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Abstract

Phrase Alignment Models for Statistical Machine Translation

by

John Sturdy DeNero

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Dan Klein, Chair

The goal of a machine translation (MT) system is to automatically translate

a document written in some human input language (e.g., Mandarin Chinese) into

an equivalent document written in an output language (e.g., English). This task—so

simple in its specification, and yet so rich in its complexities—has challenged computer

science researchers for 60 years. While MT systems are in wide use today, the problem

of producing human-quality translations remains unsolved.

Statistical approaches have substantially improved the quality of MT systems by

effectively exploiting parallel corpora: large collections of documents that have been

translated by people, and therefore naturally occur in both the input and output lan-

guages. Broadly characterized, statistical MT systems translate an input document

by matching fragments of its contents to examples in a parallel corpus, and then

stitching together the translations of those fragments into a coherent document in an

output language.

The central challenge of this approach is to distill example translations into

reusable parts: fragments of sentences that we know how to translate robustly and

are likely to recur. Individual words are certainly common enough to recur, but they

often cannot be translated correctly in isolation. At the other extreme, whole sen-
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tences can be translated without much context, but rarely repeat, and so cannot be

recycled to build new translations.

This thesis focuses on acquiring translations of phrases : contiguous sequences of

a few words that encapsulate enough context to be translatable, but recur frequently

in large corpora. We automatically identify phrase-level translations that are con-

tained within human-translated sentences by partitioning each sentence into phrases

and aligning phrases across languages. This alignment-based approach to acquiring

phrasal translations gives rise to statistical models of phrase alignment.

A statistical phrase alignment model assigns a score to each possible analysis of a

sentence-level translation, where an analysis describes which phrases within that sen-

tence can be translated and how to translate them. If the model assigns a high score

to a particular phrasal translation, we should be willing to reuse that translation in

new sentences that contain the same phrase. Chapter 1 provides a non-technical intro-

duction to phrase alignment models and machine translation. Chapter 2 describes a

complete state-of-the-art phrase-based translation system to clarify the role of phrase

alignment models. The remainder of this thesis presents a series of novel models,

analyses, and experimental results that together constitute a thorough investigation

of phrase alignment models for statistical machine translation.

Chapter 3 presents the formal properties of the class of phrase alignment models,

including inference algorithms and tractability results. We present two specific mod-

els, along with statistical learning techniques to fit their parameters to data. Our

experimental evaluation identifies two primary challenges to training and employing

phrase alignment models, and we address each of these in turn.

The first broad challenge is that generative phrase models are structured to prefer

very long, rare phrases. These models require external pressure to explain observed

translations using small, reusable phrases rather than large, unique ones. Chapter 4

describes three Bayesian models and a corresponding Gibbs sampler to address this
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challenge. These models outperform the word-level models that are widely employed

in research and production MT systems.

The second broad challenge is structural: there are many consistent and coherent

ways of analyzing a translated sentence using phrases. Long phrases, short phrases,

and overlapping phrases can all simultaneously express correct, translatable units.

However, no previous phrase alignment models have leveraged this rich structure to

predict alignments. We describe a discriminative model of multi-scale, overlapping

phrases that outperforms all previously proposed models.

The cumulative result of this thesis is to establish model-based phrase alignment as

the most effective approach to acquiring phrasal translations. Only phrase alignment

models are able to incorporate statistical signals about multi-word constructions into

alignment decisions and score coherent phrasal analyses of full sentence pairs. As

a result, phrase alignment models outperform classical word-level models in both

generative and discriminative settings. This result is fundamental to the field: the

models proposed in this thesis address a general, language-independent alignment

problem that arises in all state-of-the-art statistical machine translation systems in

use today.
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Chapter 1

Introduction

This thesis proposes model-based techniques to solve the central learning problem

in statistical machine translation: how to identify phrasal translations in parallel

corpora. This chapter provides a non-technical introduction to statistical machine

translation and the phrase alignment problem. Chapter 2 provides a detailed technical

description of a full phrase-based translation pipeline, which includes the existing

baseline approach to identifying phrasal translations. The novel contributions of this

thesis begin in Chapter 3.

1.1 Statistical Machine Translation

Soon after the first electronic computers became available, Warren Weaver (1949)

proposed that computers might one day be able to take as input a document written

in some natural human language, and automatically produce an equivalent document

written in some target language—a task that we now refer to as machine translation

(MT). After 60 years of research and development, the machine translation services

that are now freely and widely available receive hundreds of millions of requests each

week (Helft, 2010). The approach that underlies today’s best performing systems is
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Chapter 1. Introduction

rooted in statistical learning theory.

Broadly characterized, statistical MT systems translate a source-language input

document by matching fragments of its contents to documents that have already been

translated by people, and then stitching together the corresponding human transla-

tions of those fragments. All knowledge of how to translate is implicitly expressed in

a large collection of human-translated documents, called a parallel corpus. Parallel

corpora are naturally occurring phenomena: many news articles, transcriptions of

government proceedings, corporate marketing materials, and personal websites are

regularly published in multiple languages.

Statistical MT systems are statistical in that they choose among many possible

ways of translating a document using statistics gathered from a parallel corpus. They

employ statistical learning techniques to make those decisions. In particular, the

parameters of a system are trained to guide the translation engine toward outputs

that closely match human reference translations.

This general approach to translating using parallel corpora is complicated by the

fact that fragment-level translations must be discovered in translated documents.

Documents do not come annotated with how they decompose into smaller, translat-

able units. This discovery process is challenging because language is full of nuance

and ambiguity, and any given language fragment, however short or long, can and will

be translated in many different ways. Nonetheless, this task of discovering translat-

able fragments is fundamental to statistical MT systems and is the primary focus of

this thesis.

1.2 The Task of Translating Sentences

As a simplifying assumption, machine translation systems generally assume that each

sentence within a document can be translated independently of the rest. Sentence
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Chapter 1. Introduction

independence affects all aspects of the task: training conditions, test conditions, and

evaluation measures. We will consider each of these sub-tasks in turn in order to

precisely define a translation task.

1.2.1 Learning from Example Translations

The vast majority of statistical MT systems today are trained on parallel corpora that

consist of sentence pairs.1 Each sentence pair is a pair of sentences, each of which is

a translation of the other.2

The collection of sentence pairs is analyzed as a whole in order to train a model of

translation that will generalize effectively to new sentences. In particular, a phrase-

based translation system searches the parallel corpus for phrase pairs. A phrase pair

is a pair of contiguous sequences of words—one phrase in each language—that are

translation-equivalent in some contexts. These phrase pairs are stored along with

their frequency statistics, and they serve as the building blocks of novel translations.

Statistical MT systems do vary in the precise form of the patterns that they

harvest from parallel corpora; some allow discontiguous phrases or syntactically an-

notated fragments. However, the common character of statistical MT systems is that

they discover and count translated language fragments (e.g., phrase pairs) automati-

cally in parallel corpora using statistical learning techniques.

1.2.2 Translating New Sentences

Open-domain machine translation systems are typically tasked with translating novel

sentences that do not appear in any parallel corpus available to the system. Statistical

1Such collections are typically denoted sentence-aligned parallel corpora.
2No regard is given to which sentence was the original (or whether they are both translations of

some original third sentence).
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Chapter 1. Introduction

systems consider many candidate translations, each formed by recycling fragments

from previously observe sentences, and choose among those candidates using a linear

scoring function called a model. The space of candidates is large for several reasons.

For an input sentence to be translated, there are typically many ways of partitioning

that sentence into phrases that have been observed previously in the parallel corpus.

Phrases are often observed multiple times with different phrasal translations. Beyond

choosing a phrasal segmentation of the input and a way of translating each phrase,

a system must decide how to order those translations into a coherent sentence in the

target language. Considering all of these variants when translating naturally occurring

sentences, which can often contain 60 words or more, is a challenging search problem.

Statistical translation models integrate several sources of information into their

scoring functions. The two most important sources are frequency statistics on the

phrase pairs used and the language model, a phrase-factored model of how likely a

proposed output sentence is to occur in the output language. These model features

are discussed in more detail in Chapter 2.

1.2.3 Evaluating System Output

The evaluation of machine translation systems is an active research area in itself.

While human judgements of output quality are regularly solicited, the field primarily

relies on automatic measures of output quality to track progress. Automatic measures

have several advantages: they are replicable, fast, easily shared, easily employed, and

cost effective. Of course, the challenge of evaluation is to devise a measure of output

quality that correlates well with true output quality and human judgments.

Throughout this thesis, we use the Bilingual Evaluation Understudy (BLEU) met-

ric (Papineni et al., 2002). Despite some known issues, BLEU is the de facto standard

for automatically evaluating statistical machine translation systems. It is a precision-
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based evaluation measure that quantifies the overlap in contiguous phrases between

the proposed output translation and a set of human reference translations. BLEU

collects precision statistics on a per-sentence basis, but these statistics are aggregated

over a test corpus to provide a more statistically robust evaluation.

1.3 The Role of Alignment Models

The core statistical learning problem in machine translation is to automatically dis-

cover and count the phrase pairs present in a large parallel corpus. For a single

sentence pair, we must first determine how the words, idioms, and constructions of

each sentence correspond to those of its translation. This problem of determining

correspondence is called alignment. Determining the alignment between translations

allows us to identify phrase pairs.

Alignment models are statistical models that score proposed alignments between

sentences. In this thesis, we will consider both generative models, which are trained

to explain the observed sentences via an unobserved alignment, and discriminative

models, which are trained to match human-generated reference alignments. While

discriminative models have been shown to outperform generative ones, generative

models are preferred in practice because they do not require annotated alignments—

instead they induce alignments automatically from raw parallel corpora.

1.4 Word Alignment and Phrase Alignment

Phrase-based statistical machine translation systems generate translations that de-

compose into phrases, where each output phrase corresponds to exactly one input

phrase, and vis versa. These symmetric phrasal matchings have proven to serve as a

useful structured output space that can be scored efficiently and effectively to generate
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Chapter 1. Introduction

high quality translations.

However, the alignment models that are used to extract phrasal translation pairs

from parallel corpora typically do not employ this symmetric phrase matching struc-

ture, but instead allow words to align more freely. In particular, the classic word

alignment models still in widespread use today allow alignment structures that do

not respect phrasal contiguity and are not symmetric. While subsequent chapters

describe this contrast in detail, it will suffice for present purposes to observe that

there is a discrepancy between the structure of alignments used to analyze a par-

allel corpus and the structure of translations generated by a phrase-based machine

translation system. This discrepancy has various negative consequences: heuristics

must “clean up” the spurious alignments generated by classical models, alignment

models are unable to learn multi-word phrasal patterns in the data directly, and the

structural divergence forces the use of relatively crude estimators for phrasal models.

All of these issues can be addressed by replacing word alignment models with phrase

alignment models.

1.5 Contributions of this Thesis

The purpose of this thesis is to evaluate the following hypothesis: phrase alignment

models will lead to higher quality translations relative to word alignment models in

phrase-based machine translation systems.

In order to evaluate this hypothesis, we describe learning techniques for alignment

models that directly predict symmetric phrase alignments. The output of these phrase

alignment models is compared to state-of-the-art word alignment baselines. The

effectiveness of these techniques is established experimentally in a series of alignment

and machine translation experiments.

The specific contributions of this thesis include:
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• Complexity analyses for the phrase alignment model class,

• Inference algorithms for this model class,

• Empirical results for phrase-factored generative models,

• An analysis of the degenerate behavior of maximum likelihood estimators for

phrase-factored generative models,

• Bayesian priors for joint and conditional generative models.

• A Gibbs sampler for phrase-factored models,

• Empirical results for Bayesian generative models,

• Empirical results for discriminative phrase models, and

• Definitions, inference algorithms, and empirical results for extraction set models.

The cumulative result of this thesis is to establish model-based phrase alignment as

the most effective approach to acquiring phrasal translations. Only phrase alignment

models are able to incorporate statistical signals about multi-word constructions into

alignment decisions and score coherent phrasal analyses of full sentence pairs. As

a result, phrase alignment models outperform classical word-level models in both

generative and discriminative settings. This result is fundamental to the field: the

models proposed in this thesis address a general, language-independent alignment

problem that arises in all state-of-the-art statistical machine translation systems in

use today.
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Chapter 2

Phrase-Based Statistical Machine

Translation

Phrase-based statistical MT has become a dominant approach to fast, large-scale,

open-domain machine translation. This chapter describes the key technical details of

such systems and concludes with an overview of the baseline approach to discovering

phrase pairs. We compare to this baseline throughout this thesis.

2.1 Notation for Indexing Sentence Pairs

We consider the task of translating an input sentence f into an output sentence e.1

Sentences will be treated as sequences of word tokens, each of which is drawn from

the vocabulary of word types E and F . Within a sentence, ei and fj denote the words

in position i of e and in position j of f , respectively, where e and f are 0-indexed.

Phrase-based translation operates on contiguous subsequences of sentences, which

1The variables f and e are standard for historical reasons, with f denoting a French sentence
and e denoting an English sentence. All examples and experiments in this thesis translate some
non-English language into English, in order to remain consistent with this notation and to ensure
that examples are intelligible to English-speaking readers.

8
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we call phrases. We use fencepost indexing to denote phrases: the span e[g:h) with

g < h refers to the phrase of e beginning at position g and ending at position h− 1.

Likewise, [k : `) denotes a span of f .

2.2 Training Pipeline for Phrase-Based MT

Phrase-based translation systems are typically batch-trained offline using some fixed

set of data. Once a model of translation is learned, it is applied to new sentences, but

the model is not adapted or trained online. Training the model involves a pipeline

of steps that combine statistical learning techniques, heuristics, and large-scale data

processing.

2.2.1 Phrasal Model Representation

The phrase-based model we wish to learn via this pipeline scores the space of well-

formed, phrase-segmented, and phrase-aligned sentence pairs, often called derivations.

A derivation d = (e, f ,P) consists of the input word sequence f , the output sequence

e, and a set P of aligned spans, e.g. [g : h)⇔ [k : `).

In well-formed derivations, P defines a phrasal partition of each sentence, along

with a bijective (one-to-one and onto) mapping of the phrases in f to the phrases in e.

Formally, let the expression ts∈Ss = T denote that the set of spans S is a partition

of the set T : all s are pairwise disjoint, but the union over all s ∈ S equals T . In a

well-formed derivation (e, f ,P), the following two properties must hold:

t[g:h)⇔[k:`)∈P [g : h) = [0 : |e|)

t[g:h)⇔[k:`)∈P [k : `) = [0 : |f |) .

9
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The model itself is a linear model that conditions on the input f , and factors over

features φT on the aligned spans of P , as well as features φL on k-length spans of the

output e, where k is the order of a language model.

s(e, f ,P) = θ ·

 ∑
[g:h)⇔[k:`)∈P

φT (e[g:h), f[k:`)) +

|e−k|∑
i=0

φL(e[i:i+k))

 . (2.1)

Conceptually, the features φT are typically functions of the phrase pair type, and

they collectively ensure that each phrase is adequately translated. The features φL

promote fluency and proper length of the output. Of course, this linear form is

quite general, and a host of additional effective features have been proposed that blur

the distinction between adequacy-focused “translation model” features and fluency-

focused “language model” features (Carpuat and Wu, 2007; Gimpel and Smith, 2008;

Blackwood et al., 2008). Despite these advances, most systems use a low dimen-

sional feature space with between 6 and 30 features. Each feature typically requires

substantial data processing to compute, in the form of aggregating statistics over a

large corpus of text. The canonical features that drive translation performance are

described in detail below, along with a brief survey of techniques to learn θ.

2.2.2 Training Data

Training begins with a sentence-aligned parallel corpus that is divided into a large

training set (often millions of sentences) in which phrase pairs are discovered, and a

small tuning set (typically on the order of 2,000 sentences) used to learn θ. Parallel

corpora are collected as collections of documents. These documents are divided into

sentences using a sentence splitter, e.g. Gillick (2009), and those sentences are paired

using a sentence aligner.

In addition to the parallel corpus, a large monolingual corpus in the output lan-

10
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guage is used to train a language model. We will not summarize the rich literature on

language modeling, but we do note that language models play a central and vital role

in modern statistical translation systems. Language models are likelihood-trained

Markov models of word sequences that are estimated from corpus n-gram counts and

smoothed, for example using Kneser-Ney smoothing (Kneser and Ney, 1995) or a

computationally convenient alternative, stupid back-off (Brants et al., 2007).

2.2.3 Phrase Pair Scoring

From the sentence pairs in the training set, reusable phrase pairs are identified,

counted, and scored. This stage of the pipeline has two complementary goals:

Phrase Pair Selection Among all pairs of input and output phrases that co-occur

in the same sentence pair, what subset should we consider to be reusable phrase

pairs (ē, f̄).

Relative Frequencies Given an input-language phrase f̄ , how often do we observe

ē as its translation? This relative frequency statistic is denoted Prel(ē|f̄). We

also compute the complementary statistic Prel(f̄ |ē) over possible translations

for each ē.

In addition to relative frequency statistics, systems often collect additional statis-

tics based on the lexical items contained within phrases (Och and Ney, 2004). In

aggregate, these features constitute φT in Equation 2.1

The specific models and learning techniques that select phrase pairs and estimate

their relative frequencies are the primary focus of this dissertation. Section 2.3 de-

scribes the baseline approach that is in common use today by state-of-the-art machine

translation systems.

11
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2.2.4 Tuning Translation Models

The full model used to select translations of novel inputs is the linear model defined

in Equation 2.1, which is parameterized by a weight vector θ. The most common

learning objective in machine translation is direct loss minimization on a tuning set

T of sentence pairs (e, f):

θ∗ = arg min
θ

L(

{
arg max
(e,f ,P)∈D(f)

s(e, f ,P) : f ∈ T
}
, {e∗ : (e∗, f) ∈ T}) . (2.2)

Above, D(f) is the set of all derivations (e, f ,P) that match f . This non-continuous,

non-differentiable, and often volatile objective function is typically optimized using a

coordinate descent procedure called minimum error rate training (Och, 2003).

2.2.5 Selecting Translations

Most statistical MT systems select an output e for novel input f by choosing the

highest scoring derivation (e, f ,P) that matches f .

arg max
(e,f ,P)∈D(f)

s(e, f ,P) .

This quantity also appears in Equation 2.2. Finding the highest scoring derivation

requires solving a search problem in the space of derivations.

Efficient search over the space of derivations can be performed via beam search

and dynamic programming (Koehn et al., 2003). We note that many other decision

objectives have been proposed that combine multiple derivations (Blunsom and Os-

borne, 2008), multiple output candidates (Kumar and Byrne, 2004; Li et al., 2009;

DeNero et al., 2009), and even multiple systems (Rosti et al., 2007; DeNero et al.,

2010). These extensions are important to improving the performance of statistical
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MT systems, but they are beyond the scope of this thesis.

2.3 Baseline Phrase Pair Extraction and Scoring

This section presents the standard approach to selecting and scoring phrase pairs in

a state-of-the-art phrase-based machine translation system, elaborating on the sum-

mary described in Section 2.2.3. This stage of a pipeline is itself a multi-stage learning

procedure, which includes word alignment, phrase pair extraction, and relative fre-

quency estimation.

2.3.1 Word Alignment

The pioneering work in statistical MT posited that sentence-to-sentence translation

could be modeled as a word-level stochastic process, wherein each word of f is gen-

erated independently by selecting some word e of e and then drawing a word f from

a learned bilexical distribution P(F = f |E = e), which is a conditional multinomial

over word types in F . Variants on these original models are still used today as the

primary means of inferring an alignment between the words of f and e in a sentence

pair.

The most widely used word alignment models assume that each word in f aligns

to (and is therefore generated from) exactly one word in e, but place no restriction

on how many different f ∈ f can align to some e ∈ e. Hence, the structure of an

analysis of a sentence pair is a many-to-one alignment from elements of f to elements

of e.

To capture these structural assumptions, alignment models posit a vector of

integer-valued alignments a, where aj = i indicates that word j of f aligns to word i of

e. During training, a is a latent variable in a model that has the following conditional

13
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parametric form, where the vector-valued random variables F and E take vectors of

word type values from F and E , and A is a random variable over vectors of integers.

P(F = f ,A = a|E = e) =

|f |−1∏
j=0

Pd(Aj = i|A0 . . . Aj−1) · Pb(Fj = fj|Ei = ei) .

Above, Pd is a Markov distribution over alignment positions, referred to as a

distortion model, and Pb is the bilexical conditional multinomial over word types.

Specific alignment models vary in the parametric form and Markov assumptions of Pd.

They may also contain an additional term to parameterize the number of alignments

to a particular position i in e, referred to as fertility model. However, the prediction

of word alignment models are primarily driven by Pb. The parameters of Pd and Pb

are set to maximize the likelihood of the observed f for each e, summing out over

the hidden a; this optimization can be achieved with the expectation-maximization

algorithm (Brown et al., 1993).

Generative alignment models of this form can be queried for their predictions

about the set A of word-to-word alignment links that describe the lexical correspon-

dence between the two translations in a sentence pair. A is typically taken to be

either the Viterbi alignment,

a∗ = arg max
a

P(F = f ,A = a|E = e)

A =
{

(i, j) : a∗j = i
}
,

14
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or a collection of alignment links (i, j) whose posterior exceeds a fixed threshold t,

P(A = a|F = f ,E = e) ∝ P(F = f ,A = a|E = e)

P(Aj = i|F = f ,E = e) =
∑
a:aj=i

P(A = a|F = f ,E = e)

A = {(i, j) : t ≤ P(Aj = i|F = f ,E = e)} .

Note that in the latter case, A may contain links from a position j to multiple i

if t ≤ 0.5, violating the one-to-many structure assumed by the model.

Typically, two word alignment models are trained on the same parallel corpus.

One generates f conditioned on e, and the other generates e conditioned on f . Hence,

we can generate two predicted alignments Af and Ae, respectively. A variety of

heuristics exist that merge these two alignment vectors into a single set of links

(Och et al., 1999; DeNero and Klein, 2007). These heuristics attempt to filter out

erroneous alignment links and produce an alignment structure that is more amenable

to the phrase extraction procedure that follows.

2.3.2 Phrase Pair Extraction

From word-aligned sentence pairs, we can enumerate and count all of the phrase pairs

that are consistent with the word alignment. These phrase pairs serve as the building

blocks of new translations, and their counts derive the most important statistical

features for scoring translations.

Phrase pair extraction defines a mapping from A = {(i, j)} to an extraction set

of bispans Rn(A) = {[g : h) ⇔ [k : `)}, where each bispan links target span e[g:h) to
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k

l

g h

2月

15日

2010年

On February 15 2010

2月

15日

2010年

On February 15 2010

σ(ei)

σ(f2)

σ(e1)

(a)

(b)

Type 1: Language-specific function 
words omitted in the other language 

Type 2: Role-equivalent word pairs 
that are not lexical equivalents

过

地球

[go over]

[Earth]

over the Earth 65%

31%

被

发现

[passive marker]

[discover]

was discovered

Distribution over 
possible link types

σ(fj)

年

过去

两

中

In the past two years

[past]

[two]

[year]

[in]

(a)

(b)

Figure 2.1: A word alignment A (shaded grid cells) defines projections σ(ei) and σ(fj),
shown as dotted lines for each word in each sentence. The extraction set R3(A) includes
all bispans licensed by these projections, shown as rounded rectangles.

source span f[k:`). The maximum phrase length parameter n dictates that

∀[g : h)⇔ [k : `) ∈ Rn(A) : max(h− g, `− k) ≤ n .

We can describe this mapping via word-to-phrase projections, as illustrated in

Figure 2.1. Let word ei project to the phrasal span σ(ei), where

σ(ei) =

[
min
j∈Ji

j , max
j∈Ji

j + 1

)
(2.3)

Ji = {j : (i, j) ∈ A} .

and likewise each word fj projects to a span of e. Then, [g : h)⇔ [k : `) ∈ Rn(A) if

and only if

σ(ei) ⊆ [k : `) ∀i ∈ [g : h) (2.4)

σ(fj) ⊆ [g : h) ∀j ∈ [k : `)

16



Chapter 2. Phrase-Based Statistical Machine Translation

That is, every word in one of the phrasal spans must project within the other.

This mapping is deterministic, and so we can interpret a word-level alignment A as

also specifying the phrasal rules that should be extracted from a sentence pair.

Among the bispans extracted from a word alignment are minimal bispans, which

do not contain extracted bispans within them, and composed bispans that contain

two or more bispans within their bounds. While the phrase pairs corresponding to

minimal bispans are sufficient to describe the lexical correspondence between the two

sentences of a sentence pair, composed phrase pairs capture additional context and

therefore can improve output quality at translation time.

Words that do not appear in any of the links of A are called null-aligned words,

and are often treated as special cases. A variety of approaches to handling null-aligned

words have been suggested (Och and Ney, 2004; Ayan and Dorr, 2006). According

to the definition above, for null-aligned i, σ(ei) = ∅, and so null-aligned words are

included in phrase pairs. A common restriction is to dictate that Rn(A) include a

bispan [g : h) ⇔ [k : `) only if none of the projections of the boundary words of the

bispan — σ(eg), σ(eh−1), σ(fk), or σ(f`−1) — are empty.

2.3.3 Relative Frequency Features

All phrase pair types (ē, f̄) are then scored by a pair of relative frequency features,

which express how often a given translation has been observed for a given phrase,

relative to other observe translations of that phrase:

Prel(ē|f̄) =
count(ē, f̄)∑
ē′ count(ē′, f̄)

; Prel(f̄ |ē) =
count(ē, f̄)∑
f̄ ′ count(ē, f̄ ′)

(2.5)

Above, count(·) denotes how many times a phrase pair corresponded to some

bispan [g : h) ⇔ [k : `) ∈ Rn(A) for a word-aligned sentence pair (e, f ,A) in the

parallel training corpus.

17



Chapter 2. Phrase-Based Statistical Machine Translation

These conditional distributions effectively distinguish between frequent and infre-

quent phrasal patterns in the parallel corpus. However, we note that the pipelined

approach by which these probabilities have been estimated does not correspond to

a probabilistic generative model of the data. In particular, these phrase pair counts

do not capture the uncertainty of the underlying word alignment models. Moreover,

they are never re-estimated, despite the underlying uncertainty about how phrases

correspond to phrases in a sentence pair. Hence, this pipeline for learning phrase pairs

does not use the frequency information computed via Equation 2.5 to propose better

alignments of the training corpus. Nonetheless, this baseline approach to phrase pair

extraction and scoring has proven effective and robust in a large number of different

systems and language pairs.
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Chapter 3

Phrase Alignment Models

As described in Chapter 2, phrase-based systems capture statistical knowledge of

translation equivalence by collecting phrase pairs and their frequency statistics from

parallel corpora. These statistics are typically gathered by fixing a word alignment

and applying a deterministic phrase extraction procedure to word-aligned sentence

pairs. Alternatively, phrase pairs can be identified and counted using a statistical

phrase alignment model.

Phrase alignment models are statistical models that score proposed alignments

according to the phrase pairs they contain, rather than by their word-to-word links.

That is, the score of a set of alignment links A factors over the phrases implied by

A, rather than word links within it.

Phrase alignment models have several advantages over the standard word-alignment-

based pipeline presented in Section 2.3:

1. Phrase alignment models induce distributions over phrase pairs that have in-

terpretable probabilistic semantics. That is, they express uncertainty over the

phrase pairs that should be counted in a sentence pair.

2. Training these models allows us to propagate frequency information about
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multi-word phrasal patterns among different sentences in a corpus, so that re-

peated instances of idioms reinforce a correct analysis. Word alignment mod-

els assume a word-to-word correspondence and independent generation of each

word. As a result, they often fail to identify and properly analyze multi-word

patterns in the data.

3. The independence assumptions of phrase models match those of phrase-based

translation models. Thus, phrase alignment models unify data representation

across the training and application stages of a machine translation pipeline.

This chapter investigates the computational and statistical properties of the phrase

alignment model class. In particular, we focus on phrase-factored alignment models,

which have scoring functions that factor over disjoint phrases. In addition to general

complexity results, we present two specific probabilistic models within this model

class.

3.1 The Phrase-Factored Model Class

Phrase-factored alignment models share the same derivation structure as phrase-based

translation systems, described in Section 2.2.1. They assign a score or probability to

all possible tuples (e, f ,P), where e and f are word sequences, and P is a set of bispans

that together describe phrasal partitions e and f , along with a bijective mapping from

the phrases in e to the phrases in f :1

t[g:h)⇔[k:`)∈P [g : h) = [0 : |e|)

t[g:h)⇔[k:`)∈P [k : `) = [0 : |f |) .
1ts∈S s = T denote that the set of spans S is a partition of the sequence T : all s are pairwise

disjoint, and
⋃

s s = T .
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The model score is a sum over potentials φ on bispans, where φ may take sentence-

specific values that condition on the word sequences e and f :

s(e, f ,P) =
∑

[g:h)⇔[k:`)

φ([g : h)⇔ [k : `)) . (3.1)

Equation 3.1 defines the factorization of scores for the phrase-factored alignment

model class. The precise definition of φ(·) varies with the particulars of the model.

Because the model score factors over phrase pairs in Equation 3.1, we can define

the score of all possible derivations (e, f ,P) for a sentence pair simply by assigning

a potential to each possible bispan within it. Let a weighted sentence pair (e, f , φ)

include a real-valued potential function φ : {[g : h)⇔ [k : `)} → R, which scores

bispans. For the purpose of analyzing inference complexity of this model class, we

impose no additional restrictions on φ.

Phrase-factored alignment models can have a probabilistic interpretation. Any

model can be used to induce a distribution over derivations,

Pr(e, f ,P) ∝
∏

[g:h)⇔[k:`)

exp(φ([g : h)⇔ [k : `))) ,

which can be normalized to produce a distribution over well-formed alignments,

Pr(P|e, f) =
Pr(e, f ,P)∑
P ′ Pr(e, f ,P ′) ,

which can in-turn be marginalized to produce probabilities of individual bispans,

Pr([g : h)⇔ [k : `)|e, f) =
∑

P:[g:h)⇔[k:`)∈P

Pr(P|e, f) .

Furthermore, generative probabilistic models generally consider each bispan to be
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drawn from some distribution, and therefore,

0 ≤ exp(φ([g : h)⇔ [k : `))) ≤ 1 .

3.2 Inference in Phrase-Factored Models

Model inference refers to the set of computations that systematically aggregate in-

formation across the entire space of derivations for a sentence pair. In the case of

phrase-factored alignment models, inference procedures allow us to predict the highest

scoring P for a sentence pair (e, f), as well as to predict the posterior probability of a

particular [g : h)⇔ [k : `) appearing in P . Computing these phrase posteriors serves

as the basis for the probabilistic learning techniques that we explore in Section 3.6.

Exact inference in this model class is challenging. While the number of bispans

is quartic in the length of the sentence pair, the number of phrase alignments is

exponential. In this section, we show that search for the highest scoring derivation

is NP-hard, while computing bispan posteriors is #P-hard. We first define the ex-

act inference problems of interest and then analyze their complexity classes. These

complexity results were originally published by DeNero and Klein (2008).

For some restricted combinatorial spaces of alignments—those that arise in ITG-

based phrase models (Cherry and Lin, 2007) or local distortion models (Zens et al.,

2004)—inference can be accomplished using polynomial time dynamic programs. We

analyze these cases in Section 3.3.

3.2.1 Inference Problem Definitions

We consider four related inference problems for weighted sentence pairs. Let P be the

set of all phrase alignments P for a sentence pair (e, f).
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Optimization, O: Given (e, f , φ), find maxP∈P s(e, f ,P).

Decision, D: Given (e, f , φ), decide if ∃P ∈ P : s(e, f ,P) ≥ 1.

O arises in predicting the highest scroing P from a model. This inference problem

arises in the Viterbi approximation to EM that assumes probability mass is concen-

trated at the mode of the posterior distribution over alignments. It also arises in

prediction and discriminative training. D is the corresponding decision problem for

O, useful in analysis.

In addition to maximizing over P, we can also define summing inference problems.

Let P(g, h, k, `) = {P : [g : h)⇔ [k : `) ∈ P}.

Expectation, E: Given (e, f , φ) and g, h, k, `, compute
∑
P∈P(g,h,k,`) s(e, f ,P).

Sum, S: Given (e, f , φ), compute
∑
P∈P s(e, f ,P).

E arises in computing sufficient statistics for re-estimating phrase translation prob-

abilities (E-step) when training generative models. A polynomial time algorithm for

E implies a polynomial time algorithm for S, because we can compute the total sum

by adding together the sums for disjoint subsets. One such decomposition of P is

P =

|e|⋃
j=1

|f |−1⋃
k=0

|f |⋃
l=k+1

P(0, h, k, `) .

3.2.2 Complexity of O and D

For the space P of well-formed phrase alignments, problems E and O have long been

suspected of being NP-hard, first asserted but not proven in Marcu and Wong (2002).

We give a novel proof that O is NP-hard, showing that D is NP-complete by reduc-

tion from 3-SAT, the boolean satisfiability problem for sets of clauses with up to

three literals. This result holds despite the fact that the related problem of finding
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v1 ∨ v2 ∨ v3

v̄1 ∨ v2 ∨ v̄3

v̄1 ∨ v̄2 ∨ v̄3

v̄1 ∨ v̄2 ∨ v3

v1 v̄1 v̄2 v̄3v3v2v̄1 v̄1 v2 v̄2 v3 v̄3 v1 v̄1 v̄2 v̄3v3v2v̄1 v̄1 v2 v̄2 v3 v̄3

(a) (b) (c)

assign(v1)

assign(v2)

assign(v3)

(d)

v1 is true

v2 is false

v3 is false

Figure 3.1: (a) The clauses of an example 3-SAT instance with v = (v1, v2, v3). (b)
The weighted sentence pair wsp(v,C) constructed from the 3-SAT instance. All links
that have φ = 1 are marked with a blue horizontal stripe. Stripes in the last three rows
demarcate the alignment options for each assign(vn), which consume all words for some
literal.

an optimal matching in a weighted bipartite graph (the Assignment problem) is

polynomial-time solvable using the Hungarian algorithm.

A reduction proof of NP-completeness gives a construction by which a known

NP-complete problem can be solved via a newly proposed problem. From a 3-SAT

instance, we construct a weighted sentence pair for which alignments with positive

score correspond exactly to the SAT solutions. Since 3-SAT is NP-complete and our

construction requires only polynomial time, we conclude that D is NP-complete. D

is certainly in NP: given an alignment P , it is easy to determine whether or not

φ(P) ≥ 1.

3-SAT: Given vectors of boolean variables v = (v1, . . . , vn) and propositional clauses2

C = (C1, . . . , Cm), decide whether there exists an assignment to v that simul-

2A clause is a disjunction of literals. A literal is a bare variable vk or its negation v̄k. For instance,
v2 ∨ v̄7 ∨ v̄9 is a clause.
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v1 ∨ v2 ∨ v3

v̄1 ∨ v2 ∨ v̄3

v̄1 ∨ v̄2 ∨ v̄3

v̄1 ∨ v̄2 ∨ v3

v1 v̄1 v̄2 v̄3v3v2v̄1 v̄1 v2 v̄2 v3 v̄3 v1 v̄1 v̄2 v̄3v3v2v̄1 v̄1 v2 v̄2 v3 v̄3

(a) (b) (c)

assign(v1)

assign(v2)

assign(v3)

(d)

v1 is true

v2 is false

v3 is false

Figure 3.2: A particular bijective alignment that has score 1 under our SAT construction
can be interpreted as predicting a satisfying assignment for the original SAT instance.

taneously satisfies each clause in C.

For a 3-SAT instance (v,C), we construct f to contain one word for each clause,

and e to contain several copies of the literals that appear in those clauses. φ scores

only alignments from clauses to literals that satisfy the clauses. The crux of the

construction lies in ensuring that no variable is assigned both true and false. The

details of constructing such a weighted sentence pair wsp(v,C) = (e, f , φ), described

below, are also depicted in Figure 3.1. An example solution and interpretation of this

construction appears in Figure 3.2.

1. f contains a word for each C, followed by an assignment word for each variable,

assign(v).

2. e contains c(t) consecutive words for each literal t, where c(t) is the number of

times that t appears in any clause.

Then, we set φ(·, ·) = 0 everywhere except:
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3. For all clauses C and each satisfying literal t, and each one-word phrase e in e

containing t, φ(e, fC) = 1. fC is the one-word phrase containing C in f .

4. The assign(v) words in f align to longer phrases of literals and serve to con-

sistently assign each variable by using up inconsistent literals. They also align

to unused literals to yield a bijection. Let e(t,n) be the phrase in e containing

all literals t and n negations of t. By construction, e(t,n) is unique. Also, let

fassign(v) be the one-word phrase for assign(v). Then, φ(e[k:t), fassign(v)) = 1 for

t ∈ {v, v̄} and all applicable n.

Claim 1. If wsp(v,C) has an alignment P with s(P) ≥ 1, then (v,C) is satisfiable.

Proof. The score implies that f aligns using all one-word phrases and ∀ai ∈ P , φ(ai) =

1. By condition 4, each fassign(v) aligns to all v̄ or all v in e. Then, assign each v

to true if fassign(v) aligns to all v̄, and false otherwise. By condition 3, each C must

align to a satisfying literal, while condition 4 assures that all available literals are

consistent with this assignment to v, which therefore satisfies C.

Claim 2. If (v,C) is satisfiable, then wsp(v,C) has an alignment P with s(P) = 1.

Proof. We construct such an alignment P from the satisfying assignment v. For each

C, we choose a satisfying literal t consistent with the assignment. Align fC to the

first available t token in e if the corresponding v is true, or the last if v is false. Align

each fassign(v) to all remaining literals for v.

Claims 1 and 2 together show that D is NP-complete. Since solving O would

trivially provide the correct decision for D, O is NP-hard.

3.2.3 Complexity of E and S

With another construction, we can show that S is #P-hard, meaning that it is at

least as hard as any #P-complete problem. #P is a class of counting problems related
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to NP, and #P-hard problems are NP-hard as well.

Counting Perfect Matchings, CPM Given a bipartite graph G with 2n vertices,

count the number of matchings of size n.

For a bipartite graph G with edge set E = {(vj, vl)}, we construct e and f with n

words each, and set φ(e[j−1 :j), f[l−1 :l)) = 1 and 0 otherwise. The number of perfect

matchings in G is the sum S for this weighted sentence pair. CPM is #P-complete

(Valiant, 1979), so S and E are #P-hard.

3.3 Polynomial-Time Subclasses

While inference in unrestricted phrase alignment models is NP-hard, polynomial-time

inference procedures do exist for some restricted classes of models. In particular,

restricting the reordering of phrases yields polynomial-time dynamic programming

solutions.

3.3.1 Monotonic Alignments

A monotonic phrase alignment has the property that the kth phrase of e aligns to

the kth phrase of f , for all k. Under this restriction, The highest scoring P can be

computed using a polynomial-time left-to-right dynamic program (Problem O). Let

m(i, j) denote the most probable derivation for the sentence pair prefix (e[0:i), f[0:j)),

with m(0, 0) = 0. Then,

m(i, j) = max
i′:i′<i

max
j′:j′<j

{m(i′, j′) + φ([i′ : i)⇔ [j′ : j))}

Let n = max(|e|, |f |) be the number of words in a sentence pair. Then, the

dynamic program that corresponds to this recurrence has Θ(n2) states, each of which
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is computed via a maximum over Θ(n2) terms, yielding a Θ(n4) algorithm. Limiting

the length of phrases to k reduces the order of growth to Θ(n2 · k2). Replacing max

with
∑

and appropriately redefining m gives an identically structured algorithm for

summing over monotonic alignments.

Similar dynamic programs exist for distortion-limited phrase alignment models

that allow only local reordering patterns. For example, a constraint that the phrase

of e in position k aligns to some phrase of f with position in the range [k − r, k + r]

is polynomial in n, but exponential in r.

3.3.2 Inversion Transduction Grammars

Monotonic and distortion-limited alignments have linear ordering restrictions. We

can also define a subclass of phrase alignment models that have polynomial-time in-

ference procedures through hierarchical restriction on reordering. The most prevalent

example of a hierarchical reordering restriction corresponds to an bracketing inversion

transduction grammar (ITG), which is a binary synchronous grammar (Wu, 1997).

An ITG derivation T is a binary tree in which each node is labeled with a bispan

of (e, f). The root of T is labeled with the bispan containing the whole sentence pair.

T is ITG if for every parent node x labeled by bispan [g : h) ⇔ [k : `) with children

y and z, there is some i with g < i < h and j with k < j < ` such that either

• y is labeled by [g : i)⇔ [k : j) and z is labeled by [i : h)⇔ [j : `), or

• y is labeled by [i : h)⇔ [k : j) and z is labeled by [g : i)⇔ [j : `).

We say that T is an ITG derivation of the phrasal alignment P if P is the set of

bispans at the leaves of T . We say that a phrase alignment P is ITG if there exists

some T that is a derivation of P . Every ITG derivation T defines exactly one bijective

phrase alignment P , and the score for T is the score for its corresponding P .
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The class of ITG derivations also admits a polynomial-time Viterbi inference pro-

cedure. Let m(g, h, k, `) denote the highest scoring ITG derivation of the bispan

[g : h)⇔ [k : `). Then,

m(g, h, k, `) = max


φ([g : h)⇔ [k : `))

maxi:g<i<h maxj:k<j<`{m(g, i, k, j) +m(i, h, j, `)}

maxi:g<i<h maxj:k<j<`{m(i, h, k, j) +m(g, i, j, `)}


.

This recurrence implies Θ(n4) dynamic programming states, each of which requires

a max over Θ(n2) terms to compute, yielding a Θ(n6) dynamic program. Unlike the

case of linear reordering constraints, limiting the length of phrases does not affect the

order of growth of this algorithm.

This order of growth applies only to binary derivations. As with distortion-limited

linear distortions, inference procedures exist for r-ary synchronous grammars that are

polynomial in n but exponential in r.

3.4 Inference Procedures for Phrase Alignment

Although O is NP-hard for the general case of phrase-factored alignment models,

we present three algorithms to solve the problem. While in the worst case, these

algorithms must either be approximate or require a running time that is exponential

in sentence length, they have all been employed effectively in experimental settings.

3.4.1 Previous Work: Greedy Hill Climbing

Marcu and Wong (2002) developed an approximation toO. Given a weighted sentence

pair, high scoring phrases are linked together greedily to reach an initial alignment.
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Then, local operators are applied to hill-climb P in search of the maximum P . This

procedure can also approximate E by collecting weighted bispan counts as the space

is traversed. Birch et al. (2006) suggest using word alignments both to find better

initialization points and to constrain the space of phrase alignments explored during

hill climbing.

3.4.2 An Exponential-Time Dynamic Program

As with the polynomial-time subclasses of the phrase-factored alignment model class,

we can solve O using dynamic programming. Let j be a subset of the word positions

in f . Furthermore, let m(i, j) denote the maximal derivation covering the prefix e[0:i)

of e and the (possibly discontiguous) subsequence of f selected by j. Then,

m(i, j) = max
i′<i

max
[k:`):j=j′∪[k:`)

m(i′, j′) + φ([i′ : i)⇔ [k : `)) .

While each value of m requires only Θ(n3) to compute, corresponding to possible

values of i′ and [k : `), the state space is exponential in the length of f because j is an

arbitrary subset of [0 : |f |). In practice, the set of dynamic programming states can

typically be controlled by disallowing any bispans that violate the word alignment

predictions of a simpler model (DeNero et al., 2006). However, our implementation

of this dynamic program did have to be terminated before completion on certain

sentences because of long running times.

3.4.3 An Integer Linear Programming Construction

We can also cast O as an integer linear programming (ILP) problem, for which many

optimization techniques are known. This section gives an ILP construction for an

arbitrary weighted sentence pair (e, f , φ) and evaluates ILP inference experimentally.
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Japan to freeze aid to Russia .

日本

冻结

向

俄

提供

援助

。

0 1 3 4 6 7
0

2

4

5

6

7

0.02

2 5

1

3
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Constants:
w2,5,1,3 = log 0.02

Figure 3.3: This example depicts the indicator variables and constants in the integer linear
program construction of O that must be set in order to properly describe the inclusion of
the single shaded bispan above.

We aim to construct an ILP with a solution that will yield the highest scoring

phrase alignment P for a weighted sentence pair (e, f , φ). First, we introduce binary

indicator variables ag,h,k,` denoting whether [g : h)⇔ [k : `) ∈ P . Next, we introduce

binary indicators eg,h and fk,` that denote whether some [g : h) ⇔ · or · ⇔ [k : `)

appear in P , respectively. Finally, we represent the weight function φ as a weight

vector in the program: wg,h,k,` = φ[g : h) ⇔ [k : `). Figure 3.3 shows an example

bispan weight, along with the relevant constants and indicator variables that encode

the decision to include a bispan in P .

Now, we can express a linear program that, when restricted to integer-valued

solutions and optimized, will yield the optimal P of our weighted sentence pair.
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max
∑
g,h,k,`

wg,h,k,` · ag,h,k,` (3.2)

s.t.
∑

g,h:g<i≤h

eg,h = 1 ∀i : 1 ≤ i ≤ |e| (3.3)

∑
k,`:k<j≤`

fk,` = 1 ∀j : 1 ≤ j ≤ |f | (3.4)

eg,h =
∑
k,`

ag,h,k,` ∀g, h (3.5)

fk,` =
∑
g,h

ag,h,k,` ∀k, ` (3.6)

with the following constraints on index variables:

g < h ; 0 ≤ g < |e| ; 0 < h ≤ |e| .

k < ` ; 0 ≤ k < |f | ; 0 < l ≤ |f | .

The objective function (equation 3.2) is s(e, f ,P) for P implied by {ai,j,k,` = 1}.
Constraint equation 3.3 ensures that the English phrases form a partition of e – each

word in e appears in exactly one phrase — as does equation 3.4 for f . Constraint

equation 3.5 ensures that each phrase in e appears in exactly one phrase-to-phrase

alignment link, and that phrases not in e do not appear in the alignment (and likewise

constraint 3.6 for f).

Using an off-the-shelf ILP solver,3 we were able to quickly and reliably find the

globally optimal alignment. Model weights φ used in our timing experiments were

3We used Mosek: www.mosek.com.
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Sentences per hour on a four-core server 20,000
Frequency of optimal solutions found 93.4%
Frequency of ε-optimal solutions found 99.2%

Table 3.1: An integer linear programming solver regularly finds a phrase alignment within
ε = 10−5 of the optimal score for instances of weighted sentence pairs drawn from a
typical machine translation corpus.

derived from relative frequency counts from a large corpus, as described in Section 2.3.

Table 3.1 shows that ILP inference is accurate and efficient.

3.5 Generative Phrase-Factored Models

Now that we have developed a collection of inference algorithms for the phrase-

factored alignment model class, we now define two generative models that we will

apply to the task of phrase alignment.

Generative probabilistic modeling is an approach to statistical learning that fol-

lows from assuming that some stochastic process generated a collection of observed

data instances. Learning involves selecting model parameters that effectively explain

the observed data, thereby recovering the particular details of the assumed stochastic

process. The two generative models described in this section correspond to stochastic

processes that generate sentence pairs, phrase by phrase.

Probabilistic models assign probability mass to outcomes in their domain. In our

case, the domain of interest is the discrete space of all sentence pairs.

3.5.1 Models with Latent Variables

To capture the patterns of the data effectively, generative models often include latent

variables or latent structure: information that is assumed to exist but is not observed

in the data. Clustering is a canonical example of latent variable modeling, in which
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the data are assumed to have been generated conditioned upon some class or cluster.

In the case of alignment modeling, the correspondence structure between two

sentences is latent. For word alignment, this correspondence is encoded as a vector

a that encodes word-to-word alignment links, as described in Section 2.3.1. For

generative phrase alignment models, the latent structure is P , the set of bispans that

form a partition of each sentence and a bijective alignment between the phrases in

those partitions.

While latent variables are unobserved, they can be inferred from the model. In

particular, alignment often involves querying the generative model for the posterior

distribution over the latent alignment variable conditioned upon the observed input

and output sentences.

3.5.2 Joint Generative Model

We first describe the symmetric joint model of Marcu and Wong (2002), which we

extend in Chapter 4. A three-step generative process constructs a phrase-aligned

sentence pair (e, f ,P).

1. Choose a number of component phrase pairs n = |P|.

2. Draw n phrase pairs pi independently from a multinomial distribution θ over

phrase pair types, yielding a vector p of phrase pairs.

3. Choose a permutation π of p that defines the ordering in the input language.

The ordering for the output language is defined by p.4

In this process, all phrases in both sentences are aligned one-to-one via the gener-

ative process. A pair (p, π) describes a phrase-aligned sentence pair (e, f ,P), where

4We choose the input to reorder without loss of generality.
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the set of bispans P contains all positional information from p and π, and the sen-

tence pair (e, f) contains all lexical information. This change from our canonical

representation is necessary because drawing phrase pairs from θ determines phrasal

segmentation, phrase length, and lexical content simultaneously.

In this model, we parameterize the choice of n using a geometric distribution,

denoted PG, with stop parameter p$:

P(n) = PG(n; p$) = p$ · (1− p$)n−1 .

The type of each aligned phrase pair is drawn from a multinomial distribution θ,

which must be learned.

pi ∼ θ

We fix a simple distortion model, using an exponential decay based on the start

position of two phrases:

D([g : h)⇔ [k : `)||e|, |f |) = b|g−k·
|e|
|f | | (3.7)

Above, |e| and |f | are the lengths of the sentences. Using this parametric form,

we can define the probability of a permutation of the foreign phrases as proportional

to the product of position-based distortion penalties for each phrase:

P(π|p) ∝
∏

[g:h)⇔[k:`)∈P

D([g : h)⇔ [k : `)||e|, |f |) .

This distortion model encourages the start positions g and k of each bispan to

have similar positions in their respective sentences, after adjusting for differing total

sentence lengths. This model component also factors over phrases, abiding by the
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factorization restriction of the phrase-factored model class. This positional distortion

model was deemed to work well relative to alternatives by Marcu and Wong (2002).

We can now state the joint probability for a phrase-aligned sentence consisting of

n phrase pairs:

Pθ(e, f ,P) ∝ PG(|P|; p$)
∏

[g:h)⇔[k:`)∈P

θ(e[g:h), f[k:`)) ·D([g : h)⇔ [k : `)||e|, |f |) .

While this model has several free parameters in addition to θ, we fix them to

reasonable values to focus learning on the phrase pair distribution θ.5 The model can

be properly normalized by summing over all possible derivations.

Sentence pairs do not always contain equal information on both sides, and so we

revise the generative story to include unaligned phrases in both sentences. When

generating each component of a sentence pair, we first decide whether to generate an

aligned phrase pair or, with probability pø, an unaligned phrase.6

To unify notation, we denote unaligned phrases as phrase pairs with one side equal

to a null symbol, ø. An unaligned output span is referred to by a bispan [g : h)⇔ ø

and a phrase pair type (e[g:h), ø). Similar notation can describe unaligned input spans.

3.5.3 Conditional Generative Model

The following conditional phrase-factored alignment model scores the same phrase

alignment derivations, but in a different way. Rather than jointly generating both

sentences by drawing from a multinomial over phrase pairs, this model generates only

the output sentence e and the bispan set P , conditioned on the input sentence f .

The generative process that corresponds to this conditional model has two steps,

5Parameters were chosen by hand during development on a small training corpus. p$ = 0.1 and
b = 0.85 in experiments.

6We strongly discouraged unaligned phrases in order to align as much of the corpus as possible:
pø = 10−10 in experiments.
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assuming an observed input sentence f .

1. Uniformly choose a set of spans {[k : `)} in f that form a partition of the output

sentence into phrases: t[k : `) = [0 : |f |).

2. For each span [k : `), choose a corresponding position [g : h) in the English

sentence and establish the alignment [g : h) ⇔ [k : `), then generate exactly

one output phrase type e[g:h) conditioned on input phrase type f[k:`).

The likelihood that a particular phrase-aligned sentence pair (e, f ,P) will be gen-

erated by this model, given an input sentence f , has the following parametric form:

Pθ(e,P|f) ∝ P({[k : `)} |f)
∏

[g:h)⇔[k:`)∈P

θ(e[g:h)|f[k:`)) ·D([g : h)⇔ [k : `)||e|, |f |) .

(3.8)

Again, we parameterize the choice of [g : h) given [k : `) using the distortion model

defined in Equation 3.7.

This conditional model, while similar to the joint model in Marcu and Wong

(2002), has parameters θ that share the conditional form of relative frequency features

in phrase-based translation (Section 2.3.3).

3.6 Learning Generative Model Parameters

We now turn to the problem of fitting the parameters θ of these generative phrase

models. In this section, we focus on the conditional model above. This experimental

study was originally published by DeNero et al. (2006).

3.6.1 Maximum Likelihood Estimation

A generative model assigns a likelihood to every sentence pair within its domain. We

have already defined the likelihood of a phrase-aligned sentence pair Pθ(e, f ,P) via
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Equation 3.8. This likelihood is a useful criterion for model selection. For example,

the parameters of word alignment models are most often chosen to maximize the

likelihood of the training set under the model, as described in Section 2.3.1. The

likelihood of a training set under our conditional model is a function of the conditional

phrase distribution θ, and takes the form:

L(θ) =
∏
(e,f)

∑
P

Pθ(e, f ,P) .

We can optimize L using the expectation maximization (EM) algorithm. L is non-

convex, due to the coupling of the likelihood terms by the latent alignment. However,

EM will find a local maximum in the likelihood function.

For this model, the E-step of EM requires us to compute the expected number of

times that each phrase type ē is aligned to each phrase type f̄ . In each iteration of

EM, we re-estimate each phrase translation probability by summing expected phrase

counts c(ē, f̄) from the data given the current model parameters:

θnew(ē|f̄) =
c(ē, f̄)∑
ē′ c(ē

′, f̄)

c(ē, f̄) =
∑

(e,f)∈T

∑
P

[
count(ē, f̄ , e, f ,P) · Pθ(e, f ,P)

]
.

Above, the expression count(ē, f̄ , e, f ,P) is the count of the number of times

phrase type (ē, f̄) appears in the derivation (e, f ,P).

As discussed previously, the sum over all possible P is intractable, requiring time

exponential in the length of the sentences. Moreover, the number of possible phrase

pairs grows too large to fit in memory. To address both of these problems, we use the

exponential-time dynamic program described in Section 3.4.2, but constrain P to be

compatible with a word alignment produced by a simpler model. That is, we allow
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only P consisting of bispans [g : h) ⇔ [k : `) that can be extracted according to the

definition in Section 2.3.2

The word alignments we use to constrain P are generated using the same tech-

niques common in phrase-based pipelines, as described in Section 2.3.1. In particular,

we use IBM Model 4 word alignments generated by the GIZA++ software package

(Brown et al., 1993; Och and Ney, 2003), and combine two directional alignments

using the grow-diag combination heuristic (Och et al., 1999).

This word-based constraint has two important effects. First, we force P(ē|f̄) = 0

for all phrase pairs not compatible with the word-level alignment for some sentence

pair. This restriction reduces the total legal phrase pair types from approximately

250 million to 17 million for 100,000 training sentences. Second, the time to compute

the E-step is reduced dramatically. In practice, we can compute each sentence pair’s

contribution in under a second.

On the other hand, constraining with word alignments is not an ideal remedy for

intractability. Due to errors in the word-level alignments and non-literal translations,

this constraint ruled out approximately 54% of the training set. That is, given the

word-level alignment, no well-formed phrase alignment was possible under a maximum

phrase length restriction of 3. Furthermore, the phrase alignment model is unable to

recover from errors made by the word aligner, although it can select how to analyze

phrasal patterns.

Subsequent to the original publication of this approach (DeNero et al., 2006),

several similar approaches have also computed phrase alignment posteriors using word

alignments to constrain inference (Birch et al., 2006; Cherry and Lin, 2007; Zhang et

al., 2008).
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3.6.2 Experimental Results

Maximum likelihood estimation via EM produces θ, a conditional multinomial dis-

tribution over phrase pair types. These parameters can take the place of the phrasal

relative frequency features derived from word alignments, as described in Section 2.2.

These relative frequency features serve as our baseline for comparison, and we denote

them θRF .

We evaluate θ and θRF as features in an end-to-end translation system from En-

glish to French. All training and test sentence pairs were drawn from the French-

English section of the Europarl sentence-aligned corpus (Koehn, 2002). We tested

translation performance on the first 1,000 unique sentences of length 5 to 15 in the

corpus and trained on sentences of length 1 to 60 starting after the first 10,000. We

omitted the tuning step of the standard pipeline described in Section 2.2 because

we only include three features: a language model, a distortion model, and a single

conditional phrase score (either θ or θRF ), each combined with weight 1.

The language model was generated from the Europarl corpus using the SRI Lan-

guage Modeling Toolkit (Stolcke, 2002). The publicly available Pharaoh package per-

formed search in the space of derivations (Koehn et al., 2003). A maximum phrase

length of 3 was used for all experiments. The final translation output is evaluated

using BLEU, a precision-based metric that compares phrases in the output to human-

generated reference translations (Papineni et al., 2002).

Figure 3.4 compares the BLEU scores using each estimate. The expectation max-

imization algorithm for training θ was initialized with the baseline parameters θRL,

so the θRL curve can be equivalently labeled as iteration 0. The model-based esti-

mate θ underperforms its heuristic initialization. This pattern of performance was

also observed by Koehn et al. (2003), which compated θRL to features derived from

the joint phrase-factored alignment model described in Section 3.5.2 and originally
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Source 25k 50k 100k

Heuristic 0.3853 0.3883 0.3897

Iteration 1 0.3724 0.3775 0.3743

Iteration 2 0.3735 0.3851 0.3814

iteration 3 0.3705 0.384 0.3827

Iteration 4 0.3695 0.285 0.3801

iteration 5 0.3705 0.284 0.3774

interp

Source 25k 50k 100k

Heuristic 0.3853 0.3883 0.3897

Iteration 1 0.3724 0.3775 0.3743

iteration 3 0.3705 0.384 0.3827

iteration 3 0.3705 0.384 0.3827
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Figure 3.4: Statistical re-estimation using a generative phrase model degrades BLEU
score relative to its heuristic initialization using relative frequency counts based on word
alignments.

by Marcu and Wong (2002).

Thus, the first iteration of EM increases the observed likelihood of the training

sentences while simultaneously degrading translation performance on the test set. As

training proceeds, performance on the test set levels off after three iterations of EM.

The system never achieves the performance of its initialization parameters.

3.6.3 Analysis of Experimental Results

Learning θ degrades translation quality in large part because EM learns overly de-

terminized segmentations and translation parameters, overfitting the training data

and failing to generalize. The primary increase in expressiveness between genera-

tive word-level and phrase-level models is due to the additional latent segmentation

variable assumed by phrase alignment models. Although we impose a uniform dis-

tribution over segmentations, they nonetheless play a crucial role during training.

We will characterize this effect through aggregate statistics and translation examples
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shortly, but begin by demonstrating the model’s capacity to overfit the training data.

We first return to the motivation behind introducing and learning variable-resolution

phrases in machine translation. For any language pair, there are contiguous strings

of words whose collocational translation is non-compositional; that is, they translate

together differently than they would in isolation. For instance, chat in French gen-

erally translates to cat in English, but appelez un chat un chat is an idiom which

translates to call a spade a spade. Introducing phrases allows us to translate chat un

chat atomically to spade a spade and vice versa.

The structure of our model, which has fixed probability mass to distribute across

competing phrasal analyses of the training corpus, encourages θ to learn that chat

should never be translated to spade in isolation. On the other hand, the baseline

approach which lacks this structural learning pressure is only sensitive to the fact

that chat and spade co-occur regularly. Hence, translating I have a spade can lead to

a lexical error in the baseline, and we observed this error in our system. This error

should be corrected by learning θ via a phrase alignment model.

However, imposing competition among segmentations introduces a new problem:

true translation ambiguity can also be spuriously explained by the segmentation.

In our generative model, counter-intuitively deterministic translation parameters can

yield higher likelihoods than intuitive parameters. Consider the french fragment carte

sur la table, which could translate to map on the table or notice on the chart. Using

these two sentence pairs as training, one would hope to capture the ambiguity in the

parameter table as:

42



Chapter 3. Phrase Alignment Models

French English θ(e|f)

carte map 0.5

carte notice 0.5

carte sur map on 0.5

carte sur notice on 0.5

sur on 1.0

... ... ...

table table 0.5

table chart 0.5

Assuming we only allow non-degenerate segmentations and disallow non-monotonic

distortions, this parameter table yields a marginal likelihood Pr(f |e) = 0.25 for both

sentence pairs – the intuitive result given two independent lexical ambiguities. How-

ever, the following table yields a likelihood of 0.28 for both sentences:7

French English θ(e|f)

carte map 1.0

carte sur notice on 1.0

carte sur la notice on the 1.0

sur on 1.0

sur la table on the table 1.0

la the 1.0

la table the table 1.0

table chart 1.0

According to the parameters above, a translation can be chosen deterministically

7For example, summing over the first translation expands to
1
7 (θ(map | carte)θ(on the table | sur la table) +θ(map | carte)θ(on | sur)θ(the table | la table)).
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given the segmentation! All notion of lexical ambiguity has been lost.

Hence, a higher likelihood can be achieved by allocating some source-side phrases

to certain translations while reserving overlapping phrases for others, thereby failing

to model the real ambiguity that exists across the language pair. Also, notice that the

phrase sur la can take on an arbitrary distribution over any english phrases without

affecting the likelihood of either sentence pair. Not only does this counterintuitive

parameterization give a high data likelihood, but it is also a fixed point of the EM

algorithm.

The phenomenon demonstrated above poses a problem for generative phrase mod-

els in general. The ambiguous process of translation can be modeled either by the

latent segmentation variable or the phrase translation probabilities. In some cases,

optimizing the likelihood of the training corpus selects for the former when we would

prefer the latter. We next investigate how this problem manifests in θ and its effect

on translation quality.

3.6.4 Analysis of Learned parameters

The parameters of θ differ from the heuristically extracted parameters θRL in that the

conditional distribution over English translations for some French words is sharply

peaked for θ compared to the flat distributions of θRL.

To quantify the notion of peaked distributions over phrase translations, we com-

pute the entropy of the distribution for each French phrase:

H(θ) =
∑
ē

θ(ē|f̄) log2 θ(ē|f̄)

The average entropy for the most common 10,000 phrases in the learned table was

1.45, comparable to 1.54 for the heuristic table. The difference between the tables

becomes much more striking when we consider a histogram of entropies for phrases in
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code 2.29E-08 the 0.002670946

to 1.98E-12 less helpful 6.22E-05

it be 1.11E-14 please stop messing 1.12E-05

0 10 20 30 40

0 - .01

.01 - .5

.5 - 1

1 - 1.5

1.5 - 2

> 2

E
n

tr
o
p

y

% Phrase Translations

Learned

Heuristic

1E-04 1E-02 1E+00 1E+02

'

,

de

.

la

l

l '

le

et

les

M
o
st

 C
o
m

m
o
n
 F

re
n
ch

 P
h
ra

se
s

Entropy

Learned Heuristic

Figure 3.5: Many more French phrases have very low entropy under the learned parame-
terization.

Figure 3.5. In particular, the learned table has many more phrases with entropy near

zero. The most pronounced entropy differences often appear for common phrases.

The ten most common phrases in the French corpus, along with the entropies of their

translation distributions, are shown in Figure 3.6.

As more probability mass is reserved for fewer translations, many of the alternative

translations under θRL are assigned prohibitively small probabilities. In translating

1,000 test sentences, for example, no phrase translation with θ(ē|f̄) less than 10−5

was used in a final output translation. Given this empirical threshold, nearly 60%

of entries in θ are unusable, compared with 1% in θRL. In practice, θ is much more

sparse than θRL

3.6.5 Modeling Effects on End-to-End Translation

While this determinism of θ may be desirable in some circumstances, we found that

the ambiguity captured by θRL is often preferable at translation time. In particular,

the pattern of translation-ambiguous phrases receiving spuriously peaked distribu-

tions (as described in section 3.6.3) introduces new translation errors relative to the

baseline.
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Figure 3.6: Entropy of 10 common French phrases. Several learned distributions have
very low entropy.

Training θ with a generative phrase alignment model does improve some transla-

tions. The issue that motivated training a generative model is addressed correctly: for

a word that translates differently alone than in the context of an idiom, the translation

probabilities more accurately reflect this. For instance, the translation distribution

for chat has been corrected through the learning process. The heuristic process gives

the incorrect translation spade with 61% probability, while the statistical learning

approach gives cat with 95% probability.

While such targeted examples of improvement are encouraging, the trend of spu-

rious determinism overwhelms this benefit by introducing errors in four ways, each of

which will be explored in turn.

1. Useful phrase pairs are assigned very low probability.

2. A proper translation for a phrase can be blocked by another translation with

spuriously high probability.
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the situation varies to an

la situation varie d ' une

Heuristically Extracted Phrase Table

Learned Phrase Table

enormous

immense

degree

degré

situation varies to

la varie d '

an enormous

une immense

degree

caractérise

the

situation

caractérise
English φ(e|f)
degree 0.998
characterises 0.001
characterised 0.001

caractérise
English φ(e|f)
characterises 0.49
characterised 0.21
permeate 0.05
features 0.05
typifies 0.05

degré
English φ(e|f)
degree 0.49
level 0.38
extent 0.02
amount 0.02
how 0.01

degré
English φ(e|f)
degree 0.64
level 0.26
extent 0.10

Figure 3.7: Spurious determinism in the learned phrase parameters degrades translation
quality.

3. Error-prone ambiguous phrases become active during translation.

4. The language model cannot distinguish between different translation options as

effectively due to deterministic translation model distributions.

The first effect follows from our observation in section 3.6.4 that many phrase

pairs are unusable due to vanishingly small probabilities. Some of the entries that

are unusable in θ would be beneficial to translation, as evidenced by the fact that

removing these phrases from θRL reduces BLEU score by over 5%.

The second effect is more subtle. Consider the sentence in Figure 3.7. While

there exists some agreement error and awkwardness in both translations, the trans-

lation generated under the heuristically extracted parameters θRL is comprehensible

to native speakers. On the other hand, the learned translation incorrectly translates

degree, degrading translation quality. Notice also that the translation probabilities

from heuristic extraction are non-deterministic. On the other hand, the translation

system makes a significant lexical error on this simple sentence when parameterized

by θ: the use of caractérise in this context is incorrect. This error arises from a
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sharply peaked distribution over English phrases for caractérise.

This example illustrates a recurring problem: errors do not necessarily arise be-

cause a correct translation is not available. Notice that a preferable translation of

degree as degré is available under both parameterizations. Degré is not used, however,

because of the peaked distribution of a competing translation candidate. In this way,

very high probability translations can effectively block the use of more appropriate

translations.

What is furthermore surprising and noteworthy in this example is that the learned,

near-deterministic translation for caractérise is not a common translation for the

word. Not only does the statistical learning process yield low-entropy translation dis-

tributions, but occasionally the translation with undesirably high conditional proba-

bility does not have a strong surface correlation with the source phrase. This example

is not unique; during different initializations of the EM algorithm, we noticed such

patterns even for common French phrases such as de and ne.

The third source of errors is closely related: common phrases that translate in

many ways depending on the context can introduce errors if they have a spuriously

peaked distribution. For instance, consider the lone apostrophe, which is treated as

a single token in our data set (Figure 3.8). The shape of the heuristic translation dis-

tribution for the phrase is intuitively appealing, showing a relatively flat distribution

among many possible translations. Such a distribution has very high entropy. On the

other hand, the learned table translates the apostrophe to the with probability very

near 1.

Selecting ambiguous phrases that require context to translate correctly will invari-

ably introduce errors. The flatness of the distribution of θRL ensures that the single

apostrophe will rarely be used because no single outcome has high enough probability

to promote its use. On the other hand, using the peaked entry θ(the|′) incurs virtually

no cost to the score of a translation.
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Heuristic
English θRL(e|f)
our 0.10
that 0.09
is 0.06
we 0.05
next 0.05

Learned
English θ(e|f)
the 0.99
, 4.1 · 10−3

is 6.5 · 10−4

to 6.3 · 10−4

in 5.3 · 10−4

Figure 3.8: Translation probabilities for an apostrophe, the most common French phrase
in our tokenized parallel corpus. The learned table contains a highly peaked distribution.

The final source of error stems from interactions between the language and trans-

lation models. The selection among translation choices via a language model is hin-

dered by the determinism of the translation model. This effect appears to be less

significant than the previous three. We note, however, that adjusting the language

and translation model weights during decoding does not close the performance gap

between θRL and θ.

3.6.6 Interpolating Model-Based and Heuristic Estimators

In light of the low-entropy of θ, we could hope to improve translations by retaining

entropy. There are several strategies we have considered to achieve this.

The simplest strategy to increase entropy is to interpolate the heuristic and learned

phrase tables. Training on 100,000 sentences, this approach yields a BLEU score of

0.386, outperforming θ and nearly equaling the performance of θRL. Further improve-

ments come from varying the weight of interpolation, which yielded an improvement

over θRL of up to 1.0 BLEU. However, this simple approach does little to remedy the

most problematic cases. For example, a near-zero entropy distribution averaged with

a very flat distribution still leaves almost half the probability mass on one outcome

and the rest spread thinly among the rest.

Additionally, we modified the training loop to prevent convergence to low entropy
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distributions. To start, we interpolated the output of each iteration of EM with its

input, thereby maintaining some entropy from the initialization parameters. BLEU

score increased to a maximum of 39.4 using this technique, outperforming the heuristic

by a slim margin of 0.5 BLEU.

3.6.7 Summary of Findings for Likelihood-Trained Models

Re-estimating phrase translation probabilities using a generative model holds the

promise of improving upon heuristic techniques. However, the combinatorial proper-

ties of a phrase-based generative model have problematic effects. Parameter estimates

that explain lexical ambiguity using segmentation variables can in some cases yield

higher data likelihoods by abusing the latent segmentation variable in order to condi-

tion on rare events. These rare events in turn promote low-entropy conditional phrase

distributions, which generate errors at translation time.

While the experiments presented here have focused on the conditional phrase

alignment model, the joint model also falls into degenerate learning patterns when

trained to maximize likelihood. Rather than selecting for rare conditioning events,

the joint model selects for large phrases in order to explain the training data using

as few draws from its joint phrase pair multinomial as possible. As a result, the joint

model often fails to learn to translate individual words and short phrases, instead

focusing only on longer phrases that may not recur at translation time.

The following chapters address these learning challenges. Chapter 4 introduces

prior distributions on θ for both joint and conditional models that coerce learning

toward more useful results. Chapter 5 applies discriminative learning, which avoids

these pitfalls by training explicitly toward human-generated alignment annotations.
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Chapter 4

Bayesian Phrase Alignment Models

This chapter describes priors for the conditional and joint generative phrase-factored

alignment models defined in Section 3.1. The purpose of these priors is to bias learn-

ing toward phrase alignment analyses that are useful at translation time. As such,

the priors do not encode interpretable prior knowledge of the correct alignment, as

their name might suggest, but instead express correctional pressure to mitigate the

degenerate learning behavior of maximum likelihood estimation described in Chap-

ter 3.

In particular, we wish to correct two degenerate learning patterns. In both models,

the maximum likelihood objective pressures the model to explain each sentence pair

using a small number of large phrases, because each phrase introduces an additional

multiplicative term into the likelihood expression. In the conditional model, training

for maximum likelihood also causes the model to explain lexical ambiguity in the data

using segmentation ambiguity, and thereby to select rare input phrases.

The Bayesian priors we describe correct for these degenerate patterns in two ways:

1. They express a strong preference for short phrases rather than long ones. Short

phrases are more common and therefore more reusable at translation time.
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2. A preference is expressed for reusing phrase types across the analyses of multiple

sentence pairs in the training corpus. Because common phrases are more read-

ily available to be reused, this preference also promotes analyses that include

common phrase pairs.

The computational machinery that enables us to express these priors are the

Dirichlet Process—a simple prior over multinomials with unbounded dimension—

and collapsed Gibbs sampling—an approximate inference technique with desirable

convergence properties. We first describe these techniques and apply them to phrase

alignment, and then we evaluate our improved models experimentally.

4.1 Bayesian Priors for Generative Models

Bayesian modeling treats model parameters as additional random variables that have

associated distributions. This additional distribution over parameters, referred to as

a prior, grants us the flexibility to adjust our learning objective while maintaining

the same structure and parameterization of the underlying model. That is, we retain

our model definition but abandon the maximum likelihood training criterion.

4.1.1 From Parameter Estimation to Expected Counts

The purpose of phrase alignment modeling is to replace the phrasal relative frequency

features used in a standard phrase-based translation pipeline, which are based on

counts of phrases extracted from word-level alignments:

φRL(ē, f̄) =
count(ē, f̄)∑
ē′ count(ē′, f̄)

(4.1)

In Section 3.6, we focused on selecting a single value for the parameter θ of a

phrase alignment model that explained the training data well. We then used the
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value of θ instead of relative frequency statistics in a translation pipeline. In the case

of our conditional phrase alignment model estimated using a maximum likelihood

criterion, the entries of θ are equivalent to the expected relative frequency of phrases

in the training corpus under the model:

θ(ē|f̄) =
Eθ
[
count(ē, f̄)

]∑
ē′ Eθ

[
count(ē′, f̄)

] (4.2)

Comparing Equations 4.1 and 4.2, we can see the contrast between the standard

word-alignment-based method and the phrase-alignment-model-based method of com-

puting relative frequency features. The former uses fixed word alignments to collect

counts, while the latter collects expected counts that reflect alignment uncertainty.

The Bayesian framework also lets us collect expected counts of aligned phrase

pairs. The core differences between maximum likelihood training and the Bayesian

approach we present below are (a) we consider θ to be a random variable with an ex-

plicit model prior P(θ), and (b) the phrase pair count expectations under the Bayesian

model is not computed with respect to a particular value of θ, but instead as

E
[
count(ē, f̄)

]
=

∫
θ

P(θ) · Eθ
[
count(ē, f̄)

]
· dθ (4.3)

where Eθ
[
count(ē, f̄)

]
denotes the expected count of a phrase pair under a par-

ticular value of the parameter θ. Integrating out the parameter in this way allows us

to take into account our uncertainty over θ in our expectation, rather than having

to select a particular point estimate of θ. In the end, only the expected counts will

serve as features in a translation model. Hence, the experiments and analysis por-

tions of this chapter will not focus on properties of θ, but instead on properties of the

expected phrase pair counts computed by integrating over θ.

Computing expected counts explicitly, rather than focusing on a parameter esti-

mate, also allows flexibility in the definition of count(·). The baseline extraction ap-
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proach from Section 2.3.2 includes both minimal and composed phrase pairs. Model

parameters θ reference only minimal bispans. In this chapter, we compute an ex-

pected count wherein both minimal and composed phrase pairs are counted, which

better corresponds to the baseline.

4.1.2 Inference in Bayesian Models

In a Bayesian model, where parameters are treated as random variables, we aim to

compute expectations that reflect our uncertainty over the values of those parame-

ters, as in Equation 4.3. In other terms, rather than learning a model from some

parameterized space, our goal is to find expectations under a fixed Bayesian model

with random parameters. Thus, we collapse the distinction between learning and

inference that played a prominent role in Chapter 3.

However, adopting a DP prior over the parameters of our phrase pair multinomials

fundamentally changes our inference problem. Because the multinomial parameters

are unknown latent variables, the expectations of phrase alignments in different sen-

tence pairs are coupled together. We can no longer perform inference on each sentence

pair independently. Instead, we must treat the training corpus as a whole.

Sampling allows us to decouple inference for sentence pairs from each other by

fixing parts of the latent structure. While approximate, sampling methods can provide

unbiased estimators of posterior expectations under a model, which converge to the

true values under a model in the limit. The following section describes such a sampler

for phrase alignment models that allows us to incorporate our Bayesian priors.
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4.2 A Gibbs Sampler for Phrase Alignments

Our models involve observed sentence pairs, which in aggregate we can call x, latent

phrase alignments, which we can call z, and parameters θ. For exposition purposes, we

describe a Gibbs sampling algorithm for computing expected counts of phrases under

P(z|x, θ) for fixed θ, as in Equation 4.2. In this case, each bispan [g : h)⇔ [k : `) in

each sentence pair has some fixed potential exp(φ([g : h)⇔ [k : `))) that it contributes

to the probability of any phrase alignments P that contains [g : h) ⇔ [k : `), where

φ([g : h) ⇔ [k : `)) is some function of the parameters θ. In Section 4.3, we extend

this method to compute expectations under P(z|x), with θ marginalized out entirely,

as in Equation 4.3.

In a Gibbs sampler, we start with a complete alignment, state z0, which sets

all latent variables to some initial configuration. We then produce a sequence of

sample states zi, each of which differs from the last by some small local change. The

samples zi are guaranteed (in the limit) to consistently approximate the conditional

distribution P(z|x, θ) (or P(z|x) later). Therefore, the average counts of phrase pairs

in the samples converge to expected counts under the model.

Gibbs sampling is not new to the natural language processing community (Teh,

2006; Johnson et al., 2007a). However, it is usually used as a search procedure akin to

simulated annealing, rather than for approximating expectations (Goldwater et al.,

2006; Finkel et al., 2007). Our application is also atypical for an NLP application in

that we use an approximate sampler not only to include Bayesian prior information

(section 4.3), but also because computing phrase alignment expectations exactly is a

#P-hard problem, as we showed in Section 3.2.
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4.2.1 Related Work

Expected phrase pair counts under P(z|x, θ) have been approximated before in order

to run EM. Marcu and Wong (2002) employed the local hill climbing approach de-

scribed in Section 3.4.1, and DeNero et al. (2006) employed the exponential-time

dynamic program described in Section 3.4.2, pruned by word alignments. Sub-

sequent work relied heavily on word alignments to constrain inference, even un-

der reordering models that admit polynomial-time E-steps (Cherry and Lin, 2007;

Zhang et al., 2008).

None of these approximations are consistent, and they offer no method of mea-

suring their biases. Gibbs sampling is not only consistent in the limit, but also con-

veniently integrates our Bayesian priors. Of course, sampling has liabilities as well:

we do not know in advance how long we need to run the sampler to approximate the

desired expectations “closely enough.”

Snyder and Barzilay (2008) describe a Gibbs sampler for a bilingual morphology

model very similar in structure to ours. However, the basic sampling step they propose

– resampling all segmentations and alignments for a sequence at once – requires a #P-

hard computation. While this asymptotic complexity was apparently not prohibitive

in the case of morphological alignment, where the sequences are short, it is prohibitive

in phrase alignment, where the sentences are often very long.

4.2.2 Sampling with the Swap Operator

Our Gibbs sampler repeatedly applies each of five operators to each position in each

training sentence pair. Each operator freezes all of the current state zi except a

small local region, determines all the ways that region can be reconfigured, and then

chooses a (possibly) slightly different zi+1 from among those outcomes according to

the conditional probability of each, given the frozen remainder of the state. This
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frozen region of the state is called a Markov blanket (denoted m), and plays a critical

role in proving the correctness of the sampler.

The first operator we consider is Swap, which changes alignments but not seg-

mentations. It freezes the set of aligned spans in each sentence, then picks two output

spans e1 and e2.1 All bispans are frozen except the two that contain e1 and e2: e1 ⇔ f1

and e2 ⇔ f2. Swap chooses between retaining bispans e1 ⇔ f1 and e2 ⇔ f2 (outcome

o0), or swapping their to create e1 ⇔ f2 and e2 ⇔ f1 (outcome o1).

Swap chooses stochastically in proportion to each outcome’s posterior probability:

P(o0|m,x, θ) and P(o1|m,x, θ). Each bispan in each outcome contributes to these

posteriors its local potential,

ψ(e, f) = exp(φ(e, f)) .

The outcome of Swap is thus drawn from the following binomial distribution:

P(o0|m,x, θ) =
ψ(e1 ⇔ f1)ψ(e2 ⇔ f2)

ψ(e1 ⇔ f1)ψ(e2 ⇔ f2) + ψ(e1 ⇔ f2)ψ(e2 ⇔ f1)

P(o1|m,x, θ) =
ψ(e1 ⇔ f2)ψ(e2 ⇔ f1)

ψ(e1 ⇔ f1)ψ(e2 ⇔ f2) + ψ(e1 ⇔ f2)ψ(e2 ⇔ f1)
.

To see that these are in fact the posteriors of the two outcomes under a phrase-

factored model, note that the remaining terms in the full data likelihood are equivalent

in either case because they are all contained within the Markov blanket m, which is

constant across outcomes.

Operators in a Gibbs sampler require certain conditions to guarantee that av-

eraging over samples created by applying them many times will yield an unbiased

1We also apply the operator to two input phrases, but we focus on the output case for exposition.
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estimator of the model posterior. First, they must choose among all possible config-

urations of the unfrozen local state. Second, immediately re-applying the operator

from any outcome must yield the same set of outcome options as before.2 If these

conditions are not met, the sampler may no longer be guaranteed to yield consistent

approximations of the posterior distribution. A full formal justification of this step

and others appears in Section 4.2.6.

A subtle issue arises with Swap as defined: should it also consider an outcome

o2 of e1 ⇔ ø and e2 ⇔ ø that removes alignments? No part of the frozen state

is changed by removing these alignments, so the first Gibbs condition dictates that

we must include o2. However, after choosing o2, when we reapply the operator to

positions e1 and e2, we freeze all alignments except e1 ⇔ ø and e2 ⇔ ø, which

prevents us from returning to o0. Thus, we fail to satisfy the second condition.

Fortunately, the problem is not with Swap, but with our justification of it: we

can salvage Swap by augmenting its Markov blanket. Given that we have selected

e1 ⇔ f1 and e2 ⇔ f2, we not only freeze all other alignments and phrase boundaries,

but also the number of aligned phrase pairs. With this count held invariant, o2 is not

among the possible outcomes of Swap given m. Moreover, regardless of the outcome

chosen, Swap can immediately be reapplied at the same location with the same set

of outcomes.

As we have defined Swap, it can manipulate an unaligned phrase if it chooses it

initially as e1 and chooses some aligned e2. Then, the outcomes are

o0: e1 ⇔ ø; e2 ⇔ f2

o1: e1 ⇔ f2; e2 ⇔ ø

On the other hand, if Swap selects two unaligned phrases, then no change is possible.

2These are two sufficient conditions to guarantee that the Metropolis-Hastings acceptance ratio
of the sampling step is 1.
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(b) FLIP(a) SWAP

(c) TOGGLE

(d) FLIP TWO

(e) MOVE

Figure 4.1: Each local operator manipulates a small portion of a single alignment. Rele-
vant phrases are exaggerated for clarity. The outcome sets (depicted by arrows) of each
possible configuration are fully connected. Certain configurations cannot be altered by
certain operators, such as the final configuration in Swap. Unalterable configurations for
Toggle have been omitted for space.

All the possible starting configurations and outcome sets for Swap appear in Figure

4.1(a).

4.2.3 The Flip operator

Swap can arbitrarily shuffle alignments, but we need a second operator to change

the actual phrase boundaries. The Flip operator changes the status of a single
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The boys are

Ellos

comen

Current State

Includes segmentations
and alignments for all
sentence pairs

Markov Blanket

Freezes most of the
segmentations and 
alignments, along with 
the alignment count

Outcomes

An exhaustive set of  
possibilities given 
the Markov blanket

eating

? ?

Apply the FLIP operator 

to English position 1

1

Compute the conditional 

probability of each outcome

2

Finally, select a new state proportional 

to its conditional probability

3

?

Figure 4.2: The three steps involved in applying the Flip operator. The Markov blanket
freezes all segmentations except English position 1 and all alignments except those for
Ellos and The boys. The blanket also freezes the number of alignments, which disallows
the lower right outcome.

segmentation position3 to be either a phrase boundary or not. In this sense Flip is a

bilingual analog of the segmentation boundary flipping operator of Goldwater et al.

(2006).

Figure 4.2 diagrams the operator and its Markov blanket. First, Flip chooses any

between-word position in either sentence. The outcome sets for Flip vary based on

the current segmentation and adjacent alignments, and are depicted in Figure 4.1(b).

3A segmentation position is a position between two words that is also potentially a boundary
between two phrases in an aligned sentence pair.
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For Flip to satisfy the Gibbs conditions, we must augment its Markov blanket to

freeze not only all other segmentation points and alignments, but also the number of

aligned phrase pairs. Otherwise, we end up allowing outcomes from which we cannot

return to the original state by reapplying Flip. Consequently, when a position is

already segmented and both adjacent phrases are currently aligned, Flip cannot

unsegment the point because it can’t create two aligned phrase pairs with the one

larger phrase that results.

4.2.4 The Toggle operator

Both Swap and Flip freeze the number of alignments in a sentence. The Toggle op-

erator, on the other hand, can add or remove individual alignment links. In Toggle,

we first choose an e1 and f1. If e1 ⇔ f1 ∈ P or both e1 and f1 are ø, we freeze all

segmentations and the rest of the alignments, and choose between including e1 ⇔ f1

in the alignment or leaving both e1 and f1 unaligned. If only one of e1 and f1 are

aligned, or they are not aligned to each other, then Toggle does nothing.

4.2.5 A Complete Sampler

Together, Flip, Swap and Toggle constitute a complete Gibbs sampler that con-

sistently samples from the posterior of a probabilistic phrase-factored model. Not

only are these operators valid Gibbs steps, but they also can form a path of positive

probability from any source state to any target state in the space of phrase align-

ments (formally, the induced Markov chain is irreducible). Such a path can at worst

be constructed by unaligning all phrases in the source state with Toggle, composing

applications of Flip to match the target phrase boundaries, then applying Toggle

to match the target alignments.

We include two more local operators to speed up the rate at which the sampler
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explores the hypothesis space. Flip Two simultaneously flips an English and a

foreign segmentation point (to make a large phrase out of two smaller ones or vice

versa), while Move shifts an aligned phrase boundary to the left or right. Figure 4.1

depicts the outcome sets for these operators.

The purpose of including Flip Two and Move is to ensure that two high-

probability regions of the alignment space are connected with a high-probability path.

As a result of adding these operators, the number of discovered phrase pairs increased

by 13% for an equal number of sampling iterations.

4.2.6 Justification of Gibbs Steps

We now analyze the sampler that results from the alternate application of the op-

erators we have defined. To show that samples generated in this way converge to a

stationary distribution that is the posterior of the model, we must verify that the

operators are indeed Gibbs steps (Berg, 2004).4

Gibbs sampling is often seen in the context of a graphical model: we pick a node in

the model and resample it given its Markov blanket. Analogously, for each operator,

we need to find the largest event that characterizes which part of the state is invariant

across all outcomes of the operator. A step is Gibbs if this invariant exists, and the

operator chooses appropriately among all positive-probability outcomes.

Consider Flip at English position i, illustrated in Figure 4.2. Let Ii be the interval

corresponding to the foreign segment to which the English phrase containing word

i aligns (possibly null). Here, we sample from the distribution conditioning on the

current value of E−i, F, I−, Ii ∪ Ii−1.5 Ii ∪ Ii−1 is the portion of the foreign sentence

covered by Ii and Ii−1. Note that we condition on the current value of Ii ∪ Ii−1 in

4We must also verify that from any source to any target state, there is a path of positive proba-
bility. This condition was shown in Section 4.2.5.

5Here I− is the alignments of phrases outside of es and E−i = E1, . . . , Ei−1, Ei+1, . . . , E|e|.
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order to ensure that each outcome aligns only and exactly to the current projection

of the phrases bordering i.

Flip Two i, j can be treated similarity: the conditioning event is E−i, F−j, I−, Ii∪
Ii−1. Swap, on the other hand gives more flexibility on the alignment, but none on

the segmentation: the event is given by the value of E,F, I−{i,i′}.

For the Move k, k′ operator, we will need a different representation of the state

space. Let P1 < P2 < · · · < PN be the positions in the source sentence where the

partitions fall (similarily, we have Q1 < · · · < QM for the target sentence). Let

G1, . . . , GN be N ∪ {null} valued random variables, where Gi points to the index

of the segment in the target side it is aligned to (if any). We can then write the

conditioning event as the current value of P−k, Q−k′ , G−{k,k′}, {Gk, Gk′}. Again, the

random set G−{k,k′}, {Gk, Gk′} ensures that the modification preserves the alignment

up to a swap and only allows resizing the split point.

Conditioning on these invariants, one can check that each operator covers every

outcome possible. Therefore, these are Gibbs steps. We verified this theoretical

result programmatically by computing Metropolis-Hastings acceptance ratios for each

operator, which were always 1.

4.2.7 Expected Phrase Pair Counts

With our sampling procedure in place, we can now estimate the expected number of

times a given phrase pair occurs in our data, for fixed θ, using a Monte-Carlo average,

1

N

N∑
i=1

count(ē, f̄ , x, zi)
a.s.−→ Eθ

[
count(ē, f̄ , x)

]
.

Where count(ē, f̄ , x, zi) is the number of times that the phrase pair type ē ⇔ f̄

appears in the observed dataset x under phrase alignment zi.
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The left hand side above is simple to compute; we count aligned phrase pairs

in each sample we generate. We count both the phrase pairs directly aligned to

each other and larger composed phrase pairs that include multiple contiguous sub-

phrases that are aligned. This phrase pair counting is identical to the baseline phrase

extraction procedure defined in Section 2.3.2, if each aligned bispan [g : h) ⇔ [k : `)

is interpreted as a dense set of word-to-word alignment links:

{(i, j) : i ∈ [g : h) ∧ j ∈ [k : `)} .

In practice, rather than counting phrase pairs after every sampling step, we only

count phrase pairs after applying every operator to every position in every sentence

(one iteration). By the strong law of large numbers for Markov Chains, this average

converges to the true expectation in the limit. For experiments, we ran the sampler

for 100 iterations.

4.3 Bayesian Priors for Phrase Models

The Gibbs sampler we have presented allows us to estimate expected phrase counts

under a fixed parameter θ. With slight modification described below in Section 4.3.5,

it also enables us to estimate expected counts under a prior distribution.

∫
θ

P(θ) · Eθ
[
count(ē, f̄ , x)

]
· dθ

In this section, we define Bayesian models that treat θ as a random variable. We

select priors that are designed to prevent the degenerate learning behavior identified

in Section 3.6.7, which we revisit below.
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4.3.1 Model Degeneracy

Consider the joint model from Section 3.5.2. The structure of the joint model pe-

nalizes explanations that use many small phrase pairs: each phrase pair token incurs

the additional expense of generation and distortion. In fact, the maximum likeli-

hood estimate of the model puts mass on phrase pair types ē ⇔ f̄ that span entire

training sentences, explaining the training corpus with one phrase pair per sentence.

Constraining the model to a maximum phrase length does little to address this de-

generate behavior: maximum likelihood estimation will select as long phrases as it

can, ignoring the short, reliable phrases that generalize well to new examples.

Previous phrase alignment work has primarily mitigated this tendency by con-

straining the inference procedure used for learning and prediction. For example,

allowed phrase pairs have been constrained by word alignments and linguistic fea-

tures (Birch et al., 2006) or by disallowing phrase pairs that can be decomposed into

contiguous sub-phrases (Cherry and Lin, 2007; Zhang et al., 2008). However, the

problem lies with the model, and therefore should be corrected in the model, rather

than the inference procedure.

Model-based solutions appear in the literature as well, though typically combined

with word alignment constraints on inference. A sparse Dirichlet prior coupled with

variational EM was explored by Zhang et al. (2008), but it did not avoid the degen-

erate solution. Moore and Quirk (2007a) proposed a new conditional model structure

that does not cause large and small phrases to compete for probability mass. May

and Knight (2007) added additional model terms to balance the cost of long and short

derivations in a syntactic alignment model.

However, no previous work has defined a model that avoids degenerate solutions

while allowing all possible phrase alignments during learning and inference.
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4.3.2 The Dirichlet Process

The priors we employ are instances of the Dirichlet Process (DP), a close cousin to

the more well-known Dirichlet distribution (Ferguson, 1973). The standard Dirichlet

is the conjugate prior to a finite multinomial, such as a distribution over a fixed set

of phrase pairs. The DP is an extension of the Dirichlet to multinomials over infinite

outcome spaces. In principle, there can be an infinite number of phrase pair types,

and so the DP is a natural choice for our domain.

The Dirichlet distribution and the DP distribution have similar parameteriza-

tions. A K-dimensional Dirichlet can be parameterized with a concentration pa-

rameter α > 0 and a base distribution M0 = (µ1, . . . , µK−1), with µi ∈ (0, 1).6 This

parameterization has an intuitive interpretation: under these parameters, the average

of independent samples from the Dirichlet will converge to M0. That is, the average

of the ith element of the samples will converge to µi. Hence, the base distribution

M0 characterizes the sample mean. The concentration parameter α only affects the

variance of the draws.

The DP is an infinite-dimensional extension to the Dirichlet distribution. We can

parameterize the Dirichlet process with a concentration parameter α (that affects only

the variance) and a base distribution M0 that determines the mean of the samples.

Just as in the finite Dirichlet case, M0 is simply a probability distribution, but now

with countably infinite support: all possible phrase pairs in our case. In practice, we

can use an unnormalized M0 (a base measure) by appropriately rescaling α.

Goldwater et al. (2009) give an intuitive interpretation of the DP: a generative

process equipped with a cache. Suppose we have generated n phrase pairs so far. The

next one can be generated either by emitting a previously used value from the cache

6This parametrization is equivalent to the standard pseudo-counts parametrization of K positive
real numbers. The bijection is given by α =

∑K
i=1 α̃i and µi = α̃i/α, where (α̃1, . . . , α̃K) are the

pseudo-counts.
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or by constructing a new random one using the base distribution. Old values are

reused with probability proportional to the number of times they were used before,

inducing the rich-get-richer property of the Dirichlet process.

4.3.3 A Dirichlet Process Prior for the Joint Model

In the joint phrase alignment model defined in Section 3.5.2, phrase pair types are

drawn from a multinomial θ over the countably infinite set of possible phrase pair

types. θ ranges over both standard and null-aligned phrase pairs. In order to define

our Bayesian model, we must now define θ in terms of two multinomials: θJ is a

distribution over standard phrase pair types, and θN is a multinomial over null-aligned

phrase pairs. Then, any phrase pair can be generated via the following distribution:

θ(ē⇔ f̄) =

pø · θN(ē⇔ f̄) if ē = ø ∨ f̄ = ø

(1− pø) · θJ(ē⇔ f̄) otherwise

We control the degenerate behavior by placing DP prior over θJ, the multinomial

distribution over standard aligned phrase pairs. To do so, we select a base measure

that strongly prefers shorter phrases, encouraging the model to use large phrases only

when it has sufficient evidence for them.
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θJ ∼ DP (M0, αj) (4.4)

M0(ē⇔ f̄) =
[
Pf (f̄)PWA(ē|f̄) · Pe(ē)PWA(f̄ |ē)

] 1
2 (4.5)

Pf (f̄) = PG(|f̄ |; ps) ·
(

1

nf

)|f̄ |
(4.6)

Pe(ē) = PG(|ē|; ps) ·
(

1

ne

)|ē|
. (4.7)

PWA is the IBM model 1 likelihood of one phrase conditioned on the other, which

factors over the individual words contained in each phrase (Brown et al., 1993). Pf

and Pe are uniform over types for each phrase length: the constants nf and ne denote

the vocabulary size of the foreign and English languages, respectively, and PG is a

geometric distribution.

In Equation 4.4, θJ is drawn from a DP centered on the geometric mean of two

joint distributions over phrase pairs, each of which is composed of a monolingual

unigram model and a lexical translation component. This prior has two advantages.

First, we pressure the model to use smaller phrases by increasing ps (ps = 0.8 in ex-

periments). Second, we encourage sensible phrase pairs by incorporating IBM Model

1 distributions in Equation 4.5. This use of word alignment distributions is notably

different from word alignment constraints: we are supplying prior knowledge that

phrases will generally follow word alignments, though with enough corpus evidence

they need not (and often do not) do so in the posterior samples. The model proved

largely insensitive to changes in the sparsity parameter αj, which we set to 100 for

experiments.
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4.3.4 Unaligned phrases and the DP Prior

Allowing null-aligned phrases invites further degenerate megaphrase behavior: a sen-

tence pair can be generated cheaply as two unaligned phrases that each span an entire

sentence. We attempted to place a similar DP prior over θN, but surprisingly, this

modeling choice invoked yet another degenerate behavior. The DP prior imposes a

rich-get-richer property over the phrase pair distribution, strongly encouraging the

model to reuse existing pairs rather than generate new ones. As a result, common

words consistently aligned to null, even while suitable translations were present, sim-

ply because each null alignment reinforced the next. For instance, the was always

unaligned.

Instead of drawing θN from a DP prior, we fix θN to a simple unigram model that

is uniform over word types. This way, we discourage unaligned phrases while focusing

learning on θJ. For simplicity, we reuse Pf (f) and Pe(e) from the prior over θJ.

θN(ē⇔ f̄) =


1
2 · Pe(ē) if f̄ = ø

1
2 · Pf (f̄) if ē = ø .

The 1
2

represents a choice of whether the aligned phrase is in the foreign or English

sentence.

This definition concludes our presentation of the joint model with a DP prior.

This model was originally proposed in DeNero et al. (2008).

4.3.5 Collapsed Sampling with a DP Prior

Our entire model now has the general form P(x, z, θJ) for observed corpus x, phrase

alignments z, and multinomial parameter θJ; all other model parameters have been
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fixed. Instead of searching for a suitable θJ,7 we sample from the posterior distribution

P(z|x) with θJ marginalized out.

To this end, we convert our Gibbs sampler into a collapsed Gibbs sampler8 using

the Chinese Restaurant Process (CRP) representation of the DP (Aldous, 1985).

With the CRP, we avoid the problem of explicitly representing samples θJ. CRP-

based samplers have served the community well in related language tasks, such as

word segmentation and coreference resolution (Goldwater et al., 2006; Haghighi and

Klein, 2007).

The CRP representation posits a collection of tables. Each table t is labeled with

a phrase pair type and has a number n(t) of phrase pair tokens that are “seated” at

that table. Let A− be the set of aligned phrase pair tokens observed so far, each of

which is assigned to some table:

∑
t

n(t) = |A−|

Then, the process dictates that the next phrase pair drawn from our model (with θJ

integrated out) joins an existing table with probability n(t)

|A−|+α , or starts a new table

with probability α
|A−|+α .

Thus, for a standard phrase pair ē ⇔ f̄ (that is, neither ē nor f̄ are ø), the

conditional probability of drawing that pair takes the form:

τDP(ē⇔ f̄ |A−) =
N(ē⇔ f̄ ,A−) + αj ·M0(ē⇔ f̄)

|A−|+ αj
, (4.8)

where N(ē⇔ f̄ ,A−) is the number of times that ē⇔ f̄ appears in A−. Note that N(·)
differs from the count(·) function in Section 4.2.7: the former counts only minimal

phrase pairs drawn from our model, while the latter also counts composed phrase

7For instance, using approximate MAP EM.
8A collapsed sampler is simply one in which the model parameters have been marginalized out.
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pairs constructed from contiguous minimal pairs.

Notice that Equation 4.8 does not directly refer to table counts, but instead de-

pends only on the number of times that ē⇔ f̄ appears in z. Hence, we do not need to

track the assignment of phrase pair labels to tables, but instead only the total count

of each phrase pair.

Finally, we note that our phrase pair emission model is exchangeable—it assigns

the same probability to any sequence of phrase pair draws, regardless of their order.

Therefore, we can treat each draw conditioned on the entire rest of the corpus (the

Markov blanket) as the last draw in the corpus-long sequence, and apply Equation 4.8

to any sampling operation in our corpus.9

To complete the definition of our collapsed sampler, we must specify the potential

function ψ([g : h)⇔ [k : `)) that expresses the full contribution to the model posterior

of aligning e[g:h) to f[k:`) in a sentence pair, given the current alignment to the rest of

the corpus. With the entire corpus coupled together via the prior, ψ depends not only

on the current sentence pair (e, f), but also the multiset A− of phrase pair tokens in

the rest of the aligned corpus in the current sample. Upon defining ψ, our sampler

remains exactly as it was described in Section 4.2.

ψDP([g : h)⇔ [k : `)|e, f ,A−) = (4.9)(1−p$) · (1−pø) · τ(e[g:h) ⇔ f[k:`)|A−) ·D([g : h)⇔ [k : `)) e[g:h) 6= ø ∧ f[k:`) 6= ø

(1−p$) · pø · θN(ē⇔ f̄) otherwise .

Above, D([g : h)⇔ [k : `)) is the absolute position distortion component of the joint

9Note that the expression for τ changes slightly under conditions where two phrase pairs be-
ing changed simultaneously coincidentally share the same lexical content. Details of these fringe
conditions have been omitted, but were included in our implementation.
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Figure 4.3: The distribution of phrase pair sizes (denoted English length x foreign length)
favors small phrases under the model.

model defined in Section 3.5.2, which conditions on sentencepair. Respectively, p$

and pø are the phrase stop and null emission probabilities of the model. It is a signa-

ture property of the collapsed sampler that A− must be updated after every sampling

operation, thereby coupling together inference all sentence pairs in the corpus. In an

uncollapsed sampler, τ(e[g:h) ⇔ f[k:`)|A−) would be replaced by θJ(e[g:h) ⇔ f[k:`)) for

a fixed parameter θJ, and inference in two different sentence pairs would be indepen-

dent.

4.3.6 Degeneracy Analysis

Figure 4.3 shows a histogram of phrase pair sizes in the distribution of expected counts

under the model. As reference, we show the size distribution of both minimal and all

phrase pairs extracted from word alignments using the standard heuristic. Our model

tends to select minimal phrases, only using larger phrases when well motivated.10

This result alone is important: a model-based solution with no inference constraint

has yielded a non-degenerate distribution over phrase lengths. Note that our sampler

does find the degenerate solution quickly under a uniform prior, confirming that the

model, and not the inference procedure, is selecting these small phrases.

10The largest phrase pair found was 13 English words by 7 Spanish words.
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4.3.7 The Hierarchical Dirichlet Process

The base distribution of a DP prior M0 is a multinomial over the same outcome space

as the process itself. In the Bayesian modeling paradigm, that base distribution can

also be treated as a random variable, drawn from its own prior, P(M0).

When a Dirichlet process prior is used as the prior for the base distribution of

another Dirichlet process, we refer to the resulting full distribution as a hierarchical

Dirichlet process (HDP) (Teh et al., 2005). The HDP has been applied to word

segmentation (Goldwater et al., 2006), language modeling (Teh, 2006), and syntactic

analysis (Johnson et al., 2007b; Liang et al., 2007; Finkel et al., 2007).

4.3.8 A Hierarchical Prior for the Joint Model

While our DP prior over θJ encourages the reuse of phrase pairs, it does not have the

capacity to encourage the reuse of monolingual phrases across different phrase pairs.

However, we can define a hierarchical prior over θJ that promotes such sharing. Our

HDP prior draws monolingual distributions θE and θF from a DP and θJ from their

cross-product:

θJ ∼ DP (M ′
0, αj) (4.10)

M ′
0(ē⇔ f̄) =

[
θF(f̄)PWA(ē|f̄) · θE(ē)PWA(f̄ |ē)

] 1
2

θF ∼ DP (Pf , αh) (4.11)

θE ∼ DP (Pe, αh) . (4.12)

This prior promotes phrase pair reuse via Equation 4.10, but also encourages

novel phrase pairs to be composed of phrases that have been used before. However, it
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shares the same base distribution over monolingual phrases defined by Equations 4.6

and 4.7 of the non-hierarchical DP model.

The sampling potential psi differs from Equation4.9 in the definition of τ . While

the assignment of phrase pairs to tables in the CRP representation of the non-

hierarchical DP could be summarized by A−, this hierarchical prior requires us to

track table assignments explicitly.

Let E− be the set of tables in the upper-tier DP defined by Equation 4.12, which

each have a label l(t) = ē and a count c(t) that tallies the number of instances of

ē that are assigned to t. Likewise, let F− be the table assignments for the DP in

Equation 4.11. Then,

τHDP(ē⇔ f̄ |A−, E−, F−) =
N(ē⇔ f̄ ,A−) + αj · τM0(ē⇔ f̄ |E−, F−)

|A−|+ αj
(4.13)

τM0(ē⇔ f̄ |E−, F−) =
[
τf (f̄ |F−)PWA(ē|f̄) · τe(ē|E−)PWA(f̄ |ē)

] 1
2

τf (f̄ |F−) =

∑
t∈allf :l(t)=f̄ c(t) + αh · Pf (f̄)∑

t∈F− c(t) + αh
(4.14)

τe(ē|E−) =

∑
t∈E−:l(t)=ē c(t) + αh · Pf (f̄)∑

t∈E− c(t) + αh
(4.15)

Care must be taken to update E− and F− appropriately after an operator has

been applied. Table counts are updated only if the phrase pair is drawn from the

latter term of the numerator of Equation 4.13 (true for all novel phrase pairs). Then,

a particular table is selected for ē and f̄ respectively according to the numerators of

Equations 4.14 and 4.15, and the counts of those tables must be incremented.

The HDP prior gives a similar distribution over phrase sizes as the one depicted

in Figure 4.3. This model was also originally defined in DeNero et al. (2008).
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4.3.9 A Hierarchical Prior for the Conditional Model

The conditional phrase alignment model defined in Section 3.5.3 also exhibits degen-

erate behavior. In particular, the model prefers to select rare phrases to condition

upon, so that it can assume a spuriously low entropy conditional distribution for each

conditioning event, as described in Section 3.6.3.

We propose two changes to the model. First, we let the model explain both

sentences, rather than just one. The sentence e is generated monolingually phrase-

by-phrase from a multinomial with parameter θE. Then, the sentence f is generated by

drawing one phrase f̄ conditioned on each ē used to generate e, using the multinomial

θf |e. Those phrases are then reordered to form f .

Second, we impose priors on θE and θf |e.

θE ∼ DP (Pe, αh)

θF ∼ DP (Pf , αh)

θf |e ∼ DP (θF, αj) ∀ English phrase types ē,

where Pf and Pe are the flat distributions defined in Equations 4.6 and 4.7. This

conditional HDP prior prefers shorter phrases in both the input and output sentences,

while allowing for phrases of any length. The prior explicitly encourages the model

to reuse output segments previously seen, rather than generating many phrases only

once, and likewise encourages input phrases to be shared across different conditioning

environments. This model was originally proposed in DeNero and Bouchard-Côté

(2008). All three Bayesian models are compared in Figure 4.4

Again, our collapsed sampler can be adapted to draw samples under this distribu-

tion. The bispan potential ψ([g : h) ⇔ [k : `)) has the same form as the conditional

model potential defined in Section 3.5.3. However, in the place of the fixed parameter
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Figure 4.4: Three graphical models for the generation of a single sentence pair. The left
model is the conditional hierarchical model presented in this paper. The plate with index
i is over the phrase pairs of the sentence, the one with index e is over the infinite set of
potential output phrase types. The center and right models are the two joint models over
phrase pairs, with fixed and hierarchical base measures respectively.

θ(f̄ |ē), we have a τ expression that conditions on the table assignments F− and E−.

τC(ē⇔ f̄ |A−, E−, F−) = τe(ē|E−) · N(ē⇔ f̄ ,A−) + αc · τf (f̄ |F−)

|A−|+ αj

Above, τe and τf are defined identically to their joint model counterparts in Equa-

tions 4.14 and 4.15.

4.4 Bayesian Modeling Experiments

Having defined our models and collapsed sampling procedures, we now turn to the

task of using the models’ predictions in a machine translation system. The state-

of-the-art baseline approach to scoring phrases is based on the relative frequency of

aligned phrase pairs, as described in Chapter 2. That is, we define count(ē, f̄) as the

number of times that phrase type e aligned to phrase type f in our training corpus,

and annotate phrase pairs with relative frequency features:
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Prel(f̄ |ē) =
count(ē, f̄)∑
ē′ count(ē′, f̄)

Prel(ē|f̄) =
count(ē, f̄)∑
f̄ ′ count(ē, f̄ ′)

We change this definition minimally by redefining count(e, f) to be the expected

number of times that e aligns to f under our model; approximated by our sampler.

4.4.1 Word-Alignment Baseline

We trained Moses on all Spanish-English Europarl sentences up to length 20 (177k

sentences) using GIZA++ Model 4 word alignments and the grow-diag-final-and com-

bination heuristic (Koehn et al., 2007; Och and Ney, 2003; Koehn, 2002), which per-

formed better than any alternative combination heuristic. The baseline estimates

come from extracting phrases up to length 7 from the word alignment. We used a

bidirectional lexicalized distortion model that conditioned on both Spanish and En-

glish phrases, along with their orientations. Our 5-gram language model was trained

on 38.3 million words of Europarl using Kneser-Ney smoothing using the SRILM

toolkit (Stolcke, 2002).

We tuned and tested on development corpora for the 2006 translation workshop.

The parameters for each system were tuned separately using minimum error rate

training (Och, 2003). Results are scored with lowercased, tokenized NIST BLEU

(Papineni et al., 2002), and exact match METEOR (Agarwal and Lavie, 2007).

The baseline system gives a BLEU score of 29.8, as shown in Table 4.1.

4.4.2 Joint Bayesian Model Performance

We initialized the sampler with a configuration derived from the word alignments

generated by the baseline. We greedily constructed a phrase alignment from the word
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Phrase Exact
Pair NIST Match

Estimate Count BLEU meteor
Word Alignments 4.4M 29.8 52.4
Joint Model with DP Prior 3.7M 30.1 52.7
Joint Model with HDP Prior 3.1M 30.1 52.6

Table 4.1: BLEU results for learned distributions improve over a heuristic baseline.

alignment by identifying minimal phrase pairs consistent with the word alignment in

each region of the sentence. We then ran the sampler for 100 iterations through the

training data. Each iteration required 12 minutes under the DP prior, and 30 minutes

under the HDP prior. Total running time for the HDP model neared two days on an

eight-core machine with 16 Gb of RAM.

Both the DP and HDP estimators outperformed the baseline, even though the

total number of phrase pairs decreased. The hierarchical prior does not improve

performance over the non-hierarchical DP, but it does further reduce the number of

phrase pairs. This model sparsity is desirable for efficiency reasons.

4.4.3 Conditional Bayesian Model Performance

The conditional model shares the same sampler and estimation procedure as the

joint models. We compared them in a separate experiment; Table 4.2 shows that

the conditional model slightly underperforms the joint models. The priors for these

models share many components, and so it is not surprising that the models perform

similarly. Note that due to various changes in our MT system over time, these results

are not directly comparable with Table 4.1.
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Model Prior BLEU Score
Joint Model Dirichlet process prior 30.9
Joint Model Hierarchical Dirichlet process 31.0
Conditional Model Hierarchical Dirichlet process 30.8

Table 4.2: The joint phrase alignment model slightly outperforms the conditional model
under Bayesian priors.

4.4.4 Summary of Experimental Findings

Bayesian models based on the Dirichlet Process, combined with a Gibbs sampler, al-

low phrase alignment models to outperform their word alignment counterparts while

inducing sparser models, which simultaneously improves translation-time efficiency.

Previously published positive results for phrase alignment models had always con-

strained the output of the phrase model by the predictions of a word-level model

(Birch et al., 2006; Cherry and Lin, 2007). These sampled models use word align-

ments for initialization—just as state-of-the-art word alignment models use simpler

word-level models for initialization—but allow the phrase model to correct alignment

errors. An example of a corrected error appears in Figure 4.5. Subsequent work on

Bayesian alignment has upheld this result (Blunsom et al., 2009).

4.4.5 Segmentation and Composition

Phrase alignment models are segmented models : they must choose some segmentation

of their structured output that can either have many small components or few large

ones. Simple likelihood objectives for segmented models have a strong bias toward

using few segments if each segment is generated independently under the model.

Therefore, it is no surprise in our case that phrase alignment models required a

strong prior to promote the use of small, reusable components.

On the other hand, the success of phrase-based translation models is widely at-

79



Chapter 4. Bayesian Phrase Alignment Models
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you do so
Thank , I shall gladly.

you do so
Thank , I shall gladly.

Gracias

,
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muy
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.

(a) example word alignment (b) example phrase alignment

Figure 4.5: (a) An example word alignment from the baseline technique does not correctly
analyze the multi-word idiomatic phrase de muy buen grado, which translates as glady.
(b) Despite being initialized by this erroneous word alignment, the phrase alignment model
recovers a correct analysis of the sentence pair.

tributed to their ability to detect and reuse long sequences of training sentence words

in order to translate novel inputs. In the case of translation, reusing longer phrases is

not only empirically effective but intuitively reasonable: any number of local agree-

ment constraints, word choice biases, and reordering phenomena can be captured in

together in a single long phrase.

The tension between the phrase alignment model’s requirement to use small

phrases and the translation model’s requirement to use longer phrases was resolved

via composed phrases (Section 4.2.7). That is, we gathered statistics about larger

phrase pairs that were generated as multiple contiguous phrase pairs under the align-

ment model. While this solution is effective, it begs an additional question: how can

we use statistics about longer phrase pairs to inform the phrase alignment. The inde-

pendence assumptions of these generative models prevent us from sharing information

across shorter and longer phrases, but the discriminative models in the following chap-
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ters will enable us to consider composed and minimal phrases simultaneously during

alignment.
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Chapter 5

Discriminative Phrase Alignment

The previous two chapters investigated generative phrase alignment models. The

objective function that guides learning in generative models is the probability of the

observed training corpus, expressed either as a likelihood or a posterior given a prior.

This objective does not reference the correctness of alignments at all — we only

hypothesize that correct alignments will yield a high-probability explanation of the

observed data. By contrast, the discriminative models investigated in this chapter

allow us to define a learning objective based on a set of reference or gold alignments

created by a human annotator. Rather than expecting correct alignments to emerge

as latent aspects of a generative process, we will expect to learn correct alignments

directly by correcting the alignment errors made by a model.

5.1 Discriminative Learning

Discriminative learning methods provide state-of-the-art performance in many struc-

tured prediction tasks in natural language processing, such as part-of-speech tagging

(Lafferty et al., 2001) and syntactic parsing (Huang, 2009). Moreover, the translation

models that the MT community uses to generate final translation outputs are typi-
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cally trained discriminatively. Discriminative linear models have replaced the more

simplistic noisy channel model that dominated early statistical machine translation

work, due to improved performance (Och, 2003).

Discriminative models directly predict the output y (in our case, an alignment)

conditioned upon the observed input x (in our case, a sentence pair). In structured

prediction tasks, discriminative models are typically trained to optimize a task-specific

loss function L(yg, y), which measures the degree of error for a hypothesis y relative

to a gold reference output yg.

Linear discriminative models score hypotheses y as

score(y) = θ · φ(y)

where φ(y) is a vector of real-valued features which expose the aspects of the struc-

tured output y that are relevant to the prediction task, and θ is a vector of model

weights. The model can be used to predict an output ym by maximizing this score:

ym = arg max
y

θ · φ(y)

Discriminative learning procedures are often characterized as mistake-driven, as

their objectives often include the highest scoring prediction ym and its loss, which

together characterizes the mistakes of the model.

Statistical learning theory provides a wide selection of discriminative learning

techniques. In this thesis, we focus on a loss-augmented generalization of the classic

perceptron algorithm, referred to as the margin-infused relaxed algorithm (Crammer

and Singer, 2003).
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5.1.1 Margin-Infused Relaxed Algorithm

The margin-infused relaxed algorithm (MIRA) is an online, margin-based learning

method for linear models. MIRA has been applied to a variety of natural language pro-

cessing tasks with consistent success, such as dependency parsing (McDonald et al.,

2005), labeled chunking (Shimizu and Haas, 2006), and machine translation (Watan-

abe, 2007; Chiang et al., 2008).

Online learning algorithms consider one example at a time; in our case, one sen-

tence pair x = (e, f) along with its reference alignment yg. The model weights θ are

updated with each example, and the resulting weights are then used for the following

example. Online algorithms differ from batch learning algorithms, like the expec-

tation maximization learning of Chapter 3, which apply the same model weights to

many examples and then update model weights to optimize an objective function over

the entire dataset.

Like the perceptron, MIRA only considers the reference yg and the highest scoring

prediction under the current model, ym. MIRA updates θ away from the feature

vector for the highest scoring prediction φ(ym) and toward the feature vector for the

reference output φ(yg).

θ ← θ + τ · (φ(yg)− φ(ym)) (5.1)

where τ is the minimal step size that ensures the resulting θ prefers yg over ym by a

margin as large as the loss of ym:

θ · φ(yg) ≥ θ · φ(ym) + L(yg, ym)

The step size in the direction φ(yg) − φ(ym) that achieves this margin condition
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can be expressed in closed form:

s(yg, ym) =
L(yg, ym)− θ · (φ(yg)− φ(ym))

||φ(yg)− φ(ym)||22

Where the vector 2-norm above is defined as

||v||22 =

|v|∑
i=1

v2
i .

To prevent any one example from influencing θ too much (for instance, due to a

very high loss for some ym), learning is regularized by capping the step size τ with

some constant C:

τ = min(C, s(yg, ym)) .

The online update defined by Equation 5.1 is performed for each example k times.

The training examples are presented in a random order for each of k passes through

the training set. As an additional form of regularization, we average together the k

weight vectors θi obtained after each pass through the training dataset. Experiments

presented in this thesis set k to 30 and C to 0.01. These values were selected based

on preliminary alignment experiments.

To apply MIRA to the problem of phrase alignment, we must supply the following

components:

• A vector of features φ(y) that characterize a phrase alignment y.

• An inference procedure to produce ym = arg max
y

θ · φ(y).

• A reference feature extractor to give φ(yg) from yg.

• A loss function L(yg, ym).
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5.2 Previous Work on Discriminative Alignment

Discriminative methods have been shown to yield state-of-the-art performance for the

task of word alignment (Moore et al., 2006; Lacoste-Julien et al., 2006). This section

briefly reviews previous work on discriminative word alignment, focusing particular

attention on its influence on the phrase alignment models we propose in the remainder

of this chapter.

Several variants of discriminative aligners were proposed simultaneous, which var-

ied in learning techniques, inference procedures, model factorization, and output

constraints (Liu et al., 2005; Ayan et al., 2005; Taskar et al., 2005; Moore, 2005;

Ittycheriah and Roukos, 2005). Despite their variety, these aligners all shared the

same input and output conditions. The discriminative models themselves map from

an input sentence pair (e, f) to an output set of word alignment links A.

Features are defined primarily on individual links (i, j) ∈ A, but may also be

defined on tuples of links ((i, j)1, . . . , (i, j)k). Those features may refer to any part of

the sentence pair. Features also leverage large parallel corpora that do not include

reference alignments. These unsupervised corpora are used to collect surface statis-

tics such as co-occurrence counts, as well as to train unsupervised word alignment

models. The predictions of those unsupervised models can then be used as features in

discriminative aligners. Unlike large-scale discriminative modeling efforts, which of-

ten rely on millions of low-occurrence but highly specific features to make predictions,

the most successful discriminative aligners heavily leverage real-valued features that

encode frequency patterns collected from these large unsupervised parallel corpora.

5.2.1 Perceptron-Trained Word Alignment

Among the most successful efforts in this space is a two-stage aligner trained with av-

eraged perceptron (Moore, 2005; Moore et al., 2006). The final version of this aligner
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achieved state-of-the-art performance on a French-English parallel corpus excerpted

from the Canadian Hansards corpus and hand aligned for use in evaluating alignment

techniques (Och and Ney, 2003). This line of work contributed several findings that

we leverage in our phrase aligner:

• While at-most-one-to-one or one-to-many constraints on alignments have proven

computationally convenient for unsupervised models (Brown et al., 1993; Melamed,

2000), they must be relaxed to maximize performance. Aligners benefit from

being able to align multiple words from either sentence to a word or words in

the other sentence.

• Achieving state-of-the-art performance from a supervised aligner requires us-

ing the predictions of an unsupervised aligner as input. Strong performance

can be achieved through cleverly engineered features based on surface statistics

and multi-stage alignment, but unsupervised models generate the best known

features.

• The choice of learning technique has a small impact on performance relative to

the feature representation, amount of data, and structural output restrictions

used in the model.

The discriminative phrase aligners we develop in this chapter therefore rely on

the predictions of unsupervised word alignment models, employ only a single learning

technique (MIRA), and allow many-to-many word alignments in the form of phrase-

to-phrase alignments.

5.2.2 Discriminative Inversion Transduction Grammars

Inference in the space of word alignments that include many-to-many alignments leads

to challenging inference problems. For instance, Section 3.2.2 proved that finding the
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highest scoring phrase alignment under an unrestricted phrase-factored model is NP-

Hard.

A natural way to circumvent this hardness result is to restrict the space of phrase

alignments to a phrasal inversion transduction grammar (ITG), as defined in Sec-

tion 3.3.2. This alignment space admits polynomial time inference algorithms.

A discriminative alignment model based on ITG has also been proposed previously

(Cherry and Lin, 2006). However, this model restricted the output to at-most-one-to-

one word alignments. The next section extends this approach to phrase alignments.

5.3 Disjoint Phrase Alignment Models

We now define a discriminative model that conditions upon a sentence pair (e, f) and

scores a phrasal ITG alignment P ∈ itg(e, f). P is a set of pairwise-disjoint bispans

that partition each sentence, as in the phrase-factored models of Section 3.1. In this

discriminative model, each bispan corresponds to a feature vector φ([g : h)⇔ [k : `)).

The feature vector for a phrase alignment φ(P) is the sum of the feature vectors of

its component bispans, which can be distilled into a single score via an inner product

with weight vector θ.

score(P) = θ ·
∑

[g:h)⇔[k:`)∈P

φ([g : h)⇔ [k : `)) .

This disjoint phrase model is a featurized extension to the phrase-factored model class

defined by Equation 3.1, linear both in the dimensions of φ and the elements of P .

By construction, every phrase alignment P ∈ itg(e, f) corresponds to at least one

binary synchronous tree T with a set of terminal productions trm(T ) = P . These

synchronous trees play an important role in model inference for itg. Extending our

model to the space of trees, we define the score of a tree T in terms of its terminal
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productions.

score(T ) = θ ·
∑

[g:h)⇔[k:`)∈trm(T )

φ([g : h)⇔ [k : `)) .

While there may be many trees that correspond to the same P , all trees with a

common terminal set will have the same model score.

trm(T ) = trm(T ′)→ score(T ) = score(T ′) .

Because trees are scored entirely by their terminals, we may refer to some P and its

corresponding T interchangeably in many contexts.

Finding the highest-scoring phrase alignment

Pm = arg max
P∈itg(e,f)

θ · φ(P)

requires parsing under a max-sum semi-ring using a synchronous grammar that as-

signs zero weight to non-terminal productions, and a weight of θ · φ([g : h)⇔ [k : `))

to terminal productions. This inference procedure requires O(n6) time for a sentence

pair (e, f) with maximum length n = max(|e|, |f |), as described in Section 3.3.2.

5.3.1 Word-Level Projection and Loss

We can interpret a phrase alignment as a word alignment by computing the set of

word alignment links A that are contained within the bispans of P :

A(P) =
⋃

[g:h)⇔[k:`)∈P

{(i, j) : i ∈ [g : h) ∧ j ∈ [k : `)} . (5.2)

Using this projection, we can define a word-level loss function for some P relative

to any reference word alignment Ag that simply sums the number of missed sure
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alignment links (recall errors) with the number of erroneous proposed links (precision

errors). This loss function has been used regularly in state-of-the-art discriminative

word aligners (Taskar et al., 2005; Moore, 2005).

5.3.2 Features on Phrase Alignment Links

As with any discriminative alignment model, the effectiveness of this model depends

largely on the set of features used. These features regularly refer to an unsupervised

probabilistic aligner trained on a large parallel corpus that supplies feature informa-

tion. We use the hidden Markov model aligner implemented in the Berkeley Aligner

software package (Liang et al., 2006; DeNero and Klein, 2007). We used the following

features on a bispan [g : h)⇔ [k : `) in order to score our model.

Unsupervised Link Posteriors Let P (i, j|e, f) be the posterior link probabilities

of aligning i to j in an unsupervised model. Then, we average that value for all

links included within the bispan [g : h)⇔ [k : `).

Bias The bias feature is 1 for all bispans.

Neighbor Posteriors The maximum posterior link probability in an unsupervised

model of any (i, j) that is directly adjacent to [g : h)⇔ [k : `).

Extraction from Unsupervised Links An indicator of whether [g : h) ⇔ [k : `)

would be extractable from the full alignment predicted by an unsupervised

model.

Identity Whether e[g:h) is identical to f[k:`) (often true for proper names, numbers,

etc.).

Dictionary Whether e[g:h) appears as a translation of f[k:`) in a bilingual dictionary.
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Our Chinese-English experiments, we used the Chinese-English dictionary dis-

tributed by the Linguistic Data Consortium.

Shape Indicator features for the size of the bispan in words (and in characters, for

Chinese).

Numerical Whether e[g:h) and f[k:`) contain only numerical characters.

Punctuation Whether e[g:h) and f[k:`) contain only punctuation characters.

Lexical Indicator features on the lexical content of e[g:h) and f[k:`), but where all

words except the k most common have been mapped to a single rare word

token. In experiments we set k = 50, thereby storing lexical features for only

the most common 50 words in each language.1

Fertility On 1-by-n or n-by-1 bispans, for n > 1, we include indicator features of

the fertility of common words. This notion of fertility also appears in some

generative word alignment models (Brown et al., 1993).

Preliminary experiments indicated that all of these features improved the perfor-

mance of the model.

5.3.3 Agenda-Based Inference and Pruning

While the space of phrasal ITG alignments admits a polynomial-time inference al-

gorithm, the naive O(n6) dynamic program spends a great deal of time considering

alternatives that can easily be ruled out by pruning the search space with a simpler

model. An unsupervised model is required to supply features for our discriminative

aligner, and so it is a natural source of pruning information as well.

1A larger number of lexical features have been shown to help in discriminative aligners (Moore
et al., 2006). However, incorporating them can require tweaks to the learning algorithm and staged
training — complications that are orthogonal to the goals of this thesis.
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We adopt a pruning scheme broadly similar to the one proposed in Cherry and

Lin (2007). We refuse to consider any bispan [g : h)⇔ [k : `) that violates more than

3 alignment links produced by the unsupervised aligner.

Pruning has only a minimal effect on the maximum possible performance of our

model. The oracle alignment error rate for the block ITG model class is 1.4%; the

oracle alignment error rate for this pruned subset of ITG is 2.0%. Hence, even with

a hard constraint based on word alignments, the right model can achieve a nearly

perfect analysis of our hand-aligned test set. Maximum violation count constraints

like this one are much less restrictive than the constraints described in Section 3.4.2,

which disallowed violations entirely. We note that while each bispan can violate at

most three links, the entire alignment can violate many more in total.

With this pruning approach, a large number of bispans are excluded. In addition

to those bispans excluded directly by this pruning criterion, many large bispans are

effectively eliminated simply because they cannot be constructed using the smaller

bispans that remain after pruning. Nonetheless, a straightforward dynamic program-

ming approach to parsing would systematically test all ways of building each non-

excluded bispan, which can cause long running times despite the fact that the vast

majority of the search space as been excluded via the pruning criterion.

To take advantage of the sparsity that results from pruning, we use an agenda-

based parser that orders search states from small to large, where we define the size

of a bispan as the total number of words contained within it:

size([g : h)⇔ [k : `)) = h− g + `− k .

For each size, we maintain a separate agenda. Only when the agenda for size k

is exhausted does the parser proceed to process the agenda for size k + 1. This

parsing approach iterates topologically through spans from small to large, as would
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Figure 5.1: A* search for pseudo-gold ITG alignments uses an admissible heuristic for
bispans that counts the number of gold links outside of f[k:`) but within e[g:h). Above, the
heuristic is 1, which is also the minimal number of alignment errors that an ITG alignment
will incur using this bispan.

a standard dynamic program, but differs in that it organizes computation around a

list of successfully constructed bispans, rather than considering all possible bispans.

Related work has demonstrated that sparsity in an ITG can also be exploited via a

two-step dynamic program (Dyer, 2009).

5.3.4 Pseudo-Gold ITG Alignments

So far, we have supplied the following ingredients required by MIRA to train our dis-

criminative model: a feature representation, a loss function, and an inference method

for finding Am. We also need to supply a feature representation of Ag, the reference

alignment.

However, some hand-annotated alignments At are outside of the block ITG model

class. Hence, we update toward the extraction set for a pseudo-gold alignment Ag ∈
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itg(e, f) with minimal distance from the true reference alignment At.

Ag = arg min
A∈itg(e,f)

|A ∪ At −A ∩At| (5.3)

Equation 5.3 asks for the block ITG alignment Ag that is closest to a reference

alignment At, which may not lie in itg(e, f). We search for Ag using A* bitext

parsing (Klein and Manning, 2003). Each search state, which corresponds to some

bispan [g : h) ⇔ [k : `), is scored by the number of errors within the bispan plus

the number of (i, j) ∈ At such that j ∈ [k : `) but i /∈ [g : h) (recall errors). As an

admissible heuristic for the future cost of a bispan [g : h) ⇔ [k : `), we count the

number of (i, j) ∈ At such that i ∈ [g : h) but j /∈ [k : `), as depicted in Figure 5.1.

These links will become recall errors eventually. A* search with this heuristic makes

no errors, and the time required to compute pseudo-gold alignments is negligible.

5.3.5 Using Disjoint Phrase Alignments for Translation

We have finished defining our discriminative model over disjoint ITG phrase align-

ments. Once we train such a model, we can query it for a phrase alignment Pm
for each sentence pair in our parallel corpus. Using the word-level projection A(P)

defined by Equation 5.2, we can integrate this aligner into a phrase-based pipeline

in precisely the same manner as a word alignment model would be integrated. That

is, we extract all phrase pairs up to size n that are licensed by the disjoint phrase

alignment, Rn(A(Pm)), defined in Section 2.3.2.

Of course, P ⊆ Rn(A(P)) for any well-formed phrase alignment P , as phrase

extraction will additionally include all of the possibly overlapping composed phrase

pairs that can be formed by grouping together contiguous elements of P , while P
contains only a set of disjoint bispans that partition the sentence pair.

While both our alignment model and translation model have a bijective phrasal
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structure, we still have a mismatch between our alignment model — which factors over

disjoint bispans — and the phrase pairs that are tallied from the output alignment —

which includes both large and small overlapping phrase pairs. Section 5.4 addresses

this discrepancy.

5.4 Extraction Set Models

The baseline phrase pair extraction and scoring method described in Section 2.3 con-

sists of a two-stage pipeline; a parallel corpus is aligned at the word level, and then

phrase pairs are extracted from word-aligned sentence pairs. None of the models we

have considered so far take into account the composed phrase pairs that will be ex-

tracted from a predicted alignment. Word alignment models consider only individual

words. The generative phrase-factored and discriminative disjoint models considered

in this thesis consider only minimal phrase pairs. As a result, these models cannot

adjust their output based on composed phrase pairs, nor utilize features on composed

phrase pairs to make alignment decisions.

In this section, we develop a model-based alternative to phrasal rule extraction,

which merges the standard two-stage pipeline into a single step. We call the resulting

approach an extraction set model, where an extraction set is the collection of phrase

pairs Rn(A) that is extracted from an alignment A.

Predicting extraction sets provides additional discriminative power relative to

word aligners or minimal phrase aligners. Moreover, the structure of our model di-

rectly reflects the purpose of alignment models in a phrase-based translation pipeline,

which is to discover sets of aligned phrase pairs that can be reused at translation time.

Extraction sets also play a central role in hierarchical and syntactic translation sys-

tems. This relationship is investigated more fully in DeNero and Klein (2010), where

extraction set models were originally proposed.
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5.4.1 Extraction Set Definition

The input to our model is an unaligned sentence pair (e, f), and the output is an

extraction set of phrasal translation rules Rn(A), coupled with an underlying word

alignment A.

We restrict the model to propose alignments that correspond to a disjoint phrase

alignment A(P), where P ∈ itg(e, f) and the conversion to a link set A is defined by

Equation 5.2. In the context of an extraction set model, it is the word-to-word links

rather than the phrasal bispans of P that dictate the set of extracted phrase pairs.

Therefore, we view phrase alignments as word alignments and write A ∈ itg(e, f) to

denote the set of word-level alignments permitted by the model.

We briefly review the rule extraction function Rn(·), which is described in Sec-

tion 2.3.2. Consider an alignment A. Let word ei project to the phrasal span σ(ei),

where

σ(ei) =

[
min
j∈Ji

j , max
j∈Ji

j + 1

)
(5.4)

Ji = {j : (i, j) ∈ A}

and likewise each word fj projects to a span of e. Then, Rn(A) includes a bispan

[g : h)⇔ [k : `) iff

σ(ei) ⊆ [k : `) ∀i ∈ [g : h)

σ(fj) ⊆ [g : h) ∀j ∈ [k : `)
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Figure 5.2: Examples of two types of possible alignment links (striped). These types
account for 96% of the possible alignment links in our data set.

5.4.2 Possible and Null Alignment Links

We have not yet accounted for two special cases in annotated corpora: possible align-

ments and null alignments. To analyze these annotations, we consider a partic-

ular data set: a hand-aligned portion of the NIST MT02 Chinese-to-English test

set, which has been used in previous alignment experiments (Ayan et al., 2005;

DeNero and Klein, 2007; Haghighi et al., 2009).

Possible links account for 22% of all alignment links in these data, and we found

that most of these links fall into two categories. First, possible links are used to

align function words that have no equivalent in the other language, but colocate

with aligned content words, such as English determiners. Second, they are used to

mark pairs of words or short phrases that are not lexical equivalents, but which play

equivalent roles in each sentence. Figure 5.2 shows examples of these two use cases,

along with their corpus frequencies.2

2We collected corpus frequencies of possible alignment link types ourselves on a sample of the
hand-aligned data set.
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Figure 5.3: Possible links constrain the word-to-phrase projection of otherwise unaligned
words, which in turn license overlapping phrases. In this example, σ(f2) = [1 : 2) does
not include the possible link at (1, 0) because of the sure link at (1, 1), but σ(e1) = [1 : 2)
does use the possible link because it would otherwise be unaligned. The word “PDT” is
null aligned, and so its projection σ(e4) = [−1 : 4) extends beyond the bounds of the
sentence, excluding “PDT” from all phrase pairs.

On the other hand, null alignments are used sparingly in our annotated data.

More than 90% of words participate in some alignment link. The unaligned words

typically express content in one sentence that is absent in its translation.

Figure 5.3 illustrates how we interpret possible and null links in our projection.

The notion of possible links is typically not included in extraction procedures because

most aligners predict only sure links. However, we see a natural interpretation for

possible links in rule extraction: they license phrasal rules that both include and

exclude them. We exclude null alignments from extracted phrases because they often

indicate a mismatch in content.

We achieve these effects by redefining the projection operator σ. Let A(s) be the

subset of A that are sure links, then let the index set Ji used for projection σ in

98



Chapter 5. Discriminative Phrase Alignment

Equation 5.4 be

Ji =



{
j : (i, j) ∈ A(s)

}
if ∃j : (i, j) ∈ A(s)

{−1, |f |} if @j : (i, j) ∈ A

{j : (i, j) ∈ A} otherwise

Here, Ji is a set of integers, and σ(ei) for null aligned ei will be [−1 : |f | + 1) by

Equation 5.4.

Of course, the characteristics of our aligned corpus may not hold for other anno-

tated corpora or other language pairs. However, we hope that the overall effectiveness

of our modeling approach will influence future annotation efforts to build corpora that

are consistent with this interpretation.

5.4.3 A Linear Model of Extraction Sets

We now define a linear model that scores extraction sets. We restrict our model to

score only coherent extraction sets Rn(A), those that are licensed by an underlying

word alignment A with sure alignments A(s) ⊆ A. Conditioned on a sentence pair

(e, f) and maximum phrase length n, we score extraction sets via a feature vector

φ(A(s), Rn(A)) that includes features on sure links (i, j) ∈ A(s) and features on the

bispans in Rn(A) that link [g : h) in e to [k : `) in f :

φ(A(s), Rn(A)) =
∑

(i,j)∈A(s)

φa(i, j) +
∑

[g:h)⇔[k:`)∈Rn(A)

φb([g : h)⇔ [k : `))

Because the projection operator Rn(·) is a deterministic function, we can abbrevi-

ate φ(A(s), Rn(A)) as φ(A) without loss of information, although we emphasize that

A is a set of sure and possible alignments, and φ(A) does not decompose as a sum

of vectors on individual word-level alignment links. Our model is parameterized by a
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Figure 5.4: Above, we show a representative subset of the block alignment patterns that
serve as terminal productions of the ITG that restricts the output space of our model.
These terminal productions cover up to n = 3 words in each sentence and include a
mixture of sure (filled) and possible (striped) word-level alignment links.

weight vector θ, which scores an extraction set Rn(A) as θ · φ(A).

In summary, our model scores all Rn(A) for A ∈ itg(e, f) where A can include

block terminals of size up to n. In our experiments, n = 3. Unlike previous work,

we allow possible alignment links to appear in the block terminals, as depicted in

Figure 5.4. We do not include features on possible links (although adding such fea-

tures would be straightforward). Instead, the desirability of possible links is assessed

indirectly via the phrasal rules they introduce.

5.4.4 Extraction Set Loss Function

In order to focus learning on predicting the right bispans, we use an extraction-level

loss L(Ag,Am): an F-measure of the overlap between bispans in Rn(Am) and Rn(Ag).
This measure has been proposed previously to evaluate alignment systems (Ayan and

Dorr, 2006). Based on preliminary translation results during development, we chose
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bispan F5 as our loss:

Pr(Ag,Am) = |Rn(Ag) ∩Rn(Am)|/|Rn(Am)|

Rc(Ag,Am) = |Rn(Ag) ∩Rn(Am)|/|Rn(Ag)|

F5(Ag,Am) =
(1 + 52) · Pr(Ag,Am) · Rc(Ag,Am)

52 · Pr(Ag,Am) + Rc(Ag,Am)

L(Ag,Am) = 1− F5(Ag,Am)

F5 favors recall over precision. Previous alignment work has shown improvements

from adjusting the F-measure parameter (Fraser and Marcu, 2006). In particular,

Lacoste-Julien et al. (2006) also chose a recall-biased objective.

Optimizing for a bispan F-measure penalizes alignment mistakes in proportion to

their rule extraction consequences. That is, adding a word link that prevents the

extraction of many correct phrasal rules, or which licenses many incorrect rules, is

strongly discouraged by this loss.

5.4.5 Additional Features on Extraction Sets

The output space of our extraction set model includes an underlying minimal phrase

alignment, and so we can use the same set of features in our extraction set model

that we used in our minimal phrase alignment model.

In addition, extraction set models allow us to incorporate the same phrasal relative

frequency statistics that drive phrase-based translation performance, described in

Section 2.3.3. To implement these frequency features, we score phrase pairs according

to the baseline procedure described in Section 2.3 using the same unsupervised model

that we use for features and pruning. Then, we score phrase pairs in an extraction

set using the resulting relative frequency features.
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or

Figure 5.5: Both possible ITG decompositions of this example alignment will split one of
the two highlighted bispans across constituents.

We also include monolingual phrase features that expose useful information to the

model. For instance, in Chinese-English parallel corpora, English bigrams beginning

with “the” are often extractable phrases: they align contiguously to the Chinese

sentence. English trigrams with a hyphen as the second word are typically extractable,

meaning that the first and third words align to consecutive Chinese words. When

any conjugation of the word “to be” is followed by a verb, indicating passive voice or

progressive tense, the two words tend to align together.

In total, our final model includes 4,249 individual features, dominated by various

instantiations of lexical templates.

5.4.6 Extraction Set Inference

To train and apply our model, we must find the highest scoring extraction set under

our model, Rn(Am), which we also require at test time. Although we have restricted

Am ∈ itg(e, f), our extraction set model does not factor over ITG productions, and so

the dynamic program for a vanilla block ITG will not suffice to find arg max
A

θ ·φ(A).

To see this, consider the extraction set in Figure 5.5. An ITG decomposition of the
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Figure 5.6: Augmenting the ITG grammar states with the alignment configuration in
an n − 1 deep perimeter of the bispan allows us to score all overlapping phrasal rules
introduced by adjoining two bispans. The state must encode whether a sure link appears
in each edge column or row, but the specific location of edge links is not required.

underlying alignment imposes a hierarchical bracketing on each sentence, and some

bispan in the extraction set for this alignment will cross any such bracketing. Hence,

the score of some licensed bispan will be non-local to the ITG decomposition.

If we treat the maximum phrase length n as a fixed constant, then we can define

a polynomial-time dynamic program to search the space of extraction sets. An ITG

derivation for some alignment A decomposes into two sub-derivations for AL and

AR.3 The model score of A, which scores extraction set Rn(A), decomposes over AL
and AR, along with any phrasal bispans licensed by adjoining AL and AR.

θ · φ(A) = θ · φ(AL) + θ · φ(AR) + I(AL,AR)

where I(AL,AR) is θ ·∑φ(g, h, k, l) summed over licensed bispans e[g:h) ⇔ f[k:`) that

overlap the boundary between AL and AR.4

In order to compute I(AL,AR), we need certain information about the alignment

configurations of AL and AR where they adjoin at a corner. The state must represent

3We abuse notation in conflating an alignment A with its derivation. All derivations of the same
alignment receive the same score, and we only compute the max, not the sum.

4We focus on the case of adjoining two aligned bispans. Our algorithm easily extends to include
null alignments, but we focus on the non-null setting for simplicity.
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(a) the specific alignment links in the n− 1 deep corner of each A, and (b) whether

any sure alignments appear in the rows or columns extending from those corners.5

With this information, we can infer the bispans licensed by adjoining AL and AR, as

in Figure 5.6.

Applying our score recurrence yields a polynomial-time dynamic program. This

dynamic program is an instance of ITG bitext parsing, where the grammar uses

symbols to encode the alignment contexts described above. This context-as-symbol

augmentation of the grammar is similar in character to augmenting symbols with

lexical items to score language models during hierarchical decoding (Chiang, 2007).

5.4.7 Coarse-to-Fine Inference and Pruning

As with the disjoint phrase alignment model of Section 5.3, we can benefit from

pruning using the predictions of the underlying unsupervised word alignment model.

Again, we generate phrase alignments using an agenda-based ITG parser to take

advantage of the sparsity of legal alignments under our pruning criterion.

We also employ coarse-to-fine search to speed up inference (Charniak and Cara-

ballo, 1998). In the coarse pass, we search over the space of ITG alignments, but score

only features on alignment links and bispans that are local to terminal productions.

This simplification eliminates the need to augment grammar symbols, and so we can

exhaustively explore the (pruned) space. We then compute outside scores for bispans

under a max-sum semiring (Goodman, 1996). In the fine pass with the full extraction

set model, we impose a maximum beam size of 10,000 hypotheses for each agenda.

We order states on agendas by the sum of their inside score under the full model and

the outside score computed in the coarse pass, pruning all states not within the fixed

agenda beam size.

5The number of configuration states does not depend on the size of A because corners have fixed
size, and because the position of links within rows or columns is not needed.
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Search states that are popped off agendas are indexed by their corner locations

for fast look-up when constructing new states. For each corner and size combination,

built states are maintained in sorted order according to their inside score. This

ordering allows us to stop combining states early when the results are falling off the

agenda beams. Similar search and beaming strategies appear in many decoders for

machine translation (Huang and Chiang, 2007; Koehn and Haddow, 2009; Moore and

Quirk, 2007b).

5.4.8 Relationship to Previous Work

Our extraction set model is similar in design to the discriminative word alignment

models described in Section 5.2. However, our model is the first to consider the output

space of extraction sets. Two related lines of work also support our hypothesis that

considering the overlapping structure of extraction sets should improve alignment

quality for machine translation.

Kääriäinen (2009) trains a translation model discriminatively using features on

overlapping phrase pairs. That work differs from ours in that it uses fixed word

alignments and focuses on translation model estimation, while we focus on alignment

and translate using standard relative frequency estimators.

Deng and Zhou (2009) present an alignment combination technique that uses

phrasal features. Our approach differs in two ways. First, their approach is tightly

coupled to the input alignments, while we perform a full search over the space of ITG

alignments. Also, their approach uses greedy search, while our search is optimal aside

from pruning and beaming. Despite these differences, their strong results reinforce

our claim that phrase-level information is useful for alignment.
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5.5 Experimental Results

We evaluate our extraction set model by the bispans it predicts, the word alignments

it generates, and the translations generated by an end-to-end phrase-based system.

Table 5.1 compares the four systems described below, including an unsupervised

baseline. All supervised aligners were optimized for bispan F5.

Unsupervised Baseline: Joint HMM. We trained and combined two HMM

alignment models (Ney and Vogel, 1996) using the Berkeley Aligner.6 We initialized

the HMM model parameters with jointly trained Model 1 parameters (Liang et al.,

2006), combined word-to-word posteriors by averaging (soft union), and decoded with

the competitive thresholding heuristic of DeNero and Klein (2007), yielding a state-

of-the-art unsupervised baseline.

Disjoint phrase alignment model. We discriminatively trained a phrasal ITG

aligner with only sure links, using block terminal productions up to 3 words by 3

words in size. This supervised baseline is a reimplementation of the MIRA-trained

model of Haghighi et al. (2009). We use the same features and parser implementation

for this model as we do for our extraction set model to ensure a clean comparison. To

remain within the alignment class, MIRA updates this model toward a pseudo-gold

alignment with only sure links. This model does not score any overlapping bispans.

Extraction Set Coarse Pass. We add possible links to the output of the block ITG

model by adding the mixed terminal block productions described in Section 5.4.3.

This model scores overlapping phrasal rules contained within terminal blocks that

result from including or excluding possible links. However, this model does not score

bispans that cross bracketing of ITG derivations.

Full Extraction Set Model. Our full model includes possible links and features

6http://code.google.com/p/berkeleyaligner

106



Chapter 5. Discriminative Phrase Alignment

on extraction sets for phrasal bispans with a maximum size of 3. Model inference is

performed using the coarse-to-fine scheme described in Section 5.4.7.

5.5.1 Data

In this experiment, we focus exclusively on Chinese-to-English translation. We per-

formed our discriminative training and alignment evaluations using a hand-aligned

portion of the NIST MT02 test set, which consists of 150 training and 191 test sen-

tences (Ayan and Dorr, 2006). We trained the baseline HMM on 11.3 million words

of FBIS newswire data, a comparable dataset to those used in previous alignment

evaluations on our test set (DeNero and Klein, 2007; Haghighi et al., 2009).

Our end-to-end translation experiments were tuned and evaluated on sentences

up to length 40 from the NIST MT04 and MT05 test sets. For these experiments,

we trained on a 22.1 million word parallel corpus consisting of sentences up to length

40 of newswire data from the GALE program, subsampled from a larger data set to

promote overlap with the tune and test sets. This corpus also includes a bilingual

dictionary. To improve performance, we retrained our aligner on a retokenized version

of the hand-annotated data to match the tokenization of our corpus.7 We trained a

language model with Kneser-Ney smoothing on 262 million words of newswire using

SRILM (Stolcke, 2002).

5.5.2 Word and Phrase Alignment

The first panel of Table 5.1 gives a word-level evaluation of all four aligners. We use

the alignment error rate (AER) measure: precision is the fraction of sure links in the

system output that are sure or possible in the reference, and recall is the fraction

of sure links in the reference that the system outputs as sure. For this evaluation,

7All alignment results are reported under the annotated data set’s original tokenization.
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Word Bispan Moses
Pr Rc AER Pr Rc F1 F5 BLEU

Unsupervised HMM 84.0 76.9 19.6 69.5 59.5 64.1 59.9 33.2
Minimal Phrase ITG 83.4 83.8 16.4 75.8 62.3 68.4 62.8 33.6
Extraction Set Coarse 82.2 84.2 16.9 70.0 72.9 71.4 72.8 34.2
Extraction Set Full 84.7 84.0 15.6 69.0 74.2 71.6 74.0 34.4

Table 5.1: Experimental results demonstrate that the full extraction set model outperforms
supervised and unsupervised baselines in evaluations of word alignment quality, extraction
set quality, and translation. In the BLEU evaluation, all systems used a bilingual dictionary
included in the training corpus. The BLEU evaluation of supervised systems also included
rule counts from the Joint HMM to compensate for parse failures.

possible links produced by our extraction set models are ignored. The full extraction

set model performs the best by a small margin, although it was not tuned for word

alignment.

The second panel evaluates bispan precision and recall, corresponding to the ex-

traction set loss function described in Section 5.4.4.8 To compete fairly, all models

were evaluated on the full extraction sets induced by the word alignments they pre-

dicted. Again, the extraction set model outperformed the baselines, particularly on

the F5 measure for which the discriminative aligners were trained.

Our coarse pass extraction set model performed nearly as well as the full model.

We believe these models perform similarly for two reasons. First, most of the in-

formation needed to predict an extraction set can be inferred from word links and

phrasal rules contained within ITG terminal productions. Second, the coarse-to-fine

inference may be constraining the full phrasal model to predict similar output to the

coarse model. This similarity persists in translation experiments.

8While pseudo-gold approximations to the annotation were used for training, the evaluation is
always performed relative to the original human annotation.
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5.5.3 Translation Experiments

We evaluate the alignments predicted by our model using Moses, a state-of-the-art

phrase-based MT system with lexicalized phrasal reordering (Koehn et al., 2007).

Moses is an open-source implementation of the statistical MT approach described in

Chapter 2.

Moses does not accept possible links as input, although possible links do exist in

the output of our extraction set aligners. To interface Moses with our extraction set

models, we produced three sets of sure-only alignments from our model predictions:

one that omitted possible links, one that converted all possible links to sure links,

and one that includes each possible link with 0.5 probability. These three sets were

aggregated and rules were extracted from all three.

The training set we used for MT experiments is quite heterogenous and noisy

compared to our alignment test sets, and the supervised aligners did not handle

certain sentence pairs in our parallel corpus well. In some cases, pruning based

on consistency with the HMM caused parse failures, which in turn caused training

sentences to be skipped. To account for these issues, we added counts of phrasal rules

extracted from the baseline HMM to the counts produced by supervised aligners.

Our extraction set model predicts the set of phrases extracted by the Moses

pipeline, and so the estimation techniques for the alignment model and translation

model both share a common underlying representation: extraction sets. Empirically,

we observe a BLEU score improvement of 1.2 over the unsupervised baseline and 0.8

over the block ITG supervised baseline. This substantial improvement in transla-

tion quality indicates that discriminative extraction set models represent an effective

approach to alignment.
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5.5.4 Analysis

The alignments predicted by the best performing extraction set model differ system-

atically from the predictions of the unsupervised baseline model. The most prominent

change is structural: our extraction set model never allows a non-contiguous set of

words to align to a single word. Such an event is rare, but not forbidden, in the

baseline aligner. Of course, heuristic techniques like competitive thresholding can

also enforce phrasal contiguity, but are not sensitive to phrasal statistics (DeNero

and Klein, 2007).

Additionally, extraction set models correctly align many function words that are

incorrectly analyzed by word alignment models. Function words are closed-class lex-

ical items in a language that typically play a structural role, such as determiners,

prepositions, and auxiliary verbs. These words are so common, often occurring mul-

tiple times in a sentence, that bilexical statistics do not reliably resolve their align-

ments. Consider the example in Figure 5.7. In the unsupervised baseline aligner, all

instances of the word “the” are unaligned, along with one comma and the prepositions

“for” and “to”. The extraction set aligner corrects all of these omissions.

However, the extraction set model does not eliminate all errors in the baseline

model. In particular, proper names (e.g., “FIFA”) and multi-word expressions (e.g.,

“mid-size”) are often mis-analyzed because our phrasal features fail to identify their

translations. Features that identify proper names and compound expressions, perhaps

by incorporating additional sources of information, would likely address these errors.

Of course, a certain small fraction of errors are due to the structural restrictions of the

ITG model class; only relaxing the model or allowing post-processing would resolve

these errors.
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Unsupervised baseline union alignment:

                  ( )                                                         | � [these, this]
                  ( ) #                                                       | � [measure word]
                     [#]                                                      | 小行星 [asteroid]
         ( )[#]                                                               | 直径 [diameter]
[#]                                                                           | 大� [approximately, about]
   [#]                                                                        | 50
      [#]                                                                     | 公尺 [meter]
               (#)    #                                                       | ,
                        [#]                                                   | 来自 [come, from]
                           [ ]                                                | 于 [in, at, to]
                                       ( )[#]                                 | 太阳 [sun]
                                    [ ]                                       | 的 [of]
                              ( )[#]                                          | 方向 [to]
                                             [ ]                              | ,
                                                ( )                           | 因此 [is, reason]
                                                            ( )[#]            | 天文学家 [astronomer]
                                                      [#]                     | 很 [very, extremely]
                                                 #       [#]       #          | � [difficult]
                                                                  ( )[#]      | �� [find, discover]
                                                                        [#]   | 它 [it]
                                                                           [#]| 。
------------------------------------------------------------------------------'

Extraction set alignment:

                  (#)                                                         | � [these, this]
                  ( )                                                         | � [measure word]
                     [#]                                                      | 小行星 [asteroid]
         ( )[#]                                                               | 直径 [diameter]
[#]                                                                           | 大� [approximately, about]
   [#]                                                                        | 50
      [#]                                                                     | 公尺 [meter]
               (#)                                                            | ,
                        [#] #                                                 | 来自 [come, from]
                           [ ]                                                | 于 [in, at, to]
                                       (+)[#]                                 | 太阳 [sun]
                                    [#]                                       | 的 [of]
                              (+)[#]                                          | 方向 [to]
                                             [#]                              | ,
                                                (#)                           | 因此 [is, reason]
                                                            (+)[#]            | 天文学家 [astronomer]
                                                      [#]                     | 很 [very, extremely]
                                                         [#]                  | � [difficult]
                                                                  (+)[#]      | �� [find, discover]
                                                                        [#]   | 它 [it]
                                                                           [#]| 。
------------------------------------------------------------------------------'
 A  5  m  i  d  ,  t  a  c  f  t  d  o  t  s  ,  m  i  v  d  f  a  t  d  i  . 
 b  0  e  n  i     h  s  a  r  h  i  f  h  u     a  t  e  i  o  s  o  i  t    
 o     t     a     e  t  m  o  e  r     e  n     k     r  f  r  t     s       
 u     e     m        e  e  m     e              i     y  f     r     c       
 t     r     e        r           c              n        i     o     o       
       s     t        o           t              g        c     n     v       
             e        i           i                       u     o     e       
             r        d           o                       l     m     r       
                                  n                       t     e             
                                                                r             
                                                                s             

Figure 5.7: An example alignment from the unsupervised baseline (top) and the extrac-
tion set model (bottom). Hand annotated correct alignments are marked as [ ] for sure
alignments and ( ) for possible alignments. Sure predictions are marked with #, and
possible predictions are marked with +.
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Conclusion

This thesis has investigated many aspects of phrase alignment models for machine

translation, including inference algorithms, generative models, Bayesian priors, and

discriminative models. We found that phrase alignment models can offer quality im-

provements over state-of-the-art word-alignment alternatives. This conclusion comes

as no surprise—the purpose of alignment models in a phrase-based translation pipeline

is to identify phrasal translation rules, and considering phrasal patterns while pre-

dicting alignments has the capacity to improve alignment quality.

However, realizing these benefits required identifying and addressing a range of

learning and inference challenges that arise in phrase alignment models.

1. The fundamental inference procedures of computing maximal alignments and

bispan expectations both proved to be computationally intractable. However,

pruned dynamic programs and sampling procedures allow for these inference

problems to be solved quickly in practice.

2. Maximum likelihood estimators for both joint and conditional models of phrase

alignment lead to degenerate parameter estimates that do not provide useful

alignment output. However, Bayesian priors based on the Dirichlet process suc-
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cessfully suppress problematic parameter values, providing translation quality

improvements and sparser models relative to a state-of-the-art word alignment

baseline.

3. Phrase factored models diverge structurally from the extraction sets used for

translation model feature estimation, because they do not score composed phrase

pairs. Extraction set models relax the independence assumption of phrase-

factored models. Unifying the model structure used for alignment and transla-

tion also improved translation quality.

After addressing these challenges and others, our original hypothesis proved true:

modeling the phrasal correspondence between languages does improve alignment qual-

ity. Moreover, these alignment improvements provide translation quality improve-

ments in state-of-the-art, end-to-end, phrase-based machine translation systems.

These improvements came from both Bayesian generative models (Chapter 4)

and discriminative extraction set models (Chapter 5). These two approaches differ

primarily in their data conditions: generative phrase alignment models can be trained

directly from parallel corpora, while discriminative models require a small hand-

aligned dataset. Discriminative models generally outperform generative models in

alignment because they incorporate this additional data source. However, generative

models are preferred in cases where hand-aligned data is not available.

The methods also differ on other dimensions:

1. The Bayesian phrase alignment models defined in this thesis do not contain a

notion of composed phrase pairs because they factor over a phrasal segmentation

of each sentence. On the other hand, our extraction set model simultaneously

incorporate statistics about minimal and composed phrase pairs to make align-

ment decisions.
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2. Bayesian models are more computationally expensive to employ, because sam-

pling requires iterating many times over a large parallel corpus. Discriminative

training focuses only on a small hand-aligned dataset, and training time is dom-

inated by computing features based on word alignment models.

3. However, generative models adapt naturally to parallel corpora that contain

data from disparate domains because they are estimated on a full corpus. Dis-

criminative models can easily overfit the small hand-aligned dataset on which

they are trained. In fact, we achieved our best results in Chapter 5 by including

both the discriminatively trained alignments from our extraction set model and

generatively trained alignments from the baseline word aligner in a phrase-based

MT system.

In summary, data conditions and computational resources will determine what

method is appropriate in a given statistical MT system. These differences also high-

light new challenges. In future work, we hope to incorporate statistical information

about composed phrase pairs into generative models, scale Bayesian model inference

to larger corpora, and adapt discriminative models to out-of-domain data. These im-

provements would certainly promote more wide-spread adoption of phrase alignment

methods in statistical machine translation.
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probabilitiés de Saint-Flour, Berlin, 1985. Springer.

(Ayan and Dorr, 2006) Necip Fazil Ayan and Bonnie J. Dorr. Going beyond AER:
An extensive analysis of word alignments and their impact on MT. In Proceedings
of the Association for Computational Linguistics, 2006.

(Ayan et al., 2005) Necip Fazil Ayan, Bonnie J. Dorr, and Christof Monz. Neuralign:
combining word alignments using neural networks. In Proceedings of the Confer-
ence on Human Language Technology and Empirical Methods in Natural Language
Processing, 2005.

(Berg, 2004) Bernd A. Berg. Markov Chain Monte Carlo Simulations and Their
Statistical Analysis. World Scientific, Singapore, 2004.

(Birch et al., 2006) Alexandra Birch, Chris Callison-Burch, and Miles Osborne. Con-
straining the phrase-based, joint probability statistical translation model. In Pro-
ceedings of the Conference for the Association for Machine Translation in the
Americas, 2006.

(Blackwood et al., 2008) Graeme Blackwood, Adri de Gispert, and William Byrne.
Phrasal segmentation models for statistical machine translation. In Proceedings of
the International Conference on Computational Linguistics, 2008.

(Blunsom and Osborne, 2008) Phil Blunsom and Miles Osborne. Probabilistic in-
ference for machine translation. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2008.

115



BIBLIOGRAPHY

(Blunsom et al., 2009) Phil Blunsom, Trevor Cohn, Chris Dyer, and Miles Osborne.
A Gibbs sampler for phrasal synchronous grammar induction. In Proceedings of
the Association for Computational Linguistics, 2009.

(Brants et al., 2007) Thorsten Brants, Ashok C. Popat, Peng Xu, Franz Josef Och,
and Jeffrey Dean. Large language models in machine translation. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing, 2007.

(Brown et al., 1993) Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della
Pietra, and Robert L. Mercer. The mathematics of statistical machine transla-
tion: Parameter estimation. Computational Linguistics, 1993.

(Carpuat and Wu, 2007) Marine Carpuat and Dekai Wu. Improving statistical ma-
chine translation using word sense disambiguation. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing, 2007.

(Charniak and Caraballo, 1998) Eugene Charniak and Sharon Caraballo. New fig-
ures of merit for best-first probabilistic chart parsing. In Computational Linguis-
tics, 1998.

(Cherry and Lin, 2006) Colin Cherry and Dekang Lin. Soft syntactic constraints for
word alignment through discriminative training. In Proceedings of the Association
for Computational Linguistics, 2006.

(Cherry and Lin, 2007) Colin Cherry and Dekang Lin. Inversion transduction gram-
mar for joint phrasal translation modeling. In Proceedings of the NAACL-HLT
Workshop on Syntax and Structure in Statistical Translation, 2007.

(Chiang et al., 2008) David Chiang, Yuval Marton, and Philip Resnik. Online large-
margin training of syntactic and structural translation features. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing, 2008.

(Chiang, 2007) David Chiang. Hierarchical phrase-based translation. Computational
Linguistics, 2007.

(Crammer and Singer, 2003) Koby Crammer and Yoram Singer. Ultraconservative
online algorithms for multiclass problems. Journal of Machine Learning Research,
3:951–991, 2003.
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