Parallel Web Scripting with Reactive Constraints

Thibaud Hottelier
James lde

Doug Kimelman
Ras Bodik

ST NEFLELEL]

.Il

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-16
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-16.html

February 14, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Parallel Web Scripting with Reactive Constraints

Thibaud Hottelier, James Ide, Doug Kimelman
Rastislav Bodik IBM T.J. Watson Research Center
University of California, Berkeley dnk@us.ibm.com
{tbh,bodik} @cs.berkeley.edu,
ide@berkeley.edu
Abstract the ease of embedding domain-specific languages such as

We describe a preliminary design of a webpage layout andIQUerY into JavaScript and the powerful layout engine of
scripting language based on constraints and reactivitg. Th the web broyvse_r—and_we now see most new laptop gnd
language is intended to play the role of CSS (layout) and desktop applications written in the browser, with Java_;ﬁcr_|
AJAX (reactivity) in today’s browsers, which together ac- framework;, r_ather than as star_ldalone desktop apP““O”
count for more than half of the CPU cycles, a performance I C*+: This is a good thing: high-level programming has
bottleneck on smart phones. The rationale is to (1) integrat '@ised the programming abstraction level and made it easier
layout and reactivity in one language, thus eliminating the [© continue doing so by simplifying the creation of domain-
overhead of the frequent context switch between JavaScriptSpeC'f'C programming frameworks.))

and the layout engine; (2) allow web designers define cus- A_potentlal obstacle to further prollferz?\tlon of the_se pro-
tom layout semantics, freeing them from the inflexible CSs ductive languages and programming environments is the end
and allowing them to write layouts that adapt to a range of °f the exponential improvements in single-thread comygutin
screen sizes; (3) parallelize layouts with the help of miera SP€€d- In about 2002, the single-thread performance of lap-
chically expressed constraints; and (4) parallelize Hagdl top and desktop Processors ceased to IMprove. The physics
of multiple events by detecting that events have independen of CMOS transistors dictated that, from that point onwards,

effects on the constraint system. We describe our semanticdn® benefits of shrinking transistor sizes have been realize

for combining events and constraint solving and illustrate &S Multiple cores. This trend is likely to continug even af-
on a small case study, how we deal with under-constrained'®” CMOS is replaced with another technology: we'll see
and over-constrained programs. more parallelism and but the performance of a single thread

is likely to remain fixed or be smaller, for the benefits of
1 Motivation ;r;egrgzgeeffslc(lglr}gz. aBseéa:)uosel aﬂollcanons written in higrele .
gle Maps) are not easily paralleliz
In the 90’s, high-level dynamically-typed, mostly-furaral able, single thread performance is what matters for them.
languages evolved from their scripting beginnings to full- The implication is that the situation of the golden era of the
fledged applications. This transition has been driven by 90s has reversed: back then, we had more performance than
Web programming, in particular JavaScript on the client, high-level languages demanded; now the richness of appli-
and Python CGI programs on the server. The popularization cations written in high-level languages requires perfaroga
of these high-level languages was also enabled by abun-that we lack. As a result, Adobe, Google, Mozilla and We-
dant computing power, which in the 90s was doubling ev- bKit have recently started working very actively on JIT com-
ery 18 months, compensating for the performance ineffi- pilers for their JavaScript virtual machines. A deeper yanal
ciencies of these languages, which in general were inter-sis of how to support productive programming in the post-
preted. Programmers have grown to appreciate the producMoore’s Law Era can be found in [3].
tivity benefits of high-level programming—for instance, We are mostly concerned with high-level programming in
the browser, which is now the dominant platform for applica-
tion developmenton the laptop and the desktop, thanks to the
convenient browser abstractions: the powerful layoutmagi
Permission to make digital or hard copies of all or part o thiork for personal or controlled by JavaScript. The performance penalty of the ab
;:Iassropm use is gralnted without fee provided Fhat cop'nes)atrmade or distribgted straction is rather high (about 100x Compared to a program
or profit or commercial advantage and that copies bear titiseand the full citation . X . 1
on the first page. To copy otherwise, to republish, to postesvess or to redistribute written in C [3]). The result of this penalty is that program-
to lists, requires prior specific permission and/or a fee. ming on the phone could not afford to adopt the browser ap-
Copyright@ ACM [to be supplied]. .. $10.00 proach because the phone processors are performance lim-

ited. Instead, programs for the iPhone and Android phones. __[; m1 1

are written in lower-level languages and frameworks, which * ! p * + s F
trade abstraction and expressiveness for lower overhead. B m2 m2 a2

cause we predict that a lot of our laptop activity will transi

tion to phones (soon aided by laser pico-projectors), we are w x| |y

interested in providing a browser-like programming emniro

ments for these platforms—platforms whose performance
will continue to lag behind that of laptops.)] .)

What should a language for productive application pro- Figure 1. _A cons_tralnts system for converting Celsius to
gramming look like? The following are factors that led us to Fahrenheitand vice versa [1].
the design of the constraints-based language.
from [1] and shown in Figure 1. The constraints network in
the figure establishes the familiar arithmetic constraamts
variables represented by edges. To compute with this con-
straint system, the user interacts with it by setting vahfes
variables and asking the solver to solve for the values of the
remaining variables. Each such interaction can be thought
of as the user sending an event to the system. For example,
whenC' is set to 25, the system answe(s = 25, F' = 77".

The design choices become obvious when the user fol-
lows by setting the value df' to 212. What is a meaningful
* To support forward performance scalability as proces- semantics? Shoul@ be implicitly unset so that it becomes
sors add more cores (even phone processors will be mul-ynconstrained and can be solved under the new user con-
ticores), the language must allow eagparallelization giraintF = 2122 The semantics chosen in [1] keePsset
than the dynamically typed JavaScript, which compli- 4nq the system hence must reject the user’s attempt # set
cates discovery of program dependences. Our hope iSpecause the values 6f and F would be inconsistent with
that_hlerarch|cal constraln'Fs will allow us to identify éon e constraints. Instead, to comp@tdrom F, the user must
straints that we can solve in parallel. firstunseC, and then sek. Asking the user to explicitly un-
In today’s browser, a lot of performance is lost in the fre- set a variable may sometimes be a suitable choice. In other
guent context switches between the document layout andscenarios, the system may want to react to an event by out-
scripting. Our goal, therefore, is to express in one pro- putting a new constraints system [8].
gram both the layout constraints and the reactive program In this paper, we investigate semantics suitable for pro-
logic that handles the user interface and the interaction gramming with constraints and events in the web browser.
with the server. Our design is driven by a case study with a prototypical
Web 2.0 application that contains user interaction and com-
bines multiple media (see Section 4).

e The language must be amenablectompilationthat can
produce single-thread code with little abstraction over-
head. In [3], we describe why compilation and partial
evaluation of the current browser architecture is unlikely
to be very effective in reducing the 100x runtime penalty.
Our hope is that we can compile constraints into solver
code that is free of artifacts presentin code obtained from
dynamically typed languages, such as frequent function
calls and hashtable lookups.

Finally, we would like to raise the level of abstraction

from the event-driven browser programming model to
one that hides the explicit continuations of JavaScript .
callbacks. Constraints allow us to do that better than 3. Thesemantics

dataflow because they express bidirectional dependencerhis section informally describes the semantics of our lan-

in a single constraint. guage. The semantics is illustrated in our case study in Sec-
tion 5, where we show how constraints handle programming

2. Event-driven Constraint-Based problems common in our domain and we also suggest addi-
Programming tional language features. The design of our language is not

This paper describes a language design that combines thé:omplete; we are still investigating the implications of ou

! : . design decisions and in Section 7 we discuss problems that
constraint-based and event-driven programming models. _: .
When events are added to constraints, the language desigrs1tIII remain and how we plan to solve them.
' We first describe the constraint system, then add events.

choices seem to boil down to the question of how the con- : . .
. . For the sake of presentation, we will use the graphical synta
straint system evolves in response to a sequence of events.

Specifically, if the constraint system represents the sthte Of constraint networks.
the program, how does an event modify the constraint sys-Constraints The constraint system consists driables
tem to reflect the state change? (also referred to agorts), constraintsandcomponentysee

To illustrate the interaction of constraints and events;co Figures 2). A constraint, represented by a rounded box with
sider the constraint system for converting Celsius temper- a list of ports, defines a relation that characterizes caimgsr
atures to Fahrenheit temperatures and vice versa, adopte@mposed on the ports. Equality constraints can also be+epre

Variables (ports): »a

Constraints:

—

a<b+c
a c
b

Pl
Components aver

text text
(contain constraints on
their port variables)

text text

text text

Figure 2. Building blocks of the constraint system.

sented by wires connecting the variables or ports of separat
boxes. A component, represented as a squared box with a lis
of ports, encapsulates constrained networks, for exansple a
shown in Figure 6. The list of ports are the public interface
of the component.

A solutionto the constraint system is a valuation of pro-
gram variables that satisfies all constraints. At prograart,st
some variables may be given initial values; the values of the
remaining variables are solved to form a solution. Although
the choice of the constraint language influences decidgbili
we are not assuming a particular language in this section.
Our domain seems to require linear constraints with boolean

Source of event: omouseClick

Event Edge:

[pemmmemmmmemmme e

Figure 3. Events representation.

using afold combinator, which produces one such constraint
per element of the list:

fold(As. A(y, h). Ares. s =y Ares = s+ h, y,list)

Events The reactive part of our language is modeled with
events. In our domain, an event is the mechanism for the
user interface or the server to request modifications to the
web page, which is modeled by the constraint system. Se-
}nantically, an event is a request to change the value of a
variable, which may in turn also change the structure of the
constraint system using the combinators mentioned above.
As shown by Figure 3, events are represented by dashed ar-
rows between an event source and a variable. The source of
an event is an external entity, e.g., a mouse. Like variables
sources of events have a type and an event edge may connect
a source to a variable only if they have the same type.

An eventis a paifr, v) wherer is a variable whose value
is to be changed andis the new value of. When handling
of an event has been completed, the constraint system is in

connectives, and this is the language we use in our case stud)é consistent state (i.e., variable values form a solutibhg.

in Section 4.

Each variable has a static type. In our case study,
consider three basic types: integers, rationals, and bosle
Complex types can be constructed with lists and tuples as
summarized below, using the ML type syntax.

we

Type == Typelist |Typex...xType
| BasicType
BasicType := |nt |Rational |Bool ean

Structural equality is used to compare complex types. The
type (or signature) of a component is the sum of the type of
its ports.

The set of program variables can change at runtime
through combinators such asapandfold that apply con-
straints, packaged as a component, onto a list of variables.
The list can be of dynamic length, e.g., it can correspond to
the changing content of a file or the value of an event. Lists
are also used to define components with variable number of
ports. For instance, the signaturev@ox in Figure 9 is

(y: Z, height: Z, (y, : Z, height : Z) | i st)
TheVBox component expresses the following constraints:

Y="%Yo
A Yi€[l,n].y; = yi—1 + height
A height=y,, — yo

where (y,,, h,,) represents the last element of the list. The
network of constraintgy; = y;—1 + height is generated

following five steps are taken to handle an event). These
five steps happen atomically.

1. The variabler is asserted to have the value This as-
sertion will in general be inconsistent with the current
solution.

. ComputeR, the smallest set of variables whose values
need to be changed to obtain a new solution from the
previous solution.

ComputeV/, the valuation map that gives the new solu-
tion for the variables irR.

4,
5.

Set the variables iR according tol/.

The assert on the variable v is removed. This does not
change the solution because the system does not leave a
particular consistent state without an event stimulus.

This event semantics minimizes the update to the state after
an event. One can certainly imagine a different criterian fo
which variables to update (Step 2), and in fact we are not yet
certain that this semantics is a good fit for all applications
our domain. We briefly discuss in Section 7 the alternatives
for solving steps 2 and 3.

Properties. Unique SolutionWe are in general interested
in programs whose constraint systems always have a solu-
tion and never have multiple solutions. The system should
have a solution both in the initial state and after every even

We discuss this issue in Section 5.

Hidden variablesA component typically contains vari- AnnDisplay VideoPlayer
ables, callechidden variablesthat are not observable from ToggleBtn
outside the component. These variables may influence the time time play onfoff
constrains imposed on the ports of the component. For ex-
ample, a hidden variable may select between two sets of con- direction ToggleBtn
straints on the ports. Hidden variables may complicate pro- direction onloff
gram analysis, even in a system that has always has uniqud__"%tons movie
solutions. When a hidden variable encoslege i.e., it is not Sider
a function of the port values, but instead a function of the se value
guence of values on the pprts. Such hidden variables are the LoadViovia TextDialog
reason why components in general cannot be described as —pmovie e 4 psiring
a relation on the port values. Instead, the history of values annotations
must be considered to model their behavior. 1
4. The Case Study Figure5. High-level view of the video player application

To give the reader a feel for the language, we present how L . _
one would write a small video player application using con- either play_back d|r.ect|on) it will set |ts.play variable mgg,
straints. As shown in Figure 4, the application has a video @nd thatwill resultin the button changing state approplyat
player on the right, and a scrolling display of annotations ~ When a video name is entered into thextDialog, the
on the left. There is a button to control play vs. pause of resultis that a video is loaded into thdeoPlayer and an
the video player, and a button to control forward vs. reverse @nnotation sequence is loaded into HreDisplay. On the
playback. There is also a horizontal slider showing time—it Otheér hand, when th&ideoPlayer initiates playback of a
indicates the current position of playback within the video different video (functionality not shown in this figure) eth
and it can be used to reposition playback. TextDialog will update with the name of the video, and a
Video playback is synchronized with annotation display. _correspondlng annotation sequence, if one exists, is tbade
Each annotation in the supplied sequence of annotationsinto theAnnDisplay.
has an associated time interval. When video playback is
within the time interval of an annotation, that annotatisn i

AnnDisplay

positioned at the center of the display. If a user clicks on ScrollBox Vbox AnnControl
an annotation, playback is repositioned to a time within the (lbrary) (tibrary) y
interval associated with that annotation. Yooren y heigh height, tme fime

ry
p height
height gnent height direction direction

5. Language Design Issues

A high-level overview of the design of the application is
shown in Figure 5. No events are shown at this level.

annotations

5.1 Bidirectional constraints

annotations

The constraints in our language are non-directional: two Figure 6. The layout of the annotations. TiserollBox ele-
variables related by a constraint can influence each Other’mentdisplaysavisible part of thBox, which is a document

depending on which variable has been set by a an event. In.,ntainer that stacks individual annotation elementstede
contrast, both dataflow programming and JavaScript's event ;, anncontrol.

drive programming are directional, akin to an assignment.

As a result, if bidirectional influence is desired, these-pro Figure 6 shows what is encapsulated within the AnnDis-
gramming models will have to express the two flows sepa- play component. This component specifies the layout of an-
rately, which may leads to larger programs and inconsisten-notations. The crucial subcomponent is AnnControl, which

cies in semantics between the two directions. creates one annotation text box for each annotation from the
The benefit of non-directionality of constraints shows up sequence of annotations. These boxes are not laid out in any
in several places in Figure 5. way by AnnControl—it does not constrain their coordinates.
Most importantly, time can be set by tAenDisplay com- The layout will be done by the Vbox component, which will
ponent, thevideoPlayer component, and thé&lider. Each stack these annotation boxes vertically. The ScrollBox wil
component can influence the others. then take the Vbox and display it in a viewport to which

In addition, one of th&oggleBtn components changesthe a scrollbar is attached. The ScrollBox and the Vbox come
play versus pause state of the player. In the other directionfrom a library, but they too are written in the constraint-lan
along the constraint, when the player finishes the video (in guage.

f Annotation 1

Annotation 2

Annotation 3

Annotation 4 (||)

K k Title: Foo.movie /

52 Directionality AmCotol
When we desire directional influences between variables, § B ik
they can be specified, too, using implications. height, -y height active = y=0 r——
.] - i t
Consider thénnControl component, in Figure 7, which is 3 % b _ R
responsible for moving the active annotation into the view- %} & v ey pache ey

port, as well as setting the time when an annotation is se-
lected by a mouse click. In the figure, the green box contains
a map combinator. The blue box is the component applied on
each element of the list of annotations. The result is the lis
of Boxes, one per annotation. In the blue box, the split each
annotation, which is a pair, into the text and the time inter-
val. The text is then used to create a box. The time interval s~ Figure7. The annotation control modul@nnControl.
used to establish a constraint that an active annotatiomeis o
whose internal contains the current time. So when the playerpaper. Instead, on a linguistic construct for strengthgttie
changed the time, this constraint makes appropriate annotaambiguous constraints system.
tions active. In the opposite direction, on a mouse click, an ConsiderAnnControl in Figure 7. When a mouse clicks
annotation is made active, which changes the global time.on a box, the value o#ctive becomes true, which forces
Note that we elide the width and the x coordinate. the value oftime to be within time interval of the clicked

In AnnControl, we desire a directional dependence be- annotation. There is, however, ambiguity as to which time
tweenactive and the value of. When an annotation is ac- from the interval to select. The constraints system, tloeecf
tive, the coordinatg must be zero, which has the effect of s ambiguous.
scrolling the annotation to the top of the viewport. However Which allow the programmer to state the following
we do not wish a dependence in the opposite direction: whenconstraint. The constraint says that at the moment when
the user scrolls the annotations, he may set the valye of active becomes true, the time must equal either the start
for some annotation to zero, but this should not influence or the end of the interval, depending on the direction in
the value ofactive because that would in turn influence the which the movie is playing. Note that these constraints hold
value of time; we wish to change the time of the playback whenactive transitions from false to true; one can think of
only when an annotation box is clicked. whenever is sending an event at this moment, and that event

asserts a constraint on the valudiofe.

ann.text ann.interval
ann

annotations

5.3 Ambiguous programs whenever active becomes true then
if direction = forward then time = interval.start

An ambiguousprogram contains a constraint system that) .
else time = interval.end

permits multiple solutions under some sequence of events.
Such a program is nondeterminate and it is the task of the
programmer to modify the constraint system to allow a
unigue solution under all sequences of events. We plan toAn inconsistenfprogram contains a constraint system that
use a model checker for detecting whether such a sequencéas no solution. The program may enter an inconsistent state
of events exists. We do not discuss the model checker in thisonly after a particular sequence of events. This subsection

5.4 Inconsistent programs

mandy; = y; +height +. ..+ height_,. These constraints
have no solution (unleseeight + ... + height_, = 0).

isininterval

active & time € interval The programmer could remove the inconsistency by
active time adding constraints that arbitrate among active annotstion
interval direction allowing at most one annotation to specify its absolute po-

Figure 8. A constraint module that permits multiple solu- sition. This solution, however, requires adding constsain
tions. amongthe annotations, which would require changing, in

Figure 7, themap operation, whose annotation constraints
are independent per annotation box, into a more complex
focuses on how the programmer modifies the constraint sys-fold operation that would build a network of constraints that
tem to remove the inconsistency. Our approach is to relax thetie annotation constraints together, increasing program-c
constraints and ask the constraints solver for an an optimalplexity.
solution. Instead, we propose to use a constraint system computes
To show the inconsistency in our application, let us first an optimal solution subject to specified constraints. Such a
describe how physical layouts are defined as constraints.constraint system may allow us to removed the inconsistency
Figure 9 shows a constraint modBox that stacks display by relaxing the constraints; that unique solution will then
elements on top of each other. LogicallyBox wraps a defined as the best solution. In our case study, this approach
list of display elements provided by another component in changes the constraiattive = y; = 0 to the constraint
a new display element. It computes the height of the new active = (minimize y such thaty > 0) (see Figure 10).
element and places constraints on the positigasdf the ~ When two annotations are active, thecoordinate of only
stacked elements. The positions are a function of the elemenone will be set to zero, which removes the consistency.
heights. The actual positions of these elements depenaon th In our future work, we will explore more case studies, to
placement of th&Box in its parent. see whether optimization constraints simplify the task of
Recall that integrating layout and reactivity is one of creating consistent programs.
the goals (in today’s browsers, the context switch between

the active scripting and layout is very expensive). Figure 9 L 1. ;
shows that the layout style is under the programmer control | | Box ‘
. s e . . eight;| !) mouseClick
and the layout constraints are indistinguishable fromehos ——p height active o —
.] . isininterval
constraints that react to events. 3 f = miny s y=0 i
Yl y active active time -4 time
§ k—J interval direction |

Yo
4 height,

Li" direction

ann.text ann.interval
ann

Yy
4 height,

annotations

Figure 10. Revised AnnControl. To avoid contradicting
constraints, the coordinate is minimized rather than set to
0.

height

5.5 Programming by Demonstration
Figure 9. A VBox layout container contains a set of con-

. : . Declarative programming stateghat should be computed,;
straints that vertically stacks boxes attached on the.right prog g P

it abstracts away frorhowthe program computes the val-
ues that meet the specification. This very property, usually
We are now ready to illustrate a scenario in which desirable, may make declarative programming harder than
our program reaches an inconsistent state. Consider agairan “operational” one because constraints may be difficult to
AnnControl in Figure 7, which links the position of an an- debug. Indeed, programmers may sometimes prefer to show
notation box with the current video time. WhannControl, the steps of the computation. The scrollbox component in
which creates annotation boxes, is composed wiox, Figure 11 may be one such example. This component in-
which lays them out, the programm has no solution when cludes two subcomponents that specify the size of the scroll
multiple annotations are active at the same time. If two anno bar, and the position of the content box within the viewport.
tations overlap in time, they both want to be displayed at the These are mere linear constraints but they are somewhat dif-
top of the scroll box, which is demanded by constraints- ficult to write correctly. We think that meta-programming
0 andy; = 0, for somei < j. These constraints must hold in by demonstration could simplify constraint programmiriig: i
conjunction with the layout constraints ¥fBox, which de- the programmer demonstrated the result of the program on

a sufficient set of corner case examples, the constraints carplayer application, the current annotation to be displaysad

be inferred from these examples, which constrain the con- be dictated by both the player itself and the user through the

straints. use of the scrollbar. For this reason, the annotation cthatro

has two modes: one when the player is in control and an-

Viewport other one when the scrollbar is (c.f. Figure 12). The sceollb

heighf R ﬁeigm relinquishes the control of the annotations when the user re

leases the mouse from scrollbar; we do not wish to switch the

ScrollBar mode back to the player immediately, though, as that would

fowHeight Vot instantly scroll the annotations, creating a surprisirfgaf

PO er Instead, we want to delay the switch until the next annatatio
becomes active. We delay this action using an event that fires
when any annotation becomes active. SO, firign an event on
a transition achieves the desired temporal constraint.

ScrollBox

pos

barSize

barDragged § viewHeight

barSize

melnControl

Figure 11. The scroll box container. Displays another box
within a viewport. The two (linear) constraints specifying
the position and size of the scroll bar are somewhat tedious .
to write and could be solved with user demonstration. 6. Parallelism
In this section we discuss how we plan implement paral-
. . lel constraint solving. We explain why a constraints-based
5.6 Abstraction (modularity) language may simpﬁfy parallglization);f the layout compu-
The component-based architecture of the language makes itation. The discussion here is informed by our experience
very easy for the programmer to identify the modules and with parallelizing a web browser [9]. As part of the project,
their interdependencies in a program. Furthermore, it nat- we have been working on parallel algorithms for webpage
urally offers several levels of abstraction to help the pro- layout [10]. We have found the parallelization task difficul
grammer. A component and its interactions with others can for two reasons. First, the CSS layout constraints are speci
be analyzed by treating all the components as black boxesfied informally [4] and are at times ambiguous. Second, the
(c.f. Figure 5). Moreover, the subtle constraints restiict web page layout constraints are an instance towa lay-
the ports of a component can be understood by looking atout style, which lays out a document element after the previ-
its inner content while abstracting the rest of the worldyawa ous comments have been positioned. A flow layout performs
(c.f. Figure 9). an inorder tree traversal and is therefore inherently seque
To build libraries of reusable components, a subtyping tial. We were able to parallelize the flow layout by isolating
relation between components may need to be defined. Wefive consecutive layout phases, each of which performs ei-
are currently working on a suitable definition of subtyping; ther preorder or postorder a tree traversal and thus exposes
should a subtype have more or less behaviors than its superan opportunity for parallelization.
type? The technical challenge is to automate this decomposi-
tion of an inorder traversal of the document tree into a se-
guence of parallel tree traversals. That is, given a tree con
straint structure, which subtrees can be solved indepénden

5.7 Temporal Constraints

R TS TIPSO . of its siblings? The problem is made harder by the bidirec-
) roseClick tional nature of layout constraints: sometimes, the hagat
hem"f' gt o mode = Pr—. document element is computed from its subelements, while
N { y(ey Ll e el e sometimes the maximal height of a parent element is given
; C me =) intenel _drecton and the height or margins of its subelements are computed
‘ L4 drecion so that they are spread equally within the parent element.
‘ To identify parallelism, we plan to exploit the hierarcHica
; ‘ structure of the constraint system. Figure 6 shows a part of
e | the hierarchical document structure: BollBox is a parent
mode oo of theVBox, which in turn contains the individual elements,
Figure12. The annotation control modul&nnControl with one per annotation, createdAnnControl. We hope to design
two scolling modes. component signatures that will inform the parallelizer of

dependences among port components. For example, if the
There is no need to extend the language to express tempo¥Box component is informed that the value ledight does
ral constraints. In fact, they can be express with eventgif w not depend on the value g¢f, then the chain of additions in
allow components to fire events. For instance, in the movie VBox can be performed with a parallel adder tree.

7. Open Problems and Related Work To enable reuse of code, components will have to be more

The essential features of the language have been designef’0dular. Convenient and easy to use component libraries
but a few important extensions are still on the table. For ex- Mightrequire more language supportthan we currently have.

ample, we plan to design a dedicated sublanguage for animaln parti.cular, we will have to investigate whether a se@ibl .

tion and provide safe features for asynchronous interactio SUPYPINg relation between components can be defined in
with the server [7]. Also, several features needed to make term of behaviors. .

the language practical are missing. Finally, we are the first Fma_lly, even_though we handle events atomically, races
to admit that, in addition to more design work, a lotis leftto MaY arise ata higher level of abstraction. As we show in [7],

be understood about the implications of the design choicesPOth intéractions with the server and animations may pro-

we have already made. This section outlines these remainingduce, races. In the former case, this happens when there are
questions. multiple outstanding requests to the server and the reggons

The most interesting are the less apparent implications of arrive out of order. We hope to design linguistic support tha
mixing events with constraints will have to be uncovered. €nables out-of-order messages (for performance reasoins) b
There have been a fair amount of work in extending con- &/10ws the programmer to specify how to handle messages
straint system with reactivity, notably [6] and [12]. It it that arrive (_early. This spec_|f|cat|on.should be given in t&rm
clear to the authors whether the methods presented in thes@f the application semantics, not in the terms of low-level
two papers for finding solutions are applicable to our lan- messages timestamps. For _example, to handle two back-to-
guage. In tcep [12], the handling of one event produces the P2Ck USer requests to zoom into a map, the programmer may
constraint system for the next event. We have instead choserf/@nt to state that the screen is allowed to display a stale map
to (largely) fix the constraint system and update its sofutio 1€ (0ne corresponding to the request before the last aae) b
minimally in response to an event. We suppose that one cancaUSe Seeing at a map at a wrong zoom level is better than
convert from our minimal-update semantics to that of tccp, Waiting for the correct map to appear.
butitis unclear to us how small and natural the conversionis
It is also interesting to consider whether our minimal-upda 8. Conclusion

semantics is a good fit for all programs from the domain of Thi d i imi desi fal ¢
browser programs. We expect that programmers may want 'S paper describes a preliminary design ot a fanguage for
web browser programming. Our goal is to integrate script-

to design custom update policies, and we do not know how .

difficult it will be for the programmer to ensure that there is ing and page layout, while raising the level OT abstrac_non
always a unique minimal update. of JavaScript and HTML/CSS — the respective solutions

Furthermore, cycles in the constraints network will make for :che two proglemds . anq S|mtl_ltatnedogsl3|{ |mtprtQV|ng tfhte|r
the task of finding solutions much harder. In fact, if cycles performance. ©ur design 1S motivated by Timitations of to-

are allowed, it is possible to encode latches. Thus, it is no day’s browser programming (as reported to us by program-

: . : . __mers and browser developers) and by some experience with
longer possible to describe a component as a relation since pers) y P

its inner latches can store state (see the discussion oéhidd fundctlonatljreatcnv_e prlogran:mlndg in the brOV_/;she::Ewe_ hadl?Lur
variables in Section 3). We will have to investigate whether 3\7 t;rgl_ra u?he? |mpﬁmen an grog;am lN' di apj?i(h[d])‘
the client side of a web application can be entirely staseles ¢ believe thal we have a good understanding of the do-
Clearly, browser programs will need state, for example to main and we describe an approach for combining constraints

cache email messages in an email client application. How- and events that appears natural for this domain. This paper
ever, it may be possible to store the cache in a client-sidealso describes how inconsistent and ambiguous constraint
data’base and access it from the program as if it was on asystems may arise in this doma"?- and we suggest how pro-
server, keeping the program stateless. Finally, we have con ir?r;nmers_maty céea(ljwﬁh thgm V(\j”th tdhe piropdossed Itgnggallgtt-:-.
veniently ignored a question when presenting the language otremains to be designed and understood. Section 7 1ists
semantics: "what is the logic of constraints?” It seems that
layoutneeds conditional linear constraints but what are the
constraints needed by the scripting logic?

Finding an efficient way to find solution to _the con_straint References
tnuergv(c))frlfssu\(l:vf:llnbeiwcgralllse\l;]vﬁ:neggﬁa\lll\)/?ez?Jze(;)t]t?ar(lltegzr?l:i?: B:; [1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman.
) ' - Structure and Interpretation of Computer ProgramdlIT

allelism as possible. State-of-the-art SMT solvers [2]ehav Press, Cambridge, Mass., 1985.
made tremendous progress the last five years; we hope to [2] Clark Barrett, Silvio Ranise, Aaron Stump, and Cesare
tallke .advantag(; of the_m' w}orfovheri CSPd([]'A']I) SOIg?rS gi/lv'l? Tinelli. The Satisfiability Modulo Theories Library (SMT-
goslsé?;p(::o;/e[SDyreusmg e techniques developed for LIB). wwx. SMT- LI B. or g, 2008.

the known unknowns, and we hope that the discussion at the
workshop will uncover the unknown unknowns [13].

[3] Ras Bodik, Justin Bonnar, and Doug Kimelman. Produttivi
programming for future computersIT, 2009.

[4] Bert Bos, Tantek Celik, lan Hickson, and Hakon Wium
Lie. Cascading style sheets level 2 revision 1 (css 2.1)
specification. http://www.w3.0rg/TR/CSS2/, 2009.

[5] lan P. Gent, Chris Jefferson, and lan Miguel. Minion: Atfa
scalable constraint solver. In: Proceedings of ECAI 2006,
Riva del Gardapages 98-102. IOS Press, 2006.

[6] Pascal Van Hentenryck. Scheduling and packing in the con
straint language cc(fd). N INTELLIGENT SCHEDULING.
ZWEBEN AND FOX (EDSMorgan Kaufmann, 1994,

[7] James Ide, Rastislav Bodik, and Doug Kimelman. Concur-
rency concerns in rich internet applications. Hrploiting
Concurrency Efficiently and Correctly (EC2), CAV 2009
Workshop 2009.

[8] Radha Jagadeesan, Will Marrero, Corin Pitcher, andy\#ja
Saraswat. Timed constraint programming: a declarative
approach to usage control. In Pedro Barahona and Amy P.
Felty, editorsPPDP, pages 164-175. ACM, 2005.

[9] Christopher Grant Jones, Rose Liu, Leo Meyerovich, &rst
Asanovic, and Rastislav Bodik. Parallelizing the web
browser. InFirst USENIX Workshop on Hot Topics in
Parallelism (HotPar '09) 2009.

[10] Leo Meyerovich. Fast webpage layout. http://pbrovgmyglecode.com/
svn/trunk/layout/match/writeup/rulematching.pdf, 200

[11] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H.
Cooper, Michael Greenberg, Aleks Bromfield, and Shriram
Krishnamurthi. Flapjax: A programming language for
ajax applications. IriThe International Conference on
Object Oriented Programming, Systems, Languages and
Applications (OOPSLA 20092009.

[12] Vijay A. Saraswat, Radha Jagadeesan, and Vineet Gupta.
Foundations of timed concurrent constraint programming. |
Proceedings of the Ninth Annual IEEE Symposium on Logic
in Computer Sciencepages 71-80. IEEE Computer Press,
1994.

[13] Hart Seely. The poetry of D.H. Rumsfeld.
http://www.slate.com/id/2081042/, 2003.

[14] Roland H. C. Yap. Constraint processing by rina dechter
morgan kaufmann publishers, 2003, hard cover: Isbn 1-
55860-890-7, xx + 481 pageFheory Pract. Log. Program.
4(5-6):755-757, 2004.

