
Recognition of Tibetan Wood Block Prints with

Generalized Hidden Markov and Kernelized Modified

Quadratic Distance Function

Fares Hedayati
 Jike Chong
Kurt Keutzer

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-138

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-138.html

November 23, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

1

Recognition of Tibetan Wood Block Prints with
Generalized Hidden Markov and

Kernelized Modified Quadratic Distance
Function

Fares Hedayati, Jike Chong, Kurt Keutzer

Abstract—Recognition of Tibetan wood block print is a difficult problem that has many challenging steps. We propose a two
stage framework involving image preprocessing, which consists of noise removal and baseline detection, and simultaneous
character segmentation and recognition by the aid of a generalized hidden Markov model (also known as gHMM). For the latter
stage, we train a gHMM and run the generalized Viterbi algorithm on our image to decode observations. There are two major
motivations for using gHMM. First, it incorporates a language model into our recognition system which in turn enforces grammar
and disambiguates classification errors caused by printing errors and image noise. Second, gHMM solves the segmentation
challenge. Simply put gHMM is an HMM where the emission model allows multiple consecutive observations to be mapped to
the same state. For features of our emission model we apply line and circle Hough transform to stroke detection, and use class-
specific scaling for feature weighing. With gHMM, we find KMQDF to be the most effective distance metric for discriminating
character classes. The accuracy of our system is 90.03%.

Index Terms—Document analysis, handwriting analysis, optical character recognition, pattern Analysis

F

1 INTRODUCTION

There is a vast knowledge base of 14,000 volumes of
Buddhist teaching stored in Tibetan wood-block print
that is of great interest to scholars around the world.
These ancient works are only available in physical
reproductions and are difficult to access and search.
There is great value and interest in bringing these
ancient documents into searchable electronic form and
making them accessible to everyone. The characters
in wood blocks used for printing are individually
carved, and contain large variations compared to
modern machine prints. Neighboring characters, of-
ten merged, lines can be significantly skewed and
sometimes touch one another. In many aspects, the
recognition problem is as complex as handwriting
recognition. There has been some previous work in
optical character recognition of Tibetan machine print
[1] [2] [3]. Masami et al [1] proposed a character cate-
gorization technique that separately recognizes basic
consonants, combination characters and vowels. In a
later work, Masami et al [1] used Euclidean distance
with differential weights for the classification. In the
work by Ding et al [3], a modified quadratic discrim-
inant function is used for classification, which better
shapes the region that defines a class in the feature
space. We leverage the techniques presented in these
previous works used in machine printed Tibetan, and
extend them to wood-block print optical character
recognition of Tibetan, which is yet an unsolved

problem. We have encountered numerous cases in
segmentation and classification where the higher level
language model is required to resolve ambiguities.
This motivated us to use generalized hidden Markov
models, which both solves the segmentation prob-
lem and makes classification more accurate. Other
approaches that are not based on gHMM are also
presented here and with their overall accuracies. We
tried two other approaches beside gHMM for our
OCR system namely a segmentation-based approach
and a thinning-based approached. The segmentation-
based approach resulted in a 68.08% accuracy which is
much lower than the 90.03% accuracy of the gHMM.
For this approach, we used vertical histograms, DP
space search, and local edges as segmentation points
for segmentation. With the addition of a cost-based
segmentation insertion for under segmentation cases,
we were able to achieve 92% segmentation accuracy.
This shows that segmentation is still a challenge in
this approach and the final accuracy of the system is
highly dependent on the initial segmentation. Finally
the thinning based approach is based on extract-
ing the skeleton of the text. We tried three different
thinning algorithms. These methods are discussed in
Section 5.2. The feature extraction of gHMM-based
and segmentation-based OCRs and their distance
functions are the same. This made testing the overall
accuracy of these two approaches easier than that
of the thinning-based approach. We did not research
on ways to extract discriminative and robust features

2

Fig. 1. General structure of Tibetan syllable (after
Masami [1])

from the skeleton of the text. Researchers should
come up with their own features. We only present the
thinning algorithms here to give researchers insights
into possible directions in Tibetan block print OCR.

2 SURVEY ON OCR AND OFF-LINE
HANDWRITING RECOGNITION
Optical character recognition, abbreviated to OCR,
is a field of research in computer vision, pattern
recognition and digital image processing that converts
images of typewritten, handwritten or printed text
into machine-editable text. This process of conver-
sion usually involves intelligent association of pieces
of image with their corresponding characters; hence
OCR is an artificial intelligence research field. Off-
line handwriting recognition, a field of research in
OCR, is the ability of computers to translate human
handwriting to machine-editable text. Off-line hand-
writing recognition is different from on-line handwrit-
ing recognition, as the latter involves recognition of
images of text as it is written on special digitizer
or PDA by interpreting pen-tip movements of users.
The former on the other hand gets static images of
text as input. Off-line handwriting recognition is a
difficult task due to variation in peoples handwriting
and the amount of noise in handwritten documents.
This made the researchers of the field focus on limited
range of inputs. Consequently research in this field
has been moving in different directions specified by
range of inputs. The state of the art of this field
should be studied separately for each of these ranges
of inputs. Since Tibetan block prints are individually
carved and printed, their recognition is an off-line
handwriting recognition problem. As there has been
no research on off-line recognition of Tibetan block
prints (The only research that has ever been done on
Tibetan OCR has been on printed Tibetan texts [1] [2]
[3]), we state the state of the art of other somewhat-
similar off-line handwriting recognition. One of the
simplest forms of off-line handwriting recognitions is
digit recognition. Handwritten digit recognition is a
typical example of off-line handwriting recognition

that has been extensively researched. Four major in-
dependent methods have been used by researchers of
the field [12]: Shape context matching [13], pixel-to-
pixel image matching with local contexts [15], invari-
ant support vector machine [14], and convolutional
neural net and virtual data [16]. The accuracy of these
methods fall above 99%. In other words off-line digit
recognition could be considered a solved problem,
as misclassified digits of the aforementioned methods
are hard for humans too, to recognize. The first two
approaches of the four, use the idea of deformable
templates and correspondence be-tween pixels of test
and reference images. The other two methods use
machine learning techniques of convolutional neural
networks and SVM to classify digits. Off-line hand-
writing recognition of texts is a much harder problem
than that of the digit recognition primarily because
of segmentation problem and number of classes to be
recognized. Large size of classes to be recognized is
a substantial bottleneck in handwriting recognition.
In most languages the number of characters is much
larger than ten. For instance in Chinese, researchers
are faced with thousands of characters to recognize.
The other challenge is the segmentation problem. In
contrast to digit recognition that classifies digits in
isolation; handwritten text recognition should classify
all characters of an image in context. Characters are
in most languages not segmented due to image noise
and writing style. Even though for most languages
research on optical character recognition of printed
text has been carried on, off-line handwriting recog-
nition for many languages is a new field of research.
Arabic, Chinese and scripts with Roman alphabets
are among the languages with enough research on
off-line handwriting recognition. We explain some
of the common trends in these instances of hand-
writing recognition and the state of the art of each. For
Chinese off-line recognition segmentation and nor-
malization is a common approach to preprocess the
image be-fore recognition [17]. Segmented characters
are then recognized through stroke-based approaches,
holistic approaches or radical approaches. The state
of the art of Chinese off-line handwriting recognition
is as following: an accuracy of 98.1%, for regular or
hand-print scripts, 82.1%, for fluent scripts, and 70.1%
for cursive scripts [17]. Surveys on off-line cursive
word recognitions of Roman scripts show that three
major approaches have been used in this field namely
holistic approaches, segmentation-based approaches
and HMM-based approaches. Normalization of image
and some preprocessing are also common trends prior
to the recognition step [18]. In segmentation-based
approaches a word is first segmented to its constituent
characters and each character is then recognized in-
dividually. Holistic approaches on the other hand
recognize words as a whole without trying to break
them into individual pieces. HMM-based approaches
use hidden Markov models and their language model

3

and emission model make them avoid segmentation.
This method is adopted from speech recognition. This
is despite the fact that in speech observations are one-
dimensional and in text they are two-dimensional.
There has been very little effort to develop two dimen-
sional HMMs or two-dimensional stochastic models
due to complexity of these models. However with
increase in computation power these models could
be of great use. HMM-based approaches and holistic
approaches have also been a common trend in Ara-
bic and Persian off-line handwriting recognition sys-
tems [11] [19]. Another trend in Arabic handwriting
recognition has been using fuzzy constrained charac-
ter graph models. These models are fuzzily labeled
graphs that represent characters [20]. This method has
resulted in an accuracy of 73.6%.

3 PROPERTIES OF THE TIBETAN
SCRIPT
The Tibetan character set is composed of 30 conso-
nants and 4 vowels. We define a character to be a stack
of consonants with optional vowels. A syllable is a
group of characters with one essential consonant (EC)
and 7 optional parts, as shown in Figure 1. There can
be up to one consonant before the combined character
(CC) with EC, and up to two consonants after the CC.
A stack with an EC is tightly packed together and
some consonants change form as it is stacked.

4 OCR CHALLENGES
The characters in wood blocks used for printing are
individually carved, and contain large variations com-
pared to modern machine prints. Neighboring char-
acters often merged, lines can be significantly skewed
and sometimes touch one another. In many aspects,
the recognition problem is as complex as handwriting
recognition. Off-line recognition of wood block print
Tibetan texts is a much more challenging task than
that of the printed Tibetan texts. In single-font systems
only bitmap font mask for exact match is required.
In multi-font, on the other hand systems structure
and contour based feature extraction is required. Since
each character is well defined, with no interference
from neighbors, segmentation is an easy task. This is
in contrast to wood block prints where large width,
height and proportion variation are common and
stokes intrude from neighboring characters and lines.
Character strokes merge with neighboring characters
due to manual Rubbing printing techniques. In wood
block prints characters merge with one another with
no clear boundaries. Knowledge of character forms
and language are required to disambiguate segmen-
tation points. This problem defines the entire recog-
nition framework. Tseks that are word delimiters in
Tibetan are clearly distinguishable in machine printed
texts and corner cases are resolved by rule based

Fig. 2. Printed versus wood block print

Fig. 3. Baselines aligned after recognition

syntax correction. On the other hand majority of Tseks
are not optically visible in wood block prints. There
is significant blurring with baseline of neighboring
characters and in-depth knowledge of Tibetan vocab-
ulary is required for effective Tsek insertion. Figure
2 compares a line of wood block print with a line of
machine printed Tibetan text.

4.1 BASELINE DETECTION CHALLENGES

Baselines are not always straight and parallel. Further-
more the distance between baselines is not uniform
and varies from line to line and from page to page.
Some-times due to noise or printing errors top of
one line touches the bottom of another. All these
make baseline detection hard. Figure 9 shows all these
challenges that baseline detection is faced with. After
baseline detection lines should be aligned equally (see
Figure 3).

4.2 SEGMENTATION CHALLENGES

Segmentation of baselines into characters is one of
the most challenging steps in off-line recognition of
Tibetan block prints. Segmentation requires syntax
knowledge. In a sense it is a chicken-and-egg prob-
lem. If we recognize the characters we can segment
them easily, but we need to segment characters in
order for them to be recognized (see Figure 2). Even
though the majority of segmentation points could be
detected by some heuristics (see Section 5.1), there
are still cases that segmentation point detection is
impossible without context knowledge (see Figure 4).
Segmentation has direct effect on recognition. Those
cropped images that have wrong segmentation points
are not going be recognized correctly, no matter how
accurate and well-trained the recognition system is. To
segment or not to segment is a critical decision that we
have to make for our OCR system. Using generalized
hidden Markov models we can avoid independent
segmentation and combine the step with recognition.
See Section 5.3.

4

Fig. 4. Image in red box is under-segmented, the one
in green is over-segmented

4.3 Recognition Challenges
As mentioned earlier at the beginning of Section 6,
optical character recognition of Tibetan block prints is
as hard as offline handwriting recognition. Characters
that are separated by gaps in machine printed texts
are not visually separable in Tibetan block prints. This
makes recognition hard, because we have to know if
the image we are trying to recognize corresponds to
a character and is not noise or does not correspond
to different parts of multiple characters. Another
challenge is the amount of noise and variation in
width, height, size and curvature of each character.
Features that are invariant to noise, rotation, smear
and other transformation are needed to over-come
this challenge. In short segmentation and invariant
features are needed for off-line recognition of Tibetan
block prints.

5 OVERVIEW OF THE RECOGNITION
APPROACHES
5.1 Segmentation-based approaches
There are two approaches for a Tibetan recognition
framework based on segmentation. The first is seg-
menting lines into characters and recognizing the
characters (see Figure 6) and the second is segmenting
lines to characters, then its constituting consonants
and vowels, then recognizing the consonants and
vowels (see Figure 5).

The first approach involves discriminating approxi-
mately 500 common characters, whereas the second
approach involves discriminating approximately 50
consonant and vowel symbols. Since characters, vow-
els and consonants are not completely separable in
Tibetan block-prints, due to noise, line slant, smear-
ing of the ink, etc, the first approach seems more
reasonable. Here we present a pipeline of the first
approach. After detecting baseline of an image we
segment each line into characters. Then for each of
these cropped images of characters some features
are extracted which are in turn fed into a distance
function. The distance function finds the closest class
of characters to its input and output that class. Feature
extraction and distance function of our segmentation-
based approach is exactly the same as of those of the
gHMM-based approach. For more information about

Fig. 5. Two stack characters segmented into vowels
and consonants

them please refer to Sections 10 and 11. In this Section
we present the segmentation algorithm of the method.

Segmenting a line into characters is a significant
problem in Tibetan wood block prints. Unlike ma-
chine printed Tibetan, character width and spacing
are highly variable. Searching for white spaces in the
vertical histogram finds only 35% of segmentation
points (see Figure 6). Top vowels and bottom vowels
frequently extend into the neigh-boring characters
and characters often merge into each other, sometimes
at multiple points. By using dynamic programming to
find points that connect the top and bot-tom white
space, we obtain no more than 60% of expected
segmentation points. By extracting Tibetan specific
features such as tail-stroke at the right end of more
than 80% of the characters, we capture up to 85%
of the segmentation points (see Figure 9). The above
heuristics does not find all segmentation points. By
detecting gaps of segmentation points that are larger
than the typical character width, we insert potential
segmentation points not captured by previous heuris-
tics. For wide gaps, multiple possible segmentation
scenarios are possible. For example, a typical Tibetan
wood block print character ranges from 15-25 pixels
wide at 300 dpi, a gap in detected segmentation points
of 70 pixels may contain 3 or 4 characters. We examine
the potential segmentation sites for different segmen-
tation scenarios, and choose the scenario with the
lowest average cost. The insertion cost is calculated by
a discrimination function over the vertical histogram:

g(m) =
2V (m)− V (m− 1)V (m+ 1)

V (m)
+ 1 (1)

Where V (m) = the number of pixels at the vertical
strip at position x = m and g(m). Where and is
the tsek insertion cost; segmentation points are the
local minima of this function. Applying this technique
increases the segmentation point detection rate to
92%. There are many segmentation points that pose
significant challenge for image analysis techniques
to detect. They are: 1) closely linked ga and shey
near the end of a sentence, 2) neighboring characters
touching at more than one place, and 3) ambiguous
segmentation points that provide multiple segmen-
tation possibilities. These require some higher-level
language model to help discriminate.

5.2 Thinning Based Approach

In the thinning-based approach, features are extracted
from the skeleton of the image. Extracting features

5

Fig. 6. Character segmentation

from the skeleton of an image has been a common
approach for many OCR researchers. For instance,
Khorsheed [11] uses a thinning algorithm similar to
Stentiford [5] to extract the skeleton of images of
Arabic manuscripts. He then traverses these skeletons
and extracts different features from them. Curvature,
orientation, and percentage of the skeleton above or
below the baseline are some of these features. He
finally feeds this features to a hidden Markov model
trained to classify Arabic characters. Our initial goal
was feature extraction from skeleton. However since
the amount of noise in Tibetan block prints is very
high we ended up using our thinning algorithms for
noise removal and smoothing only. We developed
three methods for thinning Tibetan block prints.
Figure 7 shows outputs of these three methods
and the original image at the bottom. Even though
we only used one of these algorithms namely the
third method, we pre-sent all three here for future
researchers of the field. The first thinning algorithm, is
the most sophisticated thinning algorithm of all. It is
based on contour detection and iteratively shrinking
the image, the pseudo-code of this algorithm is in
algorithm 1.

In algorthim-1 after detecting the contour of an
image, was mark its inner contour. Inner contour
here is defined as the immediate black neighbors of
a contour that are trapped inside the contour. If a
contour pixel does not have any neighbors that is
trapped in, that pixel is also included in the inner
contour. After this step, the current contour is updated
by the inner contour that was just marked, and the
original image is shrunk by removing the old contour.
This step is repeated iteratively until the skeleton of
the image is found and the contour does not change
anymore. In each step of the iteration we make sure
that the image remains connected by identifying joint
points on the contour and putting them back on the
new contour. Joint points are contour pixels that are
neighbors with no more than two inside pixels and
have at least a contour pixel neighbor that does not
have any inside neighbors. The output of this thinning
algorithm is further smoothed and thinned by yet
another skeletonizer called Stentiford [5]. The second
thinning algorithm, is based on contour detection

Algorithm 1 Input: binary image β, Output: Thinned
image γ

while true do
δ ← ContourDetection(β)
only keeps black pixels that have
at least 1 white neighbor
η ← InnerContourDetection(δ, β)
only keeps black pixels in β
that are adjacent to black pixels of δ
β̂ ← β - RemoveJointPoints(δ)
RemoveJointPoints removes black pixels
that are in δ and are neighbors with no
more than two pixels in β − δ and have
at least a neighbor in δ that does not
have any neighbors in β − δ
δ ← η
if β̂ 6= β then

Break
else
β̂ ← β

end if
end while
γ ← Stentiford (β)
return γ

Fig. 7. The fourth line is the original image and the
other three lines are outputs of our thinning algorithms.

and iteratively shrinking the image like the previous
method. However it is much simpler and it does not
use the skeletonization algorithm on the output. The
third thinning method, corresponding to the third
line in figure 6, is exactly like the second thinning
method where we iteratively shrink the contour until
it converges to the skeleton, with one exception. In
this method when we are updating our contour by
inner contour we keep any contour pixel that has
more than four black neighbors. This way we keep
the contour more connected compared to the other
method. Algorithm 2 explains this algorithm:

5.3 gHMM Based Approach
Segmentation and classification are the two inter-
dependent stages in our OCR project. Facing the same
problem for optical character recognition of Latin
manuscripts Jaety Edwards and et al used generalized

6

Algorithm 2 Input: binary image β, Output: Thinned
image γ

while true do
δ ← ContourDetection(β)
only keeps black pixels that have
at least 1 white neighbor
η ← InnerContourDetection(δ, β)
only keeps black pixels in β
that are adjacent to black pixels of δ
β̂ ← β - RemoveJointPoints(δ)
RemoveJointPoints removes black
pixels that are in δ and have more
than four black neighbors
δ ← η
if β̂ 6= β then

Break
else
β̂ ← β

end if
end while
γ ← β
return γ

hidden Markov models [10]. We have encountered
numerous cases in segmentation and classification
where the higher level language model is required
to resolve ambiguities. [3] proposed an iterative ap-
proach, where character recognition result is fed back
to the character segmentation and classification stages.
gHMM based model uses a structured approach for
incorporating language model based on the gener-
alized Hidden Markov Model (gHMM). Simply put
gHMM is an HMM where the emission model allows
multiple consecutive observations to be mapped to
the same state. The problem to be solved is to distin-
guish good segmentation points and bad segmenta-
tion points based on character transition model and
state emission model. gHMM is characterized by three
constituents: State transition model, initial state, and
state emission model. The language model is encoded
in all three parameters. For OCR, the hidden states
are the characters to be recognized labeled with their
relative position in the word, and the observations
are the images at the input. Character to character
transition model is encoded in the state transition
model and the initial state. The emission model then
helps to compute the probability that an image is an
instance of a state. Given a sequence of observations
our gHMM uses a variation of the Viterbi algorithm
to find the most probable sequence of characters that
produced the image.

6 OUR APPROACH: GHMM
We find the gHMM based approached most promising
and most accurate. This is because it recognizes Ti-
betan characters in context not in isolation by us-ing a

language model of Tibetan language that incorporates
grammar into its recognition system. Furthermore it
solves the segmentation and classification problem
simultaneously. It finds the best way to segment
characters and the most likely sequence of characters
that could correspond to an image of a line of Tibetan
block print. This method increases the accuracy of a
segmentation-based model by 25%.

7 COMPONENTS OF GHMM
7.1 Emission Model: Feature Extraction and Ob-
servation Probability

Emission model is the common part of all classi-
fication algorithms in general and OCR systems in
particular. Emission model consists of two parts: fea-
ture extraction and probability distribution of feature
vectors for each class, these probability distributions
are known as observation probabilities. Feature ex-
traction is the process of converting our input data
into a vector of features. All classification algorithms
should eventually go through this process. The more
descriptive the extracted features the more accurate
the final system. We extract 157 features for our OCR
system. These features are discussed in details in
Section 9. The observation probability can be also
used to define a distance function which measures
the closeness of feature vectors to each other. Without
a proper distance function that groups vectors of the
same class together and separates them from vectors
of other classes, classification would be impossible
or very inaccurate. There are four different distance
functions that we worked with. Section 10 explains
them meticulously.

7.2 Language Model

Hidden Markov Models have this language model
part which incorporates transitional and initial prob-
abilities of a set of states, in our case characters, into
their system. This basically helps the recognition sys-
tem to avoid un-likely and ungrammatical sentences
and take the gram-mar of the language into account.
Section 11.1 explains this part in details.

7.3 Viterbi Decoder for Simultaneous Character
Segmentation and Character Classification

Viterbi decoder is the most essential part of a gHMM
system. It is the heart of the system. gHMM could be
thought of a black box that has raw image of a line of
Tibetan as its input and the most probably sequence
of Tibetan characters with its corresponding segmen-
tation points as its output . The algorithm that does
this most favorable and simultaneous segmentation
and classification is called Viterbi. Refer to Section 11.3
for a through explanation of the algorithm.

7

Fig. 8. Line of Tibetan block print with its skeleton

8 PREPARING THE INPUT TO GHMM: IM-
AGE PREPROCESSING

8.1 Noise Removal
One of the main challenges in recognition of Tibetan
block prints is that they are very noisy. Noise in
computer vision is defined as those pixels that are not
part of the image. They make recognition hard. Noise
removal is an essential step in our OCR pipeline.
In this step all pixels are traversed one by one and
those pixels that do not have more than 2 non-white
neighbors are whitened, i.e. deleted. This way noisy
pixels and dots are removed and the image is cleaned.

8.2 Thinning Thick and Noisy Characters
Noise is not restricted to random dots. Smeary charac-
ters are considered noise too. The characters in wood
blocks used for printing are individually carved, and
contain large variations compared to modern ma-
chine prints. Some of these variations are not tolera-
ble. More specifically when a character is too smeary
and thickened by printing errors, recognizing it be-
comes very hard. These characters are thinned by
algorithm 2 in section 5.2 that extracts the skeleton
of characters. After thinning we add pixels around
the skeleton in two steps. In the first step direct
neighbors of the skeleton are added to the thinned
image which originally contained the skeleton only,
and in the second step the immediate neighbors of
the thinned image are added. This way the pixels that
are either in skeleton or at most two pixels away from
it are included in the final thinned image. Figure 8
shows a line of Tibetan block print with its skeleton
extracted using our skeleton extraction algorithm. For
more details of this thinning algorithm refer to Section
5.2.

8.3 Baseline Detection
The lines of text in Tibetan are aligned to a baseline
near the top of the characters. This feature can be used
to align Tibetan text lines in an image for effective
character window search. However, in Tibetan texts
are written in wide and short pages. The significant
variations in line slant angle and line spacing across
a page makes any global baseline search technique
ineffective and error prone, see left of Figure 9. We use
a horizontal histogram of a typical line of Tibetan text
learnt from samples, to dynamically detect local line
offset variations in short segments of 100-200 pixels

Fig. 9. Baseline detection using horizontal histograms

across the page, see right of Figure 9. For each local
window which is usually 60 x 100-200 pixels we build
a horizontal histogram that contains the number of
black pixels along each y position in the window. This
histogram is then compared to our typical histogram
learned from training samples and if they are close
enough, the vertical offset of the window or its local
baseline is detected. The vertical offset for each pixel
is computed by interpolating neighboring measure-
ments. Each line is separated to avoid over writing
neighboring lines, and pixels are shifted rather than
rotated to gain computation efficiency. This way, the
lines are aligned for character segmentation.

9 EMISSION MODEL OF GHMM, PART I:
FEATURE EXTRACTION

The segmentation points found in the section 5.1
are used to divide each line of text into individual
characters. For training the classifier, we call the char-
acters class templates. Several classes of features are
considered for wood-block print OCR.

1. Skeletonization and stroke detection (structure
based approach) 2. Histograms and profiles (texture
based approach) 3. Hough transform and variations
(structure and texture based approach)

Skeletonization and stroke detection has been used
successfully in many handwriting OCR systems [4].
The approach thins a stroke down to single pixel
width, while keeping the connected components con-
nected. We developed three thinning algorithms.
While these approaches are suitable for handwriting
with thin strokes, the strokes in Tibetan wood block
print are dense and thick, and the Skeletonization pro-
cess generates considerable systematic noise. These
thinning algorithms produce split ends at the tip of
a stroke, and have difficulties thinning dense junction
points. Our experiments with vertical and horizontal
histograms and pro-files showed that histograms are
sensitive to stroke thick-ness and profiles are easily
affected by cross-sections generated while segmenting
merged characters. We use Hough transform as a basis
for stroke detection. Sections 9.1 and 9.2 explain stroke
detection in details. The Hough transform is an image
space transformation that maps points in an image in
x-y Euclidean plane into the Hough space, defined
by θ and ρ. By checking for the strongest response in

8

Fig. 10. Lines and circles detected using Hough Trans-
form

Hough space, we can quickly find the most prominent
line feature in the image, see Figure 10.

9.1 Hough Line Extraction

The Hough transform has been frequently used to
ex-tract features in image outlines [6]. Tibetan wood
block print is not suited for such an extraction ap-
proach. Firstly, a character outline may be badly
distorted by noise and merged characters. Secondly,
the thin outlines require precise matches with angles
(θ) resulting in expensive computation time making
features less robust to rotational variations. In our
work, we compute the Hough transform from pre-
processed image data, i.e. with noise removed and
too thick characters thinned to normal size. Prepro-
cessing keeps the strokes thick and only makes the
smeary and too thick stokes look like other strokes.
Extracting Hough response from images with thick
strokes has a positive and a negative implication on
feature ex-traction. The positive implication is that a
thick stroke can respond strongly to lines of many
angles, so only a few angles need to be tested to collect
a significant response from a stroke. This makes the
stroke more rotationally in-variant, as small amount
of rotations will still yield a prominent response.
The negative implication is that thick strokes add
considerable noise for Hough transform responses,
as two or three cross sections of thick strokes yield
a response as high as an average length stroke. To
mitigate this problem, we verify the high response
in the Hough space by checking the collinear pixels
in the x-y plane that produced the response. We
define a validated prominent stroke to be a stroke
that has a certain number of consecutive pixels. The
Hough space efficiently stores a wealth of information
about the character. As illustrated above, the strength
of the response at a (θ ,ρ) position illustrate how
many collinear points lie on that line in x-y plane.
We can also examine the response along the ρ axis
in Hough space for a particular orientation θ . This
shows us the parallel strokes found in the orientation
θ at various offsets. For example, long vertical strokes
that appear at the right side of the image will have
a significant response at θ = 0 and ρ at a particular
offset corresponding to the right side of the image.

This information helps determine the location of the
response. We use the Hough transform to extract a
total of 90 features. Analysis shows that 6 orientation
of equally spaced θ is enough to capture the strokes
in Tibetan. For each stroke orientation, we bin the
captured stroke by their verified consecutive length
to long, medium, and short segments. For each bin,
five features are extracted: number of verified promi-
nent stroke, maximum and mini-mum offset ρ of
verified prominent stroke, average offset ρ of promi-
nent strokes, and average offset ρ of all responses,
prominent and non-prominent. The non-prominent
responses are those lines with enough collinear points
to trigger a response but not enough points are found
to be consecutive. These features help capture both
structural and textural information in the character.
The extraction of 6 orientations on thick strokes pro-
vides us with local rotational invariance. The binning
of stroke length provides invariance in size of strokes,
which vary significantly over characters, even on the
same line. Small variations of the stroke location in
the direction of the stroke do not affect the features.
Small variations of the stroke location perpendicular
to the stroke will only translate to small offset in offset
ρ, thus providing local translational invariance.

9.2 Hough Circle Extraction

Tibetan scripts contain many loops curves that are not
easily extracted with straight line strokes. We extend
the Hough transform to produce 13 more features
for detect-ing circular and half ellipsoid features to
capture loops in cha, chha like characters, and curves
in ya-ta. We found the circle response to be highly
sensitive to the circle radius. Analysis shows that
three bins of radii produced the most discriminating
features: those that capture small circles as in cha,
chha, tsha, zha, tha, a, ya, la, sha and finally those
that capture larger circles as in ba, kha and ga, and
those that capture half ellipsoids as in characters with
ya-ta consonants. For each of the circles detected,
we construct 3 bins for their locations: those that
touch the top baseline, those that are one stroke away
from the baseline, and those that are far below the
bottom baseline. Each bin contains 2 features, number
of circles detected above a response threshold and
the maximum response produced in that bin. Since
there are at most two circles in each bin this method
of extracting features related to circles is invariant to
shift along the x-axis. As the y locations of circles are
binned to top, middle, or bottom, the method is also
lo-cally invariant to shift along the y-axis. For the half
ellipsoidal detected, one binary feature is constructed
corresponding to the presence of a half ellipse of a
certain size oriented downwards in the bottom part
of the template.

9

9.3 Character Complexity Features

In addition to stroke base extraction, we also ex-
tract a complexity measure for characters by counting
the number of stroke-crossings encountered in two
orientations, the horizontal and the vertical orienta-
tions. Some characters like da have a simple structure
and their maximum number of horizontal or vertical
crossings is never more than three, whereas for more
complex characters like wa the number of crossings in
either direction is at least three. We have allocated ten
features for each template to capture the complexity
of their structure. These features are built as follows.
We construct horizontal and vertical histograms of the
number of crossings in the correspond-ing directions.
The total number of crossings is recorded for vertical
and horizontal orientations.

9.4 Directional features

We partition the image into eight horizontal and four
vertical strips. For the horizontal strips we extract the
following features: the number of black pixels across
each column, the height of the highest pixel in each
column, the number of horizontal crossings for each
column, the mean grayscale of the strips, and the x-
mean and the y-mean of each column. For the vertical
strips we only extract the mean number of horizontal
crossings for each row. In summary we extract 38
directional features from the image.

9.5 Additional Features

Finally we extract five basic features from the image:
the grayscale of the image, the width of the image,
the top vowel of the image if there is any, and the x-
mean and the y-mean of the image. For the top-vowel
feature, we used a simple decision tree algorithm to
classify the top part of the image into five classes, one
for each possible top vowel and one for the case when
there is no vowel. The decision tree is very simple and
works as following. First the top part of the baseline
which contains vowels only is cut from the image and
sent to a vowel classifier. This vowel classifier then
detects intervals where there are contiguous chunk
of black pixels. These chunks are vowels. Now on
each of these vowels our classifier runs the following
decision tree. If the number of horizontal cross-ing
and vertical crossing is each at least two then the
vowel is marked i, otherwise if the beginning and the
ending part of the vowel are local maxima then the
vowel is marked o otherwise if the slope of the vowel
is close to negative one, then the vowel is marked e,
otherwise if the vowel is less than fifteen pixels wide
it is marked n otherwise p. e, o and i are top vowels
and n is the Tibetan mark tsa-phru that is put on top
of some characters like tsa. Finally p is the right part
of the top vowel o. Since in some wood prints this
vowel is dis-joint our classifier might recognize it as

Fig. 11. Top vowels are marked with red ellipses, top
vowels from left to right are, e, o , i, o, n and o

a two separate vowels, e or n as its left part and p as
it right part. Based on this observation our classifier
checks all vowels that are identified as p and if their
previous vowels are e or n, it combines the two vowels
into o. See Figure 11 to see how these vowels look like
in Tibetan block prints.

9.6 Feature summary

In summary, we have a feature set of 157 features,
with 90 features for 6 orientations of straight line
strokes, 13 features for loops and curves, and 10
features as measure of character complexity, 5 basic
features and 38 directional features.

10 EMISSION MODEL OF GHMM, PART II:
DISTANCE FUNCTION

Tibetan requires a large number of classes to be dis-
criminated. In such situations, previous works [7] [3]
have proposed multilevel hierarchical classification.
In this work, for simplicity, we start with a single
level of classification based only on the centroid of
classes. This approach requires an effective method
to measure the close-ness of a sample point to a
class. The set of features de-scribed above contains
measures for feature counts, off-sets, and peak re-
sponses. The features of different numerical range are
first normalized to the range (0,1). This normalized
feature space, however, is highly inseparable with
respect to the classes. Classification using Euclidean
distance achieves only 48% accuracy for a correctly
segmented image. The issue arises because we have a
global uniform weighting on all the features. Certain
characters such as ka and ja has prominent stroke
features, but noisy circle features; whereas cha and
chha has prominent circle features, but noisy stroke
features. To increase the signal-to-noise ratio for mea-
suring closeness to a class, we adopt a class-wise fea-
ture weighing approach, where features are weighed
differently depending which class they are measuring
distance with. In general, this approach shapes the
high dimensional sphere in the feature space around
a class centroid into an ellipsoid to better approximate
the feature space belonging to a class. We experiment
with four different distance metrics:

1. Weighted Euclidean Distance, 2. Weighted Eu-
clidean Distance with Multi-cluster Classes, 3. Modi-
fied Quadratic Discrimination Function (MQDF) [8], 4.
Kernelized Modified Quadratic Discrimination Func-
tion (KMQDF) [9].

10

The weighted Euclidean distance approach mea-
sures the variance in each feature for all training
template within a class. The difference in each feature
between a test sample and a class is then scaled
by the inverse of the feature-wise variance in this
class. This is a degenerate case of the Mahalonobis
Distance where the covariance matrix is a diagonal
matrix. There are two corner cases in this approach to
handle. When a feature is very consistent in a class,
it has a very low variance that can lead to numerical
stability problems in the variance computation step,
and can allow too much weight to be placed on a
particular feature. We solve this by setting a lower
bound on the variance, thus limiting the weight one
can put on a particular feature. The second corner case
occurs when we only have one sample for a class, in
which case we set the variances uniformly across all
features. A class-wise weighting for features helped
increase prediction accuracy significantly to 67.5%
for a correctly segmented image. The classification
results for weighted Euclidean distance indicate that
simpler characters are predicted with less accuracy,
as some prominent features tends to have large varia-
tions depend-ing on the robustness of certain features.
We mitigate this problem by splitting simpler, more
populous classes into multiple clusters using k-means
algorithm. The number of clusters in each class is
proportional to the number of samples in that class.
Those clusters that have population less than a certain
percentage of the average population of a cluster in
a class are treated as outliers, and not used in the
classification phase. There are two parameters that
should be determined, namely the threshold for out-
liers and the scaling factor for the number of clusters
in each class. These two parameters are determined
by an exhaustive search in the parameter space. The
weighted Euclidean distance can only construct el-
lipsoid in the feature space in the direction of the
axis. To better approximate the data variation for a
class, we use Principle Component Analysis (PCA) to
extract directions of most variance, and apply MQDF
as a measure of the distance be-tween a sample and a
class. Applying this metric improved the prediction
accuracy to 75% for a correctly segmented image.
Finally KMQDF is the Kernelized ver-sion of MQDF.
It embeds the data in a higher dimensional Hilbert
feature space which presumably makes it more sepa-
rable. We use Kernel trick in KMQDF to avoid directly
mapping data to its new feature space. The family
of Kernel functions that we used was polynomial
of the form k(x, y) = (x.y + 1)

p . We found to be
the most accurate Kernel. For further details please
refer to 11.2. Kernel trick only needs to know the dot
product of the newly-mapped data which is easily
computed as a function of the input in its original
feature space. Apply-ing this metric improved the
prediction accuracy to 80% for a correctly segmented
image.

10.1 MQDF distance function

We can model each class by a multivariate Gaus-
sian distribution, and use the negative of its log-
probability as a distance function. This is exactly the
aforementioned Mahalonobis distance function. The
reason that we are deriving our distance function from
a probability distribution is that we want to use it
later in our generalized hidden Markov model as our
emission model. Let wi denote the ith class, µi denote
the mean of the ith class and Σi its covariance, the
probability that x is generated by class wi is:

p(x|wi) = (2π)
−d
2 |Σi|

−1
2 exp

− (x− µ)
T
Σ−1
i (x− µ)

2
(2)

We denote the distance of x to wi as Q(x|wi) =
− log p(x|wi) =

d

2
(2π) +

1

2
|Σi|+

(
(x− µ)

T
Σ−1
i (x− µ)

2

)
(3)

We use negative of the log likelihood for distance
function for two reasons. The first reason is that log
likelihood has a nice form for normal distributions
and the second reason is that likelihood and distance
are reversely related. As the likelihood of a class wi
increases, the distance of x to that class decreases. If
we diagonalize the covariance matrix by Σi = βiΛiβ

T
i ,

where Λi is the diagonal matrix of eigenvalues of
Σi and βi is its corresponding orthonormal matrix
of eigenvectors, the Mahalonobis distance function
becomes

1

2

 d∑
j=1

β2
ij(x− µi)2

λij
+

d∑
j=1

log λij + d log 2π

 (4)

Since the training of the Mahalonobis classifier al-
ways underestimate the patterns eigenvalues by lim-
ited sample set, the minor eigenvalues become some
kind of un-stable noises and affect the classifiers ro-
bustness. By smoothing them in the MQDF classifier,
not only the classification performance is improved,
but also the computation time and storage for the
parameters are saved. In MQDF we substitute minor
eigenvalues including those that are zero with a small
class-dependent constant δi and we only use K major
eigenvectors, approximating the rest by the same δi.
Putting it all together we get, distance from x to class
wi is Q(x|wi) = − log p(x|wi) =

1

2
(

k∑
j=1

(βT
ij(x− µi))2

λij
+

k∑
j=1

log λij+

d∑
j=k+1

(βT
ij(x− µi))2

δi
+ (d− k) log δi + d log 2π) =

11

1

2
(

k∑
j=1

(βT
ij(x− µi))2

λij
+

k∑
j=1

log λij+

ri(x)

δi
+ (d− k) log δi + d log 2π) (5)

Where ri(x) = ||x− µi||2 −
∑k
j=1

(
βT
ij(x− µi)

)2.
For more details refer to [8].

10.2 KMQDF distance function
Yang and et al first used KMQDF for facial expression
recognition and showed that it outperforms MQDF
[9]. KMQDF is the Kernelized version of MQDF. It em-
beds the data in a higher dimensional Hilbert feature
space which presumably makes it more separable. We
use Kernel trick in KMQDF to avoid directly mapping
data to its new feature space. Kernel trick only needs
to know the dot product of the newly-mapped data
which is easily computed as a function of the input in
its original feature space. Our experiments show that
k(x, y) = (x.y + 1)

pwith p = 1 is a good embedding
kernel function for our 157 features. For mathemati-
cal details of deriving the KMQDF distance function
refer to [9]. Here we state the final distance function
and explain its parameters. KMQDF distance function
looks like equation (5):

1

2
(

k∑
j=1

M

λ2ij

(
rT
ij (Rit − 1MRit −Ri1M−1 + 1MRi1M−1)

)2

+

k∑
j=1

log
λij
M

+
ri(x)

δi
+ (d− k) log δi + d log 2π) (6)

Where

ri(x) = ||φ(x)− µφi ||
2 −

k∑
j=1

(
βT
ij

(
φ(x)− µφi

))2
=

φ(x).φ(x)− 2× 1M−1Rit + 1MRi1M−1−

k∑
j=1

1

λij

(
rT
ij (Rit − 1MRit −Ri1M−1 + 1MRi1M−1)

)2
(7)

φ is the mapping function , we do not need to
know this mapping because of the kernel trick,
i.e.ker(x, y) = φ(x).φ(y)

M is the number of samples for our class.
Ritis a 1×M matrix which contains the dot products
of all the M samples of our class with the input x
after being mapped to their new feature space, kernel
trick is being used to fill in this matrix.
Ri is a M × M Gramm matrix which contains the
dot products of all the M samples of our class after
being mapped to their new feature space, kernel trick

is being used to fill in this matrix.
1M is a M ×M matrix with all elements equal to 1

M
1M−1 is a M × 1 matrix with all elements equal to 1

M
λij and rij are the eigenvectors and eigenvalues of
Ri

We used up to 125 samples for each class, i.e.
our maximum equals 125. This is a tradeoff between
accuracy, computation and memory. Storing all our
samples, their eigenvalues and eigenvectors requires
a lot of memory and is not practical. At the same time,
computing dot products and matrix multiplications of
size is very time consuming. Our experiments show
that setting our maximum to 125 does not affect the
accuracy of our model while saving us time and
memory.

11 PUTTING ALL COMPONENTS OF
GHMM TOGETHER

Segmentation and classification are the two inter-
dependent stages in our OCR project. We have en-
countered numerous cases in segmentation and clas-
sification where the higher level language model is
required to re-solve ambiguities. [3] proposed an it-
erative approach, where character recognition result
is fed back to the character segmentation and clas-
sification stages. We use a structured approach for
incorporating language model based on the generalize
Hidden Markov Model (gHMM). Simply put gHMM
is an HMM where the emission model allows multiple
consecutive observations to be mapped to the same
state. The problem to be solved is to distinguish good
segmentation points and bad segmentation points
based on character transition model and state emis-
sion models. gHMM is characterized by three param-
eters: State transition model, initial state, and state
emission model. The language model is encoded in
all three parameters. For OCR, the hidden states are
the characters to be recognized labeled with their
relative position in the word, and the observations
are the images at the input. Character to character
transition model is encoded in the state transition
model and the initial state. The emission model then
helps to compute the probability that an image is an
instance of a state. Given a sequence of observations
our gHMM uses a variation of the Viterbi algorithm
to find the most probable sequence of character that
produced the image. Section 11.1 talks about the
language model of our Tibetan gHMM, Section 11.2
gives an over-view of the emission model. In Section
11.3 we describe the decoding problem and the Viterbi
algorithm in gHMM and in Section 11.4 we explain
the training process and forced alignment.

11.1 Language Model
The language model consists of the transitional and
initial probabilities of a gHMM. It is an essential

12

element in gHMM in that it disambiguates segmenta-
tion and classification errors. We tried two different
language models for our gHMM. In the first, we
treated stack characters as states and in the second, we
labeled each stack character with its relative position
in the word and the size of the word. The second
model resulted in a more accurate gHMM. The rea-
son behind this is very intuitive; the second model
enforces the grammar more and discards less gram-
matically correct outputs in the Viterbi algorithm. We
label our states in the following way. A stack charac-
ters label contains the information about a characters
relative position in a word and the size of the word.
Possible labels are: 1-1, 1-2, 2-2, 1-3, 2-3, 3-3, 1-4, 2-
4, 3-4, 4-4. As an example 2-3 means the character is
the second character in a three-character word. Here
we describe two of the major advantages of using
labeled stack characters vs. unlabeled stack characters.
Labeled stack characters constitute a more accurate
language model; hence they do not allow certain paths
in the decoding trellis that are otherwise allowed in
the unlabeled model. At the same time certain paths
are returned with more probability in this model than
in the unlabeled model, hence the overall accuracy is
increased. Usually tseks, the end-of-word delimiters
in Tibetan, are blurred in the original image, which
makes their recognition very hard. Tsek insertion is a
free by-product of our language model: any state that
is the first stack character of a word, namely stack
characters with the following labels 1-1, 1-2, 1-3, and
1-4, has a tsek before it.

11.2 Emission Model
The emission model contains the observation and
length probabilities of all states. We tried four differ-
ent distance functions which are described in Section
10. MQDF and KMQDF were the most accurate of all
four. KMQDF was the most accurate of all. For more
information about KMQDF refer to 11.2. As KMQDF
and MQDF are negative of log likelihoods, they can be
used in our emission model. They are easily converted
to observation probabilities by exponentiation of the
negative of the distance function. Since for numerical
stability, all calculations are done in logs, we only
have to change the sign of our distance function to
get the log of observation probability.

11.3 Decoding problem, the Viterbi algorithm
In gHMM the probability of observing a line of image
that corresponds to a certain sequence of states is:

p(c1|α) =
∏
t>1

p(ct|ct−1)p(dt|ct−1)p(image|dt, ct) (8)

Where ct is the current state and dt is the number
of observations in the current state. The decoding
problem looks for a sequence of states that maximizes

the posterior probability of that sequence, given the
image. Since

p(c1|, c2, ..., cm|image) =
p (c1|, c2, ..., cm, image)

p (image)
(9)

the sequence of states that maximizes the joint
probability also maximizes the posterior probability.
Exploit-ing this mathematical fact the Viterbi algo-
rithm finds the maximizing sequence of states by
maximizing the joint probability. As the number of
sequences of a certain length is exponential in length
and the length of the maximizing sequence is un-
known due to lack of segmentation, the total number
of possible sequences is the sum of exponentials over
all possible lengths, which is still exponential. The
Viterbi algorithm avoids this exponential set by the
aid of dynamic programming in the following way:

δt(i, l) = max
c1,c2,...,cm,m

p (image(0, t), S(t, l, i)) (10)

Where S(t, l, i) = c1, c2, ..., cm means that observa-
tions t − l to t of the image corresponds to the ith
state. Let aij denote the transition probability from the
ith state to the jth state, andbi(t, l) be the observation
probability of observing observations t− l to t of the
image given we are in the ith state, and let π(i, l) be
the initial probability of the ith state with length l then
it is trivial to derive the following recursive formula:

δt(i, l) = bi(t, l) max
j,w

δt−1(j, w)aij (11)

δ0(i, l) = bi(t, l)π(i, l) (12)

The Viterbi algorithm retrieves the maximizing se-
quence of states by looking for the maximum of over
all possible states and possible lengths and tracing
back from there. In this formula T is the length of
the image, i.e. number of observations.

11.4 Training
Training is the most challenging task of our gHMM.
Figure 12 shows a line of Tibetan block print with its
segmentation points. Supervised and manual segmen-
tation and labeling of observations is time consum-
ing and unpractical. Having initialized our emission
model with seven pages of manually-segmented block
prints, we used the automatic and unsupervised tech-
nique of forced alignment to further train our model.
Researchers use forced alignment algorithm, one type
of a hard EM algorithm, when the corresponding
hidden states are given and only segmentation points
are missing. Our training data consists of images of
lines of Tibetan block prints with their corresponding
sequence of Tibetan characters, i.e. the ground truth.
Since our training data lack segmentation points, we
treat them as latent variables with indices of state
sequence as our states. For instance if we know that
our input image (which is one line of Tibetan block

13

Fig. 12. A line of Tibetan block print, the red lines
corresponds to the segmentation points.

print) corresponds to a 20-long sequence of Tibetan
characters, then the states of our EM are the indices
of this sequence, i.e. 0 to 19. Hard EM finds the most
probable alignment, by running the Viterbi algorithm
on our new set of states, with the following changes:

a. Each column of the trellis is initialized with
our new set of states. b. For each state i only i-
1 is considered as the possible previous state not
other states. c. The transition probability and initial
probability are not taken into consideration here, be-
cause the sequence of states is given and we are
only maximizing over the observation probabilities, in
other words we are looking for a segmentation that
maximizes the product of observation probabilities,
given the sequence of states.

Having found the most likely segmentation we can
re-estimate our gHMM, and with our new gHMM we
can re-segment our images. We should continue this
cycle till our model becomes stable. We trained our
model using fifty pages of Tibetan block prints. After
twenty iterations of forced alignment our model out-
put the same alignments meaning that it converged
to a stable solution.

12 RESULTS

We have constructed a database of 6555 characters
from 7 pages of Tibetan wood-block print for our ex-
periments. The document used is from the publisher
Dege Kanjur, titled 400 Praises to the Buddha. Our
sample had 168 classes of stack characters, with a
maximum of 699 instances per class. We used cross
validation to train and test our model. We manually
segmented and labeled all pages of Dege Kanjur for
training and initializing the gHMM. We ran forced
alignment with a total of twenty iterations on yet an-
other collection of training samples with a total num-
ber of 54 pages to further improve our gHMM. This
was done for each cross validation step. Our measure-
ment of accuracy was Levenstein distance function.
Levenshtein distance is a measure of closeness of two
sequences to each other. The Levenshtein distance
between two strings is given by the minimum number
of insertion, deletion, or substitution of characters to
convert one string to another. Our gHMM resulted in
89.49% accuracy using the Levenshtein distance for
comparing Viterbis output to the ground truth. Later
on we manually segmented 104 pages and retrained
our OCR on them to see how accurate our forced
alignment EM was compared to the case when the
latent variable, i.e. segmentation points, were avail-
able. Manual segmentation increased the accuracy to

TABLE 1
Error averages of four OCR systems

Thinned with 104 Manually segmented pages 8.712834
Thinned with 54 Manually segmented pages 8.862216
Not Thinned EM 12.40975
Thinned EM 10.5180

Fig. 13. Comparison of errors of four OCR systems,
A (green) represents thinned with 104 manually seg-
mented pages, B (yellow) represents thinned with 54
manually segmented pages, C (blue) represents not
thinned pages with EM, D (red) represents thinned with
EM.

91.29% which only boosted up the accuracy by 1.8%.
This shows the effectiveness of our training with EM.
Table-1 shows four error rates of four different OCR
systems: two OCR systems with training EM, one
without thinning and preprocessing and one without
preprocessing, and two OCR systems with manually-
segmented pages, one with 54 pages and one with
104 pages. Table 1 further shows that thinning and
image preprocessing increases the overall accuracy,
and increasing the training samples from 54 pages to
104 pages increases the accuracy by only by 0.15%, in
other words more training does not have a noticeable
effect on the overall accuracy.

13 CONCLUSION

In examination of approaches to solving the OCR
problem for Tibetan block prints, one critical decision
is to segment or not to segment the image. This
problem is common to other off-handwriting recog-
nitions, such as Arabic, Roman and Chinese OCR
systems. Our results indicate that segmentation and
recognition should not be too separate steps. One
needs to recognize characters in image in order to
segment them and characters are segmented in order
to be recognized. This chicken-and-egg problem is
solved simultaneously by the aid of gHMM. In other
words gHMM carries segmentation and recognition at
the same time. In conclusion gHMM-based approach
outperforms segmentation-based approaches for op-
tical character recognition of Tibetan block prints.
Furthermore correct choices of language model and
distance function with noise-invariant, discrimina-
tive features for gHMM and enough training of the
gHMM has substantial effects on the final accuracy
of the overall system. More specifically Kernelized
MQDF distance function outperforms MQDF which

14

was initially used in our system and per-formed bet-
ter than Mahalonobis-based and Euclidean distance
functions. For language model of gHMM, characters
labeled with their relative distance to tseks and size of
their word outperformed vanilla language model that
lacked these labels. This is due to the fact that labels
of relative distance to tseks and size of words enforce
more grammar into language model than the vanilla
model. Finally using Hard EM to train our gHMM,
makes the emission model more robust and accurate.

14 FUTURE WORK

Our experiments show that good features could easily
increase the accuracy of recognition even if the dis-
tance function is not discriminative enough. Hence
one of the directions that future researchers should
take is improving the qualities of features that would
be eventually used in the GHMMs emission model.
Good features should have two characteristics. One is
that they should be discriminative, i.e. they should be
able to separate classes of characters from each other.
Secondly features should be invariant to different
types of noise, rotation and smear. Good features
however do not eliminate the need for generalized
hidden Markov models, as they do not solve the seg-
mentation problem. Higher levels of language model
could also increase the accuracy of our approach. As
in speech recognition instead of the most probable
sequence of states, the Viterbi algorithm could output
a certain number of them. A higher-level language
model could further process these outputs using this
model and filter the unlikely and ungrammatical sen-
tences out.

REFERENCES

[1] K Masami, N Chikako, K Takanobu, A Yoko, and K Yoshiyuki,
Recognition of similar characters by using object oriented
design printed Tibetan dictionary, Trans-actions of IPSJ, 36(11),
pp.23042307, 1995.

[2] K Masami, K Yoshiyuki, and K Masayuki, Character
recognition of wooden blocked Tibetan similar manuscripts
by using Euclidean distance with deferential weight, IPSJ SIG
Note, Information Processing Society of Japan (IPSJ), pp. 1318,
1996.

[3] Xiaoqing Ding and Hua Wang, Multi-Font Printed Tibetan
OCR, Digital Document Processing, Springer Lon-don, Bidyut
b. Chaudhuri edition, pp. 73-98, 2007.

[4] M Khorsheed, W Clocksin, ”Structural Features of Cursive
Arabic Script”. The 10th British Machine Vision Conference,
University of Nottingham, Nottingham-UK, pp.422-431, 1999.

[5] H Freeman, Machine vision for three, dimensional scenes,
New York, Academic Press 1990.

[6] R Dua, P Hart, Use of the Hough transformation to detect
lines and curves in pictures, Commun. ACM, vol. 15, no. 1, pp.
11-15 January 1972.

[7] Y Tang, Lo-Ting Tu, Jiming Liu, Seong-Whan Lee Win-
Win Lin, and Ing-Shyh Shyu, offline recognition of Chinese
handwriting by multi-feature and multilevel classification,
Pattern Analysis and Machine Intelligence, IEEE Transactions,
vol. 20, pp. 556-561, 1998.

[8] F Kimura, K Takashina, and S Tsuruoka, Modified quadratic
discriminant functions and the application to Chinese character
recognition, IEEE Transactions on Pat-tern Analysis and
Machine Intelligence, vol. 9. pp. 149153, 1987.

[9] D Yang, L Jin, J Yin, L Zhen, J Huang, Kernel Modified
Quadratic Discriminant Function for Facial Expression
Recognition, Lecture notes in computer science, Advances
in machine vision, image processing, and pattern analysis. pp.
66-75, 2006.

[10] J Edwards, D. A Forsyth, Searching for character models,
Advances in Neural Information Processing Systems, pp.331-
338, 2006

[11] M.S Khorsheed, Recognizing Handwritten Arabic
Manuscripts Using a Single Hidden Markov Model. Pat-
tern Recognition Letters, 24, pp.2235-2242, 2003.

[12] D Keysers Comparison and Combination of State-of-
the-art Techniques for Handwritten Character Recognition:
Topping the MNIST Benchmark, Image Understanding and
Pattern Recognition (IUPR) Group German Research Center for
Artificial Intelligence (DFKI), pp/ 1-18, 2007

[13] S Belongie, J Malik, and J Puzicha. Shape Match-ing and
Object Recognition Using Shape Contexts. IEEE Trans. Pattern
Analysis and Machine Intelligence, 24(4). pp.509-522, April 2002.

[14] D DeCoste, B Schoelkopf. Training Invariant Support
Vector Machines. Machine Learning, Machine Learning, vol. 46,
Numbers 1-3, pp.161-190, 2002.

[15] D Keysers, C Gollan, H Ney. Local Context in Non-linear
Deformation Models for Handwritten Character Recognition.
17th Int. Conference on Pattern Recognition, vol. 4, pp. 511-514,
Cambridge, UK, August 2004.

[16] P Simard. Best Practices for Convolutional Neural Networks
Applied to Visual Document Analysis. In 7th Int. Conf.
Document Analysis and Recognition, pp. 958-962, Edinburgh,
Scotland, August 2003.

[17] S. N Srihari, X. Yang, G. R. Ball. Offline Chinese Handwriting
Recognition: A Survey. Document Analysis and Recognition,
2007. ICDAR 2007. Ninth International Conference on, vol. 1,
pp. 133-137, 2007

[18] A Vinciarelli A survey on off-line cursive word recognition,
Pattern Recognition, vol. 35, pp.14331446, 2002.

[19] A Amin, Off-line Arabic character recognition: the state
of the art, Pattern Recognition, vol. 31, Issue 5, 1, pp. 517-530,
March 1998.

[20] I.S.I Abuhaiba, S.A Mahmoud, R.J Green, ”Recognition
of handwritten cursive Arabic characters,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol.16, no.6,
pp.664-672, Jun 1994.

