
Parallel Web Scripting with Reactive Constraints

Thibaud Hottelier
James Ide
Doug Kimelman
Ras Bodik

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-16

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-16.html

February 14, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Parallel Web Scripting with Reactive Constraints

Thibaud Hottelier, James Ide,
Rastislav Bodik

University of California, Berkeley

{tbh,bodik}@cs.berkeley.edu,
ide@berkeley.edu

Doug Kimelman

IBM T.J. Watson Research Center

dnk@us.ibm.com

Abstract
We describe a preliminary design of a webpage layout and
scripting language based on constraints and reactivity. The
language is intended to play the role of CSS (layout) and
AJAX (reactivity) in today’s browsers, which together ac-
count for more than half of the CPU cycles, a performance
bottleneck on smart phones. The rationale is to (1) integrate
layout and reactivity in one language, thus eliminating the
overhead of the frequent context switch between JavaScript
and the layout engine; (2) allow web designers define cus-
tom layout semantics, freeing them from the inflexible CSS
and allowing them to write layouts that adapt to a range of
screen sizes; (3) parallelize layouts with the help of hierar-
chically expressed constraints; and (4) parallelize handling
of multiple events by detecting that events have independent
effects on the constraint system. We describe our semantics
for combining events and constraint solving and illustrate,
on a small case study, how we deal with under-constrained
and over-constrained programs.

1. Motivation
In the 90’s, high-level dynamically-typed, mostly-functional
languages evolved from their scripting beginnings to full-
fledged applications. This transition has been driven by
Web programming, in particular JavaScript on the client,
and Python CGI programs on the server. The popularization
of these high-level languages was also enabled by abun-
dant computing power, which in the 90s was doubling ev-
ery 18 months, compensating for the performance ineffi-
ciencies of these languages, which in general were inter-
preted. Programmers have grown to appreciate the produc-
tivity benefits of high-level programming—for instance,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00

the ease of embedding domain-specific languages such as
jQuery into JavaScript and the powerful layout engine of
the web browser—and we now see most new laptop and
desktop applications written in the browser, with JavaScript
frameworks, rather than as standalone desktop applications
in C++. This is a good thing: high-level programming has
raised the programming abstraction level and made it easier
to continue doing so by simplifying the creation of domain-
specific programming frameworks.

A potential obstacle to further proliferation of these pro-
ductive languages and programming environments is the end
of the exponential improvements in single-thread computing
speed. In about 2002, the single-thread performance of lap-
top and desktop processors ceased to improve. The physics
of CMOS transistors dictated that, from that point onwards,
the benefits of shrinking transistor sizes have been realized
as multiple cores. This trend is likely to continue even af-
ter CMOS is replaced with another technology: we’ll see
more parallelism and but the performance of a single thread
is likely to remain fixed or be smaller, for the benefits of
energy efficiency. Because applications written in high-level
languages (such as Google Maps) are not easily paralleliz-
able, single thread performance is what matters for them.
The implication is that the situation of the golden era of the
90s has reversed: back then, we had more performance than
high-level languages demanded; now the richness of appli-
cations written in high-level languages requires performance
that we lack. As a result, Adobe, Google, Mozilla and We-
bKit have recently started working very actively on JIT com-
pilers for their JavaScript virtual machines. A deeper analy-
sis of how to support productive programming in the post-
Moore’s Law Era can be found in [3].

We are mostly concerned with high-level programming in
the browser, which is now the dominant platform for applica-
tion development on the laptop and the desktop, thanks to the
convenient browser abstractions: the powerful layout engine
controlled by JavaScript. The performance penalty of the ab-
straction is rather high (about 100x compared to a program
written in C [3]). The result of this penalty is that program-
ming on the phone could not afford to adopt the browser ap-
proach because the phone processors are performance lim-

ited. Instead, programs for the iPhone and Android phones
are written in lower-level languages and frameworks, which
trade abstraction and expressiveness for lower overhead. Be-
cause we predict that a lot of our laptop activity will transi-
tion to phones (soon aided by laser pico-projectors), we are
interested in providing a browser-like programming environ-
ments for these platforms—platforms whose performance
will continue to lag behind that of laptops.

What should a language for productive application pro-
gramming look like? The following are factors that led us to
the design of the constraints-based language.

• The language must be amenable tocompilationthat can
produce single-thread code with little abstraction over-
head. In [3], we describe why compilation and partial
evaluation of the current browser architecture is unlikely
to be very effective in reducing the 100x runtime penalty.
Our hope is that we can compile constraints into solver
code that is free of artifacts present in code obtained from
dynamically typed languages, such as frequent function
calls and hashtable lookups.

• To support forward performance scalability as proces-
sors add more cores (even phone processors will be mul-
ticores), the language must allow easierparallelization
than the dynamically typed JavaScript, which compli-
cates discovery of program dependences. Our hope is
that hierarchical constraints will allow us to identify con-
straints that we can solve in parallel.

• In today’s browser, a lot of performance is lost in the fre-
quent context switches between the document layout and
scripting. Our goal, therefore, is to express in one pro-
gram both the layout constraints and the reactive program
logic that handles the user interface and the interaction
with the server.

• Finally, we would like to raise the level of abstraction
from the event-driven browser programming model to
one that hides the explicit continuations of JavaScript
callbacks. Constraints allow us to do that better than
dataflow because they express bidirectional dependence
in a single constraint.

2. Event-driven Constraint-Based
Programming

This paper describes a language design that combines the
constraint-based and event-driven programming models.
When events are added to constraints, the language design
choices seem to boil down to the question of how the con-
straint system evolves in response to a sequence of events.
Specifically, if the constraint system represents the stateof
the program, how does an event modify the constraint sys-
tem to reflect the state change?

To illustrate the interaction of constraints and events, con-
sider the constraint system for converting Celsius temper-
atures to Fahrenheit temperatures and vice versa, adopted

Figure 1. A constraints system for converting Celsius to
Fahrenheit and vice versa [1].

from [1] and shown in Figure 1. The constraints network in
the figure establishes the familiar arithmetic constraintson
variables represented by edges. To compute with this con-
straint system, the user interacts with it by setting valuesof
variables and asking the solver to solve for the values of the
remaining variables. Each such interaction can be thought
of as the user sending an event to the system. For example,
whenC is set to 25, the system answers “C = 25, F = 77”.

The design choices become obvious when the user fol-
lows by setting the value ofF to 212. What is a meaningful
semantics? ShouldC be implicitly unset so that it becomes
unconstrained and can be solved under the new user con-
straintF = 212? The semantics chosen in [1] keepsC set
and the system hence must reject the user’s attempt to setF

because the values ofC andF would be inconsistent with
the constraints. Instead, to computeC from F , the user must
first unsetC, and then setF . Asking the user to explicitly un-
set a variable may sometimes be a suitable choice. In other
scenarios, the system may want to react to an event by out-
putting a new constraints system [8].

In this paper, we investigate semantics suitable for pro-
gramming with constraints and events in the web browser.
Our design is driven by a case study with a prototypical
Web 2.0 application that contains user interaction and com-
bines multiple media (see Section 4).

3. The semantics
This section informally describes the semantics of our lan-
guage. The semantics is illustrated in our case study in Sec-
tion 5, where we show how constraints handle programming
problems common in our domain and we also suggest addi-
tional language features. The design of our language is not
complete; we are still investigating the implications of our
design decisions and in Section 7 we discuss problems that
still remain and how we plan to solve them.

We first describe the constraint system, then add events.
For the sake of presentation, we will use the graphical syntax
of constraint networks.

Constraints The constraint system consists ofvariables
(also referred to asports), constraintsandcomponents(see
Figures 2). A constraint, represented by a rounded box with
a list of ports, defines a relation that characterizes constraints
imposed on the ports. Equality constraints can also be repre-

Figure 2. Building blocks of the constraint system.

sented by wires connecting the variables or ports of separate
boxes. A component, represented as a squared box with a list
of ports, encapsulates constrained networks, for example as
shown in Figure 6. The list of ports are the public interface
of the component.

A solutionto the constraint system is a valuation of pro-
gram variables that satisfies all constraints. At program start,
some variables may be given initial values; the values of the
remaining variables are solved to form a solution. Although
the choice of the constraint language influences decidability,
we are not assuming a particular language in this section.
Our domain seems to require linear constraints with boolean
connectives, and this is the language we use in our case study
in Section 4.

Each variable has a static type. In our case study, we
consider three basic types: integers, rationals, and booleans.
Complex types can be constructed with lists and tuples as
summarized below, using the ML type syntax.

Type ::= Type list | Type ∗ . . . ∗ Type

| Basic Type

Basic T ype ::= Int | Rational | Boolean

Structural equality is used to compare complex types. The
type (or signature) of a component is the sum of the type of
its ports.

The set of program variables can change at runtime
through combinators such asmapand fold that apply con-
straints, packaged as a component, onto a list of variables.
The list can be of dynamic length, e.g., it can correspond to
the changing content of a file or the value of an event. Lists
are also used to define components with variable number of
ports. For instance, the signature ofVBox in Figure 9 is

(y : Z, height: Z, (yi : Z, heighti : Z) list)

TheVBox component expresses the following constraints:

y = y0

∧ ∀i ∈ [1, n]. yi = yi−1 + heighti
∧ height= yn − y0

where(yn, hn) represents the last element of the list. The
network of constraintsyi = yi−1 + heighti is generated

Figure 3. Events representation.

using afold combinator, which produces one such constraint
per element of the list:

fold(λs. λ(y, h). λres. s = y ∧ res = s + h, y, list)

Events The reactive part of our language is modeled with
events. In our domain, an event is the mechanism for the
user interface or the server to request modifications to the
web page, which is modeled by the constraint system. Se-
mantically, an event is a request to change the value of a
variable, which may in turn also change the structure of the
constraint system using the combinators mentioned above.
As shown by Figure 3, events are represented by dashed ar-
rows between an event source and a variable. The source of
an event is an external entity, e.g., a mouse. Like variables,
sources of events have a type and an event edge may connect
a source to a variable only if they have the same type.

An event is a pair(r, v) wherer is a variable whose value
is to be changed andv is the new value ofr. When handling
of an event has been completed, the constraint system is in
a consistent state (i.e., variable values form a solution).The
following five steps are taken to handle an event(r, v). These
five steps happen atomically.

1. The variabler is asserted to have the valuev. This as-
sertion will in general be inconsistent with the current
solution.

2. ComputeR, the smallest set of variables whose values
need to be changed to obtain a new solution from the
previous solution.

3. ComputeV , the valuation map that gives the new solu-
tion for the variables inR.

4. Set the variables inR according toV .

5. The assert on the variable v is removed. This does not
change the solution because the system does not leave a
particular consistent state without an event stimulus.

This event semantics minimizes the update to the state after
an event. One can certainly imagine a different criterion for
which variables to update (Step 2), and in fact we are not yet
certain that this semantics is a good fit for all applicationsin
our domain. We briefly discuss in Section 7 the alternatives
for solving steps 2 and 3.

Properties. Unique Solution.We are in general interested
in programs whose constraint systems always have a solu-
tion and never have multiple solutions. The system should
have a solution both in the initial state and after every event.
We discuss this issue in Section 5.

Hidden variables.A component typically contains vari-
ables, calledhidden variables, that are not observable from
outside the component. These variables may influence the
constrains imposed on the ports of the component. For ex-
ample, a hidden variable may select between two sets of con-
straints on the ports. Hidden variables may complicate pro-
gram analysis, even in a system that has always has unique
solutions. When a hidden variable encodesstate, i.e., it is not
a function of the port values, but instead a function of the se-
quence of values on the ports. Such hidden variables are the
reason why components in general cannot be described as
a relation on the port values. Instead, the history of values
must be considered to model their behavior.

4. The Case Study
To give the reader a feel for the language, we present how
one would write a small video player application using con-
straints. As shown in Figure 4, the application has a video
player on the right, and a scrolling display of annotations
on the left. There is a button to control play vs. pause of
the video player, and a button to control forward vs. reverse
playback. There is also a horizontal slider showing time—it
indicates the current position of playback within the video,
and it can be used to reposition playback.

Video playback is synchronized with annotation display.
Each annotation in the supplied sequence of annotations
has an associated time interval. When video playback is
within the time interval of an annotation, that annotation is
positioned at the center of the display. If a user clicks on
an annotation, playback is repositioned to a time within the
interval associated with that annotation.

5. Language Design Issues
A high-level overview of the design of the application is
shown in Figure 5. No events are shown at this level.

5.1 Bidirectional constraints

The constraints in our language are non-directional: two
variables related by a constraint can influence each other,
depending on which variable has been set by a an event. In
contrast, both dataflow programming and JavaScript’s event-
drive programming are directional, akin to an assignment.
As a result, if bidirectional influence is desired, these pro-
gramming models will have to express the two flows sepa-
rately, which may leads to larger programs and inconsisten-
cies in semantics between the two directions.

The benefit of non-directionality of constraints shows up
in several places in Figure 5.

Most importantly, time can be set by theAnnDisplay com-
ponent, theVideoPlayer component, and theSlider. Each
component can influence the others.

In addition, one of theToggleBtn components changes the
play versus pause state of the player. In the other direction
along the constraint, when the player finishes the video (in

1

Figure 5. High-level view of the video player application

either playback direction) it will set its play variable to false,
and that will result in the button changing state appropriately.

When a video name is entered into theTextDialog, the
result is that a video is loaded into theVideoPlayer and an
annotation sequence is loaded into theAnnDisplay. On the
other hand, when theVideoPlayer initiates playback of a
different video (functionality not shown in this figure), the
TextDialog will update with the name of the video, and a
corresponding annotation sequence, if one exists, is loaded
into theAnnDisplay.

Figure 6. The layout of the annotations. TheScrollBox ele-
ment displays a visible part of theVBox, which is a document
container that stacks individual annotation elements, created
in AnnControl.

Figure 6 shows what is encapsulated within the AnnDis-
play component. This component specifies the layout of an-
notations. The crucial subcomponent is AnnControl, which
creates one annotation text box for each annotation from the
sequence of annotations. These boxes are not laid out in any
way by AnnControl—it does not constrain their coordinates.
The layout will be done by the Vbox component, which will
stack these annotation boxes vertically. The ScrollBox will
then take the Vbox and display it in a viewport to which
a scrollbar is attached. The ScrollBox and the Vbox come
from a library, but they too are written in the constraint lan-
guage.

Figure 4. The media player application.

5.2 Directionality

When we desire directional influences between variables,
they can be specified, too, using implications.

Consider theAnnControl component, in Figure 7, which is
responsible for moving the active annotation into the view-
port, as well as setting the time when an annotation is se-
lected by a mouse click. In the figure, the green box contains
a map combinator. The blue box is the component applied on
each element of the list of annotations. The result is the list
of Boxes, one per annotation. In the blue box, the split each
annotation, which is a pair, into the text and the time inter-
val. The text is then used to create a box. The time interval is
used to establish a constraint that an active annotation is one
whose internal contains the current time. So when the player
changed the time, this constraint makes appropriate annota-
tions active. In the opposite direction, on a mouse click, an
annotation is made active, which changes the global time.
Note that we elide the width and the x coordinate.

In AnnControl, we desire a directional dependence be-
tweenactive and the value ofy. When an annotation is ac-
tive, the coordinatey must be zero, which has the effect of
scrolling the annotation to the top of the viewport. However,
we do not wish a dependence in the opposite direction: when
the user scrolls the annotations, he may set the value ofy
for some annotation to zero, but this should not influence
the value ofactive because that would in turn influence the
value of time; we wish to change the time of the playback
only when an annotation box is clicked.

5.3 Ambiguous programs

An ambiguousprogram contains a constraint system that
permits multiple solutions under some sequence of events.
Such a program is nondeterminate and it is the task of the
programmer to modify the constraint system to allow a
unique solution under all sequences of events. We plan to
use a model checker for detecting whether such a sequence
of events exists. We do not discuss the model checker in this

Figure 7. The annotation control module,AnnControl.

paper. Instead, on a linguistic construct for strengthening the
ambiguous constraints system.

ConsiderAnnControl in Figure 7. When a mouse clicks
on a box, the value ofactive becomes true, which forces
the value oftime to be within time interval of the clicked
annotation. There is, however, ambiguity as to which time
from the interval to select. The constraints system, therefore,
is ambiguous.

Which allow the programmer to state the following
constraint. The constraint says that at the moment when
active becomes true, the time must equal either the start
or the end of the interval, depending on the direction in
which the movie is playing. Note that these constraints hold
whenactive transitions from false to true; one can think of
whenever is sending an event at this moment, and that event
asserts a constraint on the value oftime.

whenever active becomes true then
if direction = forward then time = interval.start
else time = interval.end

5.4 Inconsistent programs

An inconsistentprogram contains a constraint system that
has no solution. The program may enter an inconsistent state
only after a particular sequence of events. This subsection

Figure 8. A constraint module that permits multiple solu-
tions.

focuses on how the programmer modifies the constraint sys-
tem to remove the inconsistency. Our approach is to relax the
constraints and ask the constraints solver for an an optimal
solution.

To show the inconsistency in our application, let us first
describe how physical layouts are defined as constraints.
Figure 9 shows a constraint moduleVBox that stacks display
elements on top of each other. Logically,VBox wraps a
list of display elements provided by another component in
a new display element. It computes the height of the new
element and places constraints on the positions (yi) of the
stacked elements. The positions are a function of the element
heights. The actual positions of these elements depend on the
placement of theVBox in its parent.

Recall that integrating layout and reactivity is one of
the goals (in today’s browsers, the context switch between
the active scripting and layout is very expensive). Figure 9
shows that the layout style is under the programmer control
and the layout constraints are indistinguishable from those
constraints that react to events.

Figure 9. A VBox layout container contains a set of con-
straints that vertically stacks boxes attached on the right.

We are now ready to illustrate a scenario in which
our program reaches an inconsistent state. Consider again
AnnControl in Figure 7, which links the position of an an-
notation box with the current video time. WhenAnnControl,
which creates annotation boxes, is composed withVBox,
which lays them out, the programm has no solution when
multiple annotations are active at the same time. If two anno-
tations overlap in time, they both want to be displayed at the
top of the scroll box, which is demanded by constraintsyi =
0 andyj = 0, for somei < j. These constraints must hold in
conjunction with the layout constraints inVBox, which de-

mandyj = yi +heighti + . . .+heightj−1
. These constraints

have no solution (unlessheighti + . . . + heightj−1
= 0).

The programmer could remove the inconsistency by
adding constraints that arbitrate among active annotations,
allowing at most one annotation to specify its absolute po-
sition. This solution, however, requires adding constraints
amongthe annotations, which would require changing, in
Figure 7, themap operation, whose annotation constraints
are independent per annotation box, into a more complex
fold operation that would build a network of constraints that
tie annotation constraints together, increasing program com-
plexity.

Instead, we propose to use a constraint system computes
an optimal solution subject to specified constraints. Such a
constraint system may allow us to removed the inconsistency
by relaxing the constraints; that unique solution will thenbe
defined as the best solution. In our case study, this approach
changes the constraintactive ⇒ yi = 0 to the constraint
active ⇒ (minimize y such thaty ≥ 0) (see Figure 10).
When two annotations are active, they coordinate of only
one will be set to zero, which removes the consistency.
In our future work, we will explore more case studies, to
see whether optimization constraints simplify the task of
creating consistent programs.

Figure 10. Revised AnnControl. To avoid contradicting
constraints, they coordinate is minimized rather than set to
0.

5.5 Programming by Demonstration

Declarative programming stateswhat should be computed;
it abstracts away fromhow the program computes the val-
ues that meet the specification. This very property, usually
desirable, may make declarative programming harder than
an “operational” one because constraints may be difficult to
debug. Indeed, programmers may sometimes prefer to show
the steps of the computation. The scrollbox component in
Figure 11 may be one such example. This component in-
cludes two subcomponents that specify the size of the scroll-
bar, and the position of the content box within the viewport.
These are mere linear constraints but they are somewhat dif-
ficult to write correctly. We think that meta-programming
by demonstration could simplify constraint programming: if
the programmer demonstrated the result of the program on

a sufficient set of corner case examples, the constraints can
be inferred from these examples, which constrain the con-
straints.

Figure 11. The scroll box container. Displays another box
within a viewport. The two (linear) constraints specifying
the position and size of the scroll bar are somewhat tedious
to write and could be solved with user demonstration.

5.6 Abstraction (modularity)

The component-based architecture of the language makes it
very easy for the programmer to identify the modules and
their interdependencies in a program. Furthermore, it nat-
urally offers several levels of abstraction to help the pro-
grammer. A component and its interactions with others can
be analyzed by treating all the components as black boxes
(c.f. Figure 5). Moreover, the subtle constraints restricting
the ports of a component can be understood by looking at
its inner content while abstracting the rest of the world away
(c.f. Figure 9).

To build libraries of reusable components, a subtyping
relation between components may need to be defined. We
are currently working on a suitable definition of subtyping;
should a subtype have more or less behaviors than its super-
type?

5.7 Temporal Constraints

Figure 12. The annotation control module,AnnControl with
two scolling modes.

There is no need to extend the language to express tempo-
ral constraints. In fact, they can be express with events if we
allow components to fire events. For instance, in the movie

player application, the current annotation to be displayedcan
be dictated by both the player itself and the user through the
use of the scrollbar. For this reason, the annotation controller
has two modes: one when the player is in control and an-
other one when the scrollbar is (c.f. Figure 12). The scrollbar
relinquishes the control of the annotations when the user re-
leases the mouse from scrollbar; we do not wish to switch the
mode back to the player immediately, though, as that would
instantly scroll the annotations, creating a surprising effect.
Instead, we want to delay the switch until the next annotation
becomes active. We delay this action using an event that fires
when any annotation becomes active. SO, firign an event on
a transition achieves the desired temporal constraint.

6. Parallelism
In this section we discuss how we plan implement paral-
lel constraint solving. We explain why a constraints-based
language may simplify parallelization of the layout compu-
tation. The discussion here is informed by our experience
with parallelizing a web browser [9]. As part of the project,
we have been working on parallel algorithms for webpage
layout [10]. We have found the parallelization task difficult
for two reasons. First, the CSS layout constraints are speci-
fied informally [4] and are at times ambiguous. Second, the
web page layout constraints are an instance of aflow lay-
out style, which lays out a document element after the previ-
ous comments have been positioned. A flow layout performs
an inorder tree traversal and is therefore inherently sequen-
tial. We were able to parallelize the flow layout by isolating
five consecutive layout phases, each of which performs ei-
ther preorder or postorder a tree traversal and thus exposes
an opportunity for parallelization.

The technical challenge is to automate this decomposi-
tion of an inorder traversal of the document tree into a se-
quence of parallel tree traversals. That is, given a tree con-
straint structure, which subtrees can be solved independent
of its siblings? The problem is made harder by the bidirec-
tional nature of layout constraints: sometimes, the heightof a
document element is computed from its subelements, while
sometimes the maximal height of a parent element is given
and the height or margins of its subelements are computed
so that they are spread equally within the parent element.

To identify parallelism, we plan to exploit the hierarchical
structure of the constraint system. Figure 6 shows a part of
the hierarchical document structure: theScrollBox is a parent
of theVBox, which in turn contains the individual elements,
one per annotation, created inAnnControl. We hope to design
component signatures that will inform the parallelizer of
dependences among port components. For example, if the
VBox component is informed that the value ofheighti does
not depend on the value ofyi, then the chain of additions in
VBox can be performed with a parallel adder tree.

7. Open Problems and Related Work
The essential features of the language have been designed
but a few important extensions are still on the table. For ex-
ample, we plan to design a dedicated sublanguage for anima-
tion and provide safe features for asynchronous interaction
with the server [7]. Also, several features needed to make
the language practical are missing. Finally, we are the first
to admit that, in addition to more design work, a lot is left to
be understood about the implications of the design choices
we have already made. This section outlines these remaining
questions.

The most interesting are the less apparent implications of
mixing events with constraints will have to be uncovered.
There have been a fair amount of work in extending con-
straint system with reactivity, notably [6] and [12]. It is not
clear to the authors whether the methods presented in these
two papers for finding solutions are applicable to our lan-
guage. In tccp [12], the handling of one event produces the
constraint system for the next event. We have instead chosen
to (largely) fix the constraint system and update its solution
minimally in response to an event. We suppose that one can
convert from our minimal-update semantics to that of tccp,
but it is unclear to us how small and natural the conversion is.
It is also interesting to consider whether our minimal-update
semantics is a good fit for all programs from the domain of
browser programs. We expect that programmers may want
to design custom update policies, and we do not know how
difficult it will be for the programmer to ensure that there is
always a unique minimal update.

Furthermore, cycles in the constraints network will make
the task of finding solutions much harder. In fact, if cycles
are allowed, it is possible to encode latches. Thus, it is no
longer possible to describe a component as a relation since
its inner latches can store state (see the discussion of hidden
variables in Section 3). We will have to investigate whether
the client side of a web application can be entirely stateless.
Clearly, browser programs will need state, for example to
cache email messages in an email client application. How-
ever, it may be possible to store the cache in a client-side
database and access it from the program as if it was on a
server, keeping the program stateless. Finally, we have con-
veniently ignored a question when presenting the language
semantics: ”what is the logic of constraints?” It seems that
layoutneeds conditional linear constraints but what are the
constraints needed by the scripting logic?

Finding an efficient way to find solution to the constraint
networks will be challenging. We hope the hierarchical na-
ture of such networks will enables us extract as much par-
allelism as possible. State-of-the-art SMT solvers [2] have
made tremendous progress the last five years; we hope to
take advantage of them. Moreover, CSP ([14]) solvers have
also improved by reusing the techniques developed for SMT
solvers (c.f. [5]).

To enable reuse of code, components will have to be more
modular. Convenient and easy to use component libraries
might require more language support than we currently have.
In particular, we will have to investigate whether a sensible
subtyping relation between components can be defined in
term of behaviors.

Finally, even though we handle events atomically, races
may arise at a higher level of abstraction. As we show in [7],
both interactions with the server and animations may pro-
duce races. In the former case, this happens when there are
multiple outstanding requests to the server and the responses
arrive out of order. We hope to design linguistic support that
enables out-of-order messages (for performance reasons) but
allows the programmer to specify how to handle messages
that arrive early. This specification should be given in terms
of the application semantics, not in the terms of low-level
messages timestamps. For example, to handle two back-to-
back user requests to zoom into a map, the programmer may
want to state that the screen is allowed to display a stale map
tile (one corresponding to the request before the last one) be-
cause seeing at a map at a wrong zoom level is better than
waiting for the correct map to appear.

8. Conclusion
This paper describes a preliminary design of a language for
web browser programming. Our goal is to integrate script-
ing and page layout, while raising the level of abstraction
of JavaScript and HTML/CSS — the respective solutions
for the two problems — and simultaneously improving their
performance. Our design is motivated by limitations of to-
day’s browser programming (as reported to us by program-
mers and browser developers) and by some experience with
functional reactive programming in the browser (we had our
undergraduates implement and program with Flapjax [11]).
We believe that we have a good understanding of the do-
main and we describe an approach for combining constraints
and events that appears natural for this domain. This paper
also describes how inconsistent and ambiguous constraint
systems may arise in this domain, and we suggest how pro-
grammers may deal with them with the proposed language.
A lot remains to be designed and understood. Section 7 lists
the known unknowns, and we hope that the discussion at the
workshop will uncover the unknown unknowns [13].

References
[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman.

Structure and Interpretation of Computer Programs. MIT
Press, Cambridge, Mass., 1985.

[2] Clark Barrett, Silvio Ranise, Aaron Stump, and Cesare
Tinelli. The Satisfiability Modulo Theories Library (SMT-
LIB). www.SMT-LIB.org, 2008.

[3] Ras Bodik, Justin Bonnar, and Doug Kimelman. Productivity
programming for future computers.FIT, 2009.

[4] Bert Bos, Tantek Celik, Ian Hickson, and Hakon Wium
Lie. Cascading style sheets level 2 revision 1 (css 2.1)
specification. http://www.w3.org/TR/CSS2/, 2009.

[5] Ian P. Gent, Chris Jefferson, and Ian Miguel. Minion: A fast
scalable constraint solver. InIn: Proceedings of ECAI 2006,
Riva del Garda, pages 98–102. IOS Press, 2006.

[6] Pascal Van Hentenryck. Scheduling and packing in the con-
straint language cc(fd). InIN INTELLIGENT SCHEDULING.
ZWEBEN AND FOX (EDS). Morgan Kaufmann, 1994.

[7] James Ide, Rastislav Bodik, and Doug Kimelman. Concur-
rency concerns in rich internet applications. InExploiting
Concurrency Efficiently and Correctly (EC2), CAV 2009
Workshop, 2009.

[8] Radha Jagadeesan, Will Marrero, Corin Pitcher, and Vijay A.
Saraswat. Timed constraint programming: a declarative
approach to usage control. In Pedro Barahona and Amy P.
Felty, editors,PPDP, pages 164–175. ACM, 2005.

[9] Christopher Grant Jones, Rose Liu, Leo Meyerovich, Krste
Asanovic, and Rastislav Bodik. Parallelizing the web
browser. InFirst USENIX Workshop on Hot Topics in
Parallelism (HotPar ’09), 2009.

[10] Leo Meyerovich. Fast webpage layout. http://pbrowser.googlecode.com/
svn/trunk/layout/match/writeup/rulematching.pdf, 2009.

[11] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H.
Cooper, Michael Greenberg, Aleks Bromfield, and Shriram
Krishnamurthi. Flapjax: A programming language for
ajax applications. InThe International Conference on
Object Oriented Programming, Systems, Languages and
Applications (OOPSLA 2009), 2009.

[12] Vijay A. Saraswat, Radha Jagadeesan, and Vineet Gupta.
Foundations of timed concurrent constraint programming. In
Proceedings of the Ninth Annual IEEE Symposium on Logic
in Computer Science, pages 71–80. IEEE Computer Press,
1994.

[13] Hart Seely. The poetry of D.H. Rumsfeld.
http://www.slate.com/id/2081042/, 2003.

[14] Roland H. C. Yap. Constraint processing by rina dechter,
morgan kaufmann publishers, 2003, hard cover: Isbn 1-
55860-890-7, xx + 481 pages.Theory Pract. Log. Program.,
4(5-6):755–757, 2004.

