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Contour Detection and
Hierarchical Image Segmentation

Pablo Arbeláez, Member, IEEE, Michael Maire, Member, IEEE,
Charless Fowlkes, Member, IEEE, and Jitendra Malik, Fellow, IEEE.

Abstract—This paper investigates two fundamental problems in computer vision: contour detection and image segmentation. We
present state-of-the-art algorithms for both of these tasks. Our contour detector combines multiple local cues into a globalization
framework based on spectral clustering. Our segmentation algorithm consists of generic machinery for transforming the output of
any contour detector into a hierarchical region tree. In this manner, we reduce the problem of image segmentation to that of contour
detection. Extensive experimental evaluation demonstrates that both our contour detection and segmentation methods significantly
outperform competing algorithms. The automatically generated hierarchical segmentations can be interactively refined by user-
specified annotations. Computation at multiple image resolutions provides a means of coupling our system to recognition applications.

F

1 INTRODUCTION

This paper presents a unified approach to contour de-
tection and image segmentation. Contributions include:
• A high performance contour detector, combining

local and global image information.
• A method to transform any contour signal into a hi-

erarchy of regions while preserving contour quality.
• Extensive quantitative evaluation and the release of

a new annotated dataset.
Figures 1 and 2 summarize our main results. The

two Figures represent the evaluation of multiple con-
tour detection (Figure 1) and image segmentation (Fig-
ure 2) algorithms on the Berkeley Segmentation Dataset
(BSDS300) [1], using the precision-recall framework in-
troduced in [2]. This benchmark operates by compar-
ing machine generated contours to human ground-truth
data (Figure 3) and allows evaluation of segmentations
in the same framework by regarding region boundaries
as contours.

Especially noteworthy in Figure 1 is the contour de-
tector gPb, which compares favorably with other leading
techniques, providing equal or better precision for most
choices of recall. In Figure 2, gPb-owt-ucm provides
universally better performance than alternative segmen-
tation algorithms. We introduced the gPb and gPb-owt-
ucm algorithms in [3] and [4], respectively. This paper
offers comprehensive versions of these algorithms, mo-
tivation behind their design, and additional experiments
which support our basic claims.

We begin with a review of the extensive literature on
contour detection and image segmentation in Section 2.

• P. Arbeláez and J. Malik are with the Department of Electrical Engineering
and Computer Science, University of California at Berkeley, Berkeley, CA,
94720. E-mail: {arbelaez,malik}@eecs.berkeley.edu

• M. Maire is with the Department of Electrical Engineering, California
Institute of Technology, Pasadena, CA, 91125. E-mail: mmaire@caltech.edu

• C. Fowlkes is with the Department of Computer Science, University of
California at Irvine, Irvine, CA, 92697. E-mail: fowlkes@ics.uci.edu

Section 3 covers the development of the gPb contour
detector. We couple multiscale local brightness, color,
and texture cues to a powerful globalization framework
using spectral clustering. The local cues, computed by
applying oriented gradient operators at every location
in the image, define an affinity matrix representing the
similarity between pixels. From this matrix, we derive
a generalized eigenproblem and solve for a fixed num-
ber of eigenvectors which encode contour information.
Using a classifier to recombine this signal with the local
cues, we obtain a large improvement over alternative
globalization schemes built on top of similar cues.

To produce high-quality image segmentations, we link
this contour detector with a generic grouping algorithm
described in Section 4 and consisting of two steps. First,
we introduce a new image transformation called the
Oriented Watershed Transform for constructing a set of
initial regions from an oriented contour signal. Second,
using an agglomerative clustering procedure, we form
these regions into a hierarchy which can be represented
by an Ultrametric Contour Map, the real-valued image
obtained by weighting each boundary by its scale of
disappearance. We provide experiments on the BSDS300
as well as the BSDS500, a superset newly released here.

Although the precision-recall framework [2] has found
widespread use for evaluating contour detectors, con-
siderable effort has also gone into developing metrics
to directly measure the quality of regions produced by
segmentation algorithms. Noteworthy examples include
the Probabilistic Rand Index, introduced in this context
by [5], the Variation of Information [6], [7], and the
Segmentation Covering criteria used in the PASCAL
challenge [8]. We consider all of these metrics and
demonstrate that gPb-owt-ucm delivers an across-the-
board improvement over existing algorithms.

Sections 5 and 6 explore ways of connecting our
purely bottom-up contour and segmentation machinery
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[F = 0.79] Human
[F = 0.70] gPb
[F = 0.68] Multiscale − Ren (2008)
[F = 0.66] BEL − Dollar, Tu, Belongie (2006)
[F = 0.66] Mairal, Leordeanu, Bach, Herbert, Ponce (2008)
[F = 0.65] Min Cover − Felzenszwalb, McAllester (2006)
[F = 0.65] Pb − Martin, Fowlkes, Malik  (2004)
[F = 0.64] Untangling Cycles − Zhu, Song, Shi (2007)
[F = 0.64] CRF − Ren, Fowlkes, Malik (2005)
[F = 0.58] Canny (1986)
[F = 0.56] Perona, Malik (1990)
[F = 0.50] Hildreth, Marr (1980)
[F = 0.48] Prewitt (1970)
[F = 0.48] Sobel (1968)
[F = 0.47] Roberts (1965)

Fig. 1. Evaluation of contour detectors on the Berke-
ley Segmentation Dataset (BSDS300) Benchmark [2].
Leading contour detection approaches are ranked ac-
cording to their maximum F-measure ( 2·Precision·Recall

Precision+Recall )
with respect to human ground-truth boundaries. Iso-F
curves are shown in green. Our gPb detector [3] performs
significantly better than other algorithms [2], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28] across
almost the entire operating regime. Average agreement
between human subjects is indicated by the green dot.

to sources of top-down knowledge. In Section 5, this
knowledge source is a human. Our hierarchical region
trees serve as a natural starting point for interactive
segmentation. With minimal annotation, a user can cor-
rect errors in the automatic segmentation and pull out
objects of interest from the image. In Section 6, we target
top-down object detection algorithms and show how to
create multiscale contour and region output tailored to
match the scales of interest to the object detector.

Though much remains to be done to take full advan-
tage of segmentation as an intermediate processing layer,
recent work has produced payoffs from this endeavor
[9], [10], [11], [12], [13]. In particular, our gPb-owt-ucm
segmentation algorithm has found use in optical flow
[14] and object recognition [15], [16] applications.

2 PREVIOUS WORK

The problems of contour detection and segmentation are
related, but not identical. In general, contour detectors
offer no guarantee that they will produce closed contours
and hence do not necessarily provide a partition of the
image into regions. But, one can always recover closed
contours from regions in the form of their boundaries.
As an accomplishment here, Section 4 shows how to do
the reverse and recover regions from a contour detector.
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[F = 0.79] Human
[F = 0.71] gPb−owt−ucm
[F = 0.67] UCM − Arbelaez (2006)
[F = 0.63] Mean Shift − Comaniciu, Meer (2002)
[F = 0.62] Normalized Cuts − Cour, Benezit, Shi (2005)
[F = 0.58] Canny−owt−ucm
[F = 0.58] Felzenszwalb, Huttenlocher (2004)
[F = 0.58] Av. Diss. − Bertelli, Sumengen, Manjunath, Gibou (2008)
[F = 0.56] SWA − Alpert, Galun, Basri, Brandt (2007)
[F = 0.55] ChanVese − Bertelli, Sumengen, Manjunath, Gibou (2008)
[F = 0.55] Donoser, Urschler, Hirzer, Bischof (2009)
[F = 0.53] Yang, Wright, Ma, Sastry (2007)

Fig. 2. Evaluation of segmentation algorithms on
the BSDS300 Benchmark. Paired with our gPb contour
detector as input, our hierarchical segmentation algorithm
gPb-owt-ucm [4] produces regions whose boundaries
match ground-truth better than those produced by other
methods [7], [29], [30], [31], [32], [33], [34], [35].

Fig. 3. Berkeley Segmentation Dataset [1]. Top to Bot-
tom: Image and ground-truth segment boundaries hand-
drawn by three different human subjects. The BSDS300
consists of 200 training and 100 test images, each with
multiple ground-truth segmentations. The BSDS500 uses
the BSDS300 as training and adds 200 new test images.

Historically, however, there have been different lines of
approach to these two problems, which we now review.
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2.1 Contours

Early approaches to contour detection aim at quantifying
the presence of a boundary at a given image location
through local measurements. The Roberts [17], Sobel
[18], and Prewitt [19] operators detect edges by convolv-
ing a grayscale image with local derivative filters. Marr
and Hildreth [20] use zero crossings of the Laplacian of
Gaussian operator. The Canny detector [22] also models
edges as sharp discontinuities in the brightness chan-
nel, adding non-maximum suppression and hysteresis
thresholding steps. A richer description can be obtained
by considering the response of the image to a family of
filters of different scales and orientations. An example
is the Oriented Energy approach [21], [36], [37], which
uses quadrature pairs of even and odd symmetric filters.
Lindeberg [38] proposes a filter-based method with an
automatic scale selection mechanism.

More recent local approaches take into account color
and texture information and make use of learning tech-
niques for cue combination [2], [26], [27]. Martin et al.
[2] define gradient operators for brightness, color, and
texture channels, and use them as input to a logistic
regression classifier for predicting edge strength. Rather
than rely on such hand-crafted features, Dollar et al. [27]
propose a Boosted Edge Learning (BEL) algorithm which
attempts to learn an edge classifier in the form of a
probabilistic boosting tree [39] from thousands of simple
features computed on image patches. An advantage of
this approach is that it may be possible to handle cues
such as parallelism and completion in the initial classi-
fication stage. Mairal et al. [26] create both generic and
class-specific edge detectors by learning discriminative
sparse representations of local image patches. For each
class, they learn a discriminative dictionary and use the
reconstruction error obtained with each dictionary as
feature input to a final classifier.

The large range of scales at which objects may ap-
pear in the image remains a concern for these modern
local approaches. Ren [28] finds benefit in combining
information from multiple scales of the local operators
developed by [2]. Additional localization and relative
contrast cues, defined in terms of the multiscale detector
output, are fed to the boundary classifier. For each scale,
the localization cue captures the distance from a pixel
to the nearest peak response. The relative contrast cue
normalizes each pixel in terms of the local neighborhood.

An orthogonal line of work in contour detection fo-
cuses primarily on another level of processing, globaliza-
tion, that utilizes local detector output. The simplest such
algorithms link together high-gradient edge fragments
in order to identify extended, smooth contours [40],
[41], [42]. More advanced globalization stages are the
distinguishing characteristics of several of the recent
high-performance methods benchmarked in Figure 1,
including our own, which share as a common feature
their use of the local edge detection operators of [2].

Ren et al. [23] use the Conditional Random Fields

(CRF) framework to enforce curvilinear continuity of
contours. They compute a constrained Delaunay triangu-
lation (CDT) on top of locally detected contours, yielding
a graph consisting of the detected contours along with
the new “completion” edges introduced by the trian-
gulation. The CDT is scale-invariant and tends to fill
short gaps in the detected contours. By associating a
random variable with each contour and each completion
edge, they define a CRF with edge potentials in terms
of detector response and vertex potentials in terms of
junction type and continuation smoothness. They use
loopy belief propagation [43] to compute expectations.

Felzenszwalb and McAllester [25] use a different strat-
egy for extracting salient smooth curves from the output
of a local contour detector. They consider the set of
short oriented line segments that connect pixels in the
image to their neighboring pixels. Each such segment is
either part of a curve or is a background segment. They
assume curves are drawn from a Markov process, the
prior distribution on curves favors few per scene, and
detector responses are conditionally independent given
the labeling of line segments. Finding the optimal line
segment labeling then translates into a general weighted
min-cover problem in which the elements being covered
are the line segments themselves and the objects cover-
ing them are drawn from the set of all possible curves
and all possible background line segments. Since this
problem is NP-hard, an approximate solution is found
using a greedy “cost per pixel” heuristic.

Zhu et al. [24] also start with the output of [2] and
create a weighted edgel graph, where the weights mea-
sure directed collinearity between neighboring edgels.
They propose detecting closed topological cycles in this
graph by considering the complex eigenvectors of the
normalized random walk matrix. This procedure extracts
both closed contours and smooth curves, as edgel chains
are allowed to loop back at their termination points.

2.2 Regions

A broad family of approaches to segmentation involve
integrating features such as brightness, color, or tex-
ture over local image patches and then clustering those
features based on, e.g., fitting mixture models [7], [44],
mode-finding [34], or graph partitioning [32], [45], [46],
[47]. Three algorithms in this category appear to be
the most widely used as sources of image segments in
recent applications, due to a combination of reasonable
performance and publicly available implementations.

The graph based region merging algorithm advocated
by Felzenszwalb and Huttenlocher (Felz-Hutt) [32] at-
tempts to partition image pixels into components such
that the resulting segmentation is neither too coarse nor
too fine. Given a graph in which pixels are nodes and
edge weights measure the dissimilarity between nodes
(e.g. color differences), each node is initially placed in
its own component. Define the internal difference of a
component Int(R) as the largest weight in the minimum
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spanning tree of R. Considering edges in non-decreasing
order by weight, each step of the algorithm merges
components R1 and R2 connected by the current edge if
the edge weight is less than:

min(Int(R1) + τ(R1), Int(R2) + τ(R2)) (1)

where τ(R) = k/|R|. k is a scale parameter that can be
used to set a preference for component size.

The Mean Shift algorithm [34] offers an alternative
clustering framework. Here, pixels are represented in
the joint spatial-range domain by concatenating their
spatial coordinates and color values into a single vector.
Applying mean shift filtering in this domain yields a
convergence point for each pixel. Regions are formed by
grouping together all pixels whose convergence points
are closer than hs in the spatial domain and hr in the
range domain, where hs and hr are respective bandwidth
parameters. Additional merging can also be performed
to enforce a constraint on minimum region area.

Spectral graph theory [48], and in particular the Nor-
malized Cuts criterion [45], [46], provides a way of
integrating global image information into the grouping
process. In this framework, given an affinity matrix W
whose entries encode the similarity between pixels, one
defines diagonal matrix Dii =

∑
jWij and solves for the

generalized eigenvectors of the linear system:

(D −W )v = λDv (2)

Traditionally, after this step, K-means clustering is
applied to obtain a segmentation into regions. This ap-
proach often breaks uniform regions where the eigenvec-
tors have smooth gradients. One solution is to reweight
the affinity matrix [47]; others have proposed alternative
graph partitioning formulations [49], [50], [51].

A recent variant of Normalized Cuts for image seg-
mentation is the Multiscale Normalized Cuts (NCuts)
approach of Cour et al. [33]. The fact that W must
be sparse, in order to avoid a prohibitively expensive
computation, limits the naive implementation to using
only local pixel affinities. Cour et al. solve this limitation
by computing sparse affinity matrices at multiple scales,
setting up cross-scale constraints, and deriving a new
eigenproblem for this constrained multiscale cut.

Sharon et al. [52] propose an alternative to improve
the computational efficiency of Normalized Cuts. This
approach, inspired by algebraic multigrid, iteratively
coarsens the original graph by selecting a subset of nodes
such that each variable on the fine level is strongly
coupled to one on the coarse level. The same merging
strategy is adopted in [31], where the strong coupling of
a subset S of the graph nodes V is formalized as:∑

j∈S pij∑
j∈V pij

> ψ ∀i ∈ V − S (3)

where ψ is a constant and pij the probability of merging
i and j, estimated from brightness and texture similarity.

Many approaches to image segmentation fall into a
different category than those covered so far, relying on

the formulation of the problem in a variational frame-
work. An example is the model proposed by Mumford
and Shah [53], where the segmentation of an observed
image u0 is given by the minimization of the functional:

F(u,C) =
∫

Ω

(u− u0)2dx+ µ

∫
Ω\C
|∇(u)|2dx+ ν|C| (4)

where u is piecewise smooth in Ω\C and µ, ν are weight-
ing parameters. Theoretical properties of this model can
be found in, e.g. [53], [54]. Several algorithms have been
developed to minimize the energy (4) or its simplified
version, where u is piecewise constant in Ω\C. Koepfler
et al. [55] proposed a region merging method for this
purpose. Chan and Vese [56], [57] follow a different
approach, expressing (4) in the level set formalism of
Osher and Sethian [58], [59]. Bertelli et al. [30] extend
this approach to more general cost functions based on
pairwise pixel similarities. Recently, Pock et al. [60] pro-
posed to solve a convex relaxation of (4), thus obtaining
robustness to initialization. Donoser et al. [29] subdivide
the problem into several figure/ground segmentations,
each initialized using low-level saliency and solved by
minimizing an energy based on Total Variation.

2.3 Benchmarks
Though much of the extensive literature on contour
detection predates its development, the BSDS [2] has
since found wide acceptance as a benchmark for this task
[23], [24], [25], [26], [27], [28], [35], [61]. The standard for
evaluating segmentations algorithms is less clear.

One option is to regard the segment boundaries
as contours and evaluate them as such. However, a
methodology that directly measures the quality of the
segments is also desirable. Some types of errors, e.g. a
missing pixel in the boundary between two regions, may
not be reflected in the boundary benchmark, but can
have substantial consequences for segmentation quality,
e.g. incorrectly merging large regions. One might argue
that the boundary benchmark favors contour detectors
over segmentation methods, since the former are not
burdened with the constraint of producing closed curves.
We therefore also consider various region-based metrics.

2.3.1 Variation of Information
The Variation of Information metric was introduced for
the purpose of clustering comparison [6]. It measures the
distance between two segmentations in terms of their
average conditional entropy given by:

V I(S, S′) = H(S) +H(S′)− 2I(S, S′) (5)

where H and I represent respectively the entropies and
mutual information between two clusterings of data S
and S′. In our case, these clusterings are test and ground-
truth segmentations. Although V I possesses some inter-
esting theoretical properties [6], its perceptual meaning
and applicability in the presence of several ground-truth
segmentations remains unclear.
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2.3.2 Rand Index
Originally, the Rand Index [62] was introduced for gen-
eral clustering evaluation. It operates by comparing the
compatibility of assignments between pairs of elements
in the clusters. The Rand Index between test and ground-
truth segmentations S and G is given by the sum of the
number of pairs of pixels that have the same label in
S and G and those that have different labels in both
segmentations, divided by the total number of pairs of
pixels. Variants of the Rand Index have been proposed
[5], [7] for dealing with the case of multiple ground-truth
segmentations. Given a set of ground-truth segmenta-
tions {Gk}, the Probabilistic Rand Index is defined as:

PRI(S, {Gk}) =
1
T

∑
i<j

[cijpij + (1− cij)(1− pij)] (6)

where cij is the event that pixels i and j have the same
label and pij its probability. T is the total number of
pixel pairs. Using the sample mean to estimate pij , (6)
amounts to averaging the Rand Index among different
ground-truth segmentations. The PRI has been reported
to suffer from a small dynamic range [5], [7], and its
values across images and algorithms are often similar.
In [5], this drawback is addressed by normalization with
an empirical estimation of its expected value.

2.3.3 Segmentation Covering
The overlap between two regions R and R′, defined as:

O(R,R′) =
|R ∩R′|
|R ∪R′|

(7)

has been used for the evaluation of the pixel-wise clas-
sification task in recognition [8], [11]. We define the
covering of a segmentation S by a segmentation S′ as:

C(S′ → S) =
1
N

∑
R∈S
|R| · max

R′∈S′
O(R,R′) (8)

where N denotes the total number of pixels in the image.
Similarly, the covering of a machine segmentation S by

a family of ground-truth segmentations {Gi} is defined
by first covering S separately with each human segmen-
tation Gi, and then averaging over the different humans.
To achieve perfect covering the machine segmentation
must explain all of the human data. We can then define
two quality descriptors for regions: the covering of S by
{Gi} and the covering of {Gi} by S.

3 CONTOUR DETECTION

As a starting point for contour detection, we consider
the work of Martin et al. [2], who define a function
Pb(x, y, θ) that predicts the posterior probability of a
boundary with orientation θ at each image pixel (x, y)
by measuring the difference in local image brightness,
color, and texture channels. In this section, we review
these cues, introduce our own multiscale version of the
Pb detector, and describe the new globalization method
we run on top of this multiscale local detector.

0 0.5 1

Upper Half−Disc Histogram

0 0.5 1

Lower Half−Disc Histogram

Fig. 4. Oriented gradient of histograms. Given an
intensity image, consider a circular disc centered at each
pixel and split by a diameter at angle θ. We compute
histograms of intensity values in each half-disc and output
the χ2 distance between them as the gradient magnitude.
The blue and red distributions shown in the middle panel
are the histograms of the pixel brightness values in the
blue and red regions, respectively, in the left image. The
right panel shows an example result for a disc of radius
5 pixels at orientation θ = π

4 after applying a second-
order Savitzky-Golay smoothing filter to the raw histogram
difference output. Note that the left panel displays a larger
disc (radius 50 pixels) for illustrative purposes.

3.1 Brightness, Color, Texture Gradients
The basic building block of the Pb contour detector is
the computation of an oriented gradient signal G(x, y, θ)
from an intensity image I . This computation proceeds
by placing a circular disc at location (x, y) split into two
half-discs by a diameter at angle θ. For each half-disc, we
histogram the intensity values of the pixels of I covered
by it. The gradient magnitude G at location (x, y) is
defined by the χ2 distance between the two half-disc
histograms g and h:

χ2(g, h) =
1
2

∑
i

(g(i)− h(i))2

g(i) + h(i)
(9)

We then apply second-order Savitzky-Golay filtering
[63] to enhance local maxima and smooth out multiple
detection peaks in the direction orthogonal to θ. This is
equivalent to fitting a cylindrical parabola, whose axis
is orientated along direction θ, to a local 2D window
surrounding each pixel and replacing the response at the
pixel with that estimated by the fit.

Figure 4 shows an example. This computation is moti-
vated by the intuition that contours correspond to image
discontinuities and histograms provide a robust mech-
anism for modeling the content of an image region. A
strong oriented gradient response means a pixel is likely
to lie on the boundary between two distinct regions.

The Pb detector combines the oriented gradient sig-
nals obtained from transforming an input image into
four separate feature channels and processing each chan-
nel independently. The first three correspond to the
channels of the CIE Lab colorspace, which we refer to
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Fig. 5. Filters for creating textons. We use 8 oriented
even- and odd-symmetric Gaussian derivative filters and
a center-surround (difference of Gaussians) filter.

as the brightness, color a, and color b channels. For
grayscale images, the brightness channel is the image
itself and no color channels are used.

The fourth channel is a texture channel, which assigns
each pixel a texton id. These assignments are computed
by another filtering stage which occurs prior to the
computation of the oriented gradient of histograms.
This stage converts the input image to grayscale and
convolves it with the set of 17 Gaussian derivative and
center-surround filters shown in Figure 5. Each pixel is
associated with a (17-dimensional) vector of responses,
containing one entry for each filter. These vectors are
then clustered using K-means. The cluster centers define
a set of image-specific textons and each pixel is assigned
the integer id in [1,K] of the closest cluster center. Exper-
iments show choosing K = 32 textons to be sufficient.

We next form an image where each pixel has an
integer value in [1,K], as determined by its texton id.
An example can be seen in Figure 6 (left column, fourth
panel from top). On this image, we compute differences
of histograms in oriented half-discs in the same manner
as for the brightness and color channels.

Obtaining G(x, y, θ) for arbitrary input I is thus the
core operation on which our local cues depend. In the
appendix, we provide a novel approximation scheme for
reducing the complexity of this computation.

3.2 Multiscale Cue Combination

We now introduce our own multiscale extension of the
Pb detector reviewed above. Note that Ren [28] intro-
duces a different, more complicated, and similarly per-
forming multiscale extension in work contemporaneous
with our own [3], and also suggests possible reasons
Martin et al. [2] did not see performance improvements
in their original multiscale experiments, including their
use of smaller images and their choice of scales.

In order to detect fine as well as coarse structures,
we consider gradients at three scales: [σ2 , σ, 2σ] for each
of the brightness, color, and texture channels. Figure 6
shows an example of the oriented gradients obtained for
each channel. For the brightness channel, we use σ = 5
pixels, while for color and texture we use σ = 10 pixels.
We then linearly combine these local cues into a single
multiscale oriented signal:

mPb(x, y, θ) =
∑
s

∑
i

αi,sGi,σ(i,s)(x, y, θ) (10)

where s indexes scales, i indexes feature channels
(brightness, color a, color b, texture), and Gi,σ(i,s)(x, y, θ)
measures the histogram difference in channel i between

Channel θ = 0 θ = π
2 G(x, y)

mPb(x, y)

Fig. 6. Multiscale Pb. Left Column, Top to Bottom: The
brightness and color a and b channels of Lab color space,
and the texton channel computed using image-specific
textons, followed by the input image. Rows: Next to each
channel, we display the oriented gradient of histograms
(as outlined in Figure 4) for θ = 0 and θ = π

2 (horizontal
and vertical), and the maximum response over eight
orientations in [0, π) (right column). Beside the original
image, we display the combination of oriented gradients
across all four channels and across three scales. The
lower right panel (outlined in red) shows mPb, the final
output of the multiscale contour detector.



7

Fig. 7. Spectral Pb. Left: Image. Middle Left: The thinned non-max suppressed multiscale Pb signal defines a sparse
affinity matrix connecting pixels within a fixed radius. Pixels i and j have a low affinity as a strong boundary separates
them, whereas i and k have high affinity. Middle: First four generalized eigenvectors resulting from spectral clustering.
Middle Right: Partitioning the image by running K-means clustering on the eigenvectors erroneously breaks smooth
regions. Right: Instead, we compute gradients of the eigenvectors, transforming them back into a contour signal.

Fig. 8. Eigenvectors carry contour information. Left: Image and maximum response of spectral Pb over
orientations, sPb(x, y) = maxθ{sPb(x, y, θ)}. Right Top: First four generalized eigenvectors, v1, ...,v4, used in
creating sPb. Right Bottom: Maximum gradient response over orientations, maxθ{∇θvk(x, y)}, for each eigenvector.

two halves of a disc of radius σ(i, s) centered at (x, y) and
divided by a diameter at angle θ. The parameters αi,s
weight the relative contribution of each gradient signal.
In our experiments, we sample θ at eight equally spaced
orientations in the interval [0, π). Taking the maximum
response over orientations yields a measure of boundary
strength at each pixel:

mPb(x, y) = max
θ
{mPb(x, y, θ)} (11)

An optional non-maximum suppression step [22] pro-
duces thinned, real-valued contours.

In contrast to [2] and [28] which use a logistic regres-
sion classifier to combine cues, we learn the weights αi,s
by gradient ascent on the F-measure using the training
images and corresponding ground-truth of the BSDS.

3.3 Globalization

Spectral clustering lies at the heart of our globalization
machinery. The key element differentiating the algorithm
described in this section from other approaches [45], [47]

is the “soft” manner in which we use the eigenvectors
obtained from spectral partitioning.

As input to the spectral clustering stage, we construct
a sparse symmetric affinity matrix W using the interven-
ing contour cue [49], [64], [65], the maximal value of mPb
along a line connecting two pixels. We connect all pixels
i and j within a fixed radius r with affinity:

Wij = exp
(
−max

p∈ij
{mPb(p)}/ρ

)
(12)

where ij is the line segment connecting i and j and ρ is
a constant. We set r = 5 pixels and ρ = 0.1.

In order to introduce global information, we define
Dii =

∑
jWij and solve for the generalized eigenvectors

{v0,v1, ...,vn} of the system (D − W )v = λDv (2),
corresponding to the n+1 smallest eigenvalues 0 = λ0 ≤
λ1 ≤ ... ≤ λn. Figure 7 displays an example with four
eigenvectors. In practice, we use n = 16.

At this point, the standard Normalized Cuts approach
associates with each pixel a length n descriptor formed
from entries of the n eigenvectors and uses a clustering
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Fig. 9. Benefits of globalization. When compared with the local detector Pb, our detector gPb reduces clutter and
completes contours. The thresholds shown correspond to the points of maximal F-measure on the curves in Figure 1.

algorithm such as K-means to create a hard partition of
the image. Unfortunately, this can lead to an incorrect
segmentation as large uniform regions in which the
eigenvectors vary smoothly are broken up. Figure 7
shows an example for which such gradual variation
in the eigenvectors across the sky region results in an
incorrect partition.

To circumvent this difficulty, we observe that the
eigenvectors themselves carry contour information.
Treating each eigenvector vk as an image, we convolve
with Gaussian directional derivative filters at multiple
orientations θ, obtaining oriented signals {∇θvk(x, y)}.
Taking derivatives in this manner ignores the smooth
variations that previously lead to errors. The information
from different eigenvectors is then combined to provide
the “spectral” component of our boundary detector:

sPb(x, y, θ) =
n∑
k=1

1√
λk
· ∇θvk(x, y) (13)

where the weighting by 1/
√
λk is motivated by the

physical interpretation of the generalized eigenvalue
problem as a mass-spring system [66]. Figures 7 and 8
present examples of the eigenvectors, their directional
derivatives, and the resulting sPb signal.

The signals mPb and sPb convey different informa-
tion, as the former fires at all the edges while the latter
extracts only the most salient curves in the image. We
found that a simple linear combination is enough to ben-
efit from both behaviors. Our final globalized probability
of boundary is then written as a weighted sum of local
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[F = 0.79] Human
[F = 0.70] gPb
[F = 0.68] sPb
[F = 0.67] mPb
[F = 0.65] Pb − Martin, Fowlkes, Malik  (2004)

Fig. 10. Globalization improves contour detection.
The spectral Pb detector (sPb), derived from the eigen-
vectors of a spectral partitioning algorithm, improves the
precision of the local multiscale Pb signal (mPb) used
as input. Global Pb (gPb), a learned combination of the
two, provides uniformly better performance. Also note the
benefit of using multiple scales (mPb) over single scale
Pb. Results shown on the BSDS300.
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Fig. 11. Watershed Transform. Left: Image. Middle Left: Boundary strength E(x, y). We regard E(x, y) as a
topographic surface and flood it from its local minima. Middle Right: This process partitions the image into catchment
basins P0 and arcs K0. There is exactly one basin per local minimum and the arcs coincide with the locations where
the floods originating from distinct minima meet. Local minima are marked with red dots. Right: Each arc weighted by
the mean value of E(x, y) along it. This weighting scheme produces artifacts, such as the strong horizontal contours
in the small gap between the two statues.

and spectral signals:

gPb(x, y, θ) =
∑
s

∑
i

βi,sGi,σ(i,s)(x, y, θ) + γ · sPb(x, y, θ)

(14)
We subsequently rescale gPb using a sigmoid to match
a probabilistic interpretation. As with mPb (10), the
weights βi,s and γ are learned by gradient ascent on the
F-measure using the BSDS training images.

3.4 Results
Qualitatively, the combination of the multiscale cues
with our globalization machinery translates into a re-
duction of clutter edges and completion of contours in
the output, as shown in Figure 9.

Figure 10 breaks down the contributions of the mul-
tiscale and spectral signals to the performance of gPb.
These precision-recall curves show that the reduction of
false positives due to the use of global information in
sPb is concentrated in the high thresholds, while gPb
takes the best of both worlds, relying on sPb in the high
precision regime and on mPb in the high recall regime.

Looking again at the comparison of contour detectors
on the BSDS300 benchmark in Figure 1, the mean im-
provement in precision of gPb with respect to the single
scale Pb is 10% in the recall range [0.1, 0.9].

4 SEGMENTATION

The nonmax suppressed gPb contours produced in the
previous section are often not closed and hence do not
partition the image into regions. These contours may still
be useful, e.g. as a signal on which to compute image
descriptors. However, closed regions offer additional

advantages. Regions come with their own scale estimates
and provide natural domains for computing features
used in recognition. Many visual tasks can also benefit
from the complexity reduction achieved by transforming
an image with millions of pixels into a few hundred or
thousand “superpixels” [67].

In this section, we show how to recover closed con-
tours, while preserving the gains in boundary quality
achieved in the previous section. Our algorithm, first
reported in [4], builds a hierarchical segmentation by
exploiting the information in the contour signal. We
introduce a new variant of the watershed transform
[68], [69], the Oriented Watershed Transform (OWT), for
producing a set of initial regions from contour detector
output. We then construct an Ultrametric Contour Map
(UCM) [35] from the boundaries of these initial regions.

This sequence of operations (OWT-UCM) can be seen
as generic machinery for going from contours to a hier-
archical region tree. Contours encoded in the resulting
hierarchical segmentation retain real-valued weights in-
dicating their likelihood of being a true boundary. For a
given threshold, the output is a set of closed contours
that can be treated as either a segmentation or as a
boundary detector for the purposes of benchmarking.

To describe our algorithm in the most general setting,
we now consider an arbitrary contour detector, whose
output E(x, y, θ) predicts the probability of an image
boundary at location (x, y) and orientation θ.

4.1 Oriented Watershed Transform
Using the contour signal, we first construct a finest
partition for the hierarchy, an over-segmentation whose
regions determine the highest level of detail considered.
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Fig. 12. Oriented Watershed Transform. Left: Input boundary signal E(x, y) = maxθ E(x, y, θ). Middle Left:
Watershed arcs computed from E(x, y). Note that thin regions give rise to artifacts. Middle: Watershed arcs with
an approximating straight line segment subdivision overlaid. We compute this subdivision in a scale-invariant manner
by recursively breaking an arc at the point maximally distant from the straight line segment connecting its endpoints, as
shown in Figure 13. Subdivision terminates when the distance from the line segment to every point on the arc is less
than a fixed fraction of the segment length. Middle Right: Oriented boundary strength E(x, y, θ) for four orientations θ.
In practice, we sample eight orientations. Right: Watershed arcs reweighted according to E at the orientation of their
associated line segments. Artifacts, such as the horizontal contours breaking the long skinny regions, are suppressed
as their orientations do not agree with the underlying E(x, y, θ) signal.

Fig. 13. Contour subdivision. Left: Initial arcs color-
coded. If the distance from any point on an arc to the
straight line segment connecting its endpoints is greater
than a fixed fraction of the segment length, we subdivide
the arc at the maximally distant point. An example is
shown for one arc, with the dashed segments indicat-
ing the new subdivision. Middle: The final set of arcs
resulting from recursive application of the scale-invariant
subdivision procedure. Right: Approximating straight line
segments overlaid on the subdivided arcs.

This is done by computing E(x, y) = maxθ E(x, y, θ),
the maximal response of the contour detector over ori-
entations. We take the regional minima of E(x, y) as
seed locations for homogeneous segments and apply
the watershed transform used in mathematical morphol-
ogy [68], [69] on the topographic surface defined by
E(x, y). The catchment basins of the minima, denoted
P0, provide the regions of the finest partition and the
corresponding watershed arcs, K0, the possible locations
of the boundaries.

Figure 11 shows an example of the standard water-
shed transform. Unfortunately, simply weighting each

arc by the mean value of E(x, y) for the pixels on
the arc can introduce artifacts. The root cause of this
problem is the fact that the contour detector produces a
spatially extended response around strong boundaries.
For example, a pixel could lie near but not on a strong
vertical contour. If this pixel also happens to belong to a
horizontal watershed arc, that arc would be erroneously
upweighted. Several such cases can be seen in Figure 11.
As we flood from all local minima, the initial watershed
oversegmentation contains many arcs that should be
weak, yet intersect nearby strong boundaries.

To correct this problem, we enforce consistency be-
tween the strength of the boundaries of K0 and the
underlying E(x, y, θ) signal in a modified procedure,
which we call the Oriented Watershed Transform (OWT),
illustrated in Figure 12. As the first step in this reweight-
ing process, we estimate an orientation at each pixel
on an arc from the local geometry of the arc itself.
These orientations are obtained by approximating the
watershed arcs with line segments as shown in Figure 13.
We recursively subdivide any arc which is not well fit by
the line segment connecting its endpoints. By expressing
the approximation criterion in terms of the maximum
distance of a point on the arc from the line segment
as a fraction of the line segment length, we obtain a
scale-invariant subdivision. We assign each pixel (x, y)
on a subdivided arc the orientation o(x, y) ∈ [0, π) of the
corresponding line segment.

Next, we use the oriented contour detector output
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Fig. 14. Hierarchical segmentation from contours. Far Left: Image. Left: Maximal response of contour detector
gPb over orientations. Middle Left: Weighted contours resulting from the Oriented Watershed Transform - Ultrametric
Contour Map (OWT-UCM) algorithm using gPb as input. This single weighted image encodes the entire hierarchical
segmentation. By construction, applying any threshold to it is guaranteed to yield a set of closed contours (the ones
with weights above the threshold), which in turn define a segmentation. Moreover, the segmentations are nested.
Increasing the threshold is equivalent to removing contours and merging the regions they separated. Middle Right:
The initial oversegmentation corresponding to the finest level of the UCM, with regions represented by their mean
color. Right and Far Right: Contours and corresponding segmentation obtained by thresholding the UCM at level 0.5.

E(x, y, θ), to assign each arc pixel (x, y) a boundary
strength of E(x, y, o(x, y)). We quantize o(x, y) in the
same manner as θ, so this operation is a simple lookup.
Finally, each original arc in K0 is assigned weight equal
to average boundary strength of the pixels it contains.
Comparing the middle left and far right panels of Fig-
ure 12 shows this reweighting scheme removes artifacts.

4.2 Ultrametric Contour Map

Contours have the advantage that it is fairly straightfor-
ward to represent uncertainty in the presence of a true
underlying contour, i.e. by associating a binary random
variable to it. One can interpret the boundary strength
assigned to an arc by the Oriented Watershed Transform
(OWT) of the previous section as an estimate of the
probability of that arc being a true contour.

It is not immediately obvious how to represent un-
certainty about a segmentation. One possibility, which
we exploit here, is the Ultrametric Contour Map (UCM)
[35] which defines a duality between closed, non-self-
intersecting weighted contours and a hierarchy of re-
gions. The base level of this hierarchy respects even
weak contours and is thus an oversegmentation of the
image. Upper levels of the hierarchy respect only strong
contours, resulting in an under-segmentation. Moving
between levels offers a continuous trade-off between
these extremes. This shift in representation from a single
segmentation to a nested collection of segmentations
frees later processing stages to use information from
multiple levels or select a level based on additional
knowledge.

Our hierarchy is constructed by a greedy graph-based
region merging algorithm. We define an initial graph
G = (P0,K0,W (K0)), where the nodes are the regions
P0, the links are the arcs K0 separating adjacent regions,
and the weights W (K0) are a measure of dissimilarity

between regions. The algorithm proceeds by sorting the
links by similarity and iteratively merging the most
similar regions. Specifically:

1) Select minimum weight contour:
C∗ = argminC∈K0

W (C).
2) Let R1, R2 ∈ P0 be the regions separated by C∗.
3) Set R = R1 ∪R2, and update:
P0 ← P0\{R1, R2} ∪ {R} and K0 ← K0\{C∗}.

4) Stop if K0 is empty.
Otherwise, update weights W (K0) and repeat.

This process produces a tree of regions, where the leaves
are the initial elements of P0, the root is the entire image,
and the regions are ordered by the inclusion relation.

We define dissimilarity between two adjacent regions
as the average strength of their common boundary in
K0, with weights W (K0) initialized by the OWT. Since at
every step of the algorithm all remaining contours must
have strength greater than or equal to those previously
removed, the weight of the contour currently being
removed cannot decrease during the merging process.
Hence, the constructed region tree has the structure of
an indexed hierarchy and can be described by a den-
drogram, where the height H(R) of each region R is the
value of the dissimilarity at which it first appears. Stated
equivalently, H(R) = W (C) where C is the contour
whose removal formed R. The hierarchy also yields a
metric on P0×P0, with the distance between two regions
given by the height of the smallest containing segment:

D(R1, R2) = min{H(R) : R1, R2 ⊆ R} (15)

This distance satisfies the ultrametric property:

D(R1, R2) ≤ max(D(R1, R), D(R,R2)) (16)

since if R is merged with R1 before R2, then D(R1, R2) =
D(R,R2), or if R is merged with R2 before R1, then
D(R1, R2) = D(R1, R). As a consequence, the whole
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hierarchy can be represented as an Ultrametric Contour
Map (UCM) [35], the real-valued image obtained by
weighting each boundary by its scale of disappearance.

Figure 14 presents an example of our method. The
UCM is a weighted contour image that, by construction,
has the remarkable property of producing a set of closed
curves for any threshold. Conversely, it is a convenient
representation of the region tree since the segmentation
at a scale k can be easily retrieved by thresholding the
UCM at level k. Since our notion of scale is the average
contour strength, the UCM values reflect the contrast
between neighboring regions.

4.3 Results
While the OWT-UCM algorithm can use any source of
contours for the input E(x, y, θ) signal (e.g. the Canny
edge detector before thresholding), we obtain best re-
sults by employing the gPb detector [3] introduced in
Section 3. We report experiments using both gPb as well
as the baseline Canny detector, and refer to the resulting
segmentation algorithms as gPb-owt-ucm and Canny-
owt-ucm, respectively.

Figures 15 and 16 illustrate results of gPb-owt-ucm
on images from the BSDS500. Since the OWT-UCM
algorithm produces hierarchical region trees, obtaining a
single segmentation as output involves a choice of scale.
One possibility is to use a fixed threshold for all images
in the dataset, calibrated to provide optimal performance
on the training set. We refer to this as the optimal dataset
scale (ODS). We also evaluate performance when the
optimal threshold is selected by an oracle on a per-image
basis. With this choice of optimal image scale (OIS), one
naturally obtains even better segmentations.

4.4 Evaluation
To provide a basis of comparison for the OWT-UCM
algorithm, we make use of the region merging (Felz-
Hutt) [32], Mean Shift [34], Multiscale NCuts [33], and
SWA [31] segmentation methods reviewed in Section 2.2.
We evaluate each method using the boundary-based
precision-recall framework of [2], as well as the Variation
of Information, Probabilistic Rand Index, and segment
covering criteria discussed in Section 2.3. The BSDS
serves as ground-truth for both the boundary and region
quality measures, since the human-drawn boundaries
are closed and hence are also segmentations.

4.4.1 Boundary Quality
Remember that the evaluation methodology developed
by [2] measures detector performance in terms of preci-
sion, the fraction of true positives, and recall, the fraction
of ground-truth boundary pixels detected. The global F-
measure, or harmonic mean of precision and recall at the
optimal detector threshold, provides a summary score.

In our experiments, we report three different quanti-
ties for an algorithm: the best F-measure on the dataset
for a fixed scale (ODS), the aggregate F-measure on the

BSDS300 BSDS500
ODS OIS AP ODS OIS AP

Human 0.79 0.79 − 0.80 0.80 −
gPb-owt-ucm 0.71 0.74 0.73 0.73 0.76 0.73
[34] Mean Shift 0.63 0.66 0.54 0.64 0.68 0.56
[33] NCuts 0.62 0.66 0.43 0.64 0.68 0.45
Canny-owt-ucm 0.58 0.63 0.58 0.60 0.64 0.58
[32] Felz-Hutt 0.58 0.62 0.53 0.61 0.64 0.56
[31] SWA 0.56 0.59 0.54 − − −
gPb 0.70 0.72 0.66 0.71 0.74 0.65
Canny 0.58 0.62 0.58 0.60 0.63 0.58

TABLE 1. Boundary benchmarks on the BSDS. Results
for six different segmentation methods (upper table) and
two contour detectors (lower table) are given. Shown are
the F-measures when choosing an optimal scale for the
entire dataset (ODS) or per image (OIS), as well as the
average precision (AP). Figures 1, 2, and 17 show the full
precision-recall curves for these algorithms.

BSDS300
Covering PRI VI

ODS OIS Best ODS OIS ODS OIS
Human 0.73 0.73 − 0.87 0.87 1.16 1.16
gPb-owt-ucm 0.59 0.65 0.75 0.81 0.85 1.65 1.47
[34] Mean Shift 0.54 0.58 0.66 0.78 0.80 1.83 1.63
[32] Felz-Hutt 0.51 0.58 0.68 0.77 0.82 2.15 1.79
Canny-owt-ucm 0.48 0.56 0.66 0.77 0.82 2.11 1.81
[33] NCuts 0.44 0.53 0.66 0.75 0.79 2.18 1.84
[31] SWA 0.47 0.55 0.66 0.75 0.80 2.06 1.75
[29] Total Var. 0.57 − − 0.78 − 1.81 −
[70] T+B Encode 0.54 − − 0.78 − 1.86 −
[30] Av. Diss. 0.47 − − 0.76 − 2.62 −
[30] ChanVese 0.49 − − 0.75 − 2.54 −

BSDS500
Covering PRI VI

ODS OIS Best ODS OIS ODS OIS
Human 0.72 0.72 − 0.88 0.88 1.17 1.17
gPb-owt-ucm 0.59 0.65 0.74 0.83 0.86 1.69 1.48
[34] Mean Shift 0.54 0.58 0.66 0.79 0.81 1.85 1.64
[32] Felz-Hutt 0.52 0.57 0.69 0.80 0.82 2.21 1.87
Canny-owt-ucm 0.49 0.55 0.66 0.79 0.83 2.19 1.89
[33] NCuts 0.45 0.53 0.67 0.78 0.80 2.23 1.89

TABLE 2. Region benchmarks on the BSDS. For each
segmentation method, the leftmost three columns report
the score of the covering of ground-truth segments ac-
cording to optimal dataset scale (ODS), optimal image
scale (OIS), or Best covering criteria. The rightmost
four columns compare the segmentation methods against
ground-truth using the Probabilistic Rand Index (PRI) and
Variation of Information (VI) benchmarks, respectively.

dataset for the best scale in each image (OIS), and the
average precision (AP) on the full recall range (equiva-
lently, the area under the precision-recall curve). Table 1
shows these quantities for the BSDS. Figures 2 and 17
display the full precision-recall curves on the BSDS300
and BSDS500 datasets, respectively. We find retraining
on the BSDS500 to be unnecessary and use the same
parameters learned on the BSDS300. Figure 18 presents
side by side comparisons of segmentation algorithms.

Of particular note in Figure 17 are pairs of curves
corresponding to contour detector output and regions
produced by running the OWT-UCM algorithm on that
output. The similarity in quality within each pair shows
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Fig. 15. Hierarchical segmentation results on the BSDS500. From Left to Right: Image, Ultrametric Contour Map
(UCM) produced by gPb-owt-ucm, and segmentations obtained by thresholding at the optimal dataset scale (ODS)
and optimal image scale (OIS). All images are from the test set.
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Fig. 16. Additional hierarchical segmentation results on the BSDS500. From Top to Bottom: Image, UCM
produced by gPb-owt-ucm, and ODS and OIS segmentations. All images are from the test set.
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[F = 0.80] Human
[F = 0.73] gPb−owt−ucm
[F = 0.71] gPb
[F = 0.64] Mean Shift − Comaniciu, Meer (2002)
[F = 0.64] Normalized Cuts − Cour, Benezit, Shi (2005)
[F = 0.61] Felzenszwalb, Huttenlocher (2004)
[F = 0.60] Canny
[F = 0.60] Canny−owt−ucm

Fig. 17. Boundary benchmark on the BSDS500. Com-
paring boundaries to human ground-truth allows us to
evaluate contour detectors [3], [22] (dotted lines) and seg-
mentation algorithms [4], [32], [33], [34] (solid lines) in the
same framework. Performance is consistent when going
from the BSDS300 (Figures 1 and 2) to the BSDS500
(above). Furthermore, the OWT-UCM algorithm pre-
serves contour detector quality. For both gPb and
Canny, comparing the resulting segment boundaries to
the original contours shows that our OWT-UCM algorithm
constructs hierarchical segmentations from contours with-
out losing performance on the boundary benchmark.

that we can convert contours into hierarchical segmen-
tations without loss of boundary precision or recall.

4.4.2 Region Quality
Table 2 presents region benchmarks on the BSDS. For a
family of machine segmentations {Si}, associated with
different scales of a hierarchical algorithm or different
sets of parameters, we report three scores for the cov-
ering of the ground-truth by segments in {Si}. These
correspond to selecting covering regions from the seg-
mentation at a universal fixed scale (ODS), a fixed scale
per image (OIS), or from any level of the hierarchy or
collection {Si} (Best). We also report the Probabilistic
Rand Index and Variation of Information benchmarks.
Figure 19 shows these two measures as a function of
scale in our hierarchical output.

While the relative ranking of segmentation algorithms
remains fairly consistent across different benchmark cri-
teria, the boundary benchmark (Table 1 and Figure 17)
appears most capable of discriminating performance.

4.4.3 Additional Datasets
We concentrated experiments on the BSDS because it is
the most complete dataset available for our purposes,

Fig. 18. Pairwise comparison of segmentation algo-
rithms on the BSDS300. The coordinates of the red
dots are the boundary benchmark scores at the optimal
image scale (OIS) for each of the two methods compared
on single images. Boxed totals represent the number of
images where one algorithm is better. For example, the
top-left shows gPb-owt-ucm outscores NCuts on 99/100
images. When comparing with SWA, we further restrict
the output of the second method to match the number of
regions produced by SWA. All differences are statistically
significant except between NCuts and Mean Shift.
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Fig. 19. Evaluating regions on the BSDS300. Con-
tour detector influence on segmentation quality is evident
when benchmarking the regions of the resulting hierarchi-
cal segmentation. Left: Probabilistic Rand Index. Right:
Variation of Information.

MSRC PASCAL 2008
ODS OIS Best ODS OIS Best

gPb-owt-ucm 0.66 0.75 0.78 0.45 0.58 0.61
Canny-owt-ucm 0.57 0.68 0.72 0.40 0.53 0.55

TABLE 3. Region benchmarks on MSRC and PASCAL
2008. Shown are scores for the segment covering criteria.

has been used in several publications, and has the advan-
tage of providing multiple human-labeled segmentations
per image. Table 3 reports the comparison between
Canny-owt-ucm and gPb-owt-ucm on two other publicly
available datasets:
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Fig. 20. Interactive segmentation. Left: Image. Middle: UCM produced by gPb-owt-ucm (grayscale) with additional
user annotations (color dots and lines). Right: The region hierarchy defined by the UCM allows us to automatically
propagate annotations to unlabeled segments, resulting in the desired labeling of the image with minimal user effort.

• MSRC [71]
The MSRC object recognition database is composed
of 591 natural images with objects belonging to
21 classes. We evaluate performance using the
ground-truth object instance labeling of [11], which
is cleaner and more precise than the original data.

• PASCAL 2008 [8]
We use the train and validation sets of the segmen-
tation task on the 2008 PASCAL segmentation chal-
lenge, composed of 1023 images. This is one of the
most difficult and varied datasets for recognition.
We evaluate performance with respect to the object
instance labels provided. Note that only objects
belonging to the 20 categories of the challenge are
labeled, and 76% of all pixels are unlabeled.

4.4.4 Summary
The gPb-owt-ucm segmentation algorithm offers the best
performance on every dataset and for every benchmark
criterion we tested. In addition, it is straight-forward,
fast, has no parameters to tune, and, as discussed in
the following sections, can be adapted for use with top-
down knowledge sources.

5 INTERACTIVE SEGMENTATION

Until now, we have only discussed fully automatic image
segmentation. Human assisted segmentation is relevant
for many applications, and recent approaches rely on the
graph-cuts formalism [72], [73], [74] or other energy min-
imization procedure [75] to extract foreground regions.

For example, [72] cast the task of determining binary
foreground/background pixel assignments in terms of
a cost function with both unary and pairwise poten-
tials. The unary potentials encode agreement with es-
timated foreground or background region models and
the pairwise potentials bias neighboring pixels not sep-
arated by a strong boundary to have the same label.

They transform this system into an equivalent minimum
cut/maximum flow graph partitioning problem through
the addition of a source node representing the fore-
ground and a sink node representing the background.
Edge weights between pixel nodes are defined by the
pairwise potentials, while the weights between pixel
nodes and the source and sink nodes are determined by
the unary potentials. User-specified hard labeling con-
straints are enforced by connecting a pixel to the source
or sink with sufficiently large weight. The minimum cut
of the resulting graph can be computed efficiently and
produces a cost-optimizing assignment.

It turns out that the segmentation trees generated
by the OWT-UCM algorithm provide a natural starting
point for user-assisted refinement. Following the proce-
dure of [76], we can extend a partial labeling of regions
to a full one by assigning to each unlabeled region the
label of its closest labeled region, as determined by the
ultrametric distance (15). Computing the full labeling is
simply a matter of propagating information in a single
pass along the segmentation tree. Each unlabeled region
receives the label of the first labeled region merged with
it. This procedure, illustrated in Figure 20, allows a user
to obtain high quality results with minimal annotation.

6 MULTISCALE FOR OBJECT ANALYSIS

Our contour detection and segmentation algorithms cap-
ture multiscale information by combining local gradient
cues computed at three different scales, as described in
Section 3.2. We did not see any performance benefit on
the BSDS by using additional scales. However, this fact is
not an invitation to conclude that a simple combination
of a limited range of local cues is a sufficient solution
to the problem of multiscale image analysis. Rather,
it is a statement about the nature of the BSDS. The
fixed resolution of the BSDS images and the inherent
photographic bias of the dataset lead to the situation in
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Fig. 21. Multiscale segmentation for object detection. Top: Images from the PASCAL 2008 dataset, with objects
outlined at ground-truth locations. Detailed Views: For each window, we show the boundaries obtained by running the
entire gPb-owt-ucm segmentation algorithm at multiple scales. Scale increases by factors of 2 moving from left to right
(and top to bottom for the blue window). The total scale range is thus larger than the three scales used internally for
each segmentation. Highlighted Views: The highlighted scale best captures the target object’s boundaries. Note the
link between this scale and the absolute size of the object in the image. For example, the small sailboat (red outline) is
correctly segmented only at the finest scale. In other cases (e.g. parrot, magenta outline), bounding contours appear
across several scales, but informative internal contours are scale sensitive. A window-based object detector could
learn and exploit an optimal coupling between object size and segmentation scale.

which a small range of scales captures the boundaries
humans find important.

Dealing with the full variety one expects in high
resolution images of complex scenes requires more than
a naive weighted average of signals across the scale
range. Such an average would blur information, result-
ing in good performance for medium-scale contours,
but poor detection of both fine-scale and large-scale
contours. Adaptively selecting the appropriate scale at
each location in the image is desirable, but it is unclear
how to estimate this robustly using only bottom-up cues.

For some applications, in particular object detection,
we can instead use a top-down process to guide scale
selection. Suppose we wish to apply a classifier to de-
termine whether a subwindow of the image contains
an instance of a given object category. We need only
report a positive answer when the object completely fills
the subwindow, as the detector will be run on a set of

windows densely sampled from the image. Thus, we
know the size of the object we are looking for in each
window and hence the scale at which contours belonging
to the object would appear. Varying the contour scale
with the window size produces the best input signal for
the object detector. Note that this procedure does not
prevent the object detector itself from using multiscale
information, but rather provides the correct central scale.

As each segmentation internally uses gradients at
three scales, [σ2 , σ, 2σ], by stepping by a factor of 2 in
scale between segmentations, we can reuse shared local
cues. The globalization stage (sPb signal) can optionally
be customized for each window by computing it using
only a limited surrounding image region. This strategy,
used here, results in more work overall (a larger number
of simpler globalization problems), which can be miti-
gated by not sampling sPb as densely as one samples
windows.
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Figure 21 shows an example using images from the
PASCAL dataset. Bounding boxes displayed are slightly
larger than each object to give some context. Multiscale
segmentation shows promise for detecting fine-scale ob-
jects in scenes as well as making salient details available
together with large-scale boundaries.

APPENDIX
EFFICIENT COMPUTATION

Computing the oriented gradient of histograms (Fig-
ure 4) directly as outlined in Section 3.1 is expensive.
In particular, for an N pixel image and a disc of radius
r it takes O(Nr2) time to compute since a region of
area O(r2) is examined at every pixel location. This
entire procedure is repeated 32 times (4 channels with
8 orientations) for each of 3 choices of r (the cost of
the largest scale dominates the time complexity). Martin
et al. [2] suggest ways to speed up this computation,
including incremental updating of the histograms as the
disc is swept across the image. However, this strategy
still requires O(Nr) time. We present an algorithm for
the oriented gradient of histograms computation that
runs in O(N) time, independent of the radius r.

Following Figure 22, we can approximate each half-
disc by a series of rectangles. It turns out that a single
rectangle is a sufficiently good approximation for our
purposes (in principle, we can always choose a fixed
number of rectangles to achieve any specified accuracy).
Now, instead of rotating our rectangular regions, we
pre-rotate the image so that we are concerned with
computing a histogram of the values within axis-aligned
rectangles. This can be done in time independent of the
size of the rectangle using integral images.

We process each histogram bin separately. Let I denote
the rotated intensity image and let Ib(x, y) be 1 if I(x, y)
falls in histogram bin b and 0 otherwise. Compute the
integral image Jb as the cumulative sum across rows
of the cumulative sum across columns of Ib. The total
energy in an axis-aligned rectangle with points P , Q,
R, and S as its upper-left, upper-right, lower-left, and
lower-right corners, respectively, falling in histogram bin
b is:

h(b) = Jb(P ) + Jb(S)− Jb(Q)− Jb(R) (17)

It takes O(N) time to pre-rotate the image, and O(N)
to compute each of the O(B) integral images, where B
is the number of bins in the histogram. Once these are
computed, there is O(B) work per rectangle, of which
there are O(N). Rotating the output back to the original
coordinate frame takes an additional O(N) work. The
total complexity is thus O(NB) instead of O(Nr2) (ac-
tually instead of O(Nr2 + NB) since we always had to
compute χ2 distances between N histograms). Since B is
a fixed constant, the computation time no longer grows
as we increase the scale r.

This algorithm runs in O(NB) time as long as we
use at most a constant number of rectangular boxes to

Fig. 22. Efficient computation of the oriented gradient
of histograms. Left: The two half-discs of interest can
be approximated arbitrarily well by a series of rectangular
boxes. We found a single box of equal area to the half-disc
to be a sufficient approximation. Middle: Replacing the
circular disc of Figure 4 with the approximation reduces
the problem to computing the histograms within rectan-
gular regions. Right: Instead of rotating the rectangles,
rotate the image and use the integral image trick to
compute the histograms efficiently. Rotate the final result
to map it back to the original coordinate frame.
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Fig. 23. Comparison of half-disc and rectangular
regions for computing the oriented gradient of his-
tograms. Top Row: Results of using the O(Nr2) time
algorithm to compute the difference of histograms in
oriented half-discs at each pixel. Shown is the output for
processing the brightness channel displayed in Figure 22
using a disc of radius r = 10 pixels at four distinct
orientations (one per column). N is the total number of
pixels. Bottom Row: Approximating each half-disc with a
single rectangle (of height 9 pixels so that the rectangle
area best matches the disc area), as shown in Figure 22,
and using integral histograms allows us to compute nearly
identical results in only O(N) time. In both cases, we
show the raw histogram difference output before applica-
tion of a smoothing filter in order to clearly demonstrate
the similarity of the results.
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approximate each half-disc. For an intuition as to why
a single rectangle turns out to be sufficient, look again
at the overlap of the rectangle with the half disc in the
lower left of Figure 22. The majority of the pixels used in
forming the histogram lie within both the rectangle and
the disc, and those pixels that differ are far from the
center of the disc (the pixel at which we are computing
the gradient). Thus, we are only slightly changing the
shape of the region we use for context around each pixel.
Figure 23 shows that the result using the single rectangle
approximation is visually indistinguishable from that
using the original half-disc.

Note that the same image rotation technique can be
used for computing convolutions with any oriented
separable filter, such as the oriented Gaussian derivative
filters used for textons (Figure 5) or the second-order
Savitzky-Golay filters used for spatial smoothing of our
oriented gradient output. Rotating the image, convolving
with two 1D filters, and inverting the rotation is more
efficient than convolving with a rotated 2D filter. More-
over, in this case, no approximation is required as these
operations are equivalent up to the numerical accuracy
of the interpolation done when rotating the image. This
means that all of the filtering performed as part of the
local cue computation can be done in O(Nr) time instead
of O(Nr2) time where here r = max(w, h) and w and h
are the width and height of the 2D filter matrix. For large
r, the computation time can be further reduced by using
the Fast Fourier Transform to calculate the convolution.

The entire local cue computation is also easily paral-
lelized. The image can be partitioned into overlapping
subimages to be processed in parallel. In addition, the
96 intermediate results (3 scales of 4 channels with 8
orientations) can all be computed in parallel as they are
independent subproblems. Catanzaro et al. [77] have cre-
ated a parallel GPU implementation of our gPb contour
detector. They also exploit the integral histogram trick
introduced here, with the single rectangle approxima-
tion, while replicating our precision-recall performance
curve on the BSDS benchmark. The speed improvements
due to both the reduction in computational complexity
and parallelization make our gPb contour detector and
gPb-owt-ucm segmentation algorithm practical tools.
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