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Abstract. We present monitor algorithms that can detect the presence
of program executions that violate sequential consistency under the re-
laxed memory models TSO (Total Store Order) and PSO (Partial Store
Order) by examining only the sequentially-consistent executions of a pro-
gram. Our algorithms are sound and complete—if a program can exhibit
a sequential consistency violation under TSO or PSO, the corresponding
monitor algorithm can detect it on some sequentially-consistent execu-
tion. The monitor algorithms arise naturally from the operational se-
mantics of these relaxed memory models, highlighting an advantage of
viewing relaxed memory models operationally rather than axiomatically.
We apply our algorithms to several concurrent data structures and syn-
chronization primitives, identifying a number of violations of sequential
consistency.

1 Introduction

Programmers writing concurrent software often assume that the underlying
memory model is sequentially consistent. That is, that programs will behave as if
the executed operations of each thread were interleaved in a single and total se-
quential order. However, sequential consistency strongly constrains the ordering
of memory operations, which can make it difficult to achieve high performance
in commodity microprocessors [5, 12]. Thus, to enable increased concurrency and
performance, processors often provide a relaxed memory model. For example, a
processor may delay a store relative to subsequent loads. Unfortunately, working
with relaxed memory models often requires subtle and difficult reasoning [5, 12].

Nevertheless, developers of high-performance concurrent programs, such as
lock-free data-structures and synchronization libraries, often use regular load and
store operations and atomic compare-and-swap-like primitives instead of locks to
increase performance. Due to the absence of locks, such implementations have
inherent data races and are prone to bugs resulting from the use of relaxed
memory models. Bugs due to concurrency and data races are notoriously hard
to detect and debug; relaxed memory models make the situation even worse.

Recently, Burckhardt and Musuvathi [3] have argued that programmers, de-
spite using ad-hoc synchronization, expect their program to be sequentially con-
sistent. Therefore, in order to find memory model bugs, it is often sufficient
to detect violations of sequential consistency (SC). They proposed an elegant
run-time monitoring based approach, called SOBER, to detect SC violations.
A key observation made in this work is that for the total store-order (TSO)



memory model if a program execution violates sequential consistency (SC), then
there exists a sequentially consistent execution of the program on which run-time
monitoring will report a violation of SC. Therefore, if run-time monitoring is per-
formed along with a traditional model checker, which explores all sequentially
consistent executions (more specifically, partial-orders) of the program, then all
violations of sequential consistency under TSO can be detected. SOBER uses
axiomatic semantics of SC and TSO to derive the monitoring algorithm.

In this paper, we propose novel run-time monitoring algorithms for two
SPARC [13] memory models: total-store order (TSO) and partial-store order
(PSO). TSO allows to delay a store relative to subsequent loads on a processor.
The operational model of TSO uses a store buffer for each processor. PSO ad-
ditionally allows to delay stores relative to other stores to different addresses on
the same processor. The operational model of PSO is implemented by using a
separate buffer for each address per processor.

A key highlight of our run-time monitoring algorithm is that we use opera-
tional semantics [10] of TSO and PSO instead of using their axiomatic semantics.
Specifically, we consider a sequentially consistent execution of the program and
simulate the execution on the operational model of TSO and PSO by buffer-
ing stores as long as they generate the same trace as the SC execution. At the
time of simulation of the execution, we also check if the sequential consistency
of the execution could be violated by delaying the commit of a pending store
in the buffer beyond a subsequent load or store. If such a SC violation is ob-
served, then we report it. We prove the soundness of our algorithms, i.e. if our
TSO monitoring algorithm (resp. PSO monitoring algorithm) detects a SC vi-
olation, then there exists an execution of the program under TSO (resp. PSO)
that violates sequential consistency. We also prove the completeness of our algo-
rithms, i.e. if a program has an execution under TSO (resp. PSO) that violates
sequential consistency, then there exists a sequentially consistent execution of
the program on which our TSO monitoring algorithm (resp. PSO monitoring
algorithm) will detect a SC violation. We show that the complexity of our algo-
rithm is O(|Proc|.|E|), where |E| is the length of the SC trace being monitored
and Proc is the set of processors involved in the execution. This complexity is
an improvement over the runtime complexity O(|Proc|2.|E|) of the SOBER al-
gorithm. We have implemented our monitoring algorithms for C programs in a
prototype tool and applied it to two mutual exclusion algorithms and several
concurrent data structures. Our experiments show that our monitors can detect
sequential consistency violations in these benchmarks.

Note that a monitoring algorithm based on axiomatic semantics requires the
design of vector clocks for each relaxed memory model in addition to the standard
vector clocks to track traditional happens-before relation. In contrast, we do not
need to design a vector clock algorithm for each relaxed memory model—we use
the operational model directly to find SC violations. As such our algorithm is
fundamentally different from SOBER [3]. We also illustrate (in Section 4) that
we can find sequential consistency violations in TSO executions that SOBER
cannot detect because SOBER uses a definition of the TSO memory model that
is more restrictive than the standard one [13].



Other Related Work. There have been a number of efforts to verify and model
check concurrent programs on relaxed memory models [5, 12, 8, 14, 2, 9]. Some of
these techniques [8, 14, 2] encode a program as well as the axiomatic semantics
of the underlying memory model as a constraint system and use a constraint
solver to find bugs. Other techniques [5, 12, 9] explicitly explore the state space
of a program to find bugs.

Recently, Flanagan and Freund proposed to use an adversarial memory to
discover at run-time if a data race in a Java program could be harmful under
Java’s relaxed memory model [6]. For a read operation involved in a data race,
the technique checks if there exists a different return value allowed by the Java
Memory Model, that would cause the program to exhibit a bug.

2 Problem Formulation

In this section, we formally define the problem of monitoring sequentially-
consistent executions to detect violations of sequential consistency in executions
under relaxed memory models.

2.1 Memory Traces

A memory trace (or simply a trace) is a record of the memory operations issued
by some collection of processors to an underlying memory model. A trace can
be thought of as a set of memory operations, called events.

Following [3] and [4], we formally define a trace to be a tuple E =
(I,R,W,L, src, c), where:

– I ⊆ l × Proc × Adr × N is the set of events, where l is a set of instruction
identifiers, Proc = {1, . . . , P} is a set of processor identifiers, Adr is a set of
memory addresses, and N is the set of natural numbers. An element (l, p, a, i)
in I denotes that the ith memory operation issued by instruction labeled l
by processor p accesses (e.g. reads or writes) memory location a.

– R ⊆ I is the set of all events that read from memory.
– W ⊆ I is the set of all events that write to memory.
– L ⊆ I is the set of all interlocked events1.
– src is a partial function R ⇀ W . We write src(e) = ⊥ to indicate that src is

not defined for some event e ∈ R.
– c ⊆ W × W is a relation such that: (1) for each address a ∈ Adr, c is a

total order on the writes of a, and (2) c does not relate writes to different
addresses.

Further, to be a trace E must satisfy the following requirements:

1. I = R ∪ W and L = R ∩ W .
2. If (l, p, a, i) is present in I, then for each 1 ≤ j < i, an event of the form

(l′, p, a′, j) must also be present in I.
3. In a trace, if r is in R and src(r) is defined, then src(r) must be in W .

1 An interlocked operation [3] can be used to model compare-and-swap and fences.



For each event e ∈ I, we define projection functions l, p, a, and i that return
the instruction id, processor id, address, and issue index, respectively, of e.

For a trace, function src models the flow of values from store events to load
events. That is, src(e) = e′ models that load e reads from the memory the value
written by store e′.

Similarly, the relation c models the total order in which the stores on any
given address a ∈ Adr become globally visible. Thus, when (e, e′) ∈ c for
e, e′ ∈ W with a(e) = a(e′), we say that store e commits before store e′. Not
all relaxed memory models guarantee the existence of such a global, total or-
dering on the writes to an address. The TSO and PSO models, however, do
guarante the existence of such an ordering, justifying the use of this formalism
and terminology.2

We also define a restriction of a trace:

Definition 1. Let E = (I,R,W,L, src, c) be a trace and let I ′ ⊆ I. The restric-
tion of E to I ′ is the tuple E |I′= (I ′, R′,W ′, L′, src′, c′), where R′ = R ∩ I ′,
W ′ = W ∩ I ′, L′ = L ∩ I ′, c′ = c ∩ (W ′ ×W ′) and src′ is the restriction of src
to the domain R′.

2.2 Operational Memory Models

In this section, we give operational semantics for three memory models: sequen-
tial consistency (SC) and relaxed memory models TSO and PSO.

We describe a memory model MM operationally as an automaton which
outputs tuples (I,R,W,L, src, c). An automaton for memory model MM has
labeled transitions loadMM(l, p, a), storeMM(l, p, a), interlockedMM(l, p, a),
storec

MM(p), and storec
MM(p, a), parameterized by instruction identifiers l, pro-

cessor identifiers p, and addresses a.

Definition 2. We say that a trace E is a trace under memory model MM
when there exists a run of the automaton for MM that outputs E.

Definition 3. In particular, a trace E is sequentially consistent if there ex-
ists a run of SC that outputs E.

We think of the transitions loadMM(l, p, a), storeMM(l, p, a), inter-
lockedMM(l, p, a) as input transitions, which are called by processor p to is-
sue a load, store, or interlocked operation. In this view, storec

MM is an internal
transition taken by MM when it chooses to commit a store.

Note that we have abstracted out the actual values written to and read from
memory. The src function in the output tuple (I,R,W,L, src, c) captures from
which write each read gets its value.

We now formally describe our operational models for sequential consistency
(SC), Total Store Order (TSO), and Partial Store Order (PSO), given in Fig-
ures 1, 2, and 3.2 This property is closely related to store atomicity [1]. The TSO and PSO memory

models do not technically have store atomicty, however, because loads see the values
of earlier and uncommitted stores on the same processesor.



Sequential Consistency. The operational model for SC is given in Figure 1.
In order to generate a trace, the SC automaton tracks the last global write event
m[a] to each address a, the number of events i[p] issued by each processor p, and
the total number cnt of issued write events. The automaton’s output is the tuple
(I,R,W,L, src, c). Function src and sets I, R, W , and L are all constructed as
the storeSC , loadSC , and interlockedSC transitions are executed. Instead of
building relation c directly, the SC automaton assigns increasing commit indices
C(e) to write events e, and the output relation c is defined in terms of commit
indices.

Total Store Order. The operational model for TSO is given in Figure 2. The
model is same as the one described and proved equivalent to axiomatic semantics
of TSO in [3]. The Total Store Order (TSO) memory model [13] allows stores
to be reordered past later loads, but maintains a total order over stores. To
maintain intra-thread consistency, when a store is reordered past a load of the
same address, the load still sees the stored value.

The TSO automaton tracks the last committed write event m[a] to each
address a. We introduce per-processor store buffers B[p], first-in first-out queues
that hold write events that have been issued but not yet committed. Writes e are
added to B[p] in storeTSO and removed, committed to m[a(e)], and assigned
commit indices C(e) in storec

TSO and interlockedTSO.

m : array[Adr] of Evt i n i t i a l i z ed to ⊥
i : array[Proc] of N i n i t i a l i z ed to 0
cnt : N i n i t i a l i z ed to 0
I, R,W,L : sets of Evt i n i t i a l i z ed to ∅
src, C : maps in i t i a l i z ed to empty maps

storeSC(l, p, a) :
i[p] = i[p] + 1 ; cnt = cnt + 1 ; m[a] = (l, p, a, i[p])
add event m[a] to I and W ; add m[a] 7→ cnt to C

loadSC(l, p, a) :
i[p] = i[p] + 1
add event (l, p, a, i[p]) to I and R ; add (l, p, a, i[p]) 7→ m[a] to s r c

interlockedSC(l, p, a) :
i[p] = i[p] + 1 ; cnt = cnt + 1 ; m[a] = (l, p, a, i[p])
add event m[a] to I , R , W , and L
add (l, p, a, i[p]) 7→ m[a] to s r c ; add m[a] 7→ cnt to C

output : E = (I, R,W,L, src, c) such that c(w1, w2) i f
C(w1) ≤ C(w2) and a(w1) = a(w2) .

Fig. 1: Operational Model of SC: (I,R,W,L, src, c) is the memory trace



m : array[Adr] of Evt i n i t i a l i z ed to ⊥
B : array[Proc] of FIFOQueue of Evt
i : array[Proc] of N i n i t i a l i z ed to 0
cnt : N i n i t i a l i z ed to 0
I, R,W,L : sets of Evt i n i t i a l i z ed to ∅
src, C : maps in i t i a l i z ed to empty maps

storeTSO(l, p, a) :
i[p] = i[p] + 1 ; B[p].addLast((l, p, a, i[p]))
add event (l, p, a, i[p]) to I and W

storec
TSO(p) :
i f not B[p].empty()

m[a] = B[p].removeFirst() ; cnt = cnt + 1 ; add m[a] 7→ cnt to C

loadTSO(l, p, a) :
i[p] = i[p] + 1 ; cnt = cnt + 1
add event (l, p, a, i[p]) to I and R ; add (l, p, a, i[p]) 7→ cnt to C
i f B[p].contains((∗, ∗, a, ∗)

e = l as t event (∗, ∗, a, ∗) of B[p] ; add (l, p, a, i[p]) 7→ e to s r c
else

add (l, p, a, i[p]) 7→ m[a] to s r c

interlockedTSO(l, p, a) :
while not B[p].empty()

storec
TSO(p)

i[p] = i[p] + 1 ; cnt = cnt + 1 ; m[a] = (l, p, a, i[p])
add event m[a] to I , R , W , and L
add (l, p, a, i[p]) 7→ m[a] to s r c ; add m[a] 7→ cnt to C

output : E = (I, R,W,L, src, c) such that c(w1, w2) i f
C(w1) ≤ C(w2) and a(w1) = a(w2) .

Fig. 2: Operational Model of TSO: (I,R,W,L, src, c) is the memory trace

Note that in loadTSO, the src of a read event by processor p can be a write
event in p’s write buffer B[p]. This captures that reads can see values of pending
writes from the same process.

Note also that, to facilitate later reasoning, we increment cnt on reads as well
as writes and also assign commit indices C(e) to reads.

We think of storec
TSO as an internal transition. A program running un-

der TSO issues writes by calling storeTSO, but the writes are not commit-
ted until the memory model non-deterministically chooses to execute corre-



m : array[Adr] of Evt i n i t i a l i z ed to ⊥
Ba : array[Proc][Adr] of FIFOQueue of Evt
i : array[Proc] of N i n i t i a l i z ed to 0
cnt : N i n i t i a l i z ed to 0
I, R,W,L : sets of Evt i n i t i a l i z ed to ∅
src, C : maps in i t i a l i z ed to empty maps

storePSO(l, p, a) :
i[p] = i[p] + 1 ; Ba[p][a].addLast((l, p, a, i[p]))
add event (l, p, a, i[p]) to I and W

storec
PSO(p, a) :
i f not Ba[p][a].empty()

m[a] = Ba[p][a].removeFirst() ; cnt = cnt + 1 ; add m[a] 7→ cnt to C

loadPSO(l, p, a) :
i[p] = i[p] + 1 ; cnt = cnt + 1
add event (l, p, a, i[p]) to I and R ; add (l, p, a, i[p]) 7→ cnt to C
i f not Ba[p][a].empty()

e = Ba[p][a].getLast() ; add (l, p, a, i[p]) 7→ e to s r c
else

add (l, p, a, i[p]) 7→ m[a] to s r c

interlockedPSO(l, p, a) :
while not Ba[p][a].empty()

storec
PSO(p, a)

i[p] = i[p] + 1 ; cnt = cnt + 1 ; m[a] = (l, p, a, i[p])
add event m[a] to I , R , W , and L
add (l, p, a, i[p]) 7→ m[a] to s r c ; add m[a] 7→ cnt to C

output : E = (I, R,W,L, src, c) such that c(w1, w2) i f
C(w1) ≤ C(w2) and a(w1) = a(w2) .

Fig. 3: Operational Model of PSO: (I,R,W,L, src, c) is the memory trace

sponding storec
TSO transitions. (Or the program forces a commit with an

interlockedTSO.)

Partial Store Order. The Partial Store Order (PSO) memory model [13] is
similar to TSO, but further allows stores to be reordered past later stores to
different addresses.

The PSO automaton [10] is very similar to TSO, but pending writes are
stored in per-processor, per-address buffers Ba[p][a]. Transition storec

PSO(p, a)
commits the oldest buffered write by p to address a, leaving pending stores to
other addresses untouched.



Note that interlockedPSO(l, p, a) only forces the commit of pending stores
to the same address a.

2.3 Operational Program Model

A memory trace of a program P under a memory model MM is produced by
the combined execution of the program and of the underlying memory model.

We can think of a program P as consisting of N processes, each with its own
purely local state and each running on a distinct processor. In each step of a
program execution, one of P ’s processes issues a single memory operation–e.g.
a write or read of an address—to the underlying memory model automaton by
calling, loadMM, storeMM, or interlockedMM. The memory model indicates
from which write each read e gets its value via src(e). Then, the local state of
the process is updated. The new state must be a deterministic function solely of
the previous local state (including, in particular, the process’s program counter)
and of the value returned by an issued read.

There are two sources of non-determinism in a program execution in this
model: (1) The thread schedule of the program. That is, at each step in the
execution, which process executes a transition. (2) The internal non-determinism
of the memory model. In particular, when the memory model chooses to commit
issued writes by executing internal storec

MM transitions.
Rather than laboriously formalize this model in order to define when a mem-

ory trace is a trace of program P , we propose the following two axioms:

Axiom 1 Let E = (I,R,W,L, src, c) be a trace of a program P . For I ′ ⊆ I, if
the restriction E |I′ is a trace, then it is a trace of program P .

Axiom 1 captures the fact that, under any reasonable model of program
execution, if a program P can produce a trace E, then a shorter run of P can
produce a prefix E′ of E. Recall that if E |I′ is trace, then each processor p
issues in E′ some prefix of the memory operations it issues in E′ and every read
e in E |I′ reads the same store src(e) as in E.

Axiom 2 Let E = (I,R,W,L, src, c) and E′ = (I,R,W,L, src′, c′) be two
traces. If E is a trace of program P and src is equal to src′ except for at most
one event e ∈ R where e is the last event issued by some processor, then E′ is a
trace of the program P .

When else can we infer, given a trace E of program P , that a second trace
E′ is also a trace of program P—i.e. also respects the control-flow and logic of
P? If a read e is the last memory operation issued by some process in P , then
the value returned to e—i.e. src(e)—has no impact on the continued execution
of P . Thus, Axiom 2 states that if E is a trace of program P , so too is any trace
that is identical except for the src function on such a final read.

2.4 The Happens-Before Relation

In reasoning about traces, we will use three relations to capture different kinds
of ordering between memory events.



Definition 4. Let E = (I,R,W,L, src, c) be a trace. Two events e, e′ ∈ I are
related by the program-order relation, denoted e→p e′ in E, iff p(e) = p(e′)
and i(e) < i(e′).

That is, e →p e′ in a trace when e and e′ are events from the same process
and e is issued before e′.

Definition 5. Let E = (I,R,W,L, src, c) be a trace. Two events e, e′ ∈ I are
related by the conflict-order relation, denoted e →c e′, iff a(e) = a(e′) and
one of the following holds:

– e ∈W , e′ ∈ R, and e = src(e′),
– e ∈W , e′ ∈W and (e, e′) ∈ c,
– e ∈ R, e′ ∈W , and either src(e) is undefined or (src(e), e′) ∈ c.

Definition 6. For a trace E, the happens-before relation is defined as the union
o the program-order and conflict-order relations for E, i.e. →hb = (→p ∪ →c).
We refer to the transitive closure of the happens-before relation as →∗hb.

Recall that in Section 2.2, we defined a trace E to be sequentially consistent
iff it can be produced by the operational model SC. We can use the happens-
before relation to give an alternate characterization of sequential consistency. In
particular, a trace E is sequentially consistent iff the →∗hb relation is acyclic on
the events of E.

Proposition 1. Let E be a memory trace. Trace E is sequentially consistent iff
relation →∗hb is acyclic on the events of E.

We omit a proof of this proposition—the equivalence of these two character-
izations of sequential consistency is widely known. For example, the technical
report associated with [3] proves a version of this result.

3 Monitoring Algorithm

The monitor algorithms take as input a sequentially consistent trace E′ =
(I ′, R′,W ′, L′, src′, c′) together with a total order of the events I ′. The total
order is a linearization of the →hb relation of the trace and denotes the ac-
tual sequence of events generated by an execution on a sequentially consistent
memory model. We represent the total order as a sequence e1, . . . , en.

Fig 4 describes the monitoring algorithm for TSO and Fig 5 describes the
monitoring algorithm for PSO. In these algorithms we make calls to the transi-
tions of a TSO/PSO automaton, respectively, and use the buffers used by the
transitions. The algorithms process the events in the sequence e1, . . . , en one-
by-one and call the TSO/PSO transitions so that the trace generated by the
TSO/PSO automaton is E′. However, each automaton delays the commit of a
store as long as it does not deviate from the generation of the trace E′. These
algorithms also check if a pending store in a buffer could be committed after
an event that happens after the store. If such a pending store exists, then a
sequential consistency violation is reported.



1 monitorTSO(e1, . . . , en) :
2 for i = 1 to n :
3 i f ∃e such that e ∈ B[p(e)] and a(ei) = a(e) :
4 e = l as t element (∗, ∗, a(ei), ∗) added to B[p(e)]
5 i f ∃prev such that p(prev) = p(ei) and i(prev) + 1 = i(ei) :
6 i f p(e) 6= p(ei) and e →∗hb prev :
7 print ‘ ‘ S e q u e n t i a l Co ns i s t e ncy V i o l a t e d ’ ’
8 i f p(e) 6= p(ei) :
9 while B[p(e)].first() 6= e :
10 storec

TSO(p(e))
11 storec

TSO(p(e))
12 i f ei ∈ L′ :
13 interlockedTSO(l(ei), p(ei), a(ei))
14 else i f ei ∈ R′ :
15 loadTSO(l(ei), p(ei), a(ei))
16 else i f ei ∈W ′ :
17 storeTSO(l(ei), p(ei), a(ei))

Fig. 4: Monitoring algorithm for TSO

1 monitorPSO(e1, . . . , en) :
2 for i = 1 to n :
3 i f ∃e such that e ∈ B[p(e)][a(ei)] :
4 i f ∃prev such that p(prev) = p(ei) and i(prev) + 1 = i(ei) :
5 i f p(e) 6= p(ei) and e→∗hb prev :
6 print ‘ ‘ S e q u e n t i a l Co ns i s t e ncy V i o l a t e d ’ ’
7 i f p(e) 6= p(ei) or ei ∈W ′ :
8 while not B[p(e)][a(e)].empty() :
9 storec

PSO(p(e), a(e))
10 i f ei ∈ L′ :
11 interlockedPSO(l(ei), p(ei), a(ei))
12 else i f ei ∈ R′ :
13 loadPSO(l(ei), p(ei), a(ei))
14 else i f ei ∈W ′ :
15 storePSO(l(ei), p(ei), a(ei))

Fig. 5: Monitoring algorithm for PSO

In order to track the classic →∗hb relation we use a well-known vector clock
algorithm. The algorithm has a time complexity of O(|Proc|.|E|). A short de-
scription of the algorithm can be found in [7] among other papers.

In the following discussion let us fix a program P . Let TMM be the set of all
traces generated by all feasible execution of the program P under the memory
model MM , where MM ∈ {SC, TSO,PSO}. We next state the correctness
results of our monitoring algorithms. The proof of these results can be found in
the appendix.

Lemma 1 During the execution of monitorTSO, it will never be the case there
exists some address a ∈ Adr and two processes p′ 6= p′′ with both B[p′] and B[p′′]
containing a buffered store to a.



Lemma 2 During the execution of monitorPSO, for each address a ∈ Adr, only
one process p will have at most one buffered store Ba[p][a] and for all p′ 6= p,
Ba[p′][a] will be empty.

Theorem 3 (Soundness of PSO Monitoring) If PSO monitor reports a sequen-
tial consistency violation”, then there exists a trace E ∈ TPSO \ TSC of the
program.

Theorem 4 (Soundness of TSO Monitoring) If TSO monitor reports a sequen-
tial consistency violation, then there exists a trace E ∈ TTSO\TSC of the program.

Theorem 5 (Completeness of PSO Monitoring) If there exists a trace E ∈
TPSO \ TSC of program P , then there exists a sequentially consistent trace E′ of
P such that PSO monitoring on E′ reports a violation of sequential consistency.

Theorem 6 (Completeness of TSO Monitoring) If there exists a trace E ∈
TTSO \ TSC of program P , then there exists a sequentially consistent trace E′ of
P such that TSO monitoring on E′ reports a violation of sequential consistency.

Theorem 7 (Complexity of TSO/PSO Monitoring) Time complexity of both
TSO/PSO monitoring is O(|Proc|.|E|), where |E| is the length of the trace and
|Proc| is the number of processes.

4 Comparison to SOBER

Our work is inspired by SOBER [3], a previous monitoring algorithm that detects
program executions under TSO that violate sequential consistency by examining
only sequentially consistent executions. SOBER is derived from the axiomatic
characterization of relaxed memory model TSO, while we work from operational
definitions of TSO and PSO.

There are four key differences between our work and SOBER.
First, we give monitor algorithms for detecting sequential consistency viola-

tions under both TSO and the more relaxed PSO memory model, while SOBER
detects only violations under TSO.

Second, SOBER uses a definition of the TSO memory model that is more
restrictive than the TSO memory model described in the SPARC manual [13].
Consider the simple program given in Figure 6 and the TSO run of this program
(with thread1 on processor p1 and thread2 on processor p2) and resulting trace

Initially: a = b = 0.

thread1 thread2

1: a = 1; 4: b = 1;

2: if (a == 1) 5: a = 2;

3: print b; 6: interlock(c);

7: print a;

Fig. 6: Example program.



Consider the TSO run:

stTSO(l1, p1, a), ldTSO(l2,p1, a), ldTSO(l3, p1, b), −→
−→ stTSO(l4, p2, b), stcTSO(p2), stTSO(l5, p2, a), stcTSO(p2), stcTSO(p1)

which produces the TSO trace (I, R,W,L, src, c):

I = R ∪ W

R = {(l2, p1, a, 2), (l3, p1, b, 3)}
W = {(l1, p1, a, 1), (l4, p2, b, 1), (l5, p2, a, 2)}
src = (l2, p1, a, 2) 7→ (l1, p1, a, 1), (l3, p1, b, 3) 7→ ⊥
c = {((l5, p2, a, 2), (l1, p1, a, 1))} ∪ {(w,w) : w ∈W}

Fig. 7: Example.

given in Figure 7. In this run, the store (l1, p1, a) by processor p1 to address
a is buffered until after the later store (l5, p2, a) by processor p2 to address a
commits. This trace is not sequentially consistent: although the load (l3, p1, b)
of b by process p1 does not see the value written to b by process p2 in store
(l4, p2, b), the earlier store (l1, p1, a) is not overwritten by the later one (l5, p2, a).
That is, we have a happens-before cycle: (l1, p1, a)→p (l3, p1, b)→c (l4, p2, b)→p

(l5, p2, a)→c (l1, p1, a).
But, under the axiomatic model of TSO used in SOBER, this trace is not

possible. Technically, the TSO model used in SOBER forbids this trace be-
cause of a cycle in a subset of →hb called the relaxed happens-before relation:
(l2, p1, a)→p (l3, p1, b)→c (l4, p2, b)→p (l5, p2, a)→c (l2, p1, a).

There exists no sequentially consistent trace of the program in Figure 6 on
which SOBER will report a violation. On the other hand, our monitor algorithm
will report a violation given the following sequentially consistent trace from the
following SC run:

stSC(l1, p1, a), ldSC(l2, p1, a), ldSC(l3, p1, b), stSC(l4, p2, b), stSC(l5, p2, a)

Third, the runtime complexity of our algorithms is O(|Proc|.|E|), where Proc
is the set of processors and |E| is the length of the trace. This is an improvement
over the complexity O(|Proc|2.|E|) of the SOBER algorithm. Note that the factor
|Proc|2.|E| comes from the vector clock algorithm that maintains the relaxed
happens-before relation for TSO in SOBER.

Fourth, the SOBER monitoring algorithm is more sensitive than our
monitorTSO. That is, there exist sequentially consistent traces E for which
SOBER will report the existence of a violation while monitorTSO will not.
Note that this does not mean that monitorTSO will not find the violation—the
violation will be detected by monitorTSO on some other SC execution (follows
from the completeness theorem.) Consider the sequentially consistent run and
trace shown in Figure 8. SOBER correctly infers from this trace that there ex-
ists a TSO execution in which the store (l1, p1, a) to address a in processor p1 is
buffered until after the load (l5, p3, a) of a in processor p3, which is a violation



Consider the sequentially-consistent run:

stSC(l1, p1, a), ldSC(l2, p1, b), stSC(l3, p2, a), stSC(l4, p3, b), ldSC(l5, p3, a)

which produces the sequentially-consistent trace (I,R,W,L, src, c):

I = R ∪ W

R = {(l2, p1, b, 2), (l5, p3, a, 2)}
W = {(l1, p1, a, 1), (l3, p2, a, 1), (l4, p3, b, 1)}
src = (l2, p1, b, 2) 7→ ⊥, (l5, p3, a, 2) 7→ (l3, p2, a, 1)

c = {((l1, p1, a, 1), (l3, p2, a, 1))} ∪ {(w,w) : w ∈W}

Fig. 8: Example (and not related to program in Figure 6). This example is used
in description of the fourth difference with SOBER.

of sequential consistency. But monitorTSO will not report a violation on this
trace. (Because our monitor algorithm will commit processor p1’s store (l1, p1, a)
to address a when it later encounters processor p2’s store (l3, p2, a) to the same
address.) Note that this example says nothing about the completeness of our
monitor algorithm. We will discover this TSO execution and report a violation
on a different SC execution—one in which the store (l3, p2, a) in processor p2
does not occur until after the load (l5, p3, a) in processor p3.

5 Experiments
We have implemented monitorTSO and monitorPSO for C programs in a pro-
totype tool. The implementation instruments code to capture load, store, and
compare-and-swap operations.

We evaluated our monitor algorithms on seven benchmarks. Five of those
are implementations of concurrent data structures taken from [2]: msn, a non-
blocking queue, ms2, a two-lock queue, lazylist, a list-based concurrent set,
harris, a non-blocking set, and snark. The other two benchmarks are imple-
mentations of the Dekker and Lamport’s baker mutual exclusion algorithms.
Previous research [2, 3] shows that the benchmarks have sequential consistency
violations under relaxed memory models. For each of the benchmarks we have

average TSO PSO
trace # of traces # of average # of traces # of average

Benchmark LOC length with distinct runtime with distinct runtime
violations violations violations violations

dekker 23 140 973 10 0.01 977 15 0.01

bakery 31 515 992 3 0.04 1000 4 0.05

msn 83 337 - - 0.01 943 3 0.02

ms2 78 193 - - 0.01 73 2 0.01

harris 155 1332 - - 0.06 976 2 0.07

lazylist 121 443 - - 0.02 18 2 0.02

snark 150 376 - - 0.01 951 10 0.02

Table 1: Results of monitorTSO and monitorPSO experimental evaluation with
1000 random executions per benchmark; all runtimes are in seconds.



either reused test harnesses from [2] or have manually constructed a test harness
involving at most 3 threads.

In the absence of a CHESS [11] like model checker for C, we relied on ran-
dom schedule based execution of the test harnesses to generate 1000 sequentially
consistent traces per benchmark. The results of running our algorithms on these
traces are shown in Table 1. Column 2 lists the lines of code in each bench-
mark not including the test harness and column 3 reports the average number
of events in the generated traces. Columns 4 and 7 list the number of traces
in which monitorTSO and monitorPSO respectively detected a sequential con-
sistency violation. For each violation we record the set of program instructions
that generated events e, prev, ei, as they are defined in lines 4,5 of monitorTSO

and lines 3,4 of monitorPSO, and in columns 6 and 9 we report the number of
violations that were detected and involved a distinct set of those instructions.
Columns 7 and 10 report the average runtime of the monitor algorithms for TSO
and PSO in seconds. The experimental results show that monitoring is effective
in efficiently discovering sequential consistency violations on a set of randomly
generated traces. For full experimental evaluation, we plan to combine our work
with a PThread model checker, such as Inspect [15], in future work.
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Appendix

Lemma 1 During the execution of monitorTSO, it will never be the case there
exists some address a ∈ Adr and two processes p′ 6= p′′ with both B[p′] and B[p′′]
containing a buffered store to a.

Proof. Suppose there are two events e′ = (l′, p′, a, i′) and e′′ = (l′′, p′′, a, i′′),
in store buffers B[p′] and B[p′′] respectively, at some point in the execution of
monitorTSO. Further suppose that the storeTSO call that buffered event e′

was executed before the call that buffered event e′′. Let j be the iteration of the
monitor algorithm in which the storeTSO that buffered e′′ was called. Since e′

must have been in B[p′] at the start of this iteration, the conditions at Lines 3
and 7 must have evaluated to true with e = e′, and thus Lines 8, 9, and 10 were
executed. But then Line 10 must have removed e′ from B[p′], contradicting our
initial assumption.

Lemma 2 During the execution of monitorPSO, for each address a ∈ Adr, only
one process p will have at most one buffered store Ba[p][a] and for all p′ 6= p,
Ba[p′][a] will be empty.

Proof. Suppose there are two events e′ = (l′, p, a, i′) and e′′ = (l′′, p, a, i′′), in
store buffer Ba[p][a] at some point in the execution of monitorPSO. Further
suppose that the storePSO call that buffered event e′ was executed before the
call that buffered event e′′. Let j be the iteration of the monitor algorithm in
which the storePSO that buffered e′′ was called. Since e′ must have been in
Ba[p][a] at the start of this iteration, the conditions at Lines 3 and 7 (first
predicate at line 7) must have evaluated to true with e = e′, and thus Lines
8 and 9 were executed. But then Line 9 must have removed e′ from Ba[p][a],
contradicting our initial assumption.

Suppose there are two events e′ = (l′, p, a, i′) and e′′ = (l′′, p′, a, i′′), in store
buffers Ba[p][a] and Ba[p′][a], respectively, at some point in the execution of
monitorPSO. Further suppose that the storePSO call that buffered event e′

was executed before the call that buffered event e′′. Let j be the iteration of the
monitor algorithm in which the storePSO that buffered e′′ was called. Since e′

must have been in Ba[p][a] at the start of this iteration, the conditions at Lines
3 and 7 (second predicate at line 7) must have evaluated to true with e = e′,
and thus Lines 8 and 9 were executed. But then Line 9 must have removed e′

from Ba[p][a], contradicting our initial assumption.

Theorem 3 (Soundness of PSO Monitoring) If PSO monitor reports a sequen-
tial consistency violation”, then there exists a trace E ∈ TPSO \ TSC of the
program.

Proof. Let E′ = (I ′, R′,W ′, L′, src′, c′) be an SC trace of some program P and
e1, . . . , en be a linearization of trace E′ that respects the→∗hb order defined by E′.
Suppose monitorPSO reports a violation of SC on this linearization in iteration



1 i f ei ∈ L′

2 interlockedPSO(l(ei), p(ei), a(ei))
3 else i f ei ∈ R′

4 loadPSO(l(ei), p(ei), a(ei))
5 else i f ei ∈W ′

6 storePSO(l(ei), p(ei), a(ei))
7 while Ba[p(ei)][a(ei)].empty()
8 storec

PSO(p(ei), a(ei))
9 foreach p ∈ Proc and a ∈ Adr
10 while Ba[p][a].empty()
11 storec

PSO(p, a)

Fig. 9: Extra statements for PSO monitoring

j at line number 6. After printing Sequential Consistency Violated at line
6, let monitorPSO execute the following extra statements shown in Figure 9
During this monitoring, monitorPSO will call a sequence of transitions
storePSO , storec

PSO , loadPSO , and interlockedPSO . These calls will gener-
ate a trace E = (I,R,W,L, src, c). We prove that (1) E is a PSO trace of P and
(2) E has a →∗hb cycle.
[(1) Proof of E is a PSO trace of P ].

Since we call interlockedPSO(l(ei), p(ei), a(ei)),
storePSO(l(ei), p(ei), a(ei)), loadPSO(l(ei), p(ei), a(ei)) for each ei in the
sequence e1, e2, . . . , ej if ei ∈ L′, ei ∈ W ′, and ei ∈ R′, respectively (see lines
10–15 in Figure 5 and lines 1–8 in Figure 9), I will be the set {e1, e2, . . . , ej},
R = R′ ∩ I, W = W ′ ∩ I, and L = L′ ∩ I. However, src may not be the function
src′ restricted to the domain R. Let src′′ be the function src′ restricted to the
domain R. Consider the following two cases:
[Case 1] Let ei1 = src′(ei2) for some ei2 ∈ R such that ei2 6= ej . Since E′ is
a SC trace of P and e1, . . . , en is a linearization of the →∗hb relation on E′, we
have i1 < i2. Then we can prove that src′(ei2) = src(ei2) as follows.

– If p(ei1) = p(ei2) and there is no ei3 ∈ R′ such that i1 < i3 < i2,
a(ei3) = a(ei2), and p(ei3) 6= p(ei2), then the condition at line 7 is not
true. Therefore, ei1 will be in Ba[p(ei1)][a(ei1)] and src(ei2) will be ei1, i.e.
src′(ei2) = src(ei2).

– If p(ei1) = p(ei2) and there is a ei3 ∈ R′ such that i1 < i3 < i2, i3 is
minimal, a(ei3) = a(ei2), and p(ei3) 6= p(ei2), then the condition at line 3
is not true because the i3th iteration of monitorPSO has removed ei1 from
Ba[p(ei1)][a(ei1)]. Therefore, ei1 will be in m[a(ei1)] and src(ei2) will be ei1,
i.e. src′(ei2) = src(ei2).

– If p(ei1) 6= p(ei2), then ei1 will be in m[a(ei1)] and src(ei2) will be ei1, i.e.
src′(ei2) = src(ei2).

– There is no ei3 ∈W ′ such that i1 < i3 < i2 and a(ei3) = a(ei2).

[Case 2] Let ei1 = src′(ej). Since the jth iteration reports SC violation, con-
ditions at lines 3, 4, and 5 hold. Therefore, ei1 is in Ba[p(ei1)][a(ei1)] and



p(ej) 6= p(ei1); hence, loadPSO at line 4 in Figure 10 will not read value stored
by ei1, i.e. src(ej) 6= ei1.

Therefore, we showed that src is equal to src′′ (recall that src′′ is the function
src′ restricted to the domain R) except for at most one event ej . Note that ej is
the last event of the process p(ej) in the trace E. Therefore, by Axiom 1, since
E′ is a trace of the program P , (I,R,W,L, src′′, c′′) for some c′′ is a trace of the
program P . Further by Axiom 2, the trace E = (I,R,W,L, src, c) is a trace of
the program P . Since E is generated from the operational model of PSO, E is
a PSO trace. Therefore, E is a PSO trace of the program P .
[(2) Proof of E has a →∗hb cycle].

Let Ij = I \ {ej} and E |Ij be Ej = (Ij , Rj ,Wj , Lj , srcj , cj). We want to
show that if for any e, e′ ∈ Ij , e→∗hb e′ in E′, then e→∗hb e′ in Ej . This can be
shown if we show that for any e, e′ ∈ Ij , (1) if e→p e′ in E′, then e→p e′ in Ej ,
and (2) if e→c e

′ in E′, then e→c e
′ in Ej . We next prove these two facts.

(1) Observe that there is no e ∈ R such that ej = src(e). This is because
if there is such a e, then ej ∈ W , but there is no load issued in E after ej .
Therefore, such a e cannot exist. Since E is a trace, Ej is obtained by removing
the last event of process p(ej) from I, and ej cannot be the src of any event in
Ij , Ej is a trace. Since Ij ⊂ I ′ and Ej is a trace, for any e, e′ ∈ Ij , if e→p e′ in
E′, then e→p e′ in Ej .

(2) Let ei1, ei2 ∈ Ij and ei1 →c ei2 in E′. Since E′ is a sequentially consistent
trace, i1 < i2. Consider the following cases:

(a) Let src(ei2) = ei1. In Case 1 above we have already shown that src(ei2) =
src′(ei2) if ei2 6= ej . Since srcj is a restriction of src to the domain I \ {ej},
srcj(ei2) is also ei1. Therefore, ei1 →c ei2 in Ej .

(b) Let (ei1, ei2) ∈ c′. Therefore, a(ei1) = a(ei2). If p(ei1) = p(ei2), then
ei1 will be committed before ei2 because Ba[p(ei1)][a(ei1)] is a FIFOQueue. If
p(ei1) 6= p(ei2), then ei1 will be committed in line 9 in an iteration k ≤ i2 and
ei2 will be committed in an iteration k > i2. Therefore, ei1 will be committed
before ei2 in Ej . Therefore, ei1 →c ei2 in Ej .

(c) Let (src′(ei1), ei2) ∈ c′. Therefore, a(ei1) = a(ei2). Let e = src′(ei1).
Therefore, by case (b), e will be committed before ei2 in Ej . By case (a), e =
srcj(ei1). This implies that (srcj(ei1), ei2) ∈ cj . Therefore, ei1 →c ei2 in Ej .

Therefore, we have shown that ei1 →c ei2 in Ej . From the proof of the above
two facts, it follows that for any e, e′ ∈ Ij , if e→∗hb e′ in E′, then e→∗hb e′ in Ej

Since monitorPSO reports an SC violation in the jth iteration, the conditions
at lines 3, 4, and 5 in Figure 5 holds. Therefore, there exists an e and prev in
Ij such that e →∗hb prev in Ej . Further, prev →p ej . Therefore, e →∗hb ej in E.
Since e ∈ Ba[p(e)][a(ei)], a(e) = a(ej), and p(e) 6= p(ej) and ej is committed
(or issued if it is a load) before e is committed in Figure 9, we have ej →c e.
Therefore, we have a →∗hb cycle in the trace E.

Theorem 4 (Soundness of TSO Monitoring) If TSO monitor reports a sequen-
tial consistency violation, then there exists a trace E ∈ TTSO\TSC of the program.

Proof. Let E′ = (I ′, R′,W ′, L′, src′, c′) be an SC trace of some program P and
e1, . . . , en be a linearization of trace E′ that respects the→∗hb order defined by E′.



Suppose monitorTSO reports a violation of SC on this linearization in iteration
j at line number 7. After printing Sequential Consistency Violated at line
7, let monitorTSO execute the following extra statements shown in Figure 10

1 i f ei ∈ L′

2 interlockedTSO(l(ei), p(ei), a(ei))
3 else i f ei ∈ R′

4 loadTSO(l(ei), p(ei), a(ei))
5 else i f ei ∈W ′

6 storeTSO(l(ei), p(ei), a(ei))
7 while B[p(ei)].empty()
8 storec

TSO(p(ei))
9 foreach p ∈ Proc
10 while B[p].empty()
11 storec

TSO(p)

Fig. 10: Extra statements for TSO monitoring

During this monitoring, monitorTSO will call a sequence of transitions
storeTSO , storec

TSO , loadTSO , and interlockedTSO . These calls will gener-
ate a trace E = (I,R,W,L, src, c). We prove that (1) E is a TSO trace of P and
(2) E has a →∗hb cycle.
[(1) Proof of E is a TSO trace of P ].

Since we call interlockedTSO(l(ei), p(ei), a(ei)),
storeTSO(l(ei), p(ei), a(ei)), loadTSO(l(ei), p(ei), a(ei)) for each ei in the
sequence e1, e2, . . . , ej if ei ∈ L′, ei ∈ W ′, and ei ∈ R′, respectively (see lines
12–17 in Figure 4 and lines 1–8 in Figure 10), I will be the set {e1, e2, . . . , ej},
R = R′ ∩ I, W = W ′ ∩ I, and L = L′ ∩ I. However, src may not be the function
src′ restricted to the domain R. Let src′′ be the function src′ restricted to the
domain R. Consider the following two cases:
[Case 1] Let ei1 = src′(ei2) for some ei2 ∈ R such that ei2 6= ej . Since E′ is
a SC trace of P and e1, . . . , en is a linearization of the →∗hb relation on E′, we
have i1 < i2. Then we can prove that src′(ei2) = src(ei2) as follows.

– If p(ei1) = p(ei2) and there is no ei3 ∈ R′ such that i1 < i3 < i2, a(ei3) =
a(ei2), and p(ei3) 6= p(ei2), then the condition at line 8 is not true. Therefore,
ei1 will be in B[p(ei1)] and src(ei2) will be ei1, i.e. src′(ei2) = src(ei2).

– If p(ei1) = p(ei2) and there is a ei3 ∈ R′ such that i1 < i3 < i2, i3 is
minimal, a(ei3) = a(ei2), and p(ei3) 6= p(ei2), then the condition at line 3
is not true because the i3th iteration of monitorTSO has removed ei1 from
B[p(ei1)]. Therefore, ei1 will be in m[a(ei1)] and src(ei2) will be ei1, i.e.
src′(ei2) = src(ei2).

– If p(ei1) 6= p(ei2), then ei1 will be in m[a(ei1)] and src(ei2) will be ei1, i.e.
src′(ei2) = src(ei2).



– There is no ei3 ∈W ′ such that i1 < i3 < i2 and a(ei3) = a(ei2).

[Case 2] Let ei1 = src′(ej). Since the jth iteration reports SC violation, condi-
tions at lines 3, 5, and 6 hold. Therefore, ei1 is in B[p(ei1)] and p(ej) 6= p(ei1);
hence, loadTSO at line 4 in Figure 10 will not read value stored by ei1, i.e.
src(ej) 6= ei1.

Therefore, we showed that src is equal to src′′ (recall that src′′ is the function
src′ restricted to the domain R) except for at most one event ej . Note that ej is
the last event of the process p(ej) in the trace E. Therefore, by Axiom 1, since
E′ is a trace of the program P , (I,R,W,L, src′′, c′′) for some c′′ is a trace of the
program P . Further by Axiom 2, the trace E = (I,R,W,L, src, c) is a trace of
the program P . Since E is generated from the operational model of TSO, E is
a TSO trace. Therefore, E is a TSO trace of the program P .

[(2) Proof of E has a →∗hb cycle].

Let Ij = I \ {ej} and E |Ij be Ej = (Ij , Rj ,WJ , Lj , srcj , cj). We want to
show that if for any e, e′ ∈ Ij , e→∗hb e′ in E′, then e→∗hb e′ in Ej . This can be
shown if we show that for any e, e′ ∈ Ij , (1) if e→p e′ in E′, then e→p e′ in Ej ,
and (2) if e→c e

′ in E′, then e→c e
′ in Ej . We next prove these two facts.

(1) Observe that there is no e ∈ R such that ej = src(e). This is because
if there is such a e, then ej ∈ W , but there is no load issued in E after ej .
Therefore, such a e cannot exist. Since E is a trace, Ej is obtained by removing
the last event of process p(ej) from I, and ej cannot be the src of any event in
Ij , Ej is a trace. Since Ij ⊂ I ′ and Ej is a trace, for any e, e′ ∈ Ij , if e→p e′ in
E′, then e→p e′ in Ej .

(2) Let ei1, ei2 ∈ Ij and ei1 →c ei2 in E′. Since E′ is a sequentially consistent
trace, i1 < i2. Consider the following cases:

(a) Let src(ei2) = ei1. In Case 1 above we have already shown that src(ei2) =
src′(ei2) if ei2 6= ej . Since srcj is a restriction of src to the domain I \ {ej},
srcj(ei2) is also ei1. Therefore, ei1 →c ei2 in Ej .

(b) Let (ei1, ei2) ∈ c′. Therefore, a(ei1) = a(ei2). If p(ei1) = p(ei2), then ei1
will be committed before ei2 because B[p(ei1)] is a FIFOQueue. If p(ei1) 6= p(ei2),
then ei1 will be committed in lines 10 or 11 in an iteration k ≤ i2 and ei2 will
be committed in an iteration k > i2. Therefore, ei1 will be committed before ei2
in Ej . Therefore, ei1 →c ei2 in Ej .

(c) Let (src′(ei1), ei2) ∈ c′. Therefore, a(ei1) = a(ei2). Let e = src′(ei1).
Therefore, by case (b), e will be committed before ei2 in Ej . By case (a), e =
srcj(ei1). This implies that (srcj(ei1), ei2) ∈ cj . Therefore, ei1 →c ei2 in Ej .

Therefore, we have shown that ei1 →c ei2 in Ej . From the proof of the above
two facts, it follows that for any e, e′ ∈ Ij , if e→∗hb e′ in E′, then e→∗hb e′ in Ej

Since monitorTSO reports an SC violation in the jth iteration, the conditions
at lines 3, 5, and 6 in Figure 4 holds. Therefore, there exists an e and prev in
Ij such that e →∗hb prev in Ej . Further, prev →p ej . Therefore, e →∗hb ej in E.
Since e ∈ B[p(e)], a(e) = a(ej), and p(e) 6= p(ej) and ej is committed before e
in Figure 10, we have ej →c e. Therefore, we have a →∗hb cycle in the trace E.



Theorem 5 (Completeness of PSO Monitoring) If there exists a trace E ∈
TPSO \ TSC of program P , then there exists a sequentially consistent trace E′ of
P such that PSO monitoring on E′ reports a violation of sequential consistency.

Proof. Along the lines of [3], we define a relaxed happens-before relation →rhb

for a trace E as a subset of the of the →hb relation on E:

→rhb = →hb \ {(e, e′) : e→p e′, e ∈W \ L, e′ ∈ R \ L}
\ {(e, e′) : e→p e′, e ∈W \ L, e′ ∈W, a(e) 6= a(e′)}

That is, we remove from →rhb program-order edges from non-interlocked writes
to non-interlocked reads and from non-interlocked writes to writes of different
addresses.

Then, let E be (I,R,W,L, src, c) and n be |I|. We define events e1, . . . , en
and sets of events I0, I1, . . . , In as follows. First, In = I, the set of all events in
trace E. We define each Ij by selecting one event ej+1 from Ij+1 and setting
Ij = Ij+1\{ej+1}. Similarly, we define Rj = R∩Ij , Wj = W∩Ij , and Lj = L∩Ij .

Each ej+1 is selected as follows. First, if possible, we select an ej+1 ∈ Ij+1

such that:

(a) Event ej+1 is the last event in Ij+1 issued by its process p(ej+1). That is,
@e′ ∈ Ij+1. ej+1 →p e′.

(b) Event ej+1 does not relaxed happens-before a read of or an interlocked op-
eration on a(ej+1).
Note that this condition implies that ej+1 is not the source of a read. That
is, @e ∈ Rj+1. srcj+1(e) = ej+1.

(c) Removing event ej+1 from Ej+1 does not remove all happens-before cycles.
That is, the →hb relation of Ej+1 has a cycle on Ij+1 \ ej+1.

When it is not possible to satisfy condition (c), we can remove any event
ej+1 satisfying only (a) and (b).

We now prove that: (1) there always exists an ej+1 satisfying the first two
properties, and (2) the resulting restrictions E |I0 , E |I1 , . . . , E |In are all PSO
traces. We prove this by induction on j.

Since In = I, we have that E |In= E and is a PSO trace.
Suppose Ej+1 = E |Ij+1

is a PSO trace.

(1) Suppose that the last events of every processor in PSO trace Ej+1 fail con-
dition (b). Call these events last1, . . . , lastm.

Because Ej+1 is a PSO trace, it is output by some run of the PSO automaton.
Recall that such a run is a sequence of memory model transitions storePSO,
storec

PSO, loadPSO, and interlockedPSO. During this run, the automaton
maps each e ∈ Ij+1 to a natural number C(e).

Note that, for any two events e, e′ in a trace E from a PSO run, if e→rhb e′,
then we will have C(e) < C(e′) for the numbers C(e) and C(e′) assigned
during the PSO run. There are several cases: (I) If e →c e′, e ∈ W , and



e′ ∈ R, then a(e′) = a(e) and either p(e′) 6= p(e) or e ∈ L or e′ ∈ L.
In any case, C(e) is assigned before C(e′). (II) If e →c e′, e ∈ W and
e′ ∈W \R, then a(e′) = a(e) and e is committed before e′. (III) If e→c e

′

and e ∈ R \L, then e′ cannot have committed yet when e is issued, because
either src(e) = ⊥ or src(e) →c e′. (IV) If e →p e′ and e is in R, then e is
issued before e′ is issued or committed, so C(e) < C(e′). (V) If e→p e′ and
e ∈ W \ L, then e′ is a write to the same address. When e′ ∈ W \ L, then
e is buffered before e′ in B[p(e)][a(e)], so it is removed and committed first.
When e′ ∈ L, write e will be removed from B[p(e)][a(e)] by interlockedPSO

before e′ is committed and assigned C(e′).

Now, of the events last1, . . . , lastm, let lasti be the one with largest C(lasti).
By our assumption, there is some operation e ∈ Rj+1 on a(lasti) such
that lasti →∗rhb e. Let lasth be the last event issued by processor p(e) in
Ej+1. Either lasth = e or we have e →p lasth and thus e →∗rhb lasth be-
cause e is a read. Thus, C(lasti) < C(e) ≤ C(lasth), contradicting that no
C(last1), . . . , C(lastm) is larger than lasti.

(2) Recall that E = (I,R,W,L, src, c) and Ek is the restriction E |Ik=
(Ik, Rk,Wk, Lk, srck, ck), where Rk = R ∩ Ik, Wk = W ∩ Ik, Lk = L ∩ Ik,
ck = c ∩ Wk ×Wk, and srck is the restriction of src to Rk. Note that:

Ik = Ik ∩ I = Ik ∩ (R ∪ W ) = Rk ∪ Wk

Lk = Ik ∩ L = Ik ∩ (R ∩ W ) = Rk ∩ Wk

Further, for any (l, p, a, i) ∈ Ik and 1 ≤ j < i, we have (l, p, a′, j) ∈ Ik
because condition (a) only allows us to remove in each step the final event
from any process.
Recall that E = (I,R,W,L, src, c) and tuple Ek is the restriction E |Ik=
(Ik, Rk,Wk, Lk, srck, ck), where Rk = R ∩ Ik, Wk = W ∩ Ik, Lk = L ∩ Ik,
ck = c ∩ Wk ×Wk, and srck is the restriction of src to Rk.
Finally, for any e ∈ Rk, we must have that src(e) ∈ Wk, because src(e) ∈
Wk+1 and condition (b) forbids removing the src of a read from Ek+1.
Thus, tuple Ek = E |Ik is a PSO trace.

Note also that, by Axiom 1, each Ek = E |Ik is a trace of program P .
Then, E0 ∈ TSC , because E0 is the empty trace, and En ∈ TPSO \ TSC .

Thus, there is maximal Ej that is in TSC . Let it be Ek. Further, let E′ be the
sequentially-consistent trace resulting from executing one more instruction in
process p(ek+1) from trace Ek. That is, E′ is trace Ek with one additional event
efinal with p(efinal) = p(ek+1). Note that efinal must be the same type of event
as ek+1—i.e. they are both writes or both reads—although it may have different
src or position in the commit order.

We now prove that the PSO monitor algorithm reports a violation on E′:

(1) Let prev be the event just before efinal in process p(efinal). Such an event
must exist.



Suppose there were no events in process p(efinal) preceding efinal. Then ek+1

is the only event in process p(ek+1) in Ek+1, and thus has no incoming or
outgoing →p edges. Thus, the →hb-cycle containing ek+1 contains conflict
edges e′ →c ek+1 →c e′′, with e′′ →∗hb e′. By condition (b) above, event
e′′ cannot be a read. Thus, it must be the case that e′ →c e′′. But then
e′ →c e

′′ →∗hb e′ is an →hb-cycle in E′, contradicting that E′ is SC.

(2) Let last denote the last write to a(efinal) in Ek under the →hb relation.
Recall that the →hb relation totally orders the writes on any single address
in Ek. Thus, last is well-defined if there are any writes to a(ek+1) in Ek.
There must be such a write. Because ek+1 is in an →hb-cycle in Ek+1, there
is a conflict edge ek+1 →c e

′ in Ek+1. By condition (b), event e′ cannot be
a read. Thus, e′ is a write of a(ek) = a(efinal).

(3) It must be the case that ek+1 →c last in Ek+1.
If not, then ek+1 can have no outgoing conflict edges to any write of a(ek+1)
in Ek+1. But, by condition (b), event ek+1 can have no outgoing conflict
edges to any reads of a(ek+1) either. This contradicts that ek+1 is in an
→hb-cycle and thus has an outgoing →c edge.

(4) Then, note that p(last) 6= p(efinal).
If last and efinal were in the same process, then so would be last and ek+1,
so last →p ek+1 in Ek+1. But because last and ek+1 are operations on the
same address, PSO would guarantee that last →c ek+1. This contradicts
ek+1 →c last, shown in Point (3) above.

(5) Note also that last→∗hb efinal.
Event efinal is obtained by continuing a sequentially-consistent execution of
Ek in which last has already been issued and committed. Thus, as efinal is a
read or store of a(last), we have last→∗c efinal.

(6) Further, we have that last→∗hb prev.

Let f1 be the final event issued by processor p(last) in Ek. Recall from Point
4 that p(last) 6= p(prev), and note that it could be that f1 = last. If f1 relaxed
happens-before some other event r1 ∈ R on a(f1) in Ek, then we define f2
to to be the final event issued by processor p(r1) in Ek. We similarly define
sequences r1, . . . , rm and f1, . . . , fm+1 of events in Ek where fi →∗rhb ri in Ek

and fi+1 is the final event issued by processor p(ri). The sequence ends when
fm+1 does not relaxed happens-before any read (or interlocked operation)
of a(fm+1).

This sequence must be finite, and all of the ri distinct and all of the fi
distinct, because clearly fi →∗rhb ri in Ek and either ri →p fi+1 in Ek or
fi+1 = ri for all i, and because →∗hb is acyclic on the events of Ek.

Suppose fm+1 relaxed happens-before a read or interlocked operation e′ of
a(fm+1) in Ek+1. The →rhb path from fm+1 to e′ must go through ek+1,
as fm+1 6→∗rhb e′ in Ek. Suppose further that this path does not go through
prev. Then, either fm+1 →∗rhb e′′ →c ek+1 or fm+1 →c ek+1. But then
either e′′ →c last in Ek or fm+1 →c last in Ek, yielding →hb-cycle last→∗hb

fm+1 →∗hb last in Ek. This is a contradiction, so last→∗hb fm+1 →∗hb prev.



Suppose instead that fm+1 does not relaxed happens-before a read or in-
terlocked operation on a(fm+1) in Ek+1. Then, fm+1 cannot have satisfied
condition (c) in Ek+1 (or else we would have removed it instead of ek+1).
That is, neither ek+1 nor fm+1 satisfies condition (c) in Ek+1, so removing
either of ek+1 or fm+1 would have broken every →hb-cycle in Ek+1. Then,
consider some →hb-cycle ek+1 →c e′ →∗hb prev →p ek+1 in Ek+1. Event
fm+1 must also be in this cycle, and thus fm+1 →∗hb prev. Therefore, as
last→∗hb fm+1, we again have last→∗hb prev.

(7) Note that last cannot be an interlocked operation.
This follows from condition (b) and because ek+1 →c last.

(8) Suppose e ∈ R \L is a read of address a(last) in Ek. Then, if p(e) 6= p(last),
we have that e→∗hb last in E′.
Suppose that it is not the case that e→∗hb last in E′. Then src(e) is defined
and either src(e) = last or last→c src(e) in E′ and thus in Ek. But the first
alternative contradicts condition (b) and the second contradicts that last is
the last write to a(last).

We can now prove that the PSO monitor algorithm will report a violation
when run on sequentially-consistent trace E′. The events of E′ are presented to
monitorPSO in some linear order e1, . . . , ek1 that respects the →∗hb order.

Suppose algorithm monitorPSO has reached event efinal without yet report-
ing a violation. The monitor must have already processed event last, because
last→∗hb efinal by Point 5 above.

Further, event last must be still be in buffer Ba[p(last)][a(efinal] at this point.
This is because last is in W \L by Point 7, and because last is removed from this
buffer only if there is a later event e which is either: (1) a write or interlocked
operation on a(last), or (2) a non-interlocked read of a(last) in a different pro-
cess than p(last). The first alternative is not possible because, by Point 2, last
happens-after all other writes to a(last) in E′, besides possibly efinal. The sec-
ond alternative is not possible because, by Point 8, last happens-after all reads
of a(efinal) from different processors, besides possibly efinal.

Thus, the condition at Line 3 of monitorPSO will be satisfied with e = last.
The condition at Line 4 is satisfied because Point 1 guarantees the existence

of some previous event prev in efinal’s process.
Finally, the two conditions at Line 5 are satisfies because of Points 4 and 6.
Therefore, algorithm monitorPSO will report a violation on sequentially-

consistent trace E′.

Theorem 6 (Completeness of TSO Monitoring) If there exists a trace E ∈
TTSO \ TSC of program P , then there exists a sequentially consistent trace E′ of
P such that TSO monitoring on E′ reports a violation of sequential consistency.

Proof. Along the lines of [3], we define a relaxed happens-before relation →rhb

on a trace E in terms of the →hb relation on E:

→rhb = →hb \ {(e, e′) : e→p e′, e ∈W \ L, e′ ∈ R \ L}



That is, we remove from →rhb program-order edges from non-interlocked writes
to non-interlocked reads.

Then, let E be (I,R,W,L, src, c) and n be |I|. We define events e1, . . . , en
and sets of events I0, I1, . . . , In as follows. First, In = I, the set of all events in
trace E. We define each Ij by selecting one event ej+1 from Ij+1 and setting
Ij = Ij+1\{ej+1}. Similarly, we define Rj = R∩Ij , Wj = W∩Ij , and Lj = L∩Ij .

Each ej+1 is selected as follows. First, if possible, we select an ej+1 ∈ Ij+1

such that:

(a) Event ej+1 is the last event in Ij+1 issued by its process p(ej+1). That is,
@e′ ∈ Ij+1. ej+1 →p e′.

(b) Event ej+1 is not the source of a read. That is, @e ∈ Rj+1. srcj+1(e) = ej+1.
(c) Removing event ej+1 from Ej+1 does not remove all happens-before cycles.

That is, the →hb relation of Ej+1 has a cycle on Ij+1 \ ej+1.
(d) Event ej+1 does not relaxed happens-before a read of a(ej+1) or an inter-

locked operation of any address.
(e) Let last denote the last write to a(ej+1) in Ej+1\ej+1 under the→hb relation.

last, if it exists, does not relaxed happens-before any operation e such that
a(e) 6= a(last) and p(e) 6= p(last). last does not relaxed happens-before an
interlocked operation on any address on the same thread.

When it is not possible to satisfy conditions (d) and (e), we can remove any
event ej+1 satisfying only (a), (b) and (c).

When it is not possible to satisfy condition (c), we can remove any event
ej+1 satisfying only (a), (b), (d) and (e).

We now prove that: (1) there always exists an ej+1 satisfying properties (a),
(b), (c) or (a), (b), (d), (e), and (2) the resulting restrictions E |I0 , E |I1
, . . . , E |In are all TSO traces. We prove this by induction on j.

Since In = I, we have that E |In= E and is a TSO trace.
Suppose that Ej+1 is a TSO trace.

(1) Suppose that there does not exist an event in Ej+1 satisfying either condi-
tions (a), (b) and (c) or conditions (a), (b), (d) and (e). This is equivalent
to saying that all processors’ last events in Ej+1 fail condition (b) or condi-
tions (c) and (d) or conditions (c) and (e). Call these events last1, . . . , lastm.

Because Ej+1 is a TSO trace, it is output by some run of the TSO automaton.
Recall that such a run is a sequence of memory model transitions storeTSO,
storec

TSO, loadTSO, and interlockedTSO. During this run, the automaton
maps each e ∈ Ij+1 to a natural number C(e).

Note that, for any two events e, e′ in a trace E from a TSO run, if e→rhb e′,
then we will have C(e) < C(e′) for the numbers C(e) and C(e′) assigned
during the TSO run. There are several cases: (I) If e →c e′, e ∈ W , and
e′ ∈ R, then a(e′) = a(e) and either p(e′) 6= p(e) or e ∈ L or e′ ∈ L.
In any case, C(e) is assigned before C(e′). (II) If e →c e′, e ∈ W and
e′ ∈W \R, then a(e′) = a(e) and e is committed before e′. (III) If e→c e

′

and e ∈ R \L, then e′ cannot have committed yet when e is issued, because



either src(e) = ⊥ or src(e) →c e′. (IV) If e →p e′ and e is in R, then e
is issued before e′ is issued or committed, so C(e) < C(e′). (V) Suppose
e →p e′ and e ∈ W \ L. When e′ ∈ W \ L, then e is buffered before e′ in
B[p(e)], so it is removed and committed first. When e′ ∈ L, write e will
be removed from B[p(e)] by interlockedTSO before e′ is committed and
assigned C(e′).

Thus, it follows that that →rhb is acyclic on TSO traces, including Ej+1.

By our assumption, for each event lasti from last1, . . . , lastm there are three
cases: (1) lasti is the source of a read (2) there is some operation e ∈ Rj+1

on a(lasti) or in Lj+1, such that lasti →∗rhb e and removing ej+1 removes all
happens-before cycles or (3) if last is the last write to a(lasti) in Ej+1 there
is some operation e ∈ Ij+1 on a(e) 6= a(last) in p(e) 6= p(last) and p(e) 6=
p(ej+1), such that last→∗rhb e and removing ej+1 removes all happens-before
cycles.
Let Fh be the subset of last1, . . . , lastm such that all events in Fh fail condi-
tion (c). If any of the events in Fh is removed from Ej+1 then all happens-
before cycles are removed. It follows then that all events in Fh belong to the
same same set of happens-before cycles.
Events in {last1, . . . , lastm} \ Fh do not fail condition (c) hence by our as-
sumption they should fail condition (b). Therefore for all lasti not in Fh it
is true that lasti is a write operation and is the source of a read in Ej+1.
We pick now one of the cycles that events in Fh belong to. We order the
events of Fh : f1, . . . , fh in a way such that fi →∗hb fj if i < j and fh is the
event with the largest commit number C in Fh. We examine event fh. Event
fh fails condition (c) and it also fails condition (d) or (e):

(A) Suppose it fails condition (d). Then there exists a read of address a(fh)
or interlocked operation wh such that fh →∗rhb wh. Let fh+1 be the last
event in processor p(wh). Since wh →p fh+1 and wh is not a write, it
is true that wh →rhb fh+1. Therefore fh relaxed happens-before fh+1,
so C(fh) < C(fh+1) and fh+1 /∈ Fh because fh was defined to be the
event with the largest commit number in Fh. Since fh+1 fails condition
(b), let wh+1 be the read whose source is fh+1. Let fh+2 be the last
event in processor p(wh+1). Since wh+1 is a read, wh+1 →rhb fh+2 hence
fh →∗rhb fh+2. For the same reason as before fh+2 /∈ Fh and fh+2 must
fail condition (b). We continue this construction to build a sequence
of events fh+1, wh+1, fh+2, . . . wh+i−1, fh+i where events fh+i /∈ Fh and
fh+i fail condition (b). Since there is a finite number of processors there
must exist k such that fh+k = fh+j for 1 < j < k. However that would
create a relaxed happens-before cycle in Ej+1 so we reached a contra-
diction.

(B) Suppose fh fails condition (e). Let last be the last write to address a(fh).
Then last relaxed happens-before an operation e such that p(e) 6= p(last)
and p(e) 6= p(fh). Let f ′1 be the last event in processor p(last) and f ′′1 the
last event in processor p(e). If f ′1 is any of the events f2, . . . fh−1 then
the happens-before cycle fh →c last →p f ′1 →∗hb fh does not include



event f1 and is not removed when f1 is removed which contradicts the
assumption that f1 fails condition (c). In the same way if f ′′1 cannot
be any of the events f2, . . . fh−1 because of the happens-before cycle
fh →c last →∗rhb e →p f ′′1 →∗hb fh. Therefore f ′1 and f ′′1 are either
event f1 or are not in Fh and thus fail condition (b) and are sources of
loads. Suppose f ′1 is a source of a load and not f1. Then f ′1 is a write and
last→rhb f ′1. In the same way as in (1) we construct a sequence of events
f ′1, w

′
1, f
′
2, . . . , w

′
k−1, f

′
k where fi is the source of w′i and f ′1 →rhb f ′k. Since

the number of processors is limited the sequence will have to reach one
of the events in f1, . . . fh−1. It cannot reach fh or any of the last events
already in the sequence because that would form a relaxed happens-
before cycle. But since f ′1 →∗rhb f ′k and fh →∗rhb f ′1, then fh would have
to relaxed happen-before the event fi for 1 ≤ i < h that the sequence
reaches. Therefore it would be C(fh) < C(fi) which contradicts the fact
that fh has the highest commit number in f1, . . . , fh. Thus f ′1 cannot
be a source of a load and has to be f1. Following the same reasoning we
prove that for f ′′1 if it is a source of a read and not f1 then fh →∗rhb f ′′1
and again we reach a contradiction. Therefore, both f ′1 and f ′′1 have to
be f1 which cannot be true because they are disctinct events. The initial
assumption that fh fails condition (e) is therefore wrong.

In (A) and (B) we proved that fh cannot fail (d) or (e), we reach a contra-
diction assuming that all events in last1, . . . , lastm fail conditions (b) or (c)
and (d) or (c) and (e).

(2) Recall that E = (I,R,W,L, src, c) and Ek is the restriction E |Ik=
(Ik, Rk,Wk, Lk, srck, ck), where Rk = R ∩ Ik, Wk = W ∩ Ik, Lk = L ∩ Ik,
ck = c ∩ Wk ×Wk, and srck is the restriction of src to Rk. Note that:

Ik = Ik ∩ I = Ik ∩ (R ∪ W ) = Rk ∪ Wk

Lk = Ik ∩ L = Ik ∩ (R ∩ W ) = Rk ∩ Wk

Further, for any (l, p, a, i) ∈ Ik and 1 ≤ j < i, we have (l, p, a′, j) ∈ Ik
because condition (a) only allows us to remove in each step the final event
from any process.
Finally, for any e ∈ Rk, we must have that srck(e) = src(e) ∈ Wk. Suppose
src(e) 6∈ Wk. Because Ek+1 is a TSO trace, we have srck+1(e) = src(e) ∈
Wk+1. Thus, we must have selected ek+1 = src(e) to remove. But this con-
tradicts condition (b).
Thus, tuple Ek = E |Ik is a TSO trace.

Note also that, by Axiom 1, each trace Ek = E |Ik is a trace of program P .
Then, E0 ∈ TSC , because E0 is the empty trace, and En ∈ TTSO \ TSC .

Thus, there is maximal Ej that is in TSC . Let it be Ek. Ek+1 then is not in
TSC and thus contains a happens-before cycle. Event ek+1, when removed from
Ek+1, removes all happens-before cycles and thus fails condition (c). Therefore,
in Ek+1 it was not possible to select an event that satisfies conditions (a), (b)
and (c) and ek+1 must satisfy conditions (a), (b), (d) and (e).



Further, let E′ be the sequentially-consistent trace resulting from executing
one more instruction in process p(ek+1) from trace Ek. That is, E′ is trace Ek

with one additional event efinal with p(efinal) = p(ek+1). Note that efinal must be
the same type of event as ek+1—i.e. they are both writes or both loads—although
it may have different src or position in the commit order.

We now prove that the TSO monitor algorithm reports a violation on E′:

(1) Note that ek+1 can have no outgoing conflict edges to a read e ∈ R in Ek+1.

If it were the case that ek+1 →c e in Ek+1 for e ∈ R and p(e) 6= p(ek+1), then
we would have ek+1 →rhb e →rhb e′, where e′ is the last event in process
p(e). But this contradicts condition (d) above.

(2) Let prev be the event just before efinal in process p(efinal). Such an event
must exist.

Suppose there were no events in process p(efinal) preceding efinal. Then ek+1

is the only event in process p(ek+1) in Ek+1, and thus has no incoming or
outgoing →p edges. Thus, the →hb-cycle containing ek+1 contains conflict
edges e′ →c ek+1 →c e′′, with e′′ →∗hb e′. By Point 1, event e′′ cannot be a
read. Thus, it must be the case that e′ →c e′′. But then e′ →c e′′ →∗hb e′ is
an →hb-cycle in Ek, contradicting that Ek ∈ TSC .

(3) Let last denote the last write to a(efinal) in Ek under the →hb relation.

Recall that, because Ek is SC, relation →hb is acyclic on Ek, and thus →hb

totally orders the writes on any single address in Ek. Thus, last is well-defined
if there are any writes to a(ek+1) in Ek.

There must be such a write. Because ek+1 is in an →hb-cycle in Ek+1, there
is a conflict edge ek+1 →c e

′ in Ek+1. By Point 1, event e′ cannot be a read.
Thus, e′ is a write of a(ek) = a(efinal).

(4) It must be the case that ek+1 →c last in Ek+1.

Consider the write e′ such that ek+1 →c e′ in the proof of Point 3 above.
Clearly e′ →c last. Thus, as e′ and last are both writes, ek+1 →c last.

(5) Then, note that p(last) 6= p(efinal).

If last and efinal were in the same process, then so would be last and ek+1,
so last →p ek+1 in Ek+1. But because last and ek+1 are operations on the
same address, TSO would guarantee that last →c ek+1. This contradicts
ek+1 →c last, shown in Point 4 above.

(6) We have that last→∗hb prev.

Let f1 be the final event issued by processor p(last) in Ek. Recall from Point
5 that p(last) 6= p(prev), and note that it could be that f1 = last. Let w1 be
an event that would cause f1 to fail conditions (d) and (e). Then we define
f2 to be the final event issued by processor p(w1) in Ek. We similarly define
sequences w1, . . . , wm and f1, . . . , fm+1 of events in Ek where fi →∗rhb wi in
Ek and fi+1 is the final event issued by processor p(wi). The sequence ends
when fm+1 does not fail neither condition (d) nor (e).



This sequence must be finite, and all of the wi distinct and all of the fi
distinct, because clearly fi →∗rhb wi in Ek and either wi →p fi+1 in Ek or
fi+1 = wi for all i, and because →∗hb is acyclic on the events of Ek.

Suppose fm+1 fails condition (d) in Ek+1, i.e. fm+1 relaxed happens-before
a read or interlocked operation e′ of a(fm+1) in Ek+1. The →rhb path from
fm+1 to e′ must go through ek+1, as fm+1 6→∗rhb e′ in Ek. Suppose further
that this path does not go through prev. Then, either fm+1 →∗rhb e′′ →c ek+1

or fm+1 →c ek+1. But then either e′′ →c last in Ek or fm+1 →c last in Ek,
yielding→hb-cycle last→∗hb fm+1 →∗hb last in Ek. This is a contradiction, so
last→∗hb fm+1 →∗hb prev.

Suppose fm+1 fails condition (e) in Ek+1, i.e. the last write e on a(fm+1)
under the →hb relation relaxed happens-before an operation e′ of a(e′) 6=
a(fm+1) in Ek+1. The →rhb path from e to e′ must go through ek+1, as
e 6→∗rhb e′ in Ek. Suppose further that this path does not go through prev.
Then, either e →∗rhb e′′ →c ek+1 or e →c ek+1. But then either e′′ →c last
in Ek or e →c last in Ek, yielding →hb-cycle last →∗hb e →∗hb last in Ek.
This is a contradiction, so last→∗hb e→∗hb prev and since last→∗hb fm+1 and
fm+1 →∗hb e we get last→∗hb fm+1 →∗hb prev

Suppose instead that fm+1 does not fail conditions (d) or (e) in Ek+1.
Then, fm+1 cannot have satisfied condition (c) in Ek+1 (or else we would
have removed it instead of ek+1). That is, neither ek+1 nor fm+1 satisfies
condition (c) in Ek+1, so removing either of ek+1 or fm+1 would have broken
every →hb-cycle in Ek+1. Then, consider some →hb-cycle ek+1 →c e′ →∗hb

prev →p ek+1 in Ek+1. Event fm+1 must also be in this cycle, and thus
fm+1 →∗hb prev. Therefore, as last→∗hb fm+1, we again have last→∗hb prev.

We can now prove that the TSO monitor algorithm will report a violation
when run on sequentially-consistent trace E′. The events of E′ are presented to
monitorTSO in some linear order e1, . . . , ek1 that respects the →∗hb order.

Suppose algorithm monitorTSO has reached event efinal without yet report-
ing a violation. The monitor must have already processed event last, because
last→∗hb efinal by Point 5 above.

Further, event last must be still be in buffer B[p(last)] at this point. Event
last is flushed only if either: (1) we reach Line 9 with e = last, (2) we reach Line
9 with e a write of any address in p(last) after last, or (3) we reach Line 13 with
p(ei) = p(last).

In case (1), a(ei) = a(last) from condition in line 3 and p(ei) 6= p(last) from
condition in line 8. If ei is a write, this contradicts last being the last write to
address a(last). If ei is a read then last →rhb ei. But ek+1 →rhb last therefore
ek+1 →∗rhb ei and that contradicts condition (d).

In case (2), last and e are writes in the same processor therefore last→rhb e.
Further, if ei is a write then since a(e) = a(ei), e →c ei and e →rhb ei. If ei
is a read then suppose it is not e →∗rhb ei. e cannot be the source of ei. There
must exist write ej such that ej = src(ei). It cannot be e →c ej because in
that case e →∗rhb ei. It has to be ej →c e and hence ei →c e ⇒ ei →hb e.



But this contradicts the fact that ei appears in the monitor algorithm after e
so our assumption that it is not e →∗rhb ei has to be wrong. So, in both cases,
ei is a read or a write, we have that e →∗rhb ei and since last →rhb e, it will be
last→∗rhb ei. This contradicts condition (e).

Case (3) is not possible because last by point 2 happens-after all other writes
to a(last) besides possibly efinal.

Therefore, algorithm monitorTSO will report a violation on sequentially-
consistent trace E′.

Theorem 7 (Complexity of TSO/PSO Monitoring) Time complexity of both
TSO/PSO monitoring is O(|Proc|.|E|), where |E| is the length of the trace and
|Proc| is the number of processes.

Proof. Both monitorTSO and monitorPSO run for n iterations, where n = |E|.
At the time of monitoring, we associate a vector clock with each event so that
we can decide if e→∗hb prev in line 6 of monitorTSO and line 5 of monitorPSO .
Computing vector clock for each event has a run-time complexity of O(|Proc|).
All the buffers in both monitorTSO and monitorPSO have at most |E| distinct
pending stores throughout the algorithm. Therefore, the number of cumulative
iterations of the loops at line 9 of monitorTSO and line 8 of monitorPSO is |E|.
The lookup of e in both monitorTSO and monitorPSO at line 3 can be done
in constant time. This is because by Lemma 1 and Lemma 2, pending stores
for an address a can be present in only one buffer. Therefore, one can maintain
an array indexed by addresses where each element of the array points to the
position of the last pending store for the address in the buffer. Therefore, the
overall complexity of both monitoring algorithms is O(|Proc|.|E|).


