
Combined Task and Motion Planning for Mobile

Manipulation

Jason Wolfe
Bhaskara Marthi
Stuart J. Russell

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-27

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-27.html

March 8, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Combined Task and Motion Planning for Mobile Manipulation

Jason Wolfe
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720

jawolfe@cs.berkeley.edu

Bhaskara Marthi
Willow Garage, Inc.

Menlo Park, CA 94025
bhaskara@willowgarage.com

Stuart Russell
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720

russell@cs.berkeley.edu

Abstract

We present a hierarchical planning system and its application
to robotic manipulation. The novel features of the system are:
1) it finds high-quality kinematic solutions to task-level prob-
lems; 2) it takes advantage of subtask-specific irrelevance in-
formation, reusing optimal solutions to state-abstracted sub-
problems across the search space. We briefly describe how
the system handles uncertainty during plan execution, and
present results on discrete problems as well as pick-and-place
tasks for a mobile robot. This is an extended version of a pa-
per by the same name appearing in ICAPS ’10.

1. Introduction
A useful household robot should be able to autonomously
move around and manipulate objects in its environment.
One such task is to tidy up a room by putting away objects in
a set of target regions. In this paper, we assume that the ini-
tial state of the world is known (approximately) and consider
the resulting decision-making problem. The robot must se-
quence the various pick-and-place operations, and decide on
appropriate base positions, specific target locations for each
object, and feasible grasps and corresponding paths through
configuration space for its arms. We specifically consider
optimization problems, where the goal is to find plans that
minimize some measure of total cost (e.g., execution time).

Problems like these present a rich set of challenges. Even
in simple environments, there are geometric constraints that
are difficult to capture symbolically. For example, deciding
where to move the base prior to placing a juice bottle on a
table requires attention to obstacles on the floor and table,
as well as the kinematics of the robot. These problems also
have complex combinatorial structure, and are hard for A*-
based planners (Helmert and Röger 2008). Finally, even spe-
cialized planners for low-level tasks such as arm movement
take tens of milliseconds, strongly limiting the number of
node expansions that can be performed by a forward search
algorithm under real-time constraints.

Traditionally, such problems have been attacked top-
down, separating high-level task planning (e.g., sequencing
pick-and-place operations) from lower-level planning (e.g.,
finding feasible paths for the arm). Task planning is sim-
plified by ignoring low-level details, but the resulting plans
may be inefficient or even infeasible due to missed lower-
level synergies and conflicts. For example, the task planner
might sequence b before a, unaware that a particular way of

doing a leaves the robot in an ideal configuration to follow
with b, or worse, that every way of doing b renders a infea-
sible (e.g., by blocking the only feasible grasp for a).

Our first technical contribution is an alternative method,
described in Section 3, for encoding robotic manipulation
problems as vertically integrated hierarchical task networks
(HTNs). At the bottom of the hierarchy, primitive actions
(e.g., for arm or base movements) are modeled by calling out
to external solvers such as rapidly-exploring random trees
(RRTs). Continuous choices (e.g., grasp angles) are made
finite via sampling. Sensing and robustness to failures are
handled within the primitive actions. Given this encoding,
the optimal plan allowed by the hierarchy can be found by
exhaustive search. This plan will (with high probability) be
a high-quality, guaranteed-feasible kinematic solution.

Our second contribution is the SAHTN algorithm, de-
scribed in Section 4, which uses subtask-specific irrelevance
to speed up this search. For example, the best way to move
the arm to pick up object 23 depends only on the position of
the base, arm, object 23, and nearby objects, and the results
of such planning can be reused every time this subproblem
occurs in the search space. Empirical results, presented in
Section 5, show the effectiveness of the combined system.

2. Related Work
Several recent algorithms integrate information from the
task level into a sampling-based motion planning frame-
work. The configuration space can then be viewed as con-
sisting of regions (one per instantiation of the discrete vari-
ables), connected by lower-dimensional submanifolds. aSy-
Mov (Gravot, Cambon, and Alami 2003) decomposes the
configuration space for manipulation into transit and trans-
fer manifolds, taking advantage of stability constraints for
free objects. Hauser and Latombe (2009) use a geometri-
cally motivated heuristic function to focus sampling on those
subtasks that are likely to be feasible. HYDICE (Plaku,
Kavraki, and Vardi 2009), a hybrid system verification tool,
also uses a heuristic estimate of the likely feasibility of each
subproblem to focus sampling. Our algorithm differs from
these in its focus on optimization, and its use of relevance
information (aSyMov does this to some degree by reusing
roadmaps). An advantage of the above methods is that they
interleave sampling between motion planning subproblems.

Hierarchical planning also has a long history in the
discrete planning literature, and hierarchical task network

BaseAction(p, θ)
Move the base to position p with angle θ. Executed using a
separate system that does its own perception, A* planning, and
obstacle-avoidance. Modeled by calling out to this system’s
planner with a static map, to determine feasibility and estimated
cost.
ArmJointAction(θ)
Move the arm to joint vector θ. Executed using a separate sys-
tem that does its own perception, sampling-based planning, and
obstacle-avoidance. Modeled by calling out to this system’s
planner with a rendered collision map, to determine feasibility
and estimated cost.
ArmGraspAction(p, θ)
Grasp the object near point p from angle θ. Executed by using
the laser range-finder to find the exact position of the object on
a surface nearest to p, and moving the arm into a grasp posi-
tion (computed by inverse kinematics) using the same system
as ArmJointAction. Modeled by assuming that the object
will be exactly at point p.
CloseGripperAction(o)
Close the gripper, to grasp object o. Executed by closing the
gripper (using force-feedback to ensure an object was grasped),
and updating the robot model to include the grasped object.
Modeled by assuming constant cost, and that o becomes at-
tached to the gripper.
OpenGripperAction()
Open the gripper. In execution, updates the robot model. Mod-
eled by assuming constant cost, and that the held object (if any)
ends up on the surface below the gripper.
TorsoAction(h)
Extend the torso to height h. Used when picking or placing, to
work around problems the external arm planner had with con-
tacts. Executed and modeled as expected.

Figure 1: Primitive actions for the pick-and-place domain

(HTN) planners such as SHOP2 (Nau et al. 2003) have been
widely used in practice. The rich geometry of robotic con-
figuration spaces seems difficult to express using standard
discrete representations alone, though, and so these methods
have tended to stay above the motion planning level. More-
over, little work has been done on optimization for HTNs.

Abstracting a problem using a subset of state variables
has also been considered by many researchers. Most work
we are familiar with in the planning literature uses ab-
straction to create a simpler approximation to the problem,
whose solution is then expanded (Sacerdoti 1973) or used
as a heuristic (Culberson and Schaeffer 1996; Holte, Gra-
jkowski, and Tanner 2005; Felzenszwalb and McAllester
2007). For the related problem of learning or deriving an
optimal policy, prior work in the reinforcement learning lit-
erature (Dietterich 2000; Diuk, Strehl, and Littman 2006)
uses an exact abstraction to reduce the size of the value func-
tion or policy representation. Finally, cognitive architectures
such as SOAR (Laird, Newell, and Rosenbloom 1987) use
explanation-based learning to avoid deliberating about the
same subproblem twice; however, these systems do not do
optimal planning, and are not explicitly hierarchical.

3. Pick-and-Place Domain and Hierarchy
We consider a pick-and-place domain for a mobile robot
with arm(s), where the environment consists of objects
(juice bottles) on various surfaces. The robot’s task is to

move all objects to their goal regions, as quickly as possible.
States for this problem consist of a robot joint configu-

ration, along with, for each object, a description of its ge-
ometry, current position, and relation to other objects (e.g.,
bottle1 on table1).

The primitive actions in this domain move a specific part
of the robot (base, torso, arm, or gripper) to a target joint
configuration. One additional action moves the arm into a
grasp configuration given the approximate location of a tar-
get object and a grasp angle (this action is represented as
primitive because it involves perceptual feedback from the
laser scanner, and our planner assumes full observability).

For each primitive action, we require a transition model
that takes in a state and returns the successor state and action
cost (or failure). The complex geometric constraints in the
environment make it difficult to use declarative representa-
tions such as PDDL directly. Instead, the transition models
are procedural, and call out to external planners. For ex-
ample, ArmJointAction is implemented by a sampling-
based motion planner (Rusu et al. 2009), using a collision
map rendered from the current state. Action costs are set
based on the estimated time required. For example, the cost
of ArmJointAction is the length of the returned path,
multiplied by a weighting constant. See Figure 1 for detailed
descriptions of the primitive actions.

In addition to an initial state and transition model, our
planning algorithm also takes a action hierarchy as input.
This hierarchy specifies 1) a finite set of high-level actions
(HLAs), including a distinguished top-level action Act; and
2) for each HLA and state, a set of immediate refinements
into finite sequences of (possibly high-level) actions.

Such a hierarchy both structures and potentially restricts
the space of solutions. In particular, rather than searching
directly over primitive action sequences, an agent can begin
with a plan consisting of just Act, and repeatedly replace
the first non-primitive action in this plan with an immediate
refinement until a primitive solution is found. We assume
WLOG that the hierarchy does not generate primitive non-
solutions. This can always be achieved, e.g., by ending each
plan with a Goal HLA that has zero refinements from non-
goal states and an empty refinement from goal states.

Concretely, we use the following hierarchy. Act has re-
cursive refinements MoveToGoal(o),Act ranging over all
objects o that are not yet in their goal positions, or just the
empty refinement if this set is empty. MoveToGoal(o) re-
fines in turn to GoPick(o),GoPlace(o, p), ranging over
positions p in the goal region of o. Both of these HLAs refine
to ArmTuck,BaseRgn(r) if needed (where r is a region
around the target), followed by Pick(o) or Place(o, p).
Pick and Place further refine to choose a grasp/drop an-
gle, and then generate the appropriate sequence of arm,
torso, and gripper primitives to effect the appropriate pick
or place operation. See Figure 2 for a more detailed descrip-
tion of the hierarchy.

As with the primitive transition models, we allow the set
of refinements of an HLA to be generated by arbitrary code.
This allows, e.g., GoPick to compute a candidate base re-
gion for the grasp, and Place to use inverse kinematics to
generate valid arm joint configurations for the drop. One
complication that arises in hybrid domains is that the set of
refinements of a high level action may be (uncountably) in-

HLA Refinements
Act [MoveToGoal(o), Act] | o not at goal

[] | all objects at goals
MoveToGoal(o) [GoPick(o), GoPlace(o, p)]

| p in goal region of o
GoPick(o) [Pick(o)] | o in range

[ArmTuck,BaseRgn(r),Pick(o)]
| r is candidate base region

Pick(o) [ArmGraspAction(pos(o), θ),
CloseGripperAction(o),
TorsoAction(up)] | θ ∈ [−1, 1] rad

GoPlace(o, p) [Place(o, p)] | p in range
[ArmTuck,BaseRgn(r),Place(o, p)]

| r is candidate base region
Place(o, p) [ArmJointAction(θ1),

TorsoAction(down),
OpenGripperAction,
ArmJointAction(θ2)]
| θ are candidate joint configs

ArmTuck [ArmJointAction(tucked)]
BaseRgn(r) [BaseAction(p, θ)] | p, θ ∈ r

Figure 2: High-level actions (HLAs) for the pick-and-place domain

finite. For example, the BaseRgn(r) action has one refine-
ment BaseAction(p) for each point p in region r. We
make the search space finite by having each such HLA gen-
erate a random sample of pre-specified size from its infinite
set of refinements. The same random bits are used across in-
vocations of an HLA, which produces a “graphy” reachable
state space that provides more opportunities for caching. For
instance, each time we consider Placeing a particular ob-
ject we will generate the same candidate target positions.

Note that hierarchical constraints may rule out all opti-
mal solutions; for instance, our hierarchy does not allow
putting an object down in an intermediate location. A plan
is called hierarchically optimal if has minimal cost among
all plans generated by the hierarchy. Moreover, let N be the
minimum number of samples used when discretizing the re-
finements of an HLA (or calling a sampling-based primitive
planner). A planning algorithm is hierarchically resolution-
optimal if, as N → ∞, the cost of the returned plan con-
verges almost surely to the hierarchically optimal cost. Fi-
nally, define the reachable state space under a hierarchy as
the set of all states visited by any primitive refinement of
Act. In this paper, we assume that the reachable state space
is always finite, and restrict our attention to hierarchically
(resolution-) optimal planning algorithms.

4. SAHTN Algorithm
This section presents the State-Abstracted Hierarchical Task
Network (SAHTN) algorithm. It takes in a domain descrip-
tion, action hierarchy, and a RELEVANT-VARS function spec-
ifying which state variables matter for doing an action from
some state. The output is a hierarchically optimal solution.

As a stepping stone towards describing SAHTN, we first
present a simple exhaustive, hierarchically optimal HTN al-
gorithm (see Figure 1). The top-level SOLVE function takes
an initial state, and returns a hierarchically optimal solution
(or failure). RESULTS-A and RESULTS-P take an initial
state and action or plan, and return a map from each state
reachable by (some refinement of) the given action or plan
to a tuple containing an optimal primitive refinement that

Algorithm 1 : Optimal HTN algorithm for acyclic problems
/* s is a state, a is an action, p is a plan (action sequence), and
* c is its corresponding cost. The MERGE function merges maps,
* retaining the minimum-cost entry for each reachable state. */

function SOLVE(s)
return the plan associated with the min-cost state

in RESULTS-A(s,Act), or failure if empty

function RESULTS-A(s, a)
if a is high-level then

return MERGE({RESULTS-P(s, ref) |
ref ∈ REFINEMENTS(a, s)})

else if ¬APPLICABLE(s, a) then return { }
else return {SUCCESSOR(s, a) : [COST(s, a), [a]]}

function RESULTS-P(s, p)
output← {s : [0, []]}
for each a′ in p do

output← MERGE({BOOKKEEP-A(s′, a′, c′, p′) |
s′ : [c′, p′] ∈ output})

return output

function BOOKKEEP-A(s, a, c, p)
output← {}
for each s′ : [c′, p′] ∈ RESULTS-A(s, a) do

output[s′]← [c+ c′, p+ p′]

return output

Algorithm 2 : Changes to Algorithm 1 for SAHTN algorithm
function BOOKKEEP-A(s, a, c, p)

relevant← RELEVANT-VARS(s, a)
if cache has no entry for [srelevant, a] then

cache[srelevant, a]← RESULTS-A(s, a)

output← {}
for each s′ : [c′, p′] ∈ cache[srelevant, a] do

output[srelevant + s′
relevant]← [c+ c′, p+ p′]

return output

reaches this state and its cost (cf. the exact valuations of
Marthi, Russell, and Wolfe (2008)). In particular, RESULTS-
A returns the single outcome state for a primitive action, or
the best cost and plan to each reachable state (over all refine-
ments) for a high-level action. RESULTS-P computes the re-
sult for an action sequence by progressing through each ac-
tion in turn. Finally, BOOKKEEP-A simply calls RESULTS-
A, with some extra bookkeeping to sum optimal costs and
concatenate optimal plans along action sequences.

SAHTN (see Algorithm 2) makes this into a dynamic pro-
gramming algorithm by adding state-abstracted caching to
the BOOKKEEP-A function. We assume a global cache of
the results of each call to RESULTS-A(s, a), keyed by a and
the values of state variables in s that are relevant to a from s.
Then, in a later call to RESULTS-A(s′, a) where s′ has the
same relevant variable values as s, we simply look up the
cached result and combine it with the irrelevant variables of
s′ to produce the output mapping. For this output to be cor-
rect, it is crucial that RELEVANT-VARS(s, a) truly captures
all aspects of state s that are relevant to doing action a:
Definition 1. A state variable v is relevant to action a from
state s, iff (1) the set of primitive refinements of a from s
depends on v, or (2) any primitive refinement of a from s
conditions on, sets, or has cost dependent on the value of v.

For example, the only variables relevant to

Algorithm 3 : Changes to Algorithm 2 for cyclic hierarchies
function RESULTS-A(s, a)

if a is high-level then
if CYCLE-ID(s, a) 6= null then return DIJKSTRA(s, a)
else return MERGE({RESULTS-P(s, ref) |

ref ∈ REFINEMENTS(a, s)})
else if ¬APPLICABLE(s, a) then return { }
else return {SUCCESSOR(s, a) : [COST(s, a), [a]]}

function DIJKSTRA(s, a)
q ← a priority queue on (state, plan) pairs, ordered by

cost to state, which ignores re-adds with ≥ cost,
initially containing only (s, [a]).

output← {}
while q is not empty do

(s′, p′)←REMOVE-MIN(q)
if p′ is empty then

output[s′]← [c, p], where p is best plan to s′

from s, and c is its cost
else

p′
first, p

′
rest ← first, remaining actions in p′

if CYCLE-ID(s′, p′
first) = CYCLE-ID(s, a) then

for each ref in REFINEMENTS(p′
first, s

′) do
add (s′, ref + p′

rest) to q
else

for each s′′ : [c, p] ∈ RESULTS-A(s′, p′
first) do

add (s′′, p′
rest) to q

return output

BaseAction(p) are the the current base position,
and the positions of objects that are potential obstacles.1

Before stating the correctness of SAHTN, there is one
more issue that must be made concrete. As described, the
algorithm will loop forever in cyclic hierarchies; we first de-
fine this condition, and later discuss how it can be relaxed.
Definition 2. Call pair (s′, a′) a subproblem of (s, a) iff
there exists a refinement r of a from s and integer i s.t.
s′ = SUCCESSOR(s, r1:i−1) and a′ = ri. A hierarchy is
cyclic from initial state s iff there exists any subproblem of
(s,Act) that has itself as a subproblem.

Equivalently, a hierarchy is cyclic if SAHTN ever recur-
sively calls RESULTS-A(s, a) when RESULTS-A(s, a) is al-
ready on the call stack. Note that an acyclic hierarchy may
include recursive HLAs. For instance, while the Act HLA
for our pick-and-place domain is recursive, the hierarchy is
not cyclic because in every recursive application of Act, one
more object will have been placed in its goal position.
Theorem 1. Given an acyclic hierarchy, correct RELEVANT-
VARS function, and finite reachable state space, SAHTN will
always return a hierarchically optimal solution.2

The acyclic requirement can rule out some natural hier-
archies. For instance, consider a Nav(x, y) HLA in a grid-
world domain, which refines to the empty sequence iff at
(x, y), and otherwise to a primitive move action followed by

1With appropriate changes to the algorithm, more gen-
eral notions of relevance can be considered as well. For in-
stance, in a multi-robot problem one could share results between
MoveToGoal(robot1, o) and MoveToGoal(robot2, o) for inter-
changeable robots with identical starting configurations.

2See Appendix A for proof.

a recursive Nav(x, y). In this case, the refinement Left,
Right, Nav(x, y) leads to a cycle in the above sense. For-
tunately, a simple change to SAHTN can extend Theorem 1
to such cases. The basic idea is to add a case to RESULTS-
A: if (s, a) potentially leads to a cycle, instead of recursively
decomposing run Dijkstra’s algorithm locally over the space
of potential cycles, switching back to recursive computation
for (s′, a′) pairs that can not cycle back to (s, a).

Algorithm 3 shows changes to SAHTN that implement
this extension. We assume that the function CYCLE-ID(s, a)
returns the same (arbitrary) identifier for every (s, a) pair in-
volved in a given cycle, or null if (s, a) cannot cycle. In the
above example, it might return “Nav” if a is a Nav and null
otherwise. Now, Algorithm 3 modifies RESULTS-A(s, a)
so that whenever it encounters an (s, a) pair with non-null
cycle ID, it calls the new function DIJKSTRA(s, a) rather
than decomposing as usual. This new function does a Dijk-
stra search over (state, plan) pairs, where state is the re-
sult of doing a (primitive) prefix of a refinement of a from
s, and plan is the remaining (possibly high-level) actions in
this refinement. To compute the successors of a pair, we ei-
ther (1) progress state through the first action in plan using
RESULTS-A, if this computation is not part of the current
cycle, or otherwise (2) refine the first action in plan. (Note
that primitive actions cannot lead to cycles, and will always
fall in the first category). Finally, when plan is empty we
have found an optimal primitive refinement of a to a new
state, and we add this to the output. (Bookkeeping code
that keeps track of the best plan to each state is not shown.)

Because each (state, plan) pair can be dequeued at most
once, DIJKSTRA(s, a) is guaranteed to terminate (with the
correct results) as long as the set of potential plans is fi-
nite. This is always true as long as the hierarchy obeys cer-
tain natural conditions (e.g., in recursive refinements, the re-
cursive HLA is always the last action). The cost of using
DIJKSTRA(s, a) to avoid cycles is that some intermediate
computations within the cycle are not cached. For instance,
when computing the results of Nav(2, 2) from (1, 1), these
results are cached but the results of Nav(2, 2) from (1, 2)
(an implicit intermediate computation) are not.

5. Results
We now present comparisons of SAHTN with three other
search algorithms. Uniform-cost search (UCS) searches for-
ward from the initial state, without using a hierarchy. Hier-
archical UCS (H-UCS) searches in a space where each node
consists of the state arising from the primitive prefix of a
plan, together with the remaining actions in the plan. N-
SAHTN is the SAHTN algorithm with no state abstraction.

We first present results on a version of the taxi domain,
a benchmark commonly used in the reinforcement learning
literature (Dietterich 2000). Taxi problems consist of a taxi
in a grid world, and passengers with randomly chosen source
and destination squares. The taxi must pick up and drop off
the passengers, one at a time. On such problems (see Fig-
ure 3), SAHTN (with the Dijkstra modification mentioned
above) clearly scales much better than other algorithms as
the number of passengers increases, due to decoupling of
navigation decisions from high-level sequencing of passen-
gers. All algorithms are primitive-optimal in this domain.

 1

 10

 100

 1000

 2 4 6 8 10 12

ru
n
ti
m

e
 (

s
)

of passengers

50x50 taxi problems

H-UCS
N-SAHTN

UCS
SAHTN

Figure 3: Runtimes for algorithms on 50x50 taxi problems, as a
function of the number of passengers. Larger problems were not
solvable by any algorithm but SAHTN within 512MB of memory.

 10

 100

 1 2 3 4 5 6

ru
n
ti
m

e
 (

s
)

of objects to move

robotic pick-and-place problems

H-UCS
N-SAHTN

SAHTN

Figure 4: Runtimes (averaged over three runs) for three algorithms
on pick-and-place tasks, as a function of the number of objects to
be moved. Larger problems were not solvable by any algorithm
except SAHTN within 10 min. Two runs where unlucky sampling
led to no solutions being found were discarded and rerun.

We next evaluated our algorithms on the full pick-and-
place domain, using a prototype PR2 robot constructed by
Willow Garage, Inc (Wyrobek et al. 2008). The robot has
a wheeled base and two 7-dof arms (including 1-dof grip-
per). Figure 4 shows results on single-arm pick-and-place
tasks with two tables and randomly placed objects and goal
regions, for increasing numbers of objects. There is no obvi-
ous way to apply uniform-cost search to these problems, so
we compare the three other algorithms (all of which take ad-
vantage of our hierarchical problem formulation), using the
same sampling settings. We again see significant improve-
ment in runtime from state abstraction in SAHTN, increas-
ing as the number of objects grows. SAHTN’s performance
is initially dominated by the polynomially many primitive
action applications it must make, although eventually the
exponential cost of the top-level traveling salesman problem
will take over.

We also implemented, for each primitive action, a func-
tion to execute it on the PR2. The execution primitives were
responsible for implementing perceptual feedback and re-
turning a success flag, which was used to implement a sim-
ple executive that retried failed actions. A video of the PR2
executing a 4-object plan is available online.3

3Supplemental materials are available online at http://
www.ros.org/wiki/Papers/ICAPS2010_Wolfe

6. Conclusion
We view this work as a proof-of-concept that task-level plan-
ning can be successfully extended all the way to the kine-
matic level, to generate robust and high-quality plans. To
help reduce computation times for larger tasks, future work
will examine extensions of SAHTN that can use available
heuristic information, and perhaps approximate models for
the HLAs and primitives (Marthi, Russell, and Wolfe 2008),
to guide search and reduce calls to external solvers. Another
important improvement will be incremental, adaptive search
algorithms that better manage the tradeoff between compu-
tational cost and plan quality.

References
Culberson, J. C., and Schaeffer, J. 1996. Searching with Pattern
Databases. In Advances in Artificial Intelligence (Lecture Notes
in Artificial Intelligence 1081, 402–416.
Dietterich, T. G. 2000. Hierarchical Reinforcement Learning with
the MAXQ Value Function Decomposition. JAIR 13:227–303.
Diuk, C.; Strehl, A. L.; and Littman, M. L. 2006. A Hierarchical
Approach to Efficient Reinforcement Learning in Deterministic
Domains. In AAMAS, 313–319.
Felzenszwalb, P. F., and McAllester, D. 2007. The Generalized
A* Architecture. J. Artif. Int. Res. 29(1):153–190.
Gravot, F.; Cambon, S.; and Alami, R. 2003. aSyMov: A Planner
That Deals with Intricate Symbolic and Geometric Problems. In
ISRR, 100–110.
Hauser, K., and Latombe, J. C. 2009. Integrating Task and PRM
Motion Planning. In Workshop on Bridging the Gap between Task
and Motion Planning, ICAPS 2009.
Helmert, M., and Röger, G. 2008. How Good is Almost Perfect?
In AAAI, 944–949.
Holte, R. C.; Grajkowski, J.; and Tanner, B. 2005. Hierarchical
Heuristic Search Revisited. In SARA, 121–133.
Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987. SOAR: an
Architecture for General Intelligence. Artif. Intell. 33(1):1–64.
Marthi, B.; Russell, S. J.; and Wolfe, J. 2008. Angelic Hierarchi-
cal Planning: Optimal and Online Algorithms. In ICAPS.
Nau, D.; Au, T. C.; Ilghami, O.; Kuter, U.; Murdock, W. J.; Wu,
D.; and Yaman, F. 2003. SHOP2: An HTN planning system.
JAIR 20:379–404.
Plaku, E.; Kavraki, L. E.; and Vardi, M. Y. 2009. Hybrid
systems: from verification to falsification by combining motion
planning and discrete search. Formal Methods in System Design
34(2):157–182.
Rusu, R. B.; Şucan, I. A.; Gerkey, B.; Chitta, S.; Beetz, M.; and
Kavraki, L. E. 2009. Real-time perception guided motion plan-
ning for a personal robot. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, 4245–4252.
Sacerdoti, E. D. 1973. Planning in a Hierarchy of Abstraction
Spaces. In IJCAI, 412–422.
Wyrobek, K. A.; Berger, E. H.; der Loos, H. F. M. V.; and Sal-
isbury, J. K. 2008. Towards a personal robotics development
platform: Rationale and design of an intrinsically safe personal
robot. In ICRA, 2165–2170.

Appendix A. Proof of Theorem 1
We will first prove the correctness of SAHTN without state abstrac-
tion, i.e., when RELEVANT-VARS(s,a) always returns all variables
in s, and then show how adding correct state abstraction does not
affect the proof.

Lemma 1. Given an acyclic hierarchy, RELEVANT-VARS function
that always returns the set of all state variables, and finite reachable
state space, SAHTN will always return a hierarchically optimal so-
lution.

Proof. First, note that RESULTS-A(s, a) can be called at most
once for each (s, a) pair. After the first call to RESULTS-
A(s, a) returns, BOOKKEEP-A will cache the results and never call
RESULTS-A(s, a) again. Thus, the only way RESULTS-A(s, a)
could be called twice would be if the second call was made recur-
sively inside the first call; however, this situation is precluded by
the requirement that the hierarchy is acyclic.

Now, since RESULTS-A(s, a) can be called at most once for
each (s, a) pair, and the set of reachable states s and possible HLAs
a are both finite, RESULTS-A can only be called a finite number of
times, and SAHTN must terminate.

It remains to show that when SAHTN does terminate, it always
returns a hierarchically optimal solution (when one exists). We
do this by proving by induction that RESULTS-A(s, a) is correct
(e.g., always returns a map whose keys are those states reachable
by some primitive refinement of a from s, and whose values are
the associated optimal costs and corresponding primitive refine-
ments.) In particular, we use structural induction over recursive
calls to RESULTS-A(s, a) (or cached results thereof), which must
form a finite partial order as argued above.

The base case is when a is primitive. In this case a is its own
sole primitive refinement, and RESULTS-A(s, a) correctly outputs
the empty map if a is not applicable to s, and otherwise a map
containing the single successor of s on a, with cost equal to the
cost of this transition and optimal primitive refinement [a].

For the inductive case where a is high-level, we assume that
all immediate recursive calls (including cached calls) made to
RESULTS-A(s′, a′) within a call to RESULTS-A(s, a) terminate
with the correct result. First, note that this entails that RESULTS-
P(s, p) returns the correct result for each immediate refinement of
a from s. This follows from the observation that each optimal prim-
itive refinement of a sequence of actions is a concatenation of opti-
mal primitive refinements of its component actions. Now, since the
set of primitive refinements of a from s is precisely the union of
the sets of primitive refinements of the immediate refinements of a
from s, the call to RESULTS-A(s, a) is correct.

Thus, by induction, the top-level call to RESULTS-A(s,Act) is
correct, and so SOLVE(s) will always return an optimal solution.

Theorem 1 (reprise). Given an acyclic hierarchy, correct
RELEVANT-VARS function, and finite reachable state space,
SAHTN will always return a hierarchically optimal solution.

Proof. Add to the induction of Lemma 1, showing that the output
of BOOKKEEP-A(s, a, c, p) is unchanged by adding state abstrac-
tion, i.e., when RELEVANT-VARS(s, a) is an arbitrary function that
respects Definition 1. Note that the recursive structure for the in-
duction may change, but will remain a valid partial order.

In a particular call to BOOKKEEP-A(s, a, c, p), there are two
cases. First, if cache had no entry for [srelevant, a], everything is
the same as with no state abstraction as long as RESULTS-A(s, a)
does not modify any variables outside of RELEVANT-VARS(s, a),
which it cannot by Definition 1. Second, if cache does have
an entry, it contains RESULTS-A(s′, a) from a previous call
to BOOKKEEP-A(s′, a, c′, p′) where s and s′ share the same

relevant variables and values. We require that these results
are identical to RESULTS-A(s, a), except for values outside of
RELEVANT-VARS(s, a). To show this, we simply note that by Def-
inition 1 the sets of primitive refinements of a from s and s′ must
be identical, each such refinement cannot test or set the irrelevant
variables of s or s′, and thus each such refinement must have the
same effects on the (identical) relevant variables of s and s′.

