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Abstract

We’ve built a tool for debugging non-deterministic fail-

ures in production datacenter applications. Our system,

called DCR, is the first to efficiently record and replay

large scale, distributed, and data-intensive systems such

as HDFS/GFS, HBase/Bigtable, and Hadoop/MapRe-

duce. The enabling idea behind DCR is that debugging

doesn’t require a precise replica of the original datacenter

run. Instead, it suffices to produce some run that exhibits

the original control-plane behavior. This report details

the design and implementation of DCR and provides pre-

liminary results.

1 Introduction

Recent years have seen the rise of datacenter sys-

tems–large scale, distributed, and data-intensive applica-

tions such as HDFS/GFS [17], HBase/Bigtable [6], and

Hadoop/MapReduce [7]. These mammoth systems em-

ploy thousands of nodes, spread across multiple datacen-

ters, to process terabytes of data per day. Companies

like Facebook, Google, and Yahoo! already use these

systems to process their massive data-sets. But an ever-

growing user population and the ensuing need for new

and more scalable services means that novel datacenter

systems will continue to be built.

Unfortunately, debugging is hard, and we believe

that this difficulty has impeded the development of

existing and new datacenter systems. A key obsta-

cle is non-deterministic failures–hard-to-reproduce pro-

gram misbehaviors that are immune to traditional cyclic-

debugging techniques. These failures often manifest

only in production runs and may take weeks to fully di-

agnose, hence draining the resources that could other-

wise be devoted to developing novel features and ser-

vices [32]. Thus effective tools for debugging non-

deterministic failures in production datacenter systems

are sorely needed.

Developers presently use a range of methods for de-

bugging non-deterministic failures. But they all fall

short in the datacenter environment. The widely-used

approach of manual code instrumentation and logging

requires either extensive instrumentation or foresight of

the failure to be effective–neither of which are realistic

in web-scale systems subject to unexpected production

workloads. Automated testing, simulation, and source-

code analysis tools [10, 20, 28] can find the errors under-

lying several non-deterministic failures before they oc-

cur, but the large state-spaces of datacenter systems ham-

per complete and/or precise results; some errors will in-

evitably fall through to production. Finally, automated

console-log analysis tools show promise in detecting

anomalous events [33] and diagnosing failures [34], but

the inferences they draw are fundamentally limited by

the fidelity of developer-instrumented console logs.

In this paper, we show that replay-debugging tech-

nology (a.k.a, deterministic replay, record/replay) can

be used to effectively debug non-deterministic failures

in production datacenters. Briefly, a replay-debugger

works by first capturing data from non-deterministic data

sources such as the keyboard and network, and then sub-

stituting the captured data into subsequent re-executions

of the same program. These replay runs may then be

analyzed using a conventional debugger (e.g., GDB)

or more sophisticated automated analyses (e.g., race

and memory-leak detection , global predicates [15, 25],

causality tracing [14], etc.).

Many replay systems have been built over the years

and experience indicates that they are invaluable in rea-

soning about non-deterministic failures [1,4,9,15,16,24,

25, 30]. However, no existing system meets the unique

demands of the datacenter environment. Classical re-

play systems such as liblog [16] and VMWare [1] re-

quire all non-deterministic data to be logged, including

data-race outcomes and program inputs, hence incur-

ring high throughput losses and storage costs on mul-

ticore, terabyte-quantity processing. Recent relaxed-



deterministic replay systems such as PRES [30] and Re-

Spec [24] enable efficient multicore recording, but, like

classical replay systems, still record all program inputs.

Finally, inference-based systems such as ODR [2] (our

prior work), ESD [35], and SherLog [34] support effi-

cient multicore recording without recording program in-

puts, but may take exponential time to generate a replay

execution.

To address these shortcomings, we have built DCR–

a Data Center Replay system that records and replays

production runs of datacenter systems like Cassandra,

HDFS, Hadoop, HBase, and Hypertable. The key obser-

vation behind DCR is that, for debugging, we don’t need a

precise replica of the original production run. Instead, it

often suffices to produce some run that exhibits the orig-

inal run’s control-plane behavior. The control-plane of

a datacenter system is the code responsible for manag-

ing or controlling the flow of data through a distributed

system. The control plane tends to be complicated and

thus serves as the breeding ground for many bugs in dat-

acenter software. But at the same time, the control-plane

often operates at very low data-rates. Hence, by repro-

ducing just the control-plane behavior, DCR circumvents

the need to record data-plane inputs, and consequently

achieves low record overheads with tolerable sacrifices

of replay fidelity.

The central challenge in building DCR is that of re-

producing the control-plane behavior of a datacenter app

without knowledge of its original data-plane inputs. This

is challenging because the control-plane’s behavior de-

pends on the data-plane’s behavior: a HDFS client’s de-

cision to look up a block in another HDFS data-node

(a control plane behavior) depends on whether or not

the block it received passed checksum verification (a

data-plane behavior). To address this challenge, we em-

ploy Deterministic-Run Inference (DRI) [2]–an offline

inference mechanism we developed in previous work–to

compute data-plane inputs consistent with the recorded

control-plane input/output behavior of the original run.

Once inferred, DCR then substitutes the data-plane inputs

along with the recorded control-plane inputs into subse-

quent program runs to generate a control-plane determin-

istic run.

DCR is not the first replay-debugger to generate a re-

laxed deterministic replay run using an offline compute

phase; Stone introduced the idea in 1988 [31] and recent

relaxed-deterministic replay systems such as ODR [2]

(our prior work), PRES [30], ReSpec [24], and ESD [35]

largely build on her ideas. But these systems are either

incapable of providing control-plane determinism (PRES

and ReSpec), hence incurring high datacenter logging

overheads, or have offline compute times that are expo-

nential in the length of the original run (ODR and ESD),

hence precluding their use on long-running datacenter

apps. DCR also builds on Stone’s ideas of relaxing de-

terminism. But in contrast with other derivatives, DCR is

the first to enable responsive debugging of control-plane

deterministic runs shortly after the failure was observed–

a property that is essential for practical replay-debugging

of datacenter apps.

DCR achieves responsive debugging times through the

use of Just-In-Time DRI (JIT DRI)–an optimized ver-

sion of DRI that avoids reasoning about an entire run (an

expensive proposition) before replay can begin. The key

observation underlying JIT DRI is that developers are of-

ten interested in reasoning about only a small portion of

the replay run–a stack trace here or a variable inspection

there. For such usage patterns, it makes little sense to in-

fer the concrete values of all execution states. For debug-

ging then, it suffices to infer, in an on-demand manner,

the values for just those portions of state that interest the

user. JIT DRI enables DCR to replay-debug datacenter

systems in a timely manner.

1.1 Requirements

A practical replay-debugging system for datacenter ap-

plications must meet a challenging set of requirements.

Always-on operation. The system must be on at

all times during production so that arbitrary segments of

production runs may be replay-debugged at a later time.

Always-on operation, as opposed to periodic use, is

key because failures tend to be unpredictable and often

manifest long after an underlying error has been trig-

gered. Without knowledge of when these errors occur,

we must work under the assumption that they may oc-

cur at any time. Secondly, using the system periodically

risks perturbing the execution, and consequently, mask-

ing errors in that execution. But recording all the time

would mean that any perturbations would become part

of the normal system behavior.

In the datacenter, supporting always-on operation

is difficult. The system should have minimal impact

on production throughput (less than 10%). But most

importantly, the system should log no faster than tradi-

tional console logging on terabyte-quantity workloads

(100 KBps max). This means that it should not log

all non-determinism, and in particular, all disk and

network traffic. The ensuing logging rates, amounting

to petabytes/week across all datacenter nodes, not only

incur throughput losses, but also call for additional

storage infrastructure (e.g., another petabyte-scale DFS).

Whole-system replay. The system should be able

to replay-debug all nodes in the distributed system, if

desired, shortly after a failure was observed.

Whole-system replay is essential because a failure or

2



its underlying error may occur on any node in the sys-

tem, and unfortunately, we have no way of reliably an-

ticipating the precise node(s) on which the error(s) will

manifest. Of course, whole-system replay is useless if

the developer can’t begin replay-debugging nodes in a

reasonable amount of time after the failure. This rules

out exponential-time offline processing phases that must

be completed before replay-debugging can begin (e.g.,

Stone [31], ODR [2], PRES [30], etc.).

Providing responsive whole-system replay-debugging

is challenging because datacenter nodes are often

inaccessible at the time a user wants to initiate a replay

session. Node failures, network partitions, and unfore-

seen maintenance are usually to blame , but without the

recorded information on those nodes, replay-debugging

cannot be provided.

Out-of-the-box use. The system should record

and replay arbitrary user-level applications on modern

commodity hardware with no administrator or developer

effort. This means that it should not require special

hardware, languages, or source-code analysis and

modifications.

The commodity hardware requirement is essential be-

cause we want to replay existing datacenter systems as

well as future systems1. Special languages and source-

code modifications (e.g., custom APIs and annotations,

as used in R2 [18]) are undesirable because they are

cumbersome to learn, maintain, and retrofit onto exist-

ing datacenter apps. Source-code analysis (e.g., as done

in ESD [35] and SherLog [34]) is also prohibitive due to

the extensive use of dynamically generated (i.e., JITed)

code and dynamically linked libraries. For instance,

the Hotspot JVM, used by HDFS/Hadoop/HBase/Cas-

sandra, employs dynamic compilation.

Language support and source-code modification/anal-

ysis provide rich semantic information about the appli-

cation. Without this information, the task of determining

what information to record, or in some cases what infor-

mation is missing, becomes much harder. Certainly, we

could record all sources of non-determinism. But doing

so would conflict with our goal of providing always-on

operation and whole-system replay.

1.2 Contributions

In short, we make four key contributions to the state of

the art in replay-debugging. First, we have built DCR–

the first system that meets all of the aforementioned

requirements for replay-debugging production runs of

datacenter apps. Second, we introduce the notion of

control-plane determinism–the enabling concept under-

lying DCR. Third, we present Just-In-Time Inference–

an essential optimization that makes offline inference of

control-plane deterministic runs feasible. And finally, we

provide initial results with DCR on real datacenter sys-

tems.

2 Overview

We’ve built a replay-debugging system, called DCR, that

meets all the aforementioned requirements for replay-

debugging production datacenter systems. We begin this

section with the key insight behind DCR. Then we de-

scribe how we turn this insight into an approach and ar-

chitecture.

2.1 Observation: The Control Plane is Key

The central observation behind DCR is that, for debug-

ging datacenter apps, we do not need a precise replica

of the original run. Rather, it generally suffices to re-

produce some run that exhibits the original control-plane

behavior .

The control-plane of a datacenter app is the code that

manages or controls data-flow, like figuring out where

a block is stored in a distributed filesystem, maintain-

ing replica consistency in a meta-data server, or updat-

ing routing table entries in a software router. Control-

plane operations tend to be complicated–they account

for 90% of the newly-written code in datacenter soft-

ware and serve, not surprisingly, as breeding-grounds

for distributed race-condition bugs . On the other hand,

the control-plane is responsible for only 1% of all data-

center traffic .

A corollary observation is that datacenter debugging

rarely requires reproducing the same data-plane behav-

ior. The data-plane of a datacenter app is the code that

processes the data. Examples include code that computes

the checksum of an HDFS filesystem block or code that

searches for a string as part of a MapReduce job. In con-

trast with the control-plane, data-plane operations tend to

be simple–they account for just 10% of the newly-written

code in a datacenter app and are often part of well-tested

libraries. Yet, the data-plane is responsible for generat-

ing 99% of datacenter traffic.

2.2 Approach: Control-Plane Determin-

ism

2.2.1 Overview

The complex yet low data-rate nature of the control-

plane motivates DCR’s approach of relaxing its determin-

ism guarantees. Specifically, DCR aims for control-plane

determinism–a guarantee that replay runs will exhibit

identical control-plane behavior to that of the original
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Figure 1: DCR’s distributed architecture and operation.

run. Control-plane determinism enables datacenter re-

play because it circumvents the need to record data-plane

communications (which have high data-rates), thereby

allowing us to efficiently record and replay all nodes in

the system without much programmer effort.

Figure 1 shows the architecture of our control-plane

deterministic replay-debugging system. Like most

replay systems, it operates in two phases.

Record mode. DCR records control-plane inputs

and outputs (I/O) for all production CPUs (and hence

nodes) in the distributed system. Control-plane I/O

refers to any inter-CPU communications performed by

control-plane code. These communications may be

between CPUs on different nodes (e.g., via sockets)

or between CPUs on the same node (e.g., via shared

memory). DCR streams the control-plane I/O to a

Hadoop Filesystem (HDFS) cluster–a highly available

distributed data-store designed for datacenter operation–

using Chukwa [5].

Replay-debug mode. To replay-debug her appli-

cation, an operator or developer interfaces with DCR’s

Distributed-Replay Engine (DRE). The DRE leverages

the previously recorded control-plane I/O to provide

the operator with a causally-consistent, control-plane

deterministic view of the original distributed execution.

The operator interfaces with the DRE using a distributed

variant of GDB that we developed in prior work (see the

Friday system [15]). Like GDB, our debugger supports

inspection of local state (e.g., variables, backtraces). But

unlike GDB, it also supports inspection of global state

via global predicates .

3 Challenges

3.1 Recording Control Plane I/O

3.1.1 Overview

To record control-plane I/O, DCR must first identify it.

Unfortunately, such identification generally requires a

deep understanding of program semantics, and in partic-

ular, whether or not the I/O emanates from control-plane

code.

In some cases, we can expect the developer to manu-

ally identify control-plane modules with little effort. For

example, a developer will likely know that in HDFS the

master node is a control-plane only module, and that

almost all its I/O is control-plane in nature. Not all

datacenter apps are so cleanly compartmentalized, how-

ever. Cassandra (Facebook’s P2P storage system), for

instance, intermixes control and data-plane code. And

even those apps that are, at the high-level, purely data-

plane (e.g., HDFS slaves) still have some control-plane

code; for example to parse lookup requests from clients.

Rather than rely on the developer to understand the

nuances of complicated systems software, DCR aims for

automatic identification of control-plane I/O. The obser-

vation behind our identification method is that control

and data plane I/O generally flow on distinct communi-

cation channels, and that each type of channel has a dis-

tinct signature. We leverage this observation to interpose

on communication channels and then record the transac-

tions (i.e., reads and writes) of only those channels that

are classified as control-plane channels.

Of course, any classification of program semantics

based on observed behavior will likely be imperfect.

Nevertheless, our experimental results show that, in prac-

tice, our techniques provide a tight over-approximation–

enough to eliminate developer burden and be considered

useful.

3.1.2 Interposing on Channels

DCR interposes on commonly-used inter-CPU commu-

nication channels, regardless of whether these channels

connect CPUs on the same node or on different nodes.

The channels we consider not only include explicitly

defined channels such as sockets, pipes, tty, and file I/O,

but also implicitly defined channels such as message

header channels (e.g., the first 32 bytes of every mes-

sage) and shared memory.

Socket, pipe, tty, and file channels are the easiest to

interpose efficiently as they operate through well-defined

interfaces (system calls). Interpositioning is then a mat-

ter of intercepting these system calls, keying the channel

on the file-descriptor used in the system call (e.g., as
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specified in sys read() and sys write()), and

observing channel behavior via system call return values.

Shared memory channels are the hardest to inter-

pose efficiently. The key challenge is in detecting

sharing; that is, when a value written by one CPU is

later read by another CPU. A naive approach would be

to maintain per memory-location meta-data about CPU-

access behavior. But this is expensive, least because it

requires intercepting every load and store. One could

improve performance by considering accesses to only

shared pages. But this too incurs high overheads in

multi-threaded apps (i.e., most datacenter apps) where

the entire address-space is shared.

To efficiently detect inter-CPU sharing, DCR em-

ploys the page-based Concurrent-Read Exclusive-Write

(CREW) memory sharing protocol, first suggested in the

context of deterministic replay by Instant Replay [22]

and later implemented and refined by SMP-ReVirt [9].

Page-based CREW leverages page-protection hardware

found in modern MMUs to detect concurrent and con-

flicting accesses to shared pages. When a shared page

comes into conflict, CREW then forces the conflicting

CPUs to access the page one at a time, effectively sim-

ulating a synchronized communication channel through

the shared page.

Page-based CREW in the context of deterministic re-

play has been well-documented by the SMP-ReVirt sys-

tem [9], so we omit details here. However, we note that

DCR’s use of CREW differs from that of SMP-ReVirt’s in

two major ways. First, DCR isn’t interested in recording

the ordering of accesses, but rather the content of each

page (assuming the page is in the control-plane); on a

CREW fault, DCR records the faulting page (4K on x86-

32), just like it would had it received a page’s worth of

data on a control-plane socket. Second, DCR is inter-

ested only in user-level sharing (it’s a user-level replay

system), so false-sharing in the kernel (e.g., due to spin-

locks) isn’t an issue for us (false-sharing at user space is,

though; see Section 3.1.4).

3.1.3 Classifying Channels

We use the channel’s data-rate to identify its type. That

is, if the channel data-rate exceeds a threshold, then

we deem it a data-plane channel and stop recording

it. If not, then we treat it as a control-plane channel

and record it. The data-rate metric is effective because

control-plane code generally operates at low data-rates.

This makes sense because the goal of the control-plane

is to coordinate and manage workloads, not to process

or transfer it.

Socket, pipe, tty, and file channels. The data-rates on

these channels are measured in bytes per second. DCR

measures these rates by keeping track of the number of

bytes transferred (as indicated by sys read() return

values) over time. We maintain a simple moving average

over a t-second window, where t = 2 by default.

Shared-memory channels. The data-rates here

are measured in terms of CREW-fault rate. The higher

the fault rate, the greater the amount of sharing through

that page. We collect the page-fault rate by updating a

counter on each CREW fault, and maintaining a moving

average of a 1 second window. We chose a control-plane

threshold of 25 faults/sec.

Though effective, the strategy of using CREW page-

faults to detect shared-memory communication is not

without drawbacks. In particular, the behavior of legiti-

mate but high data-rate control-plane activity (e.g., spin-

locks) will not be captured, hence precluding control-

plane determinism. In practice, the impact of this draw-

back is mitigated by the fact that user-level apps (espe-

cially those that use pthreads) rarely employ spin-

locks. In particular, pthread mutex lock() will

await notification of lock availability in the kernel rather

than spin incessantly.

3.1.4 Avoiding High CREW Fault-Rates

The CREW protocol, under certain workloads, can in-

cur high page-fault rates than in turn will seriously de-

grade performance (see SMP-ReVirt ). Often this is

due to legitimate sharing between CPUs, such as when

CPUs contend for a spin-lock. Sometimes, however, the

sharing may be false–a consequence of unrelated data-

structures being housed on the same page. In such cir-

cumstances, CPUs aren’t actually communicating on a

channel.

Regardless of the cause, DCR employs a simple strat-

egy to avoid high page-fault rates. When DCR observes

that the fault-rate threshold for a page is exceeded (i.e.,

is a data-plane channel), it removes all page protections

from that page and subsequently enables unbridled ac-

cess to it, thereby effectively turning CREW off for that

page. CREW is then re-enabled for the page n seconds

in the future to determine if data-rates have changed.

3.2 Providing Control-Plane Determinism

3.2.1 Distributed Deterministic-Run Inference

The central challenge faced by DCR’s Distributed Replay

Engine (DRE) is that of providing a control-plane de-

terministic view of program state in response to debug-

ger queries. This is challenging because, although DCR

knows the original control-plane inputs, it does not know
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Figure 2: A closer look at DCR’s Distributed-Replay En-

gine (DRE). It employs Distributed Deterministic-Run

Inference to provide the debugger with a control-plane

deterministic view of distributed state. With the Just-In-

Time optimization enabled, the DRE requires an addi-

tional query argument (dashed).

the original data-plane inputs. Without the data-plane in-

puts, DCR can’t employ the traditional replay technique

of re-running the program with the original inputs. Even

re-running the program with just the original control-

plane inputs is unlikely to yield a control-plane deter-

ministic run, because the behavior of the control-plane

depends on the behavior of the data-plane.

To address this challenge, the DRE employs Dis-

tributed Deterministic Run Inference (DDRI)–the dis-

tributed extension of a single-node inference mechanism

we previously developed to efficiently record multipro-

cessor execution (see the ODR system [2]). DDRI

leverages the original run’s control-plane I/O (previously

recorded by DCR) and program analysis to compute a

control-plane deterministic view of the query-specified

program state. DDRI’s program analysis operates en-

tirely at the machine-instruction level and does not re-

quire annotations or source-code. Moreover, it works on

large and sophisticated datacenter software–even those

that run on the JVM (notorious for dynamically generat-

ing code).

Depicted in Figure 2, DDRI works in two stages. In

the first stage, global formula generation, DDRI trans-

lates the distributed program into a logical formula that

represents the set of all possible distributed, control-

plane deterministic runs. Of course, the debugger-query

isn’t interested in this set. Rather, it is interested in a sub-

set of a node’s program state from just one of these runs.

So in the second phase, global formula solving, DDRI

dispatches the formula to a constraint solver. The solver

computes a satisfiable assignment of variables for the un-

knowns in the formula, thereby instantiating a control-

plane deterministic run. From this run, it then extracts

and returns the debugger-requested execution state.

3.2.2 Global Formula Generation

Generating a single formula that captures the behavior of

a large scale datacenter system is hard, for two key rea-

sons. First, a datacenter system is composed of hundreds

of CPUs, and the formula must capture all of their be-

haviors. Second, the behavior of any given CPU in the

system depends on the behavior of other CPUs. Thus the

formula needs to capture the collective behavior of the

system so that inferences we make from the formula are

causally consistent across CPUs.

To capture the behavior of multiple, distributed CPUs,

DCR generates a local formula for each CPU. A local

formula for CPU i, denoted as L(Cini,Dini) = Couti,

represents the set of all control-plane deterministic runs

for that CPU, independent of the behavior of all other

CPUs. DCR knows the control-plane inputs (Cini) of

all CPUs, so the only unknowns in the formula are the

CPU’s data-plane inputs (Dini). Local formula genera-

tion is distributed on available nodes in the cluster and is

described in further detail in Section 3.2.4.

To capture the collective behavior of distributed CPUs,

DCR binds the per-CPU local formulas (Li’s) into a fi-

nal global formula G. The binding is done by taking

the logical conjunction of all local formulas and a global

causality condition. The global causality condition is a

set of constraints that requires any message received by

a CPU to have a corresponding and preceding send event

on another CPU, hence ensuring that inferences we make

from the formula are causally consistent across nodes. In

short, G = L0 ∧ . . . ∧ Ln ∧ C, where C is the global

causality condition.

3.2.3 Global Formula Solving

In theory, DDRI could send the generated global for-

mula, in its entirety, to a lone constraint solver. However,

in practice, this strategy is doomed to fail as modern con-

straint solvers are incapable of solving the multi-terabyte

formulas and NP-hard constraints produced by sophis-

ticated and long-running datacenter apps. Section 3.3.1

discusses how we address this challenge.

3.2.4 Local Formula Generation

DDRI translates a program into a local-formula using

Floyd-style verification condition generation [13]. The

DDRI generator most resembles the generator employed

by Proof-Carrying Code (PCC) [29] in that it works by

symbolically executing the program at the instruction

level, and produces a formula representing execution

along multiple program paths. However, because the
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PCC and DDRI generators solve different problems,

they differ in the following ways:

Conditional and indirect jumps. Upon reaching

a jump, the PCC generator will conceptually fork and

continue symbolic execution along all possible succes-

sors in the control-flow graph. But when the jump is

conditional or indirect, this strategy may yield formulas

that are exponential in the size of the program.

By contrast, the DDRI generator considers only

those successors implied by the recorded control-plane

I/O. This means that when dealing with control-plane

code, DDRI is able to narrow the number of considered

successors down to one. Of course, the jump may be

data-plane dependent (e.g., data-block checksumming

code). In that case, multiple static paths must still be

considered.

Loops. At some point, symbolic execution will

encounter a jump that it has seen before. Here PCC

stops symbolically executing along that path and instead

relies on developer-provided loop-invariant annotations

to summarize all possible loop iterations, hence avoiding

“path explosion” .

Rather than rely on annotations, DDRI unrolls the

loop a fixed number of times (similar to the unrolling

done by ESC-Java [12]), using the branch count of the

next recorded system event (e.g., syscall) to establish

an upper-bound. This effectively offloads the work

of finding the right dynamic path through the loop to

the constraint solver, hence avoiding path explosion

during the generation phase (the solving phase is still

susceptible, but see Section 3.3.1).

Indirect accesses (e.g., pointers). Dereferences of

symbolic pointers may access one of many locations. To

model this precisely, PCC models memory as a symbolic

array, hence offloading alias analysis to the constraint

solver. Though such offloading can scale with PCC’s

use of annotations, DDRI’s annotation free requirement

results in an intolerable burden on the constraint solver .

Rather than model all of memory as an array, we

model only those pages that may have been accessed in

the original run by the symbolic dereference. We know

what those pages are because we recorded their IDs

in the original run using conventional page-protection

techniques .

Dynamically generated code. To symbolic exe-

cute along the program’s control-flow graph, PCC

(and others ) assumes the availability of all program

code before symbolic execution can begin. But this

assumption breaks when dynamically linked libraries

or JITed code enter the picture, as such code is not

generated until run-time.

DDRI handles dynamically generated code by gen-

erating the control-flow graph on-demand as executable

code pages are mapped into the address space. Of course,

this assumes that code pages will be mapped in at the

same times and with the same content during replay, the

latter of which may not hold for symbolic code pages

arising from data-plane tainted dynamic generation code

(unlikely, but possible). We circumvent this problem,

however, by ensuring that memory operations are de-

terministically replayed and that all mapped code pages

have the same code as executed in the original run. DCR

records this information in the original run with minimal

overhead.

3.3 Shortening Debugger Response Time

A primary goal of DCR is to provide responsive inter-

active replay-debugging. Specifically, DCR aims for re-

sponse times that are at most linear in the length of the

original run. But to achieve this goal, DDRI (the post-

run inference method introduced in Section 3.2) must

surmount major scalability challenges.

3.3.1 Huge Formulas, NP-Hard Constraints

When used on datacenter systems, DDRI produces for-

mulas that are intractably difficult for modern solvers.

DDRI-generated formulas may be terabytes in size since

DDRI must reason about long-running data-processing

code that handle terabytes of data that DCR never

recorded. But more fundamentally, these formulas of-

ten contain NP-hard constraints. This is not surprising

as datacenter apps often invoke cryptographic routines

(e.g., SHA-1) to perform off critical-path verification.

To overcome this challenge, we’ve developed Just-

In-Time DDRI (JIT-DDRI)–an on-demand variant of

DDRI that enables responsive inference-based debug-

ging of datacenter apps. The observation underlying JIT-

DDRI is that, when debugging, developers observe only

a portion of the execution–a variable inspection here or

a stack trace there. Rarely do they inspect all program

states. This observation then implies that there is no need

to solve the entire formula generated by FormGen, as that

corresponds to the entire execution. Instead, it suffices to

solve just those parts of the formula that correspond to

developer interest.

Figure 2 (dashed and solid) illustrates the DDRI ar-

chitecture with the JIT optimization enabled. JIT DDRI

accepts an execution segment of interest and state expres-

sion from the debugger. The segment specifies a time

range of the original run and can be derived by manually
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inspecting console logs. JIT DDRI then outputs a con-

crete value corresponding to the specified state for the

given execution segment.

JIT DDRI works in two phases that are similar to

non-JIT DDRI. But unlike non-JIT DDRI, each stage

uses the information in the debugger query to make

more targeted inferences:

JIT Global Formula Generation. In this phase,

JIT-DDRI generates a formula that corresponds only to

the execution segment indicated by the debugger query.

The unique challenge faced by JIT FormGen is in

starting the symbolic execution at the segment start point

rather than at the start of program execution. To elab-

orate, the symbolic state at the segment start point is

unknown because DDRI did not symbolically execute

the program before that. The JIT Formula Generator ad-

dresses this challenge by initializing all state (memory

and registers) with fresh symbolic variables before start-

ing symbolic execution, thus employing Engler’s under-

constrained execution technique [11].

For debugging purposes, under-constrained execution

has its drawbacks. In particular, the inferred concrete

state may be causally inconsistent with events (control-

plane or otherwise) before the specified starting point.

This could be especially problematic if the root-cause

being chased originated before the specified starting

point.

JIT Global Formula Solving. In this phase, JIT-

DDRI solves only the portion of the previously

generated formula that corresponds to the memory

locations specified in the query.

The main challenge here is to identify the constraints

that must be solved to obtain a concrete value for the

memory location. We do this in two steps. First we re-

solve the memory location to a symbolic variable, and

then we resolve the symbolic variable to a set of con-

straints in the formula. We perform the first resolution

by looking up the symbolic state at the query point (this

state was recorded in the FormGen phase). Then for the

second resolution, we employ a connected components

algorithm to find all constraints related to the symbolic

variable. Connected components takes time linear in the

length of the formula.

3.3.2 Channel Causality

A replay-debugger is of limited use if it doesn’t let the

developer backtrack the chain of causality from the fail-

ure to its root cause. But guaranteeing causality in

inferred datacenter runs is hard: it requires efficiently

reasoning about communications spanning thousands of

CPUs possibly spread across thousands of nodes. JITI

(described in Section ) can help with such reasoning by

solving only those constraints involved in the chain of

causality of interest to the developer. But if the causal

chain is long, then even JITI-produced constraints may

be overwhelmingly large for the solver.

We once again invoke the central theme of this work

to overcome this challenge. Specifically, we observe

that control-plane channel causality is essential for dat-

acenter debugging and that data-plane causality is dis-

pensable. Our approach then is to record causality of

control-plane channels, but to forego recording or in-

ferring causally consistent data-plane communications.

The result of this approach is that we completely avoid

reasoning about channel causality, as the causality that

we care about (control-plane causality) is reproduced ex-

actly as recorded.

The primary challenge with our approach is in record-

ing control-plane causality. DCR captures causality using

logical clocks , like most other distributed replay sys-

tems (see liblog [16] and R2 [18]). In explicitly defined

channel such as sockets, clock values are piggybacked

on channel messages, and updated per standard Lam-

port clock rules [21]. Message fragmentation in TCP/IP

channels presents some challenges, but we leverage our

prior work to overcome them (see the liblog replay sys-

tem [16]). For shared memory channels, the clock values

are transmitted through shared memory itself on CREW-

faults, as done by SMP-ReVirt [9].

4 Implementation

DCR currently runs on Linux/x86. It consists of 120

KLOC of code (95% C, 3% ASM). 70 KLOC is due to

the LibVEX binary translator. We developed the other 50

KLOC over a period of 6 person-years. Here we present

a selection of the implementation challenges we faced.

4.1 User-Level Architecture

We designed DCR to work entirely at user-level for sev-

eral reasons. First, we wanted a tool that works with and

without VMs. After all many important datacenter envi-

ronments don’t use VMs. Secondly, we wanted the im-

plementation to be as simple as possible. VM-level op-

eration would require that the DRE reason about kernel

behavior as well–a hard thing to get right. Moreover it

avoids semantic gap issues . Finally, we found that inter-

posing on control-plane channels to be efficient. Specif-

ically, we were able to Linux’s vsyscall page to avoid

traps. Moreover we avoided high CREW fault rate due

to false-sharing in the kernel.

Implementing the CREW protocol at user-level pre-

sented some challenges, primarily because Linux doesn’t

permit per-thread page protections (i.e., all threads share
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a page-table). This means that we can’t turn off protec-

tions for a thread executing on one CPU while enable its

for a thread running on a different CPU. We address this

problem by extending each process’s page table (by mod-

ifying the kernel) with per-CPU page-protection flags.

When a thread gets scheduled in to a CPU, then it uses

the protections for the corresponding CPU.

4.2 Formula Generation

DDRI generates a formula by symbolically executing

the target program (see Section 3.2.4), in manner very

similar to that of the Catchconv symbolic execution

tool [26]. Specifically, symbolic execution proceeds at

the machine instruction level with the aid of the Lib-

VEX binary translation library. VEX translates x86 into

a RISC-style intermediate language once basic block at

a time. DDRI then translates each statement in the basic

block to an STP constraint.

DCR’s symbolic executor borrows several tricks from

prior systems. An important optimization is constraint

elimination, in which constraints for those instructions

not tainted by symbolic inputs (e.g., data-plane inputs)

are skipped.

4.3 Debugger Interface

DCR’s debugger enables the developer to inspect pro-

gram state on any node in the system. It is implemented

as a Python script that multiplexes per-node GDB ses-

sions on to a single developer console, much like the

console debugger of the Friday distributed replay sys-

tem [15]. With the aid of GDB, our debugger currently

support four primitives: backtracing, variable inspection,

breakpoints, and execution resume. Watchpoints and

state modification are currently unsupported .

Getting DCR’s debugger to work was hard because

GDB doesn’t know how to interface with the DRE. That

is, unlike classical replay mechanisms, the DRE doesn’t

actually replay the application; it merely infers specified

program state. However, the key observation we make is

that GDB inspects child state through the sys ptrace

system call. This leads to DCR’s approach of intercept-

ing GDB’s ptrace calls and translating them into queries

that the DRE can understand. When the DRE provides

an answer (i.e., a concrete value) to DCR, it then returns

that value to GDB through the ptrace call.

5 Evaluation

5.1 Performance

The goal of this section is to provide a comparative eval-

uation of DCR’s performance. A fair comparison, how-

ever, is difficult because, to our knowledge, no other pub-

licly available, user-level replay system is capable of de-

terministically replaying the datacenter apps in our suite.

Rather than compare apples with oranges, we base our

comparison on a modified version of DCR, called C&D,

that records both control and data plane non-determinism

in a fashion most similar to SMP-ReVirt [9]–the state of

the art in classical multi-core deterministic replay.

In short, we found that DCR incurs very low record-

ing overheads (at about 15% slowdown and 3 GB/day

log rates) suitable for always-on production use. More-

over, we found that DCR’s debugger response times,

though sometimes sluggish, are generally fast enough to

be useful–even in the presence of NP-hard constraints.

By contrast, C&D provides extremely responsive debug-

ging sessions as would be expected of a classical replay

system. But it incurs impractically high record-mode

overheads (over 50% slowdown and 3 TB/day log rates)

on datacenter workloads.

5.1.1 Setup

We evaluate six widely-used datacenter applications:

Cassandra, HBase, Hyptertable, HDFS, CloudStore, and

Hadoop. Cassandra, HBase, and Hypertable are dis-

tributed databases that are in production use at compa-

nies like Facebook and Twitter. HDFS and CloudStore

are distributed filesystems that are in production use at

companies like Yahoo! and BaiDu. Hadoop is a dis-

tributed data processing system in the style of MapRe-

duce used by Yahoo! and others.

All apps were run on a 50-VM cluster on Amazon’s

EC2 , with workloads chosen to mimic peak datacen-

ter operation and to finish in 10 minutes. Specifically,

for the distributed databases, 25 clients performed con-

current lookups and deletions to a 20 terabyte table of

web data. For the distributed filesystems, 25 clients per-

formed concurrent gets and puts of 100 gigabyte files.

Finally, Hadoop was made to perform a distributed grep

of a 20 terabyte text file.

Each VM in our cluster operates at 2.0GHz and has

4GB of RAM. The OS used was Debian 5 with a 2.6.29

Linux kernel. The kernel was patched to support DCR’s

interpositioning hooks. Our experimental procedure con-

sisted of a warmup run followed by 6 trials. We report

the average numbers of these 6 trials. The standard devi-

ation of the trials was within three percent.

5.1.2 Record Mode

Logging Rates. Figure 3 gives results for the record

rate, a key performance metric for datacenter work-

loads. At the high level, the graph shows that DCR’s

log rates are suitable for the datacenter: they are less
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cation execution time, for (1) C&D which records control

and data planes and (2) DCR which records just the con-

trol plane. DCR’s performance is as high as 60% better.

than those of traditional console logs and two orders

of magnitude lower than C&D’s rates (3 GB/day v. 3

TB/day). This result is not surprising because, un-

like C&D, DCR does not record data-plane channels.

Interestingly, shared-memory I/O plays a much more

prominent role in DCR than in C&D. That’s because DCR

logs the contents of the entire page on each CREW

fault while C&D logs only their ordering (in the style

of SMP-ReVirt). The impact of recording 4K pages

should be greater, but DCR deems pages with high fault-

rates to be data-plane channels and stops recording them.

Slowdown. Figure 4 gives the slowdown incurred

by DCR broken down by various instrumentation costs.

At about 15%, DCR’s record-mode slowdown is as
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Figure 5: DCR’s replay-debugging query response times

for a 50 node HDFS cluster. The initial query is really

slow, but subsequent queries are generally much faster.

Dots denote queries that timed out.

much as 60% less than C&D’s. Since DCR records

just the control-plane, it doesn’t have to compete for

disk bandwidth with the application as DCR has to do.

Overall, the DCR’s slowdowns on data-intensive work-

loads are similar to those of classical replay systems on

data-unintensive workloads.

DCR’s slowdowns are greater than our goal of 1%. The

main bottleneck is shared-memory channel interposition-

ing. Here CREW faults and the associated copying of

the faulting page to the log are to blame. For some apps,

pages may fault more than a thousand times a second

(see SMP-ReVirt [9]). But fortunately, DCR avoids mas-

sive slowdowns by disabling CREW for the high data-

rate pages.

5.1.3 Replay-Debug Mode

Figure 5 gives the debugger query-response times for

DCR. C&D’s response times are on the order of microsec-

onds, as expected, and thus are omitted.

We collected DCR’s response times using a script that

simulates a manual debugging session. The script makes

500 queries for state from the first 10 minutes of the

original distributed execution. The queries are directed

at randomly selected nodes and may ask the replay en-

gine to print a backtrace, return a variable’s value (cho-

sen from the stack context indicated by the backtrace),

or step forward n instructions on those node. Non-initial

queries that take longer than 10 seconds are cancelled.

Looking at Figure 5, DCR’s response times have

several notable features:

The first query is really slow, because it induces

DDRI to generate a formula and then split it. Formula
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Figure 6: A comparison with other replay-debugging

systems. Only DCR meets all the requirements for dat-

acenter apps.

generation and split time are on average 49x and 9x,

respectively, the runtime of the segment being debugged

(10 minutes in this case). Though slow, both operations

take time linear in the length of the segment.

Non-initial queries are generally fast, because re-

sults of the formula generation and splitting done in

the first query were cached and reused in subsequent

queries. The bulk of the effort for these queries is

devoted to constraint solving. The solving time is gen-

erally fast because only the query-relevant portion of the

original formula (as determined in the splitting phase)

is solved. Some queries don’t even require constraint

solving because they are directed at control-plane state,

which is concrete.

Some non-initial queries timeout, because the con-

straints they resolve to are fundamentally hard to solve,

or because the constraint solver has a hard time with it

(e.g., because it was non-linear). Note than in either

case, the response times of subsequent queries remain

unaffected–a key benefit of JIT formula solving.

6 Related Work

Figure 6 compares DCR with other replay-debugging

systems along key dimensions. The following para-

graphs explain why existing systems do not meet our

requirements.

Always-on operation. Classical replay systems

such as Instant Replay, liblog, VMWare, and SMP-

ReVirt are capable of, or may be easily adapted for,

large-scale distributed operation. Nevertheless, they

are unsuitable for the datacenter because they record

all inbound disk and network traffic. The ensuing

logging rates, amounting to petabytes/week across all

datacenter nodes, not only incur throughput losses,

but also call for additional storage infrastructure (e.g.,

another petabyte-scale DFS).

Several relaxed-deterministic replay systems (e.g.,

Stone [31], PRES [30], and ReSpec [24]) and hardware

and/or compiler assisted systems (e.g., Capo [27], Lee

et al. [23], DMP [8], CoreDet [3], etc.) support efficient

recording of multi-core, shared-memory intensive

programs. But like classical systems, these schemes still

incur high record-rates on network and disk intensive

distributed systems (i.e., datacenter systems).

Whole-system replay. Several replay systems can

provide whole-system replay for small clusters, but not

for large-scale, failure-prone datacenters. Specifically,

systems such as liblog [16], Friday [15], VMWare [1],

Capo [27], PRES [30], and ReSpec [24] allow an

arbitrary subset of nodes to be replayed, but only if

recorded state on that subset is accessible. Order-based

systems such as DejaVu and MPIWiz may not be able

to provide even partial-system replay in the event of

node failure, because nodes rely on message senders to

regenerate inbound messages during replay.

Recent output-deterministic replay systems such as

ODR [2] (our prior work), ESD [35], and SherLog [34]

can efficiently replay some single-node apps (ESD

more so than the others). But these systems were not

designed for distributed operation, much less datacenter

apps. Indeed, even single-node replay is a struggle

for these systems. On long-running and sophisticated

datacenter apps (e.g., JVM-based apps), they require

reasoning about an exponential number of program

paths, not to mention NP-hard computations, before a

replay-debugging session can begin.

Out-of-the-box use. Several replay schemes em-

ploy hardware support for efficient multiprocessor

recording . These schemes don’t address the problem of

efficient datacenter recording, however. What’s more,

they currently exist only in simulation, so they don’t

meet our commodity hardware requirement.

Single-node, software-based systems such as Core-

Det [3], ESD [35], and SherLog [34] employ C source

code analyses to speed the inference process. However,
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applying such analyses in the presence of dynamic code

generation and linking is still an open problem. Unfor-

tunately, most of the datacenter apps we consider run

within the JVM, well-known for dynamically generating

code.

The R2 system [18] provides an API and annotation

mechanism by which developers may select the appli-

cation code that is recorded and replayed. Conceivably,

the mechanism may be used to record just control-plane

code, thus incurring low datacenter recording overheads.

Alas, such annotations are hardly “out of the box”.

They require considerable developer effort to manually

identify the control-plane and to retrofit existing code

bases.

7 Conclusion

We’ve presented DCR, a replay-debugging system for

datacenter applications. We believe it is the first viable

replay debugging system in that provides always-on op-

eration, whole distributed system replay, and out of the

box operation. The key idea behind DCR is control-plane

determinism–the notion that it suffices to reproduce the

control-plane behavior of the datacenter system. Cou-

pled with Just-In-Time Inference, DCR enables practi-

cal replay-debugging of large-scale, data-intensive dis-

tributed systems. Looking forward, we hope to further

improve DCR’s recording overheads and debugging re-

sponse times.
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Notes

1Note that it’s not clear at the moment what hardware would be

needed to support datacenter replay–existing work on hardware support

for efficient multi-core recording is of limited use in this domain.
2Lee at al. also aim for order determinism, though this is not guar-

anteed.
3PRES and ReSpec aim for I/O and partial-order determinism while

liblog and VMWare provide value-determinism.
4SherLog provides best-effort console log output determinism–no

guarantees are made.
5DejaVu was designed for Java apps, but its core techniques may be

adapted in a more generic system.
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