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Abstract
Recent advances in fast light transport acquisition have motivated new applica-

tions for forward and inverse light transport. While forward light transport enables
image relighting, inverse light transport provides new possibilities for analyzing
and cancelling interreflections, to enable applications like projector radiometric
compensation and light bounce separation. With known scene geometry and dif-
fuse reflectance, inverse light transport can be easily derived in closed form. How-
ever, with unknown scene geometry and reflectance properties, we must acquire
and invert the scene’s light transport matrix to undo the effects of global illumina-
tion. For many photometric setups such as that of a projector-camera system, the
light transport matrix often has a size of 105×105 or larger. Conventional inversion
techniques, such as the pseudo-inverse, are accurate but impractical computation-
ally at these resolutions.

In this work, we explore a theoretical analysis of inverse light transport, relat-
ing it to its forward counterpart, expressed in the form of the rendering equation. It
is well known that forward light transport has a Neumann series that corresponds
to adding bounces of light. In this paper, we show the existence of a similar in-
verse series, that zeroes out the corresponding physical bounces of light. We refer
to this series solution as stratified light transport inversion, since truncating to a
certain number of terms corresponds to cancelling the corresponding interreflec-
tion bounces. The framework of stratified inversion is general and may provide
insight for other problems in light transport and beyond, that involve large-size
matrix inversion. It is also efficient, requiring only sparse matrix-matrix multipli-
cations. Our practical application is to radiometric compensation, where we seek
to project patterns onto real-world surfaces, undoing the effects of global illumi-
nation. We use stratified light transport inversion to efficiently invert the acquired
light transport matrix for a static scene, after which interreflection cancellation is a
simple matrix-vector multiplication to compensate the input image for projection.

1 Introduction
Global illumination and interreflection effects are important aspects of real-world scenes.
For forward light transport simulation, a theoretical foundation in terms of the render-
ing equation by Kajiya (1986) is now well established. More recently, it has become
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(b) Projector output on a surface with 
an array of hemi-spheres 

before radiometric compensation

(c) After radiometric compensation with 
the 1-bounce stratified inverse

(d) After radiometric compensation with 
the 4-bounce stratified inverse

(e) The desired Image(a) A complex scene with an 
array of hemispheres

Figure 1: An illustration of radiometric compensation with stratified inverses on a complex
scene with an array of hemispheres.

possible to directly acquire the light transport for a real scene, that in essence physi-
cally computes the rendering equation for different lighting conditions. Forward light
transport can be viewed as a linear operator that maps a lighting configuration to an
image sensor. For instance, in a projector-camera system, the light transport maps a
projector input to a camera output. Recent approaches have enabled great efficiency
and generality in light transport acquisition as shown in Debevec et al (2000), Sen et al
(2005), Ding et al (2009), Peers et al (2009) and Wang et al (2009). Even for purely
synthetic scenes, precomputed light transport is now popular for rendering as shown in
Ramamoorthi (2007).

Acquired or precomputed light transport matrices have so far been used primarily
for relighting, that mathematically now becomes a simple matrix-vector multiplication.
However, there is also a large class of applications enabled by inverse light transport.
One possibility, studied by Seitz et al (2005), is stratifying the image into the different
bounces of light (direct lighting, first interreflection bounce and so on). In this paper,
we use projector radiometric compensation as the motivating application (Habe et al,
2007; Wetzstein and Bimber, 2007; Ding et al, 2009; Ng et al, 2009). Our goal is to
project images and patterns from the projector onto uncalibrated real-world scenes with
unknown geometry and complex reflectance properties. In these cases, the observed
image includes interreflection effects, that we seek to compensate to obtain the desired
result. If we could invert the light transport matrix, we can compensate the input, so
that the observed image upon projection matches the desired image. However, even the
lowest resolutions of real-world cameras and projectors usually cause the light transport
matrix to be of size at least 105× 105—that makes direct matrix inversion, such as
computing the pseudo-inverse, computationally intractable.

While forward light transport has been well studied, little is known about the the-
oretical and computational structure and properties of inverse light transport. Further-
more, while it is widely known that forward light transport can be incrementally com-
puted by adding light bounces through a Neumann series, it remains unknown if such
an incremental computation has a counterpart for inverse light transport. In this pa-
per, we address these fundamental questions, identifying a structure of the inverse light
transport derived directly from the rendering equation, which mirrors that of its forward
counterpart. We show that inverse light transport can be expressed in a polynomial se-
ries similar to the forward Neumann series, and that each term or iteration zeroes out
the corresponding physical light bounce. Such a series expression presents a natural
structure for the inverse light transport to be computed iteratively, which gives rise to a
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stratified inversion algorithm.
In practical terms, stratified inverses enable projector radiometric compensation

at moderate to high scene resolutions, once the light transport of a static scene has
been acquired and without assuming known scene geometry. They provide a natu-
ral framework for gradual approximation of inverse light transport, with only a small
number of sparse matrix-matrix multiplications required. We demonstrate results (see
Fig. 12) with image resolution of 384× 512, resulting in a light transport matrix of
size 196608× 196608. The 4-bounce stratified inverse can be computed in under a
minute, while memory and computational issues make even running a direct pseduo-
inverse impossible on our hardware at this resolution. We emphasize that the full light
transport matrix is inverted, that then allows a simple matrix-vector multiplication to
compensate each image that is projected, just like in (forward) image relighting. Bim-
ber et al (2006) and Bimber (2006) explored a similar approximation framework for
light transport inversion but under the assumption of known scene geometry.

This paper is an extension of Ng et al (2009) in the following aspects. First, we
propose an insightful way to derive the stratified inverse light transport directly from
Kajiya’s rendering equation. This derivation makes explicit the connection between
the iterative computation framework of Bimber et al (2006) and Bimber (2006) with
known scene geometry and the stratified inversion framework of Ng et al (2009) with
only light transport measurement as input. Second, we show a Neumann interpretation
for the stratified inverses in terms of physical bounces of light, which brings out an
interesting correspondence between the forward and the inverse light transport (a brief
summary of this result is described by us in Bai et al (2010), but this paper presents the
full derivation and analysis.) Although Seitz et al (2005) has showed that inverse light
transport can be used for separating light bounces in forward light transport, the physi-
cal meaning of the polynomial terms in inverse light transport is novel. Third, we show
that, by interpreting stratified inversion in a numerical preconditioning framework, the
exact knowledge of the first-bounce light transport (which is in general unknown) is
not required for the convergence of stratified inversion. Hence, for diffuse scenes, the
first bounce light transport can be computed using a result in Seitz et al (2005), by
applying stratified inverse on the potentially large-size light transport. With accurate
estimation of the first bounce light transport, stratified inverses correspond to physical
light bounces. We showed the accurate estimation of a first bounce light transport in a
simulation in Subsection 5.1.

The paper is organized as follows. We start with a review of previous work in Sec-
tion 2. In Section 3, we go through the basics of the rendering equation and forward
light transport. The main contribution of this work is described in Section 4 where the
stratified inverse is derived from the rendering equation and given a Neumann interpre-
tation of bounce cancellation. In Section 5, we validate the computational framework
through a simple example. In Section 6, stratified inverses are experimented with for
a projector radiometric compensation application on real scenes. Finally, we conclude
and discuss future work directions in Section 7.
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Table 1: Comparison of Prior Works for Inverse Light Transport

Analytic
Formula

Iterative
Computation

Matrix Simplifi-
cation

Matrix
Stratification

Theoretical
Analysis

Known
Scene
Geome-
try

Mukaigawa
et al
(2006)

Bimber et al
(2006); Bimber
(2006)

- - -

Known
Scene
Geome-
try

- Bai et al (2010) Habe et al (2007);
Wetzstein and
Bimber (2007);
Ding et al (2009)

This work;
Ng et al
(2009)

This work;
Seitz et al
(2005); Bai
et al (2010)

2 Previous Work
We first discuss radiometric compensation, where most of the previous work on compu-
tational methods for inverse light transport has been developed. This will form our mo-
tivating practical application. We then briefly review relevant literature in light trans-
port acquisition, global illumination rendering for forward light transport, and inverse
light transport.

2.1 Radiometric Compensation
Radiometric compensation has a long history, with both geometric and photometric
distortions considered. In this paper, we assume geometric calibration and focus on
photometric issues.

One to One Mapping with No Interreflections: Most early work considered the
mapping between projector and camera to be one-to-one (Raskar et al, 1998; Majumder
et al, 1999; Nayar et al, 2003; Bimber et al, 2005; Fujii et al, 2005; Ashdown et al, 2006;
Song and Cham, 2005). For a comprehensive survey, please refer to Yang et al (2004)
and Raskar et al (1999). Although the inversion of such a mapping is trivial, the one-to-
one mapping can neither capture the global illumination effects such as interreflection,
refraction and scattering in the scene, nor compensate for them.

Iterative Methods for Each Input: For the case of known scene geometry (and
Lambertian reflectance), Bimber et al (2006) and Bimber (2006) showed that the light
interreflection of a concave scene can be compensated by computing the correct input
to the projector iteratively. This is done using Jacobi iteration on the projector input
vector, with the form factor matrix derived from the scene geometry. In the case of
unknown scene geometry, but given the light transport of the scene, we showed in
Bai et al (2010) that projector radiometric compensation can be similarly computed
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iteratively. These approaches relate closely to the radiosity method for diffuse global
illumination in forward rendering (Hanrahan et al, 1991; Gortler et al, 1993).

These iterative methods are effectively solving a linear equation without the need
for direct matrix inversion—hence they are more efficient when only a single image
needs to be compensated. However, for multiple images or the case of displaying a
video from a projector on a static scene, the compensated projector input needs to be
separately and iteratively computed for every frame. This can require considerable
computation, which may preclude real-time frame rates. While stratified inverses are
also conceptually similar as an iterative approach, our method (pre)computes the full
matrix inverse only once. Thereafter, the compensated projector input can be obtained
with a single-step matrix-vector multiplication for any desired image. In effect, we
tradeoff more initial computation of a full matrix inverse (that is still however very ef-
ficient, taking less than a minute) for a very simple non-iterative compensation method
at run-time. Our formulation also derives directly from the rendering equation, and the
theory encompasses general non-Lambertian materials.

Analytic Solution for Known Geometry: In fact, with a known Lambertian form
factor, Mukaigawa et al (2006) showed that the compensated projector input can be
easily computed in closed form without iterative computation. A similar conceptual
observation was made by Seitz et al (2005). However, the assumption of known form
factor is not realistic except for the scenes derived from a graphics model or ones with
simple geometry and reflectance which can easily be measured. Otherwise, it is more
realistic to measure the light transport of a scene directly for a projector-camera system.

Approximations to Full Inverse Light Transport: Projector radiometric compensa-
tion can be achieved through the inverse light transport, which can only be computed
by inverting the light transport matrix T as in Habe et al (2007), Wetzstein and Bimber
(2007) and Ding et al (2009). The real challenge for the matrix inversion is the enor-
mous size of a typcial T, given the resolutions of projector and camera. In order to pro-
duce T of a size feasible for pseudo-matrix inversion, Habe et al (2007) downsized the
full-size T through grouping the neighboring projector pixels into single super-pixels.
However, the method only works well for a scene with relatively simple geometry and
texture of lower spatial frequency.

Another approach is to sacrifice the fidelity of T by simplifying the matrix without
changing its size. Ding et al (2009) introduced a constraint known as the display con-
straint, such that a camera pixel can only receive light from a single projector pixel. For
T to comply with the display constraint, each row of T should only retain the largest
element by setting the other elements to zero. In this manner, the display constraint
will make the resultant T column-orthogonal and matrix inversion can be obtained
through column-wise computation. However, the interreflection effect in T is effec-
tively removed, and this creates a discrepancy between the actual light transport and
the display constraint compliant T. As a result, projector compensation using such a
matrix cannot remove any global illumination effect.

Wetzstein and Bimber (2007) simplified T by clustering links between projector
and camera pixels to form clusters which correspond to independent sub-matrices.
Matrix inversion can be computed separately for each cluster and is efficient if each
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individual cluster is of manageable size. Naturally, independent clusters may not exist
and some of the links between projector and camera pixels often have to be severed
in order to produce clusters of manageable size. This spatial clustering method effec-
tively ignores interreflections between clusters and reduces effectiveness of projector
compensation.

Comparison and Summary: Table 1 summarizes the prior work in light-transport-
based projector radiometric compensation, including our own previous conference pa-
pers (Ng et al, 2009; Bai et al, 2010). For known scene geometry and known Lamber-
tian reflectance, simple analytic approaches are available as shown in Mukaigawa et al
(2006). However, for unknown scene geometry, such methods are not possible. Fast
iterative computation methods can be used in Bimber et al (2006), Bimber (2006) and
Bai et al (2010), but must be rerun for each input image. Moreover, many previous
methods assume Lambertian reflectance as in Mukaigawa et al (2006), Bimber et al
(2006) and Bimber (2006), while our formulation considers general materials and de-
rives directly from the rendering equation. Alternatively, simplifications can be made
to enable full matrix inversion as in Habe et al (2007), Ding et al (2009), Wetzstein and
Bimber (2007). However, these approaches introduce approximations, and no princi-
pled analysis of error or convergence properties is available.

The contributions of this paper are primarily theoretical, with an important practical
advance for radiometric compensation. Most importantly, we develop a principled the-
oretical analysis of inverse light transport. We build on the seminal work of Seitz et al
(2005) but go much further in exploring the relationships to forward rendering and the
rendering equation. In particular, we develop a stratified inverse method, that cancels
interreflection bounces in analogy to the forward Neumann series that adds bounces of
light. In practical terms, this provides a principled and efficient way to compute the full
matrix inverse in a stratified fashion, using only sparse matrix-matrix multiplications.
Once the inverse of the light transport matrix is computed, compensation is direct, with
a simple matrix-vector multiplication (of the inverse matrix and desired image).

2.2 Light Transport Acquisition
A large body of work over the last decade in computer graphics and computer vision
has dealt with acquiring light transport matrices, indicating how a real scene responds
to light from all directions or projector pixels (Debevec et al, 2000; Sen et al, 2005;
Ding et al, 2009; Peers et al, 2009; Wang et al, 2009). While in this paper we focus on
real scenes, the use of precomputed transport is increasingly common even for synthetic
scenes, in applications like real-time relighting (Ng et al, 2003).

There are many existing methods to acquire transport of a scene. The brute-force
method turns on the projector pixels one by one while the response of each projector
pixel is captured by a camera, and forms a column in T. This method produces an
accurate T but it is time consuming and storage intensive as the number of images
that need to be acquired is equivalent to the number of projector pixels. In Sen et al
(2005), a multi-resolution and adaptive method was proposed to measure the transport.
In Peers et al (2009) and Sen and Darabi (2009), a compressive sensing approach was
proposed to exploit sparsity in T, and compute the response of each pixel by projecting

6



patterned illumination. A fast method in Wang et al (2009) was introduced recently
to take advantage of the coherency in the rows and columns of T, given a specific
hardware setup to capture images from the projector viewpoints. In Ding et al (2009),
a deterministic stripe-scanning method was proposed to acquire T where horizontal and
vertical stripes scan through the scene in a sequential manner. This method is efficient
and simple, but it tends to consistently over-estimate the projector pixel response. For
a comprehensive review of light transport acquisition, we refer readers to Peers et al
(2009), Wang et al (2009).

In this paper, we simply use these methods to acquire the original light transport,
as our main focus is on light transport inversion.

2.3 Global Illumination Rendering
Much of our inspiration draws from the thorough study in computer graphics of the
forward problem, or global illumination rendering. In particular, our stratified inverse
light transport is derived directly from Kajiya’s rendering equation (Kajiya, 1986) us-
ing the operator notation in Arvo et al (1994). While we currently simply use sparse
matrices to represent T, we are also interested in exploring connections with hierar-
chical and wavelet radiosity as in Hanrahan et al (1991) and Gortler et al (1993) in
future; our stratified matrix inversion also bears some conceptual similarities to Jacobi
and Gauss-Seidel iterative methods used in radiosity.

2.4 Inverse Light Transport
Previous work on inverse rendering has considered inversion of the direct reflection
equation to acquire lighting and reflectance properties as in (Marschner, 1998; Ra-
mamoorthi and Hanrahan, 2001). Yu et al (1999) developed an inverse global illumi-
nation method for BRDF estimation. However, all these methods assume the scene
geometry is known, and usually work with lower resolutions for lighting, which makes
analysis of interreflections much easier (and often requires only a few input images).
In contrast, our setup is closer to Seitz et al (2005), where only the light transport ma-
trix is observed—both geometry and reflectance are unknown, and are not explicitly
estimated.

Given an inverse light transport matrix, the input illumination that produces a given
photo of a scene can be computed. O’Toole and Kutulakos (2010) showed that the input
illumination can be computed optically without explicitly measuring the light transport.
By simulating matrix-vector multiplication optically, the optical computation is implic-
itly solving a matrix inversion problem through iterative optical measurements. With
K rounds of optical computation, the method computes the input illumination from the
K-rank approximation of the light transport. Therefore, this method is efficient for a
scene with a lower rank light transport matrix. As it requires four optical measurements
for each round of optical computation, it may be inefficient for a scene with a maximal
rank light transport matrix. In this work, we are interested in computing an inverse
light transport matrix explicitly and focus on maximal-rank light transport which is
commonly encountered for projector radiometric compensation.
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While not focused on inverse light transport per se, the fast separation of direct and
global components by Nayar et al (2006) is also relevant. In theory, by just projecting
a high-frequency checker-board pattern and its complement onto the scene, the direct
reflection image can be extracted. In practice, due to the resolution limits imposed
by the projector and the camera, 25 images were used in Nayar et al (2006). This
method has been used primarily for separating a single image (rather than the full
transport matrix) into its components, and is suitable when T is unknown. The method
also assumes that the global illumination component is low-frequency, which can be
violated in cases of strong localized subsurface or reflection effects.

3 Forward Light Transport
We now introduce the basic formulation of the rendering equation and operator solution
for forward light transport and global illumination. Then, in Section 4, we proceed to
develop our theoretical formulation of stratified inverse light transport.

The rendering equation (Kajiya, 1986) can be written,

Lout(x,ωo) = Le(x,ωo)+ (1)∫
M

ρ(x,ωi,ωo)Lout(y,−ωi)V (x,y)
cosθi cosθo

‖ x−y ‖2 dAy,

where Lout(x,ωo) is the reflected or outgoing radiance, Le is the emission correspond-
ing to light sources, ρ is the Bi-directional Reflectance Distribution Function (BRDF)
of the scene surface, and V is the binary visibility function. The variables x, ωi, ωo are
respectively the spatial location, incident and outgoing angles on a surface. The visi-
bility function V (x,y) is 1 if x and y are connected by a line of sight, 0 otherwise. The
integral is over the area M of all scene surfaces, and weighted by a purely geometric
factor involving cosines of incident and outgoing angles, and the distance between x
and y.

3.1 Operator Solution of Rendering Equation
Following Arvo et al (1994), the rendering equation can be written in operator notation
(or equivalently in a discrete matrix form) as,

lout = ld +KGlout, (2)

where lout is a vector of Lout(x,ωo), ld is a vector of Le(x,ωo), G is a purely geometric
operator that takes outgoing or reflected radiance and propagates it within the scene to
obtain incident radiance, and K is a local linear reflection operator that takes incident
radiance and turns it into reflected light based on the BRDF of the surface ρ . Note
that in operator form as in (2), the formulation holds for general materials, and is not
limited to Lambertian surfaces or the radiosity formulation. From (2), we can obtain

lout = (I−A)−1ld, where A = KG. (3)
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3.2 Adaptation for Projector-Camera Systems
As opposed to the conventional global illumination formulation, we do not have emis-
sive surfaces per se, but emission is induced by projection onto the scene. Assuming
the camera does not see the projector directly, we can replace ld with the effective
emission, that corresponds to the direct reflection from the projector,

ld = Flin, (4)

where lin is the incident lighting from the projector, and F is the light transport matrix
that corresponds to the first-bounce reflection. Hence, we have,

lout = (I−A)−1Flin. (5)

Note that (5) is in the same canonical form as the forward light transport equation
lout = Tlin, with T now being defined as

T = (I−A)−1F. (6)

By defining
S = (I−A)−1, (7)

we can write T = SF and lout = Sld. It is well known that the expression S = (I−
A)−1 can be expanded in a Neumann series as corresponding intuitively to increasing
numbers of bounces of light or interreflections,

S = I+A+A2 +A3 + . . . . (8)

4 Theory
In this section, we will present the main results of our paper. We first derive the Neu-
mann series for inverse light transport, analogous to (8). We then derive the stratified
inverse method, and a physical interpretation of the Neumann series as cancelling the
corresponding interreflection bounces of light. We also relate our analysis to numerical
techniques based on preconditioning.

4.1 Neumann Series for Inverse Light Transport
Our goal is now to derive an expression for the inverse light transport matrix, T−1.
To do so, it will first be convenient to define another linear operator or matrix R that
accounts only for global illumination or the global component lg,

lout = ld + lg = ld +Rld = (I+R)ld. (9)

From lout = Sld, we can write S = I+R and expand S−1 in a Neumann series as

S−1 = (I+R)−1 = I−R+R2−R3 + . . . . (10)
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We can now rewrite (10) simply in terms of T and F by substituting R = S− I =
TF−1− I

S−1 =
∞

∑
k=0

(−R)k =
∞

∑
k=0

(I−TF−1)k, (11)

where (−R)0 = I.
Finally, from T = SF, we can write the inverse light transport T−1 as

T−1 = F−1S−1 = F−1
∞

∑
k=0

(I−TF−1)k, (12)

which will converge if ‖ I−TF−1 ‖< 1.

4.2 Stratified Inverses
From (12), we can define a series of approximations to T−1 by dropping the higher-
order terms one by one. We call these approximations the stratified inverse light trans-
port of the scene and denote them as T−1

n ,

T−1
n

.
= F−1

n

∑
k=0

(I−TF−1)k. (13)

We now derive further insights using the binomial theorem to expand in terms of
TF−1. In particular,

T−1
n = F−1

n

∑
l=0

(
n

∑
k=l

(
k
l

))
(−TF−1)l

= F−1
n

∑
l=0

(
n+1
l +1

)
(−TF−1)l , (14)

where the last line uses a well known combinatorial summation identity. This clearly
shows that the stratified inverse is a polynomial in terms of TF−1.

4.3 Physical Interpretation: Inverse Neumann Series as Cancelling
Physical Bounces of Light

So far, we have introduced the stratified inverse, that is the inverse analog to the forward
Neumann series. However, while the forward Neumann series corresponds physically
to adding bounces of light, it is not clear what physical interpretation the inverse Neu-
mann series has. We will now derive a perhaps surprising result—just as each term
in the forward series adds a physical bounce of light, each term in the inverse series
cancels the corresponding bounce. However, convergence is oscillatory in the inverse
series, owing to the alternating negative and positive signs in (10). Because of this,
coefficients of higher bounces will oscillate until they are zeroed by the corresponding
term in the inverse series.
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We start with the basic relations of (7) and (10), that S = (I−A)−1 and S−1 =
(I+R)−1,

R = A+A2 + . . .= A(I−A)−1. (15)

Now, from (15) above, we can derive a series,

S−1 =
∞

∑
k=0

(−1)kRk =
∞

∑
k=0

(−1)k [A(I−A)−1]k . (16)

While in general, raising a matrix (or operator) product to a power is complicated
because of non-commutativity, in our case everything involves powers of A, and so A
and (I−A)−1 commute, and can be exponentiated separately. We can now put this
together to derive,

S−1
n =

n

∑
k=0

(−1)kAk(I−A)−k. (17)

4.3.1 Binomial Series Expansion

Using a standard binomial series expansion for (I−A)−k, this can be written as

S−1
n =

n

∑
k=0

(−1)kAk
∞

∑
l=0

(
k+ l−1

l

)
Al . (18)

Our next step is to combine the powers of A, using that m = l + k and l = m− k,

S−1
n =

n

∑
k=0

∞

∑
m=k

(−1)k
(

m−1
m− k

)
Am. (19)

It will simplify the later analysis if we treat k = 0 as a special case, given obviously
from (17) as the identity. We also use (m−1)− (m− k) = (k−1) in the combination,

S−1
n = I+

n

∑
k=1

∞

∑
m=k

(−1)k
(

m−1
k−1

)
Am. (20)

To proceed further, we need to transpose the order of the summations. The outer sum-
mation should be about m, which controls the powers. It is clear that we require m≥ k,
which in turn leads to the relations k ≤ m and (because we are considering the n term
inverse series) that k ≤ n,

S−1
n = I+

∞

∑
m=1

[
min(m,n)

∑
k=1

(−1)k
(

m−1
k−1

)]
Am. (21)

4.3.2 Base Cases

We treat the simple cases when n = 0,1 and m = 1 first. When n = 0, the expression
above just reduces to the identity (no bounce is cancelled as expected). When n = 1,
only the k = 1 term is relevant, so we have

S−1
1 = I−

∞

∑
m=1

Am, (22)
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Table 2: Coefficients of S−1
n and S−1

n S
S−1

n I A A2 A3 A4 A5 A6 A7

S−1
0 1 0 0 0 0 0 0 0

S−1
1 1 -1 -1 -1 -1 -1 -1 -1

S−1
2 1 -1 0 1 2 3 4 5

S−1
3 1 -1 0 0 -1 -3 -6 -10

S−1
4 1 -1 0 0 0 1 4 10

S−1
5 1 -1 0 0 0 0 -1 -5

S−1
6 1 -1 0 0 0 0 0 1

S−1
7 1 -1 0 0 0 0 0 0

S−1
n S I A A2 A3 A4 A5 A6 A7

S−1
0 S 1 1 1 1 1 1 1 1

S−1
1 S 1 0 -1 -2 -3 -4 -5 -6

S−1
2 S 1 0 0 1 3 6 10 15

S−1
3 S 1 0 0 0 -1 -4 -10 -20

S−1
4 S 1 0 0 0 0 1 5 15

S−1
5 S 1 0 0 0 0 0 -1 -6

S−1
6 S 1 0 0 0 0 0 0 1

S−1
7 S 1 0 0 0 0 0 0 0

Note: The series, S−1
n and S−1

n S, exhibit oscillatory
convergence towards I−A and I respectively. The n
term series is accurate up to An, and in fact cancels
or zeroes bounces up to that order, with errors only in
higher-order terms or bounces n+1 and higher.
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Figure 2: Coefficients of S−1
n for m = 0, . . . ,7.

where we note that for k = 1, the k− 1 term in the combination reduces it to 1, and
(−1)k =−1. This is indeed the expected result, since S−1

1 = I−R, and we know from
(15) that R = A+A2 + . . ..

Finally, the special case m = 1 will be useful. In this case (assuming n > 1), the
second summation in (21) will have upper limit m = 1, and the coefficient will simply
be 1. Thus, for n > 1 (the cases n = 0 and n = 1 have already been dealt with),

S−1
n = I−A+

∞

∑
m=2

[
min(m,n)

∑
k=1

(−1)k
(

m−1
k−1

)]
Am. (23)

4.3.3 Zeroing of Higher-Order Bounces

Now, consider the case when m≤ n. In this case, the second summation has a limit of
m > 1, and the coefficient of Am becomes

m

∑
k=1

(−1)k
(

m−1
k−1

)
=−

m′

∑
k′=0

(−1)k′
(

m′

k′

)
= 0. (24)

where m′ = m− 1 and k′ = k− 1 (note this only works for m > 1 ; the m = 1 term is
given as a special case in (23)). The expression above is clearly 0, since those are the
coefficients in a binomial expansion of the expression (1+ x)m′ , with x =−1.

This implies a key result, that the Am terms vanish for 2 ≤ m ≤ n, which in turn
implies that

S−1
n = I−A+O(An+1), (25)

where O(·) denotes higher order terms, and n > 1. Note that since S = (I−A)−1, the
final result we desire1 is simply S−1 = I−A. Equation (25) states that terms up to
order n are correct, and in fact terms from [A2 . . .An] are 0. Note however that the
terms (bounces) An+1 and higher oscillate and are not zeroed until the corresponding
inverse series term is considered.

1In fact, the analytic solution of Mukaigawa et al (2006) essentially uses this observation in cases where
the form factors and hence A are known. In our case, A is unknown, and recovering it is essentially equivalent
to inverting the light transport.
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Figure 3: Coefficients of S−1
n S for m = 0, . . . ,7.

4.3.4 Bounce Cancellation

We have seen how higher-order terms are zeroed in the inverse operator series. We now
show that applying the n-term inverse series to the original cancels the first n bounces.
For this we write,

S−1
n S =

[
(I−A)+O(An+1)

]
[I−A]−1 . (26)

It is clear that the first part I−A creates the identity as desired. The product O(An+1)(I−
A)−1 is still of O(An+1), since the inverse can be expanded in a Neumann series. There-
fore,

S−1
n S = I+O(An+1). (27)

In other words, the n-term inverse series annihilates bounces [1 . . .n], leaving only
bounces n+1 and higher.

4.3.5 Analytic Forms

In fact, the inner summation in (23) can be performed symbolically (we did so using
Mathematica), to derive

S−1
n = I−A + (−1)n

∞

∑
m=n+1

(
m−2
n−1

)
Am (28)

S−1
n S = I + (−1)n

∞

∑
m=n+1

(
m−1

n

)
Am. (29)

Table 2 shows coefficients for (m,n) ≤ 7. Fig. 2 and Fig. 3 show the coefficients of
S−1

n and S−1
n S respectively for n ≤ 12 and m ≤ 7. Owing to the (−1)n term, these

coefficients oscillate until they are zeroed.

4.4 Interpretation as Numerical Preconditioner
We have so far derived the stratified inverse method from the rendering equation, al-
lowing us to give a physical interpretation as cancelling interreflection bounces. We
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now briefly also show how it can be related to a numerical inverse series with precon-
ditioners. This purely numerical interpretation allows us to relax some conditions for
practical implementation.

For any matrix T, if we can find a matrix (preconditioner) P that is easy to invert,
we can write

TP−1 = I− (I−TP−1), (30)

from which it follows that

T−1 = P−1(I− (I−TP−1))−1, (31)

Expanding this in a Neumann series,

T−1 = P−1
∞

∑
k=0

(I−TP−1)k, (32)

with the convergence condition ‖ I−TP−1 ‖< 1. Equation (12) can be viewed as a
specialized case where, from physical intuition, we take P = F or first bounce light
transport. Note that the physical bounce cancellation results just explored require this
physical perspective, and cannot be derived for general Neumann series.

The numerical perspective offers two important practical generalizations. First, we
can use any matrix as a preconditioner, and need not exactly determine the first bounce
transport F. We simply use a diagonal matrix P ≈ F = diag(T). Numerically, this is
a Jacobi preconditioner. Physically, it closely approximates the first bounce of light
transport for an appropriate parameterization that matches corresponding elements of
camera and projector (Seitz et al, 2005), since those are the elements that are nonzero
from direct lighting. Moreover, an element does not reflect onto itself, so errors will
only be second order. While this is not the exact F, it suffices numerically.

In fact, since the convergence of stratified inverses does not depend on the exact
knowledge of the true F, it enables us to compute the true F for diffuse scenes. Seitz
et al (2005) showed that, for diffuse scenes, the true F can be computed exactly pro-
vided the light transport matrix can be accurately inverted, as

Fii =
1

(T−1)ii
, (33)

where the subscript index in Fii indicates the diagonal elements of F. Such computa-
tion is demonstrated in a simple simulation in Section 5. For a large-size light trans-
port, stratified inverses help to break the chicken and egg dependency between the
availability of the true F and the feasibility of computing T−1. In addition, this also
indicates that the physical interpretation of stratified inverses as cancelling interreflec-
tion bounces as shown in the previous subsection can be exactly computed for diffuse
scenes.

Second, our theoretical framework applies to general non-Lambertian materials, as
does the rendering equation from which it is derived. However, the operators do have
both spatial and directional dependence, that technically requires us to consider the full
light field or space of views. In applying the theory to the common practical setup of a
single camera-projector pair, a widely used previous approach is to assume Lambertian
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(b)(a)

Figure 4: Simulation scenes: (a) A Lambertian dihedral with two facets on each of the two
panels. The two facets on the left panel subdivide the panel horizontally while the two on the
right subdivide the panel vertically. The dotted lines overlaid on the figure show the subdivision
for the facets. (b) An open Cornell box with 5 faces.

reflectance as in Seitz et al (2005), in which case the operators can be written without
directional dependence. However, the numerical algorithm does not need to make this
assumption, even for a single camera-projector pair, since the stratified matrix inversion
method still works. For the same reasons, our method is robust to moderate amounts
of subsurface scattering, even though the rendering equation theory does not apply to
volumetric effects. Our examples, such as the scene in Fig. 1, show both moderate
glossiness and subsurface effects. We emphasize that this is a practical issue only; the
theory applies directly to general non-Lambertian materials.

5 Simulation
In this section, we evaluate the behavior of the stratified inverse in terms of its conver-
gence properties and rate, as well as its computational accuracy and efficiency versus
the true inverse.

5.1 Simple Example
To show the oscillatory convergence of the stratified inverse, we perform a simulation
on a 4×4 T matrix of a simple diffuse dihedral scene as shown in Fig. 4(a). Each panel
of the dihedral is made up of two facets where the two facets on the left panel subdivide
the panel horizontally while the two on the right subdivide the panel vertically. Alto-
gether there are four facets in the entire scene. In this example, we simulate the case
where the first-bounce light transport for all the facets is equal to a value 1.750. Hence,
the actual first-bounce light transport F in this example is a diagonal matrix with the
diagonal entries being 1.750. On this example light transport, we will compute the cor-
responding stratified inverses and evaluate the impact of our method in approximating
F with the diagonal of T, as opposed to simply assuming F = I, i.e., ignoring F in the
computation.

16



The 4×4 T matrix from our four-facet scene with entries rounded to four decimal
places is given by:

T =


1.7713 0.0213 0.1835 0.0675
0.0213 1.7713 0.1835 0.0675
0.1835 0.1835 1.7875 0.0137
0.0675 0.0675 0.0137 1.7550

 . (34)

In this case, we can easily compute its true inverse and treat it as the ground truth:

T−1 =


0.5715 0.0000 −0.0587 −0.0220
0.0000 0.5715 −0.0587 −0.0220
−0.0587 −0.0587 0.5715 0.0045
−0.0220 −0.0220 0.0045 0.5715

 . (35)

As F is in general unknown given a T matrix, we approximate F with the diagonal of
T:

F̂ =


1.7713 0.0000 0.0000 0.0000
0.0000 1.7713 0.0000 0.0000
0.0000 0.0000 1.7875 0.0000
0.0000 0.0000 0.0000 1.7550

 . (36)

Note that the estimated F̂ is slightly different from the true F with diagonal elements
of 1.750. We will see that such differences do not affect the convergence of stratified
inverses toward the true inverse.

The one-bounce stratified inverse can be easily computed as the inverse of F̂:

T−1
0 =


0.5359 0.0000 0.0000 0.0000
0.0000 0.6120 0.0000 0.0000
0.0000 0.0000 0.5594 0.0000
0.0000 0.0000 0.0000 0.5698

 . (37)

The two-bounce, to five-bounce stratified inverses are respectively computed as:

T−1
1 =


0.5631 −0.0070 −0.0550 −0.0206
−0.0070 0.5606 −0.0628 −0.0235
−0.0550 −0.0628 0.5594 0.0000
−0.0206 −0.0235 0.0000 0.5698

 , (38)

T−1
2 =


0.5707 0.0003 −0.0571 −0.0214
0.0003 0.5730 −0.0568 −0.0213
−0.0571 −0.0568 0.5715 0.0045
−0.0214 −0.0213 0.0045 0.5715

 , (39)

T−1
3 =


0.5713 −0.0002 −0.0586 −0.0220
−0.0002 0.5711 −0.0589 −0.0220
−0.0586 −0.0589 0.5711 0.0044
−0.0220 −0.0220 0.0044 0.5714

 , (40)
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and

T−1
4 =


0.5715 0.0001 −0.0586 −0.0220
0.0001 0.5715 −0.0586 −0.0220
−0.0586 −0.0586 0.5715 0.0045
−0.0220 −0.0220 0.0045 0.5715

 . (41)

We can see that T−1
4 in (41) is very close to the the ground truth inverse in (35). For

a diffuse scene, we can compute the first-bounce light transport as

Fii =
1

(T−1
4 )ii

, (42)

that is by assigning the diagonal elements of F as the reciprocal of the corresponding
diagonal elements of T−1

4 . This leads to

F =


1.7498 0.0000 0.0000 0.0000
0.0000 1.7498 0.0000 0.0000
0.0000 0.0000 1.7498 0.0000
0.0000 0.0000 0.0000 1.7498

 , (43)

which is very close to the true F. Once we have a good estimate for the true F (as
compared to the initial F̂), we could can perform physical light bounce separation as in
Seitz et al (2005).

Stratified inverses with an order higher than four can be similarly evaluated. We
show the convergence of the stratified inverses against the true inverse in Fig. 5, where
the error is measured by the Frobenius norm in log domain log‖T−1

n −T−1‖F . For
stratified inverses to have physical interpretation in terms of light bounces, the choice
of F has to be close to the true F. We can see that our approximated F̂ in (36) is
close to the true F, which is a diagonal matrix with diagonal elements of value 1.75
in this example. Fig. 5 also shows that the convergence curve for using the true F
and our choice of F̂ are very close together. In general, we can also consider F as a
preconditioner in our formulation, where the choice of F can affect the convergence rate
of the stratified inverse. Naive options such as F = I, which is equivalent to ignoring
the preconditioner, are not guaranteed to work, as shown in Fig. 5.

Stratified inverses are only physically meaningful when they is computed with the
true F for a Lambertian scene. If F̂ is not close to the true F and one wants the full
physical interpretation for stratified inverses in terms of light bounces, one could first
recover the true F from stratified inverses using the approximated F̂ and then re-run the
iteration with the true F.

5.2 Computational Time Comparison
To evaluate the computational efficiency of stratified inverses, we generate a 5120×
5120 T matrix with a sparsity of 1.5% non-zero elements from an open Cornell box
as shown in Fig. 4(b). Computing the true inverse takes 65 seconds for this T matrix
on Matlab running on a 64-bit machine with 2.67GHz Intel processor and 8 GB RAM.
The computational time and accuracy measured with log‖T−1

i −T−1‖F for the first
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Figure 6: Computational performance comparison on a 5120×5120 T matrix.

seven stratified inverse terms are shown in Fig. 6 (a). We observe that the stratified
inverses converge sharply when we choose F as the diagonal of T, while convergence
does not happen for F = I. Furthermore, the computational time for T−1

7 is more than
8 times faster than computing the true inverse.

Fig. 6 (a) indicates the compromise between computational time and accuracy. The
balance may depend on the target application, where we may stop the computation
when the stratified inverse hits a desired level of accuracy. The accuracy measure
log‖T−1

i −T−1‖F adopted in Fig. 6 (a) is not too useful as we may not know T−1 in
practice. The error measure ‖TT−1

n − I‖F offers a better alternative as it can be easily
computed given T. Fig. 6 (b) shows that the error drops as the number of terms in the
stratified inverse increases.

We note that very low resolutions were used in order to make comparisons. It was
not even possible to run the pseudo-inverse computation (in terms of both computing
time and memory) for the larger scenes shown in our results. Also note that there

19



(a) (b) 

Figure 7: (a) The experimental setup and the concave wall corner scene. (b) The super-pixel
map on the camera image.

is considerable sparsity in the light transport of real scenes, and the stratified inverse
computation therefore just involves sparse matrix-matrix multiplication. In these cases,
the effective speedup of the stratified inverse method is several orders of magnitude,
enabling a full matrix inversion.

6 Results
Having described the theory of the stratified inverse method, we now turn to a demon-
stration of its practical utility. We focus on radiometric compensation, which is one
important application of light transport inversion. For a static scene, we can acquire
the transport matrix T between projector and camera. This tells us how a particular pro-
jected image will be affected by interreflections. To compensate the input, and obtain
the desired result, we must invert T, and use this inverse to pre-multiply the projected
image. The challenge is inversion of the light transport matrix at reasonable resolu-
tions, and stratified inverses provide a principled way to cancel a certain number of
interreflection bounces.

We begin by validating the method on a simple scene with a single wall corner, and
then showing results with more complicated geometry and reflectance properties.

6.1 Validation with Simple Wall Corner
The first experimental scene is a concave wall corner as shown in Fig. 7(a), which
demonstrates significant light interreflections between the two sides of the wall that
join and form a corner. Note that there would be no interreflection if the wall corner
was convex. The light interreflections are also evident when an all white image is
projected onto the scene as shown in Fig. 8.

For our experimental setup, we used a Canon 450D camera and a Dell 2400MP
projector as shown in Fig. 7(a). We linearized the system by first linearizing the camera
response using a Macbeth color checker and then linearizing the projector by projecting
a sequence of grayscale images with increasing intensity. For simplicity, we consider
grayscale light transport where the projector and the camera respectively project and
capture grayscale images. As a result, we do not need to model the color mixing matrix
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Figure 9: The accuracy of stratified inverses with respect to the pseudo-inverse in terms of root
mean squared error (RMSE)

between the projector and the camera. For accurate scene measurement, we capture
high dynamic range images of the scene through a sequence of images with different
exposures.

For the first experiment, we focus on a small region centered at the wall corner, so
that the corresponding T is of a manageable size for comparison to explicit pseudo-
inverse computation. We group 4×4 projector pixels into a super-pixel and restrict the
active region in the projector to be of dimensions 31×51 super-pixels at the center. The
corresponding super-pixel on the camera is a group of camera pixels that a projector
super-pixel has the maximum response on. The intensity of a camera super-pixel cor-
responds to the mean intensity of the camera pixels in the group. The super-pixel map
on the camera for the wall corner scene is shown in Fig. 7(b). With this setting, T is a
square matrix of dimension 1938×1938.

We also perform a real radiometric compensation by projecting a non-negative im-
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age obtained by
lin = f+(T−1ldesired), (44)

where the function f+(·) = max(·,0) truncates values to 0 since the projector cannot
display negative values, and ldesired is the image that we desire to see in the scene.

6.1.1 Data Acquisition

In this simple experiment, we choose the brute-force method for light transport acqui-
sition, as it gives us an accurate T. After having acquired T, we evaluate its quality by
comparing the image obtained by projecting a uniform intensity image lconst with that
generated by simulation using the acquired T, i.e., by comparing with lout =Tlconst. We
plot three horizontal scan lines from the respective images as shown in Fig. 8. We can
see that the scan lines coincide nicely in shape, although the simulated scan lines look
noisier, which could be due to the hard grouping of super-pixels. However, the similar-
ity of the scan line graphs in shape indicates that T is a sufficiently good model of the
scene. Note that the scan lines peak at the center region, which is due to the significant
light interreflections between the sides of the wall that form an L shape. Overall, the
scan lines are far from being constant intensity, although a constant intensity image is
projected.

6.1.2 Stratified Inverse

For stratified inverse computation, we first extract the first-bounce light transport matrix
F from T as the diagonal of F. Knowing both T and F, we can compute stratified
inverses using (14). We compute the stratified inverses of T up to four light bounces
(or four terms in the series) as well as the pseudo-inverse of T. In this case, we consider
the pseudo-inverse as the ground-truth and compute the error of these stratified inverses
with respect to the ground truth in terms of root mean squared error (RMSE).

Fig. 9 shows how the error of stratified inverses decreases as the number of light
bounces or terms increases. We observe that the error becomes sufficiently low from
two light bounces onward.

6.1.3 Radiometric Compensation

Next, we evaluate the capability of stratified inverses for projector radiometric com-
pensation. In this experiment, we specify the desired image ldesired to be a uniform
intensity image. Radiometric compensation is expected to flatten the fluctuation shown
in Fig. 8 as much as possible, as it undoes the light interreflections in the scene. We
can easily simulate the effect of radiometric compensation as below

lout = T f+(T−1ldesired)' ldesired. (45)

The function f+(·) = max(·,0) truncates values to 0, since the projector cannot dis-
play negative values. It has little effect in practice, but is necesary to respect physical
constraints.

The results are shown in Fig. 10(a). Note that the intensity scale on the y-axis has
been expanded in contrast to that in Fig. 8. We note that the scan line compensated
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Figure 10: Results for the case of a constant-value ldesired. (a) Horizontal scan lines for the
simulated lout. (b) Horizontal scan lines for the captured lout. For both (a) and (b), the number
i on the scan lines indicates i-bounce stratified inverse. The black-color scan line is one for the
true inverse.

using the 4-bounce stratified inverse is quite close to the desired constant intensity scan
line. Visually, we also see that the scan lines compensated using stratified inverses get
closer to the desired constant intensity scan line as the number of light bounces goes
up.

Fig. 11 shows the inputs to the projector computed using 1-bounce and 4-bounce
stratified inverses, and the pseudo-inverse, as well as the corresponding outputs ob-
served by the camera. Note the projector inputs for the 4-bounce stratified inverse and
pseudo-inverse are similar. The black dots in the projector inputs are due to the clipping
function f+ that ensures the nonnegativity of the projector inputs. Also note that scene
interreflections are still visible in the case of the 1-bounce stratified inverse, while the
outputs for the 4-bounce stratified inverse and pseudo-inverse are almost of uniform
intensity and close to the desired output.

We show the corresponding central horizontal scan lines of the output image seen
by the camera in Fig. 10(b). Comparing to the simulated results in Fig. 10(a), the
intensity fluctuation in Fig. 10(b) is slightly larger. We can measure the fluctuation
with the ratio of the scanline disparity (i.e., max−min) to the desired constant value.
For the 4-bounce scan line in Fig. 10(b), the fluctuation measure is about 0.3, which
is significantly smaller than that of the uncompensated scan lines in Fig. 8 which is
around 0.9. Similar to the simulation, we also see that the scan lines in Fig. 10(b)
get closer to the desired constant intensity scan line as the number of light bounces
increases.

6.2 Complex Scenes
To evaluate our method, we perform an experiment on a complex scene of a surface
tiled with an array of hemispheres as shown in Fig. 1(a). The scene interreflections
are significant at the concave regions between the hemispheres, and the output image
before compensation is seriously distorted both geometrically and radiometrically. For
this complex scene, we acquire a light transport matrix of slightly higher resolution us-
ing a brute-force method with the projector having 92×116 super-pixels of dimension
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Figure 11: Results for the experiment where the desired image is a uniform intensity image.
(Top row) The inputs to the projector for various kinds of matrix inversion. (Middle row) The
outputs observed by the camera for various kinds of matrix inversion. We extract a scan line
from each of the outputs and show them in Fig. 10. (Bottom row) The desired constant intensity
image.

4×4 pixels. In this case, T has a dimension of 10672×10672. Fig. 1(e) shows the com-
plex desired image displayed in high resolution. Note that when there is no radiometric
compensation on the projector output, as shown in Fig. 1(b), interreflections are visible
between the hemispheres which results in the reduced contrast, and there is geometry
distortion in the image. After radiometric compensation with the 1-bounce stratified
inverse, the geometry distortion is in general removed as shown in Fig. 1(c) (some
slight local distortion in the image is due the coarse super-pixel structure). We can see
that the scene interreflections are significantly reduced after the 4-bounce compensa-
tion as shown in Fig. 1(d). The compensation also rectifies the distortion observed in
the uncompensated image.

In terms of processing time required, computing the 4-bounce stratified inverses
requires about 8 seconds, while computing pseudo-inverse becomes impractical. We
believe the few seconds of compute time to invert the full T matrix is easily justifiable
for a static scene, especially considering the time for acquisition of the transport matrix.
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(c) Projector output from the 
4-bounce stratified inverse

(b) Projector output from the 
1-bounce stratified inverse

(a) Projector output on a wall corner 
without radiometric compensation

(d) Desired image

Figure 12: The high-resolution results for the wall corner scene. Subfigures from (a) to (d) show
increasing fidelity. The uncompensated projector output in (a) shows geometric distortion and
scene interreflections. The projector output (b) by the 1-bounce stratified inverse is compensated
mainly in geometry. The projector output (c) is compensated both geometrically and radiomet-
rically by the 4-bounce stratified inverse. The result (c) is close to the desired image (d). Note
that the minor intensity differences between the desired image in (d) and the projector outputs
(c) are due to the residual photometric nonlinearity left uncorrected by the simplistic projector
response curve.

New images can now be compensated with a simple matrix-vector multiply.

6.3 High-resolution Compensation
To assess our method for a high-resolution case, we acquire a high-resolution light
transport matrix with the projector having 384×512 super-pixels of dimension 2×2
pixels for the convex wall corner scene. For efficiency and ease of implementation,
T is acquired using the stripe-scanning method in Ding et al (2009), instead of the
brute-force method. In this case, T is a matrix with dimension of 196608×196608.
We specify a complex city-scene desired image as shown in Fig. 12(a). Before radio-
metric compensation, the output image appears to be distorted and has strong scene
interreflections as can be seen in Fig. 12(b). Note that in the region with strong scene
interreflections the intensity contrast is much reduced. The compensation from both the
1-bounce and the 4-bounce stratified inverses rectifies the image distortion as shown in
Fig. 12(b) and (c) respectively, and the scene interreflections are more much subdued
for the 4-bounce solution. Also note that the compensated result in Fig. 12(c) closely
matches the desired output in Fig. 12(d). Note that computing the 4-bounce stratified
inverses requires about 40 seconds, while computing the pseudo-inverse is impractical
at these resolutions.

6.4 Limitations of Our Method
As we can see in Fig. 10, the compensated scan lines oscillate about the desired scan
line before settling down. The intensity oscillation represents both over-compensation
and under-compensation. We find that such oscillation is slow to settle down at the
sharp transitions or folds in physical scenes. For example, the wall corner scene of
Fig. 12 has a visible crack at the wall corner. Intensity oscillation remains at the fold
even though the 4-bounce compensation has compensated most parts of the scene.
Whereas in the scene of Fig. 1, there are shadow regions around some of the hemi-
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spheres, which is a form of sharp scene transition. Similarly, the attempt in compen-
sating for the shadow regions results in white ring artifacts which is a form of over-
compensation even though other parts of the scene have been compensated. In future
work, we will look into ways to speed up the convergence for stratified compensation
at sharp scene transitions.

7 Conclusions and Future Work
We proposed a stratified computational framework for computing the inverse light
transport. More importantly, we showed that the stratified inverse corresponds to can-
celing the corresponding light bounce for each term. As opposed to our previous work
in Ng et al (2009) that was built on the interreflections cancellation operator introduced
in Seitz et al (2005), we relate stratified inverses directly to Kajiya’s rendering equation
(Kajiya, 1986). We validate our theoretical results on simulations that show the accu-
racy and computational efficiency of stratified inverses. We also show the application
of stratified inverses for projector radiometric compensation.

There are many important directions of future work. In terms of efficiency, the use
of hierarchical or wavelet matrix representations can enhance the sparsity and speed
up higher bounces of the matrix multiplications in our methods. In terms of acqui-
sition, we would like to extend the work of Nayar et al (2006) to full light transport
separation, even in the presence of high-frequency local effects like sharp subsurface
interactions. Using low-frequency illumination to acquire the global light transport
promises to speed up acquisition, and point the way towards radiometric compensation
for dynamic scenes.

We have presented only one application in projector radiometric compensation, but
T and its inverse are crucial in many other problems in computer graphics and vision—
for all of which our theoretical development should provide new insights. For example,
inverse light transport can also be used for light bounce separation (Seitz et al, 2005)
and shape estimation (Liu et al, 2010). Given the initial work (Liu et al, 2010) show-
ing the connection between inverse light transport and inverse rendering (Marschner,
1998; Ramamoorthi and Hanrahan, 2001), there may be further applications for inverse
light transport. Moreover, large-scale matrix inversion is also crucial in other problem
domains such as Google’s PageRank vector computation. In future work, we expect
many other application domains to benefit from the stratified inverse framework.
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