
Gibbs sampling in open-universe stochastic

languages

Nimar S Arora
Rodrigo de Salvo Braz
Erik Sudderth
Stuart J. Russell

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-34

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-34.html

March 27, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work wouldn't have beeen possible without the considerable
assistance provided by Brian Milch to make the models presented here
work in BLOG-MH. Matthew Can provided a translation of the Alarm Bayes
Net to BLOG. Finally, the first author wishes to thank his family for
their boundless patience and support during this work.

Gibbs sampling in open-universe stochastic

languages

Nimar S. Arora, Rodrigo de Salvo Braz, Erik Sudderth, Stuart Russell

March 27, 2010

Abstract

Languages for open-universe probability models (OUPMs) can rep-
resent situations with an unknown number of objects and identity un-
certainty, which comprise a very important class of real-world applica-
tions. Current general-purpose inference methods for such languages are,
however, much less efficient than those implemented for more restricted
languages or for specific model classes. This paper goes some way to rem-
edying the deficit by introducing, and proving correct, a general method
for Gibbs sampling in partial worlds where model structure may vary
across worlds. The method draws on and extends previous results on
generic OUPM inference and on auxiliary-variable Gibbs sampling for
non-parametric mixture models. It has been implemented for BLOG,
a well-known OUPM language. Combined with compile-time optimiza-
tions, it yields very substantial speedups over existing methods on several
test cases and substantially improves the practicality of OUPM languages
generally.

1 Introduction

General-purpose probabilistic modelling languages aim to facilitate the devel-
opment of complex models while providing effective, general inference methods
so that the model-builder need not write model-specific inference code for each
application from scratch. For example, BUGS (Spiegelhalter et al., 1996) can
represent directed graphical models over indexed sets of random variables and
uses MCMC inference (in particular, Gibbs sampling where this is possible).

As the expressive power of modelling languages increases, the range of rep-
resentable problems also increases. Thus, the class of first-order, open-universe
probabilistic languages, which includes BLOG (Milch et al., 2005b) and Church
(Goodman et al., 2008), handles cases in which the number of objects (in BUGS,
the index set) is unknown and perhaps unbounded, and object identity is uncer-
tain. It is still possible to write a complete inference algorithm for BLOG, based
on MCMC over partial worlds; each such world is constructed from the mini-
mal self-supporting set of variables relevant to the evidence and query variables.

1

Generality has a price, however: BLOG’s Metropolis–Hastings inference engine
samples each variable conditioned only on its parents, which is unacceptably
slow for many commonly used models.

Our goal in this work is to remedy this situation, primarily by extending
the range of situations in which full Gibbs samplng can be used within BLOG.
Section 2 of this paper introduces the terminology of Contingent Bayesian Net-
works (CBNs), which we will use as the propositional “abstract machine” for
open-universe stochastic languages. Section 3 describes previous work related
to general-purpose sampling of CBNs and describes its limitations. Section 4
describes our novel Gibbs sampling algorithm for CBNs which addresses these
limitations; its implementation for BLOG is described in Section 5. Finally,
we present experimental results on various models in Section 6, demonstrating
substantial speedups over existing methods.

2 Contingent Bayesian Networks

This section covers definitions which are repeated from (Milch et al., 2005b)
and (Milch et al., 2005a) for clarity. Some of the definitions have been modified
to increase generality.

A Contingent Bayesian Network (CBN) consists of a set of random variables
V and for each variable X ∈V a domain dom(X) and a decision tree TX . The
decision tree is a directed binary tree where each node is a predicate on a subset
of V. A leaf of TX is a probability distribution parameterized by a subset of V
and defined on dom(X).

Example 1. An aircraft of unknown WingType – Helicopter or FixedWing-
Plane – is detected on a radar. Helicopters have an unknown RotorLength and
depending on this length they might produce a characteristic pattern called a
BladeFlash (Tait, 2009) in the returned radar signal. A FixedWingPlane might
also produce a BladeFlash. (see Figure 1)
TWingType = F1

TRotorLength =
{
F2 if WingType = Helicopter
null otherwise

TBladeF lash = {
F3(RotorLength) if WingType = Helicopter
F4 otherwise

An instantiation σ is an assignment of values to a subset of V. We write
vars(σ) for the set of variables to which σ assigns values, and σX for the value
that σ assigns to a variable X. σX=a is a modified instantiation which agrees
with σ except for setting X to a. An instantiation σ is said to be finite if
vars(σ) is finite. An instantiation σ supports X if all the variables needed to
evaluate TX are present in σ. In Example 1, [WingType=FixedWing] supports
BladeFlash, but [WingType=Helicopter] doesn’t.

2

WingType=Helicopter

WingType

RotorLength

BladeFlash

Figure 1: The CBN of Example 1

We write σTX
for the minimal subset of σ needed to evaluate TX . The re-

sulting distribution of X is referred to as pX(. |σTX
). The parents of X in σ are

vars(σTX
) and the children of X are Λ(σ,X) = {Y |Y ∈ vars(σ), X ∈ vars(σTY

)}
The subset of vars(σTX

) which were used to evaluate the nodes of TX (rather
than the leaf) are the switching parents of X in σ. The intuition behind switch-
ing parents is that a change in the value of these can switch the distribution of X
and its set of parents. A switching variable in σ is a variable which is a switch-
ing parent for some variable in σ. From Example 1 again, the instantiation [
WingType=Helicopter, RotorLength=6, BladeFlash=true] has WingType as a
switching parent of both RotorLength and BladeFlash.

An instantiation σ is self-supporting if it supports all variables in σ. As-
suming that the CBN is well-defined (Milch et al., 2005a) we can define the
probability of a self-supporting instantiation:

p(σ) =
∏

X ∈ vars(σ)

pX(σX |σTX
) (1)

An instantiation σ is feasible if p(σ) > 0.

3 Related Work

It has been shown previously in (Milch & Russell, 2006) that the MCMC state
space for inference in CBNs can consist of minimal partial instantiations that
include the evidence, E, and the query variables, Q. This idea has been exploited
to build the inference engine for BLOG. Also, one of the inference methods in
non-parametric mixture models uses a somewhat similar idea by instantiating
all the mixture components that are needed to support the evidence plus a

3

few more (Neal, 2000). In this section, we will briefly describe these existing
methods as the basis of our new algorithm.

3.1 Parent-Conditional Sampling

In the absence of a model-specific proposal distribution, BLOG relies on a
parent-conditional proposal, q. This algorithm picks a variable, X, at ran-
dom from all the non-evidence variables in the current instantiation σ, V (σ) =
vars(σ)−E, and proposes a new instantiation σ′ with the value of X drawn from
pX(.|σTX

). If X was a switching variable in σ then we may need to instantiate
new variables and uninstantiate unneeded ones to make σ′ minimal and self-
supporting over Q and E. All new variables are instantiated with values drawn
from their parent-conditional distribution. We say that any σ′ constructed by
this procedure is reachable from σ via X, or σ X

 σ′. The following are easily
seen to be true of reachability.

Proposition 1. A minimal self-supporting feasible instantiation σ′ is reachable
from an instantiation σ via X if and only if X ∈ vars(σ) ∩ vars(σ′) and σ and
σ′ agree on all other variables in vars(σ) ∩ vars(σ′).

Proposition 2. If σ X
 σ′ then 6 ∃Y s.t. σ Y

 σ′ and Y 6= X.

The nature of the proposal distribution makes it quite simple to compute
the acceptance ratio for the Metropolis–Hastings (MH) method. In this method,
the acceptance ratio for a transition is given by:

α(σ → σ′) = min

(
1,
p(σ′)q(σ′ → σ)
p(σ)q(σ → σ′)

)
(2)

Now, for σ′ which is reachable from σ via X the only way of proposing the
transition is to select X from V (σ) and propose the value σ′X for it and then to
propose the values for all the new variables in σ′. Thus, q(σ → σ′) =

pX(σ′X |σTX
)

|V (σ)|
∏

Y ∈ vars(σ′)−vars(σ)

pY (σ′Y |σ′TY
) (3)

From Equation (1) and Equation (3), it follows that the product terms cor-
responding to vars(σ′) − vars(σ) cancel out in p(σ′)

q(σ→σ′) . Similarly, terms in

vars(σ)−vars(σ′) cancel out in q(σ′→σ)
p(σ) . Further, it is easy to see that for vari-

ables Y s.t. Y ∈ vars(σ) ∩ vars(σ′) − Λ(σ,X) ∩ Λ(σ′, X), σTY
= σ′TY

. Hence,
pY (. |σTY

) = pY (. |σ′TY
) and the terms for all such variables Y (including X)

cancel out. Finally, the acceptance ratio reduces to:

min

1,
|V (σ)|
|V (σ′)|

∏
Y ∈Λ(σ,X)∩Λ(σ′,X)

pY (σ′Y |σ′TY
)

pY (σY |σTY
)

 (4)

The complete algorithm is given in Figure 2.

4

1. Create an initial minimal self-supporting feasible instantiation σ consistent
with the evidence and including the query variables.

2. Initialize statistics of the query.

3. Repeat the following for the desired number of samples.

(a) Pick a variable X ∈V (σ) uniformly at random.

(b) Pick a random σ′ s.t. σ X
 σ′.

(c) Compute the acceptance ratio, α (Equation (4)).

(d) With probability α, set σ ← σ′. Otherwise, let σ be unchanged.

(e) Update query statistics using σ.

4. Report query statistics.

Figure 2: General-purpose inference in CBNs using parent-conditional sampling

3.2 Gibbs Sampling

Equation (4) helps explain the main problem with parent-conditional sampling.
If the proposed value for the sampled variable X doesn’t assign high proba-
bility to the children of X then the move will be rejected. Gibbs sampling
(Geman & Geman, 1984) is a way to solve this issue for Bayes Nets by di-
rectly sampling X from its full conditional distribution, pX(. |σ) (as opposed to
its parent-conditional prior pX(. |σTX

)). This method involves computing the
Gibbs weight for each value a∈ dom(X):

w(a) = pX(a |σTX
)

∏
Y ∈Λ(σ,X)

pY (σY |σX=a
TY

) (5)

A new value is sampled for X proportional to its weight. The MH move corre-
sponding to this proposal is guaranteed to have an acceptance ratio of 1. This
method works for variables with finite, countable, or even uncountable domains
as long as the weights can be easily normalized by integration. In languages like
BUGS, Gibbs sampling has proven quite successful. However, one problem with
applying this technique to CBNs is that if X is a switching variable then σX=a

for some a∈ dom(X) may no longer support a child Y of X, and the Gibbs
weights can’t be computed. One solution that has been proposed in the context
of Dirichlet Process Mixture Models (DPMM) by (Neal, 2000) is to enhance
σ with auxiliary variables so that σX=a is self-supporting for all a∈ dom(X).
This enhanced σ, which is now no longer minimal, is used to construct the Gibbs
weights, and then after making the move any extra variables are discarded. An
important point about the auxiliary variables is that they are always sampled in
σ with the current value of X. In other words, if σX = a and if σ was enhanced
with a variable Z which was needed to support σX=b for some b∈ dom(X)− a
, then we would sample Z from pZ(. |σX=a

TZ
). This can lead to poor mixing or

5

dom(X) = {0, 1, 2}
X ∼ Categorical(.1, .6, .3)

∀i∈N dom(Yi) = 0, 1

Yi ∼
{
Bernoulli(1

1+X) if X + i mod 2 ≡ 0
Bernoulli(1

1+X+Yi+1
) otherwise

Evidence: Y1 = true. Query: X.

Figure 3: A CBN which requires infinitely many auxiliary variables for standard
Gibbs sampling approaches.

no mixing at all if pZ(. |σX=a
TZ

) and pZ(. |σX=b
TZ

) have non-intersecting support.
(In the DPMM case, this wasn’t a concern since TZ never referred to X and the
pZ in both instantiations was identical.)

For example, consider the model of Example 1 and a minimal instantiation,
σ = [WingType = FixedWingPlane, BladeFlash = True]. If we were to
apply the auxiliary variable method to do MCMC sampling in this model, we
would need to instantiate RotorLength given WingType = FixedWingPlane and
then construct Gibbs weights for WingType = FixedWingPlane and Helicopter.
However, the only value of RotorLength that can be sampled given WingType
= FixedWingPlane is null and this value has 0 probability with WingType =
Helicopter. Thus, the chain will not mix at all.

In fact, there are cases when the auxiliary variable method is not even defined
because we may need an unbounded number of auxiliary variables. Consider,
for example, the rather artificial but instructive CBN in Figure 3, and an in-
stantiation σ = [X = 0, Y1 = 1, Y2 = 1]. If we were to enhance σ to make it
self-supporting for all values of X we would certainly need to add Y3 since Y2

depends on Y3 when X = 1. But Y3 depends on Y4 when X = 0 and so we need
to add Y4, and so on. Ultimately, we would need to instantiate all Yi’s for i ≥ 1.

4 Gibbs Sampling in Contingent Bayesian Net-
works

We will present here a general-purpose Gibbs sampling algorithm for switching
variables with finite domains. The proposal for a switching variable, X, will
proceeed in three steps. First, the instantiation, σ, will be reduced to a subset
of variables, core(σ,X), such that this subset is guaranteed to exist in any
minimal self-supporting instantiation constructed from σX=a for all a∈ dom(X).
Second, we will construct minimal self-supporting instantiations, σi i = 1 . . .,
for each value in dom(X)− {σX} such that these instantiation agree with σ on
core(σ,X) and they all differ on X. The rest of the variables in these σis are
sampled from their parent-conditional priors. For notational simplicity, we will
write σ0 for σ. Finally, we will assign weights to all σi i = 0 . . . and make a

6

Y2 = 0

σ0 σ1 σ2

X = 1 X = 2

Y2 = 1

Y1 = 1 Y1 = 1 Y1 = 1

X = 0

Figure 4: The three partial instantiations considered for Gibbs sampling of X
given Y1 as evidence. (σ0 is the current instantiation)

transition proportional to these weights. We will now explain the motivation
for this algorithm before providing formal details and proving it correct.

It may seem counter-intuitive to first reduce the instatiation and then extend
it. After all, the previous two algorithms we described in Section 3, parent-
conditional sampling and Gibbs with auxiliary variables, first extended the cur-
rent instantiation and then reduced it. The motivation for our approach is that
the variables whose existence depends on the value of X should be sampled
in the world with the appropriate value of X. Consider again, for example,
the model in Figure 3 and three partial instantiations as shown in Figure 4
for each of the values of X. Now, starting from σ0 (which has X = 0) we
could have decided to keep the value of Y2 when constructing σ2 (which has
X = 2). However, the distribution of Y2 given X = 2 is quite different from
that when X = 0 and reusing the value could lead to construction of low prob-
ability instantiations. The other reason for resampling non-core variables like
Y2 is to simplify the detailed balance equations that we will discuss later. In
brief, due to the nature of our algorithm the distribution of σ2 doesn’t depend
on whether we start from σ0 or σ1. Hence when demonstrating detailed balance
between pairs of instantiations we needn’t reason about other instantiations
which might be involved in the transition. This last observation relies on the
fact that core(σ0, X) = core(σ1, X). We will first prove this in general.

Definition 1. For an instantiation σ and variables X,Y, Z ∈ vars(σ), if TZ
refers to X and Y and the first reference of X is before the first reference to Y
we call the Y to Z edge as contingent on X.

Definition 2. core(σ,X) is defined as the subset of variables in vars(σ) which

7

have a path (possibly of length zero) consisting of parent-child edges not including
edges contingent on X to some variable in Q∪E. X is excluded from core(σ,X).

Note that the ancestors of X in σ are always in core(σ,X) since the edges
from X to its children are not contingent on X.

Definition 3. For an instantiation σ and variable X ∈ vars(σ), Υ(σ,X)
4
=

Λ(σ,X) ∩ core(σ,X).

Proposition 3. For any two minimal self-supporting instantiations, σ and
σ′, and variable X common to them, if σ and σ′ agree on core(σ,X) then
core(σ,X) = core(σ′, X) and Υ(σ,X) = Υ(σ′, X).

Proof. Let Y ∈ core(σ,X) then either Y ∈Q∪E or there exists a path of edges
not contingent on X from Y to Q∪E. Clearly, if Y ∈Q∪E then Y ∈ core(σ′, X).
Otherwise, let Z be the first child in such a path. Since X is not referred before
Y in TZ thus X is not referred before any W which is referred before Y in TZ .
Such a variable W must also be in core(σ,X) since W has the same path to
Q ∪ E via Z as Y . But σ and σ′ agree on core(σ,X) and hence on W . Since
σ and σ′ agree on all the variables referred before Y in TZ it follows that the
evaulation of TZ upto Y is identical in σ and σ′. Hence, the Y to Z edge is not
contingent on X in σ′. By induction, the path from Y to Q ∪ E in σ′ is not
contingent on X which implies that Y ∈ core(σ′, X).

Now, say core(σ,X) ⊂ core(σ′, X). For any element in core(σ′, X)−core(σ,X)
there must be a path of edges not contingent upon X in σ′ to Q ∪ E via some
variables in core(σ,X) ∪ {X} (trivially, since Q ∪ E ⊆ core(σ,X) ∪ {X}). Let
Y and Z be one such parent-child pair in σ′ s.t. Y ∈ core(σ′, X) − core(σ,X)
and Z ∈ core(σ,X) ∪ {X}. Now, all the variables referred in TZ upto the first
reference of X (if any) would also be in core(σ,X) since they have a edge to Z
which is not contingent on X. Since σ and σ′ agree on core(σ,X), the evalua-
tion of TZ would follow an identical path in σ and σ′ upto the first reference of
X. But since Y is not referred to after X while evaluating TZ in σ′ it follows
that Y ∈ core(σ′, X).

Let, Y ∈Υ(σ,X), i.e. Y is a child of X in σ and Y ∈ core(σ,X). From the
above result Y ∈ core(σ′, X) and we will next show that Y is a child of X in
σ′. Consider the evaluation path of TY in σ. All the variables that are referred
before X are also in core(σ,X) by definition. Since these variables will have
the same value in σ′, it follows that the evaluation of TY in σ′ will lead to X
being referred. In other words, X is a parent of Y in σ′ which implies that
Υ(σ,X) ⊆ Υ(σ′, X). By symmetry, Υ(σ′, X) ⊆ Υ(σ,X)

Proposition 4. For any two minimal self-supporting instantiations, σ and
σ′, there is at most one variable X common to them s.t. σ and σ′ agree on
core(σ,X) and differ on X.

Proof. Assume to the contrary that there exist two such variables X and Y .
Now, since σ and σ′ agree on core(σ,X) but differ on Y it follows that Y 6∈
core(σ,X). Hence Y can’t be in Q∪E. But since σ is a minimal instantiation,

8

Y must have a path to Q ∪ E. Now consider the shortest path of Y to Q ∪ E.
Some edge, W -Z in this path must be contingent on X. Hence we can construct
a path from X to Q ∪ E via Z which can’t be contingent on Y (otherwise, Y
would have a shorter path to Q∪E). This implies that X ∈ core(σ, Y) but then
σ and σ′ agree on X, a contradiction.

We will now describe the weights for each of the partial instantiation σi that
are constructed for each value in dom(X).

w(σi) =
pX(σiX |σiTX

)
|V (σi)|

∏
Y ∈Υ(σ,X)

pY (σiY |σiTY
) (6)

Note that, up to a multiplicative constant, this equation reduces to Equation 5
if X is not a switching variable.

It only remains to show that detailed balance holds between any two mini-
mal instantiations σ0 and σ1. It follows from propositions 3 and 4 that there is
at most one shared variable X such that a transition is possible between σ0 and
σ1 by sampling X. Thus the only way for a transition to occur is in σ0 to first
select X for sampling with probability 1

|V (σ0)| . Next, the new variables in σ1,
ψ(σ0, X, σ1) = vars(σ1)− core(σ0, X)−{X} must be sampled with probability∏
Y ∈ψ(σ0,X,σ1) pY (σ1Y |σ1TY

). Finally, we must select σ1 out of all the other

random instantiations with probability, w(σ1)
w(σ0)+...+w(σn−1) . Since the last quan-

tity is a random variable which depends on the choices made in constructing
σ2, . . . , σn−1 we can take its expectation giving, q(σ0 → σ1):

1
|V (σ0)|

∏
Y ∈ψ(σ0,X,σ1)

pY (σ1Y |σ1TY
)E

[
w(σ1)∑n−1
i=0 w(σi)

]
(7)

We can construct a similar expression for the reverse move probability and
note that the numerator in the expectation is a constant and the rest of the
expectation doesn’t depend on which of σ0 or σ1 we start out with. Thus
q(σ0→σ1)
q(σ1→σ0) is:

|V (σ1)|
|V (σ0)|

w(σ1)
w(σ0)

∏
Y ∈ψ(σ0,X,σ1) pY (σ1Y |σ1TY

)∏
Y ∈ψ(σ1,X,σ0) pY (σ0Y |σ0TY

)

Substituting for w(σ1) and w(σ0):

q(σ0 → σ1)
q(σ1 → σ0)

=
pX(σ1X |σ1TX

)
pX(σ0X |σ1TX

)

∏
Y ∈Υ(σ,X)

pY (σ1Y |σ1TY
)

pY (σ0Y |σ0TY
)

·
∏
Y ∈ψ(σ0,X,σ1) pY (σ1Y |σ1TY

)∏
Y ∈ψ(σ1,X,σ0) pY (σ0Y |σ0TY

)

9

Observe that the only terms missing from p(σ1)
p(σ0) above are those for variables in

core(σ,X)−Υ(σ,X). However, if Y ∈ core(σ,X) then σY = σ′Y and further if
Y 6∈ λ(σ,X) all the parents of Y are also in core(σ,X) and hence have the same
values in σ and σ′. Thus these variables have identical values and distributions
in σ0 and σ1 and their terms cancel out. Finally,

q(σ0 → σ1)
q(σ1 → σ0)

=
p(σ1)
p(σ0)

5 BLOG Compiler

We have implemented our algorithm in a new implementation of the BLOG
language, which we will refer to as blogc1 . The broad outline of our imple-
mentation is similar to Milch’s public-domain version except in two significant
aspects.

First, for variables with finite domain (or unknown, but finite domain) we
always use Gibbs sampling. By statically analyzing the structure of the model
we can determine which variables are switching variables, which ones need to
be resampled for each transition, etc. Based on the analysis, appropriate code
is generated that does the actual sampling and reporting.

Consider, as an example, the BLOG model in Figure 5. This model describes
the prior distribution of two types of aircraft – fixed-wing planes and helicopters.
These planes may produce an arbitrary number of blips on the radar (The fact
that plane a produces a blip b is represented by setting Source(b) = a). Further,
helicopters due to the interaction of their rotor with the radar beam can produce
blade-flashes in the radar blip. In this model, the variable RotorLength(a) for
all aircraft a can easily be Gibbs sampled. If WingType(a) = Helicopter then
RotorLength(a) can be either Short or Long, otherwise it can only be null (as
per BLOG semantics for a missing else clause). While compiling the model we
can detect that the children variables of WingType(a) in any instantiation are
all the BladeF lash(b) variables such that Source(b) = a. In order to speed up
the computation of the Gibbs weights at runtime, we maintain a list, for each
object a of type Aircraft, of all objects b of type Blip such that Source(b) = a.

The variable WingType(a) is more interesting. It can only have two possible
values, but, since it is a switching variable, care has to be taken when sampling
it. In particular, the variable RotorLength(a) has to be uninstantiated. This
is because all the children edges from RotorLength(a) are contingent on the
value of WingType(a). Note that Source(b) for all objects b of type Blip is
also a switching variable. However, in this case the decision to uninstantiate
a variable WingType(a) s.t. Source(b) = a depends on whether there exists
another object b1 s.t. Source(b1) = a.

The second major difference in our implementation is the handling of number
variables. Instead of directly sampling the number variables, our implementa-
tion proposes birth and death moves. In the radar example, for each object w

1blogc is available for download from: http://code.google.com/p/blogc/

10

of type WingType, we generate an Aircraft object that has no blips assigned
to it. The death move kills off such objects with no blips. In order to get
faster mixing, we allow some extra flexibility in the birth and death move dur-
ing the burn-in samples. During these samples, birth and death moves ignore
the probability of children variables. To understand the motivation, assume for
a moment that the expected number of blips for a given aircraft was 1 million.
Now, a birth move which proposes an aircraft with 0 blips would be almost
certainly rejected. By allowing such birth moves during the burn-in we give the
inference engine an opportunity to later attach blips to the aircraft.

6 Experimental Results

We would like to have compared blogc with the generic Metropolis-Hastings
inference engine provided with BLOG, which we will refer to as BLOG-MH, in
terms of the number of samples. However, due to differences in the definition of
a sample such a direct comparison is not feasible. (A sample in BLOG-MH is
generated after sampling the value of a randomly selected variable while blogc
collects a sample after sampling all instantiated variables once.) Instead, we
compare convergence speed w.r.t. time. In the following three models each
inference engine is run for a varying number of samples, where a sample is
as defined by that inference engine. For each number of samples, inference is
repeated 20 times with a different random seed and the variance of a query
variable is plotted against the average elapsed time (in seconds).

First, we evaluate on the Alarm network of (Beinlich et al., 1989) available
from the Bayes Network Repository2 (Friedman et al., 1997). This is a Bayes
Net with 37 discrete random variables of which we observe 9. The results are
summarized in Figure 6. The important thing to note is that the variance
achieved by blogc in less than 1 second is much better than that achieved by
BLOG-MH in over 20 seconds.

Next, we consider the model in Figure 7 which is the urns-and-balls example
of (Milch et al., 2005b) with a slight twist. Balls have a weight instead of a
discrete color. Figure 8 shows that blogc converges significantly faster.

Our final result is on the radar example of Figure 5. For this model we
experimented running blogc without the logic which detects that RotorLen(a)
must be uninstantiated when sampling WingType(a). This mode is labeled as
blogc-noblock in Figure 9. As before, blogc is significantly faster than BLOG-
MH. It is also 3 to 7 times faster than blogc-noblock. The fact that blogc-
noblock converges at all is due to the birth move which creates new aircraft
for each wingtype and samples their RotorLen variable. Later, the move which
resamples Source(b) for each blip has the opportunity to select this new aircraft.
These two moves thus compensate for the fact that the move which attempts
to sample WingType(a) is always rejected.

In follow-on work, we plan to demonstrate inference performance comparable
to model-specific inference code for a number of widely used statistical models.

2http://compbio.cs.huji.ac.il/Repository/

11

type AircraftType;

type Length;

type Aircraft;

type Blip;

origin AircraftType WingType(Aircraft);

random Length RotorLength(Aircraft);

origin Aircraft Source(Blip);

random Boolean BladeFlash(Blip);

guaranteed AircraftType Helicopter, FixedWingPlane;

guaranteed Length Short, Long;

#Aircraft(WingType = w)

if w = Helicopter then

~Poisson [1.0]

else

~Poisson [4.0];

#Blip ~Poisson[2.0];

#Blip(Source = a) ~ Poisson[1.0];

RotorLength(a) {

if WingType(a) = Helicopter then

~TabularCPD [[0.4, 0.6]]

};

BladeFlash(b) {

if Source(b) = null then

~Bernoulli [.01]

elseif WingType(Source(b)) = Helicopter then

~TabularCPD[[.9,.1],[.6,.4]]

(RotorLength(Source(b)))

else

~Bernoulli [.1]

};

obs {Blip b} = {b1, b2, b3, b4, b5, b6};

obs BladeFlash(b1) = true;

obs BladeFlash(b2) = false;

obs BladeFlash(b3) = false;

obs BladeFlash(b4) = false;

obs BladeFlash(b5) = false;

obs BladeFlash(b6) = false;

query WingType(Source(b1));

query WingType(Source(b2));

query WingType(Source(b3));

query WingType(Source(b4));

query WingType(Source(b5));

query WingType(Source(b6));

Figure 5: Example of helicopters and fixed-wing planes being detected by a
radar

12

0 5 10 15 20 25
Time

10-5

10-4

10-3

10-2

10-1

V
a
ri

a
n
ce

Alarm Bayes Net

blogc
BLOG-MH

Figure 6: Results on the Alarm Bayes Net

7 Conclusions

We have demonstrated a significant improvement in inference performance for
models written in the BLOG language. Our Gibbs sampling algorithm for CBNs
and our compiler techniques for generating efficient inference code are generally
applicable to all open-universe stochastic languages.

Acknowledgements

This work wouldn’t have beeen possible without the considerable assistance
provided by Brian Milch to make the models presented here work in BLOG-
MH. Matthew Can provided a translation of the Alarm Bayes Net to BLOG.
Finally, the first author wishes to thank his family for their boundless patience
and support during this work.

References

Beinlich, I., Suermondt, G., Chavez, R., & Cooper, G. 1989. The ALARM
monitoring system: A case study with two probabilistic inference techniques for
belief networks. In: Proc. 2’nd European Conf. on AI and Medicine. Springer-
Verlag, Berlin.

Friedman, N., Goldszmidt, M., Heckerman, D., & Russell, S. 1997. Challenge:
Where is the impact of Bayesian networks in learning? In: IJCAI.

Geman, S., & Geman, D. 1984. Stochastic Relaxation, Gibbs Distributions,

13

type Ball;

type Draw;

random Real TrueWeight(Ball);

random Ball BallDrawn(Draw);

random Real ObsWeight(Draw);

guaranteed Draw Draw[10];

#Ball ~ Poisson[6.0];

TrueWeight(b) ~ UniformReal [0.0, 100.0];

BallDrawn(d) ~ UniformChoice({Ball b});

ObsWeight(d) {

if BallDrawn(d) != null then

~UnivarGaussian[1](TrueWeight(BallDrawn(d)))

};

obs ObsWeight(Draw1) = 61.8;

obs ObsWeight(Draw2) = 64.4;

obs ObsWeight(Draw3) = 17.7;

obs ObsWeight(Draw4) = 81.8;

obs ObsWeight(Draw5) = 40.9;

obs ObsWeight(Draw6) = 81.9;

obs ObsWeight(Draw7) = 82.3;

obs ObsWeight(Draw8) = 82.9;

obs ObsWeight(Draw9) = 82.6;

obs ObsWeight(Draw10) = 60.8;

query TrueWeight(BallDrawn(Draw1));

query TrueWeight(BallDrawn(Draw2));

query TrueWeight(BallDrawn(Draw3));

query TrueWeight(BallDrawn(Draw4));

query TrueWeight(BallDrawn(Draw5));

query TrueWeight(BallDrawn(Draw6));

query TrueWeight(BallDrawn(Draw7));

query TrueWeight(BallDrawn(Draw8));

query TrueWeight(BallDrawn(Draw9));

query TrueWeight(BallDrawn(Draw10));

Figure 7: Example of selecting balls with replacement from an urn and measur-
ing their weight

14

Figure 8: Balls with unknown weights

0 5 10 15 20 25 30 35
Time

10-7

10-6

10-5

10-4

10-3

10-2

10-1

V
a
ri

a
n
ce

Blade Flash on Radar

blogc
BLOG-MH
blogc-noblock

Figure 9: Results on the radar model

15

and the Bayesian Restoration of Images. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 6(6), 721–741.

Goodman, Noah, Mansinghka, Vikash, Roy, Daniel, Bonawitz, Keith, & Tenen-
baum, Joshua. 2008. Church: a language for generative models. In: UAI.

Milch, Brian, & Russell, Stuart. 2006. General-Purpose MCMC Inference over
Relational Structures. Pages 349–358 of: Proceedings of the Proceedings of
the Twenty-Second Conference Annual Conference on Uncertainty in Artificial
Intelligence (UAI-06). Arlington, Virginia: AUAI Press.

Milch, Brian, Marthi, Bhaskara, Sontag, David, Russell, Stuart, Ong, Daniel L.,
& Kolobov, Andrey. 2005a. Approximate Inference for Infinite Contingent
Bayesian Networks. Pages 238–245 of: In Proc. 10th AISTATS.

Milch, Brian, Marthi, Bhaskara, Russell, Stuart J., Sontag, David, Ong,
Daniel L., & Kolobov, Andrey. 2005b. BLOG: Probabilistic Models with Un-
known Objects. Pages 1352–1359 of: IJCAI.

Neal, Radford M. 2000. Markov Chain Sampling Methods for Dirichlet Process
Mixture Models. Journal of Computational and Graphical Statistics, 9(2), 249–
265.

Spiegelhalter, David, Thomas, Andrew, Best, Nicky, & Gilks, Wally. 1996.
BUGS: Bayesian Inference using Gibbs Sampling, Version 0.50. Tech. rept.

Tait, Peter. 2009. Introduction to Radar Target Recognition. The Institution of
Engineering and Technology, United Kingdom.

16

