
Chukwa: A system for reliable large-scale log

collection

Ariel Rabkin
Randy H. Katz

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-25

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-25.html

March 5, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Chukwa: A system for reliable large-scale log collection

Ariel Rabkin
asrabkin@cs.berkeley.edu

UC Berkeley

Randy Katz
randy@cs.berkeley.edu

UC Berkeley

Abstract
Large Internet services companies like Google, Yahoo,

and Facebook use the MapReduce programming model
to process log data. MapReduce is designed to work
on data stored in a distributed filesystem like Hadoop’s
HDFS. As a result, a number of companies have devel-
oped log collection systems that write to HDFS. These
systems have a number of common weaknesses, induced
by the semantics of the filesystem. They impose a de-
lay, often several minutes, before data is available for
processing. They are difficult to integrate with exist-
ing applications. They cannot reliably handle concur-
rent failures. We present a system, called Chukwa, that
adds the needed semantics for log collection and anal-
ysis. Chukwa uses an end-to-end delivery model that
leverages local on-disk log files when possible, easing
integration with legacy systems. Chukwa offers a choice
of delivery models, making subsets of the collected data
available promptly for clients that require it, while reli-
ably storing a copy in HDFS. We demonstrate that our
system works correctly on a 200-node testbed and can
collect in excess of 200 MB/sec of log data. We supple-
ment these measurements with a set of case studies.

1 Introduction

MapReduce [8] is a popular framework for large-scale
distributed processing. One of its major principles is
to push computation to the node holding the associated
data. This is accomplished by storing the input to a
MapReduce job in a distributed filesystem such as the
Google File System (GFS) [10], or its open-source coun-
terpart, the Hadoop Distributed File System (HDFS).

One important application of MapReduce is process-
ing log files of various types [8, 29]. GFS and HDFS
are user-level filesystems that do not implement POSIX
semantics and that do not integrate with the OS filesys-
tem layer. This means that applications must either be

modified to write their logs to these filesystems, or else a
separate process must copy logs into the filesystem.

At least outside Google, the latter approach appears
more popular. It is more flexible and has the ad-
vantage of confining the log storage-related code to a
smaller portion of the overall system deployment. Sev-
eral companies, such as Rapleaf, Rackspace, and Face-
book [22, 29, 1], have built specialized log collection
systems that take this approach to storing logs in HDFS.
The system developed at Facebook, known as Scribe, is
open source and therefore particularly well-known. The
existence of these separate implementations is evidence
that log collection is a significant problem that currently
lacks a definitive solution.

1.1 The Problem

HDFS has been primarily designed to store large data
sets in a modest number of large files, each of which
is written once and then closed. This is a good fit for
the input and output from MapReduce jobs, but is a less
good fit for logs. Log data is typically spread over a
large number of data sources, of varying sizes, updated
sporadically. The requirement to harmonize these two
sets of semantics significantly constrains the design of
a log collection system. As a result, the collection sys-
tems mentioned above all share a common architecture.
Unlike GFS, HDFS does not allow concurrent appends,
meaning that a user process, often called a collector, fills
the role. This process receives log messages from each
log source and consolidates the received messages into a
single file.

There are three problems with this approach to log col-
lection. Two of them stem from tradeoffs in the design
of the underlying filesystem. To get good performance,
HDFS caches data aggressively and does not offer clients
an fsync-like primitive to force collected data to the
filesystem. Written data only becomes visible once a
complete block (64 MB) has been written or the file has

1

been closed. Since the file system does not perform well
with large numbers of small files, each of these collec-
tion systems keeps their output files open for a lengthy
period, generally measured in minutes. This avoids the
small-files problem, but imposes a delay before data be-
comes visible. This delay can be more than a minute in
production contexts [29].

This caching also poses a reliability problem: partial
blocks are not persistent. This means that special mea-
sures need to be taken to avoid losing data if a collector
crashes. In some contexts, this risk is acceptable. Scribe
simply risks the data loss, while warning that “some mul-
tiple component failure cases” can lead to data loss. A
more robust approach (taken by [22]) is to keep a write-
ahead log at the collector. This approach can still entail
data loss if the collector failure is permanent.

Last, this collector-based architecture is hard to inte-
grate with legacy applications. To avoid complexity at
the collector, each collection system has a fixed and nar-
row API. For instance, Scribe’s data model is that mes-
sages are a key-value pair sent via Thrift RPC. Writing
and configuring wrappers for every existing data source
is likely to be both troublesome and error-prone. Having
a network API as the primary interface to the log collec-
tion system means a great deal of configuration, for in-
stance, primary and backup server addresses, spread over
every service being monitored.

Adding a “record append” operation to the filesystem
would go a long way towards solving the first two of
these problems. This feature appears to be quite difficult
to get right, however. The simpler case of single-writer
appends in HDFS has been in development for nearly
two years and is still not available in current versions
of Hadoop, despite the efforts of large teams of sophis-
ticated developers at Yahoo! and Facebook [13]. It is
therefore highly desirable to find a simpler approach to
reliable logging.

1.2 Our solution

Our system, Chukwa, was originally developed in re-
sponse to the need for a distributed log collection system
at Yahoo’s Hadoop development and operations group.
It is an open source project that our group at UC Berke-
ley has adopted and substantially extended. In a previ-
ous publication, we described our initial goals and our
prototype implementation. In this paper, we describe
Chukwa’s reliability mechanisms, present detailed mea-
surements, and describe real-world experiences.

While logging to HDFS was our original motivation,
both the problem and solution are more broadly applica-
ble. Several other distributed storage systems (including
GFS [10]) were built to support latency-insensitive batch
workloads and and more such systems may be developed

over time. HDFS is unlikely to be the last storage sys-
tem ever developed that has long-latency writes and that
is tuned for large files. Chukwa shows that it is possi-
ble to support logging workloads on these systems, even
without sophisticated APIs, by adding a specialized col-
lection system on top of the filesystem. We require nei-
ther a record append operation nor an fsync-like oper-
ation, both of which have proven very hard to implement
at scale.

Chukwa addresses all three problems described above
that hamper current log collection systems. We intro-
duce a “fast path” delivery model to make data avail-
able more promptly, bypassing the filesystem for these
clients. We achieve reliability end-to-end, using existing
local copies of logs whenever possible. We introduce an
agent process on each host being monitored that can col-
lect log data from legacy systems in standardized way,
pulling complexity into the monitoring system and away
from the users. While each of these improvements to log
collection could be made separately, they are mutually
reinforcing. Emphasizing the collection of existing on-
disk log files aids both reliability and support for exist-
ing applications. The data model that we use to achieve
reliability also makes our fast path delivery much more
useful.

In many environments, applications are configured to
write their logs to the local filesystem. This observation
was based on our discussions with developers at both UC
Berkeley and at Yahoo!, inc. In both environments, de-
velopers wanted to have copies of their log files on the
machines where those files are produced. Local files
are very simple to understand and reason about. They
are easy to produce, for instance by redirecting the stan-
dard out or standard error streams from processes with-
out reconfigurable logging. There is often a substantial
degree of tool support for collecting or analyzing these
files. For instance, Hadoop makes local log files visible
via an HTTP interface on each machine. Perhaps most
importantly, local logging is very robust. If a network
service is inaccessible, then the logging application is re-
sponsible for buffering or retrying. This is potentially
a significant complexity to insert into every application
generating logs. In contrast, filesystem writes will al-
ways succeed if space is available. Putting logs on a sep-
arate partition makes it easy to reserve sufficient space
for them.

A key insight behind Chukwa is that the monitoring
system can use this on-disk copy for reliability. Hav-
ing a durable local copy lets the collection system use
an end-to-end failure recovery model. From the point
of view of the client system containing the logs, data is
written to HDFS asynchronously. Clients periodically
check whether their logs were copied to HDFS correctly.
If not, the local copy is available for re-trying. Turning

2

this insight into an effective monitoring system required
us to handle two challenges: The bookkeeping necessary
for recovery must be efficient, even at large scale and the
mechanism must be adaptable to cases where the data to
be collected is not initially stored in log files. As we will
show in this paper, Chukwa meets these challenges.

This work is timely for two reasons. The development
of automated log analysis (such as [30, 2, 15] has made
system logs much more useful. If logs are rarely con-
sulted, then collecting them is a low priority. Now that
system logs can be analyzed automatically and continu-
ously, collecting them becomes a much higher priority.
The rise of Cloud computing makes it easier than ever to
deploy services across hundreds of nodes [3], with a cor-
responding increase in the quantity of logs. At that scale,
sophisticated storage and analysis tools like Hadoop be-
come very desirable.

We begin, in the next section, by describing our design
goals and assumptions. Section 3 describes our concrete
implementation and Section 4 presents some quantitative
measurements. Section 5 describes our experiences inte-
grating Chukwa with applications; Section 6 discusses
how we use the collected data. We then describe related
work in Section 7, and conclude in Section 8.

2 Design Goals

We now lay out our goals and assumptions in more detail.
These were based on design discussions at both Yahoo!
and UC Berkeley and reflect real operational needs.

2.1 Supporting Production Use
We first list the core set of requirements needed to mon-
itor production systems.

• The system must support a wide variety of data
sources, not just log files. This is needed to col-
lect system metrics and to cope with existing legacy
systems that sometimes use other logging protocols,
such as syslog [14].

• The system should impose low overhead. We have
often heard 5% described as the largest fraction of
system resources that administrators are comfort-
able devoting to monitoring. Lacking any more
principled standard, we have adopted this as our tar-
get maximum resource utilization.

• No matter how intense a bust of log writes, the re-
source consumption of the monitoring system re-
main with its resource bounds.

• The system should scale to handle large numbers
of clients and large aggregate data rates. Our target

was to support 10,000 hosts and 30 MB/sec, match-
ing the largest clusters currently in use at Yahoo [5].

2.2 Delivery Models
Chukwa was primarily designed to enable MapReduce
processing of log data. Due to scheduling overheads, a
Hadoop MapReduce job seldom executes in less than a
minute. As a result, reducing data delivery latency below
a minute offers limited benefit.

Some log analysis jobs are very sensitive to missing
data. In general, whenever the absence of a log mes-
sage is significant to an analysis, then losing even a small
quantity of data can result in a badly wrong answer. For
instance, Rackspace uses a MapReduce-based analysis
of email logs to determine the precise path that mail is
taking through their infrastructure [29]. If the log entry
corresponding to a delivery is missing, the analysis will
wrongly conclude that mail was lost. To support these
sorts of applications, we made reliable delivery a core
goal for Chukwa Our reliability goal is that data will be
correctly written to the distributed filesystem even in the
presence of arbitrary combinations of transitory failures.

Not all sources of log data require the same degree
of reliability. A site might decide that pessimistically
recording all system metrics to disk is an unnecessary
and wasteful degree of robustness. Chukwa’s reliabil-
ity model is designed to cope gracefully with ephemeral
data sources, whose output need not be persistent across
a crash. Administrators can select between different reli-
ability models, at per-data-source granularity.

It became clear to us as we were developing Chukwa
that in addition to reliability-sensitive applications, there
is an another class of applications with quite different
needs. It is sometimes desirable to use logs to drive
an ongoing decision-making process, such as whether to
send an alert to an administrator based on a critical er-
ror or whether to scale up or scale down a cloud service
in response to load. These applications are perforce less
sensitive to missing data, since they must work correctly
even if the node that generated the missing data crashes.
To support latency-sensitive applications, we offer an al-
ternate “fast path” delivery model. This model was de-
signed to impose minimal delays on data delivery. Data
is sent via TCP, but we make no other concession to re-
liable delivery on this path. Applications using the fast
path can compensate for missing data by inspecting the
reliably-written copy on HDFS. Table 1 compares these
two delivery models.

3 Architecture

In the previous section, we described our design goals. In
this section, we describe our design and how it achieves

3

Reliable delivery Fast-path delivery
Visible in minutes Visible in seconds
Writes to HDFS Writes to socket
Resends after crash Does not resend
All data User-specified filtering
Supports MapReduce Stream processing
In order No guarantees

Table 1: The two delivery models offered by Chukwa

these goals. Like the other systems of this type, we in-
troduce auxiliary processes between the log data and the
filesystem. Unlike other systems, we split these pro-
cesses into two classes. One set of processes, the col-
lectors, are responsible for writing to HDFS and are en-
tirely stateless. The other class, the agents run on each
machine being monitored. All the state of the monitoring
system is stored in agents, and is checkpointed regularly
to disk, easing failure recovery. We describe each half of
the system in turn. We then discuss our data model and
the fault-tolerance approach it enables. Figure 1 depicts
the overall architecture.

3.1 Agents

Recall that a major goal for Chukwa was to cleanly in-
corporate existing log files as well as interprocess com-
munication protocols. The set of files or sockets being
monitored will inevitably grow and shrink over time, as
various processes start and finish. As a result, the agent
process on each machine needs to be highly configurable.

Most monitoring systems today require data to be
sent via a specific protocol. Both syslogd and Scribe
[14, 1] are examples of such systems. Chukwa takes a
different approach. In Chukwa, agents are not directly
responsible for receiving data. Instead, they provide
an execution environment for dynamically loadable and
configurable modules called adaptors. These adaptors
are responsible for reading data from the filesystem or di-
rectly from the application being monitored. The output
from an adaptor is conceptually a stream of consecutive
bytes. A single stream might correspond to a single file,
or a set of repeated invocations of a Unix utility, or the
set of packets received on a given socket. The stream ab-
straction is implemented by storing data as a sequence of
chunks. Each chunk consists of some stream-level meta-
data (described below), plus an array of data bytes.

At present, we have adaptors for invoking Unix com-
mands, for receiving UDP messages (including syslog
messages), and, most importantly, for repeatedly “tail-
ing” log files, sending any data written to the file since
its last inspection. We also have an adaptor for scanning
directories and starting a file tailing adaptor on any newly

created files.

It is possible to compose or “nest” adaptors. For in-
stance, we have an adaptor that buffers the output from
another adaptor in memory and another for write-ahead
logging. This sort of nesting allows us to decouple the
challenges of buffering, storage, and retransmission from
those of receiving data. This achieves our goal of allow-
ing administrators to decide precisely the level of failure
robustness required for each data stream.

The agent process is responsible for starting and stop-
ping adaptors and for sending data across the network.
Agents understand a simple line-oriented control proto-
col, designed to be be easy for both humans and pro-
grams to use. The protocol has commands for starting
adaptors, stopping them, and querying their status. This
allows external programs to reconfigure Chukwa to begin
reading their logs.

Running all adaptors inside a single process helps ad-
ministrators impose resource constraints, a requirement
in production settings. Memory usage can be controlled
by setting the JVM heap size. CPU usage can be con-
trolled via nice. Bandwidth is also constrained by the
agent process, which has a configurable maximum send
rate. We use fixed-size queues inside the agent process,
so if available bandwidth is exceeded or if the collectors
are slow in responding, then backpressure will throttle
the adaptors inside the process [28].

The agent process periodically queries each adaptor
for its status, and stores the answer in a checkpoint
file. he checkpoint includes the amount of data from
each adaptor that has been committed to the distributed
filesystem. Each adaptor is responsible for recording
enough additional state to be able to resume cleanly,
without sending corrupted data to downstream recipients.
Note that checkpoints include adaptor state, but not the
underlying data. As a result, they are quite small – typi-
cally no more than a few hundred bytes per adaptor.

One challenge in using files for fault-tolerance is cor-
rectly handling log file rotation. Commonly, log files are
renamed either on a fixed schedule, or when the reach
a predetermined size. When this happens, data should
still be sent and sent only once. In our architecture, cor-
rectly handling log file rotation is the responsibility of
the adaptor. Different adaptors can be implemented with
different strategies. Our default approach is as follows:
If instructed to monitor log file foo, assume that any file
starting with foo.* is a rotated version of foo. Use file
modification dates to put rotated versions in the correct
order. Store the last time at which data was successfully
committed and the associated position in the file. This is
enough information to resume correctly after a crash.

4

!"#$%

&'()%

*+,-.+%

/012%

"'3'%$456%
78%945-3+2:;%

<=.>4?'@%

$30='A+%
7B5,+C543+@D:;%

"'3'%

<((E%@0A%

<((F%@0A%

&+3=4.2%

G

<A+53%

72+.05,2:;%
<A+53%

72+.05,2:;%<A+53%
72+.05,2:;%

H5+%I+=%J0,+%

K0@@+.30=%

72+.05,2:;%K0@@+.30=%
72+.05,2:;%

I+=%ELL%50,+2%

#'23)('3>%.@4+532%
72+.05,2:;%

Figure 1: The flow of data through Chukwa, showing retention times at each stage.

3.2 Collectors

We now turn to the next state of our architecture, the col-
lectors. If each agent wrote directly to HDFS, this would
result in a large number of small files. Instead, Chukwa
uses the increasingly-common collector technique men-
tioned in the introduction, where a single process multi-
plexes the data coming from a large number of agents.

Each collector writes the data it receives to a single
output file, in the so-called “data sink” directory. This
reduces the number of files generated from one per ma-
chine or adaptor per unit time to a handful per cluster.
In a sense, collectors exist to ease the “impedance mis-
match” between large numbers of low-rate sources and a
filesystem that is optimized for a small number of high-
rate writers. Collectors periodically close their output
files, rename the files to mark them available for pro-
cessing, and begin writing a new file. We refer to this as
“file rotation.” A MapReduce job periodically compacts
the files in the sink and merges them into the archive of
collected log data.

Chukwa differs in several ways from most other sys-
tems that employ the collector design technique. We do
not make any attempt to achieve reliability at the collec-
tor. Instead, we rely on an end-to-end protocol, discussed
in the next section. Nor do Chukwa agents dynamically
load-balance across collectors. Instead, they try collec-
tors at random until one appears to be working and then
use that collector exclusively until they receive errors, at
which point they fail-over to a new one. The benefit of
this approach is that it bounds the number of agents that
will be affected if a collector fails before flushing data to
the filesystem. This avoids a scaling problem that would
otherwise occur where every agent is forced to respond
to the failure of any collector. One drawback is that col-
lectors may be unevenly loaded. This has not posed any
problems in practice since in a typical deployment the

collectors are far from saturated. With a collector on
every HDFS node, we have found that the underlying
filesystem saturates well before the collectors do.

To correctly handle overload situations, agents do not
keep retrying indefinitely. If writes to a collector fail, that
collector is marked as “bad”, and the agent will wait for
a configurable period before trying to write to it again.
Thus, if all collectors are overloaded, an agent will try
each, fail on each, and then wait for several minutes be-
fore trying again.

Collectors are responsible for supporting our “fast
path” delivery model. To receive data using this model,
clients connect to a collector, and specify a set of reg-
ular expressions matching data of interest. (These reg-
ular expressions can be used to match either content or
the Chukwa metadata, discussed in the next subsection.)
Whenever a chunk of data arrives matching these filters,
it is sent via a TCP socket to the requesting process in
addition to being written to HDFS. To get full coverage,
a client needs to connect to every collector. As we will
show in the next section, a modest number of collectors
are sufficient for the logging needs of even very large
datacenter services.

Filtering data at collectors has a number of advan-
tages. In the environments we have seen, collectors are
IO-bound, not CPU-bound, meaning that CPU resources
are available for the pattern matching. Moreover, col-
lectors are stateless, meaning that it is straightforward to
spread out this matching across more machines, if need
be, by simply adding more collectors.

The fast path makes few reliability promises. Data can
be duplicated, if an agent detects a collector failure and
resends. Data can be lost, if the collector or the data
recipient fails. In some failure scenarios, data can be re-
ceived out of order. While data is normally delivered to
clients as soon as it is received by the collector, it can be

5

delayed if the network is congested. One guarantee the
fast path does make is that each individual chunk of data
will be received correctly or not at all. As we will see,
this guarantee is enough to be useful.

On the regular “reliable path”, collectors write their
data in the standard Hadoop sequence file format. This
format is specifically designed to facilitate parallel pro-
cessing with MapReduce. To reduce the number of files
and to ease analysis, Chukwa includes an “archiving”
MapReduce job that groups data by cluster, date, and
data type. This storage model is designed to match the
typical access patterns of jobs that use the data. (For in-
stance, it facilitates writing jobs that purge old data based
on age, source, and type: “Store user logs for 14 days,
and framework logs for one year.”) The archiving job
also detects data loss, and removes duplicate data. Re-
peated invocations of this job allow data to be compacted
into progressively larger files over time.

This stored data can be used in a number of
ways. Chukwa includes tools for searching these files.
The query language allows regular-expression matches
against the content or metadata of the stored data. For
larger or more complex tasks, users can run customized
MapReduce jobs on the collected data. Chukwa in-
tegrates cleanly with Pig, a language and execution
environment for automatically producing sequences of
MapReduce jobs for data analysis [17].

3.3 Metadata

When agents send data, they add a number of meta-
data fields, listed in Table 2. This metadata serves
two distinct purposes: uniquely identifying a chunk
for purposes of duplicate detection, and supplying con-
text needed for analysis. Three fields identify the
stream. Two are straightforward: the stream name (e.g.
/var/log/datanode) and source host. In addition,
we also tag data with the “source cluster.” In both clouds
and datacenters, users commonly allocate virtual clus-
ters for particular tasks and release them when the task
is complete. If two different users each use a given host
at different times, their logs may be effectively unrelated.
The source cluster field helps resolve this ambiguity. An-
other field, the sequence ID, identifies the position of a
given data chunk within that stream.

To these four fields, we add one more, “data type,” that
specifies the format of a chunk’s data. Often, only a sub-
set of the data from a given host is relevant to a given
analysis. One might, for instance, only look at Hadoop-
Task logs. The datatype field lets a human or a program
describe the logical content of chunks separately from
the physical origin of the data. This avoids the need to
separately maintain a table describing the semantics of
each file or other physical data source.

The Chukwa metadata model does not include time
stamps. This was a deliberate decision. Timestamps
are unsuitable for ordering chunks, since several chunks
might be read from a file in immediate succession, result-
ing in them having identical timestamps. Nor are times-
tamps necessarily useful for interpreting data. A single
chunk might correspond to many minutes of collected
data, and as a result, a single timestamp at the chunk
level would be misleading. Moreover, such timestamps
are redundant, since the content of each chunk generally
includes precise application-level timestamps. Standard
log file formats include per-line timestamps, for instance.

3.4 Reliability

Fault-tolerance was a key design goal for Chukwa. Data
must still arrive even if processes crash or network con-
nectivity is interrupted. Our solution differs substantially
from other systems that record logs to distributed storage
and is a major contribution of this work. Rather than try
to make the writer fault-tolerant, we make them stateless,
and push all state to the hosts generating the data.

Handling agent crashes is straightforward. As men-
tioned above, agents regularly checkpoint their state.
This checkpoint describes every data stream currently
being monitored and how much data from that stream
has been committed to the data sink. We use standard
daemon-management tools to restart agents after a crash.
When the agent process resumes, each active adaptor is
restarted from the most recent checkpoint state. This
means that agents will resend any data sent but not yet
committed or committed after the last checkpoint. These
duplicate chunks will be filtered out by the archiving job,
mentioned above.

File tailing adaptors can easily resume from a fixed
offset in the file. Adaptors that monitor ephemeral data
sources, such as network sockets, can not. In these cases,
the adaptor can simply resume sending data. In some
cases, this lost data is unproblematic. For instance, los-
ing one minute’s system metrics prior to a crash does
not render all subsequent metrics useless. In other cases,
a higher reliability standard is called for. Our solution
is to supply a library of “wrapper” adaptors that buffer
the output from otherwise-unreliable data sources. Cur-
rently, users can choose between no buffering, buffering
data in memory, or write-ahead logging on disk. Other
strategies can be easily implemented.

Rather than try to build a fault tolerant collector,
Chukwa agents look through the collectors to the under-
lying state of the filesystem. This filesystem state is what
is used to detect and recover from failure. Recovery is
handled entirely by the agent, without requiring anything
at all from the failed collector. When an agent sends data
to a collector, the collector responds with the name of the

6

Field Meaning Source
Source Hostname where Chunk was generated Automatic
Cluster Cluster host is associated with Configured by user per-host
Datatype Format of output Configured by user per-stream
Sequence ID Offset of Chunk in stream Automatic
Name Name of data source Automatic

Table 2: The Chukwa Metadata Schema

HDFS file in which the data will be stored and the future
location of the data within the file. This is very easy to
compute – since each file is only written by a single col-
lector, the only requirement is to enqueue the data and
add up lengths.

Every few minutes, each agent process polls a collec-
tor to find the length of each file to which data is being
written. The length of the file is then compared with the
offset at which each chunk was to be written. If the file
length exceeds this value, then the data has been commit-
ted and the agent process advances its checkpoint accord-
ingly. (Note that the length returned by the filesystem
is the amount of data that has been successfully repli-
cated.) There is nothing essential about the role of col-
lectors in monitoring the written files. Collectors store
no per-agent state. The reason to poll collectors, rather
than the filesystem directly, is to reduce the load on the
filesystem master and to shield agents from the details of
the storage system. On error, agents resume from their
last checkpoint and pick a new collector. In the event of a
failure, the total volume of data retransmitted is bounded
by the period between collector file rotations.

The solution is end-to-end. Authoritative copies of
data can only exist in two places: the nodes where
data was originally produced, and the HDFS file system
where it will ultimately be stored. Collectors only hold
soft state; the only “hard” state stored by Chukwa is the
agent checkpoints. Figure 2 diagrams the flow of mes-
sages in this protocol.

4 Evaluation

In this section, we will demonstrate three properties.
First, Chukwa imposes a low overhead on the system be-
ing monitored. Second, Chukwa is able to scale to large
data volumes. Third, that Chukwa recovers correctly
from failures. To verify these properties, we conducted a
series of experiments at scale on Amazon’s Elastic Com-
pute Cloud, EC2. Using EC2 means that our hardware
environment is well-documented, and that our software
environment could be well controlled. All nodes used
the same virtual machine image, running Ubuntu Linux,
with a 2.6.21 kernel. We used version 0.20.0 of the
Hadoop File System, the most recently released version

ls!

!"#"$

%&$'(()*(&+$

$,$-...$

/0+12$

'(()*(&+,$

-...$

3)$

4+&5#6$(7$

'(()*(&+8

-...$

3$

9(::+;#(1$ <!'=$>5+&#$

!"#"$

Figure 2: Flow of messages in asynchronous acknowl-
edgement. Data written through collector without wait-
ing for success. Separately, collectors check lengths of
written files, and report this back to agents.

at the time.

4.1 Overhead of Monitoring

To measure the overhead of Chukwa in production, we
used Cloudstone, a benchmark [23], designed for com-
paring the performance of web application frameworks
and configurations. Each run takes about ten minutes
to complete and outputs a score in requests handled per
second for a standardized simulated workload. The ver-
sion we used starts a large number of Ruby on Rails pro-
cessors, backed by a MySQL database. We used a 9-
node cluster, with Chukwa running on each host. Each
node was an EC2 “extra large” (server class) instance.
Chukwa was configured to collect console logs and sys-
tem metrics. In total, this amounted to 60 KB per minute
of monitoring data per node.

Our results are displayed in Figure 3. As can be seen,
the runs with and without Chukwa were virtually indis-

7

 46

 48

 50

 52

 54

Without Chukwa With Chukwa

O
ps

 p
er

 s
ec

Figure 3: Cloudstone benchmark scores (in HTTP re-
quests per second), with and without Chukwa

tinguishable. All of the runs within Chukwa performed
within 3% of the median of non-Chukwa runs. This
shows that the overhead of monitoring using Chukwa is
quite modest. One run each with and without Chukwa
failed, due to a bug in the current Cloudstone implemen-
tation. These have been excluded from Figure 3.

To test overhead with other workloads, we ran a series
of Hadoop jobs, both with and without Chukwa. We used
a completely stock Hadoop configuration, without any
Chukwa-specific configuration. As a result, our results
reflect the experience that a typical system would have
when monitored by Chukwa.

We used a 20-node Hadoop cluster, and ran a series
of random-writer and word-count jobs, included with the
standard Hadoop distribution. These jobs are commonly
used as Hadoop benchmarks and their performance char-
acteristics are well understood [32]. They first produced,
then indexed, 50 GB of random text data. Each pair of
jobs took roughly ten minutes to execute. Chukwa was
configured to collect all Hadoop logs plus standard sys-
tem metrics. This amounted to around 2 KB/sec/node,
and an average of 1296 adaptors per node.

Of this data, roughly two-thirds was task logs, and
most of the rest was Hadoop framework logs. This is in
close accordance with the internal Yahoo! measurements
quoted in [5]. The IO performance of EC2 instances
can vary by a few percent. We used the same instances
throughout to control for this. Another quirk of EC2 is
that nodes are slow to “warm up” – the first disk write to
a block will be much slower than subsequent writes. To
control for this effect, we tested first with Chukwa, then
without, then with again. In each test, we ran six pairs
of random-write and word-count. The results are plot-
ted in Figure 4, with standard-deviation bars around the
mean. The first job, run with Chukwa, was noticeably
slow, presumably due to EC2 disk effects. All subse-
quent sequences of runs appear indistinguishable. Statis-

 400

 450

 500

 550

 600

 650

 700

With Without

D
ur

at
io

n
(s

ec
)

Figure 4: Hadoop job execution times, with and without
Chukwa

tically, our results are consistent with Chukwa imposing
no overhead. They rule out the possibility of Chukwa
imposing more than a 3% penalty on median job com-
pletion time.

We verified this observation statistically. Ignoring the
first anomalous run, only 2 of 11 of the runs with Chukwa
took more than 3% longer than the median for runs with-
out Chukwa. Chukwa imposed a 3% or greater penalty,
the chances of seeing so few chances of observing this
would be slightly over 0.03. (We assume successive runs
are independent, after the initial warmup.) We conclude
that Chukwa, in our configuration, very likely imposes
less than a 3% overhead.

4.2 Fan-in

Our next round of experiments was designed to verify
that Chukwa collectors could handle the data rates and
degree of fan-in expected operationally. Recall that our
goal was to use no more than 5% of a cluster’s resources
for monitoring. Hence, designating 0.5% of machines as
Chukwa collector and storage nodes is reasonable. This
works out to a 200-to-1 fan-in.

We measured the maximum data rate that a single col-
lector could handle with this degree of fan-in by conduct-
ing a series of trials, each using a single collector and 200
agents. In each run, the collector was configured to write
data to a five-node HDFS cluster. After 20 minutes, we
stopped the agents, and examined the received data.

As can be seen in Figure 5, a single collector is able to
handle nearly 30 MB/sec of incoming data, at a fan-in of
200-to-1. However, as the data rate per agent rises above
that point, collector throughput plateaus. The Hadoop
filesystem will attempt to write one copy locally, mean-
ing that in our experimental setup, Collector throughput
is limited by the sequential-write performance of the un-
derlying disk. From past experiments, we know that 30

8

 0

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60 70 80 90

C
ol

le
ct

or
 w

rit
e

ra
te

 (M
B

/s
ec

)

Agent send rate (MB/sec)

Figure 5: Throughput as a function of configured max-
imum send rate, showing that Chukwa can saturate the
underlying filesystem. Fan-in of 200-1.

MB/sec is a typical maximum write rate for HDFS in-
stances on EC2 in our configuration. Chukwa achieves
nearly the maximum possible data rates on our config-
uration. We checked for lost, duplicate, and corrupted
chunks — none were observed.

4.3 Scale
Hadoop and its HDFS file system are robust, mature
projects. Hadoop is routinely used on clusters with thou-
sands of nodes at Yahoo! and elsewhere. HDFS performs
well even with more than a thousand concurrent writers,
e.g. in the Reduce phase of a large distributed sort. [18].

In this section, we show that Chukwa is able to take ad-
vantage of these scaling properties. To do this, we started
Hadoop clusters with a range of sizes, and a Chukwa col-
lector on each Hadoop worker node. We then started
a large number of agents, enough to drive these col-
lectors to saturation, and measured the resulting perfor-
mance. The collectors and HDFS DataNodes (workers)
were hosted on “medium CPU-heavy” instances. The
agent processes ran on “small” instances.

Rather than collect artificial logs, we used the output
from a special adaptor emitting pseudorandom data at
a controlled rate. This adaptor chooses a host-specific
pseudorandom seed, and stores it in each chunk. This al-
lows convenient verification that the data received came
from the expected stream and at the expected offset in
the stream.

Our results are displayed in Figure 6. Aggregate write
bandwidth scales linearly with the number of DataNodes,
and is roughly 10 MB/sec per node — a very substan-
tial volume of log data. This data rate is consistent with
our other experiences using Hadoop on EC2. In this ex-
periment, the Chukwa collection cluster was largely IO-

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

 4 6 8 10 12 14 16 18 20

to
ta

l t
hr

ou
gh

pu
t (

M
B

/s
ec

)

Collectors

Figure 6: Aggregate cluster data collection rate, showing
linear scaling.

bound. Hosts had quite low CPU load and spent most
of their time in the iowait state, blocked pending disk
I/O. Chukwa is saturating the filesystem, supporting our
assertion above that collector processes will seldom be
the bottleneck in a Chukwa deployment.

Recall that our original goal was for Chukwa to con-
sume less than 5% of a cluster’s resources. The ex-
periments presented here demonstrate that we have met
this goal. Assume that monitoring imposes a 3% slow-
down on each host. That would leave 2% of the clus-
ter’s resources for dedicated collection nodes. Given
a thousand-node cluster, this would mean 20 dedicated
Chukwa collectors and a 50-to-1 fan-in. Given the data
rates observed in [5], each collector would only be re-
sponsible for 130 KB/sec; slightly over 1% of our mea-
sured collection capacity on a 20-node HDFS cluster. We
conclude that, given 5% of a cluster’s resources, Chukwa
is able to easily keep up with real-world datacenter log-
ging workloads.

4.4 Failure Tolerance
Fault-tolerance is a key goal for Chukwa. We ran a se-
ries of experiments to demonstrate that Chukwa is able to
tolerate collector failures without data loss or substantial
performance penalty. The configurations in this experi-
ment were the same as described above, with a Chukwa
collector on every HDFS node.

We began by testing Chukwa’s response to the per-
manent failure of a subset of collectors. Our procedure
was as follows: After running a test cluster for 10 min-
utes, we killed two collectors, and then let Chukwa run
for another 10 minutes. We then stopped the agents and
analyzed the results. We repeated this experiment with a
variety of cluster sizes. In each case, all data had been re-
ceived correctly, without missing or corrupted data. Fig-

9

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

32/5
64/5

128/5
128/10

256/10

128/20

256/20

to
ta

l t
hr

ou
gh

pu
t (

M
B

/s
ec

)
Before

After

Figure 7: Performance before and after killing two col-
lectors, showing modest degradation of throughput. La-
bels represent numbers of agents/collectors.

ure 7 plots performance before and after stopping the two
collectors. Having fewer collectors than Datanodes de-
graded performance slightly, by reducing the fraction of
writes that were local to the collector.

We also tested Chukwa’s response to a transient failure
of all collectors. This models what would happen if the
underlying filesystem became unavailable, for instance if
the HDFS Namenode crashed. The HDFS Namenode is
a single point of failure that sometimes crashes, result-
ing in the filesystem being unavailable for a period from
minutes to hours. We began our experiment with 128
agents and 10 collectors running. After five minutes, we
turned off the collectors. Five minutes later, we turned
them on again. We repeated this process two more times.

We plot data received over time in Figure 8. As can be
seen, data transfer resumes automatically once collectors
are restarted. No data was lost during the experiment.
The data rate quickly jumps to 100 MB/sec, which is
consistent with the maximum rates measured above for
clusters of this size.

5 Application Integration

In the previous section, we described some experimen-
tal evidence that Chukwa has low overhead, scales to
large data volumes, and recovers correctly from errors.
In this section, we describe our operational experiences
using Chukwa to monitor various applications. These
case studies will demonstrate that Chukwa can be easily
adapted to a variety of collection scenarios. In the next
section, we will show that it can support a wide variety
of analysis and data processing techniques.

When Chukwa is used to harvest logs from the filesys-
tem, it needs to be told which files to monitor somehow.

 0

 20

 40

 60

 80

 100

 120

05:00
10:00
15:00
20:00
25:00
30:00
35:00
40:00
45:00
50:00

da
ta

 (M
B

/s
ec

)

Figure 8: Data rate over time with intermittent collectors.
Data transfer resumes automatically whenever collectors
are available.

Doing so is the chief challenge in integrating an appli-
cation with Chukwa. We have used Chukwa to monitor
a range of different applications, both in the cloud and
on statically-configured hosts. There are two broad ap-
proaches to configuring Chukwa: statically and dynam-
ically. We give two examples of the former, and one of
the latter. Taken together, these examples will show that
Chukwa is easy to integrate with a wide range of deploy-
ment scenarios.

5.1 Static configuration
Static configuration works well when the log files to be
watched or the metrics to be collected are known in ad-
vance. It works especially well in the cloud. On EC2
and similar environments, all services run in virtual ma-
chines. The configuration of these VM images is often
centralized in a configuration management system. In
our environment, the configurations for Chukwa and the
system being monitored are typically stored in the same
file. This reduces the opportunities for an administrator
to inadvertently misconfigure Chukwa.

Cloudstone, as mentioned above, is a benchmark de-
veloped for comparing the performance of web appli-
cation frameworks and configurations. This involves
a number of separate pieces: web servers, application
servers, databases, workload generators, and so forth.
Each of these generates log files, that have been very use-
ful in tracking down difficulties with the benchmark. The
development team uses Chukwa to collect these files.
Since each file has a fixed name, the simplest approach
to take was to statically configure Chukwa with the name
of each file to monitor.

SCADS, the Scalable Consistency-Adjustable Data
Store, is an ongoing research project aiming to develop a

10

low-latency data store with performance-safe queries [4].
A key component of SCADS is the “Director,” a cen-
tralized controller responsible for making data placement
decisions and for starting and stopping storage nodes in
response to workload. Internally, SCADS uses X-Trace
reports [9] as its data format. The total data volume
varies from 60 to 90 KB/sec of data per node.

The SCADS development team opted to use local
UDP to send the reports to Chukwa. Using TCP would
have meant that SCADS might block, if the Chukwa pro-
cess fell behind and the kernel buffer filled up. Using the
filesystem would have imposed unnecessary disk over-
head. Each X-Trace report fits into a single UDP packet
and in turn is sent through Chukwa as a single Chunk.
This means that the Director will always see complete re-
ports. The price for using UDP is that some kernels will
discard local UDP messages under load. Some data loss
is acceptable in this context, since the Director merely re-
quires a representative sample, rather than every report.
Configuration was straightforward. Each agent was stat-
ically configured to run an adaptor that listens for UDP
messages on the appropriate port. Other adaptors, run-
ning alongside, collect system metrics so that the perfor-
mance of the system can be interpreted.

5.2 Dynamic Configuration

Sometimes, however, the names of the files to be moni-
tored cannot be determined in advance. This is the case
for Hadoop. In addition to the Hadoop framework logs,
each MapReduce task generates its own log files. These
files are created when each task starts and are active only
for the lifetime of the task, often less than a minute. Their
names and locations cannot be determined in advance,
since they include the task ID, which is only selected at
run-time.

Continuing to tail the log from a completed task is
wasteful, since that file will not be written to after the
task completes. Instead, we opted to have Hadoop dy-
namically control the Chukwa agent, starting and stop-
ping adaptors as needed. Fortunately, Hadoop includes
“hooks”, allowing us to insert code that will be run when
tasks start and stop. This code is responsible for starting
and stopping file collection as tasks begin and end. All
communication with Chukwa is handled asynchronously
by a background thread to avoid blocking execution of
Hadoop. If Chukwa is down, this thread is responsible
for retrying.

6 Using the Data

Chukwa supports a variety of uses for data. We discuss
four of these uses here: log warehousing, anomaly de-

tection, graphical display, and adaptive provisioning of
distributed systems.

6.1 Warehousing
Perhaps the simplest use of a log collection system is to
simply archive logs for later ad-hoc inspection. Partic-
ularly in the cloud, leaving logs scattered across a large
number of (virtual) hosts is very inconvenient. In clouds,
hosts are often only used for a short time and then deallo-
cated [3]. If logs are not copied off-node before the host
is deallocated, they will be gone permanently. Hence,
centralized archiving is crucial.

Our lab uses Chukwa for this purpose. Our standard
virtual machine image has Chukwa support included.
A single configuration setting will install and configure
Chukwa agents at boot. System metrics are collected au-
tomatically, as are any user-designated logs. The “clus-
ter” field in the Chukwa metadata is specified by the
user when the cluster is allocated. The archiver job then
groups received data using this field. This means that
results from different users or experimental runs can be
easily distinguished. Agents upload their data to collec-
tors backed by a local Hadoop cluster at our institution.

The system has been very dependable. We have had
no enforced downtime despite using the system to trans-
fer gigabytes per day on average. There have been no
reported complaints about interference with other uses
of the departmental cluster, nor has the presence of reg-
ular CPU-heavy machine learning workloads interfered
visibly with log collection and storage. Our users report
broad satisfaction. For November, the most recent month
before students left for vacation, the average volume of
data collected was half a gigabyte per day.

The Chukwa architecture is a particularly good
fit for monitoring experiments in the cloud. The
agent/collector/processing architecture naturally takes
into account the split between the system-being-analyzed
and the analysis system. The system being monitored,
which can span several hundred nodes, can be deallo-
cated at the end of the experimental run while the moni-
toring data is stored durably on a less-elastic cluster. This
way, data can be analyzed over time, even after the clus-
ter where the logs were generated has been deallocated.

6.2 Machine Learning
As mentioned in the introduction, one of our key goals
was to enable various log analysis techniques that can-
not gracefully tolerate lost data. We give an example of
one such technique here. This illustrates the sort of au-
tomated log analysis Chukwa was intended to facilitate
and shows why unreliable delivery of logs can poison
the analysis.

11

One powerful log analysis technique is to categorize
and count the number of events associated with a par-
ticular object in a system. For instance, on the Hadoop
filesystem, a fixed number of “writing replica” state-
ments should appear for each block. Seeing an unex-
pected or unusual number of events is a symptom of trou-
ble. This analysis technique can be automated: a combi-
nation of static analysis and machine learning is able to
pick out the patterns that indicate true errors from the
normal variation of correct behavior. This technique has
been shown to work effectively in spotting system prob-
lems at large scale [30].

But missing or duplicate log statements can easily
throw off the process. The analysis is unable to differ-
entiate a missing event report from an event that should
have happened, but did not. To conduct their experi-
ments, Xu et al. copied logs to a central point at the
conclusion of each experiment using scp. This would
be unsuitable in production; logs grow continuously and
the technique requires a consistent snapshot to work cor-
rectly. As a result, the largest test results reported for that
work were using 200 nodes running for 48 hours.

In that work, experimental runs needed to be aborted
whenever nodes failed in mid-run. There was no easy
way to compensate for lost data. Copying data off-node
quickly, and storing it durably, would significantly en-
hance the scalability of the approach. Chukwa does
precisely this, and therefore integrating this machine-
learning approach with Chukwa was of practical impor-
tance. (This integration took place after the experiments
described above had already been concluded.)

Adapting this job to interoperate with Chukwa was
straightforward. Much of the processing in this scheme
is done with a MapReduce job. We needed to add only
one component to Chukwa — a custom MapReduce “in-
put format” to hide Chukwa metadata from a MapReduce
job and give the job only the contents of the collected
chunks of log data. Aside from comments and boiler-
plate, this input format took about 30 lines of Java code.
The analysis job required only a one-line change to use
this modified input format.

6.3 Graphical Display

An important motivating use for Chukwa was supply-
ing system performance data for visualization. One tool
that does this is HICC, the Hadoop Infrastructure Care
Center. HICC is a flexible, web-based “portal-style” in-
terface for visualizing system performance data. HICC
was developed as a Chukwa subcomponent, although it
can be (and has been) used independently. HICC can
display traditional system metrics, such as free memory,
cpu load, disk writes per second as well as application-
layer statistics like the number of rack-local Map tasks,

Figure 9: HICC using Mochi to display heatmap: a visu-
alization that required Chukwa.

the number of Hadoop block moves, and so forth. While
existing monitoring systems could be used to collect the
former set of metrics, the latter can only be computed by
inspecting logs, which requires a tool like Chukwa.

HICC can do more than just graph time-series data.
HICC also includes the SALSA state-machine extrac-
tion tool and the Mochi visualization framework, devel-
oped at CMU [25, 26]. SALSA builds a state-machine
model of job execution using information the console
logs from each node. Mochi then displays the results
in various ways. The “heatmap” visualization (Figure 9)
shows which pairs of nodes are exchanging data blocks.
This can only be gleaned from the logs, since it is not
tracked centrally. This visualization provides insight into
whether or not a job is evenly spreading network traffic
across the cluster.

HDFS has high latency for read requests, and there-
fore performs sluggishly on interactive query workloads.
Instead of serving data from HDFS directly, HICC pulls
data from an SQL database. This database is populated
using batch inserts prepared by MapReduce jobs run
against the data collected with Chukwa. This MapRe-
duce job runs every five minutes by default. As a result,
displayed data will be at least five minutes behind real-
time. HICC was designed to support applications like
cluster performance tuning and Hadoop job execution vi-
sualization, where this delay is not problematic.

HICC does not currently require Chukwa’s reliable
delivery guarantees. It does, however, rely on Chukwa
to collect data and make it available for MapReduce
processing. HICC demonstrates that this architecture

12

works effectively to facilitate rapid-turnaround MapRe-
duce processing of logs.

6.4 Adaptive Provisioning
Chukwa was originally targeted at system analysis and
debugging. But it can also be used for applications re-
quiring lower latency in data delivery. One such applica-
tion is adaptively provisioning distributed systems based
on measured workload. Previously, we described config-
uring Chukwa to monitor SCADS, the experimental data
store. Here, we discuss how the data is used. This ex-
ample demonstrates the utility of Chukwa’s “fast path”
delivery model.

Rather than wait for data to be visible in HDFS, the
Director receives updates via fast path delivery. On
boot, the Director connects to each collector, and re-
quests copies of all reports. Once received, the reports
are used to detect which hosts were involved in each read
and write operation, and how long each host took to re-
spond. Using this information, the Director is able to
split up the data stored on an overloaded host, or consol-
idate the data stored on several idle ones.

Using Chukwa in this scenario had a significant ad-
vantages over a custom-built system. While seeing data
immediately is crucial to the Director, having a durable
record for later analysis (potentially with MapReduce) is
very helpful in tuning and debugging. Chukwa supports
both, and can guarantee that all data that appeared once
will eventually be stored.

7 Related Work

The Unix syslogd deamon, developed in the 1980s,
supported cross-network logging [14]. Robustness and
fault-tolerance were not design goals. The original spec-
ification for syslogd called for data to be sent via UDP
and made no provision for reliable transmission. To-
day, syslogd still lacks support for failure recovery,
for throttling its resource consumption, or for recording
metadata. Messages are limited to one kilobyte, incon-
veniently small for structured data.

Splunk [24] is a commercial system for log collection,
indexing and analysis. It relies on a centralized collec-
tion and storage architecture. It does not attempt high
availability, or reliable delivery of log data. However, it
does illustrate the demand in industry for sophisticated
log analysis.

To satisfy this need, many large Internet companies
have built sophisticated tools for large-scale monitoring
and analysis. Log analysis was one of the original mo-
tivating uses of MapReduce, and the associated Sawzall
scripting language [8, 20]. While these frameworks have
been described in the open literature, the details of log

management in enterprise contexts are often shrouded
in secrecy. For instance, little has been published about
Google’s “System Health infrastructure” tools, beyond
mentioning their existence [21].

In the introduction, we mentioned a number of special-
ized log collection systems. Of these, Scribe is the best
documented and has been used at the largest scale. It is
also the only one that is open source, and hence the only
one we can inspect in detail. Scribe is a service for for-
warding and storing monitoring data. The Scribe meta-
data model is much simpler than that of Chukwa: mes-
sages are key-value pairs, with both key and value being
arbitrary byte fields. This has the advantage of flexibility.
It has the disadvantage of requiring any organization us-
ing Scribe to develop its own metadata standard, making
it harder to share code between organizations.

A Scribe deployment consists of one or more Scribe
servers arranged in a directed acyclic graph with a pol-
icy at each node specifying whether to forward or store
incoming messages. In contrast to Chukwa, Scribe is not
designed to interoperate with legacy applications. The
system being monitored must send its messages to Scribe
via the Thrift RPC service. This has the advantage of
avoiding a local disk write in the common case where
messages are delivered without error. It has the disadvan-
tage of requiring auxiliary processes to collect data from
any source that hasn’t been adapted to use Scribe. Col-
lecting log files from a non-Scribe-aware service would
require using an auxiliary process to tail them. In con-
trast, Chukwa handles this case smoothly.

Scribe makes significantly weaker delivery guarantees
than Chukwa. Once data has been handed to a Scribe
server, that server has responsibility for the data. Any
durable buffering for later delivery is the responsibility
of the server, meaning that the failure of a Scribe server
can cause data loss. There can be no end-to-end delivery
guarantees, since the original sender does not retain a
copy. Clients can be configured to try multiple servers
before giving up, but if a client cannot find a working
Scribe server, data will be lost.

Another related system is Artemis, developed at Mi-
crosoft Research to help debug large Dryad clusters [7].
Artemis is designed purely for a debugging context: it
processes logs in situ on the machines where they are
produced, using DryadLINQ [31] as its processing en-
gine. The advantage of this architecture is that it avoids
redundant copying of data across the network, and en-
ables machine resources to be reused between the system
being analyzed and the analysis. The disadvantage is that
queries can give the wrong answer if a node crashes or
becomes temporarily unavailable. Artemis was not de-
signed to use long-term durable storage, which requires
replication off-node. Analysis on-node is also a poor
fit for monitoring production services. Analyzing data

13

where it is produced risks having data analysis jobs in-
terfere with the system being monitored. Chukwa and
Scribe, in contrast are both designed to monitor pro-
duction services and were designed to decouple analysis
from collection.

Chukwa is flexible enough to emulate Artemis if de-
sired, in situations with large data volumes per node. In-
stead of writing across a network, agents could write to
a local Hadoop filesystem process, with replication dis-
abled. Hadoop could still be used for processing, al-
though having only a single copy of each data item re-
duces the efficiency of the task scheduler [19].

There are also a number of more specialized mon-
itoring systems worth mentioning. Tools like Astro-
labe, Pier, and Ganglia [27, 12, 16] are designed to help
users query distributed system monitoring data. In each
case, an agent on each machine being monitored stores
a certain amount of data and participates in answering
queries. They are not designed to collect and store large
volumes of semi-structured log data, nor do they sup-
port a general-purpose programming model. Instead, a
particular data aggregation strategy is built into the sys-
tem.. This helps achieve scalability, at the cost of a cer-
tain amount of generality. In contrast, Chukwa separates
the analysis from the collection, so that each part of a
deployment can be scaled out independently.

8 Conclusion

There is widespread interest in using Hadoop to store and
process log files, as witnessed by the fact that several
systems have been built to do this. Chukwa improves on
these systems in several ways. Rather than having each
part of the monitoring system be responsible for resum-
ing correctly after a failure, we present an end-to-end ap-
proach, minimizing the amount of state that needs to be
stored in the monitoring system. In recovering from fail-
ures, Chukwa takes advantage of local copies of log files,
on the machines where they are generated. This effec-
tively pushes the responsibility for maintaining data out
of the monitoring system, and into the local filesystem on
each machine. This file-centered approach also aids inte-
gration with legacy systems. Chukwa also offers the flex-
ibility to support other data sources, such as syslog or
local IPC. Unlike other log collection systems, Chukwa
facilitates near-real-time processing as well as reliable
storage in a distributed file system.

Chukwa is efficient and practical. It was designed to
be suitable for production environments, with particular
attention to the cloud. Chukwa has been used success-
fully in a range of operational scenarios. It can scale to
large data volumes and imposes only a small overhead
on the system being monitored.

Chukwa is a part of the Hadoop software ecosystem,

and relies on several other Hadoop subprojects. We as-
sume the use of HDFS as a storage layer, MapReduce as
a computation model, and Pig as a high-level data pro-
cessing language. Each of these systems is stable and
has a large user community. These systems will continue
to improve and Chukwa will reap the benefits.

We have shown that Chukwa scales linearly up to 200
MB/sec. If sufficient hardware were available, Chukwa
could almost certainly match or exceed the highest re-
ported cluster-wide logging rate in the literature, 277
MB/sec. [7]. While few of today’s clusters produce re-
motely this much data, we expect that the volume of col-
lected monitoring data will rise over time. A major theme
in computer science research for the last decade has been
the pursuit of ever-larger data sets and of analysis tech-
niques to exploit them effectively [11]. We expect this to
hold true for system monitoring: given a scalable log col-
lection infrastructure, researchers will find more things
worth logging, and better ways of using those logs. For
instance, we expect tracing tools like XTrace and DTrace
to become more common [9, 6]. Chukwa provides the
necessary infrastructure to achieve this at large scale.

Acknowledgments

The students and faculty of the RAD Lab at UC Berkeley
supplied a great deal of feedback and advice. We particu-
larly thank Armando Fox, Matei Zaharia, Archana Gana-
pathi, and Kristal Curtis. Eric Yang and Jerome Boulon
were the two other major contributors to Chukwa. HICC,
described in Section 6.3, is largely their work.

References

[1] Scribe. http://sourceforge.net/ projects/
scribeserver/, 2008.

[2] M. Aharon, G. Barash, I. Cohen, and E. Mordechai.
One graph is worth a thousand logs: Uncovering
hidden structures in massive system event logs. In
European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in
Databases, Bled, Slovenia, September 2009.

[3] M. Armbrust, A. Fox, R. Griffith, A. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, et al. Above the Clouds: A Berkeley
View of Cloud Computing. Technical Report 2009-
28, UC Berkeley, 2009.

[4] M. Armbrust, A. Fox, D. A. Patterson, N. Lanham,
B. Trushkowsky, J. Trutna, and H. Oh. SCADS:
Scale-Independent Storage for Social Computing

14

Applications. In Fourth Conference on Innova-
tive Data Systems Research, Asilomar, CA, January
2009.

[5] J. Boulon, A. Konwinski, R. Qi, A. Rabkin,
E. Yang, and M. Yang. Chukwa, a large-scale mon-
itoring system. In First Workshop on Cloud Com-
puting and its Applications (CCA ’08), Chicago, IL,
2008.

[6] B. Cantrill. Hidden in Plain Sight. ACM Queue,
4(1), 2006.

[7] G. F. Creţu-Ciocârlie, M. Budiu, and M. Gold-
szmidt. Hunting for problems with Artemis. In
First USENIX Workshop on Analysis of System
Logs (WASL ’08), San Diego, CA, December 2008.

[8] J. Dean and S. Ghemawat. MapReduce: Simpli-
fied Data Processing on Large Clusters. Communi-
cations of the ACM, Volume 51(Issue 1):107–113,
2008.

[9] R. Fonseca, G. Porter, R. Katz, S. Shenker, and
I. Stoica. XTrace: A Pervasive Network Tracing
Framework. In 4th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
’07), Cambridge, MA, April 2007.

[10] S. Ghemawat, H. Gobioff, and S. Leung. The
Google file system. 19th Symposium on Operating
Systems Principles (SOSP), 2003.

[11] A. Halevy, P. Norvig, and F. Pereira. The Unreason-
able Effectiveness of Data. IEEE Intelligent Sys-
tems, 24:8–12, 2009.

[12] R. Huebsch, J. Hellerstein, N. Lanham, B. Loo,
S. Shenker, and I. Stoica. Querying the Internet
with PIER. Proceedings of 19th International Con-
ference on Very Large Databases (VLDB), pages
321–332, 2003.

[13] H. Kuang. Revisit appends. https://issues.
apache.org/ jira/browse/ HDFS-265, April 2009.

[14] C. Lonvick. RFC 3164: The BSD syslog Protocol.
http://www.ietf.org/rfc/rfc3164.txt, August 2001.

[15] A. Makanju, A. N. Zincir-Heywood, and E. E. Mil-
ios. Clustering event logs using iterative partition-
ing. In Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, 2009.

[16] M. Massie, B. Chun, and D. Culler. The Gan-
glia Distributed Monitoring System: Design, Im-
plementation, and Experience. Parallel Computing,
30(7):817–840, 2004.

[17] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A not-so-foreign language
for data processing. In Proceedings of the 2008
ACM SIGMOD International Conference on Man-
agement of Data, pages 1099–1110. ACM New
York, NY, USA, 2008.

[18] O. O’Malley and A. C. Murthy. Winning
a 60 Second Dash with a Yellow Elephant.
http://sortbenchmark.org/ Yahoo2009.pdf, April
2009.

[19] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
DeWitt, S. Madden, and M. Stonebraker. A Com-
parison of Approaches to Large-Scale Data Anal-
ysis. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data,
Providence, RI, 2009.

[20] R. Pike, S. Dorward, R. Griesemer, and S. Quin-
lan. Interpreting the Data: Parallel Analysis with
Sawzall. Scientific Programming Journal, Volume
13(Number 4/2005):277–298, 2003.

[21] E. Pinheiro, W. Weber, and L. Barroso. Failure
Trends in a Large Disk Drive Population. In 5th
USENIX Conference on File and Storage Technolo-
gies (FAST ’07), San Jose, CA, 2007.

[22] Rapleaf, inc. The collector. http://blog.rapleaf
.com/dev/?p=34, October 2008.

[23] W. Sobel, S. Subramanyam, A. Sucharitakul,
J. Nguyen, H. Wong, A. Klepchukov, S. Patil,
A. Fox, and D. Patterson. Cloudstone: Multi-
platform, multi-language benchmark and measure-
ment tools for web 2.0. In Cloud Computing and
Applications, 2008.

[24] Splunk Inc. IT Search for Log Manage-
ment, Operations, Security and Compliance.
http://www.splunk.com/, 2009.

[25] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and
P. Narasimhan. SALSA: Analyzing Logs as StAte
Machines. In First USENIX Workshop on Analysis
of System Logs (WASL ’08), San Diego, CA, De-
cember 2008.

[26] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and
P. Narasimhan. Mochi: Visual Log-Analysis Based
Tools for Debugging Hadoop. In Workshop on Hot
Topics in Cloud Computing (HotCloud ’09), San
Diego, CA, June 2009.

[27] R. Van Renesse, K. Birman, and W. Vogels. As-
trolabe: A Robust and Scalable Technology for
Distributed System Monitoring, Management, and
Data Mining. ACM TOCS, 21(2):164–206, 2003.

15

[28] M. Welsh, D. Culler, and E. Brewer. SEDA: An
Architecture for Well-Conditioned, Scalable Inter-
net Services. In 18th Symposium on Operating Sys-
tems Principles (SOSP), 2001.

[29] T. White. Hadoop: The Definitive Guide, pages
439–447. O’Reilly, Sebastopol, CA, 2009.

[30] W. Xu, L. Huang, M. Jordan, D. Patterson, and
A. Fox. Detecting Large-Scale System Problems
by Mining Console Logs. In 22nd ACM Symposium
on Operating Systems Principles (SOSP), 2009.

[31] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Er-
lingsson, P. Gunda, and J. Currey. DryadLINQ: A
system for general-purpose distributed data-parallel
computing using a high-level language. In 8th
USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’08), San Diego, CA,
December 2008.

[32] M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and
I. Stoica. Improving MapReduce Performance in
Heterogeneous Environments. In 8th USENIX Sym-
posium on Operating Systems Design and Imple-
mentation (OSDI ’08), San Diego, CA, December
2008.

16

