
The Effectiveness of Install-Time Permission Systems

for Third-Party Applications

Adrienne Porter Felt
Kate Greenwood
David Wagner

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-143

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-143.html

December 3, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

The Effectiveness of Install-Time Permission
Systems for Third-Party Applications

A. Porter Felt,
∗

Kate Greenwood, David Wagner
University of California, Berkeley

apf, kate eli, daw@cs.berkeley.edu

ABSTRACT
In many modern development platforms, application per-
missions control third-party access to sensitive parts of the
API (e.g., the camera or microphone). We study install-time
permissions, which the user grants to applications during in-
stallation; different applications can receive different install-
time permissions. Install-time permissions offer several ad-
vantages over traditional user-based permissions, which as-
sign the user’s full privileges to all applications. However,
these benefits rely on the assumption that applications gen-
erally require less than full privileges. We explore whether
that assumption is realistic, which provides insight into the
value of install-time permission.

We perform case studies on two systems with install-time
permissions for third-party applications, the Google Chrome
extension platform and the Android OS. We collect the per-
mission requirements of a large set of Google Chrome exten-
sions and Android applications. From this data, we evaluate
whether install-time permissions are effective at protecting
users. Our results indicate that install-time application per-
missions have a strong positive impact on system security,
but a number of changes could further improve their utility.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.2
[Software]: Software Engineering

General Terms
Security

Keywords
Permissions, smartphones, browser extensions, Android

∗This material is based upon work supported under a Na-
tional Science Foundation Graduate Research Fellowship.
Any opinions, findings, conclusions or recommendations ex-
pressed in this publication are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.

Copyright is held by the author/owner(s).
.

1. INTRODUCTION
Modern browsers and smartphone operating systems pro-

vide development platforms that support thriving markets
for third-party applications. However, third-party code cre-
ates risks for the user. Some third-party authors are mali-
cious [4, 15], and third-party code can introduce vulnerabil-
ities because the authors of third-party applications usually
are not security experts [11, 20].

In order to protect users from the threats associated with
third-party code, many major platforms use application per-
missions to control access to security- and privacy-relevant
parts of the platform’s API. Users decide whether to grant
individual applications permissions for sensitive resources
like the camera. Per-application permissions differ from the
traditional user model, which associates permissions with
users; in practice, user-based permissions lead to all appli-
cations running with the system’s full permissions [12].

We consider systems that implement the application per-
mission model with install-time permissions. Systems with
install-time permissions ask developers to declare their ap-
plications’ required permissions so that users can grant the
requested permissions during installation. Applications are
permanently limited to their declared permissions. We mea-
sure the security role of install-time permissions in two case
studies, the Google Chrome extension system and Android
application platform.

We focus on three possible advantages of an install-time
permission system over the traditional user model:

• User Consent: Security-conscious users may be hesi-
tant to install applications that ask for dangerous per-
missions without justification. If so, this will decrease
the likelihood that the user installs malware.

• Defense in Depth: The impact of a vulnerability in
a third-party application will be limited to the vulner-
able application’s privileges (i.e., a subset of the API).

• Review Triaging: It facilitates central review of third-
party applications because security reviewers can ig-
nore low-privilege applications and focus their atten-
tion on applications with dangerous permissions. This
may decrease the average review time.

These advantages depend on the assumption that most ap-
plications request fewer than the maximum set of permis-
sions. We evaluate this assumption by performing a large-
scale study of permission usage in Google Chrome extensions
and Android applications.

Our measurement study quantifies the permission usage
of 1000 Google Chrome extensions and 956 Android applica-
tions. We provide detailed data on the permission require-
ments of applications in the wild. We consider which and
how many permissions developers ask for. From this data,
we assess whether the potential benefits of install-time per-
missions are being realized in these platforms.

We find that almost all applications ask for fewer than
maximum permissions: only 24 of 1000 extensions request
the most dangerous privileges, and all Android applications
ask for less than half of the available dangerous permissions.
This significantly decreases the impact of an application vul-
nerability and simplifies review. However, users are pre-
sented with at least one dangerous permission request during
the installation of almost every extension and application.
We hypothesize that this high frequency of permission re-
quests desensitizes users to dangerous permissions, although
we do not perform user studies.

Even though our primary study indicates that developers
use less than maximum permissions, dangerous permission
usage is widespread. To address this, we examine the influ-
ence of developer error, wildcard permissions, and permis-
sion granularity on permission usage. We find that more
than 10% of applications erroneously include permissions,
and we suggest error detection tools. Our results also show
that many developers are willing to make use of fine-grained
permissions, motivating a fine-grained permission design.

We view the Google Chrome and Android permission sys-
tems as case studies for the future of application permis-
sions. Our primary contribution is a large-scale study that
demonstrates the defense in depth and review benefits of
install-time permissions. Our results should guide the de-
sign of future permission systems, and we provide concrete
suggestions to help Google Chrome and Android approach
their full potential.

2. BACKGROUND
We define install-time application permissions and con-

trast them with other types of permissions. The Google
Chrome extension system and Android application platform
feature install-time permissions.

2.1 Permission Systems
Traditional operating systems associate permissions with

users. When a user installs an application, the application
receives all of the user’s privileges. All applications must
be trusted equally, and an application vulnerability puts
all of the user’s data at risk. Users can choose to use a
low-privilege account, but most operate as a full-privilege
administrator for daily tasks [12].

Several modern systems associate permissions with appli-
cations rather than users. Users can decide whether to grant
specific permissions to individual applications. We focus on
install-time permissions, which are presented to the user
as part of the installation process. Install-time permissions
must be declared by the developer (e.g., in a manifest file).
Once granted, an application is restricted to its install-time
permissions. Examples of install-time permission systems
include the Android OS, Google Chrome extension system,
and Facebook Platform.

Alternately, systems like Apple iOS and BlackBerry use
time-of-use permissions. They prompt the user when a run-
ning application attempts to access restricted functionality.

Figure 1: Google Chrome extension installation.

Time-of-use permissions do not need to be declared. How-
ever, a time-of-use permission system could hypothetically
require developers to declare a maximum set of possible per-
missions (i.e., user prompts would only appear for previously
declared permissions). This would make a time-of-use per-
mission system eligible for the benefits of review and defense
in depth, similar to install-time permission systems.

2.2 Google Chrome Extensions
Browser extension platforms allow third-party applica-

tions to run as part of the browser environment. Extensions
change the user’s browsing experience by editing web sites
and extending browser behavior. All extensions are free to
install from the official Google Chrome extension gallery.
We explore the benefits of install-time permissions in the
context of Google Chrome extensions:

• User Consent. Malicious extensions for other browsers
have been caught spying on users and installing persis-
tent malware [21, 3]. A user can cancel an extension’s
installation if she is not comfortable with its permis-
sions. Figure 1 shows an installation warning.

• Defense in Depth. When a user navigates to a ma-
licious web site, the malicious web site might try to
trick a vulnerable extension into yielding a privileged
reference or performing a privileged action [11, 20]. A
buggy extension might leak privileges that web sites
should not receive. Limiting the scope of extension
vulnerabilities was a primary motivating factor behind
the extension system’s design [2].

• Review Triaging. Google formally reviews extensions
with the most dangerous permissions. Mozilla editors
also review all Firefox extensions prior to being pub-
licly listed in the Mozilla add-on directory. The length
of the non-triaged Mozilla review process is often a
concern for developers [13].

Permissions. Google Chrome extensions can have three
types of components: core extensions, content scripts, and
plug-ins. Core extensions are the main, persistent JavaScript
extension. Content scripts are injected into web sites; when
the page loads, the content script’s JavaScript executes in
the context of the site. A content script has full access to
its host site’s page. Plug-ins are native executables. Three
types of privileges are available to extensions:

Plug-ins. Plug-ins are native executables, so a plug-in grants
the extension full permissions to the user’s machine. The in-
stallation warning for an extension with a plug-in says the
extension “can access all data on your computer.” Exten-
sions with plug-ins are reviewed.

Browser managers. Core extensions can access the extension
API, which is a set of browser managers. Each manager is
controlled with one permission. The managers include his-
tory, bookmarks, and geolocation. The browser warns that
extensions with these permissions can access “your brows-
ing history,” “bookmarks,” and “your physical location,”
respectively. Non-security relevant browser managers (e.g.,
notifications) also exist, but they do not prompt a warning.

Web access. The developer must specify web permissions
for content scripts and core extensions. Content script web
permissions determine which domains they are installed on
by default. A core extension can send XMLHttpRequests
(XHRs) and inject additional content scripts into the do-
mains it has permissions for. Content script and core exten-
sion domain permissions are listed separately.

All-domain access is the most broad web permission. If
either the content scripts or the core extension have all-
domain access, the browser warning states that the exten-
sion “can access your data on all web sites.” Alternately,
a developer can list specific domains, using wildcards for
protocols or subdomains (e.g., *://*.bar.com). The instal-
lation warning will list the requested domains. Additionally,
a domain list for a content script can include the file pro-
tocol. This enables read-only access to files when they are
loaded in the browser by the user. When this happens, the
content script can read arbitrary other local documents (ex-
cept in the developer release of the Google Chrome browser).
Requesting access to the file protocol generates the all-
domain warning, and these extensions are reviewed.

2.3 Android Applications
The Android smartphone operating system supports third-

party Java applications, which can be installed by users
through the Android Market. Some third-party applications
are free, and some are paid. In the context of Android, the
benefits of install-time permissions are:

• User Consent. Smartphones are increasingly becom-
ing targets of Trojans [16, 10]. Android’s permission
system informs users about an application’s potential
for harm. (See Figure 2.)

• Defense in Depth. Applications that handle content
from untrusted sources can also be vulnerable to ex-
ternal attacks [9].

• Review Triaging. Android applications do not need to
be reviewed prior to inclusion in the Android Market,
but other phone vendors like RIM and Apple maintain
official review processes. External researchers can also
use permissions to guide application analyses [6].

Although Android applications can communicate, we as-
sume they do not collude.

Permissions. Android’s API provides access to phones’
cameras, microphones, GPS, text messages, WiFi, Blue-
tooth, etc. Most device access is controlled by permissions,
although large parts of the overall API are not protected by
permissions. There are 134 permissions in API 8 (Android
2.2). Permissions are categorized into threat levels:

Normal. API calls with annoying but not harmful con-
sequences are protected with Normal permissions. Exam-
ples include accessing information about available WiFi net-
works, vibrating the phone, and setting the wallpaper.

Figure 2: Android application installation.

Dangerous. API calls with potentially harmful consequences
are protected with Dangerous permissions. These include
actions that could cost the user money or leak private infor-
mation. Example permissions are the ones used to protect
connecting to a Bluetooth device, opening a network socket,
recording audio, and using the camera.

Signature. Especially sensitive operations are protected with
Signature or SignatureOrSystem permissions. Android per-
missions are only granted to applications that have been
signed with the device manufacturer’s certificate or installed
into the /system/app folder. Advanced users who have
rooted their phones [8] can manually install applications
into this folder, but the official Market installation process
will ignore the permissions. Market applications are only
eligible for Signature or SignatureOrSystem permissions if
they are updates to applications that were pre-installed by
the device manufacturer (e.g., Google Maps and Twitter are
pre-installed on some phones). Examples include the ability
to call emergency numbers without user confirmation and
brick the phone (i.e., render it inoperable).

Warnings for Dangerous permissions are grouped into func-
tionality categories. E.g., all Dangerous permissions related
to location are displayed as part of the same location warn-
ing. Normal permissions can be viewed once the application
is installed but are hidden behind a collapsed drop-down
menu. Signature permissions are not displayed to users at
all. Applications can define their own extra permissions, but
we only consider permissions defined by the Android OS.

3. PERMISSION PREVALENCE
We examine the frequency of permission requests in Google

Chrome extensions and Android applications. Based on
these results, we evaluate how often users face permission
warnings, calculate the potential impact of a typical third-
party vulnerability, and estimate how many applications
would be eligible for a hypothetical review process that tri-
ages applications according to their permissions.

3.1 Chrome Extensions
We study the 1000 “most popular” extensions, as ranked

in the official Google Chrome extension gallery1. Of these,
the 500 most popular extensions are relevant to user consent

1We crawled the directory on August 27, 2010.

Permission Popular Unpopular
Plug-ins 2.80 % 0.00 %
Web access 82.0 % 60.8 %

All domains 51.6 % 21.8 %
Specific domains 30.4 % 39.0 %

1+ privacy-related manager 74.8 % 43.4 %

Figure 3: We measure the prevalence of permissions
in 1000 Google Chrome extensions, split into the
500 most popular and 500 less popular. For web
access, we report the highest permission of either
the content script or core extension.

and application vulnerabilities because they comprise the
majority of user downloads. The 500 less popular extensions
are installed in very few browsers, but they are relevant
to reviewers because reviewers would need to examine all
extensions that are submitted to the directory.

3.1.1 Popular Extensions
Of the 500 most popular extensions, 91.4% ask for at least

one security-relevant permission. This indicates that nearly
every installation of an extension generates at least one se-
curity warning2. Figure 3 provides an overview.

Plug-ins. Only 14 of the 500 extensions include plug-ins.

Privacy-related managers. The majority of security warn-
ings are caused by the window manager, which is requested
by almost 75% of the 500 extensions. Requesting access
to the window manager generates a warning about history
access because history is indirectly available through the
window manager. Access to bookmarks and geolocation is
requested infrequently: 44 times and once, respectively.

All domains. Half of the 500 extensions request all-domain
access for either content scripts or the core extension. 2%
of the 500 request access to the file protocol, 52% request
access to all http sites, and 42% ask for all https sites.

Specific domains. One-third of extensions only request a
set of specific domains. This reduces the attack surface and
removes the possibility that an extension is snooping on sen-
sitive web data.

No warning. Only 43 of the 500 extensions do not request
access to a security-relevant permission. 38 do not ask for
any permissions at all; they load normal web sites into their
extension windows or apply “themes” to the user interface.
The remainder use non-privacy-related managers.

3.1.2 Unpopular Extensions
Not all of the extensions listed in the “most popular” di-

rectory ranking are popular. After approximately the first
500 of 1000 popularity-ranked extensions, the number of
users per extension abruptly decreases, and the sorting al-
gorithm weakens. Figure 4 shows the transition. 16.2% of
the bottom 500 extensions have fewer than ten users. These
500 low-ranked extensions are of uneven quality. E.g., two
of them are unaltered versions of the example extension on
the developer web site.

2We discovered that current versions of Google Chrome
sometimes fail to generate a warning for history access. We
reported the bug, and it will be fixed for new versions [7].
Our analysis assumes that all requests for history access cor-
rectly generate a warning. The bug affects 3 of the 500 most
popular extensions and 2 of the 500 less popular extensions.

0

2000

4000

6000

8000

10000

12000

14000

16000

20
0

22
9

25
8

28
7

31
6

34
5

37
4

40
3

43
2

46
1

49
0

51
9

54
8

57
7

60
6

63
5

66
4

69
3

72
2

75
1

78
0

80
9

83
8

86
7

89
6

92
5

95
4

98
3

!
"#
$"
%

&'()*+$,-.%/+01%

Figure 4: Users per extension. We omit the first
200 so that the bottom 500 can be distinguished;
the most popular extension has 1.3M users.

Figure 3 presents the results of our survey of the 500 less
popular extensions. 71.6% of the less popular extensions
have at least one security-relevant permission. When com-
pared to the top 500 extensions, the unpopular extensions
request far fewer permissions than popular extensions. All
of the differences are significant at a 99% confidence level.
We hypothesize that this is because less popular extensions
offer less functionality.

Unranked extensions are strictly less popular than the un-
popular extensions in our data set. If one were to review
the remaining 5, 696 unranked Google Chrome extensions,
we expect their permission requirements would be equiva-
lent to or less than the permission requirements of these
500 unpopular applications. We note with caution that fu-
ture studies on permissions need to consider the effect of
popularity. E.g., a study that looks at the full set of 6, 696
extensions to evaluate warning frequency would would likely
underestimate the number of warnings that users see by ap-
proximately 20%.

3.1.3 Evaluation

User Consent. Nearly all popular extensions (91% of the
top 500) generate at least one security warning, which de-
creases the value of the warnings. History and all-domain
permissions are requested by more than half of extensions;
users have no reason to be suspicious of extensions with
these permissions because they are not anomalous. How-
ever, warnings about plug-ins are rare and therefore notable.

Defense in Depth. This study shows that the permission
system dramatically reduces the scope of potential extension
vulnerabilities. A negligible number of extensions include
plug-ins or file permissions, which means that the typical
extension vulnerability cannot yield access to the local ma-
chine. This is a significant improvement over the Firefox
and Internet Explorer extension systems, which provide all
extensions with access to the local file system. We also find
that all-domain access is frequent but not universal: 18% of
popular extensions need no web access, and 30.4% only need
limited web access. The permission system prevents half of
popular extensions from having unnecessary web privileges.

Review Triaging. Of the 1000 extensions in our study,
only 2.4% require review under current Google Chrome re-
view triaging procedures. Alternate triaging procedures are
possible. If the review process were modified to include ex-

tensions with all-domain access, our study of unpopular ex-
tensions indicates that only 26.4% of extensions would need
review. Reviewers could ignore 28.4% of submitted exten-
sions, based on the number of less-popular extensions with
no security-relevant permissions. These results suggest that
the burden of the Firefox extension review process would
be significantly reduced if Mozilla were to adopt a similar
permission system.

3.2 Android Applications
We survey 100 paid and 856 free applications from the

Android Market3. For the paid applications, we selected
the 100 most popular. The free set is comprised of the 756
most popular and 100 most recently added applications; we
observe no differences between popular and recently added
free applications, so we present them together.

3.2.1 Dangerous Permissions
We are primarily concerned with the prevalence of Dan-

gerous permissions. Dangerous permissions are displayed as
a warning to users during installation and can have serious
security ramifications if abused. We find that 93% of free
and 82% of paid applications have at least one Dangerous
permission, i.e., generate at least one warning.

Android permissions are grouped into functionality cate-
gories, and Figure 5(a) shows how many applications use at
least one Dangerous permission from each given category.
This provides a relative measure of which parts of the pro-
tected API are used by applications. All of the permissions
in a category display the same warning, so Figure 5(a) also
indicates how often users see each type of warning.

A small number of permissions are requested very fre-
quently. Figure 5(b) shows the most popular Dangerous per-
missions. In particular, the INTERNET permission is heavily
used. We find that 14% of free and 4% of paid applications
request INTERNET as their only Dangerous permission. Bar-
rera et al. hypothesize that free applications often need the
INTERNET permission only to load advertisements [1]. The
disparity in INTERNET use between free and paid applica-
tions supports this hypothesis, although it is still the most
popular permission for paid applications. Enck et al. found
that some free applications leak personal data [6]; this may
explain the difference in ACCESS COARSE LOCATION requests.

The prevalence of the INTERNET permission means that
most applications with access to personal information also
have the ability to leak it. For example, 97% of the 225 ap-
plications that ask for ACCESS FINE LOCATION also request
the INTERNET permission. Similarly, we find that 99%, 94%,
and 78% of the 306, 149, and 14 respective applications
that request ACCESS COARSE LOCATION, READ CONTACTS, and
READ CALENDAR have the INTERNET permission.

Although many applications ask for at least one Danger-
ous permission, the total number of permission requests is
typically low. Even the most highly privileged application in
our set asks for less than half of the available 56 Dangerous
permissions. Figure 6 shows the distribution of Dangerous
permission requests. Paid applications use an average of 3.99
Dangerous permissions (5.83 average total permissions); free
applications use an average of 3.46 Dangerous permissions
(4.71 total permissions).

3The applications were collected in October 2010.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 260

5

10

15

20

Paid
Free

Number of Dangerous Permissions

Pe
rc

en
ta

ge
 o

f A
pp

lic
at

io
ns

0

Figure 6: Dangerous permissions per application.

3.2.2 Signature and System Permissions
Applications can request Signature and SignatureOrSys-

tem permissions, but the operating system will not grant the
request unless the application has been signed by the device
manufacturer (Signature) or installed in the /system/app

folder (System). Applications installed through the Android
Market can only obtain Signature or System permissions if
they are upgrades to the pre-installed applications. It is
therefore pointless for a typical application to request these
permissions because the permission requests will be ignored.

As far as we are aware, none of the paid applications in
our data set are signed or distributed by device manufactur-
ers. Three of the paid applications request Signature per-
missions, and five request SignatureOrSystem permissions.
Of the free applications, 25 request Signature permissions,
30 request SignatureOrSystem permissions, and four request
both. We have found four of the aforementioned free ap-
plications pre-installed on phones; the remainder will not
receive the permissions on a typical user device. Requests
for unobtainable permissions may be leftover from testing
or caused by developer error.

3.2.3 Evaluation

User Consent. Nearly all applications (93% of free and
82% of paid) ask for at least one Dangerous permission,
which indicates that users are accustomed to installing ap-
plications with Dangerous permissions. The INTERNET per-
mission is so widely requested that users cannot consider its
warning anomalous. Security guidelines that warn against
installing applications with access to both the Internet and
personal information are likely to fail because almost all ap-
plications with personal information also have INTERNET.

Several important categories are requested relatively in-
frequently, which is a positive finding. Permissions in the
PERSONAL INFO and COST MONEY categories are only requested
by a fifth and a tenth of applications, respectively. The
PERSONAL INFO category includes permissions associated with
the user’s contacts, calendar, etc.; COST MONEY permissions
let applications send text messages or make phone calls with-
out user confirmation4. Users have reason to be suspicious
of applications that ask for permissions in these categories.

4The separate PHONE CALLS category contains permissions
that modify telephony state but do not cost the user money.

Category Free Paid
NETWORK** 87.3 % 66 %
SYSTEM TOOLS 39.7 % 50 %
STORAGE** 34.1 % 50 %
LOCATION** 38.9 % 25 %
PHONE CALLS 32.5 % 35 %
PERSONAL INFO 18.4 % 13 %
HARDWARE CONTROLS 12.5 % 17 %
COST MONEY 10.6 % 9 %
MESSAGES 3.7 % 5 %
ACCOUNTS 2.6 % 2 %
DEVELOPMENT TOOLS 0.35 % 0 %

(a) Applications with at least one Dangerous
permission in each category.

Permission (Category) Free Paid
INTERNET** (NETWORK) 86.6 % 65 %
WRITE EXTERNAL STORAGE** (STORAGE) 34.1 % 50 %
ACCESS COARSE LOCATION** (LOCATION) 33.4 % 20 %
READ PHONE STATE (PHONE CALLS) 32.1 % 35 %
WAKE LOCK** (SYSTEM TOOLS) 24.2 % 40 %
ACCESS FINE LOCATION (LOCATION) 23.4 % 24 %
READ CONTACTS (PERSONAL INFO) 16.1 % 11 %
WRITE SETTINGS (SYSTEM TOOLS) 13.4 % 18 %
GET TASKS* (SYSTEM TOOLS) 4.4 % 11 %

(b) The most frequent Dangerous permissions and their cate-
gories. (Categories contain multiple permissions.)

Figure 5: Survey of 856 free and 100 paid Android applications. We indicate significant difference between
the free and paid applications at 99% (**) and 95% (*) confidence levels.

Defense in Depth. Given the prevalence of Dangerous
permissions, an application vulnerability is likely to yield at
least one Dangerous permission. However, no application
requests more than half of the available Dangerous permis-
sions, and the majority ask for less than seven. Only 10% of
applications, if vulnerable, could yield access to functional-
ity that costs the user money. This is a significant improve-
ment over the traditional OS full-privilege approach.

Review Triaging. Reviewing only applications that re-
quest a Dangerous permission (and exempting the rest) would
not reduce reviewer workload much. 18% of paid applica-
tions would be exempt from review, but only 7% of free ap-
plications lack a Dangerous permission. Excluding INTERNET

permissions could reduce the review load to 78% of paid
and 79% of free applications. An application with only the
INTERNET permission cannot leak sensitive personal informa-
tion without a second Dangerous permission (e.g., it would
need READ CONTACTS).

4. REDUCING PRIVILEGES
Our survey of extensions and applications indicates that

a large number of applications ask for dangerous permis-
sions. We investigate factors that influence permission re-
quirements and present corresponding suggestions for re-
ducing the frequency of highly privileged applications. The
principle of least privilege states that an application should
run with as few privileges as possible [14].

4.1 Developer Error
Developers may ask for unnecessary permissions due to

confusion or forgetfulness. We explore the prevalence of
developer error. Tools that help developers select correct
permissions could reduce application privileges without re-
quiring any changes to the permission system itself.

4.1.1 Errors in Google Chrome Extensions
Browser Managers. We count the extensions that re-
quest browser managers but do not use them. About half
of the extensions in our set of 1000 “popular” extensions
request access to security-relevant browser managers. We
search their source code (including remotely sourced scripts)
for references to their requested browser managers. 14.7%
of the 1000 extensions are overprivileged by this measure
because they request access to managers that they never

use. It is possible for an extension to name a browser man-
ager without explicitly including the name as a string (e.g.,
"book"+"marks"); we examined a random sample of 15 ex-
tensions and found no evidence of developers doing this.

Domains. We also review fifty randomly selected exten-
sions for excessive domain access. For each extension, we
compare the permissions it requests with the domains needed
to implement its functionality, which we determine by man-
ually exercising the user interface and consulting its source
code when necessary. We find that 41 extensions request ac-
cess to web data, and 7 of those are overprivileged: 5 request
too many domain permissions for their core extensions, and
2 install content scripts on unnecessary domains.

The reasons for overprivilege are diverse. “PBTweet+”
requests web access for a nonexistent core extension. “Send
using Gmail (no button)” requests both specific domain ac-
cess and all-domain access for the same component; the all-
domain access is unnecessary. “iBood” and “Castle Age Au-
toplayer” request access to all domains, although they only
interact with iBOOD and Facebook, respectively. “Add to
Google Calendar” and “Orkut Chrome Extension” each ask
for all subdomains of a site, but they only need access to
specific pages; “Add to Google Calendar” also requests per-
missions for a website that it never accesses. “Pendule” un-
necessarily runs a content script on all pages, even though
its core extension determines when to run a script on a page.

Developers sometimes request access to all and specific
domains in the same list, as “Send using Gmail (no but-
ton)” demonstrates. We find that 27 of the 1000 popularity-
ranked extensions make this mistake. This is a conserva-
tive measure of wildcard-induced error; subdomain wild-
cards can feature the same mistake, like asking for both
http://www.example.com and http://*.example.com.

4.1.2 Errors in Android Applications
We manually review the top free and top paid applica-

tion from eighteen Android Market categories. For each of
the applications, we compare its functionality to the permis-
sions it requests. To determine an application’s functionality
requirements, we exercise the user interface. Android’s per-
mission documentation is incomplete; when we were unable
to determine whether functionality requires permissions, we
conservatively assumed it does.

Of the 36 applications, 4 are overprivileged. Unnecessary
INTERNET permissions account for three of the overprivileged
applications. One of the developers may have done this with
the mistaken belief that launching the browser requires the
INTERNET permission, since that is how the application inter-
acts with the Internet. The fourth overprivileged application
requests ACCESS FINE LOCATION unnecessarily.

In addition to the four overprivileged applications, an-
other four could re-implement the same functionality with-
out the INTERNET permission. For example, “DocsToGo”
provides the ability to update the application over the In-
ternet even though that functionality is already provided by
the Android Market, and “Jesus Hates Zombies” could store
its small set of static resources locally.

4.1.3 Tools for Error Reduction
Development platforms could provide tools that detect

and warn about unnecessary permissions. The tool could
run whenever a application is submitted to the directory, or
it could be provided to developers as part of the development
or packaging process. If unnecessary permissions are found,
the developer would be prompted to remove them.

As shown in Section 4.1.1, a simple JavaScript text search
is sufficient to remove unnecessary browser manager permis-
sions from 147 of the 1000 popularity-ranked extensions.
A similar tool could be built for developer use. A text
search may have a small number of false positives; e.g.,
we found three extensions that only contain references to
browser managers in remotely sourced scripts. However, a
developer can disregard a warning if she feels it is incor-
rect. Detecting overly broad domain requests is a challeng-
ing open problem for future research, but redundant wild-
card errors are detectable. If a developer includes a wildcard
alongside a more specific domain, the tool could ask the de-
veloper to remove the broad wildcard in favor of the more
specific domain. The developer could then decide whether
the wildcard is really necessary.

An Android tool could analyze applications to find all ref-
erences to Android API calls, and from that deduce what
permissions are necessary for the implementation of the ap-
plications. The tool could ask the developer to discard
permissions that are not required by any of the API calls.
The tool cannot completely replace developers; developers
must still edit their permission requirements if they want
to include additional permissions for inter-application inter-
actions. (Applications can choose to only accept messages
from other applications with certain permissions.) Unfor-
tunately, incomplete documentation prevents this tool from
being built at this time; exactly which API calls require
which permissions is currently undocumented.

4.2 Wildcards
Domain access in the Google Chrome extension system

relies on wildcards. A developer can write <all urls> or
:///* and gain access to all domains, or she can define
a list of specific domains. Writing a list of specific domains
may also require the use of wildcards to capture multiple
subdomains; it may not be feasible for a developer to list
all possible subdomains. A developer might choose to use
a wildcard even though it includes more privileges than the
application requires. Wildcards are a high-privilege default
because developers can avoid specifying exact permissions.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

(1
0,

 2
0]

(3
0,

 4
0]

(2
0,

 3
0]

(4
0,

 5
0]

(5
0,

 1
00

]
(1

00
, 2

00
]

(2
00

, 3
58

]

List Length

Fr
eq

ue
nc

y

Figure 7: The lengths of specific domain lists, as
written for content scripts.

Compliance. To determine whether developers are willing
to write specific domain lists when they can more easily re-
quest access to all domains, we evaluate the prevalence of
specific domain lists in the 1000 popularity-ranked exten-
sions. Of the 714 extensions that need access to web data,
428 use a specific domain list for at least one content script
or core extension. This is a surprising and positive finding:
60% of developers whose extensions need web access choose
to opt in to domain restrictions for at least one component.
However, 367 extensions also have at least one component
that requests full domain access. (An extension with multi-
ple content scripts might request full domain access for some
scripts but place restrictions on others.)

Developer Effort. We suspect that developers will default
to requesting all-domain access if the number of specific do-
mains in the list grows too high. To examine this further,
we consider the 237 content scripts that use specific domain
lists. The lists are short: only 31 are longer than five. Fig-
ure 7 presents the distribution. This indicates that most
developers either request a very small number of domains
or opt to request full domain access, with few in-between.
However, six developers wrote eight lists that are longer than
fifty domains. These outliers are the result of developers in-
ternationalizing their extensions by repeating the same do-
mains with different international suffixes; wildcards cannot
be used to represent suffixes.

Noncompliance. Section 4.1 describes a manual analysis
of fifty extensions. Five of those extensions are overprivi-
leged due to improper wildcard use. Two of the developers
choose to request all-domain access rather than write spe-
cific domain lists, two write specific domain lists but unnec-
essarily use wildcards for subdomains, and one incorrectly
requests all-domain access alongside specific domains. In
other words, 12% of the extensions with web access request
excessive permissions because their developers are unable or
unwilling to write sufficiently specific domain lists.

In summary, our findings are twofold. We show that 60%
of extension developers write at least one specific domain
list. This demonstrates that the option to write specific
domain lists is a worthwhile part of the permission system.

On the other hand, 40% of developers whose extensions need
web access do not write any specific domain lists. Further-
more, our manual analysis indicates that 12% of extensions
with web access use wildcards improperly.

4.3 Permission Granularity
If a single permission is applied to a diverse set of API

calls, then an application seeking to use only a subset of
that functionality will be overprivileged. Separating a coarse
permission into multiple permissions can improve the corre-
lation between permissions and application requirements.

4.3.1 Google Chrome Browser Managers
In the Google Chrome extension system, permissions are

at the granularity of a browser manager: there is one per-
mission per entire browser manager. This poses a problem
for the window manager, which provides indirect access to
history via the location property of loaded windows along
with other functionality. Using the window manager gen-
erates history warnings regardless of whether the developer
accesses the location property of windows.

The fact that the window manager causes a history warn-
ing is confusing to both users and developers. Consider this
disclaimer placed in the description for Neat Bookmarks:

Installing this extension will ask for permission
to access your browsing history, which is totally
useless, not used and not stored by the extension
at all. Not really sure why ‘History’ is part of
‘Bookmarks’ in the Chrome browser.

The developer is so confused by the history warning that
he or she believes it is caused by the extension’s use of the
bookmark manager, rather than the window manager.

Separating history from the window manager would let ex-
tensions use the window manager’s other functionality with-
out becoming overprivileged. Accessing the location prop-
erty of windows could require both the window and history
permissions. Currently, 588 of 1000 extensions generate his-
tory warnings because of the window manager; in compari-
son, the history manager is only requested by 5 extensions.
Given this, we surmise that separating history and window
management could potentially remove a significant number
of security warnings.

4.3.2 Fine-Grained Android Permissions
In some cases, Android separates functionality into fine-

grained permissions. We evaluate whether these fine-grained
permissions are an improvement over a hypothetical coarse-
grained alternative.

Categories. Android permission categories are high-level
functionality groups. Categories are comprised of multi-
ple permissions, which developers must request individually.
A coarse-grained permission system might simply have one
permission per category, but Android subdivides each cat-
egory into multiple finer-grained permissions. We find that
no application (out of 956) requires all of the permissions in
any category except STORAGE, a category with only one per-
mission. This demonstrates how coarse-grained permissions
at the category level would overprivilege all extensions.

Read/Write. Android controls access to data with sepa-
rate read and write permissions. For example, access to con-
tacts is governed by READ CONTACTS and WRITE CONTACTS.

We find that 149 applications request one of the contacts
permissions, but none requests both. 10 of 19 applications
with calendar access request both read and write permis-
sions. Text messages are controlled by three primary per-
missions; only 6 of the 53 applications with text message
permissions request all three. These results demonstrate
that separate read and write permissions reflect application
requirements better than coalesced permissions would.

Location. Location is separated into “fine” and “coarse”
permissions, referring to the precision of the location mea-
surement. ACCESS FINE LOCATION governs GPS location, and
cell location is controlled by ACCESS COARSE LOCATION. 358
applications request at least one of the location permissions;
133 request only ACCESS COARSE LOCATION. This indicates
that 37% of applications that need to know the user’s lo-
cation are satisfied with a “coarse” location metric, which
benefits user privacy.

In conclusion, Android facilitates least privilege with its
fine-grained permissions. Future permission systems should
consider adopting similar fine-grained permissions.

4.3.3 Android Internet Access
Not all of Android’s permissions are fine-grained. The

INTERNET permission lets an application send HTTP(S) re-
quests to all domains, load any web site into an embedded
browser window (“WebView”), and connect to arbitrary des-
tinations and ports. The granularity of the INTERNET per-
mission is important because 86.6% of free and 65% of paid
applications in our large-scale study use it.

We find that 27 of the 36 Android applications in our man-
ual review (Section 4.1.2) have the INTERNET permission.
Of those, 13 only use the Internet to make HTTP(S) re-
quests to specific domains. These Android applications rely
on backend servers for content, much like web applications.
A fourteenth application additionally uses the INTERNET per-
mission to support Google AdSense, which displays adver-
tisements from a single domain in a WebView.

These results indicate that many applications would ben-
efit from a limited Internet permission that only permits
HTTP(S) or WebView access to a specific list of domains,
similar to what Google Chrome offers extensions. This hy-
pothetical limited permission would be sufficient for 52% of
the 27 applications that use INTERNET.

5. REDUCING WARNINGS
Our study in Section 3 demonstrates that almost all ex-

tensions and applications request dangerous permissions and
trigger warnings when installed. The high rate of permis-
sion warnings makes it unlikely that even an alert, security-
conscious user would pay special attention to an application
with several dangerous privileges. In order to preserve the
significance of truly important warnings, one possibility is
to de-emphasize or remove less important warnings.

5.1 Google Chrome
Google Chrome currently presents all permissions equally.

Critical extension privileges (e.g., including a plug-in) should
always be prominently displayed as part of the installation
process, but less significant permissions (e.g., access to book-
marks) could be omitted from the installation warning and
simply listed on the download page.

Not all Internet access needs to be displayed to users. Web
sites with private information (e.g., financial, commercial,
and e-mail sites) use TLS to protect users from man-in-the-
middle attacks. We assume that HTTP-only sites are not
concerned about eavesdropping. If Google Chrome were to
only show warnings for extensions with access to HTTPS
sites, 148 of the 500 most popular extensions would no longer
trigger web access warnings. 102 extensions would no longer
prompt a warning at all, reducing the number of extensions
with at least one warning from 91.4% to 71% of the 500
most popular extensions.

5.2 Android
Android has a permission threat hierarchy, and only Dan-

gerous permissions are displayed to users. However, there is
still great variance within Dangerous permissions. Danger-
ous permissions let an application perform actions that cost
the user money (i.e., send text messages and place phone
calls), pertain to private information (e.g., location, con-
tacts, and the calendar), and eavesdrop on phone calls. On
the other hand, Dangerous permissions also guard the abil-
ity to connect to paired Bluetooth devices, modify audio
settings, and get the list of currently running applications.
Users may not care about Dangerous permissions that can-
not cause direct harm to the user or phone. De-emphasizing
the less-threatening Dangerous permissions could reduce the
number of user warnings.
WAKE LOCK and WRITE EXTERNAL STORAGE are two of the

most popular Dangerous permissions, and neither one has a
clear security or privacy implication for users. The WAKE LOCK

permission lets an application perform actions that keep
the phone awake without user interaction. Playing mu-
sic, for example, requires this permission. Although the
permission could be used to slowly drain the battery, it
does not pose a serious privacy or security threat. 26% of
the 956 applications have the WAKE LOCK permission. The
WRITE EXTERNAL STORAGE permission controls access to the
SD card, and the user has no way of knowing why an ap-
plication requires SD card access. It seems reasonable for
all applications to store data, and only the developer knows
whether to use internal or external storage. 35.7% of the
956 applications have this Dangerous permission.
INTERNET is the most popular permission. The higher

prevalence of the INTERNET permission in free applications
and past work [6] indicate that free applications commonly
use the Internet to contact advertisers. Section 4.3.3 sug-
gests enabling applications to request access to a specific list
of web domains. Accordingly, the Android Market could
display a less severe warning for applications with limited
Internet access than for applications with the full INTERNET.
The warning could further notify the user if a known adver-
tising domain is included in the specific domain list.

6. RELATED WORK
Google Chrome Extensions. When Barth et al. intro-
duced the Google Chrome extension permission system, they
conducted an analysis of 25 Google Chrome extensions [2].
However, their sample set is too limited to be definitive.
Google employees authored 9 of the 25 extensions, and the
extension platform had only been public for a few weeks
prior to their study. The results of our large-scale evaluation
of Google Chrome extensions show that their small-scale
study overestimated the prevalence of extension privileges.

Android Applications. Barrera et al. [1] analyze the
permissions requested by 1, 100 free Android applications.
They primarily focus on the structure of the permission sys-
tem; they group applications together using a neural net-
work and look for patterns in permission group requests.
They note that 62% of the applications collected in Decem-
ber 2009 use the INTERNET permission. Significantly more
applications in our data set use the INTERNET permission,
which is possibly due to changes in applications over time.
We also provide data that can be used to evaluate two of
their proposals for changes to Android permissions. First,
they suggest that applications should be able to simulta-
neously request multiple permissions with wildcards (e.g.,
android.permission.SMS.*). Our Google Chrome survey
shows that developers often use wildcards to request exces-
sive privileges, and our Android study shows that the ma-
jority of applications do not need access to all permissions in
a group. Next, they propose that the INTERNET permission
should support specific domain lists. A manual review finds
that 14 of 27 applications with INTERNET permission would
indeed be satisfied with access to a list of specific domains.

Enck et al. [6] apply taint tracking techniques to a ran-
dom sample of 30 free applications to determine whether
free applications are using the INTERNET permission to leak
user information. They find that 20 send user information
to content or advertisement servers. In our study, we do
not differentiate between legitimate and illegitimate uses of
privileges. However, we find that significantly more free
than paid applications request Internet access and location
data. This is possibly indicative of widespread leakage of
information to advertisers in free applications.

Researchers at SMobile present a survey of the permis-
sions requested by 48, 694 Android applications [19]. They
do not state whether their sample set is composed of free
applications, paid applications, or a combination. They re-
port that 68% of the applications in their sample set re-
quest enough permissions to be considered “suspicious.” We
similarly find that applications have high privilege requests.
They also report with alarm that 9 applications request ac-
cess to the BRICK permission, which can be used to make
a phone non-operational. However, this is a Signature per-
mission; it is only available to a very small number of appli-
cations signed by the device manufacturer. We find that a
surprising number of applications request Signature and Sig-
natureOrSystem permissions, given that most applications
are unable to actually use these permissions.

User Warnings. We consider whether installation warn-
ings are of value to hypothetical security-conscious users.
Other researchers have examined the best way to visually
display installation permissions to users [18], but they do
not consider the effect of the frequency of warnings. Future
work needs to address this issue. Other researchers have
shown that browser warnings for phishing sites and invalid
SSL certificates are ignored by most users ([5, 17]); it is pos-
sible that even infrequent permission installation warnings
will be ignored.

7. CONCLUSION
This study contributes evidence in support of install-time

permission systems. Our large-scale analysis of Google Chr-
ome extensions and Android applications finds that real ap-
plications ask for significantly fewer than the maximum set

of permissions. Only 24 of 1000 Google Chrome extensions
use native code or request access to the file protocol, which
are the most dangerous privileges. Approximately 30% of
extension developers restrict their extensions’ web access to
a small set of domains. All Android applications ask for less
than half of the available set of 56 Dangerous permissions,
and the majority request less than 3.

These findings indicate that install-time permissions have
two advantages over the traditional user permission model:
the impact of a potential third-party vulnerability is greatly
reduced when compared to a full-privilege system, and a
significant number of applications could be eligible for an
expedited review process. These results can be extended
to time-of-use permission systems if the time-of-use system
requires developers to declare a set of maximum permissions.

However, our study shows that users are frequently pre-
sented with requests for dangerous permissions during appli-
cation installation. As a consequence, installation security
warnings may not be an effective malware prevention tool,
even for alert users. Future work should examine the in-
fluence of warning frequency on security and identify which
permission warnings are useful to users.

8. REFERENCES
[1] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and

A. Somayaji. A Methodology for Empirical Analysis of
Permission-Based Security Models and its Application
to Android. In ACM CCS, 2010.

[2] A. Barth, A. P. Felt, P. Saxena, and A. Boodman.
Protecting Browsers from Extension Vulnerabilities. In
NDSS, 2010.

[3] D. Caraig. Firefox Add-On Spies on Google Search
Results. http://blog.trendmicro.com/firfox-addo-spies-
on-google-search-results.

[4] G. Cluley. Windows Mobile Terdial Trojan makes
expensive phone calls. http://www.sophos.com/
blogs/gc/g/2010/04/10/windows-mobile-terdial-
trojan-expensive-phone-calls/.

[5] S. Egelman, L. F. Cranor, and J. Hong. You’ve Been
Warned: An Empirical Study of the Effectiveness of
Web Browser Phishing Warnings. In CHI, 2008.

[6] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones. In OSDI, 2010.

[7] A. P. Felt. Issue 54006: Security: Extension history
permission does not generate a warning.
http://code.google.com/p/chromium/issues/
detail?id=54006, August 2010.

[8] S. Ibrahim. Universal 1-Click Root App for Android
Devices. http://androidspin.com/2010/08/10/
universal-1-click-root-app-for-android-devices/,
August 2010.

[9] D. Lenoe. Security Advisory for Adobe Flash Player.
http://blogs.adobe.com/psirt/2010/09/security-
advisory-for-adobe-flash-player-apsa10-03.html.

[10] J. Leopando. TrendLabs Malware Blog: New Symbian
Malware on the Scene. http://blog.trendmicro.com/
new-symbian-malware-on-the-scene, June 2010.

[11] R. S. Liverani and N. Freeman. Abusing Firefox
Extensions. Defcon17, July 2009.

[12] S. Motiee, K. Hawkey, and K. Beznosov. Do Windows

Users Follow the Principle of Least Privilege?
Investigating User Account Control Practices. In
SOUPS, 2010.

[13] Mozilla Add-ons Blog. The Add-on Review Process
and You. http://blog.mozilla.com/addons/2010/02/
15/the-add-on-review-process-and-you.

[14] J. H. Saltzer. Protection and the Control of
Information Sharing in Multics. In CACM, volume 17,
1974.

[15] N. Seriot. iPhone Privacy. Black Hat DC, 2010.

[16] J. Shah. McAfee Labs Blog: Windows Mobile trojan
sends unauthorized information and leaves devices
vulnerable. http://www.avertlabs.com/research/blog/
index.php/2008/02/26/windows-mobile-trojan-sends-
unauthorized-information-and-leaves-device-
vulnerable, February 2008.

[17] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and
L. F. Cranor. Crying Wolf: An Empirical Study of
SSL Warning Effectiveness. In USENIX Security
Symposium, 2009.

[18] J. Tam, R. W. Reeder, and S. Schechter. I’m Allowing
What? Disclosing the authority applications demand
of users as a condition of installation. Technical
Report MSR-TR-2010-54, Microsoft Research, 2010.

[19] T. Vennon and D. Stroop. Threat Analysis of the
Android Market. Technical report, SMobile Systems,
2010.

[20] S. Willison. Understanding the Greasemonkey
vulnerability. http://simonwillison.net/2005/Jul/
20/vulnerability/.

[21] C. Wuest and E. Florio. Firefox and Malware: When
Browsers Attack. http://www.symantec.com/content/
en/us/enterprise/media/security response/whitepapers/
firefox and malware.pdf, 2009.

APPENDIX
A. MANUAL REVIEW
Android Applications. Jesus Hates Zombies, Compass,
Aquarium Live Wallpaper, Movies, Mobile Banking, Calo-
rie Counter by FatSecret, Daily Horoscope, Pandora Radio,
The Weather Channel, Advanced Task Killer, Google Sky
Map, Barcode Scanner, Facebook for Android, NFL Mobile
Aquarium, Live Wallpaper, weird facts, Google Maps Screen
Crack, screen krack, twidroyd for twitter, touch to talk,
open home, pageonce pro, personal finance, baby esp, gentle
alarm, picsay pro, beautiful widgets, iQuran Pro, Grocery
King, Touitor Premium, MLB.com at Bat 2010, myBack-
upPro, London Journey, BeyondPod Unlock Key, Text to
Speech Extended, DocumentsToGo Full

Google Chrome Extensions. Orkut Chrome Extension,
Google Similar Pages beta (by Google), Proxy Switchy!,
AutoPager Chrome, Send using Gmail (no button), Blog
this! (by Google), Fbsof, Diigo Web Highlighter and Book-
mark, Woot!, Pendule, Inline Search & Look Up, YouTube
Middle-Click Extension, Send to Google Docs, [Non-English
Title], PBTweet+, Search Center, Yahoo Mail Widget for
Google Chrome, Google Reader Compact, Chromed Movil-
net, Ubuntu light-themes scrollbars, Persian Jalali Calen-
der, Intersect, deviantART Message Notifier, Expand, Cas-
tle Age Autoplayer Alpha Patched, Patr Pats Flickr App,
Better HN, Mark the visited links, Chrome Realtime Search,
Gtalk, SpeedyLinks, Slick RSS, Yahoo Avatar, Demotiva-
tion.ru ads remover, [Non-English Title], PPTSearch Edu
Sites, Page2RSS, Good Habits, VeryDou, Wikidot Exten-
der, Close Left, iBood, Facebook Colored, eBay Espana
(eBay.es) Busqueda avanzada, Keep Last Two Tabs, Google
Transliteration Service, Ohio State University Library Proxy
Extension, Add to Google Calendar, Rocky, Short Youtube

