
Atomic Shelters: Coping with Multi-core Fallout

Zachary Ryan Anderson
David Gay

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-39

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-39.html

April 9, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Atomic Shelters: Coping with Multi-core Fallout

Zachary Anderson
University of California, Berkeley

zra@cs.berkeley.edu

David Gay
Intel Labs Berkeley

david.e.gay@intel.com

Abstract
In this paper we introduce a new method for pessimistically
ensuring the atomicity of atomic sections. Similar to previ-
ous systems using locks, our system allows programmers to
annotate the types of objects with the shelters—an alterna-
tive to locks inspired by the Jade programming language—
that protect them, and indicate the sections of code to be
executed atomically with atomic sections. A static analy-
sis can then determine from which shelters protection is
needed for the atomic sections to run atomically. Unlike pre-
vious systems, our shelter-based atomic sections are imple-
mented such that they can provide atomicity and deadlock-
freedom without the need for whole-program analyses or
transactional memory, while imposing only a small annota-
tion burden on the programmer and making only a straight-
forward change to the underlying type-system. We have im-
plemented shelters-based atomic sections for C, and applied
our implementation to 11 benchmarks totaling 100k lines of
code including the STAMP benchmark suite, and three mul-
tithreaded programs. Our system’s performance is competi-
tive with both explicit locking and a mature software trans-
actional memory implementation.

1. Introduction
Given recent advances in hardware, writing multithreaded
programs that manipulate shared state is an increasingly
important task. However, it is also very challenging, even
for experienced programmers. Though explicit locking can
yield highly efficient code, its use is prone to errors such
as data-races and deadlocks. Indeed, as of March 2010, ac-
cording to their bugzilla databases, there were 62 known,
outstanding race conditions in the Linux kernel, and 23 in
Firefox; and there were 30 known, outstanding deadlocks in
the Linux kernel, and 46 in Firefox [22, 28].

Atomic sections are a convenient language construct for
controlling access to shared state in multithreaded programs.
They ensure that the statements within them execute atom-
ically, that is, the effects of statements in atomic sections
become visible to other threads all at once when execution
leaves the atomic section, much like a database transaction.
Because they simply declare that code is to be run atomi-
cally, rather than fully specifying how code is to be made
atomic, the use of atomic sections is less error prone than

explicit locking. In particular, atomic sections make it much
easier to compose independently written code because there
is no confusion created by having different locking disci-
plines in different modules.

As multi-core processors have become more prevalent,
newly developed languages have begun to include atomic
sections instead of explicit locking [2, 10, 13]. Furthermore,
attempts have been made to add atomic sections to pre-
existing languages such as C and C++ [11, 19, 27, 34].
Atomic sections may be implemented either optimistically,
as in software transactional memory(STM) [36] systems, or
pessimistically, as in Autolocker [27].

STM systems execute atomic sections optimistically, at
least in part. Atomic sections are allowed to execute concur-
rently, but when two or more threads make conflicting ac-
cesses, transactions must be rolled-back and retried. Many
STM implementations achieve good performance. However,
if transactions are large, or if data is highly contended, roll-
backs may be frequent and expensive. Furthermore, roll-
back may not be possible if, for example, any I/O was per-
formed during a failed transaction.

The relative merits of optimistic and pessimistic concur-
rency control have been investigated by the database com-
munity. The consensus of this work seems to be that opti-
mistic approaches are desirable in the presence of abundant
resources, so that the cost of roll-back/replay is not signifi-
cant, whereas pessimistic approaches are desirable when re-
sources are scarce [1]. In the future, when resources may be-
come abundant, production quality STM systems may over-
come these practical difficulties. In the meantime, while re-
sources are scarce, a pessimistic implementation of atomic
sections can avoid these problems, while giving compara-
ble performance in the cases where STM performance does
scale.

In this paper, we focus on a pessimistic method for im-
plementing atomic sections for C. Previous pessimistic ap-
proaches have relied on whole-program analysis for deter-
mining a global lock order [27], or for inferring fine-grained
lock hierarchies [11, 19]. But whole-program analysis is of-
ten problematic in practice. First, it is often expensive for
large programs. Second, the source code for the whole pro-
gram may not always be available.

We avoid these problems by implementing atomic sec-
tions using shelters. Shelters are an alternative to locks in-
spired by the deadlock-free synchronization strategy used in
the Jade programming language [33]. Like locks, shelters are
first-class objects. Upon entry into an atomic section, threads
must “register” for all of the shelters protecting the objects
that are accessed in the atomic section. Registration is an
atomic operation that places the thread on the queue of each
shelter, and acquires a globally unique, increasing sequence
number. Before accessing a sheltered object, a thread must
then wait unless it is the thread on the shelter’s queue hav-
ing the smallest sequence number. When a thread exits an
atomic section, it removes itself from the queues of the shel-
ters for which it had registered. In effect, the sequence num-
ber picked at registration specifies the apparent serial order
of the atomic sections. In Section 3 we prove that this mech-
anism guarantees atomicity and prevents deadlock.

Using our system, programmers write code with atomic
sections and sheltered by(s) annotations to specify which
objects are protected by which shelters. We discover for
which shelters registration is required through a backwards
dataflow analysis over atomic sections. We then use the
results of the analysis to translate the program with atomic
sections into a program using the register and wait calls
mentioned above. Where the analysis is imprecise, we make
use of coarser-grained shelters based on the types of the
objects in question. An overview of our system’s operation
is given in Section 2 along with an example.

We have implemented compiler transformations and a
runtime for the C language, described in Section 4, and
applied our implementation to 11 programs including the
STAMP benchmark suite [8], and a few representative ap-
plications totalling over 100k lines of code. On average, the
runtime overhead incurred by shelter-based atomic sections
remains between 0 and 20% with respect to explicit lock-
ing for programs using between 1 and 32 threads on a 32
core machine. In Section 5, we present a thorough compar-
ison of the runtime and programming cost of shelter-based
atomic sections with the Intel STM implementation [21] for
the above mentioned benchmarks.

In summary, we make the following contributions:

• We present the design and implementation of shelters,
a pessimistic method for implementing atomic sections
that requires no whole-program analysis.
• We present the results or our experiments comparing

the runtime performance of shelter-based atomic sections
with both explicit locking and an STM system. We also
show that acquiring all locks at the entry to the atomic
section, an obvious alternative to our system, has worse
performance than shelters.
• We formalize our design to show that shelters enforce

atomicity and prevent deadlock.

2. Overview
In this section we describe our extensions to C, and explain
how these extensions are translated into calls into our sys-
tem’s runtime. We also present a small example that demon-
strates many of the features of our system.

In addition to atomic sections, our system adds anno-
tations to C for describing what objects require protection
from concurrent access, and what the sheltering needs of
functions are when called from inside of an atomic section.
The resulting extensions to the C language are:

• atomic {...} — Atomic statements indicate that the ef-
fects of the statements on shared objects in the indicated
block should not become visible to other threads until ex-
ecution exits the block.
• shelter t — Shelters are first-class objects in the lan-

guage, and can be declared as variables, structure fields,
or arguments to functions.
• sheltered by(s)— This is an annotation on types indi-

cating that an object of the annotated type can only be
accessed in an atomic section (or a function called within
an atomic section), and that concurrent access is medi-
ated by the shelter s.
• needs shelters(s1,s2,...)— This is an annotation on

function types that contains a list of the C expressions of
type shelter t in terms of formal parameters and global
variables. The list must contain expressions for shelters
that protect objects read and written by the function. The
list may be empty if no sheltered expressions are ac-
cessed. Only functions called from within atomic sec-
tions require an annotation.

Our system issues warnings and errors at compile-time as
appropriate when required needs shelters annotations are
missing from functions, and when objects with a shel-
tered by annotation are accessed outside of an atomic sec-
tion or annotated function. The annotation burden imposed
by our system, and a comparison to similar systems is inves-
tigated in Section 5.

Our system takes as input a program written using these
extensions to C, and outputs a program that makes calls
into a runtime implementing shelters-based atomic sections,
which we then pass to an off-the-shelf C compiler for compi-
lation and linking. This translation takes place in two steps.
First, we perform a backwards dataflow analysis over atomic
sections in order to collect the shelters that protect objects
read and written in the atomic section. Where the analysis
is imprecise, we use coarser-grained shelters as described in
Section 2.2 below. In the second step, we use the results of
the dataflow analysis to instrument the program with calls
into our system’s runtime.

Since the backwards analysis is straightforward, we only
describe the runtime calls that are inserted by the analysis
and instrumentation:

1 typdef struct {

2 int sheltered by(s) id;

3 float sheltere by(s) balance;

4 shelter t s;

5 } account t;

6

7 needs shelters(a->s)

8 void deposit(account t *a, float d) {

9 a->balance += d;

10 }

11

12 needs shelters(a->s)

13 void withdraw(account t *a, float w) {

14 a->balance -= w;

15 }

16

17 needs shelters(to->s, from->s)

18 void transfer(account t *to, account t *from,

19 float a) {

20 atomic {

21 withdraw(from, a);

22 deposit(to, a);

23 }

24 }

Figure 1. Code using atomic sections for the atomic transfer
of funds between two accounts.

• shelter register(s,...) — This call is added at the
beginning of an atomic section. The arguments are the
shelters that were found by the backwards analysis. In
one atomic action, the call acquires one globally unique,
increasing sequence number, and adds the calling thread
to queues for each of the shelters in the argument list. Our
implementation uses lock-free algorithms for acquiring
the sequence number and adding the thread to the shel-
ters’ queues.
• shelter wait(s)— This call is added when an object of

a type annotated with sheltered by(s) is accessed. The
call causes the calling thread to wait until it is the thread
with the smallest sequence number on s’s queue.
• shelter release all() — This call is added at the end

of an atomic section. It causes the calling thread to re-
move itself from the queues of the shelters for which it
had registered.

We support nested atomic sections by ignoring nested
calls to shelter register and shelter release all.

2.1 Example
We now show how shelter-based atomic sections can avoid
the pitfalls of explicit locking while achieving the conve-
nience of atomic sections for the example of the atomic
transfer of funds between two bank accounts.

Consider the type and function declarations in Figure 1.
The account t structure type contains a balance field, and
an id field. The structure also contains a shelter t field s

1 void deposit(account t *a, float d) {

2 shelter wait(a->s);

3 a->balance += d;

4 }

5

6 void withdraw(account t *a, float w) {

7 shelter wait(a->s);

8 a->balance -= w;

9 }

10

11 void transfer(account t *to, account t *from,

12 float a) {

13 shelter register(to->s, from->s);

14 withdraw(from, a);

15 deposit(to, a);

16 shelter release all();

17 }

Figure 2. The results of the transformation of code with
atomic sections and shelter annotations to code with shelter
registrations, waits, and releases.

for protecting the balance and id fields, as indicated by the
sheltered by(s) annotations. The deposit and withdraw
functions adjust the balance of an account. They must be an-
notated as needs shelter(a->s) because they access fields
of a that have been annotated as sheltered by(s). In the
transfer function an atomic block indicates that the with-
draw from the from account and the deposit to the to account
happen atomically. Additionally, the transfer function must
be annotated with needs shelters(to->s,from->s) if it is
ever going to be called from within an atomic section, be-
cause it calls functions that access data protected by those
shelters.

Figure 2 shows the results of transformation of the pro-
gram with atomic sections and annotations to code that reg-
isters for shelters, waits on them before accessing the pro-
tected objects, and releases them when finished. The begin-
ning of the atomic section in the transfer function is trans-
lated into the shelter register() call on Line 13, which
atomically acquires a unique sequence number and adds the
calling thread to the queues for shelters to->s, and from->s.
These shelters are collected by the backwards analysis from
the annotations on the deposit and withdraw functions.

Where the program accesses objects with types annotated
with sheltered by(s), calls to shelter wait(s) are added
that cause the calling thread to wait until it is the thread
with the smallest sequence number on the queue for s. These
calls appear for the accesses to the balance field of account
structures on Lines 2 and 7 of Figure 2.

Where the atomic section ends in Figure 1, we now have
a call to shelter release all() on Line 16, which removes
the calling thread from the queues of the shelters for which
it had registered.

Now, consider that one thread calls transfer(A, B), and
a second thread calls transfer(B, A) at the same time. If

the example in Figure 1 were written with explicit lock-
ing, care would have to be taken when implementing or
calling the transfer function in order to avoid deadlock.
With shelter-based atomic sections, however, deadlock is
avoided automatically because the two threads will have dis-
tinct sequence numbers, one smaller than the other. If two
threads are registered for the same shelter s, and both ar-
rive at a shelter wait(s) call, the thread with the smaller
sequence number proceeds while the thread with the larger
sequence number must wait until the first thread calls shel-
ter release all().

2.2 Shelter Hierarchy
The backwards dataflow analysis cannot always statically in-
fer precisely what shelters are needed on entry to an atomic
section. We must therefore make use of a hierarchy of shel-
ters, with coarser grained shelters used in response to im-
precision in the analysis. Consider the following alternate
version of the transfer function from the example:

void idTransfer(int toId, int fromId, float a) {

atomic {

account t *to = accountLookup(toId);

account t *from = accountLookup(fromId);

withdraw(from, a);

deposit(to, a);

}

}

In this example the function accountLookup takes the ac-
count ID, looks up the account t structure in some data
structure implementing a map, and returns a pointer to it.
It might be preferable to write the function like this in case,
for example, accounts may be deleted from the system. De-
pending on how the map data structure is implemented, it
may not be possible for a static analysis to determine ex-
actly what shelters are needed at the beginning of the atomic
section. In this situation, our current implementation regis-
ters for a coarser grained shelter protecting all account t
structures, which subsumes the shelters in the individual ac-
count t structures. We call these coarser-grained shelters
type-shelters, and will refer to particular type-shelters as T.s,
where T is the structure type name, and s is the shelter field,
for example account t.s. In our implementation they are
only needed to subsume the shelters that are fields of struc-
ture types.

A static analysis having shape or ownership information
may be able to obtain a finer-grained hierarchy. This is the
approach suggested by McCloskey et al. [27], and imple-
mented by Cherem et al. [11], and Hicks et al. [19], how-
ever these refinements are largely orthogonal to our contribu-
tion. Furthermore, our design goals include avoiding whole-
program analysis or an intricate system of annotations, one
of which approaches like these likely require.

In order to implement our hierarchy, when a thread reg-
isters for a shelter, it must also place itself on the queues

of its ancestors in the hierarchy. Furthermore, when check-
ing to see if it must wait for a shelter, a thread must also
wait if a thread with a lower sequence number has regis-
tered directly for one of its ancestor shelters. For example,
suppose thread T1 is registered for a shelter protecting a par-
ticular account t structure, a->s, and has sequence number
3. Further suppose that thread T2 is in the atomic section in
the alternate transfer implementation, and is registered di-
rectly for the ancestor of a->s, account t.s, with sequence
number 2. Even if T1 is the thread with the smallest sequence
number on the queue of shelter a->s, it must wait because T2
has a smaller sequence number and is on the queue for ac-
count t.s, an ancestor of a->s. On the other hand, if T2 had
only been registered for the shelter for another account t
structure, say a’->s, then both threads would be able to pro-
ceed.

We also provide syntax for adding a shelter higher up in
the hierarchy to the list of shelters in the needs shelters
annotation.

2.3 Condition Variables
Our implementation includes support for condition vari-
ables. That is, threads may send signals and wait on con-
dition variables based on shared state that is protected by
shelters. Shelter condition variables are much like traditional
condition variables. They are declared like pthread condition
variables, e.g. shelter cond t scv, and are signaled in the
same way, e.g. shelter cond signal(scv). However, a con-
ditional wait on shelter protected state is slightly different.
We introduce the following construct:

shelter cond wait(scv,e) {

stmts;

}

The meaning of this statement is as follows. The thread
waits on the shelter condition variable scv while the condi-
tion, e, is false. If the thread is then signaled, and the con-
dition is true, it executes the statements stmts atomically.
This is accomplished by our analysis treating the shelter wait
block as an atomic section and collecting the shelters neces-
sary for protecting both the block and the condition e. Then,
the above construct can be translated as follows.

shelter register(S);

shelter wait(S);

while(!e) {

ll shelter release and wait(S,scv);

shelter register(S);

shelter wait(S);

}

stmts;

shelter release all();

Here, S is the set of shelters found by the analysis, and
ll shelter release and wait(S,scv) atomically releases

the shelters in S, and puts the thread to sleep waiting for a
signal on scv. We leave as future work an extension to our
system, like the one in Autolocker, that ensures that condi-
tion variables are signaled when appropriately specified state
is updated.

2.4 Library Calls and Polymorphism
If a library call does not invoke any callbacks, it will not
cause a thread to register for any shelters. Therefore, it is
only necessary to know what objects such a library call will
read and write in case any of these locations are protected
by a shelter. We allow programmers to indicate this by pro-
viding annotations that summarize the read and write be-
havior of library calls, so that our implementation can au-
tomatically place the appropriate shelter wait calls ahead
of the library calls. Library calls invoking callbacks that ac-
cess shelter protected state are not currently supported by
our system.

In our current implementation we do not support type-
qualifier polymorphism for the sheltered by(s) annota-
tions. This sort of feature has not been needed in the bench-
marks we analyze in Section 5 due to the limited use of poly-
morphism in C programs. However, more modern languages
may require increased support of polymorphism to support
code-reuse, and other good software engineering practices.
We leave support for polymorphism as future work.

2.5 Other Synchronization Strategies
It is not realistic to assume that all shared data will be
protected by shelters and accessed within atomic sections.
For instance, some shared data will be readonly and need
no synchronization, while other data will be protected by
other means: barrier synchronization, data obtained from
work queues and worked on exclusively by a single thread,
etc. Furthermore, external libraries may already use locks to
protect their own data — converting these libraries to use
shelters may not be desirable, practical or even possible.

Three issues must be considered in the resulting pro-
grams:

• The programmer must ensure that data is shared cor-
rectly and using consistent mechanisms. Our own recent
sharing checker work [4] uses sharing annotations on all
types, and Martin et al. [26] use dynamic ownership as-
sertions to detect where such rules are violated.
• The programmer must ensure that the mix of synchro-

nization mechanisms does not cause deadlock. Such
deadlocks are possible even when each mechanism is
used safely: for instance, holding a lock when calling a
barrier-synchronization function can cause deadlock if
it prevents another thread from reaching its own barrier
call. Similarly, calling a barrier-synchronization function
inside a shelter-based atomic section will likely cause
deadlock. Holding any lock when a shelter wait(s) call
occurs (i.e. when a sheltered object is accessed within an

Trace T ::= d1, . . . , dn, (t1, s1), . . . , (tm, sm)
Statement s ::= atomicn(σ1, . . . , σm) | end

| v := n | v := v1 + v2
Declaration d ::= int v sheltered by s
Shelter σ ::= vσ | s

Identifiers v, s Integers t, n,m

Figure 3. Traces of shelter-based programs.

atomic section) is also likely to cause deadlock. However,
this still allows many safe uses of locks with our system.
Locks can be freely used outside atomic sections. Func-
tions using locks can be freely called from within an
atomic section as long as they release all acquired locks
before returning and make no calls to shelter-using func-
tions — this should be true of the typical library that uses
locks to protect its internal state.
• Atomicity can be violated in some cases. For instance,

atomic sections that access both lock-protected and
shelter-protected data are not guaranteed to be atomic.
However atomic sections that access only thread-private,
readonly and shelter-protected data do remain atomic.

3. Atomicity
We show that atomic sections implemented using shelters
do indeed provide atomicity. That is, execution with shel-
ters is equivalent to a sequential interleaving of atomically
executed sections. Formally, we prove that a valid execu-
tion trace of a shelter-based program is equivalent to the
corresponding trace where the atomic sections are executed
atomically. Our approach is fairly different to that used for
Jade [32] as we are proving a different property (atomicity
vs. equivalence to a sequential program).

A trace T , defined in Figure 3, captures the essential as-
pects of execution in an imperative language with shelters.
A trace starts with the declaration (di) of the global inte-
ger variables that are used in the trace. Each variable v is
protected by its own shelter vσ and a global shelter s (possi-
bly shared with other variables), mirroring the hierarchical
shelters in our system. The trace itself is a sequential in-
terleaving of statements from multiple threads, where each
thread is identified by a distinct integer t. The statements, ex-
ecuted atomically, are either the start of an atomic statement
requiring shelters σ1, . . . , σn (atomic), the end of an atomic
statement, or assignments of an integer or computed value
to a variable v.1 An atomic statement has a sequence number
n which must be greater than all atomic sequence numbers
found earlier in the trace.

1 The atomic execution of v := v1 +v2 is not essential to the proof and could
easily be relaxed with the addition of per-thread variables to the trace.

access(A(t), v,Σ) access(A(t), v1,Σ) access(A(t), v2,Σ)

M, A, a,Σ : (t, v := v1 + v2)→ M[v→ M(v1) + M(v2)], A, a,Σ

A(t) = 0 n > a Σ′ = Σ[. . . , σi → Σ(σi) ∪ {n}, . . .]

M, A, a,Σ : (t, atomicn(σ1, . . . , σm))→ M, A[t → n], n,Σ′

access(A(t), v,Σ)

M, A, a,Σ : (t, v := n)→ M[v→ n], A, a,Σ

A(t) , 0 dom(Σ′) = dom(Σ) ∀σ ∈ dom(Σ).Σ′(σ) = Σ(σ) \ {A(t)}

M, A, a,Σ : (t, end)→ M, A[t → 0], a,Σ′

M, A, a,Σ : (t1, s1)→ M′, A′, a′,Σ′

M, A, a,Σ : (t1, s1), . . . , (tm, sm)→ M′, A′, a′,Σ′ : (t2, s2), . . . , (tm, sm)

∀v.M(v) = 0 ∀σ.Σ(σ) = ∅ ∀t.A(t) = 0 ∀t.A′(t) = 0 M, A, 0,Σ : (t1, s1), . . . , (tm, sm)
∗
−→ M′, A′, a′,Σ′ :

d1, . . . , dn, (t1, s1), . . . , (tm, sm)→ M′

access(n, v,Σ) = (n ∈ (Σ(vσ) ∪ Σ(G(v)))) ∧
(∀m ∈ Σ(vσ) ∪ Σ(G(v)).m ≥ n)

Figure 4. Trace Operational Semantics

Traces do not necessarily represent a valid execution of a
shelter-based program. For instance,

int x sheltered by f, (0, atomic42(g)), (0, x = 2), (0, end)

accesses x without holding either its individual shelter xσ
or its global shelter f. In Figure 4 we give an operational
semantics for traces that computes a trace’s effects as long
as the trace is valid. The state of the operational semantics
is a four-tuple M, A, a,Σ where M : id → � maps variables
to their values, A : � → � maps threads to their current
atomic statement, a : � is the sequence number of the last
initiated atomic statement and Σ : σ → P(�) maps shelters
to the set of active atomic statements that have requested that
shelter. Finally, we write G(v) to represent the global shelter
specified in v’s declaration.

The two assignment rules use the access function to
check that thread t’s current atomic statement A(t) has either
requested access to variable v’s shelter vσ or its global shelter
G(v), and that no atomic statement with an earlier sequence
number currently has access to either of these two shelters.
The rules then update the memory with the assignment’s
result. The atomic statement rule has three parts. First, the
current thread must have ended any previous atomic state-
ment (A(t) = 0). Second, the atomic statement’s sequence
number n must be greater than that of the previous (from
any thread) atomic statement a. Finally, it computes Σ′, the
new state of shelter requests, by adding the atomic statement
sequence number n to the requested shelter sets. Ending an
atomic statement is symmetric: the thread must be executing
an atomic statement (A(t) , 0), then it computes the new
shelter state by removing the atomic statement’s sequence
number A(t) from Σ and sets its atomic statement number to
0. The last two rules evaluate a complete trace from the ini-
tial state M(v) = 0 (all variables initialized to zero), A(t) = 0
and a = 0 (no active atomic statement), and Σ(σ) = ∅ (no
shelters requested by any thread). Note that we also require

that at the end of the trace all threads have ended their atomic
statements (A′(t) = 0).

D 1. Trace d1, . . . , dn, (t1, s1), . . . , (tm, sm) is valid
with results M if d1, . . . , dn, (t1, s1), . . . , (tm, sm)→ M.

D 2. A trace is serial if it is of the form

d1, . . . , dn,
(t1, atomicn1 (. . .)), (t1, v1

1 := . . .), . . . , (t1, v1
m1 := . . .), (t1, end),

. . .
(tk, atomicnk (. . .)), (tk, vk

1 := . . .), . . . , (tk, vk
mk := . . .), (tk, end)

Such traces execute the body of an atomic statement without
any interference by other threads, so are obviously atomic.

D 3. ops (t, T) is the subsequence of statements in
trace T executed by thread t.

D 4. atomicorder (T) is the subsequence of atomic
statements of T .

T 1. Atomicity. For every valid trace T with results
M there exists a serial trace T ′ with results M. Furthermore,
atomicorder(T) = atomicorder(T ′) and for every thread t,
ops(t,T) = ops(t,T ′).

Less formally, the execution of T is equivalent to the
clearly atomic execution obtained by moving all the assign-
ments in each atomic section so that they occur immediately
after the atomic statement.
Proof: The proof proceeds by a step-wise transformation
of T into a serial trace T ′. The detailed proof appears in
Appendix A

4. Implementation
Our system is written in about 2200 lines of OCaml using the
CIL [30] library, with a runtime library written in about 2500
lines of C. We use a combination of lock-free algorithms and
other optimizations to ensure that our implementation scales.

1 typedef struct {

2 qentry t Q[SIZE];

3 int front, back, level;

4 shelter t *parent;

5 } shelter t;

6

7 typdef struct {

8 uint64 t *thread;

9 int level;

10 } qentry t;

11

12 uint64 t global counter;

13 thread uint64 t T; // T is thread-private

14

15 void shelter register(shelter t *s) {

16 retry:

17 uint64 t old = global counter;

18 addToQueues(s, &T);

19 T = old + 1;

20 if (CAS(&global counter, old, T) != old) {

21 T = 0;

22 rmFromQueues(s, &T);

23 goto retry;

24 }

25 }

26

27 void shelter wait(shelter t *s, int level) {

28 int wait, front;

29 do {

30 wait = 0; front = s->front;

31 while (front != s->back) {

32 if (Q[front].thread == &T) break;

33 else if (*Q[front].thread &&

34 level == s->level &&

35 *Q[front].thread < T) {

36 wait = 1; break;

37 }

38 else if (*Q[front].thread &&

39 s->level < level &&

40 Q[front].level < level &&

41 *Q[front].thread < T) {

42 wait = 1; break;

43 }

44 front = (front + 1) % SIZE;

45 }

46 } while (wait);

47 if (s->parent) shelter wait(s->parent, level);

48 }

Figure 5. Psuedo-code for the shelter wait functions.

4.1 Shelter Registration and Waiting
In order to avoid threads being serialized in acquiring a
unique sequence number and adding themselves to shelter
queues, we use lock-free algorithms for the shelter register
and shelter wait operations. Figure 5 gives sketches for
these functions. The intention is to illustrate the key features

of the algorithms rather than to show a complete implemen-
tation.

We first define two structures, one for the shelters them-
selves, and the other for the entries in the shelters’ queues.
The shelter t type includes the shelter’s queue, Q; indexes
for the front and back of the queue, front and back; the shel-
ter’s level in the hierarchy, level, where a smaller number
indicates that the shelter is higher in the hierarchy; and a
pointer to the shelter’s parent in the hierarchy, parent. The
entries in the queue, with type qentry t, hold pointers to the
sequence numbers of the registered threads in the thread
field, and the levels of the shelters that those threads have
initially registered for in the level field.

Two global variables keep track of the global sequence
number counter, global counter, and the thread-private se-
quence number, T. We use 64-bit unsigned integers so that
overflow is unlikely.

The goal of shelter registration is to atomically acquire
a unique sequence number, and place the calling thread in
the right place on the indicated shelters’ queues. The thread
must be added to all shelter queues atomically in order to
avoid deadlock. The function works as follows. First the
global sequence number is read (Line 17). Then the thread
adds itself to the queues for the indicated shelter and its an-
cestors (Line 18). We omit the pseudo-code for the queue be-
cause it is a standard lock-free queue implemented with a cir-
cular buffer. Next, the thread’s sequence number is assigned
to the next available sequence number (Line 19) before an
attempt is made to increment the global sequence number
counter with an atomic compare-and-swap (Line 20). If that
fails, the thread zeroes out its sequence number (Line 21),
and removes itself from the shelters’ queues (Line 22) be-
fore retrying (Line 23).

The global sequence number is read before adding the
thread to the shelter queues so that when the compare-and-
swap succeeds, we are guaranteed that any unsorted-ness
ahead of the thread in the queue will be only temporary. It
is also the case that entries in the queue may temporarily
be zero (that is, before assigning T after adding a thread to
the queue, or after zeroing it when the compare-and-swap
fails.) It is safe for the shelter wait function to ignore these
zeroed entries.

The shelter wait function works by checking to see if it
must wait for a shelter by inspecting its thread queue, and
then making a recursive call to see if it must wait for any of
that shelter’s ancestors. It takes two arguments, the shelter
currently being inspected, and the level in the hierarchy of
the shelter that the thread initially called shelter wait on.
The call mentioned in Section 2, which only took the shelter
argument, is a simple wrapper for this call.

First, the thread will look through the shelter’s queue,
either for its own entry or for an entry that means it must
wait. This loop begins on Line 31. In the loop, the thread
checks to see if it has found its own entry (Line 32). Since

a thread can never see its own entry out of order in the
queue (shelter registration only completes when an in-order
enqueue succeeds), when a thread finds its own entry, it does
not need to wait. If a thread has not yet found itself, and if
the the shelter currently being inspected is the one the thread
initially called shelter wait on, then the thread must wait
if it finds an entry in the queue that has a smaller sequence
number (Line 36). If the shelter currently being inspected
is an ancestor of the shelter that the thread initially waited
on, then the thread must only wait if it finds a queue entry
for a thread that initially waited on a shelter higher in the
hierarchy that also has a smaller sequence number (Line 42).
On Line 47, the thread checks to see if it must wait for a
parent shelter by making a recursive call to shelter wait.

In this pseudo-code, when a thread discovers that it must
wait, it simply retries the check. However, it is straightfor-
ward to implement other options, such as sleeping, or wait-
ing on a traditional condition variable. In our experiments,
we simply retry the check again immediately after an in-
vocation of the scheduler, however in the future we intend
to experiment with the futex [12] system calls provided by
Linux.

4.2 Optimizations
In practice, a number of optimizations are required for our
system to scale. In particular, the following optimizations
were critical to achieving performance similar to, and in
some cases, better than explicit locking.

4.2.1 Important Optimizations
It is often the case that a shared object is only ever read in a
atomic section. Our static analysis is able to determine when
a shelter is only required by an atomic section for read ac-
cess. This has been omitted from the runtime description
above, however in these cases, a thread may indicate that
it will only ever read objects protected by a shelter when
registering for it. Then, when determining whether or not it
should wait before reading a sheltered object, a thread must
only have a sequence number smaller than threads on the
shelter’s queue that have registered for write access. This
mechanism is essentially equivalent to explicit read/write
locking, however our shelter-based atomic section imple-
mentation invokes it automatically wherever possible.

It is also often the case that atomic sections are used
to protect access to objects for which there is not much
contention. To take advantage of this, instead of adding itself
to a shelter’s queue, our runtime allows a thread to acquire a
spinlock—or to increment a counter in the case of read-only
access when there are no writers—during the registration
phase in the case that there are no other threads on the
shelter’s queue.

Furthermore, not all programs will use the various levels
of the shelter hierarchy, and those that do will not be using
them at all times. Therefore, our runtime includes a mech-
anism to activate shelters higher up in the hierarchy only

when they are needed—that is, when a thread attempts to
register for them directly. When a shelter is inactive, threads
registering for its children must simply read a flag that indi-
cates inactivity, and check that its queue is empty to see that
no further action is required. Threads also record for which
inactive shelters they have registered. When a thread wishes
to register directly for a shelter with children, it registers as
usual, but during a shelter wait call, it must also wait until
there are no threads registered for a child shelter that make
use of the inactivity of the parent shelter. This check is made
by examining the inactive shelters that each thread has reg-
istered for. When there are no more such threads, we unset
the inactive flag in the parent shelter, and proceed.2

As the number of threads and cores increases, con-
tention for the global sequence number counter increases.
To address this, when a compare-and-swap operation on the
counter fails, after retrying immediately a small number of
times, we use a binary exponential backoff algorithm [18].
In our experiments, this approach reduced by several or-
ders of magnitude the number of compare-and-swap failures
without compromising performance.

4.2.2 Other Optimizations
We also implemented a few obvious optimizations that we
believe to be important in general, but for which we observed
no advantage in our experiments.

In particular, from the results of our backwards analysis,
we can deduce a few interesting facts. First, we find places
where it is safe to release a shelter before the end of an
atomic section. Similarly, we find places where it is safe to
downgrade a thread from write access to read access. Finally,
we find places where it is safe to give up a parent shelter, and
to instead acquire one of its children. These optimizations
were left enabled for the results we present in Section 5, but
because the atomic sections in our benchmark programs are
placed very carefully, they had little effect on performance.
In the future, we plan to investigate microbenchmarks that
demonstrate in what situations these optimizations are most
useful.

4.2.3 Proposed Optimizations
Another potential optimization that we leave for future work
involves the way that sequence numbers are allocated to
threads. If it can be determined that two threads will never
use the same shelter, then their sequence numbers need not
be distinct. An analysis supporting such an optimization
would likely rely on some form of a must-not-alias analy-
sis [29].

2 It may seem simpler for threads registering for a child shelter to simply
acquire read-access to the inactive parent shelter by way of a counter, as in
a reader-writer lock. However, in practice, contention for this counter can
incur an unacceptably high overhead.

5. Evaluation
We have modified a number of programs to use shelters as
the mechanism for enforcing atomic sections, and we have
measured the runtime performance of these programs on
typical inputs. The purpose of this evaluation is to investigate
the convenience of using shelter-based atomic sections, and
to compare the runtime performance of our implementation
with four other mechanisms for enforcing atomicity, namely
explicit locking, software transactional memory, a single
global lock, and shelters implemented with pthread reader-
writer locks.

In the implementation of shelters using reader-writer
locks, each shelter contains a lock. When registering for
shelters at the beginning of atomic sections, the locks are
sorted by address to avoid deadlock before being acquired.
When a fine-grained shelter is registered, the shelter’s lock is
acquired in read mode if the section only reads the sheltered
data, and in write mode otherwise. When a coarse-grained
shelter is registered, the lock is acquired in write mode. A
shelter’s ancestors’ locks are always acquired in read mode.

5.1 Experimental Setup
All of our experiments were performed on a 2.27GHz Intel
Xeon X7560 machine with four processors each with eight
cores having 32GB of main memory running Linux 2.6.18.
We chose to compare against an Intel compiler for C/C++

that includes an STM implementation [34]. Other STM im-
plementations may give better performance [8], but the Intel
STM compiler has an annotation burden that is similar to that
of our system, and requires no additional special hardware.
We also used the Intel compiler with the STM features dis-
abled as the back-end of our system, and to compile the other
versions of the benchmarks. The compile-time analyses used
for our system did not add significantly to compilation time.

Occasionally, slight modifications were made to pro-
grams to avoid activation of higher levels of the shelter hier-
archy where possible. We believe this practice is consistent
with how a working programmer would improve the perfor-
mance of a program using atomic sections, and the STM and
explicit locking versions also benefited from these modifi-
cations because transactions were smaller, and locks were
held for shorter periods of time, respectively. In the explicit
locking versions, the locking was made as fine-grained as
possible without substantially rewriting the programs.

5.2 Benchmarks
Our benchmark programs consist of the STAMP STM
benchmark suite [8], along with: pbzip2, a parallel version
of bzip2; pfscan, a parallel file scanning tool; and ebarnes,
an n-body simulation using the Barnes-Hut algorithm [5].
Table 1 shows the size of each of the benchmark programs,
the number of atomic sections in each, and the number of
other annotations that were needed to use Intel’s STM and
our system, respectively. The other annotations for Intel’s

Name Size Atm. STM Shelter Seq.
(kloc) sects. Annts. Annts. Time

bayes 12.0 15 47 42 9.97s
genome 10.0 5 16 25 8.58s
intruder 11.3 3 61 64 2.26s
kmeans 3.9 3 4 7 9.17s
labyrinth 8.2 3 50 46 3.02s
ssca2 9.2 1 5 12 9.73s
vacation 11.0 3 159 122 1.53s
yada 13.4 6 105 86 4.19s
ebarnes 13.4 3 8 9 16.07s
pbzip2 10.0 10 4 14 10.46s
pfscan 2.8 6 4 11 2.56s
total 105.2 48 463 438

Table 1. Program size, number of atomic sections, number
of annotations for Intel STM and Shelters, and sequential
runtime for our benchmark programs.

STM are the tm callable annotations that must be placed
on functions called from transactions. The other annotations
for our system are the sheltered by annotations and the
needs shelters function annotations. The STAMP bench-
marks are distributed with the tm callable annotations
already placed, some of which are redundant. We also made
redundant annotations when adapting the programs for our
system, as we also found the annotations to be useful for
documentations purposes. The annotation counts in the ta-
ble include these redundant annotations. This is why in the
STAMP benchmarks the annotation count for STM is some-
times higher than it is for our system.

The results of our experiments are given in the graphs of
Figure 6. The graphs show speedup over sequential runs (i.e.
Tsequential/Tparallel) versus the number of cores used. Each
reported result is the average of at least 50 runs. Command
line arguments passed to the STAMP benchmarks are also
given in the captions.

5.2.1 STAMP Benchmarks
The intended usage of the STAMP benchmark suite is to
compare different transactional memory implementations. In
addition, we believe that it is also a suitable benchmark suite
for the more general task of comparing different implemen-
tations of atomic sections.

The bayes benchmark implements an algorithm used in
learning Bayesian networks. It involves multiple threads
concurrently modifying and searching in a graph. The bayes
benchmark required activation of shelters higher in the hi-
erarchy for the linked lists used to represent the graph ad-
jacency list. The performance of the bayes benchmark is
shown in Figure 6(a). None of the implementations were
able to yield any significant parallel speedup. For our sys-
tem and explicit locking, lock and shelter contention is high
because exclusive access to the entire graph is acquired for

1 2 4 8 16 32
0.0

0.5

1.0

1.5

2.0
Locks
Shelters
RWLocks
SGL
STM

(a) bayes -v32 -r768 -p40 -n10 -e8 -i1 -s37
1 2 4 8 16 32

0

1

2

3

4

5
Locks
Shelters
RWLocks
SGL
STM

(b) genome -g16384 -n4194304 -s64

1 2 4 8 16 32
0.0

0.5

1.0

1.5

2.0
Locks
Shelters
RWLocks
SGL
STM

(c) intruder -a10 -l256 -n16384 -s1
1 2 4 8 16 32

0

1

2

3

4

5

6

7
Locks
Shelters
RWLocks
SGL
STM

(d) kmeans -m40 -n40 -t0.00001

1 2 4 8 16 32
0.0

0.5

1.0

1.5

2.0
Locks
Shelters
RWLocks
SGL
STM

(e) labyrinth -i random-x256-y256-z3-n256.6x6
1 2 4 8 16 32

0.0

0.5

1.0

1.5

2.0

Locks
Shelters
RWLocks
SGL
STM

(f) ssca2 -s19 -i1.0 -u1.0 -l3 -p3

1 2 4 8 16 32
0.0

0.5

1.0

1.5

2.0
Locks
Shelters
RWLocks
SGL
STM

(g) vacation -t262144
1 2 4 8 16 32

0.0

0.5

1.0

1.5

2.0
Locks
Shelters
RWLocks
SGL
STM

(h) yada -a20 -i ttimeu100000.2

1 2 4 8 16 32
0

4

8

12

16
Locks
Shelters
RWLocks
SGL
STM

(i) ebarnes (1,000,000 bodies)
1 2 4 8 16 32

0

5

10

15

20
Locks
Shelters
RWLocks
SGL
STM

(j) pbzip2 (compressing a 50MB text file)

1 2 4 8 16 32
0.0

0.4

0.8

1.2

1.6

2.0

2.4

Locks
Shelters
RWLocks
SGL
STM

(k) pfscan (search for “ab” in shelter source)
1 2 4 8 16 32

-100%

0%

100%

200%

300%
Shelters
RWLocks
SGL
STM

(l) Average % slowdown

Figure 6. Graphs (a) - (k) show speedup over sequential runs versus the number of threads used for our benchmark programs
when run with explicit locking (Locks), shelters (Shelters), Intel STM (STM), a single global lock (SGL), and shelters
implemented with reader-writer locks (RWLocks). Higher is better. Graph (l) shows average percent slowdown with respect to
explicit locking over all benchmarks versus the number of threads. Lower is better.

each atomic section. For the STM runs, data contention and
big transactions caused many conflicts and rollbacks, limit-
ing scaling.

The genome benchmark reconstructs a gene sequence
from overlapping fragments. It involves multiple threads
concurrently adding elements to hashtables, and searching
in and modifying strings. The performance of the genome
benchmark is shown in Figure 6(b). The explicit locking and
shelters versions scale up as threads are added, but the STM
version does not due to the overhead of memory barriers for
memory reads and writes in atomic sections [9].

The intruder benchmark implements a signature-based
intrusion detection algorithm. Packet streams are concur-
rently collected in a red-black tree, added to a queue when
finished, and examined for a matching signature. The per-
formance of the intruder benchmark is shown in Figure 6(c).
None of the implementations achieve a parallel speedup due
to being serialized by access to the red-black tree.

The kmeans benchmark implements a clustering algo-
rithm. Threads concurrently read and modify several arrays
used to calculate the means of, and membership in, the clus-
ters.The performance of the kmeans benchmark is shown in
Figure 6(d). Shelters and shelters implemented with reader-
writer locks are able to achieve some parallel speedup. The
STM implementation is penalized by the necessity of instru-
menting memory reads and writes in transactions as for the
genome benchmark. Explicit locks are penalized by the in-
ability to provide concurrent read access, however this could
be fixed by using reader-writer locks.

The labyrinth benchmark implements an algorithm for
navigating a maze. Threads concurrently update a two-
dimensional array to add to it paths through the maze. The
performance of the labyrinth benchmark is shown in Fig-
ure 6(e). None of the implementations are able to achieve
a parallel speedup due to being serialized by access to the
maze array. The STM version is again penalized by instru-
mentation of reads and writes.

The ssca2 benchmark implements a graph kernel used in
a number of different algorithms. Threads concurrently up-
date graph adjacency lists. The performance of this bench-
mark is shown in Figure 6(f). Each implementation is able
to achieve a modest parallel speedup.

The vacation benchmark implements a travel reservation
system. Threads concurrently access and modify relations
stored as maps represented by red-black trees. The vacation
benchmark required activation of the higher levels in the
shelter hierarchy for linked lists stored in the maps. The
performance of this benchmark is shown in Figure 6(g).
None of the implementations are able to achieve any parallel
speedup due to being serialized by access to the red-black
trees.

The yada benchmark implements a mesh refinement al-
gorithm. Threads concurrently add and remove nodes and
edges from the mesh. As with the bayes benchmark, the

yada benchmark required activation of higher levels in the
shelter hierarchy for graph adjacency lists. The performance
of this benchmark is shown in Figure 6(h). None of the im-
plementations are able to achieve a parallel speedup. Even
though the mesh is large and triangles in need of refinement
begin distributed uniformly throughout the mesh, as the al-
gorithm runs, the location of triangles in need of refinement
becomes correlated. This increases both data and lock con-
tention, which prevents scaling [23]. The performance of our
system implementation degrades a bit less gracefully than
the other implementations.

5.2.2 Application Benchmarks
In addition to the STAMP benchmarks, we chose two mul-
tithreaded C applications using explicit locking to protect
shared objects. We chose these applications in order to com-
pare the real-world performance of shelters with the other
implementations. We also included a benchmark implement-
ing an n-body simulation using the Barnes-Hut algorithm.
We chose it because the parallel speedup in the oct-tree-
building phase is very sensitive to the synchronization strat-
egy.

The ebarnes benchmark is an n-body simulation adapted
from the Barnes-Hut Splash2 benchmark [37]. In each phase
of the simulation it builds an oct-tree in parallel and uses it
to update the positions of the bodies. For this benchmark, 1
million bodies were simulated so that building the oct-tree in
parallel would give a significant performance advantage. The
performance of this benchmark is shown in Figure 6(i). Shel-
ters and explicit locks allow scaling up as cores are added,
whereas the other implementations fail to allow scaling.

The pbzip2 benchmark is a parallel implementation of the
popular block-based compression algorithm. Threads take
blocks to compress off of a shared queue. Separate threads
add blocks to the queue, and write the compressed blocks to
a file. For this benchmark, a 50MB text file was compressed.
The file was small enough to fit into the operating system’s
file system caches. The performance of this benchmark is
shown in Figure 6(j). Each implementation manages to ob-
tain a parallel speedup.

The pfscan benchmark is a tool that searches for a string
in all files under a given directory tree. One thread places
paths to files to search on a queue while other threads takes
paths off the queue and search for the string in the files. For
this benchmark, we searched for the string “ab” in the Linux
source code tree. The tree was small enough to fit into the
operating system’s file system caches. The performance of
this benchmark is shown in Figure 6(k). Each implementa-
tion manages to obtain a parallel speedup until calls into the
operating system and limited workload size impede further
performance gains.

5.2.3 Effects of Workload Size
We also did an experiment in which the number of bodies
simulated in the ebarnes benchmark was varied from 100k

bodies, which fit comfortably in the caches, to 8 million bod-
ies, which exceeded the capacity of the caches. We ran the
simulations with each implementation, and on 4, 8, 16, and
32 cores. We did not observe any changes in relative over-
head with respect to the explicit locking version as workload
size increased.

5.2.4 Discussion
Our system’s implementation manages to obtain perfor-
mance comparable to explicit locking while having much
of the convenience of a mature STM implementation. The
graph in Figure 6(l) shows the average percent slowdown
over all of the benchmarks of the shelters, single global
lock, reader/writer locks, and STM runs with respect to the
locking runs versus the number of threads used. Our sys-
tem’s implementation scales up where possible as threads
are added in cases where the the other implementations fail
to do so.

6. Related Work
Many researchers have investigated the implementation of
atomic sections, and more generally, language constructs en-
abling correct concurrency. Fortress [2], Chapel [10], and
X10 [13] are new languages intended to be used for writ-
ing highly scalable, high-performance code. Each of them
includes atomic sections for protecting shared state.

A few projects are more closely related to our own. Au-
tolocker allows programmers to annotate variables and fields
as being protected by a particular lock [27]. Then, for each
atomic section, it determines which locks must be acquired,
and in what order they must be acquired. Determining lock
order requires a whole-program analysis, which is often im-
practical for large projects written in C. Our system avoids
the need to find a global lock order, and therefore allows C
projects to retain separate compilation.

Cherem et al. [11] present a system in which the locks re-
quired for an atomic section are inferred from the structure
of expressions accessed in the atomic section. The granular-
ity of the locks may vary depending on the precision of the
underlying analyses. Like Autolocker, this approach requires
a whole program analysis for calculating pointer aliasing and
for refining the expressions accessed in an atomic section.
The approach of Hicks et al. [19] is somewhat similar, re-
quiring a whole program alias analysis to acquire a coarse-
grained lock for the possible targets of a pointer when a
precise target cannot be determined. The coarsening strat-
egy for our system is similar, however instead of perform-
ing a whole-program alias analysis, we simply assume that
pointers of the same type may alias. A more precise anal-
ysis could be integrated into our implementation to obtain
a finer-grained shelter hierarchy, however, due to the practi-
cal problems it presents, we chose to avoid whole-program
analysis.

In the Jade [33] programming language, programmers
make annotations to describe how concurrent tasks will ac-
cess shared state so that the Jade compiler can then automat-
ically extract concurrency. Access to the shared state is then
mediated with a mechanism that inspired our implementa-
tion of shelter-based atomic sections. In particular, shared
objects each maintain a queue of tasks waiting to access
them. When many tasks attempt to access the same object,
the task with the smallest sequence number is permitted to
proceed. We use the shelter mechanism to enforce atomic
sections in an explicitly parallel program rather than as a way
to help a compiler extract parallelism in an implicitly paral-
lel language. Our system’s implementation also expands on
this mechanism by introducing explicit shelter objects that
allow the programmer to declare what objects need protec-
tion, eliminating the need for the programmer to make an-
notations at each atomic block, and by introducing a shel-
ter hierarchy. Further, our lock-free implementation reduces
the extent to which programs are serialized by accesses to
queues.

There also exist several transactional memory systems
that can be used to implement atomic sections, both hard-
ware [3, 31] and software [35, 17, 25] based. We believe
that the STM system for C most similar to our own in terms
of programmer convenience is the Intel STM implementa-
tion [21]. Other STM implementations for C give better per-
formance [8], but they require by-hand instrumentation of
reads and writes of shared memory. The Intel STM imple-
mentation incurs overhead from the instrumentation of all
shared memory reads and writes inside of transactions, and
from the rollback of transactions during which conflicts are
detected. Because our system is pessimistic, it does not incur
these overheads. Boehm argues that transactional memory
should be viewed as a mechanism for providing atomicity
rather than a programming interface [6].

Type systems with annotations describing locking rules
have been used to prevent data races [14, 15], in particu-
lar for Java [16, 7]. Boyapati’s ownership type-system [7]
allows the expression and checking of sophisticated lock-
ing schemes. Our system could be extended with similar
ownership or region types as an alternate way to arrive at
a finer-grained shelter hierarchy. We leave these extensions
for future work. Also for Java, Hindman and Grossman [20]
translate programs with atomic sections to ones which ac-
quire locks just before they are needed. Deadlock is avoided
at runtime through rollback.

7. Conclusion
We have presented a system in which atomic sections in C
programs are implemented with shelters. We avoid the cur-
rent problems associated with optimistic implementations of
atomic sections by using a pessimistic approach, and unlike
previous pessimistic approaches, our system’s design allows
us to avoid whole-program analysis. We used shelter-based

atomic sections in 11 benchmarks including the STAMP
benchmark suite, and three interesting programs. We ob-
served that the performance of our system is competitive
with both explicit locking and the Intel STM system.

In the future, we plan to investigate the use of lightweight
shape specifications that may allow our analysis to make
use of a finer-grained shelter hierarchy to further improve
usability and performance. Also, as the number of cores per
socket increases, we will be able to do a more thorough
investigation of the ability of our system to scale beyond the
32 cores used in the experiments presented here.

Additionally, we have not yet thoroughly investigated
the fairness properties of our system. Fairness and liveness
issues did not arise in any of our benchmark programs, but
in the future we wish to obtain more rigorous guarantees.

A. Atomicity
T 1. Atomicity. For every valid trace T with results
M there exists a serial trace T ′ with results M. Furthermore,
atomicorder(T) = atomicorder(T ′) and for every thread t,
ops(t,T) = ops(t,T ′).
Proof: The proof proceeds by a step-wise transformation
of T into a serial trace T ′. Any non-serial trace T has a
(possibly empty) prefix that matches a serial trace, i.e. T is
of the form:

(t1, atomicn1 (. . .)), (t1, v1
1 := . . .), . . . , (t1, v1

m1 := . . .), (t1, end)
. . .
(tk, atomicnk (. . .)), (tk, vk

1 := . . .), . . . , (tk, vk
mk := . . .), (tk, end),

(t1, s1), . . . , (tn, sn)

Furthermore s1 must be an atomic statement, as assign-
ments and end are not valid when no atomic statement is in
progress. Therefore (t1, s1), . . . , (tn, sn) must match the fol-
lowing template:

(t, atomicnt (. . .), (t, v1 := . . .), . . . , (t, vmt := . . .),
(t′, s′), . . . , (t′′, s′′), (t, s), . . .

with nt > nk, t′ , t and (t, s) the earliest statement of thread
t after vmt := . . .: there must be at least one such statement
as a valid trace requires A(t) = 0 at termination so thread t
must have at least one more end statement. Note also that s
cannot be an atomic statement.

We show that the trace T ′′ produced by moving (t, s) one
step left, i.e. swapping it with (t′′, s′′) is a valid trace with
the same results M, atomicorder(T) = atomicorder)(T ′′)
and ∀t.ops(t,T) = ops(t,T ′′). Repeated applications of this
transformation clearly terminate in the desired serial trace
T ′: we eventually move (t, s) until it is adjacent to (t, vmt :=
. . .). At that point we will start moving another statement
left, either for thread t if s , end or for some new statement
for thread t′. We note that this approach is very similar,
but not quite identical to Lipton’s theory of reduction [24]:
while in our particular case (t, v := . . .) can be moved left
past (t′′, end) (see below), in general assignments cannot

be moved past end statements of other threads, i.e. are not
general left-movers.

We show that moving (t, s) left produces T ′′ with the
desired properties for the six possible combinations of
statements s′′ and s. We start by noting that as s is not
an atomic statement and t′′ , t that atomicorder(T) =

atomicorder)(T ′′) and ∀t.ops(t,T) = ops(t,T ′′). For each
case we only need to show that the trace T ′′ is valid and
has results M. We denote the operational state of T be-
fore (t′′, s′′) by M0, A0, a0,Σ0, the state after (t′′, s′′) by
M1, A1, a1,Σ1 and the state after (t, s) by M2, A2, a2,Σ2.
The state in T ′′ before (t, s) is also M0, A0, a0,Σ0, after
(t, s) it is M′′1 , A

′′
1 , a

′′
1 ,Σ

′′
1 and the state after (t′′, s′′) it is

M′′2 , A
′′
2 , a

′′
2 ,Σ

′′
2 . We simply need to show that (M′′2 , A

′′
2 , a

′′
2 ,Σ

′′
2) =

(M2, A2, a2,Σ2).
First, we consider the case where s is end. If s′′ is end or

s′′ is atomic the result follows from the obvious lemma that
u , u′∧A(u) , 0⇒ A(u) , A(u′) applied to t , t′′. The case
where s′′ is v′′ := . . . also holds, as if A0(t′′) is the smallest
value in Σ0(v′′σ) ∪ Σ0(G(v′′)) it is also clearly the smallest
value in Σ′′1 (v′′σ) ∪ Σ′′1 (G(v′′)) (the same argument applies to
any other variable in the assignment).

Next, we consider the case where s is v := We
know that A0(t) = A1(t) = nt. If s′′ is atomicp(. . .), then
p > nt so access(A1(t), v,Σ1) ⇒ access(A0(t), v,Σ0) so
the result clearly holds. If s′′ is v′′ := . . . and the two
statements access non-overlapping variables, the result is
trivial. The case where they access overlapping variables
cannot occur as T would not be a valid trace: A0 = A1 and
Σ0 = Σ1, so if access(A1(t), v,Σ1) then ¬access(A0(t′′), v,Σ0),
or vice-versa. If s′′ is end we note that A0(t′′) > A0(t) =

A1(t) as t′′ must have started its atomic statement after t
(all atomic statements prior to t’s have already completed).
Thus access(A1(t), v,Σ1) ⇒ access(A0(t), v,Σ0) so the result
clearly holds.

References
[1] A, R., C, M. J.,  L, M. Concurrency

control performance modeling: alternatives and implications.
ACM Trans. Database Syst. 12, 4 (1987), 609–654.

[2] A, E., C, D., L, V., J., J.-W. M. S. R.
G. L. S.,  T-H, S. The Fortress language
specification version 1.0, 2008.
http://research.sun.com/projects/plrg/fortress.pdf.

[3] A, C. S., A, K., K, B. C., L,
C. E.,  L, S. Unbounded transactional memory. In
HPCA’05, pp. 316–327.

[4] A, Z., G, D., E, R.,  B, E. SharC:
checking data sharing strategies for multithreaded C. In
PLDI’08, pp. 149–158.

[5] B, J.,  H, P. A hierarchical O(N log N) force-
calculation algorithm. Nature 324 (Dec. 1986), 446–449.

[6] B, H.-J. Transactional memory should be an implemen-
tation technique, not a programming interface. In HotPar’09.

[7] B, C. SafeJava: A Unified Type System for Safe
Programming. PhD thesis, MIT.

[8] C M, C., C, J., K, C.,  O,
K. STAMP: Stanford transactional applications for multi-
processing. In IISWC’08.

[9] C, C., B, C., M, M., C, H. W., W,
P., C, S.,  C, S. Software transactional
memory: why is it only a research toy? Commun. ACM 51,
11 (2008), 40–46.

[10] C, B., C, D.,  Z, H. Parallel
programmability and the chapel language. Int. J. High
Perform. Comput. Appl. 21, 3 (2007), 291–312.

[11] C, S., C, T.,  G, S. Inferring locks for
atomic sections. In PLDI’08.

[12] D, U. Futexes are tricky, 2009.
http://people.redhat.com/drepper/futex.pdf.

[13] E, K., S, V.,  S, V. X10: Program-
ming for hierarchical parallelism and non-uniform data ac-
cess. In OOPSLA’04.

[14] F, C.,  A, M. Object types against races. In
Conference on Concurrent Theory (CONCUR (1999).

[15] F, C.,  A, M. Types for safe locking. In
ESOP’99 (1999).

[16] F, C.,  F, S. N. Type-based race detection
for Java. In PLDI’00, pp. 219–232.

[17] F, K.,  H, T. Concurrent programming without
locks. ACM Trans. Comput. Syst. 25, 2 (2007), 5.

[18] G, J., G, A. G., M, N.,  M, P.
Stability of binary exponential backoff. J. ACM 35, 3 (1988),
579–602.

[19] H, M., F, J. S.,  P, P. Inferring locking
for atomic sections. In TRANSACT’06.

[20] H, B.,  G, D. Atomicity via source-to-
source translation. In MSPC’06.

[21] I. Intel C++ STM Compiler Prototype Edition 3.0, 2008.

[22] .. Kernel bug tracker. http://bugzilla.kernel.org/.

[23] K, M., P, K., W, B., R, G.,
B, K.,  C, L. P. Optimistic parallelism requires
abstractions. In PLDI’07, pp. 211–222.

[24] L, R. J. Reduction: a method of proving properties of
parallel programs. Commun. ACM 18, 12 (1975), 717–721.

[25] M, V., S, M., H, C., A.A, E,
D., III, W. S.,  S, M. Lowering the overhead of
software transactional memory. In TRANSACT’06.

[26] M, J.-P., H, M., C, M., A, P., 
C, M. Dynamically checking ownership policies in
concurrent C/C++ programs. In POPL’10. Full version,
preprint.

[27] MC, B., Z, F., G, D.,  B, E. Au-
tolocker: synchronization inference for atomic sections. In
POPL’06, pp. 346–358.

[28] .. Bugzilla@mozilla bug tracker.

http://bugzilla.mozilla.org/.

[29] N, M.,  A, A. Conditional must not aliasing for
static race detection. In PLDI’07, pp. 327–338.

[30] N, G. C., MP, S.,  W, W. CIL: Interme-
diate language and tools for the analysis of C programs. In
CC’04, pp. 213–228. http://cil.sourceforge.net/.

[31] R, R., H, M.,  L, K. Virtualizing transac-
tional memory. In ISCA’05, pp. 494–505.

[32] R, M. C.,  L, M. S. Semantic foundations of Jade.
In POPL ’92, pp. 105–118.

[33] R, M. C.,  L, M. S. The design, implementation,
and evaluation of jade. ACM Trans. Program. Lang. Syst. 20,
3 (1998), 483–545.

[34] S, B., A-T, A.-R., H, R. L., M, C. C.,
 H, B. Mcrt-stm: a high performance software
transactional memory system for a multi-core runtime. In
PPoPP’06, pp. 187–197.

[35] S, N.,  T, D. Software transactional memory.
In PODC’95.

[36] S, N.,  T, D. Software transactional memory.

[37] W, S. C., O, M., T, E., S, J. P., 
G, A. The SPLASH-2 Programs: Characterization and
Methodological Considerations. In ISCA’95, pp. 24–36.

	Introduction
	Overview
	Example
	Shelter Hierarchy
	Condition Variables
	Library Calls and Polymorphism
	Other Synchronization Strategies

	Atomicity
	Implementation
	Shelter Registration and Waiting
	Optimizations
	Important Optimizations
	Other Optimizations
	Proposed Optimizations

	Evaluation
	Experimental Setup
	Benchmarks
	STAMP Benchmarks
	Application Benchmarks
	Effects of Workload Size
	Discussion

	Related Work
	Conclusion
	Atomicity

