goldberg. The stochastic motion roadmap: A sam-

pling framework for planning with Markov motion uncertainty. In Robotics: Science and

Systems III, pages 233–241, June 2007.

[8] S. S. Antman. Nonlinear Problems of Elasticity. Springer Verlag, 1995.

84

[9] J. A. Bærentzen and H. Aanæs. Computing discrete signed distance fields from triangle

meshes. Technical report, Informatics and Mathematical Modelling, Technical University of

Denmark, DTU, Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby, 2002.

[10] David Baraff. An introduction to physically based modeling, rigid body simulation i - uncon-

strained rigid body dynamics.

[11] Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun. Dis-

crete elastic rods. ACM Transactions on Graphics, 27(3):63:1–63:12, August 2008.

[12] Florence Bertails. Linear time super-helices. Computer Graphics Forum, 28(2):417–426,

April 2009.

[13] Florence Bertails, Basile Audoly, Marie-Paule Cani, Bernard Querleux, Frédéric Leroy, and

Jean-Luc Lévêque. Super-helices for predicting the dynamics of natural hair. ACM Transaction

on Graphics, 25(3):1180–1187, July 2006.

[14] M. Cenk Çavuşoğlu, Tolga G. Goktekin, Frank Tendick, and Shankar Sastry. GiPSi: An

open source/open architecture software development framework for surgical simulation. In

Medicine Meets Virtual Reality 12, pages 46–48, 2004.

[15] Nuttapong Chentanez, Ron Alterovitz, Daniel Ritchie, Lita Cho, Kris K. Hauser, Ken Gold-

berg, Jonathan R. Shewchuk, and James F. O’Brien. Interactive simulation of surgical needle

insertion and steering. In Proceedings of ACM SIGGRAPH 2009, pages 88:1–10, Aug 2009.

[16] Robert D. Cook. Finite Element Modeling for Stress Analysis. John Wiley & Sonsl, 1995.

[17] Jessica R. Crouch, Chad M. Schneider, Josh Wainer, and Allison M. Okamura. A velocity-

dependent model for needle insertion in soft tissue. In Medical Image Computing and

Computer-Assisted Intervention, volume 3749 of LNCS, pages 624–632. Springer, Berlin, Oc-

tober 2005.

[18] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric matrices. In Proceed-

ings of the 24th National Conference, pages 157–172, New York, 1969. ACM.

[19] Ehsan Dehghan and Septimiu E. Salcudean. Needle insertion point and orientation optimiza-

tion in non-linear tissue with application to brachytherapy. In 2007 IEEE International Con-

ference on Robotics and Automation, pages 2267–2272, Rome, April 2007.

85

[20] Simon P. DiMaio and S. E. Salcudean. Needle insertion modelling and simulation. IEEE

Transactions on Robotics and Automation, 19(5):864–875, October 2003.

[21] Simon P. DiMaio and S. E. Salcudean. Needle steering and motion planning in soft tissues.

IEEE Transactions on Biomedical Engineering, 52(6):965–974, June 2005.

[22] Carlos A. Felippa. A systematic approach to the element-independent corotational dynamics of

finite elements. Technical Report CU-CAS-00-03, Center for Aerospace Structures, Colorado,

2000.

[23] Y. C. Fung. A First Course in Continuum Mechanics. Prentice Hall, 3rd edition, 1994.

[24] Anthony G. Gallagher, E. Matt Ritter, Howard Champion, Gerald Higgins, Marvin P. Fried,

Gerald Moses, C. Daniel Smith, and Richard M. Satava. Virtual reality simulation for the op-

erating room: Proficiency-based training as a paradigm shift in surgical skills training. Annals

of Surgery, 241(2):364–372, February 2005.

[25] Orcun Goksel, Septimiu E. Salcudean, and Simon P. DiMaio. 3D simulation of needle-tissue

interaction with application to prostate brachytherapy. Computer Aided Surgery, 11(6):279–

288, November 2006.

[26] M. Grégoire and E. Schömer. Interactive simulation of one-dimensional flexible parts. Pro-

ceedings of the 2006 Symposium on Solid and Physical Modeling, June 2006.

[27] Christophe Guébert, Christian Duriez, Stéphane Cotin, Jérémie Allard, and Laurent Grisoni.

Suturing simulation based on complementarity constraints. In Proceedings of SCA 2009

(poster), August 2009.

[28] Kris Hauser, Ron Alterovitz, Nuttapong Chentanez, Allison Okamura, and Ken Goldberg.

Feedback control for steering needles through 3D deformable tissue using helical paths. In

Robotics: Science and Systems V, Seattle, Washington, June 2009.

[29] G. Irving, J. Teran, and R. Fedkiw. Invertible finite elements for robust simulation of large

deformation. In Proceedings of the 2004 Symposium on Computer Animation, pages 131–140,

Grenoble, France, 2004.

[30] Yasushi Ito, Alan M. Shih, and Bharat K. Soni. Reliable isotropic tetrahedral mesh generation

86

based on an advancing front method. In International Meshing Roundtable, pages 95–106,

2004.

[31] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392, August 1998.

[32] Lily Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun. Numerical coarsen-

ing of inhomogeneous elastic materials. In SIGGRAPH ’09: ACM SIGGRAPH 2009 papers,

pages 1–8, New York, NY, USA, 2009. ACM.

[33] Bryan Matthew Klingner and Jonathan Richard Shewchuk. Aggressive tetrahedral mesh im-

provement. In Proceedings of the 16th International Meshing Roundtable, pages 3–23, Seattle,

Washington, October 2007.

[34] L. T. Kohn, J. M. Corrigan, and M. S. Donaldson. To Err Is Human: Building a Safer Health

System. New York: National Academy, 2000.

[35] T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garria, and T. Hall. Elastic moduli of breast

and prostate tissues under compression. Ultrasonic Imaging, 20(4):260–274, October 1998.

[36] François Labelle and Jonathan Richard Shewchuk. Isosurface stuffing: Fast tetrahedral meshes

with good dihedral angles. ACM Transactions on Graphics, 26(3):57:1–57:10, July 2007.

[37] Randall J. Leveque. Finite Volume Methods for Hyperbolic Problems. Cambridge University

Press, 2002.

[38] Alex Lindblad and George Turkiyyah. A physically-based framework for real-time haptic

cutting and interaction with 3D continuum models. In Proceedings of the 2007 Symposium on

Solid and Physical Modeling, pages 421–429, New York, June 2007. ACM.

[39] Achim Loock and Elmar Schömer. A virtual environment for interactive assembly simula-

tion: From rigid bodies to deformable cables. In 5th World Multiconference on Systemics,

Cybernetics and Informatics, pages 325–332, July 2001.

[40] Maud Marchal, E. Promayon, and J. Troccaz. Simulating prostate surgical procedures with a

discrete soft tissue model. In Third Eurographics Workshop in Virtual Reality Interactions and

Physical Simulations, pages 109–118, November 2006.

87

[41] Roummel F. Marcia. On solving sparse symmetric linear systems whose definiteness is un-

known. Applied Numerical Mathematics, 58(4):449–458, April 2008.

[42] Matthias Müller and Markus H. Gross. Interactive virtual materials. In Graphics Interface

2004, pages 239–246, London, Ontario, Canada, 2004.

[43] Han-Wen Nienhuys and A. Frank van der Stappen. A surgery simulation supporting cuts and

finite element deformation. In Medical Image Computing and Computer-Assisted Intervention,

4th International Conference, pages 153–160, October 2001.

[44] Han-Wen Nienhuys and A. Frank van der Stappen. Interactive needle insertions in 3D non-

linear material. Technical Report UU-CS-2003-019, Institute of Information and Computing

Sciences, Utrecht University, 2003.

[45] James F. O’Brien and Jessica K. Hodgins. Graphical modeling and animation of brittle frac-

ture. In Computer Graphics (SIGGRAPH ’99 Proceedings), pages 137–146, New York, Au-

gust 1999. ACM Press.

[46] M. D. O’Leary, C. Simone, T. Washio, K. Yoshinaka, and A. M. Okamura. Robotic nee-

dle insertion: Effects of friction and needle geometry. In IEEE International Conference on

Robotics and Automation, pages 1774–1780, September 2003.

[47] Dinesh K. Pai. STRANDS: Interactive simulation of thin solids using Cosserat models. Com-

puter Graphics Forum, 21(3):347–352, September 2002.

[48] C. C. Paige and Michael A. Saunders. Solution of sparse indefinite systems of linear equations.

SIAM Journal on Numerical Analysis, 12(4):617–629, September 1975.

[49] C. Paloc, A. Faraci, and F. Bello. Online remeshing for soft tissue simulation in surgical

training. IEEE Computer Graphics & Applications, 26(6):24–34, November 2006.

[50] V. N. Parthasarathy, C. M. Graichen, and A. F. Hathaway. A comparison of tetrahedron quality

measures. Finite Elements in Analysis and Design, 15(3):255–261, January 1994.

[51] Guillaume Picinbono, Hervé Delingette, and Nicholas Ayache. Non-linear anisotropic elastic-

ity for real-time surgery simulation. Graphical Models, 65(5):305–321, September 2003.

[52] Cao D. Q., Liu Dongsheng, and Wang Charles. H. t. Three dimensional nonlinear dynamics

88

of slender structures: Cosserat rod element approach. International Journal of Solids and

Structures, 43(3-4):760–783, 2006.

[53] Kyle B. Reed, Vinutha Kallem, Ron Alterovitz, Ken Goldberg, Allison M. Okamura, and

Noah J. Cowan. Integrated planning and image-guided control for planar needle steer-

ing. In Proceedings of the Second IEEE/RAS-EMBS International Conference on Biomedical

Robotics and Biomechatronics, pages 819–824, Scottsdale, Arizona, October 2008.

[54] K. Renze and J. Oliver. Generalized unstructured decimation. IEEE Computer Graphics &

Applications, 16(6):24–32, 1996.

[55] Richard M. Satava. Identification and reduction of surgical error using simulation. Minimally

Invasive Therapy & Allied Technologies, 14(4–5):257–261, September 2005.

[56] Neal E. Seymour, Anthony G. Gallagher, Sanziana A. Roman, Michael K. O’Brien, Vipin K.

Bansal, Dana K. Andersen, and Richard M. Satava. Virtual reality training improves operat-

ing room performance: Results of a randomized, double-blinded study. Annals of Surgery,

236(4):458–463, October 2002.

[57] Jonathan Richard Shewchuk. Tetrahedral mesh generation by Delaunay refinement. In Pro-

ceedings of the Fourteenth Annual Symposium on Computational Geometry, pages 86–95,

Minneapolis, Minnesota, June 1998. Association for Computing Machinery.

[58] Eftychios Sifakis, Tamar Shinar, Geoffrey Irving, and Ronald Fedkiw. Hybrid simulation of

deformable solids. In Proceedings of the 2007 Symposium on Computer Animation, pages

81–90, 2007.

[59] J. C. Simo. A finite strain beam formulation. The three-dimensional dynamic problem. Com-

puter Methods in Applied Mechanics and Engineering, 49:55–70, 1985.

[60] C. Simone and A. M. Okamura. Modeling of needle insertion forces for robot-assisted per-

cutaneous therapy. In IEEE International Conference on Robotics and Automation, pages

2085–2091, May 2002.

[61] J. Spillmann and M. Teschner. CORDE: Cosserat rod elements for the dynamic simulation of

one-dimensional elastic objects. In Proceedings of the 2007 Symposium on Computer Anima-

tion, pages 63–72. Eurographics Association, 2007.

89

[62] Jonas Spillmann and Matthias Teschner. An adaptive contact model for the robust simulation

of knots. Computer Graphics Forum, 27(2):497–506, April 2008.

[63] R. Taschereau, J. Pouliot, J. Roy, and D. Tremblay. Seed misplacement and stabilizing needles

in transperineal permanent prostate implants. Radiotherapy and Oncology, 55(1):59–63, April

2000.

[64] Russel H. Taylor. A perspective on medical robotics. Proceedings of the IEEE, 94(9):1652–

1664, September 2006.

[65] J. Teran, S. Blemker, V. Ng Thow Hing, and R. Fedkiw. Finite volume methods for the simu-

lation of skeletal muscle. In the ACM SIGGRAPH Symposium on Computer Animation, pages

68–74, July 2003.

[66] Demetri Terzopoulos and Kurt Fleischer. Modeling inelastic deformation: viscolelasticity,

plasticity, fracture. In SIGGRAPH ’88: Proceedings of the 15th annual conference on Com-

puter graphics and interactive techniques, pages 269–278, New York, NY, USA, 1988. ACM.

[67] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically deformable mod-

els. In Computer Graphics (SIGGRAPH ’87 Proceedings), pages 205–214, 1987.

[68] Sivan Toledo. Taucs: A library of sparse linear solvers. http://www.tau.ac.il/ stoledo/taucs/,

2003.

[69] Maysam Torabi, Kris Hauser, Ron Alterovitz, Vincent Duindam, and Ken Goldberg. Guiding

medical needles using single-point tissue manipulation. May 2009.

[70] Xiaogang Wang and Aaron Fenster. A virtual reality based 3D real-time interactive brachyther-

apy simulation of needle insertion and seed implantation. In 2004 IEEE International Sympo-

sium on Biomedical Imaging, pages 280–283, April 2004.

[71] Robert J. Webster III, Noah J. Cowan, Gregory Chirikjian, and Allison M. Okamura. Nonholo-

nomic modeling of needle steering. In Proc. 9th International Symposium on Experimental

Robotics, June 2004.

[72] Robert J. Webster III, Jin Seob Kim, Noah J. Cowan, Gregory S. Chirikjian, and Allison M.

Okamura. Nonholonomic modeling of needle steering. Int. Journal of Robotics Research,

25(5–6):509–525, May 2006.

90

[73] Robert J. Webster III, Jasenka Memisevic, and Allison M. Okamura. Design considerations for

robotic needle steering. In 2005 IEEE International Conference on Robotics and Automation,

pages 3588–3594, Barcelona, Spain, April 2005.

[74] Robert J. Webster III, Allison M. Okamura, Noah J. Cowan, Gregory S. Chirikjian, Ken Gold-

berg, and Ron Alterovitz. Distal bevel-tip needle control device and algorithm. U.S. patent

application number 11/436,995, May 2005.

[75] Martin Wicke, Daniel Ritchie, Bryan M. Klingner, Sebastian Burke, Jonathan R. Shewchuk,

and James F. O’Brien. Dynamic local remeshing for elastoplastic simulation. In Proceedings

of ACM SIGGRAPH 2010, pages 1–11, July 2010.

