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Abstract

The high repair cost of(n, k) Maximum Distance Separable (MDS) erasure codes has recently

motivated a new class of codes, called Regenerating Codes, that optimally trade off storage cost for repair

bandwidth. In this paper, we address bandwidth-optimal(n, k, d) Exact-Repair MDS codes, which allow

for any failed node to be repaired exactly with access to arbitraryd survivor nodes, wherek ≤ d ≤ n−1.

We show the existence of Exact-Repair MDS codes that achieveminimum repair bandwidth (matching

the cutset lower bound) for arbitrary admissible(n, k, d), i.e.,k < n andk ≤ d ≤ n− 1. Our approach

is based on interference alignment techniques and usesvector linear codes which allow to split symbols

into arbitrarily small subsymbols.

Index Terms

Exact Repair Codes, MDS Codes, Interference Alignment

I. INTRODUCTION

In distributed storage systems, maximum distance separable (MDS) erasure codes are well-

known coding schemes that can offer maximum reliability fora given storage overhead. For an

(n, k) MDS code for storage, a source file of sizeM bits is divided equally intok units (of

size M

k
bits each), and thesek data units are expanded inton encoded units, and stored atn

nodes. The code guarantees that a user or Data Collector (DC)can reconstruct the source file by

connecting to any arbitraryk nodes. In other words, any(n − k) node failures can be tolerated
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with a minimum storage cost ofM
k

at each ofn nodes. While MDS codes are optimal in terms of

reliability versus storage overhead, they come with a significant maintenance overhead when it

comes to repairing failed encoded nodes to restore the MDS system-wide property. Specifically,

consider failure of a single encoded node and the cost neededto restore this node. It can be

shown that this repair incurs an aggregate cost ofM bits of information fromk nodes. Since

each encoded unit contains onlyM
k

bits of information, this represents ak-fold inefficiency with

respect to the repair bandwidth.

This challenge has motivated a new class of coding schemes, called Regenerating Codes

[1], [2], which target the information-theoretic optimal tradeoff between storage cost and repair

bandwidth. On one end of this spectrum of Regenerating Codesare Minimum Storage Regen-

erating (MSR) repair codes that can match the minimum storage cost of MDS codes while also

significantly reducing repair bandwidth. As shown in [1], [2], the fundamental tradeoff between

bandwidth and storage depends on the number of nodes that areconnected to repair a failed

node, simply called the degeed wherek ≤ d ≤ n− 1. The optimal tradeoff is characterized by

(α, γ) =

(

M

k
,
M

k
·

d

d − k + 1

)

, (1)

whereα andγ denote the optimal storage cost and repair bandwidth, respectively for repairing

a single failed node, while retaining the MDS-code propertyfor the user. Note that this code

requires the same minimal storage cost (of sizeM

k
) as that of conventional MDS codes, while

substantially reducing repair bandwidth by a factor ofk(d−k+1)
d

(e.g., for(n, k, d) = (31, 6, 30),

there is a5x bandwidth reduction). MSR(n, k, d) repair codes can be considered as Repair

MDS codes that(a) have an(n, k) MDS-code property; and(b) can repair single-node failures

with minimum repair bandwidth given a repair-degree ofd. Throughout this paper, we will use

Repair MDS codes to indicate MSR repair codes.

While Repair MDS codes enjoy substantial benefits over conventional MDS codes, they come

with some limitations in construction. Specifically, the achievable schemes in [1], [2] that meet

the optimal tradeoff bound of (1) restore failed nodes in afunctional manner only, using a

random-network-coding based framework. This means that the replacement nodes maintain the

MDS-code property (that anyk out of n nodes can allow for the data to be reconstructed) but

do notexactlyreplicate the information content of the failed nodes.

Mere functional repair can be limiting. First, in many applications of interest, there is a need to
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maintain the code in systematic form, i.e., where the user data in the form ofk information units

are exactly stored atk nodes and parity information (mixtures ofk information units) are stored

at the remaining(n−k) nodes. Secondly, under functional repair, additional overhead information

needs to be exchanged for continually updating repairing-and-decoding rules whenever a failure

occurs. This can significantly increase system overhead. A third problem is that the random-

network-coding based solution of [1] can require a huge finite-field size, which can significantly

increase the computational complexity of encoding-and-decoding1. Lastly, functional repair is

undesirable in storage security applications in the face ofeavesdroppers. In this case, information

leakage occurs continually due to the dynamics of repairing-and-decoding rules that can be

potentially observed by eavesdroppers [3].

These drawbacks motivate the need forexactrepair of failed nodes. This leads to the following

question: is there a price for attaining the optimal tradeoff of (1) with the extra constraint of

exact repair? The work in [4] considers partial exact repair(where only systematic nodes are

repaired exactly), while the work in [5] considers exact repair of all nodes, giving a clear answer

with deterministicscalar linear codes2 having small alphabet size for the case ofk
n
≤ 1

2
(and

d ≥ 2k−1): it was shown that for this regime, there is no price even with the extra constraint of

exact repair. What about for eitherk
n

> 1
2

or k ≤ d < 2k− 1? The work in [4] sheds some light

on this case: specifically, it was shown that under scalar linear codes, when eitherk
n

> 1
2
+ 2

n
or

k + 1 ≤ d ≤ 2k − 3, thereis a price for exact repair. What if non-linear orvector linear codes

are used? The tightness of the optimal tradeoff of (1) under these assumptions has remained

open. In this paper, we show that usingvector linear codes, the optimal tradeoff of (1) can be

indeed attainedfor all admissible values of(n, k, d), i.e., k < n and k ≤ d ≤ n − 1. That is

if we are willing to deal with arbitrarily small subsymbols,then Exact-Repair MDS codes can

some with no loss of optimality over functional-repair MDS codes. Note that we will use this

definition of admissibility throughout the paper.

Our achievable scheme builds on the concept of interferencealignment, which was introduced

1In [1], Dimakis-Godfrey-Wu-Wainwright-Ramchandran translated the regenerating-codes problem into a multicast communi-

cation problem where random-network-coding-based schemes require a huge field size especially for large networks. In storage

problems, the field size issue is further aggravated by the need to support a dynamically expanding network size due to theneed

for continual repair.

2In scalar linear codes, symbols are not allowed to be split into arbitrarily small subsymbols as with vector linear codes.
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in the context of wireless communication networks [6], [7].In particular, the interference align-

ment scheme in [7] that allows an arbitrarily large number ofsymbol extensions (i.e.,vectorlinear

codes) forms the basis of our results here. The results in [4]say that under scalar linear codes, the

case of eitherk
n

> 1
2
+ 2

n
or k+1 ≤ d ≤ 2k−3 induces more constraints than the available number

of design variables. This parallels the problem encountered by Cadambe and Jafar in [7] in the

conceptually similar but physically different context of wireless interference channels. Cadambe

and Jafar resolve this issue in [7] using the idea of symbol-extension, which is analogous to

the idea of vector linear codes for the distributed storage repair problem studied here. Building

on the connection described in [5] between the wireless interference and the distributed storage

repair problems, we leverage the scheme introduced in [7] tothe repair problem, showing the

existence of Exact-Repair MDS codes that achieve minimum repair bandwidth (matching the

cutset lower bound) for all admissible values of(n, k, d).

II. I NTERFERENCEALIGNMENT FOR EXACT-REPAIR MDS CODES

Linear network coding [8], [9] (that allows multiple messages to be linearly combined at

network nodes) has been established recently as a useful tool for addressing interference issues

even in wireline networks where all the communication linksare orthogonal and non-interfering.

This attribute was first observed in [10], where it was shown that interference alignment could be

exploited for storage networks, specifically for exact repair MDS codes having smallk (k = 2).

However, generalizing interference alignment to large values ofk (evenk = 3) proves to be

challenging, as we describe in the sequel. In order to appreciate this better, let us first review the

scheme of [10] that was applied to the exact repair problem. We will then address the difficulty of

extending interference alignment for larger systems and describe how to address this in Section

III.

A. Review of(4, 2) Exact-Repair MDS Codes [10]

Fig. 1 illustrates an interference alignment scheme for a(4, 2) Exact-Repair MDS code defined

over GF(5). First one can easily check the MDS property of the code, i.e., all the source files

can be reconstructed from anyk(= 2) nodes out ofn(= 4) nodes. As an illustration, let us see

how failed node 1 (storing(a1, a2)) can be exactly repaired. We assume that the degreed is 3,
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a1 + b1 1
1

b2

b1 1
1

a2

a1

a1

a2

b1
b2

a1
a2

b1 + b2

1
2a1 + a2 + b1 + b2

2a2 + b2

2a1 + b1

a2 + b2

1

a1 + 2a2 + b1 + b2

A source file

Encoded packets How to repair?

Interference alignment

failednode 1

node 2

node 3

node 4

(parity node 1)

(parity node 2)

 

Fig. 1. Interference alignment for a(4, 2) Exact-Repair MDS code defined overGF(5) [10]. Designing appropriate projection

vectors, we can align interference space of(b1, b2) into one-dimensional linear space spanned by[1, 1]t. As a result, we can

successfully decode 2 desired unknowns(a1, a2) from 3 equations containing 4 unknowns(a1, a2, b1, b2).

and a source file sizeM is 4. The cutset bound (1) then gives the fundamental limits of: storage

costα = 2; and repair-bandwidth-per-linkβ := γ

d
= 1.

The example illustrated in Fig. 1 shows that the parameter set described above is achievable

using interference alignment. Here is a summary of the scheme. Recall that the bandwidth-

per-link is β = 1 and we use a scalar linear code, i.e., each symbol has unit capacity and

cannot be split into arbitrarily small subsymbols. Hence, each survivor node uses a projection

vector to project its data into a scalar. Choosing appropriate projection vectors, we get the

equations as shown in Fig. 1:(b1 + b2); a1 + 2a2 + (b1 + b2); 2a1 + a2 + (b1 + b2). Observe that

the undesired signals(b1, b2) (interference) are aligned onto an 1-dimensional linear subspace,

thereby achieving interference alignment. Therefore, we can successfully decode(a1, a2) with

three equations although there are four unknowns. Similarly, we can repair(b1, b2) when it has

failed.

For parity node repair, a remapping technique is introduced. The idea is to define parity node
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vα1
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1
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v
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t
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v
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t

(B2vα3)
t
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Fig. 2. Geometric interpretation of interference alignment. The blue solid-line and red dashed-line vectors indicatelinear

subspaces with respect to “a” and “b”, respectively. The choice ofvα2 = B
−1
1 vα1 andvα3 = B

−1
2 vα1 enables interference

alignment. For the specific example of Fig. 1, the corresponding encoding matrices areA1 = [1, 0; 0, 2], B1 = [1, 0; 0, 1].

A2 = [2, 0; 0, 1], B2 = [1, 0; 0, 1].

symbols with new variables as follows:

Node 3:a′

1 := a1 + b1; a′

2 := 2a2 + b2;

Node 4:b′1 := 2a1 + b1; b′2 := a2 + b2.

We can then rewrite(a1, a2) and (b1, b2) with respect to(a′
1, a

′
2) and (b′1, b

′
2). In terms of prime

notation, parity nodes turn into systematic nodes and vice versa. With this remapping, one can

easily design projection vectors for exact repair of paritynodes.

B. Geometric Interpretation

Using matrix notation, we provide geometric interpretation of interference alignment for the

same example in Fig. 1. Leta = (a1, a2)
t andb = (b1, b2)

t be 2-dimensional information-unit

vectors, where(·)t indicates a transpose. LetAi and Bi be 2-by-2 encoding submatrices for

parity nodei (i = 1, 2). Finally we define 2-dimensional projection vectorsvαi’s (i = 1, 2, 3).

Let us consider exact repair of systematic node 1. By connecting to three nodes, we get:

b
t
vα1; a

t(A1vα2) + b
t(B1vα2); a

t(A2vα3) + b
t(B2vα3). Recall the goal of decoding 2 desired
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unknowns out of 3 equations including 4 unknowns. To achievethis goal, we need:

rank











(A1vα2)
t

(A2vα3)
t









 = 2; rank

















v
t
α1

(B1vα2)
t

(B2vα3)
t

















= 1. (2)

The second condition can be met by settingvα2 = B
−1
1 vα1 and vα3 = B

−1
2 vα1. This choice

forces the interference space to be collapsed into a one-dimensional linear subspace, thereby

achieving interference alignment. With this setting, the first condition now becomes

rank
([

A1B
−1
1 vα1 A2B

−1
2 vα1

])

= 2. (3)

It can be easily verified that the choice ofAi’s andBi’s given in Figs. 1 and 2 guarantees the

above condition. When the node 2 fails, we get a similar condition:

rank
([

B1A
−1
1 vβ1 B2A

−1
2 vβ1

])

= 2, (4)

wherevβi’s denote projection vectors for node 2 repair. This condition also holds under the given

choice of encoding matrices. With this remapping, one can easily design projection vectors for

exact repair of parity nodes.

C. Connection with Interference Channels in CommunicationProblems

Observe the three equations shown in Fig. 2:








0

(A1vα2)
t

(A2vα3)
t









a

︸ ︷︷ ︸

desired signals

+









v
t
α1

(B1vα2)
t

(B2vα3)
t









b

︸ ︷︷ ︸

interference

.

Separating into two parts, we can view this problem as a wireless communication problem,

wherein a subset of the information is desired to be decoded in the presence of interference.

Note that for each term (e.g.,A1vα2), the matrixA1 and vectorvα2 correspond to channel

matrix and transmission vector in wireless communication problems, respectively.

There are, however, significant differences. In the wireless communication problem, the chan-

nel matrices are provided by nature and therefore not controllable. The transmission strategy

alone (vector variables) can be controlled for achieving interference alignment. On the other

hand, in our storage repair problems, both matrices and vectors are controllable, i.e., projection
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vectors and encoding matrices can be arbitrarily designed,resulting in more flexibility. However,

our storage repair problem comes with unparalleled challenges due to the MDS requirement and

the multiple failure configurations. These induce multipleinterference alignment constraints that

need to be simultaneously satisfied. What makes this difficult is that the encoding matrices,

once designed, must be the same for all repair configurations. This is particularly acute for large

values ofk (even k = 3), as the number of possible failure configurations increases with n

(which increases withk).

III. A PROPOSEDFRAMEWORK FOR EXACT-REPAIR MDS CODES

We propose a conceptual framework based on vector linear codes to address the exact repair

problem. As described earlier, this framework is based on that of interference alignment for

wireless channels in [7]. We leverage the connection between the two problems to develop Exact-

Repair MDS codes that are optimal in repair bandwidth for alladmissible values of(n, k, d).

Our framework consists of four components: (1) developing acode structure for exact repair

of systematic nodes based on the vector linear codes; (2) drawing a dual structure between

the systematic and parity node repair; (3) guaranteeing theMDS-code property; (4) providing a

probabilistic guarantee of the existence of the code for a large enough alphabet size. In particular,

the diagonal structure of single-antenna wireless channels (exploited in [7]) forms the basis of

the structure of encoding submatrices of our codes. The framework covers all admissible values

of (n, k, d). This contrasts the scalar-linear code based framework in [5] which covers the case

of k
n
≤ 1

2
andd ≥ 2k − 1, but which provides deterministic codes with small alphabet size and

guaranteed zero error. Furthermore, addressing differentcode parameters in the case ofk
n
≤ 1

2

and d ≥ 2k − 1 requires specific attention, such as the design of puncturing codes introduced

in [4]. See [5] for details. In contrast, here we target only the existence of exact-repair codes

without specifying constructions. This allows for a simpler characterization of the solution space

for the entire range of admissible repair code parameters. In order to convey the concepts in

a clear and concise manner, we first focus on the simplest example which does not belong to

the framework in [5]:(6, 3, 4) Exact-Repair MDS codes. This example is a representative ofthe

general case ofk < n andk ≤ d ≤ n−1, with the generalization following in a straightforward

way from this example. This will be discussed in Section IV.
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Fig. 3. Difficulty of achieving interference alignment simultaneously when using scalar linear codes

A. Systematic Node Repair

For k ≥ 3 (more-than-two interfering information units), achieving interference alignment for

exact repair turns out to be significantly more complex than the k = 2 case. Fig. 3 illustrates

this difficulty through the example of repairing node 1 for a(6, 3, 4) code. In accordance with

the (4, 2) code example in Figs. 1 and 2, we chooseM = 6 so that repair-bandwidth-per-link

has unit capacity (β := γ

d
= 1). By the optimal tradeoff of (1), this givesα = 2. Suppose that

we use scalar linear codes, i.e., each symbol has unit capacity and cannot be chopped up into

arbitrarily smaller chunks. We definea = (a1, a2)
t, b = (b1, b2)

t and c = (c1, c2)
t. We define

2-by-2 encoding submatrices ofAi, Bi and Ci (for i = 1, 2, 3); and 2-dimensional projection

vectorsvαi’s.

Suppose that survivor nodes(2, 3, 4, 5) are connected for exact repair of node 1. We then get

the 4 (= d) equations:
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t
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a1

a2

Scalar linear code

1

a1

Vector linear code

a2

aB

aB+1

aB+2

a2B

1
B

symbol

subsymbol

 

Fig. 4. Illustration of the idea of vector linear codes through storage node 1 in the(6, 3, 4) code example. In scalar linear

codes, symbols are not allowed to be split. On the other hand,vector linear codes allow to split symbols into arbitrarilysmall

subsymbols. In this example, node 1 storesα = 2 symbols, each of which has unit capacity. In vector linear codes, this unit-

capacity symbol can be split into subsymbols with arbitrarily small capacity. For example, we can split each symbol intoB

number of subsymbols, so each subsymbol has1
B

capacity.

In order to successfully recover the desired signal components of “a”, the matrices associated

with b andc should have rank 1, respectively, while the matrix associated witha should have full

rank of 3. In accordance with the(4, 2) code example in Fig. 2, if one were to setvα3 = B
−1
1 vα1

and vα4 = B
−1
2 vα1, then it is possible to achieve interference alignment withrespect tob.

However, this choice also specifies the interference space of c. If the Bi’s and Ci’s are not

designed judiciously, interference alignment is not guaranteed forc. Hence, it is not evident

how to achieve interference alignment at the same time.

In order to address the challenge of simultaneous interference alignment, we invoke the idea of

symbol extension introduced in [7], which is equivalent to the concept of vector linear codes in

the storage repair problem. Fig. 4 illustrates the idea of vector linear codes through storage node

1 in the (6, 3, 4) code example. While scalar linear codes do not allow symbol splitting, vector

linear codes permit the splitting of symbols into arbitrarily small subsymbols. In this example,

each node storesα = 2 symbols, each of which has unit capacity. In vector linear codes, this

unit-capacity symbol is allowed to be split into subsymbolswith arbitrary small capacity. In

this example, we split each symbol intoB number of subsymbols, so each subsymbol has1
B

capacity.
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Fig. 5. Illustration of exact repair of systematic node 1 for(6, 3, 4) Exact-Repair MDS codes. We split each symbol into

B = mN number of subsymbols, wherem is an arbitrarily large positive integer and the exponentN is equal to 4 and is

carefully chosen depending on code parameters, i.e.,N = (k − 1)(d − k + 1) = 4. This corresponds to the total number of

encoding submatrices involved in the connection except forthose associated with desired signals. Note that each subsymbol has
1

m4 capacity. The maximum file size (based on the optimal tradeoff of (1)) is M = 6 units, inducing a storage costα = 2 units.

Hence, each storage contains2m4 number of subsymbols and the size of encoding submatrices is2m4-by-2m4. We consider

diagonal encoding submatrices. A failed node is exactly repaired by having systematic and parity survivor nodes project their

data onto linear subspaces spanned by column vectors ofV̄ := [v̄1, · · · , v̄(m+1)4 ] and V := [v1, · · · ,vm4 ], respectively.

Here v̄i ∈ V̄ and vi ∈ V. Notice thatB1vi,B2vi,C1vi,C2vi ∈ V̄ ,∀i = 1, · · · , m4. Hence, the matrix associated with

interferenceb has rank of at most(m + 1)4 instead of2m4. Similarly the matrix associated with interferencec has rank of at

most(m + 1)4. This enables simultaneous interference alignment asymptotically. On the other hand,rank[A1V,A2V] = 2m4

with probability 1, providing probabilistic guarantee of decodability of desired signals. Finally, notice that totalrepair bandwidth

γ = 2 (m+1)4

m4 + 2 · 1 approaches the cutset lower bound of 4 units asm goes to infinity. Therefore, we can ensure exact repair

of systematic node 1 with minimum repair bandwidth matchingthe cutset lower bound.

This idea of vector linear codes is key to interference alignment for the storage repair problem.

Fig. 5 illustrates exact repair of systematic node 1 for(6, 3, 4) Exact-Repair MDS codes. Using

vector linear codes, we split each symbol intoB = mN number of subsymbols, wherem is

an arbitrarily large positive integer and the exponentN is carefully chosen depending on code
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parameters. Specifically,

N = (k − 1)(d − k + 1). (5)

This choice ofN and the form ofB = mN are closely related to the scheme to be described in

the sequel. In this example,N = 4. The maximum file size (based on the cutset bound of (1))

is M = 6 units, inducing a storage costα = 2 units. Since each subsymbol has1
m4 capacity,

each storage containsαm4(= 2m4) number of subsymbols, e.g.,a
t = (a1, · · · , a2m4), whereai

indicates a subsymbol. Note that the size of encoding submatrices (Ai,Bi,Ci) is 2m4-by-2m4.

We considerdiagonalencoding submatrices. As pointed out in [7], the diagonal matrix structure

ensurescommutativityand this property provides the key to the interference alignment scheme

(to be described shortly):

Ai =













αi,1 0 · · · 0

0 αi,2 · · · 0
...

...
. . .

...

0 · · · 0 αi,2m4













(commutativeproperty holds). (6)

A failed node 1 is exactly repaired through the following steps. Suppose without loss of

generality that survivor nodes(2, 3, 4, 5) are used for exact repair of node 1, i.e.,k − 1 = 2

systematic nodes andd − k + 1 = 2 parity nodes. One can alternatively use 1 systematic node

and 3 parity nodes for repair instead. This does not fundamentally alter the analysis, and will

be covered in Remark 1 in the next section. For the time being,assume the above configuration

for the connection:k − 1 systematic nodes andd − k + 1 parity nodes. Parity survivor nodes

project their data using the followingprojection matrix:

V := [v1, · · · ,vm4 ] ∈ F
2m4×m4

q , (7)

wherevi ∈ V. The setV is defined as:

V := {(Be1
1 B

e2
2 C

e3
1 C

e4
2 )w : e1, e2, e3, e4 ∈ {1, · · · , m}} , (8)

wherew = [1, · · · , 1]t. Note that|V| ≤ m4. The vectorvi maps to a different sequence of
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(e1, e2, e3, e4). For example, we can map:

v1 = B1B2C1C2w,

v2 = B
2
1B2C1C2w,

v3 = B
3
1B2C1C2w,

...

vm4−1 = B
m
1 B

m
2 C

m
1 C

m−1
2 w,

vm4 = B
m
1 B

m
2 C

m
1 C

m
2 w.

(9)

Let us consider equations downloaded from parity node 1 and 2(node 4 and 5):

a
t(A1V) + b

t(B1V) + c
t(C1V);

a
t(A2V) + b

t(B2V) + c
t(C2V).

(10)

Note that by (8), any column vector in[B1V,B2V] or [C1V,C2V] is an element of̄V defined

as:

V̄ := {(Be1
1 B

e2
2 C

e3
1 C

e4
2 )w : e1, e2, e3, e4 ∈ {1, · · · , m + 1}} . (11)

This implies thatrank[B1V,B2V] ≤ (m + 1)4 and rank[C1V,C2V] ≤ (m + 1)4. This allows

for simultaneous interference alignment. Systematic survivor nodes project their data using the

following projection matrix:

V̄ := [v̄1, · · · , v̄(m+1)4 ] ∈ F
2m4×(m+1)4

q , (12)

wherev̄i ∈ V̄. We also map̄vi to a difference sequence of(e1, e2, e3, e4) as in (9). We can then

guarantee that:

span[B1V,B2V] ⊂ span[V̄]

span[C1V,C2V] ⊂ span[V̄].
(13)

Hence, we can completely get rid of any interference. Now letus analyze the decodability of

the desired signal vector. To successfully recovera, we need:

rank[A1V,A2V] = 2m4. (14)

Using standard arguments based on the technique in [7] and Schwartz-Zippel lemma [11],

we can ensure the condition of (14)with probability 1 for a sufficiently large field sizeq.
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Specifically, we randomly and uniformly choose each diagonal element (non-zero) of all of the

encoding submatrices inFq. We then compute the determinant of[A1V,A2V] by adapting the

technique in [7]. Using Schwartz-Zippel lemma [11], we can then show that the probability that

the polynomial of the determinant is identically zero goes to zero for sufficiently large field size

q. The proof is tedious and therefore we omit details. See [7],[11] for details.

We now validate that total repair bandwidth is:

γ = (k − 1)
(m + 1)4

m4
+ (d − k + 1) ·

m4

m4

= 2
(m + 1)4

m4
+ 2 · 1

−→ 4 units.

(15)

The first equality is because each subsymbol has capacity of1
m4 and we use projection matrix

V̄ ∈ F
2m4×(m+1)4

q and V ∈ F
2m4×m4

q when connecting to systematic nodes and parity nodes,

respectively. Note that asm goes to infinity, total repair bandwidth approaches minimumrepair

bandwidth matching the cutset lower bound of (1).

B. Dual Relationship between Systematic and Parity Node Repair

We will show that parity nodes can be repaired by drawing adual relationship with systematic

nodes. The procedure has two steps. The first is to remap parity nodes witha
′, b

′, and c
′,

respectively:








a
′

b
′

c
′









:=









A
t
1 B

t
1 C

t
1

A
t
2 B

t
2 C

t
2

A
t
3 B

t
3 C

t
3

















a

b

c









.

Systematic nodes can then be rewritten in terms of the prime notations:

a
t = a

′t
A

′

1 + b
′t
B

′

1 + c
′t
C

′

1,

b
t = a

′t
A

′

2 + b
′t
B

′

2 + c
′t
C

′

2,

c
t = a

′t
A

′

3 + b
′t
B

′

3 + c
′t
C

′

3,

(16)

where the newly mapped encoding matrices(A′
i,B

′
i,Ci)’s are defined as:









A
′
1 A

′
2 A

′
3

B
′
1 B

′
2 B

′
3

C
′
1 C

′
2 C

′
3









:=









A1 A2 A3

B1 B2 B3

C1 C2 C3









−1

. (17)
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a
′t
A
′

1 + b′tB′1 + c′tC′1

a
′t
A
′

3
+ b′tB′

3
+ c′tC′

3

b
′t

c
′t

a
′t






0

0

(A′

1
V
′)t

(A′

2
V
′)t




 a

′ +






V̄
′t

0

(B′
1
V
′)t

(B′
2
V
′)t




b

′ +






0

V̄
′t

(C′
1
V
′)t

(C′
2
V
′)t




 c

′

a
′t
A
′

2
+ b′tB′

2
+ c′tC′

2
V
′

V̄
′

V̄
′

V
′

Goal: rank = 2m4 rank ≤ (m+ 1)4 rank ≤ (m+ 1)4

V ′ =
{(
B
′e1

1
B
′e2

2
C
′e3

1
C
′e4

2

)
w : e1, e2, e3, e4 ∈ {1, · · · ,m}

}

V̄ ′ =
{(
B
′e1

1
B
′e2

2
C
′e3

1
C
′e4

2

)
w : e1, e2, e3, e4 ∈ {1, · · · ,m+ 1}

}
 

Fig. 6. Illustration of exact repair of parity node 1 for(6, 3, 4) Exact-Repair MDS codes. Notice thatA
′

i’s, B
′

i’s, andC
′

i’s

are also diagonal matrices, since these matrices are functions of diagonal matricesAi’s, Bi’s, andCi’s. Survivor nodes 1 and

2 project their data onto linear subspaces spanned by columnvectors ofV′ := [v′

1, · · · ,v′

m4 ]. Here v
′

i ∈ V
′. Notice that

B
′

1v
′

i, B
′

2v
′

i,C
′

1v
′

i,C
′

2v
′

i ∈ V̄, ∀i = 1, · · · , m4. Hence, the matrix associated with interferenceb
′ has rank of at most(m+1)4

instead of2m4. Similarly the matrix associated with interferencec
′ has rank of at most(m + 1)4. This enables simultaneous

interference alignment asm → ∞. Survival nodes 5 and 6 project their data usingV̄ := [v̄1, · · · , v̄(m+1)4 ] where v̄i ∈ V̄.

We can then clean out any interference. On the other hand, it is guaranteed thatrank[A′

1V
′,A′

2V
′] = 2m4 with probability 1,

guaranteeing of decodability of desired signals with probability 1.

As in Section III-A, we consider random construction of the code, i.e., each diagonal element in

each encoding submatrix is drawn fromFq \ {0}. Then, for a sufficiently large field sizeq, the

above composite matrix has non-zero determinant with probability 1 (again due to Schwartz-

Zippel lemma). With this remapping, one can now dualize the relationship between systematic

and parity node repair. Specifically, if all of theA′
i’s, B

′
i’s, andC

′
i’s arediagonalmatrices, then

exact repair of the parity nodes becomes transparent, as illustrated in Fig. 6. IndeedA′
i’s, B

′
i’s,

and C
′
i’s are diagonal matrices, since these matrices are functions of diagonal matricesAi’s,

Bi’s, and Ci’s. Therefore, following the same procedure in Section III-A, we can guarantee

exact repair of parity nodes with probability 1.

Remark 1 (Connecting to arbitraryd nodes suffice for exact repair):In Section III-A, we con-

sidered the only one connection configuration for exact repair: connecting tok − 1 systematic

nodes andd−k+1 parity nodes. We now consider other connection configurations. For example,

consider the case when node 1 fails, as shown in Fig. 5. Suppose we connect to nodes(2, 4, 5, 6)

for exact repair of node 1: 1 systematic node and 3 parity nodes. The idea is to remap one parity
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node to make it look like a systematic node. We then virtuallyconnect to 2 systematic and 2

parity nodes. Specifically, we can remap node 6 withc
′t:

c
′t = a

t
A3 + b

t
B3 + c

t
C3 (18)

We can then rewrite node 4 and 5 in terms ofa, b and c
′ and therefore we virtually have

connection with 2 systematic and 2 parity nodes. Note that corresponding encoding submatrices

after remappring are still diagonal matrices. Hence, we canapply the same procedures as those

in Section III-A.

C. The MDS-Code Property

The third part of our framework is to guarantee the MDS-code property. Consider all four

possibilities corresponding to the Data Collector (DC) contacting (1) 3 systematic nodes; (2) 3

parity nodes; (3) 1 systematic and 2 parity nodes; (4) 1 systematic and 2 parity nodes.

The first is a trivial case. The second case has been already verified in the process of forming

the dual structure. The third case requires the invertibility of all of each encoding submatrix. In

this case, it is obvious since encoding submatrix is diagonal and each element is non-zero. The

last case is also easy to check. Consider a specific example where the DC connects to nodes 3,

4 and 5. In this case, we first recoverc from node 3 and subtract the terms associated withc

from nodes 4 and 5. We then get:

[

a
t

b
t

]






A1 A2

B1 B2




 . (19)

Again, using the technique in [7] and Schwartz-Zippel lemma, for sufficiently large field sizeq,

this composite matrix has non-zero determinant with probability 1.

D. Existence of Codes

As mentioned several times, for sufficiently large field sizeq, a random construction for

encoding submatrices suffices to guarantee exact repair of all nodes and MDS-code property

with probability 1. Hence, we obtain the following theorem.

Lemma 1 ((6, 3, 4) Exact-Repair MDS Codes):There exist vector linear Exact-Repair MDS

codes that achieve the minimum repair bandwidth corresponding to the cutset bound of (1),

allowing for any failed node to be exactly repaired with access to any arbitraryd = 4 survivor
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nodes, provided storage symbols can be split into a sufficiently large number of subsymbols,

and the field size can be made sufficiently large.

IV. GENERALIZATION

As one can easily see, the interference alignment techniquedescribed in Section III-A can be

easily generalized to all admissible values of(n, k, d).

Theorem 1 ((n, k, d) Exact-Repair MDS Codes):There exist vector linear Exact-Repair MDS

codes that achieve the minimum repair bandwidth corresponding to the cutset bound of (1),

allowing for any failed node to be exactly repaired with access to any arbitraryd survivor

nodes, wherek ≤ d ≤ n − 1, provided storage symbols can be split into a sufficiently large

number of subsymbols, and the field size can be made sufficiently large.

Proof: In the interests of conceptual simplicity, and to parallel the analysis of the(6, 4, 3)

example described earlier, we provide only a sketch of the proof for the general case. This can

be formalized to be precise at the cost of much heavier notational clutter, which we consciously

avoid.

Systematic Node Repair: Let G(i)
l indicate an encoding submatrix for parity nodei, associated

with information unit l, where1 ≤ i ≤ n − k and 1 ≤ l ≤ k. Let wl be lth information-unit

vector. Without loss of generality, consider exact repair of systematic node 1. Using vector linear

codes, we split each symbol intoB = mN number of subsymbols, wherem is an arbitrarily

large positive integer and the exponentN is given by

N = (k − 1)(d − k + 1). (20)

We choose a file sizeM = k(d − k + 1), giving the storage costα = d − k + 1. Since

each subsymbol has1
mN capacity, each storage containsαmN(= (d − k + 1)mN ) number of

subsymbols. Note that the size of encoding submatrices isαmN -by-αm4.

A failed node 1 is exactly repaired through the following steps. Suppose that we connectk−1

systematic nodes and firstd− k + 1 parity nodes (without loss of generality)3. One can connect

1 systematic node and 3 parity nodes instead. This case will be covered in Remark 1 in the next

section. For the time being, assume the above configuration for the connection:k−1 systematic

3As mentioned earlier, we can convert the other connection configurations into this particular configuration with the remapping

technique
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nodes andd − k + 1 parity nodes. Withough Parity survivor nodes project theirdata using the

following projection matrix:

V := [v1, · · · ,vmN ] ∈ F
αmN×mN

q , (21)

wherevi ∈ V. The setV is defined as:

V :=







∏

i=1,··· ,d−k+1,l=2,··· ,k

[

G
(i)
l

]ei,l

w : ei,l ∈ {1, · · · , m}






, (22)

wherew = [1, · · · , 1]t. Note that|V| ≤ mN .

Let us consider the equations downloaded from parity nodes:

w
t
1(G

(1)
1 V) + w

t
2(G

(1)
2 V) + · · · + w

t
k(G

(1)
k V);

...

w
t
1(G

(d−k+1)
1 V) + w

t
2(G

(d−k+1)
2 V) + · · ·+ w

t
k(G

(d−k+1)
k V).

(23)

Note that by (22), forl 6= 1, any column vector in[G(1)
l V, · · · ,G

(d−k+1)
l V] is an element of̄V

defined as:

V̄ :=







∏

i=1,··· ,d−k+1,l=2,··· ,k

[

G
(i)
l

]ei,l

w : ei,l ∈ {1, · · · , m + 1}






, (24)

This implies that forl 6= 1, rank[G
(1)
l V, · · · ,G

(d−k+1)
l V] ≤ (m + 1)N . This allows for simulta-

neous interference alignment. Systematic survivor nodes project their data using the following

projection matrix:

V̄ := [v̄1, · · · , v̄(m+1)N ] ∈ F
αmN×(m+1)N

q , (25)

wherev̄i ∈ V̄ . We can then guarantee that forl 6= 1:

span[G
(1)
l V, · · · ,G

(d−k+1)
l V] ⊂ span[V̄]. (26)

Hence, we can clean out any interference. Now let us considerthe decodability of desired signals.

To successfully recoverw1, we need:

rank[G
(1)
1 V, · · · ,G

(d−k+1)
1 V] = (d − k + 1)mN = αmN . (27)

Using the technique in [7] and Schwartz-Zippel lemma [11], we can ensure the (14)with

probability 1 for a sufficiently large field sizeq.
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Finally notice that total repair bandwidth is:

γ = (k − 1)
(m + 1)N

mN
+ (d − k + 1) ·

mN

mN

−→ d.

(28)

Note that asm goes to infinity, total repair bandwidth approaches minimumrepair bandwidth

matching the cutset lower bound of (1).

Parity Node Repair: As discussed in Section III-B, we can draw a dual structure byremapping

parity nodes with primed new notations. The key observationis that newly mapped encoding sub-

matrices are still diagonal matrices. Hence, we can apply the same technique used in systematic

node repair.

MDS-Code Property: We check the invertibility of a composite matrix when a Data Collector

connects toi systematic nodes andk− i parity nodes fori = 0, · · · , k. As mentioned earlier, for

a sufficiently large field sizeq, the composite matrix has non-zero determinant with probability

1.

V. CONCLUSION

Using interference alignment techniques, we have shown theexistence of vector linear Exact-

Repair MDS codes that attain the cutset lower bound on repairbandwidth for all admissible

values of(n, k, d). We make use of the interference alignment scheme introduced in the context

of wireless interference channels in [7] to provide insights into Exact-Repair MDS codes.

Connecting the two problems allows us to show the existence of vector linear optimal Exact-

Repair MDS codes in distributed storage systems.
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