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The Earlier the Better: A Theory of Timed Actor Interfaces ∗

Marc Geilen Stavros Tripakis Maarten Wiggers

Abstract

Programming embedded and cyber-physical systems requires attention not only to functional behavior
and correctness, but also to non-functional aspects and specifically timing and performance constraints.
A structured, compositional, model-based approach based on stepwise refinement and abstraction tech-
niques can support the development process, increase its quality and reduce development time through
automation of synthesis, analysis or verification. For this purpose, we introduce in this paper a general
theory of timed actor interfaces. Our theory supports a notion of refinement that is based on the principle
of worst-case design that permeates the world of performance-critical systems. This is in contrast with
the classical behavioral and functional refinements based on restricting or enlarging sets of behaviors.
An important feature of our refinement is that it allows time-deterministic abstractions to be made of
time-non-deterministic systems, improving efficiency and reducing complexity of formal analysis. We
also show how our theory relates to, and can be used to reconcile a number of existing time and per-
formance models and how their established theories can be exploited to represent and analyze interface
specifications and refinement steps.

1 Introduction

Advances in sensor and computer hardware currently enable new classes of applications, often described
under the terms embedded or cyber-physical systems (ECPS). Examples of such systems can be found in the
domains of robotics, health care, transportation, and energy. ECPS are different from traditional computing
systems, because in ECPS the computer is in tight interaction with a physical environment, which it monitors
and possibly controls. The requirements of the closed-loop system (computer + environment) are not purely
functional in the traditional computer-science view. Instead, they often involve timing or performance
properties, such as throughput or latency.

Abstraction and compositionality have been two key principles in developing large and complex software
systems. Although a large number of methods employing these principles exist in the literature to deal
with functional properties (e.g., see [5, 32, 33, 11]), less attention has been paid to timing and performance.
This paper contributes toward filling this gap. Our approach can be termed model based. High-level models
that are suitable for (often automated) analysis are used as specifications or for design-space exploration.
Refinement and abstraction steps are used to move between high-level models, lower-level models and im-
plementations: see Section 2 for an example. The process guarantees that the results of the analysis (e.g.,
bounds on throughput or latency) are preserved during refinement. Our paper defines a general model and
a suitable notion of abstraction and refinement that support this process. The model is compositional in the
sense that refinement between models consisting of many components can be achieved by refining individual
components separately.

Our treatment follows so-called interface theories [14], which can be seen as type theories focusing on
dynamic and concurrent behavior. Our interfaces, called actor interfaces, are inspired by actor-oriented
models of computation [1, 29] such as process networks [25] and data flow [17].

∗Marc Geilen is with the Eindhoven University of Technology, m.c.w.geilen@tue.nl. Stavros Tripakis is with the
University of California, Berkeley, stavros@eecs.berkeley.edu. Maarten Wiggers is with the University of Twente,
m.h.wiggers@utwente.nl.
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Actors operate by consuming and producing tokens on their input and output ports, respectively. Since
our primary goal is timing and performance analysis, we completely abstract away from token values, and
keep only the times in which these tokens are produced. Actors are then defined as relations between input
and output sequences of discrete events occurring in a given time axis. Examples of such event sequences
are shown in Figure 2.

The main novelty of our theory lies in its notion of refinement, which is based on the principle: the earlier
the better. In particular, actor A refines actor B if, for the same input, A produces no fewer events and
no later, in the worst case, than those produced by B. For example, an actor that non-deterministically
delays its input by some time t ∈ [1, 2] refines an actor that deterministically delays its input by a constant
time 5. This is in sharp contrast with most standard notions of refinement which rely on the principle that
the implementation should have fewer possible behaviors and thus be “more deterministic” (at the outputs)
than the specification.

The earlier-is-better refinement principle is interesting because it allows deterministic abstractions of
non-deterministic systems: Section 2 presents an example. System implementations are often viewed as time-
non-deterministic because of high variability in execution and communication delays, dynamic scheduling,
and other effects that are expensive or impossible to model precisely. Time-deterministic models, on the
other hand, suffer less from state explosion problems, and are also more suitable for deriving analytic bounds.

The main contributions of this work are the following:
• We develop an interface theory of timed actors with a refinement relation that follows the earlier-is-better

principle and preserves worst-case bounds on performance metrics (throughput, latency). (Sections 4–7).
• Our framework unifies existing models (SDF and variants, automata, service curves, etc.) by treating

actors semantically, as relations on event sequences, rather than syntactically, as defined by specific
models such as automata or dataflow. (Section 9).

More specifically, Section 4 introduces actors. Section 5 defines serial, parallel, and feedback composition
operators on actors. Section 6 presents refinement and the conditions under which it is preserved by com-
position. Section 7 defines throughput and latency and shows that worst-case bounds on these metrics are
preserved by refinement. We also define a notion of buffer requirements in Section 8 and show that worst-
case bounds on these requirements are preserved by refinement. In Section 9, we show examples of models
that can be cast into our framework, and provide algorithms for problems such as checking refinement and
computing compositions, throughput and latency.

2 Motivating Example

To illustrate the use of our framework, we present an example of an MP3 play-back application. The
application is based on a fragment of the car radio case study presented in [45]. Our goal is to show how
such an application can be handled within our framework, using stepwise refinement from specification to
implementation, such that performance guarantees are preserved during the process.

The layers of the refinement process are shown in Figure 1. The top layer captures the specification. It
consists of a single actor SPEC, with a single output port, and a single event sequence τ at this port, defined
by τ(n) = 50 + n/44.1 ms, for n ∈ N. That is, the n-th event in the sequence occurs at time τ(n). SPEC
specifies the required behavior of an MP3 player where audio samples are produced at a rate of 44.1 kHz,
starting with an initial 50 ms delay.

Note that SPEC has no inputs: for simplicity, we do not model input tokens, assuming they are always
available for consumption. Also note that the system typically includes a component such as a digital-to-
analog converter (DAC) which consumes the audio samples produced at port p, buffers them and reproduces
them periodically. We omit DAC since it does not take part in the refinement process.

The next layer is an application model consisting of actors DEC (decoder), SRC (sample-rate converter),
and actor D1 explained below. DEC and SRC are timed synchronous data flow (SDF) [28] actors. SDF
actors communicate by conceptually unbounded FIFO queues. They “fire” as soon as a fixed number of
tokens become available at their input queues and, after a fixed duration, produce a fixed number of tokens
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Figure 1: Successive refinements of an MP3 playback application.

at their output queues. For instance, DEC consumes and produces 1152 tokens per firing on the queues
from and to the SRC actor. Each firing of DEC takes 7.51 ms. For a formal definition of SDF actors see
Section 9.1. D1 is an actor modeling 2016 initial tokens on the queue from SRC to DEC. Formally, it is
an instance of parameterized actor Ik defined in Example 17. All dataflow actors in Figure 1 (DEC, SRC,
DEC2, DEC3 and NC) implicitly have a self-edge with a single initial token so that firings of the same actor
do not overlap (i.e., each firing completes before the next one starts).

The global application model is a single composite actor APP obtained by composing the three actors
above, first in sequence and then in feedback, and then hiding all ports except the output port p of SRC.
Section 5 precisely defines the compositions and hiding. Because APP is an SDF model and hence deter-
ministic, APP produces a single event sequence τb at p. We have captured APP in the dataflow analysis
tool SDF3 (http://www.es.ele.tue.nl/sdf3/) and have used the tool to check that τb refines τ , i.e., that
each event in τb occurs no later than the corresponding event in τ . As a result, APP refines SPEC.

The motivation for the third layer is buffer considerations. In this layer, the SDF actor DEC is replaced
by the cyclo-static data flow (CSDF) [7] actor DEC2. This substitution results in smaller buffers on the queue
from SRC to DEC2 [45]. CSDF actors generalize SDF actors by allowing the token consumption/production
rates to vary periodically, as an SDF actor that cycles between a finite set of firing phases. In our example,
DEC2 has 39 phases, captured by the notation r = [0, 0, [32]18, 0, [32]18]. In the first two phases DEC decodes
frame headers without consuming nor producing any tokens. The subsequent 18 phases each consume and
produce 32 tokens, and are followed by a header decoding phase with no tokens consumed or produced. Fi-
nally there are 18 more phases that each consume and produce 32 tokens. This sequence of phases is repeated
for each MP3 frame. The durations of these phases are given by e2 = [670, 2700, [40]18, 2700, [40]18]µs. That
is, phase 1 takes 670 µs, phase 2 takes 2700 µs, and so on.

Using arguments similar to those presented later in Example 8, we can show that DEC2 refines DEC.
The composite actor APP2 is produced by first refining DEC to DEC2, and then reducing the number of
initial tokens from D1 to D2, while maintaining that APP2 refines APP. The latter is ensured by using SDF3
to compute τc for a given D2, and checking that τc refines τb.

The bottom layer is an architecture aware model (AA) that is close to a distributed implementation on a
multiprocessor architecture with network-on-chip (NoC) communication. In this layer DEC2 is replaced by
the composition of DEC3, D3 and NC. DEC3 is identical to DEC2 except for its firing durations which are
reduced to e3 = [670, 2700, [30]18, 2700, [30]18]µs, because the communication is modeled separately. NC is
an SDF actor that models the NoC behavior. It can be shown that the composition of DEC3, NC and D3
refines DEC2. This and our compositionality Propositions 5, 6 and 7 imply that AA refines APP2.

The final implementation (not shown in the figure) can be compositionally shown to refine the AA model.
For instance, the NC actor conservatively abstracts the NoC implementation [20]. It is important to mention

3

http://www.es.ele.tue.nl/sdf3/
http://www.es.ele.tue.nl/sdf3/
http://www.es.ele.tue.nl/sdf3/


that although implementations are time-non-deterministic for multiple reasons, e.g., software execution times
or run-time scheduling, the models in Figure 1 are time-deterministic.

3 Related Work

Abstraction and compositionality have been extensively studied from an untimed perspective, focusing on
functional correctness (e.g., see [5, 32, 33, 11]). Timing has also been considered, implicitly or explicitly, in a
number of frameworks. Our treatment has been inspired in particular by interface theories such as interface
automata [14]. Although such automata have no explicit notion of time, discrete time can be implicitly
modeled by adding a special “tick” output. A synchronous and symbolic version of the theory of [14] is
proposed in [42], where discrete time is implicitly measured by synchronous rounds. Our work has been
inspired by [42] which also uses a relational framework, although different from the one used in this paper.
[15] follows [14] but uses timed automata [2] instead of discrete automata. However, a notion of refinement
is not defined in [15]. [13] extends [15] with a notion of refinement in the spirit of alternating simulation [3],
adapted for timed systems. Other refinement variants for timed automata include the simulation-relation
in [38], the trace-inclusion based refinement in [10] and the one used for conformance testing in [27].

The refinement notions used in all works above differ from ours in a fundamental way: in our case, earlier
is better, whereas in the above works, if the implementation can produce an output a at some time t, then the
(refined) specification must also be able to produce a at the same time t. Thus, an implementation that can
produce a only at times t ≤ 1 does not refine a specification that can produce a only at times t ≥ 2.Another
major difference is that performance metrics such as throughput and latency are not considered in any of
the above works.

Our work is about non-deterministic models and worst-case performance bounds and as such differs
from probabilistic frameworks such as Markov decision processes, or stochastic process algebras or games
(e.g., see [34, 24, 22, 16]). Worst-case performance bounds can be derived using techniques from the network
calculus (NC) [8] or real-time calculus (RTC) [39]. Refinement relations have been considered recently in these
frameworks [21, 40]. Semantically, these relations correspond to trace containment at the outputs and as such
do not follow the earlier-is-better principle. An important feature of NC and RTC is that they can model
resources, e.g., available computation power, and therefore be used in applications such as schedulability
analysis. We do not explicitly distinguish resources in our framework. In NC and RTC, behaviors are
typically captured by arrival or service curves. These have limited expressiveness compared to our framework
where traces can be captured, for instance, by automata. The same can be said of real-time scheduling theory
(e.g., see [9]). Automata-based models have been used for scheduling and resource modeling, e.g., as in [44],
where tasks are described as ω-regular languages representing sets of admissible schedules. Refinement is
not considered in this work, and although it could be defined as language containment, this would not follow
the earlier-is-better principle.

(max,+) algebra and its relatives (e.g., see [4]) are used as an underlying system theory for different
discrete event system frameworks, including NC, RTC and SDF. (max,+) algebra is mostly limited to
deterministic, (max,+)-linear systems. Our framework is more general: it can capture non-determinism
in time, an essential property in order to be able to relate time-deterministic specification models such as
SDF to implementations that have variable timing. Time Petri nets have also been used for performance
evaluation although in a non-compositional context (e.g., see [35]).

There are different ways to mathematically model the event sequence abstraction. The event sequences
used in this paper can be seen as a special case of the general tagged signals of [30], with signal values
abstracted. Note, however, that composition in [30] is intersection, whereas we use a demonic interpretation
and also that no specific refinement relation or compositionality guarantees are provided in [30]. As we show
in Section 9.2, event sequences can also equivalently be expressed in a dual form as arrival functions [8].
Counter and dater functions are similar structures known from (max,+) algebra [4].

Our work has also been inspired by the work in [46], where task graph implementations are conservatively
abstracted to timed dataflow specifications.
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4 Actors

We consider actor interfaces (in short actors) as relations between finite or infinite sequences of input tokens
and sequences of output tokens. We abstract from token content, and instead focus on arrival or production
times represented as timestamps from some totally ordered, continuous time domain (T ,≤). T contains a
minimal element denoted 0. We also add to T a maximal element denoted ∞, so that t < ∞ for all t ∈ T .
T ∞ denotes T ∪{∞}. N denotes the set of natural numbers and we assume 0 ∈ N. R denotes the set of real
numbers and R≥0 the set of non-negative reals.

Definition 1 (Event sequences). An event sequence is a total mapping τ : N → T ∞, such that τ is weakly
monotone, that is, for every k, m ∈ N and k ≤ m we have τ(k) ≤ τ(m).

τ(n) = ∞ is interpreted as event n being absent. Then, monotonicity of τ and maximality of ∞ implies
that all events n′ > n are also absent. Because of this property, an event sequence τ can also be viewed as a
finite or infinite sequence of timestamps in T . The length of τ , denoted |τ |, is the smallest n ∈ N such that
τ(n) = ∞, and with somewhat abusive notation |τ | = ∞ if τ(n) < ∞ for all n ∈ N. If |τ | = ∞ then τ is
infinite, otherwise it is finite. We use ε to denote the empty event sequence, ε(n) = ∞ for all n. Given event
sequence τ and timestamp t ∈ T such that t ≤ τ(0), t · τ denotes the event sequence consisting of t followed
by τ . The set of all event sequences is Tr .

Event sequences are communicated over ports. For a set P of ports, Tr(P ) denotes P → Tr , the set of
total functions that map each port of P to an event sequence. Elements of Tr(P ) are called event traces
over P . For x ∈ Tr(P ), we sometimes use the notation (p, n, t) ∈ x instead of x(p)(n) = t.

Definition 2 (Earlier-than and prefix orders). For τ, τ ′ ∈ Tr, τ is said to be earlier than τ ′, denoted τ ≤ τ ′,
iff |τ | = |τ ′| and for all n < |τ |, τ(n) ≤ τ ′(n). ≤ is called the earlier-than relation. In addition we consider
the prefix relation: τ � τ ′ iff |τ | ≤ |τ ′| and for every n < |τ |, τ(n) = τ ′(n). We lift ≤ and � to event traces
x, x′ ∈ Tr(P ) in the usual way: x ≤ x′ iff for all p ∈ P , x(p) ≤ x′(p); x � x′ iff for all p ∈ P , x(p) � x′(p).

Figure 2: Three event sequences.

Example 1. Figure 2 shows three event sequences τ1, τ2 and τ3 visualized as black dots on a horizontal time
line: τ1 = 3 · 5 · 7 · ε, τ2 = 3 · 5 · 7 · 8 · 9 · ε and τ3 = 0 · 3 · 5 · 7 · 9 · ε. τ1 is a prefix of τ2: τ1 � τ2; and τ3 is
earlier than τ2: τ3 ≤ τ2. But τ1 6≤ τ2.

Recall [12] that a poset (partially ordered set) is a set equipped with a partial order, i.e., a reflexive,
transitive, and antisymmetric binary relation. A chain is a countable sequence (possibly infinite) of ordered
elements in the set. A complete poset (CPO) is a poset with a least element and such that every chain
has a least upper bound. A structure similar to a CPO, but (possibly) without a least element is called a
pre-CPO. The least upper bound of chain C in a pre-CPO with order ∼ is denoted

⊔
∼ C, or just

⊔
C if the

order is evident.

Lemma 1. (Tr ,≤) and (Tr(P ),≤) are pre-CPOs. (Tr ,�) and (Tr(P ),�) are CPOs.

Proof. It is easy to show that both ≤ and � are partial orders on event sequences and traces. The empty
sequence ε is the least element in (Tr ,�). In (Tr(P ),�) the least element is the event trace which assigns ε
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to every p ∈ P . On the other hand, ≤ does not have a least element because sequences of different lengths
are incomparable w.r.t. ≤. The least upper bound of an infinite strictly increasing chain w.r.t. � is the
unique infinite sequence whose finite prefixes are prefixes of sequences in the chain. The event sequences
in an increasing chain {τk} in (Tr ,≤) are all of the same length l and for any n < l, {τk(n)} is a chain
in (T ∞,≤) with a least upper bound tn (possibly ∞). Then the event sequence τ of length l such that
τ(n) = tn is the least upper bound of {τk}.

If x1 is an event trace over ports P1 and x2 is an event trace over ports P2, and P1 and P2 are disjoint, then
x1∪x2 denotes the event trace over P1∪P2 such that (x1∪x2)(p) = x1(p) if p ∈ P1 and (x1∪x2)(p) = x2(p)
if p ∈ P2. x ↓ Q is identical to event trace x, but with the domain restricted to the set of ports Q. x ↑ Q is
identical to x, but with all ports in Q removed from the domain, i.e., if x ∈ Tr(P ) then x ↑ Q = x ↓ (P \Q).

Definition 3 (Actors). An actor is a tuple A = (P,Q,RA) with a set P of input ports, a set Q of output
ports and an event trace relation RA ⊆ Tr(P ) × Tr(Q). We use xAy to denote (x, y) ∈ RA when we leave
the three-tuple of A implicit.

Definition 4 (Legal input traces). For an actor A with input ports P and output ports Q, inA denotes the
set of all legal input traces of A: inA = {x ∈ Tr(P ) | ∃y ∈ Tr(Q) : xAy}.

Definition 5 (Input-closures, monotonicities and continuities). Let A be an actor with input ports P and
output ports Q. A is called input-complete iff inA = Tr(P ). Given a partial order E on Tr(P ) and Tr(Q),
A is called (inverse) E-input-closed iff for every x ∈ inA and x′ ∈ Tr(P ), x′ E x (x E x′) implies x′ ∈ inA.
A is called (inverse) E-monotone iff for every x, y and x′ such that xAy, x′ ∈ inA and xEx′ (x′Ex), there
exists y′ such that y E y′ (y′ E y) and x′Ay′. Assuming E yields pre-CPOs, A is called E-continuous iff for
every pair {xk} and {yk} of chains of event traces w.r.t. (Tr(P ),E) and (Tr(Q),E) respectively, if xkAyk

for all k, then (
⊔

E{xk})A(
⊔

E{yk}).

Definition 6 (Determinism). An actor A = (P,Q,RA) is called deterministic, if RA is a partial function.

Note that a definition of continuity in the reverse prefix order would be equivalent to inverse�-monotonicity
because prefix is well-founded.

If x ∈ Tr(P ) and t ∈ T , then x : t denotes the event trace x′ such that for every p ∈ P and n ∈ N,
x′(p)(n) = x(p)(n) if x(p)(n) ≤ t, and x′(p)(n) = ∞ otherwise. In order words, x : t is the restriction of x
up to time t.

Definition 7 (Temporal causality). A �-input-closed actor A is called temporally causal if for every x,
y such that xAy, and for any p and n, if y(p)(n) = t then there exists y′ such that y′ � y, (x : t)Ay′

and y′(p)(n) = t. A is strictly temporally causal if there exists t′ < t such that y′ � y, (x : t′)Ay′ and
y′(p)(n) = t.

In the rest of this section we give some examples of actors. More examples are provided in Section 9.

Example 2 (Delay actors). A variable delay actor ∆[d1,d2] with minimum and maximum delay d1, d2 ∈ R≥0,
where d1 ≤ d2, is an actor with one input port p, one output port q, time domain T = R≥0, and such that

x∆[d1,d2]y iff |x(p)| = |y(q)| ∧ ∀n < |x(p)| :
x(p)(n) + d1 ≤ y(q)(n) ≤ x(p)(n) + d2

∧ n > 0 =⇒ y(q)(n) ≥ y(q)(n− 1).

∆[d1,d2] is input-complete, �- and ≤-monotone in both directions, and �- and ≤-continuous, but not de-
terministic in general. The constant delay actor ∆d is the deterministic variable delay actor ∆[d,d]. We
show that the constant delay actor is ≤-continuous. Let {xk} and {yk} be chains as in the definition of ≤-
continuity, with least upper bounds x and y respectively and let y′ such that x∆dy

′. Then, if xk(p)(n) < ∞
for all k, y(q)(n) =

⊔
{yk(q)(n)} =

⊔
{xk(p)(n)+d} =

⊔
{xk(p)(n)}+d = x(p)(n)+d = y′(q)(n). Otherwise,

if xm(p)(n) = ∞ for some m (and thus xk(p)(n) = ∞ for all k ≥ m), then yk(q)(n) = ∞ for all k ≥ m and
y(q)(n) = ∞ = y′(q)(n). Thus y′(q)(n) = y(q)(n) for all n, y′(p) = y(q) and y′ = y.
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Example 3 (Merge actor). A merge actor G is a deterministic actor with two input ports p1 and p2 and
one output port q in the time domain T = R≥0 such that

xGy iff y(q) = x(p1)|x(p2)

where a merge operator | on event sequences is defined as the continuous extension of the following inductive
definition for finite event sequences:

τ1|τ2 =


τ2 if τ1 = ε
τ1 if τ2 = ε
t1 · (τ ′1|τ2) if τ1 = t1 · τ ′1, τ2 = t2 · τ ′2, t1 ≤ t2
t2 · (τ1|τ ′2) if τ1 = t1 · τ ′1, τ2 = t2 · τ ′2, t2 ≤ t1

G is not �-monotone in either direction, because an event added to or removed from the end of the sequence
of one port, may be inserted at or removed from the middle of the output trace. G is ≤-monotone in both
directions and temporally causal.

We show that G is ≤-monotone. Let x1 ≤ x2 and let x1Gy1 and x2Gy2, then y1(q) = x1(p1)|x1(p2) and
y2(q) = x2(p1)|x2(p2). |yi(q)| = |xi(p1)| + |xi(p2)| if both are finite and |yi(q)| = ∞ otherwise, so clearly
|y1(q)| = |y2(q)|. We only need to show further that for all n < |y1(q)|, y1(q)(n) ≤ y2(q)(n). By definition
of the merge operator, x1(p1) and x1(p2) together have at most n events labeled strictly smaller than y1(n).
Because x1 ≤ x2, x2(p1) and x2(p2) together have at also most n events labeled strictly smaller than y1(n).
Hence, y1(q)(n) ≤ y2(q)(n). Inverse ≤-monotonicity is proven in a similar fashion.

Example 4 (Temporal anomaly). Actor H is an actor with one input port p and one output port q in the
time domain T = R≥0 such that

xHy iff ∀n < |x(p)| :
2n ≤ x(p)(n) < 2n + 2 and
y(n) = x(n) + 2 if 2n ≤ x(n) < 2n + 1,
y(n) = x(n) if 2n + 1 ≤ x(n) < 2n + 2

H is inverse �-monotone, ≤-monotone in both directions, temporally causal (not strictly).

Example 5 (Timeout actor). Actor Td is an actor with one input port p and one output port q in the time
domain T = R≥0 such that

xTdy iff ∀n : y(q)(n) = x(p)(n) if x(p)(n) ≤ d and y(q)(n) = ∞ otherwise.

If event n does not arrive before time d, discard it otherwise output. A timeout actor is �-monotone in
both directions and �-continuous. It is inverse ≤-monotone, but not ≤-monotone and not ≤-continuous.

5 Compositions

Actor interfaces can be composed to yield new actor interfaces. The composition operators defined in
this paper are illustrated in Figure 3. Parallel composition composes two interfaces side-by-side without
interaction:

Definition 8 (Parallel composition). Let A and B be two actors with disjoint input ports PA and PB and
disjoint output ports QA and QB respectively. Then the parallel composition A||B is an actor with input
ports PA ∪ PB, output ports QA ∪QB, and relation A||B = {(x1 ∪ x2, y1 ∪ y2) | x1Ay1 ∧ x2By2}.

Parallel composition is clearly associative and commutative. It is also easy to see that it preserves all
monotonicity, continuity and closure properties if both actors have them.
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Figure 3: Actor compositions.

Definition 9 (Serial composition). Let A and B be two actors with disjoint input ports PA and PB and
disjoint output ports QA and QB respectively. Let θ be a bijective function from QA to PB. Then the serial
composition AθB is an actor with input ports Pθ = PA, output ports Qθ = QA ∪QB, and whose relation is
defined as follows. First, we lift the mapping of ports to event traces: θ(y) = {(θ(p), n, t) | (p, n, t) ∈ y}. The
input-output relation of the composite actor AθB is then defined as:

AθB = {(x1, y1 ∪ y2) ∈ inθ × Tr(Qθ) | x1Ay1 ∧ θ(y1)By2}

where: inθ = {x ∈ inA | ∀y1 : xAy1 =⇒ θ(y1) ∈ inB}.

inθ captures the set of legal inputs of the composite actor AθB. In the spirit of [5, 14], we adopt a
“demonic” interpretation of non-determinism, where an input x is legal in AθB only if any intermediate
output that the first actor A may produce for x is a legal input (after relabeling) of the second actor B.

Definition 10 (Receptiveness). Actor B is receptive to actor A w.r.t. θ iff ∀x, y : xAy =⇒ θ(y) ∈ inB.

An input-complete actor is clearly receptive to any other actor. If B is receptive to A or A is deterministic,
then AθB reduces to standard composition of relations. Moreover, if both A and B are deterministic
(respectively, input-complete) then so is AθB.

Note that the requirement that θ is total and onto is not restrictive. For example, suppose A has two
output ports q1, q2 and B has two input ports p1, p2, but we only want to connect q1 to p1. To do this,
we can extend A with additional input and output ports pp2 and qp2 , respectively, corresponding to p2. A
acts as the identity function on pp2 and qp2 , that is, for all x, y such that xAy, y(qp2) = x(pp2). Then we
can connect qp2 to p2. Similarly, we can extend B with additional input and output ports pq2 and qq2 , and
connect q2 to pq2 .

A hiding operator can be used to make internal event sequences unobservable.

Definition 11 (Hiding). Let A = (P,Q,RA) be an actor and let Q′ ⊆ Q. The hiding of Q′ in A is the actor

A\Q′ = (P,Q\Q′, {(x, y ↑ Q′) | xAy}).

Note that inA\Q′ = inA. Hiding preserves all forms of monotonicity and continuity, as well as determinism.

Definition 12 (Feedback). Let A(P,Q,RA) be an actor and let p ∈ P and q ∈ Q. The feedback composition
of A on (p, q) is the actor

A(p = q) = (P\{p}, Q, {(x ↑ {p}, y) | xAy ∧ x(p) = y(q)}).

It is well-known from the study of systems with feedback that the behavior of such a system may not
be unique, even if the system is deterministic, or that the behavior may not be constructively computable
from the behavior of the actor, depending on the nature of the actor[23]. To effectively apply feedback we
will typically require additional constraints on the actor. In the following proposition we describe a case in
which a solution can be constructively characterized by a method reminiscent of those used in Kahn Process
Networks (KPN) [25]. Our result can also handle non-deterministic actors, however. See also the related
Proposition 6.
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Proposition 1. If actor A is input-complete, �-monotone and �-continuous, then A(p = q) is input-
complete, �-monotone and �-continuous.

Proof. Let A = (P,Q,RA), with p ∈ P and q ∈ Q. If x is an event trace and p a port of x, then x[p → τ ]
denotes the event trace obtained from x by setting the sequence at p to τ and leaving the sequences at all
other ports unchanged.

(input-completeness) Let x ∈ Tr(P\{p}), then by input-completeness, x0 = x[p → ε] ∈ inA. Hence there
is some y0 such that x0Ay0. Now let x1 = x[p → y0(q)]. Clearly x0 � x1. Further by �-continuity, there
exists y1 such that x1Ay1 and y0 � y1. Repeating the procedure with xk+1 = x[p → yk(q)] we create two
chains {xk} and {yk} in the prefix CPO, such that for all k, xkAyk. Let x′ =

⊔
�{xk} and y′ =

⊔
�{yk},

then by construction of the chains and by �-continuity, respectively x′(p) = y′(q) and x′Ay′. Therefore,
x′ ↑ {p} = x ∈ inA(p=q). Thus, A(p = q) is input-complete.

(�-monotonicity) Let xa, xb ∈ Tr(P\{p}), xa � xb and x′aAy′a such that x′a ↑ {p} = xa and x′a(p) = y′a(q).
That is, xaA(p = q)y′a. Let x′b,0 = xb[p → y′a(q)]. Then x′a � x′b,0. By �-monotonicity and input-
completeness of A, there exists y′b,0 such that x′b,0Ay′b,0 and y′a � y′b,0. We repeat the construction as
follows. For k > 0, let x′b,k = x′b,k−1[p → y′b,k−1(q)]. Then x′b,k−1 � x′b,k. By �-monotonicity and input-
completeness of A, there exists y′b,k such that x′b,kAy′b,k and y′b,k−1 � y′b,k. It follows inductively that for all
k, x′b,k ↑ {p} = xb, y′a � y′b,k and x′b,kAy′b,k. If we let x′b and y′b be the least upper bounds of the chains
{x′b,k} and {y′b,k} respectively, then x′b ↑ {p} = xb, x′b(p) = y′b(q) and y′a � y′b. Moreover, by �-continuity of
A, x′bAy′b. Thus, xbA(p = q)y′b, and we have shown �-monotonicity of A(p = q).

(�-continuity) Proving preservation of least upper bounds is straightforward. Assume we have two
chains of inputs and outputs of A(p = q), {xk} and {yk} respectively, such that xkA(p = q)yk. Then there
exist {x′k} such that xk = x′k ↑ {p}, x′kAyk with x′k(p) = yk(q). From this it follows that also {x′k} is a
chain in the prefix CPO. Thus we can apply event-continuity of A and obtain that with x′ =

⊔
�{x′k} and

y =
⊔
�{yk}, we have x′Ay and x′(p) = y(q). Moreover, by construction, x′ ↑ {p} =

⊔
�{xk} and thus

(
⊔
�{xk})A(p = q)(

⊔
�{yk}).

The assumptions used in the above result may appear strong at first sight. Note, however, that similar
assumptions are often used in fixpoint theorems, even for deterministic systems. Although we could have
restricted our attention to actors that have such properties by definition, we chose not to do so, since one
of our goals is to be as general as possible and to examine the required assumptions on a case-by-case basis.
Note that some actor formalisms (e.g., SDF) ensure these properties by definition, however, other formalisms
(e.g., automata) don’t.

Let us look at some examples of actors in feedback.

Example 6 (Identity actor in feedback). The identity actor Ip,q with a single input port p and a single
output port q is such that xIp,qy iff x(p) = y(q). Ip,q(p = q) has no input ports, a single output port q, and is
such that Ip,q(p = q) = Tr({q}), i.e., it can non-deterministically produce any event sequence on its output
q.

Notice that, since Ip,q is deterministic, the above example also shows that determinism is not preserved
by feedback.

Example 7 (Constant delay actor in feedback). Consider the constant delay actor ∆d from Example 2.
For d = 0, the actor behaves like the identity actor, therefore, ∆0(p = q) = Ip,q(p = q) = Tr({q}). On
the other hand, for any d > 0, ∆d(p = q) = {ε}, since only the empty sequence satisfies the condition
∀n < |τ | : τ(n) = τ(n) + d.

A case of non-deterministic actor in feedback is provided in Example 10.

Proposition 2. Serial composition is associative. Feedback is commutative.

Proof. (associativity of serial composition) We have to show that Aθ1(Bθ2C) = (Aθ1B)θ2C. Let xAθ1(Bθ2C)y.
Then there exist yA, xB , yB , xC such that xAyA, xBByB , xCCy, θ1(yA) = xB and θ2(yB) = xC . Because
of the demonic non-determinism input restrictions, we need to show that (i) for all y′A such that xAy′A,
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θ1(y′A) ∈ inB and (ii) for all y′B such that xAθ1By′B , θ2(y′B) ∈ inC . Ad (i), we know that for all such y′A,
θ1(y′A) ∈ inBθ2C ⊆ inB . Ad (ii), let y′B be such and let y′A and x′B such that xAy′A, x′BBy′B and θ1(y′A) = x′B .
Then x′B ∈ inBθ2C and therefore, θ2(y′B) ∈ inC . Thus we may conclude that x(Aθ1B)θ2Cy.

Conversely, let x(Aθ1B)θ2Cy. Then again there exist yA, xB , yB , xC such that xAyA, xBByB , xCCy,
θ1(yA) = xB and θ2(yB) = xC . However, we have different input conditions to check. We need to show that
(i) for all y′A such that xAy′A, θ1(y′A) ∈ inBθ2C and (ii) for all y′B such that xBBy′B , θ2(y′B) ∈ inC . Ad (i),
we know that for all such y′A, θ1(y′A) ∈ inB and that for all y′B such that xAθ1By′B , θ2(y′B) ∈ inC . Let y′′B
be such that θ1(y′A)By′′B , then xAθ1By′′B and hence θ2(y′′B) ∈ inC and thus y′A ∈ inBθ2C . (ii) follows directly
from the fact that xAθ1By′B . Thus we conclude also that xAθ1(Bθ2C)y.

(commutativity of feedback) Let A = (P,Q,RA) be an actor and let p1, p2 ∈ P and q1, q2 ∈ Q. Let
xA(p1 = q1)(p2 = q2)y. Then with x2 = x[p2 → y(q2)], x2A(p1 = q1)y and with x1,2 = x2[p1 → y(q1)] =
x[p1 → y(q1), p2 → y(q2)], x1,2Ay. Since x1,2(p2) = y(q2), with x1 = x1,2 ↑ {p2}, x1A(p2 = q2)y. Finally,
since x1(p1) = y(q1) and x1 ↑ {p1} = x, we have that xA(p2 = q2)(p1 = q1)y.

Let K be a set of feedback connections, K = {(p1, q1), ..., (pn, qn)}. Let A be an actor with input ports
P and output ports Q, such that for all i = 1, ..., n, pi ∈ P and qi ∈ Q. We denote by K(A) the interface
A(p1 = q1) · · · (pn = qn). By commutativity of feedback, the resulting actor is independent from the order
of application of feedback connections.

Note that, contrary to what one might expect, serial composition is not equivalent to parallel compo-
sition followed by feedback. The reason for this is the demonic interpretation of non-determinism in serial
composition. Serial composition AθB can, however, be expressed by parallel composition and feedback if B
is receptive to A w.r.t. θ:

Proposition 3. Let A and B be actors with disjoint input ports PA and PB and disjoint output ports QA

and QB respectively. Suppose B is receptive to A w.r.t. θ. Let QA = {q1, . . . , qn} and PB = {p1, . . . , pn}. Let
K = {(p1, q1), . . . , (pn, qn)}. Let θ be the bijection from QA to PB with θ(qi) = pi. Then AθB = K(A||B).

Proof. Let xAθBy. Let xAyA, θ(yA) = xB and xBBy. Then (x ∪ xB)A||B(yA ∪ y) and for all qi ∈ QA,
(x ∪ xB)(θ(qi)) = (x ∪ xB)(pi) = (yA ∪ y)(qi). Thus, xK(A||B)y. Conversely, if xK(A||B)y, then there
exists x′ such that x′ ↑ PB = x, x′A||By and for all 1 ≤ k ≤ n, y(qk) = x′(pk). Then xA(y ↓ QA) and
θ(y ↓ QA)B(y ↓ QB). Because actor B is input complete, xAθBy.

6 Refinement

Refinement is a relation between two actors A and B, allowing one to replace actor A by actor B in a given
context and obtain “same or better” results, in the worst case. If τA and τB are event sequences produced
by A and B, respectively, then “τB is same or better than τA” means the following: τB should have at least
as many events as τA and for every event they have in common, the event should be produced in τB no later
than in τA. We first capture this relation on event sequences and event traces.

Definition 13 (Refinement on event sequences and event traces). Event sequence τ refines event sequence
τ ′, denoted τ v τ ′, iff for all n ∈ N, τ(n) ≤ τ ′(n). v is lifted to event traces x, x′ ∈ Tr(P ) in the standard
way: x v x′ iff for all p ∈ P , x(p) v x′(p).

For example, for the event sequences shown in Figure 2, we have τ3 v τ2, τ2 v τ1, but τ1 6v τ2.

Lemma 2. The refinement relations on event sequences and event traces are partial orders, i.e., reflexive,
transitive and antisymmetric.

Proof. Straightforward.

Lemma 3. The set of traces (Tr(P ),v) equipped with the refinement order is a lattice. The supremum and
infimum of traces is the point-wise supremum and infimum respectively. The event sequence ~0, defined by
~0(n) = 0 for all n ∈ N, is the least element. The empty sequence ε, defined by ε(n) = ∞ for all n ∈ N, is the
greatest element.
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Proof. x1 v x2 iff for all p ∈ P and n ∈ N, x1(p)(n) ≤ x2(p)(n). Because (T ∞,≤) is a lattice with min and
max and the (infinite) point-wise product of lattices is itself a lattice, the result follows.

Lemma 4. For all x, x′ ∈ Tr(P ): (1) x′ � x implies x v x′; (2) x ≤ x′ implies x v x′; (3) x v x′ iff there
exists x′′ ∈ Tr(P ) such that x′′ � x and x′′ ≤ x′; (4) x v x′ implies ∀p ∈ P : |x′(p)| ≤ |x(p)|; (5) if both x
and x′ are infinite, then x v x′ iff x ≤ x′.

Proof. (1) and (2) follow easily from the definitions and the fact that t ≤ ∞ holds for any t ∈ T . The
‘if’ direction of (3) follows from (1) and (2), and the fact that v is transitive (Lemma 2). For the ‘only if’
direction of (3), we define x′′ such that for all p ∈ P , |x′′(p)| = |x′(p)| and ∀n < |x′′(p)| : x′′(p)(n) = x(p)(n).
We claim that x′′ � x and x′′ ≤ x′. Consider some p ∈ P , and let τ = x(p), τ ′ = x′(p) and τ ′′ = x′′(p). We
need to show that τ ′′ � τ and τ ′′ ≤ τ ′. The latter follows by definition of x′′ and τ v τ ′. To show τ ′′ � τ ,
we distinguish cases:

(a) |τ | < |τ ′|: this implies that for some n ∈ N we have τ(n) = ∞ but τ ′(n) 6= ∞. Then x(p)(n) >
x′(p)(n), which contradicts the hypothesis x v x′. Thus, this case is not possible.

(b) |τ | ≥ |τ ′|: then |τ | ≥ |τ ′′|, and by definition of x′′, ∀n < |τ ′′| : τ ′′(n) = τ(n), therefore, τ ′′ � τ .
(4) follows from (3) and the facts |x′′(p)| ≤ |x(p)| and |x′′(p)| = |x′(p)|.
(5) follows from (2) and (3), and the fact that of x and x′ are infinite, then x′′ = x.

Knowing what refinement of event traces means, we can now define a refinement relation on actors.

Definition 14 (Actor refinement). Let A = (P,Q,RA) and B = (P,Q,RB) be actors. B refines A, denoted
B v A, iff (1) inA ⊆ inB; and (2) ∀x ∈ inA,∀y : xBy =⇒ ∃y′ : y v y′ ∧ xAy′.

Condition (1) states that for actor B to refine actor A, B must accept at least all the inputs that actor A
accepts. Condition (2) states that any behavior of actor B is no worse than the worst-case behavior of A on
the same input. Note that the standard notion of refinement, implementing the “more output deterministic”
principle, amounts to using the stronger constraint y = y′ instead of y v y′ in Condition (2).

The requirement that both A and B have the same sets of input and output ports is not restrictive.
Every output port of A (resp. input port of B) must also be an output port of B (resp. input port of A):
otherwise replacing A by B in certain contexts may result in open inputs. Any output port of B (resp. input
port of A) not originally in A (resp. B) can be added to it as a “dummy” port.

A conditional notion of refinement is often useful, where in both Conditions (1) and (2) inA is replaced
by inA ∩X, for some given (typically v-closed) set of input traces X ⊆ Tr(P ). X models assumptions on
the inputs of A and B. This conditional refinement relation is denoted by B vX A.

Figure 4: SDF actor A refined by CSDF actor A′.

Example 8 (CSDF actor refining SDF actor). Figure 4 shows an SDF actor A refined by a CSDF actor
A′. At each firing, which takes 5 time units to complete, A consumes 2 and produces 3 tokens. A′ cycles
between two firing phases: in the first, which takes 1 time unit, 1 token is consumed and 1 is produced; in
the second, which takes 3 time units, 1 token is consumed and 2 are produced. We observe that for the same
number of input tokens, A′ produces no fewer (and sometimes strictly more) output tokens than A, because
A′ can fire on a single input token, whereas A requires two. Moreover, because of the earlier activation, as
well as the shorter processing time, A′ produces outputs no later than A. Therefore, A′ refines A.

It is worth noting that the refinement in the above example would not hold had we used y ≤ y′ instead
of y v y′ in Definition 14. This is because, for the input sequence containing a single token, A′ produces
strictly more tokens than A. As the example of Section 2 shows, it is important to be able to replace SDF
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actors by CSDF actors in applications, which partly motivated our definition of refinement. Additional
motivation for refining SDF to CSDF or other less “monolithic” models is provided in [41], in the context of
modular code generation.

Proposition 4. The refinement relation on actors is a pre-order, i.e. it is reflexive and transitive .

Proof. Straightforward, using Lemma 2.

The refinement relation on actors is not antisymmetric, as the following example shows.

Example 9 (Refinement not antisymmetric). Consider the constant delay actor ∆d and the variable delay
actor ∆[d1,d2], introduced in Example 2. We show that if d ≤ d2, then ∆d v ∆[d1,d2]: (1) in∆[d1,d2] ⊆ in∆d

,
because both are input-complete. (2) Let x ∈ in∆[d1,d2] and x∆dy. Then |x(p)| = |y(q)| and for all n < |x(p)|,
y(q)(n) = x(p)(n) + d. Let y′ be defined as follows. |y′(q)| = |y(q)| and y′(q)(n) = x(p)(n) + d2, then y v y′

and x∆[d1,d2]y
′.

Similarly, if d2 ≤ d, then ∆[d1,d2] v ∆d, therefore, if d = d2, then the two actors refine each other. But
the two actors are generally not equal. In particular, if d1 < d2, then ∆[d1,d2] is a non-deterministic actor
and contains pairs (x, y) not contained in ∆d2 (those for which y(q)(n) < x(p)(n) + d2 for some n).

Lemma 5. (1) A is ≤-input-closed and inverse �-input-closed iff A is v-input-closed. (2) A is inverse
≤-input-closed and �-input-closed iff A is inverse v-input-closed. (3) If A is inverse �-monotone and ≤-
monotone, then A is v-monotone. (4) If A is �-monotone and inverse ≤-monotone, then A is inverse
v-monotone. (5) If A is ≤-continuous, then it is v-continuous.

Proof. Parts of the proof are omitted. For (1) and (2), the ‘if’ direction is trivial, because x1 v x2 is implied
by x1 ≤ x2 and x2 � x1. (1) For the ‘only if’ direction, let x ∈ inA and x′ v x. By x′ v x and Lemma 4,
there exists x′′ such that x′′ � x′ and x′′ ≤ x. ≤-input-closure of A, x ∈ inA and x′′ ≤ x, imply x′′ ∈ inA.
The latter, together with x′′ � x′ and inverse �-input-closure of A, imply x′ ∈ inA.

(3) Let x, y and x′ be such that xAy, x′ ∈ inA and x v x′. By x v x′ and Lemma 4, there exists x′′

such that x′′ � x and x′′ ≤ x′. By inverse �-monotonicity of A, there exists y′′ � y such that x′′Ay′′. By
≤-monotonicity of A, there exists y′ such that y′′ ≤ y′ and x′Ay′. By Lemma 4, y v y′.

(5) Let {xk} and {yk} be chains in the refinement order, i.e., xk v xk+1 and yk v yk+1 such that xkAyk,
for all k. Since the result is trivial for finite chains, assume that the chains are infinite. By Lemma 3,
the chains have least upper bounds x and y respectively. For any port p, individual event sequences xk(p)
cannot increase in length: this is because xk v xk+1 implies xk(p) v xk+1(p), and the latter implies
|xk+1(p)| ≤ |xk(p)|, by Lemma 4. Similarly, for any port q, individual sequences yk(q) cannot increase in
length. Therefore, every individual event sequence on some port p in x ∪ y is either of infinite length for all
k, or eventually becomes of finite length and then there must be some m(p) such that for all k ≥ m(p) its
length does not further decrease. Let M be the maximum of m(p) of all ports p for which the length becomes
finite, and M = 0 if there is no such port. Then the chains {xM+k | k ≥ 0} and {yM+k | k ≥ 0} contain
only event sequences of equal length. On event sequences of equal length, v is equivalent to ≤, therefore,
the above chains are chains in the pre-CPO (Tr(P ),≤), thus, have least upper bounds x′ and y′ w.r.t. ≤.
Because ≤ is equivalent to v in this case, x′ = x and y′ = y. By ≤-continuity of A it follows that xAy.

Refinement is preserved by serial composition under natural conditions, namely, consuming actor B
should not refuse better input and should not produce worse output on better input:

Proposition 5. (I) If A′ v A and B is v-input-closed and v-monotone, then A′θB v AθB. (II) If B′ v B
then AθB′ v AθB.

Proof. (I) Let A′ v A. We need to show that A′θB v AθB. (1) Let x ∈ inAθB . Then there is some y
such that xAθBy, i.e., there exist y1, x2 and y such that xAy1, x2By and x2 = θ(y1) and ∀y1 : xAy1 =⇒
θ(y1) ∈ inB . We need to show that there exists y′ such that xA′θBy′, i.e., (a) there exist y′1, x′2, y′2 such
that xA′y′1, x

′
2By′2, x

′
2 = θ(y′1) and (b) ∀y1 : xA′y1 =⇒ θ(y1) ∈ inB .
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(a) because A′ v A, there is some y′1 such that xA′y′1 and there is some y′′1 such that y′1 v y′′1 and xAy′′1 .
Thus θ(y′′1 ) ∈ inB and by v-input-closure of B we can conclude, because θ(y′1) v θ(y′′1 ), that there exists y′2
such that θ(y′1)By′2.

(b) like part (a) the same can be shown for any y1 such that xA′y1.
Thus, x ∈ inA′θB , which proves the first requirement of refinement A′θB v AθB.
(2) For the second requirement, let x ∈ inAθB and y such that xA′θBy. Then there exist y1, x2 and y2

such that xA′y1, x2By2, y = y1∪y2 and x2 = θ(y1). Because A′ v A and x ∈ inA, there is y′1 such that xAy′1
and y1 v y′1, thus also θ(y1) v θ(y′1). Because x ∈ inAθB , θ(y′1) ∈ inB and there exists y′2 with θ(y′1)By′2. By
v-monotonicity of B, there exists such a y′2 for which y2 v y′2. Thus, with y′ = y′1 ∪ y′2, xAθBy′ and y v y′.

(II) Let B′ v B. We need to show that AθB′ v AθB. (1) Let x ∈ inAθB . Then there exist y1, x2 and y2

such that xAy1, x2By2, x2 = θ(y1) and ∀y : xAy =⇒ θ(y) ∈ inB . Because B′ v B, inB ⊆ inB′ . Therefore
θ(y) ∈ inB implies θ(y) ∈ inB′ , and ∀y : xAy =⇒ θ(y) ∈ inB′ also holds. Thus x ∈ inAθB′ .

(2) Let x ∈ inAθB and y such that xAθB′y. Then there exist y1, x2 and y2 such that xAy1, x2B
′y2,

y = y1 ∪ y2 and x2 = θ(y1). x2 ∈ inB because x ∈ inAθB . Because B′ v B, there is some y′2 such that x2By′2
and y2 v y′2. With y′ = y1 ∪ y′2, y v y′ and xAθBy′.

Feedback preserves refinement under the following conditions:

Proposition 6. Let A be an inverse v-input-closed, v-monotone and v-continuous actor, and let A′ be an
input-complete, �-monotone and �-continuous actor such that A′ v A. Then A′(p = q) v A(p = q).

Proof. Requirement (1) of refinement A′(p = q) v A(p = q) follows from the fact that A′(p = q) is input-
complete, which follows from Proposition 1.

Requirement (2): Let x ↑ p ∈ inA(p=q) and y′ such that (x ↑ p, y′) ∈ A′(p = q). Then xA′y′ and
x(p) = y′(q). From A′ v A, there exists y such that xAy and y′ v y, thus also x(p) v y(q). However, we do
not necessarily have x(p) = y(q), hence, (x ↑ p, y) is not necessarily a behavior of A(p = q). Nevertheless, we
show how we can construct such a behavior. Let x0 = x[p → y(q)]. Then x v x0. By v-monotonicity and
inverse v-input-closure of A, there exists y0 such that x0Ay0 and y v y0. Let for k ≥ 0, xk+1 = xk[p → yk(q)]
and hence xk v xk+1, and let yk+1 be chosen such that xk+1Ayk+1 and yk v yk+1. Then for any k ≥ 0,
x v xk and y′ v y v yk. By Lemma 3 and v-continuity of A, x′′ =

⊔
v{xk} and y′′ =

⊔
v{yk}, x′′Ay′′,

x′′ ↑ p = x ↑ p, y′ v y′′ and x′′(p) = y′′(q).

It is worth noting that Lemma 5 can be used to ensure some of the preconditions of Propositions 5 and 6.
For instance, the v-input-closure requirement on B in Proposition 5 can be ensured by showing that B is
≤-input-closed and inverse �-input-closed, v-monotonicity can be ensured by inverse �-monotonicity and
≤-monotonicity, v-continuity can be ensured by ≤-continuity, and so on.

Example 10. Consider actors A = ({p}, {q}, RA) and A′ = ({p}, {q}, RA′) with input-output relations

RA ={(x, y) | (∀n : y(q)(n) = x(p)(n) + 2)∨
(y(q)(0) = 0 ∧ ∀n : y(q)(n + 1) = x(p)(n))}, and

RA′ ={(x, y) | y(q)(0) = 0 ∧ ∀n : y(q)(n + 1) = x(p)(n) + 1}.

Both A and A′ are input-complete, �-monotone in both directions, �-continuous and ≤-monotone in both
directions. A is non-deterministic but A′ is deterministic. A′ refines A because the unique output sequence
of A′ can be matched with the (later) output sequence of A produced by the first disjunct.

If we connect A in feedback, we get A(p = q) with a single (output) port q, and producing either the
empty sequence y(q) = ε or the zero sequence y(q)(n) = 0 for all n. A′ in feedback produces a single sequence
y′(q)(n) = n. Any sequence refines ε, therefore, A′(p = q) v A(p = q).

It is interesting to see how the fixed-point iteration used in the proof of Proposition 6 evolves. The behavior
(x, y′) of A′ leading to the unique feedback behavior is x(p)(n) = y′(q)(n) = n. A′ v A implies that A has a
behavior (x, y) such that y′ v y, which can only be y(q)(n) = n + 2. Putting that in the fixed-point iteration
we get that xk+1(p)(n) = yk(p)(n) = n + k + 2. Both chains of event sequences have ε as their least upper
bound: indeed, ε is the only behavior of A(p = q) which is refined by y′.
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Figure 5: Feedback does not preserve refinement without v-monotonicity.

The following example illustrates why v-monotonicity is needed for refinement to be preserved by feed-
back (Proposition 6), even when the actors are input-complete, deterministic and �-continuous.

Example 11. Figure 5 depicts two actors A′ and A with a single input port p and a single output port
q such that A′ v A. The graphs shown to the right of the actors display two pairs of sets of event traces
on {p, q}, related by A and A′, respectively. One pair is drawn by circles and the other by squares. A line
between events indicates a dependency, i.e., the output event is present iff the input event is present. We use
these event sequences for illustration. A and A′ are input-complete and their complete behavior is defined as
follows. A maps any τ such that 1 · ε � τ to 2 · 4 · ε; any τ such that 2 · ε � τ to 2 · 3 · ε; and every other τ
to 2 · ε. A′ maps any τ such that 1 · ε � τ to 1 · 4 · ε; any τ such that 2 · ε � τ to 1 · 3 · ε; and every other τ
to 1 · ε. Observe that A is not v-monotone: indeed, 1 · ε ≤ 2 · ε, thus also 1 · ε v 2 · ε, but 2 · 4 · ε 6≤ 2 · 3 · ε,
and because the two sequences have same length, 2 · 4 · ε 6v 2 · 3 · ε. It can be checked that A′ v A. But when
connected in feedback, A′(p = q) 6v A(p = q): indeed, A(p = q) = {2 · 3 · ε} and A′(p = q) = {1 · 4 · ε}, but
1 · 4 · ε 6v 2 · 3 · ε.
Proposition 7. Refinement is preserved by hiding.

Proof. Let A′ v A , Q the output ports of A and Q′ ⊆ Q. Then we need to show that A′\Q′ v A\Q′.
(1) It is easy to see that inA\Q′ ⊆ inA′\Q′ . (2) Let x ∈ inA and y such that xA′\Q′y. Then there exists y′

such that y = y′ ↑ Q′ and xA′y′. By refinement of A′, there exists y′′ such that y′ v y′′ and xAy′′. Now
y v y′′ ↑ Q′ and xA\Q′(y′′ ↑ Q′).

7 Performance Metrics

We often care about the performance of our systems in terms of specific metrics such as throughput or
latency [8, 39, 31, 19]. In this section we show that our notion of refinement is strong enough to provide
guarantees on performance under the refinement process. Throughout this section, we assume that T = R≥0.

We begin by defining throughput for an infinite event sequence τ . A first attempt is to define throughput
as the limit behavior of the average number of tokens appearing in the sequence per unit of time: T (τ) =
limn→∞

n
τ(n) . By the usual definition of the limit, it exists and is equal to T if

∀ε > 0 : ∃K > 0 : ∀n > K : T − ε <
n

τ(n)
< T + ε.

But because this limit may not always exist for a given τ , and because among all possible behaviors of an
actor, there may be some for which the limit does not exist, we consider instead throughput bounds, which
are more robust against such effects.

Definition 15 (Event sequence throughput bounds). Given infinite event sequence τ , its lower bound on
throughput is

T lb(τ) = sup{T ∈ R≥0 | ∃K > 0 : ∀n > K : n > τ(n) · T}
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and its upper bound on throughput is

Tub(τ) = inf{T ∈ R≥0 | ∃K > 0 : ∀n > K : n < τ(n) · T}

where by convention we take sup R≥0 = inf ∅ = ∞.

T lb(τ) is the greatest lower bound on the asymptotic average throughput of τ , and similarly, Tub(τ) defines
the least upper bound. Multiplying both sides of the inequalities by τ(n) avoids division by zero problems.
Note that for a zeno sequence τ , where timestamps do not diverge to ∞, i.e., ∃t ∈ R≥0 : ∀n ∈ N : τ(n) < t,
we have T lb(τ) = sup R≥0 = ∞ and Tub(τ) = inf ∅ = ∞. This holds in particular for the zero sequence ~0
with ~0(n) = 0 for all n.

Proposition 8. For any two infinite event sequences τ1 and τ2, if τ1 v τ2, then T lb(τ1) ≥ T lb(τ2) and
Tub(τ1) ≥ Tub(τ2).

Proof. Both τ1 and τ2 are infinite, thus, by Lemma 4, τ1 v τ2 reduces to τ1 ≤ τ2. Thus for any n,
τ1(n) ≤ τ2(n), and the result follows by the fact that sup is monotone w.r.t. ⊆ and inf is monotone w.r.t.
⊇.

We next define the throughput bound for an actor A. An actor may have multiple output ports with
generally different throughputs. For a given port, the throughput at that port generally depends on the input
trace as well as on non-deterministic choices of the actor. We therefore consider the worst-case scenario.

Definition 16 (Actor throughput lower bound). For an actor A with input ports P and output ports Q,
and given some specific output port q ∈ Q and input trace x ∈ Tr(P ), we define the following lower bound
on throughput of A:

T lb(A, x, q) = inf{T lb(τ) | ∃y : xAy ∧ τ = y(q)}.

We can then define the throughput at all output ports simultaneously as a vector indexed by output ports:

T lb(A, x) =
(
T lb(A, x, q)

)
q∈Q

.

We can similarly define upper bounds Tub(A, x, q) and Tub(A, x).

For example, for the actor SPEC of Section 2, which has no inputs and a unique output port, we have
T lb(SPEC) = T lb(50 + n/44.1) = sup{T ∈ R≥0 | ∃K > 0 : ∀n > K : n > (50 + n/44.1)T} = sup{T ∈ R≥0 | T <
44.1} = 44.1.

For two actors A and B with the same sets of input and output ports P and Q, respectively, we shall
write T lb(A, x) ≤ T lb(B, x) to mean T lb(A, x, q) ≤ T lb(B, x, q) for all q ∈ Q. This notation is used in
Proposition 10 below.

Example 12. Consider the constant and variable delay actors ∆d and ∆[d1,d2] from Example 2. Both are
input-complete and have a single input port p and a single output port q. Suppose d, d1, d2 ∈ R≥0 such that
d > 0 and d2 > d1 > 0. Let x be the input event trace defined by x(p)(n) = n, for all n ∈ N. Then there is a
single output event trace y such that x∆dy, and y(q)(n) = n + d, for all n ∈ N. As expected, T lb(∆d, x, q) =
T lb(y(q)) = Tub(∆d, x, q) = Tub(y(q)) = 1. Similarly, T lb(∆[d1,d2]x, q) = Tub(∆[d1,d2], x, q) = 1.

We next turn to latency. Different definitions are possible (e.g., see [31, 19, 43]). We define latency as
the smallest upper bound on observed time differences between related input and output events. The pairs
of events that we want to relate are explicitly specified as follows:

Definition 17. An input-output event specification (IOES) for a set P of input ports and a set Q of output
ports is a relation E ⊆ 2P×N× 2Q×N. E is called valid for (x, y) ∈ Tr(P )×Tr(Q) iff for every (EP , EQ) ∈ E,
if x(p)(m) 6= ∞ for every (p, m) ∈ EP , then y(q)(n) 6= ∞ for every (q, n) ∈ EQ. E is called valid for an
actor A = (P,Q,RA) iff it is valid for every (x, y) ∈ RA.
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A pair (EP , EQ) ∈ E says that we want to measure the maximum latency between an input event in EP

and an output event in EQ, provided all events in EP have arrived. See Example 13, given below, for an
illustration.

Definition 18 (Trace latency upper bound). Let E be a valid IOES for (x, y) ∈ Tr(P )×Tr(Q). We define:

DE(x, y) = sup{y(q)(n)− x(p)(m) | (EP , EQ) ∈ E , EP ⊆ dom(x), (p, m) ∈ EP , (q, n) ∈ EQ}

where by convention sup ∅ = 0 and dom(x) denotes the set of all pairs (p, n) such that x(p)(n) 6= ∞.

DE(x, y) is the largest among all delays between an input and an output event that occur in x and y
and are related by E , provided all other events in the same input group are also in x. Notice that, by the
assumption of validity of E for (x, y), EP ⊆ dom(x) implies EQ ⊆ dom(y), for every (EP , EQ) ∈ E .

Example 13. Consider a deterministic actor A with two input ports p1, p2 and a single output port q.
Suppose A consumes one token from each input port, and for every such pair, produces a token at q, after
some constant delay, say d ∈ R≥0. Let x1 and x2 be two input event traces, with x1 = {(p1, 2·ε), (p2, 4·ε)} and
x2 = {(p1, 2 ·5 ·ε), (p2, 4 ·ε)}. For both x1 and x2, A produces the same output event trace y = {(q, (4+d) ·ε)}.
This is because, in x2, A waits for a second input to arrive at p2 before it can produce a second output. To
measure the latency of A, we can define E to be the set

E = {({(p1, n), (p2, n)}, {(q, n)}) | n ∈ N}

This makes E a valid IOES for x1, y, as well as for x2, y, and gives us DE(x1, y) = DE(x2, y) = d, as is to
be expected.

Keeping the reference input trace fixed, refinement of output traces is guaranteed to not worsen latency:

Proposition 9. Let x, y1 and y2 be event traces such that y1 v y2. Suppose E is valid for x and y2. Then
E is valid for x and y1 and DE(x, y1) ≤ DE(x, y2).

Proof. (i) y1 v y2 implies dom(y1) ⊇ dom(y2), i.e., y1 provides at least as many output events as y2. Thus,
if E is valid for x and y2 then it is also valid for x and y1. (ii) y1 v y2 implies y1(q)(n) ≤ y2(q)(n),
therefore, DE(x, y1) = sup{y1(q)(n) − x(p)(m) | (EP , EQ) ∈ E , EP ⊆ dom(x), (p, m) ∈ EP , (q, n) ∈ EQ} ≤
sup{y2(q)(n)− x(p)(m) | (EP , EQ) ∈ E , EP ⊆ dom(x), (p, m) ∈ EP , (q, n) ∈ EQ} = DE(x, y2).

Definition 19 (Actor latency upper bound). An IOES E is valid for an actor A iff E is valid for every
(x, y) such that xAy. For a valid E, the worst-case latency of A on input event trace x is

DE(A, x) = sup
y s.t. xAy

{DE(x, y)}.

The worst-case latency of A over all input traces is

DE(A) = sup
x∈inA

{DE(A, x)}.

Example 14. Consider the variable delay actor ∆[d1,d2] from Example 2. A suitable IOES for its latency
would be E = {({(p, n)}, {(q, n)}) | n ∈ N}. E is valid for ∆[d1,d2] and DE(∆[d1,d2], x) = d2, for any non-empty
input event trace x.

The following states the main preservation results for performance bounds under refinement:

Proposition 10. Let B v A and E be a valid IOES for A. Then for any x ∈ inA, T lb(B, x) ≥ T lb(A, x)
and DE(B, x) ≤ DE(A, x).

Proof. For any xBy, there is some y′ s.t. xAy′ and y v y′ and for any p, y(p) v y′(p) and T lb(y′(p)) ≤
T lb(y(p)). Therefore, the infimum for A can not be larger than the infimum for B. Similar argument for
latency.
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8 Consumption of Tokens and Buffer Capacities

On a queue between two dataflow actors, tokens are buffered until they are consumed. An interesting question
is what is the maximum number of buffered tokens on each queue. Although our formalism does not explicitly
model events representing token consumption, we can easily capture this aspect of behavior, as follows. We
add for a given input port p of an actor A, a corresponding output consumption port p′. The events on p′

represent the moments when the tokens arriving at p are actually consumed. Since the consumption of a
token cannot happen earlier than its production, the following must hold: ∀x, y : xAy =⇒ x(p) v y(p′).

Once we have such an actor, we can define the number of tokens pending in the buffer of input port p at
some given time t:

B(A, x, y, p, t) = x(p)(t)− y(p′)(t)

where, for an event sequence τ , τ(t) is the total number of events occurring in τ up to, and including, time
t:

τ(t) = sup{n + 1 | τ(n) ≤ t}.

We call such a function an arrival function, because it is identical to the arrival functions in NC [8]. Then
the buffer capacity required by actor A at input port p for an input trace x is:

B(A, x, p) = sup
y:xAy

sup
t∈T

{B(A, x, y, p, t)}.

Using this modeling construction with output consumption ports, we can also capture back pressure
behavior, i.e., the slowing-down of a producer A due to lack of space in the input buffer of the consumer B.
To do this, the output consumption port of B can be used as an input to A, expressing the dependency on
available buffer space. If desired, an extra actor of type Ik can be inserted in the feedback from B to A, to
model a fixed buffer capacity. Note that this is exactly what the right-to-left edges in the models in Figure 1
represent.

When output consumption ports are present, the refinement constraint A′ v A means that actor A′ must
not consume an input later than A would. Indeed, when there are dependencies by other actors on the token
consumption, then these actors must not be delayed by A′ more than they would be delayed by A. The
upcoming proposition 11 states that our framework has this property. First we need two lemmas.

Lemma 6. Let τ and α be a event sequence and its corresponding arrival function respectively. Then

τ(n) > t ⇔ α(t) < n + 1.

Proof. (⇒) α(t) = sup{k + 1 | τ(k) ≤ t}. Since τ(n) > t, the condition τ(k) ≤ t implies by monotonicity
of τ , that k < n and hence that α(t) < n + 1. (⇐) τ(n) = inf{u | n + 1 ≤ α(u)}. Since α(t) < n + 1,
n + 1 ≤ α(u) implies, by monotonicity and left-continuity of α that u > t + d for some d > 0 and thus
τ(n) > t.

Lemma 7. Let τ1 and τ2 be two event sequences. Then

τ1 v τ2 ⇔ ∀t ∈ R : τ2(t) ≤ τ1(t)

Proof. Lemma 6 gives us τ1(n) > t ⇔ τ1(t) < n + 1 and τ2(n) ≤ t ⇔ τ2(t) ≥ n + 1. This gives τ2(n) ≤ t <
τ1(n) ⇔ τ2(t) ≥ n + 1 > τ1(t) which implies τ2(n) < τ1(n) ⇔ τ2(t) > τ1(t). Therefore, τ1(n) ≤ τ2(n) ⇔
τ1(t) ≥ τ2(t).

Proposition 11. Let actors A and A′ be such that A′ v A. Let p be an input port of these actors, with a
corresponding output consumption port p′. Then

∀x ∈ inA : B(A′, x, p) ≤ B(A, x, p).
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Proof. A′ v A =⇒ ∀x ∈ inA,∀y′ : xA′y′ =⇒ ∃y : xAy ∧ y′ v y. By Lemma 7, y′(p′) v y(p′) ⇔ y′(p′) ≥
y(p′). Let supt∈T {x(p)(t)− y′(p′)(t)} equal B(A′, x, p), then as ∃y : xAy ∧ y′(p′) ≥ y(p′), supt∈T {x(p)(t)−
y(p′)(t)} ≥ B(A′, x, p).

This shows that it is sufficient to do input buffer analysis for an abstract consumer and the buffer sizes
are guaranteed to be sufficient also for refinements of that consumer. Note, however, that refinement of the
producer to a port p may increase the required capacity for p, since the input trace x may change.
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Figure 6: Actors of Figure 4 with added output ports p′ modeling token consumptions at input ports p.

Example 15. Figure 6 revisits Example 8. It shows an SDF actor A and a CSDF actor A′ that refines A.
Output consumption ports p′ are added and example traces are shown at the bottom of the figure. The buffer
sizes B(A, x, y, p, t) and B(A′, x, y, p, t) are shown at the top of these traces, for different times t. Since the
actors are working on the input data they are consuming, the space they are occupying is released sometime
during the firing. The actual consumption of tokens and hence the release of the space is commonly modeled
conservatively to occur at the end of the firing. It is easy to verify that the output event sequences of A′ at
ports p′ and q refine the corresponding sequences of A.

9 Finite Representations and Algorithms

So far, our treatment has been semantical, regarding actors as sets of input-output event traces. In this
section, we consider syntactic, finite representations. We show that the semantics commonly associated
with these representations can be embedded naturally in our theory. We also provide algorithms to check
refinement and compute compositions and performance metrics on such representations. Our intention in
this section is not to be complete, but rather to give examples of how our theory can be instantiated and
automated.

9.1 Synchronous Data Flow

We have informally used timed SDF actors in previous examples. In this section we formally define them.
Typically, in timed SDF models the time domain is the non-negative reals or integers. In the rest of this
subsection, we therefore assume that T = R≥0 or T = N.

Definition 20 (SDF actors). An actor A = (P,Q,RA) is a homogeneous SDF actor with firing duration
d ∈ T , iff

RA ={(x, y) | ∀q ∈ Q : |y(q)| = min
p∈P

|x(p)| ∧ ∀n < |y(q)| : y(q)(n) = max
p∈P

x(p)(n) + d}.

That is, the n-th firing of A starts as soon as the n-th token has arrived on every input. The firing takes
d time units, after which a single output token is produced on each output. A is an SDF actor with token
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transfer quanta r : P ∪Q → N and firing duration d ∈ T iff

RA = {(x, y) | ∀q ∈ Q : |y(q)| = r(q) ·min
p∈P

(
|x(p)| ÷ r(p)

)
∧ ∀n < |y(q)| : y(q)(n) = d + max

p∈P
max

0≤m<r(p)
x(p)

(
(n÷ r(q)) · r(p) + m

)
}

where ÷ denotes the quotient of the integer division. Because of monotonicity of event traces, the above is
equivalent to:

RA = {(x, y) | ∀q ∈ Q : |y(q)| = r(q) ·min
p∈P

(
|x(p)| ÷ r(p)

)
∧ ∀n < |y(q)| : y(q)(n) = d + max

p∈P
x(p)

(
(n÷ r(q) + 1) · r(p)− 1

)
}.

Homogeneous SDF actors are thus SDF actors that have all quanta equal to 1.
SDF actors are deterministic and have constant delays d. In SDF literature they are often implicitly

understood to abstract behaviours with varying (non-deterministic) execution times in a conservative way.

Example 16. Consider the SDF actor A shown in Figure 4. A has an input port p (quantum 2) and an
output port q (quantum 3). Its firing duration is 5. An example input-output event trace of A is shown
below. The horizontal axis represents discrete time T = N. Each bullet represents an event and multiple
events happening at the same time are stacked on top of each other.The firings of A start at times 2, 4 and
5 and overlap in time. Note that the 7-th input token does not lead to any output.

time

p

q

0 1 2 3 4 5 6 7 8 9 10 11 12 13

CSDF actors like the one on the left of Figure 4 can be formalized similarly, taking into account that
they periodically cycle through firings with different quanta and firing durations.

An SDF graph represents the composition of multiple SDF actors, as in the examples shown in Figure 1.
Edges in SDF graphs are often annotated with initial tokens representing the fact that the initial state of
some queues is non-empty. To model this, we introduce an explicit actor:

Example 17. The initial token actor with k ∈ N tokens is the actor Ik = ({p}, {q}, RIk
) such that (x, y) ∈

RIk
iff, for n ∈ N:

y(q)(n) = 0 if n < k, and y(q)(n) = x(p)(n− k) otherwise.

That is, Ik outputs k initial tokens at time 0, and then behaves as the identity function. Ik satisfies all
monotonicity and continuity properties and is temporally causal (not strictly).

An SDF graph cannot always be reduced to an equivalent SDF actor. Indeed, in general, the serial
or parallel composition of two SDF actors is not an SDF actor: see [41] for examples and details. In
Section 9.1.3, we show how the (max,+) representation of SDF graphs can be used for composition.

We will next show how to check refinement between two SDF actors, and more generally between two
SDF graphs.

9.1.1 Checking refinement on SDF actors

Let A1 and A2 be two SDF actors. We want to check whether A1 v A2. Clearly, A1 and A2 must have the
same sets of input and output ports, say P and Q. Suppose A1 and A2 have quanta functions r1 and r2,
and firing durations d1 and d2, respectively.
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Figure 7: A (max,+) representation of a Synchronous Dataflow Graph

Proposition 12. A1 v A2 iff d1 ≤ d2 and ∀p ∈ P, q ∈ Q,n ≤ r1(p) · r2(p) : r1(q) · (n ÷ r1(p)) ≥
r2(q) · (n÷ r2(p)).

To show this we first prove the following lemma.

Lemma 8. For positive integers q1, q2, p1, p2: ∀n ∈ N : q1(n ÷ p1) ≥ q2(n ÷ p2) =⇒ ∀k ∈ N :
p1(k ÷ q1) + p1 ≤ p2(k ÷ q2) + p2

As a corollary, we have a much simpler sufficient condition.

Corollary 1. A1 v A2 if d1 ≤ d2, and ∀p ∈ P : r1(p) ≤ r2(p) and ∀q ∈ Q : r1(q) ≥ r2(q).

9.1.2 Representing SDF graphs by (max,+) matrices

In order to check refinement it is useful to derive a representation of an SDF graph by a (max,+) recursive
equation. The timing semantics of SDF is captured by a (max,+) linear equation.

For an SDF graph A with external input and output ports P and Q, rA : P∪Q → N denotes the repetition
vector of the graph, which assigns to every external port the relative rates at which tokens are consumed and
produced and specifies the pattern in which token dependencies are repeated [28]. For example, consider
the SDF graph APP shown in Figure 1. APP has a single external port, output port p. The repetition
vector assigns to p the number rAPP(p) = 12 · 441 = 5292, which corresponds to the total number of tokens
produced at p by 12 firings of SRC. The 12 firings of SRC, together with 5 firings of DEC, form an iteration
of the SDF graph, in which the total numbers of tokens produced and consumed at every link are equal (e.g.,
5 · 1152 = 12 · 480 in this example).

Given an input event trace x ∈ Tr(P ) (possibly containing finite event sequences), we transform it into an
infinite sequence v0,v1, ..., of (max,+) vectors. They are ordinary vectors, but used with (max,+) matrix-
vector algebra instead of the usual linear algebra. The double indexing with port p in P and event index n
with 0 ≤ n < r(p) within an iteration is used instead of the simple vector index to simplify the notation.

vk(p, n) = x(p)(k · r(p) + n) with p ∈ P, k ∈ N, 0 ≤ n < r(p)

That is, vk(p) represents the timestamps of the k-th repetition of r(p) events occurring at port p. The
size of the vector vk is equal to the sum of the entries of the input ports in the repetition vector r. For
convenience of dealing with finite sequences, we include ∞ into (max,+) algebra such that for any t ∈ R,
t+∞ = ∞+ t = ∞. Recall that ∞ represents absence of events in our semantic framework. We also include
−∞ which is the absorbing element of max-plus addition: for any t ∈ R∪{∞,−∞}, t−∞ = −∞+ t = −∞.
We use −∞ below to represent absence of a dependency in the SDF graph.

Conversely we can transform an infinite sequence wk of output (max,+) vectors back into an output
event trace:

y(q)(n) = wn÷r(q)(q, n mod r(q))

where mod is the remainder of integer division.
With this vector encoding of the event traces, the input-output relation of any SDF graph can be

characterized by a recursive (max,+) linear equation of the following form.[
ik+1

wk

]
= MA

[
ik

vk

]
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The vectors ik capture the internal state of the SDF graph. The size of the vector ik is equal to the number
of initial tokens in the SDF graph. Typically i0 = 0. The vectors vk and wk capture the inputs and outputs,
respectively.

It is convenient to split the matrix M into four quadrants representing the mutual dependencies between
inputs, outputs and internal state. [

ik+1

wk

]
=
[

MA MB

MC MD

] [
ik

vk

]
(1)

Example 18. The initial token actor with n tokens, In, is represented by a (n + 1) × (n + 1) matrix. It
consumes and produces one token per iteration. Since the first token consumed is the n + 1-st token to be
output, In has a memory of n tokens, captured by a size n internal vector ik and a size n initial vector
i0 = 0. The vector shifts up in every iteration and the time stamp of the last token consumed is added at the
bottom, i.e., the memory is formed by vector ik of size n, for which ik+1(m) = ik(m+1) for 0 ≤ m < n− 1,
and ik+1(n) = vk. The output is wk = ik(0).

In =



−∞ 0 −∞ −∞ · · · −∞
−∞ −∞ 0 −∞ · · · −∞
−∞ −∞ −∞ 0 · · · −∞

...
...

...
...

. . .
...

−∞ −∞ −∞ −∞ · · · 0
0 −∞ −∞ −∞ · · · −∞


For instance, for n = 1, we have

I1 =
[
−∞ 0
0 −∞

]
which corresponds to the following system of (max,+) equations:

ik+1 = vk

wk = ik = vk−1

A homogeneous SDF actor with firing duration d is represented by a 1× 1 matrix A = [d] and an empty
initial vector, because it is memoryless and the output event is directly determined from the input event.

Example 19. Consider the SDF graphs of Figure 9. The behavior of the top graph in Figure 9 is captured
by the following (max,+) equation:

i1,k+1

i2,k+1

y2k

y2k+1

 =


7 −∞ 7 7
7 −∞ 7 7
−∞ 3 −∞ −∞
−∞ 3 −∞ −∞




i1,k

i2,k

x2k

x2k+1


corresponding to the following system of (max,+) equations:

i1,k+1 = i2,k+1 = max{i1,k, x2k, x2k+1}+ 7
y2k = y2k+1 = i2,k + 3

Hence, the matrix representation of the top graph of Figure 9 is:
7 −∞ 7 7
7 −∞ 7 7
−∞ 3 −∞ −∞
−∞ 3 −∞ −∞


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The lower SDF graph of Figure 9, which has an additional edge which may model a finite buffer capacity, is
represented by the matrix: 

7 −∞ 7 7 7
7 −∞ 7 7 7
−∞ 3 −∞ −∞ −∞
−∞ 3 −∞ −∞ −∞
−∞ 3 −∞ −∞ −∞


9.1.3 Computing compositions of SDF graphs

We can compute the parallel composition of SDF graphs based on their matrix representation. Let A1 and
A2 be represented by matrices

A1 =
[

MA
1 MB

1

MC
1 MD

1

]
, A2 =

[
MA

2 MB
2

MC
2 MD

2

]
and initial vectors i1 and i2. Then their parallel composition A1||A2 is represented by the matrix

MA
1 −∞ MB

1 −∞
−∞ MA

2 −∞ MB
2

MC
1 −∞ MD

1 −∞
−∞ MC

2 −∞ MD
2


and has an initial vector given by the concatenation of i1 and i2.

The serial composition A1θA2 is represented by the matrix MA
1 −∞ MB

1

MB
2 MC

1 MA
2 MB

2 MD
1

MD
2 MC

1 MC
2 MD

2 MD
1


Also in this case, the initial vectors are concatenated.

Note that the (max,+) representation abstracts from the port names and θ merely defines a permutation
of the vector indices. For the above matrix, it is assumed that the corresponding permutation is the identity
function. For other θ, the result is obtained by appropriate permutation of the rows and columns of the
submatrices A1 and A2 respectively.

Figure 8: Feedback on (max,+) representations of SDF graphs.

Feedback in SDF graphs is achieved by connecting outputs to inputs with identical quanta in one graph
iteration and without direct dependencies. We illustrate the feedback construction in Figure 8. To create
feedback from input port p to output port q, we split the inputs v and outputs w up in two parts, vp and v′

and wq and w′ respectively where vp contains the elements of vector v with events of port p and wq contains
the elements of vector w with events of port q. We feed wq back to vp. We assume that those inputs and
outputs that are used for the feedback are aligned to the same rows in the matrix. We can always align them
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by appropriate permutation of the rows and columns of the matrix. This gives us a matrix equation of the
following form:  ik+1

wq,k

w′
K

 =

 MA MB
1 MB

2

MC
1 MD

1,1 MD
1,2

MC
2 MD

2,1 MD
2,2

 ik

vp,k

v′k


The center block, MD

1,1, in the matrix must contain only −∞ to ensure there are no direct dependencies
from p to q. Now we can solve the equation and eliminate vp from the input vector using the constraint
vp,k = wq,k (for brevity and clarity we use the (max,+) notation ⊕ of the maximum operator): ik+1

wq,k

w′
k

 =

 MA MB
1 MB

2

MC
1 −∞ MD

1,2

MC
2 MD

2,1 MD
2,2

 ik

vp,k

v′k


=

 MA MB
1 MB

2

MC
1 −∞ MD

1,2

MC
2 MD

2,1 MD
2,2

 ik

MC
1 ik ⊕MD

1,2v
′
k

v′k


=

 MA ⊕MB
1 MC

1 MB
2 ⊕MB

1 MD
1,2

MC
1 MD

1,2

MC
2 ⊕MD

2,1M
C
1 MD

2,2 ⊕MD
2,1M

D
1,2

[ ik

v′k

]

9.1.4 Checking refinement on SDF graphs

From the recursive Equation (1), we can derive an explicit function from the input vectors to the output
vectors:

wk = MCik ⊕MDvk

= MC(MAik−1 ⊕MBvk−1)⊕MDvk

= MCMAik−1 ⊕MCMBvk−1 ⊕MDvk

= MCMA(MAik−2 ⊕MBvk−2)⊕MCMBvk−1 ⊕MDvk

= MCMA2
ik−2 ⊕MCMAMBvk−2 ⊕MCMBvk−1 ⊕MDvk

= . . .

= MCMAk
i0 ⊕MDvk ⊕MC

k−1⊕
n=0

MAn
MBvk−1−n (2)

Note that for an SDF graph without open inputs, this reduces to:

wk = MCMAk
i0 (3)

For equal sized matrixes M1 and M2 with K rows and L columns, we write M1 ≤ M2 iff for all 0 ≤ k < K
and 0 ≤ l < L, M1(k, l) ≤ M2(k, l).

We next show how to check refinement between two SDF graphs. We assume that the two graphs have
consistent repetition vectors, i.e., vectors that have a common multiple and the same ratios between all
input and output port pairs.1 Two such graphs generally have submatrices MD of different size. In order to
compare the graphs we need matrices for which MD is of equal size. To achieve this, we can aggregate the
appropriate number of iterations of the graph into a single vector, according to the common hyper period of
the graphs. As an example, we show how to combine two iterations into one: combining[

i2k+1

w2k

]
=
[

MA MB

MC MD

] [
i2k

v2k

]
and

[
i2k+2

w2k+1

]
=
[

MA MB

MC MD

] [
i2k+1

v2k+1

]
1 Notice that for atomic SDF actors we can check refinement also in the case where the repetition vectors (in this case,

quanta functions) are not consistent, as stated in Proposition 12.
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gives:  i2k+2

w2k

w2k+1

 =

 MA2 MAMB MB

MC MD −∞
MCMA MCMB MD

 i2k

v2k

v2k+1


Note that the size of the internal state vector remains the same.

Lemma 9. Let M and N be two matrix representations of SDF graphs A and B with the same input and
output ports respectively and with the same port iteration quanta. B v A if and only if (i) ND ≤ MD, (ii)
NCNAkNB ≤ MCMAkMB for all k ≥ 0 and (iii) NCNAk

iN,0 ≤ MCMAn
iM,0 for all n.

Proof. Note that even if M and N have differently sized internal states, the sizes of the matrices we are
comparing are identical. The ‘if’ direction is trivial. For the ‘only if’ direction, consider the following.
If ND 6≤ MD, let ND(k, l) > MD(k, l). Let k correspond to event number m on output port q and l
correspond to event number n on input port p. If we consider input event trace x where x(r)(i) = 0 for
all r 6= p and all i and x(p)(i) = 0 for all i < n and x(p)(i) = t for all i ≥ n where t is a constant.
yA(q)(m) = (MCiM,0)(k)⊕max0≤i<r(p) MD(k, s + i) + x(p)(i), where s is the starting index of the tokens
of port p in the vector, so that s + n = l. yB(q)(m) = (NCiN,0)(k) ⊕ max0≤i<r(p) ND(k, s + i) + x(p)(i).
For sufficiently large t, yA(q)(m) = max0≤i<r(p) MD(k, s + i) + x(p)(i) = maxn≤i<r(p) MD(k, s + i) + t
and yB(q)(m) = max0≤i<r(p) ND(k, s + i) + x(p)(i) = maxn≤i<r(p) ND(k, s + i) + t. For SDF graphs,
yA(q)(m) = MD(k, s + n) + t and yB(q)(m) = ND(k, s + n) + t. Hence, yA(q)(m) < yB(q)(m) and because
SDF actors are deterministic, B does not refine A. The proof for the other terms is similar, but even more
tedious.

The conditions of Lemma 9 can be checked based on the fact that sequences of the form Mk in (max,+)
algebra are known to become ultimately periodic, i.e., there exist some K and N such that for all k ≥ K,
Mk = Mk−N + NλM where λM is the eigenvalue of the matrix M.

Proposition 13. The refinement relation between SDF graphs with consistent quanta is decidable.� ��� � ��� � ��� � ��� ���� �������� ��������� �� ��
Figure 9: Refinement of an SDF graph to bound the size of a buffer.

Example 20. Figure 9 shows two SDF graphs. Both graphs have one external input port and one external
output port. Notation < x2k, x2k+1 > is used for the subsequence of the time stamps of two successive tokens
consumed at the external input of the graph, and similarly for < y2k, y2k+1 > at the output. Notations ‘7’
and ‘3’ denote the firing durations of the corresponding actors. The bottom graph is identical to the top graph
except that it has an additional, back-pressure edge.
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Recall from Example 19 that the top graph can be represented by the following (max,+) equation:
i1,k+1

i2,k+1

y2k

y2k+1

 =


7 −∞ 7 7
7 −∞ 7 7
−∞ 3 −∞ −∞
−∞ 3 −∞ −∞




i1,k

i2,k

x2k

x2k+1


It follows from the above that for all k, i1,k = i2,k. Therefore, the equation can be simplified to: i12,k+1

y2k

y2k+1

 =

 7 7 7
3 −∞ −∞
3 −∞ −∞

 i12,k

x2k

x2k+1


The lower SDF graph of Figure 9 can be represented by the following equation:

j12,k+1

j3,k+1

y2k

y2k+1

 =


7 7 7 7
3 −∞ −∞ −∞
3 −∞ −∞ −∞
3 −∞ −∞ −∞




j12,k

j3,k

x2k

x2k+1


We have

M =

 7 7 7
3 −∞ −∞
3 −∞ −∞

 and N =


7 7 7 7
3 −∞ −∞ −∞
3 −∞ −∞ −∞
3 −∞ −∞ −∞


We wish to apply Lemma 9. We can immediately see that MD = ND. We next compute:

MCMAk
i0 = MC

[
7
]k

i0

= MC
[

7k
]
i0

=
[

3
3

] [
7k
]
i0

=
[

7k + 3
7k + 3

] [
0
]

=
[

7k + 3
7k + 3

]
and similarly for N:

NCNAk
j0 = NC

[
7 7
3 −∞

]k

j0

= NC

[
7k 7k

7k − 4 7k − 4

]
j0 (assuming for the moment k ≥ 2)

=
[

3 −∞
3 −∞

] [
7k 7k

7k − 4 7k − 4

]
j0

=
[

7k + 3 7k + 3
7k + 3 7k + 3

] [
0
0

]
=
[

7k + 3
7k + 3

]
It is easy to check separately that the final result also holds for k = 0, 1, thus it holds for all k ∈ N, which
shows MCMAk

i0 = NCNAk
j0 for all k ∈ N.
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Finally, we compute:

MCMAk
MB =

[
7k + 3
7k + 3

]
MB

=
[

7k + 3
7k + 3

] [
7 7

]
=
[

7k + 10 7k + 10
7k + 10 7k + 10

]

and similarly for N:

NCNAk
NB =

[
7k + 3 7k + 3
7k + 3 7k + 3

]
NB

=
[

7k + 3 7k + 3
7k + 3 7k + 3

] [
7 7
−∞ −∞

]
=
[

7k + 10 7k + 10
7k + 10 7k + 10

]

therefore MCMAkMB = NCNAkNB for all k ∈ N. Thus, for the two SDF graphs the corresponding terms
used in the conditions of Lemma 9 are equal, and hence the two SDF graphs refine each other and are in fact
equivalent. Note that in this example the behavior of the terms becomes periodic with k right from the start.

9.1.5 Computing throughput bounds on SDF graphs

There are well known methods for computing throughput of an SDF graph. We will show here that these
methods can be also used to compute our notions of throughput bounds. SDF throughput is typically
computed for closed graphs without any inputs, as sources are usually modeled as part of the graph. Common
(equivalent) techniques for calculating throughput are based on Maximum Cycle Ratio analysis (in timed
synchronous dataflow literature sometimes incorrectly called Maximum Cycle Mean analysis) of an equivalent
homogeneous SDF graph [36] on an explicit state-space exploration of the operational semantics or on a
(max,+) formulation of the semantics.

We have seen in Equation 3 that for an SDF graph without open inputs, the following equation calculates
the output trace.

wk = MCMAk
i0

It is known [4] that the sequence of vectors wk becomes eventually periodic and that the average rate at
which all the entries in the vector grow, are determined by the eigenvector of the matrix MA. If the events
on output port q are governed by eigenvalue λ, then the throughput on that port is equal to r(q)/λ.

We next examine SDF graphs which do have open inputs. Clearly, now the throughput on output
sequences depends on the throughput with which inputs are offered on the input ports. However, internal
dependencies within the SDF graph may result in the output throughput not being proportional to the
throughput at the inputs, but being constrained by the internal throughput limitation of the SDF graph.

Recall from Equation 2, that the general formula for the output sequence of vectors is as follows.

wk = MCMAk
i0 ⊕MDvk ⊕MC

k−1⊕
n=0

MAn
MBvk−1−n

Splitting the equation in terms of vectors into separate output sequences reveals that the outputs are defined
as the maximum of a set of event sequences. Let N be the size of the vectors vk and M the size of the
vectors wk.
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Introduce the infinite sequences wm(k), vn(k), im(k) and hm,n(k) for 0 ≤ m < M and 0 ≤ n < N ,
defined as follows.

wm(k) := wk(m)
vn(k) := vk(n)

im(k) := ik(m) =
(
MCMAk

i0

)
(m)

hm,n(k) := hm,n(k) =
{

MD(m,n) if k = 0
(MCMAk−1MB)(m,n) if k > 0

Then we can rewrite Equation 2 as follows. (Using M(m, ∗) to denote the m-th row of matrix M.)

wm(k) =
(
MCMAk

i0

)
(m)⊕

(
MD

)
(m, ∗)vk ⊕

(
MC

k−1⊕
l=0

MAl
MBvk−1−l

)
(m)

= im(k)⊕
N−1⊕
n=0

MD(m,n)vk(n)⊕

(
MC

k−1⊕
l=0

N−1⊕
n=0

(
MAl

MB
)

(m,n)vk−1−l(n)

)

= im(k)⊕
N−1⊕
n=0

(
MD(m,n)vn(k)⊕

(
k−1⊕
l=0

MCMAl
MB(m,n)vn(k − 1− l)

))

= im(k)⊕
N−1⊕
n=0

(
hm,n(0)vn(k)⊕

(
k⊕

l=1

hm,n(l)vn(k − l)

))

In the last line, we recognize ⊕ (max) and the (max,+) convolution operators on event sequences, defined
as follows.

Definition 21. Let τ1 and τ2 be two event sequences. The sequence max(τ1, τ2) (also written τ1⊕ τ2) is the
event sequence such that max(τ1, τ2)(n) = max(τ1(n), τ2(n)). The (max,+)-convolution τ1 ⊗ τ2 is the event
sequence such that τ1 ⊗ τ2(n) = max0≤k≤n τ1(k) + τ2(n− k).

Using these operator, the equation becomes:

wm = im ⊕
N−1⊕
n=0

(hm,n ⊗ vn) (4)

The throughput of the output sequences wm is determined by a combination of max operations and
(max,+) convolutions of the internal sequences im, the impulse response sequences hm,n and the input
sequences vn. Let us investigate how our throughput definition behaves for these operations.

Lemma 10. T lb(max(τ1, τ2)) = min(T lb(τ1), T lb(τ2)).

Proof. (i) Let T < T lb(τ1) and T < T lb(τ2). There exist K1 and K2 such that for all n > max(K1,K2),
n > τ1(n) · T and n > τ2(n) · T and thus n > max(τ1, τ2)(n) · T . And thus we may conclude that T <
T lb(max(τ1, τ2)). (ii) If T > T lb(τ1), then T > T lb(max(τ1, τ2)), because max(τ1, τ2)(n) ≥ τ1(n) for all n.
Similarly for T > T lb(τ2). From (i) and (ii) together it follows that T lb(max(τ1, τ2)) = min(T lb(τ1), T lb(τ2)).

Lemma 11. T lb(τ1 ⊗ τ2) = min(T lb(τ1), T lb(τ2)).

Proof. (i) Let T < T lb(τ1) and T < T lb(τ2) and let T ′ be such that T < T ′ < T lb(τ1) and T < T ′ < T lb(τ2).
There exist K1 such that for all n > K1, n > τ1(n)T ′. Similarly, there exists K2 such that for all n > K2,
n > τ2(n)T ′. This means that there exist ∆1 and ∆2 such that n + ∆1 > τ1(n)T ′ and n + ∆2 > τ2(n)T ′ for
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all n ≥ 0. Then for any n and k ≤ n, n + ∆1 + ∆2 = k + ∆1 + (n− k) + ∆2 > τ1(k)T ′ + τ2(n− k)T ′ and if
we let ∆ = ∆1 + ∆2, n + ∆ > (τ1 ⊗ τ2)(n)T ′. Now,

n > (τ1 ⊗ τ2)(n)T ′ −∆
nT > (τ1 ⊗ τ2)(n)T ′T −∆T

nT ′ > (τ1 ⊗ τ2)(n)T ′T −∆T + n(T ′ − T )

n > (τ1 ⊗ τ2)(n)T +
n(T ′ − T )−∆T

T ′

n > (τ1 ⊗ τ2)(n)T if n >
∆T

T ′ − T

From this result we may conclude that T < T lb(τ1 ⊗ τ2).
(ii) Let w.l.o.g. T > T lb(τ1). Then T > T lb(τ1 ⊗ τ2), because τ1 ⊗ τ2(n) ≥ τ1(n) for all n.
From (i) and (ii) together it follows that T lb(τ1 ⊗ τ2) = min(T lb(τ1), T lb(τ2)).

We observe that the throughput of the sequences in and hm,n are determined by the eigenvalues of the
matrix MA and are equal to 1/λ if λ is the unique eigenvalue of MA [4]. On a strongly connected SDF graph,
MA has a single eigenvalue and the throughput of each of these signals is the same.

Proposition 14. Let A be a strongly connected SDF graph with input ports P and output ports Q represented
by the quadrant (max,+) matrices MA, MB, MC and MD. Let r : P ∪Q → N be the port iteration quanta
of A. Let x be an input trace of A. Then MA has a unique eigenvalue, λ, and

T lb(A, x, q) = r(q) ·min(
1
λ

,min
p∈P

T lb(x(p))
r(p)

).

Proof. Follows directly from the characterization by Equation 4 and Lemmas 10 and 11.

Example 21. Recall that the matrix representation of the bottom graph of Figure 9 is
7 −∞ 7 7 7
7 −∞ 7 7 7
−∞ 3 −∞ −∞ −∞
−∞ 3 −∞ −∞ −∞
−∞ 3 −∞ −∞ −∞


It follows from the solution to the eigenvalue equation for the top-left block matrix that λ = 7: 7 −∞ 7

7 −∞ 7
−∞ 3 −∞

 0
0
−4

 = 7 +

 0
0
−4


With r(x) = 2 and r(y) = 2, the throughput lower bound on y becomes according to Proposition 14:

T lb(y) = 2 ·min
(

1
7
,
T lb(x)

2

)
= min

(
2
7
, T lb(x)

)
.

9.1.6 Computing latency on SDF Graphs

Various methods for computing latency exist in the SDF literature [19, 31], differing in particular in how
the related input-output events are specified. Sometimes they are left implicit and derived from the data
dependencies defined by the SDF graph. Sometimes they are specified explicitly. It is natural to specify
the related input-output events in patterns which repeat with the periodic behavior of SDF iterations. In
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particular, an IOES can be captured by a set Ê ∈ 2P×N × 2Q×N. Then, for an SDF graph with repetition
vector r, the actual IOES associated with Ê = (EP , EQ) is

E = {(Ek
P , Ek

Q) | k ≥ 0}, where

Ek
P = {(p, n + kr(p)) | (p, n) ∈ EP }

Ek
Q = {(q, n + kr(q)) | (q, n) ∈ EQ}

Latency can be computed by an exploration of the operational behavior of the SDF graph. This behavior
is deterministic and ultimately periodic, where a period spans one or more iterations of the graph. The
latency can be determined by exploring the behavior until it becomes periodic and observing the latency of
the events. The latency values after that are identical because of the periodic behavior.

9.1.7 Computing buffer capacities on SDF graphs

We have seen in Proposition 14 that outputs of an SDF graph may have a limited throughput, independent
of the throughput on its input event sequences. This also applies to the outputs modeling the consumption
of data from its inputs; it can process its input data with a limited speed. As a consequence, if the input is
offered with a higher throughput, then the required capacity of the input buffer is unbounded, i.e., ∞.

As a first check, therefore, it is necessary to determine the throughput of the input event sequence(s)
and the internal throughput of the consuming SDF graph. Focusing on a particular input port p, we
can determine the throughput T p of the event sequence produced on p versus the throughput T p′

on the
consumption port p′. If T p > T p′

then the required capacity is unbounded, otherwise they must be equal,
because it is not possible to consume more than is produced. In case the throughput is equal, the maximal
buffer occupation can be determined from an exploration of the state-space of the operational semantics of
SDF, as is the underlying method for the exact SDF buffer size analysis of [37].

9.1.8 Time non-deterministic SDF

The formal semantics of SDF typically (as well as in our case) assumes constant firing durations. Often these
durations are (implicitly) understood to be worst-case firing durations of time non-deterministic actors in the
final implementation. Existing works, e.g., [46, 37], claim that event sequences derived with constant firing
durations are conservative (pessimistic) estimates of the final implementation with varying firing durations,
and similarly that performance metrics of the model with constant firing durations are conservative estimates
of these metrics in the final implementation. We address this relation formally within our framework, and
confirm this claim. Given the same port quanta, actors with a constant firing duration refine and are refined
by actors with a variable firing duration, as they have the same upper bound on their firing duration. This
implies that for instance max-plus algebra can be used to derive conservative event traces, throughput,
latency, and buffer requirements of actors in the final implementation.

9.2 Service Curves

In this section we study actors on T = R≥0 defined by service curves and convolutions. Our study is
motivated by NC and RTC, however, we adopt a simpler setting (omitting resource modeling), merely
aiming at illustrating the main concepts and at drawing links. Moreover, while NC typically presents its
results for so-called fluid models (continuous data over continuous time) we focus on discrete behaviors over
continuous time.

In NC and RTC, event sequences are represented as arrival functions, i.e., left-continuous functions α :
R≥0 → N, where α(t) represents the cumulative total of events that have occurred up to (and including) time
t. We can go from a (non-zeno) event sequence τ to its arrival function τ defined by τ(t) = sup{n+1 | τ(n) ≤
t} (as introduced in Section 8). By definition, sup ∅ = 0, so that τ(t) = 0 for t < τ(0). Note that τ is indeed
left-continuous. Conversely, an arrival function α defines an event sequence α(n) = inf{t | n + 1 ≤ α(t)}. By
definition, inf ∅ = ∞, so that if n + 1 > α(t) for all t, then τ(n) = ∞ and the n-th event never occurs.
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Lemma 12. Let τ be a non-zeno event sequence and let α be an arrival function. Then τ = τ and α = α.

Proof.

τ(n) = inf{t | n + 1 ≤ τ(t)}
= inf{t | n + 1 ≤ sup{m + 1 | τ(m) ≤ t}}
= inf{t | n ≤ sup{m | τ(m) ≤ t}}
= inf{t | ∃m : n ≤ m : τ(m) ≤ t}
= inf{t | τ(n) ≤ t}
= τ(n)

α(t) = sup{n + 1 | α(n) ≤ t}
= sup{n + 1 | inf{u | n + 1 ≤ α(u)} ≤ t}
= sup{n | inf{u | n ≤ α(u)} ≤ t}
= sup{n | ∃u : n ≤ α(u) : u ≤ t}
= sup{n | n ≤ α(t)}
= α(t)

Note that event sequences bear strong similarities to the pseudo-inverse functions of NC [8]. The duality
between the two descriptions is also known in the (max,+) work, for instance between dater and counter
descriptions [4].

Classes of arrival functions are usually characterized by means of arrival curves, i.e., functions F : R≥0 →
N specifying a bound F (d) on the number of discrete events arriving in any interval of length d. For instance,
α satisfies lower bound arrival curve F if for all t, d ∈ R≥0, α(t+d)−α(t) ≥ F (d). Similar bounding functions
could be defined for event sequences.

In NC and RTC, arrival curves are used as a representation of a set of arrival functions, namely those
arrival functions whose arrival curves are bounded by the given curve. The strong result of NC and RTC is
that just as services may operate on concrete arrival functions, they can operate on upper or lower bound
arrival curves and yield upper or lower bound curves characterizing the set of concrete outputs.

Common operations on arrival functions are convolutions. The (min,+) convolution operation on arrival
functions is defined as:

(α1 ⊗ α2)(t) = inf
0≤s≤t

{α1(t− s) + α2(s)}

In terms of the equivalent event sequence model, the corresponding operation is a (max,+) convolution
(Definition 21):

(τ1 ⊗ τ2)(n) = max
0≤k≤n

{τ1(n− k) + τ2(k)}

To show that this is indeed the equivalent operation, we show that the conversion · and the convolution
operations commute. For this, we first prove the following lemma.

Lemma 13. Let τ1 and τ2 be non-zeno event sequences and α1 and α2 the corresponding arrival functions.
Then

(τ1 ⊗ τ2)(n) > t ⇔ (α1 ⊗ α2)(t) < n + 1.
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Proof. (⇒) If (τ1⊗τ2)(n) > t, then by definition of the convolution, there exists l such that τ1(n−l)+τ2(l) > t.
Let l be such, then there exists some s, 0 ≤ s ≤ t such that τ1(n − l) > t − s and τ2(l) > s. By Lemma 6,
α1(t− s) ≤ n− l and α2(s) ≤ l. Then α1(t− s) + α2(s) ≤ n < n + 1 and thus (α1 ⊗ α2)(t) < n + 1. (⇐) If
(α1⊗α2)(t) < n+1, then by definition of the convolution, there exists s such that α1(t− s)+α2(s) < n+1.
Let s be such, then there exists some l, 0 ≤ l ≤ n such that α1(t− s) ≤ n− l and α2(s) ≤ l. By Lemma 6,
τ1(n− l) > t− s and τ2(l) > s. Then τ1(n− l) + τ2(l) > t and thus (τ1 ⊗ τ2)(n) > t.

Lemma 14. Let α1 and α2 be two arrival functions. Then

α1 ⊗ α2 = α1 ⊗ α2.

Proof.

α1 ⊗ α2(n) = inf{t | n + 1 ≤ (α1 ⊗ α2)(t)}
= inf{t | t ≥ (α1 ⊗ α2)(n)} {by Lemma 13}
= (α1 ⊗ α2)(n)

The empty sequence ε is the zero-element of convolution: τ ⊗ ε = ε⊗ τ = ε. The zero sequence ~0 is the
unit-element of convolution: τ ⊗~0 = ~0⊗ τ = τ .

Similarly, (min,+) deconvolution is defined as

α1 � α2(t) = sup
s
{α1(t + s)− α2(s)}

and it similarly becomes in terms of event sequences:

τ1 � τ2(n) = inf
k
{τ1(n + k)− τ2(k)}

Lemma 15. Convolution is commutative and associative.

Proof. (Similar to [8], Thm.3.1.5 for arrival functions.) Commutativity follows directly from the definition.
For associativity, let τi, i = 1, 2, 3 be event sequences.

((τ1 ⊗ τ2)⊗ τ3)(n) = max
0≤k≤n

{(τ1 ⊗ τ2)(n− k) + τ3(k)}

= max
0≤k≤n

{ max
0≤m≤n−k

{τ1(n− k −m) + τ2(m)}+ τ3(k)}

= max
0≤k≤n,0≤m≤n−k

{τ1(n− k −m) + τ2(m) + τ3(k)}

= max
0≤k≤n,0≤(l−k)≤n−k

{τ1(n− k − (l − k)) + τ2(l − k) + τ3(k)}

= max
0≤k≤l≤n

{τ1(n− l) + τ2(l − k) + τ3(k)}

= max
0≤l≤n

{τ1(n− l) + max
0≤k≤l

{τ2(l − k) + τ3(k)}}

= max
0≤l≤n

{τ1(n− l) + (τ2 ⊗ τ3)(l)}

= (τ1 ⊗ (τ2 ⊗ τ3))(n)

Convolution of event sequences is monotone in the earlier relation.

Lemma 16. Let τi, i = 1, 2, 3 be event sequences such that τ1 ≤ τ2, then τ1 ⊗ τ3 ≤ τ2 ⊗ τ3 (a corresponding
property of arrival functions is called isotonicity in [8]).
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Figure 10: Event sequence (a) and arrival function (b) of input (i), actor service (ii) and their convolutions
(iii).
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Proof. (τ1 ⊗ τ3)(n) = max0≤k≤n{τ1(n− k) + τ3(k)} ≤ max0≤k≤n{τ2(n− k) + τ3(k)} = τ2 ⊗ τ3. It is easy to
see that the lengths of both sequences are identical and equal to the length of the shortest τi.

Note that it is not necessarily true in the opposite direction. For instance, τ1⊗ ε ≤ τ2⊗ ε, for any τ1 and
τ2.

A service curve characterizes the amount of service (work) an actor can perform in a given interval of
time, or conversely, the amount of time it takes to process a set of input events. Formally, a service curve
is a function β : N → R≥0, β(n) being the time to process n events. Processing n events should not take
more time than n times processing a single event. This property of a service curve is called subadditivity, a
straightforward adaptation of the definition of Boudec and Thiran [8]:

Definition 22. A service curve β is subadditive if for any n, m > 0, β(n + m− 1) ≤ β(n− 1) + β(m− 1).

Note that if β is subadditive then β(n) < ∞ for all n if β(0) < ∞.

Definition 23 (SC actors). A subadditive service curve β defines an input-complete, non-deterministic actor
Cβ = ({p}, {q}, RCβ ), called an SC actor, and such that xCβy iff y(q) ≤ x(p)⊗ β.

The intuition is as follows. β(n) is an upper bound on the time it takes the server to process n data items
assuming they are available for processing. An upper bound on the completion time for n output data items
is given by the worst case combination of the arrival time of data item n−k and the time it takes to process
the remaining k items. Note that, in the expression x(p) ⊗ β, even though x(p) and β are functions with
(almost) the same signature, they are objects with different meaning: x(p) is an event sequence, whereas β
is a service curve.

In order to effectively use service curves, a finite representation is needed. Often piece-wise linear func-
tions or a finite set of discrete points are used (see http://www.mpa.ethz.ch/Rtctoolbox). With such
representations in hand, problems on SC actors can be reduced to problems on service curves. For instance,
Cβ1 = Cβ2 iff β1 = β2.

Proposition 15. Let β1 and β2 be two service curves, then β2 ≤ β1 iff Cβ2 v Cβ1 .

Proof. (only if) Both are input-complete, so inCβ1 ⊆ inCβ2 . Let xCβ2y, then y(q) ≤ x(p)⊗ β2. It suffices to
show that y(q) ≤ x(p)⊗β1 and thus that x(p)⊗β2 ≤ x(p)⊗β1, which follows directly from (x(p)⊗β2)(n) =
max0≤k≤n{x(p)(n− k) + β2(k)} ≤ max0≤k≤n{x(p)(n− k) + β1(k)} = (x(p)⊗ β2)(n).

Serial composition of SC actors amounts to convolution of their service curves. This is similar to NC and
RTC where composition is also defined as convolution.

Proposition 16. Let Cβ1 be an SC actor with input port p1 and output port q1 and Cβ2 an SC actor with
input port p2 and output port q2, then with θ the obvious mapping, Cβ1θCβ2 = Cβ1⊗β2 .

Proof. We need to show that (i) if xCβ1θCβ2y, then xCβ1⊗β2y and (ii) vice versa. For (i), let xCβ1θCβ2y,
then there exist y1 and x2 such that xCβ1y1 and x2C

β2y. Then y1(q1) ≤ x(p)⊗β1 and y(q) ≤ x2(p2)⊗β2 and
x2(p2) = y1(q1). Using Lemma 16 and associativity of convolution, y(q) ≤ x2(p2)⊗ β2 ≤ (x(p)⊗ β1)⊗ β2 =
x(p)⊗ (β1 ⊗ β2) and thus xCβ1⊗β2y.

(ii). xCβ1⊗β2y. y(q) ≤ x(p) ⊗ (β1 ⊗ β2). Let y1 be defined by y1(q1) = x(p) ⊗ β1. Then clearly xCβ1y1.
Moreover, y(q) ≤ y1(q1)⊗ β2, because y(q) ≤ x(p)⊗ β1 ⊗ β2 and thus with x2(p2) = y1(q1), x2C

β2y.

9.3 Discrete-Time Automata

A natural representation of actors is automata. Automata, in contrast with SDF actors, do not have v-
monotonicity and input-closure built-in, and such properties have to be explicitly verified when necessary.
There are many automata variants, over finite or infinite words, with various acceptance conditions, finite or
infinite-state,2 and so on. We are not going to propose a single automaton-based model for actors. Instead

2 We do require finite representations, but a finite representation (e.g., a counter machine) can still represent an infinite-state
system.
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we will discuss some general ideas as well as some cases for which we have algorithms. We limit our discussion
to discrete-time automata (DTA) in the sense that time is counted by discrete transitions. DTA generate
actors over a discrete time domain, T = N. One could also consider timed automata [2] where T = R≥0.

One possible model is an automaton whose transitions are labeled with subsets of P ∪Q, the set of input
or output ports. An example is shown in Figure 11. The state drawn with two circles is the accepting state.
In this implicit-tick model each transition corresponds to one time unit. If the transition is labeled by some
set of ports V ⊆ P ∪Q, then an event at each port in V occurs at the corresponding instant in N. V may
be empty, as in the self-loop transition of the automaton shown in the figure. In this case, no events occur
at that time instant.3

rejected trace

∅

{q}

{p}

q

p

q

p

accepted trace

Figure 11: Finite-state automaton labeled with subsets of {p, q} (left) and two possible event traces (middle
and right). The automaton accepts the leftmost trace but not the rightmost one.

The implicit-tick model cannot capture event traces where more than one event occurs simultaneously at
the same port (and therefore an implicit-tick actor cannot be input-complete). One possibility is to dissociate
the elapse of time from transitions, by introducing a special label, t, denoting one time unit. Then, we can
use automata whose transitions are labeled with single ports or t, that is, whose alphabet is P ∪ Q ∪ {t}.
We call this the explicit-tick model. An example is shown in Figure 12. This automaton generates strictly
more event traces than the one in Figure 11.

tt

q

p

q

p

q

p

accepted trace accepted trace

Figure 12: Finite-state automaton labeled with elements of {p, q, t} (left) and two possible event traces
accepted by the automaton (middle and right).

A DTA M defines an actor A(M) = (P,Q,RA(M)) as follows. Every (finite or infinite) accepting run
of M generates a (finite or infinite) word w in the language of M , denoted L(M). Every word w can be
mapped to a unique event trace pair Tr(w) ∈ Tr(P ) × Tr(Q), as illustrated in the figures above. Then,
RA(M) is the set of all event trace pairs generated by words in L(M), i.e., the set {Tr(w) | w ∈ L(M)}, also
denoted Tr(L(M)).

An ITA (resp. ETA) is an implicit-tick (resp. explicit-tick) automaton on finite words. An ITBA
(resp. ETBA) is an implicit-tick (resp. explicit-tick) Büchi automaton. Implicit-tick DTA are (strictly) less

3 Note that automata in the implicit-tick model are essentially transducers [6] with input alphabet 2P and output alphabet
2Q. Every transition in such a transducer is labeled by a pair (P ′, Q′) with P ′ ⊆ P and Q′ ⊆ Q. Often such pairs are denoted
P ′/Q′, a notation that the advantage of being explicit about inputs and outputs. In the automaton shown in Figure 11, for
instance, the labels {p} and {q} would be written as {p}/∅ and ∅/{q}, respectively. Label ∅ would be written as ∅/∅.
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expressive than explicit-tick DTA and finite-word DTA are strictly less expressive than corresponding Büchi
versions:

Proposition 17. Every ITA (resp. ITBA) M can be transformed into an ETA (resp. ETBA) M ′ such that
A(M) = A(M ′). Every ITA (resp. ETA) M can be transformed into an ITBA (resp. ETBA) M ′ such that
A(M) = A(M ′).

Proof. For the first claim, irrespectively of whether M is an ITA or ITBA, a transition s
P ′∪Q′

−→ s′ in M , with
P ′ = {p1, p2, ..., pn} ⊆ P and Q′ = {q1, q2, ..., qm} ⊆ Q, can be transformed into a sequence of transitions

s
p1−→ r1

p2−→ · · · pn−→ rn
q1−→ rn+1

q2−→ · · · qm−→ rn+m
t−→ s′

in M ′, where r1, ..., rn+m are new, non-accepting states (created for this transition).

For the second claim, if M is an ITA, we add a new state snew with a self-loop snew
∅−→ snew. From

any accepting state s of M , we add a transition s
∅−→ snew. We turn s into non-accepting and snew into

accepting. The obtained ITBA M ′ has a single accepting state, snew. This transformation ensures that
A(M) = A(M ′) because Tr(w) = Tr(w · ∅ω) for any finite word w.

For an ETA, the transformation is essentially the same, except that the new transitions are labeled with
t instead of ∅.

Two distinct words w and w′ of an ITA M can result in the same event trace, for instance, if w′ = w · ∅n,
for different n ≥ 1. To avoid technical complications related to this, we will assume that M is tick-closed,
that is, for any w ∈ L(M), w · ∅∗ ⊆ L(M). An ETA M is tick-closed iff for any w ∈ L(M), w · t∗ ⊆ L(M).
The ITA of Figure 11 and ETA of Figure 12 are tick-closed. Any ITA (ETA) M can be transformed to a
tick-closed ITA (ETA) M ′ so that A(M) = A(M ′). In the rest of this section we assume all ITA or ETA to
be tick-closed. We also assume that automata are finite-state, all their states are reachable from the initial
state, and there is no state that cannot reach an accepting state by a non-empty path.

Given actors represented by discrete-time automata, we are interested in answering various questions.

9.3.1 Checking equality

Given M and M ′, is A(M) = A(M ′)? For ITA, there is a bijection between infinite words and event
traces, that is, ∀w,w′ ∈ (2P∪Q)ω : w 6= w′ ⇐⇒ Tr(w) 6= Tr(w′). (Note that Tr(w) may be finite, even
though w is infinite, if w ends in ∅ω.) The same bijection does not hold for finite words as explained above.
Nevertheless, because ITA are assumed to be tick-closed, we can show:

Proposition 18. For two ITA (ITBA) M1 and M2, we have A(M1) = A(M2) iff L(M1) = L(M2).

For ETA, we cannot reduce actor equivalence to language equivalence, even when the automata are tick-
closed, since we can obtain the same event trace from different words by commuting transitions happening
between two successive ticks. To solve this problem we use results from trace language theory [18]. Consider
an ETA M with input and output ports P and Q, respectively. Σ = P ∪ Q ∪ {t} is a finite alphabet. We
define I = (P ∪Q)× (P ∪Q) to be an irreflexive and symmetric binary relation on Σ, called an independence
relation. If (a, b) ∈ I then the letters a and b are independent, meaning they can be swapped in a word
without changing the trace. I defines an equivalence relation ∼ on Σ∗, such that two words w, u ∈ Σ∗

are equivalent iff w can be obtained from u by repeatedly commuting adjacent independent letters. The
equivalence class of word w w.r.t. ∼ is [w]. Equivalence classes [w], are called traces in trace theory (not to be
confused with our event traces). A set T of such traces is called a trace language. If T = [L] = {[w] | w ∈ L}
for some regular language L ⊆ Σ∗, then T is called a rational trace language. A trace language defined by
an ETA is a rational trace language.

Observe that, for any two words w, u ∈ Σ∗, if w ∼ u then Tr(w) = Tr(u). The converse does not
generally hold because of trailing t letters at the end of the word, which do not impact the corresponding
event trace. If both w and u end with the same number of t’s, however, then Tr(w) = Tr(u) implies w ∼ u.
Based on this and tick-closure, we can state the following:
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Lemma 17. For two ETA M1 and M2, we have A(M1) = A(M2) iff [L(M1)] = [L(M2)].

The problem to check [L(M1)] = [L(M2)] is known as the equivalence problem for rational trace languages.
It is known that this problem is decidable iff the independence relation I is transitive (see Ch.5 of [18]).
Fortunately, this is true in our case. Therefore, checking equality of ETA actors is decidable.

9.3.2 Checking determinism and input-completeness

Given M , is A(M) deterministic? An automaton M is deterministic if for any state s of M , and
for any label a, there is at most one outgoing transition from s labeled a. Determinism of M does not
imply determinism of A(M), as Figure 13 illustrates: in the figure, q1 and q2 are assumed to be distinct
output ports. A(M) is non-deterministic iff there are two words w,w′ ∈ L(M), with (x, y) = Tr(w) and

q2

{q1}

{q2}

q1

Figure 13: Deterministic finite-state automata generating non-deterministic actors.

(x′, y′) = Tr(w′), such that x = x′ but y 6= y′.

Proposition 19. For any ITA or ITBA M it is decidable whether A(M) is deterministic.

Proof. Suppose M is a (not necessarily deterministic) ITBA. We compute the synchronous product of M

with itself, where the two copies synchronize on the input ports. That is, a transition
P1∪Q1−→ in one copy

must synchronize with a transition
P2∪Q2−→ in the other copy such that P1 = P2. Q1 and Q2 may be different,

but when they are different, a boolean flag is set from false to true, and remains at true forever after. We
claim that A(M) is deterministic iff there exists an infinite run in the product such that: (1) the flag is true
after some point on; and (2) the run is accepting for both copies of M . Finding such a run can be done
using standard model-checking techniques.

Given M , is A(M) input-complete? Finite-word automata cannot generate input-complete actors be-
cause they cannot generate infinite event traces. Implicit-tick automata cannot generate input-complete
actors either, since they do not allow multiple simultaneous events at the same port.

For an ETA or ETBA M , a simple sufficient condition for A(M) to be input-complete is that all states
of M are accepting, and every state s has a transition labeled a for every a ∈ P ∪Q ∪ {t}.

9.3.3 Computing compositions and hiding

Given M with output ports Q, and given Q′ ⊆ Q, compute M ′ so that A(M ′) = A(M)\Q′. If M

is an ITA or an ITBA, then M ′ can be obtained by replacing each transition
P ′∪Q′′

−→ of M with a transition
P ′∪Q′′\Q′

−→ .
If M is an ETA, then M ′ can be obtained by replacing each transition

q−→ of M such that q ∈ Q′ with
a “silent” (“epsilon”) transition, and then removing the silent transitions by determinizing the resulting
automaton. If M is an ETBA then a similar procedure can be applied, however, since Büchi automata are
not determinizable in general, the resulting automaton may contain silent transitions.
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Given M1 and M2, compute M so that A(M) = A(M1)||A(M2). M can be computed as a product
of M1 and M2, so that L(M) contains exactly those words w such that Tr(w) = Tr(w1) ∪ Tr(w2), for
wi ∈ L(Mi) and i = 1, 2. If M1 and M2 belong to the implicit-tick model, M is a synchronous product, so

that a pair of transitions
P1∪Q1−→ of M1 and

P2∪Q2−→ of M2 yields a transition
P1∪P2∪Q1∪Q2−→ in the product. If M1

and M2 belong to the explicit-tick model, then M can be computed as the product of M1 and M2, where
only transitions labeled with t synchronize, while transitions labeled with ports interleave.

Given M1 and M2, and a bijection θ from the output ports of M1 to the input ports of M2,
compute M so that A(M) = A(M1)θA(M2). Feeding the output of M1 (after relabeling) into the input
of M2 can be achieved by a product of both automata synchronizing on the corresponding ports. The main
challenge in computing the serial composition is to ensure that the constraint inθ is satisfied (see Definition 9).
We assume M1 and M2 are ITA. We construct the composite automaton M as the synchronous product
of M1, M2 and a third automaton Min capturing the constraint inθ. We construct Min as an alternating
automaton that can then be converted into a non-deterministic automaton using standard techniques.

The constraint inθ ensures that the composite actor accepts only those valid input traces of M1 for which
no matter what output trace M1 produces, this is a valid input trace to M2 after relabeling by θ. Since we
are only interested in the inputs accepted by M2, we construct automaton M ′

2 from M2 by hiding the output
events and determinizing the result. M ′

2 has input ports P2 and no output ports. Let M ′
2 = (S2, s2,0, δ2, F2),

i.e., M ′
2 has states S2, initial state s2,0, transition function δ2 : S2 × 2P2 → S2, and accepting states F2. We

assume that δ2 is total, i.e., defined for every s2 ∈ S2 and every P ′ ⊆ P2 (we can always add a “dummy”
rejecting state to achieve this). Let M1 = (S1, s1,0, δ1, F1), with input ports P1 and output ports Q1. δ1 is
not necessarily total (recall that every state of M1 must have a path to an accepting state). For P ′ ⊆ P1, let
Q(s, P ′) denote the set {Q′ ⊆ Q1 | δ1(s, P ′ ∪Q′) is defined}, i.e., the possible outputs for input events P ′.

Min has states S = S1 × S2, accepting states F = F1 × F2, and initial state (s1,0, s2,0). Its alphabet
is 2P1 . Its transition function encodes the condition that for state (s1, s2) and input P ′, any output Q′

produced by M1 is also accepted as an input by M ′
2 (after relabeling by θ), and any remainder of the output

produced by M1 is also recursively accepted by M ′
2. This is captured by the conjunction below, which is

trivially accepting if P ′ is not a valid input for M1, i.e., if Q(s1, P
′) = ∅. Formally, for P ′ ⊆ P1:

δ((s1, s2), P ′) =
∧

Q′∈Q(s1,P ′)

(δ1(s1, P
′ ∪Q′), δ2(s2, θ(Q′)))

Lemma 18. Let Min be defined as above for the serial composite M1θM2. Then x ∈ Tr(L(Min)) iff
x ∈ inA(M1) and for every y such that xA(M1)y, θ(y) ∈ inA(M2) (i.e., iff x ∈ inθ).

Proof. (sketch) (only if) Let x ∈ Tr(L(Min)) and let ρ be the run witnessing the acceptance of x: ρ is a
tree because Min is an alternating automaton. At any state reached after some prefix of the input word,
the number of branches in the tree is at least one by construction of the automaton. Hence, there exists at
least one linear path on the automaton Min leading from the initial state to an accepting state. Projected
onto M1, this is an accepting run for input x and therefore, x ∈ inA(M1). Now let y be such that xA(M1)y.
Then there exists a run of M1 with x and y as its inputs and outputs respectively. Tree ρ has a unique path
corresponding to input x and output y. Projecting that same path of the tree onto a run of M ′

2 it follows
that θ(y) ∈ inM2 .

(if) Let x be an input trace, accepted by M1, such that for every y for which xA(M1)y, θ(y) ∈ inA(M2).
Then an accepting run on Min can be constructed as follows. At any state (s1, s2) reached in the run being
constructed, input x determines the next input symbol and the conjunction in the transition function requires
that for every possible output Q′ of M1, from s1, there exists a transition with input θ(Q′) in M ′

2. Such a
next state exists by the assumption that for every output y of M1, θ(y) is an accepted input to M2 and since
M2 is deterministic, the word θ(y) must be accepted from the state s2 and the corresponding transition must
exist. The final set of states, reached after consuming the entire input word, must be accepting because,
projected on M1, they represent a valid input output pair x, y and, projected on M ′

2, θ(y) is an accepted
input of M2.
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Proposition 20. For finite-state and deterministic ITA M1 and M2 and bijection θ, the above described
algorithm computes ITA M such that A(M) = A(M1)θA(M2).

Given M , input port p and output port q, compute M ′ such that A(M ′) = A(M)(p = q). If M is

an ITA or an ITBA, then M ′ can be easily obtained by removing from M all transitions
P ′∪Q′

−→ except those
that satisfy p ∈ P ′ ⇐⇒ q ∈ Q′.

9.3.4 Checking actor refinement on ITA

Given M1 and M2, is A(M1) v A(M2)? We show that checking actor refinement on ITA can be reduced
to checking language containment with respect to an appropriate closure.

Given automaton M , we construct an (initially infinite state) automaton M∞v that recognizes the
refinement closure of M , i.e., it accepts all words of M , but also all words that correspond to traces that
refine the traces of M . We define M∞v for a single output port q, but the construction can be generalized
to multiple output ports. Figure 14 shows an example. We add a counter n to count the surplus of q events.
Whenever later in a word M requires a q event, we allow this event to be absent and decrease the counter.
The following gives a precise definition of this idea, parameterized with a bound k on the counter.

Figure 14: Refinement closure of the automaton of Figure 11.

Definition 24 (Refinement closures). Let M = (S, s0, E, F ) be an ITA with a single output port q, states
S, initial state s0 ∈ S, accepting states F ⊆ S, and transitions E. For k ∈ N, the k-bounded refinement
closure of M is the automaton Mkv = (Skv, skv,0, Ekv, Fkv) such that Skv = {(s, n) | s ∈ S, 0 ≤ n ≤ k},
skv,0 = (s0, 0), and Fkv = {(s, n) ∈ Skv | s ∈ F}. For every transition (s1, σ, s2) ∈ E, we have the following
transitions in Ekv: (

(s1, n), σ, (s2, n)
)

if 0 ≤ n ≤ k(
(s1, n), σ ∪ {q}, (s2, n + 1)

)
if 0 ≤ n < k, q /∈ σ(

(s1, n), σ ∪ {q}, (s2, n)
)

if n = k, q /∈ σ(
(s1, n), σ\{q}, (s2, n− 1)

)
if 0 < n ≤ k, q ∈ σ

The (unbounded) refinement closure of M is the automaton M∞v defined in a similar way, but where counter
n is unbounded.

Lemma 19. Let M1 and M2 be ITA with the same input ports P and the same, single output port q. Then
A(M1) v A(M2) iff for every w ∈ L(M1) such that Tr(w) = (x, y) and x ∈ inA(M2), w ∈ L(M2,∞v).

Proof. (only if) If w is a word of M1 with inputs Tr(w) = (x, y) and x is also accepted by M2, then there is
a word w′ of M2 which is refined by w. Let ρ be the run of M2 that accepts w′. Then there is a run for w in
the closure M2,∞v, by taking the corresponding transitions of ρ, while increasing/decreasing the counter n if
necessary to match the presence/absence of output events q. The counter cannot become negative, because
w v w′.

(if) Let w be accepted by M2,∞v by a run ρ. We can project ρ onto M2 and we find that the corresponding
word w′ in M2 is refined by w.
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Unfortunately, M2,∞v is not a finite-state automaton, in fact, L(M2,∞v) is not always regular. Let
L(M) = ({p, q} · ∅)∗, where p is the only input port and q the only output port. Then L(M∞v) contains
all words of the form ({p, q} · {q})n · {p}n, for any n ∈ N. Based on this, we can show that L(M∞v) is not
regular. Despite this difficulty, we can make use of the finite memory property of M1 and M2 to find an upper
bound on the size of the refinement closure, which proves that checking refinement for ITA is decidable:

Proposition 21. Let M1 and M2 be deterministic ITA with the same input ports P and the same, single
output port q. A(M1) v A(M2) iff for every w ∈ L(M1) such that Tr(w) = (x, y) with x ∈ inA(M2),
w ∈ L(M2,Nv), where N = |S1| × |S2|.

Proof. Let Mi = (Si, si,0, Ei, Fi). The ‘if’ part follows from Lemma 19 and the fact L(M2,Nv) ⊆ L(M2,∞v).
For the ‘only if’ part, let w be a word of M1, accepted by run ρ1 with Tr(w) = (x, y) such that x is also

accepted by M2. Then, by Lemma 19, w is accepted by M2,∞v, by accepting run ρ∞. Assume towards a
contradiction that w is not accepted by M2,Nv. M2 is deterministic, therefore so is M2,Nv. Let c and c∞
be the counters of M2,Nv and M2,∞v, respectively. Since w is not accepted by M2,∞v, the unique run ρN

of M2,Nv generated by w eventually “deadlocks” (i.e., is not able to complete w) with c = 0. Moreover,
because w is accepted by M2,∞v, c must have previously reached N in ρN . Let w = w1 · w2 · w3, such that
at the beginning of w2, c = N in ρN , c∞ > N in ρ∞, and the end of w2 is the point where M2,Nv deadlocks.
Since c = N at the beginning of w2 and c = 0 at its end, the length of w2 is at least N . Observing the
runs ρ1 and ρ∞ side-by-side, since N = |S1| × |S2|, there must exist a recurring pair of states s1 in ρ1 and
(s∞, n1), (s∞, n2) in ρ∞ with n2 < n1. On this fragment of w2, M1 and M2 both complete a cycle and the
net number of output events in M1 is smaller than in M2. The fact that this cycle can be repeated arbitrarily
many times, after which an accepting state can be reached, contradicts the hypothesis A(M1) v A(M2).

9.3.5 Computing throughput on ITBA

Given ITBA M with sets of input and output ports P and Q, respectively, and given an output port q ∈ Q
and an input trace x ∈ Tr(P ), we want to compute T lb(A(M), x, q) and Tub(A(M), x, q). To do this, we
need a finite representation for x. A natural choice is to represent x as a deterministic ITBA Mx that only
refers to ports in P . We require that Mx generates a single trace x. These assumptions imply that Mx has
the form of a “lasso”.

First, we compute a product of M and Mx such that the two automata synchronize on inputs. We
remove from the product all strongly connected components (SCCs) that contain no accepting state of M
and denote the result by M ′.

We assign a weight to each transition
P ′/Q′

−→ of M ′: weight 1 if q ∈ Q′ and weight 0 otherwise. With
these weights M ′ can be viewed as a weighted directed graph. We run Karp’s algorithm [26] to compute
the minimum cycle mean and maximum cycle mean of M ′, denoted MCMmin and MCMmax, respectively.
MCMmin (resp., MCMmax) is the minimum (resp., maximum) over all simple cycles κ in M ′′ of the ratio
w(κ)
|κ| , where w(κ) is the sum of weights of all transitions in κ and |κ| is the length of κ (i.e., the number of

transitions in κ).

Proposition 22. T lb(A(M), x, q) = MCMmin and Tub(A(M), x, q) = MCMmax.

Proof. (sketch) The tricky part is that Karp’s algorithm considers all cycles, including non-accepting (in the
Büchi sense) cycles. However, all cycles are guaranteed to belong to an accepting SCC (otherwise the SCC
is removed by construction of M ′). Then, from any cycle it is possible to reach an accepting state and then
return to the cycle. This “detour” may increase the throughput by some amount ε, however, ε can be made
arbitrarily small by taking the detour very infrequently (but infinitely often, to be accepting).

9.3.6 Computing latency on IT(B)A

Given automaton M with sets of input and output ports P and Q, and given an IOES E , we would like,
first, to check that E is valid for A(M), and second, to compute the latency DE(A(M)). To do this, we need
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a finite representation for E . Many choices exist for this. We will consider a simple one, where E is defined
by a single tuple (P ′, Q′, k, `) ∈ 2P × 2Q × N× N, so that

E ={({(p, k) | p ∈ P ′}, {(q, `) | q ∈ Q′})}.

This measures the latency between the moment where k tokens arrive at each of the ports in P ′ until the
moment where ` tokens arrive at each of the ports in Q′. We assume that M is an ITA or ITBA.

E is invalid for A(M) iff there exist traces x, y such that (1) (x, y) ∈ A(M); (2) for all p ∈ P ′, x(p)(k) 6= ∞;
and (3) there exists q ∈ Q′ such that y(q)(`) = ∞. This is equivalent to the following property: there exists
an accepting run ρ of M and a port q ∈ Q′, such that ρ contains: (a) at least k occurrences of each p ∈ P ′;
and (b) strictly less than ` occurrences of q. This property can be encoded and checked using standard
model-checking techniques.

We turn to the problem of computing DE(A(M)). First note that we can check, for a given d ∈ N,
whether DE(A(M)) > d. This question can be formulated as a model-checking question as above, namely,
finding an accepting run ρ of M such that: (a) ρ contains at least k occurrences of each p ∈ P ′; (b) the latest
of these occurrences happens at the j-th transition of ρ; and (c) there exists q ∈ Q′ such that ρ contains
strictly less than ` occurrences of q until its (j + d)-th transition. It then suffices to find the minimum d for
which DE(A(M)) > d is false. Such a minimum is guaranteed to exist, because M is finite state and E is
assumed to be valid.

9.3.7 Computing buffer capacities on IT(B)A

We are given ITA or ITBA M , input port p ∈ P , and input trace x captured as a lasso IT(B)A Mx as
explained in Section 9.3.5. We want to compute B(A(M), x, p). M must have an output consumption port
p′ corresponding to p, as explained in Section 8.

We first compute the ITBA M ′ representing the serial composition of Mx and M . It is straightforward to
show that B(A(M), x, p) = ∞ iff M ′ has a cycle in which there are more productions than consumptions, i.e.,
more transitions containing p than transitions containing p′. After checking that this is not the case, we know
that every cycle must have an equal number of p’s and p′’s: otherwise, the number of p′’s is larger, which
means that there exist behaviors where consumptions at p exceed productions. We add to M ′ a counter that
counts the number of p’s observed, minus the number of p′’s. The counter cannot become negative and the
counter is bounded because on every cycle of the original automaton the number of p events and p′ events
are equal. Then B(A(M), x, p) is equal to the largest value the counter may reach in M ′.

10 Discussion and Future Work

We have proposed an interface theory for timed actors with a refinement relation based on the earlier-is-
better principle, suitable for worst-case performance analysis. Our framework is compositional and unifies
existing formalisms, allowing different types of models to be used in the same design process. For example,
automata models could refine SDF models.

The earlier-is-better principle may not seem directly applicable in scenarios where outputs should be
produced not too late but not too early either. One way to handle these systems is by using external
components that buffer the outputs in case they arrive early, and reproduce them at the right time. This
is, for instance, the role of the DAC component discussed in Section 2. If such a buffer is finite, there is a
bound to how much earlier the output can be produced. Finite buffers can be captured by back-pressure
dependencies like those in Figure 1.

An alternative approach is to combine the earlier-is-better refinement with the corresponding later-is-
better version, obtained by replacing y v y′ by y′ v y in Condition (2) of Definition 14. Separate specifications
could then be used, expressing upper and lower bounds on timing behavior, and refined using the earlier- or
later-is-better relation, respectively. Examining in detail this hybrid approach is part of future work.

Other directions for future work include examining the algorithmic complexity of the various compu-
tational problems introduced above and coming up with practically useful algorithms; implementing the
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algorithms and performing experiments; integrating new representations under our framework; and having
a thorough comparative study of the different representations, for instance, in terms of expressiveness and
complexity.
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