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ABSTRACT

Energy efficiency is a growing concern in modern datacen-
ters. As Internet services increasingly rely on MapReduce
workloads to fuel their flagship businesses, there is a grow-
ing need for better MapReduce energy efficency evaluation
mechanisms. We present a statistics-driven workload gener-
ation framework that distills summary statistics from pro-
duction MapReduce traces and realistically reproduces rep-
resentative workloads. These workloads help us evaluate de-
sign decisions with regard to scale, configuration, scheduling,
and other issues. We use this framework to identify specific
suggestions to improve MapReduce energy efficiency. Our
key finding is that evaluations using trace-driven workloads
reverse current design priorities in optimizing for data in-
tensive synthetic jobs.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]|: Distributed

Systems— Distributed applications

General Terms

Measurement, Performance, Design, Economics

1. INTRODUCTION

Energy consumption is an important factor in evaluating
Internet datacenter efficiency. Over the lifetime of I'T equip-
ment, the operating energy cost is comparable to the ini-
tial equipment acquisition cost [10]. Also, datacenter opera-
tors recently showed that IT equipment power consumption
dominates support facilities such as cooling and power dis-
tribution [2, 14, 16]. Datacenters are typically sized by their
targeted power consumption, e.g. IMW, 5MW, etc. Data-
centers fully utilize their power supply by housing as much
IT equipment and support facilities as limited by power con-
sumption. As a result, companies must invest in new data-
center sites to handle growing computation needs instead of
adding more machines to existing datacenters.

Many Internet enterprises have adopted the MapReduce com-
puting paradigm to fuel many of their core businesses [12,
5]. The increasing popularity of MapReduce workloads ne-
cessitates a deeper understanding of their energy efficiency
implications for datacenters. Existing efforts to evaluate
MapReduce energy efficiency focus on data intensive jobs
such as sort and the gridmix pseudo-benchmark [11, 15].
These approaches fail to capture a realistic mix of jobs, the
range of data sizes, and the distribution of inter-job arrival
times (Section 2).

One of the factors preventing a more realistic MapReduce
benchmark is the lack of publicly available production traces.
Companies hesitate to publish their production traces due
competitive concerns. Since different companies have very
different MapReduce workload profiles (based on their us-
age scenarios), the absence of publicly available traces makes
it difficult to construct a unifying, widely accepted bench-
mark. Even when production traces are available, MapRe-
duce operators cannot monopolize production clusters for
exploratory evaluation with regard to energy efficiency or
other experimental design issues. A direct replay on a non-
production cluster is also problematic, because it is difficult
to reproduce the exact scale and hardware/software configu-
ration profile of the production cluster, which makes design
optimizations even more difficult to generalize. These con-
cerns motivate the need for two tools — (1) a generalizable
framework that allows production traces to be published in
a sufficiently anonymous manner, and (2) a workload gener-
ator that effectively replays the statistical properties repre-
sented by the production traces.

Our work suggests that trace analysis should be the starting
point for any performance oriented work, including our spe-
cific focus on MapReduce energy efficiency. For the MapRe-
duce example, we have a statistical framework that enables
the publication of production traces in an anonymous fash-
ion. In this paper, we demonstrate the success of this frame-
work for guiding design decisions in energy efficient MapRe-
duce. However, the framework is by no means limited only
to energy efficiency optimizations. Our work hopefully en-
courages MapReduce operators to share traces, and enable
researcher discoveries that have immediate impact.

Against this backdrop, our contributions are as follows:

1. We analyze MapReduce production traces from a large
Internet company. We build the case that it is essential



to know the mix of jobs, idle times, and data sizes. We
also distill a sufficient and necessary set of statistical sum-
maries that enables the publication of production traces in
an anonymized fashion (Section 3). This section will also
contain a brief overview of MapReduce.

2. We present a workload generation framework that takes
as input the statistical summaries extracted from produc-
tion traces. The workload generator accommodates differ-
ences in hardware, configurations, MapReduce implementa-
tion, cluster size, workload duration, and the actual com-
putation being done in the original production trace (Sec-
tion 4). Although our current implementation ignores the
specific computation patterns of our workload to meet our
anonymization goals, our design for the workload generator
make it easily extensible to CPU, memory and I/O patterns
if such data are available.

3. We evaluate several MapReduce energy efficiency mecha-
nisms for our particular trace-driven workload. Our results
show that prior design and evaluation approaches lead to
the wrong design priorities (Section 5).

4. We reflect on the implications of our findings with re-
gard to future methodology for distributed systems energy
efficiency. We highlight several subtle methodological ne-
cessities that we hope would become standard evaluation
practices (Section 6).

2. RELATED WORK

In this section, we review several related and predecessor
work. The take-away is that current studies in energy ef-
ficient MapReduce use pseudo-benchmarks that include a
very small mix of jobs. As we will see in Section 3, existing
approaches fail to capture production job diversity.

SPEC_power is an established benchmark for measuring sys-
tem energy at different CPU utilizations [20]. A common
methodology in software energy efficiency studies measures
real-time CPU utilization, the power consumption at refer-
ence points obtained from SPEC_power, and then approx-
imate the real time whole system power by extrapolating
CPU utilization from the reference points. The underlying
assumption behind such extrapolation is that CPU is the
dominant power consumer. Such approximation is invalid
for workloads that involve a large amount of I/O activity, as
in the case of MapReduce. Recent work showed that there
would be significant discrepancies in the extrapolations un-
less we exercise all system resources in the correct mix when
we measure SPEC_power reference points. In distributed
systems such as MapReduce, the extrapolation discrepan-
cies would be multiplied across machines in the cluster, com-
pletely invalidating the method [17].

Power proportionality has been proposed as a worthy design
goal [9]. Power proportionality differs from energy efficiency
in that proportionality implies low energy consumption at
low system utilization, and efficiency implies low energy
usage to complete a certain compute job. Data intensive
benchmarks emphasize efficiency over proportionality, since
the system always performs compute tasks during energy
measurement. A realistic job stream potentially contains
many idle periods between job arrivals. Energy efficiency

during active periods would be insufficient if energy con-
sumption during idle periods remain high. Thus, we need
realistic workloads to study the right design point in both
energy efficiency and power proportionality.

JouleSort is a software energy efficiency benchmark that
measures the energy required to perform an external sort
[19]. The performance metric is energy per sorted record,
with each record represented in standard terasort format
with 10-byte keys and 90-byte data. Recent work in MapRe-
duce energy efficiency also used the JouleSort benchmark,
using clusters of tens of machines sorting 10-100GB data
[11, 15]. Also, in work not related to energy efficiency, Ya-
hoo! used the Hadoop implementation of MapReduce to sort
petabyte scale data in reasonable time [21]. An increasingly
frequent criticism is that JouleSort does not capture the mix
of jobs and data patterns in production workloads. Thus,
design choices guided by JouleSort may not be immediately
usable in production.

The gridmix pseudo-benchmark represents an improvement
on sort [3]. The current version of gridmix contains five dif-
ferent jobs, each with different data ratios, that run on data
sizes ranging from 500GB to a few GB. While gridmix con-
tains more job types, it is still far from being representative
of production workloads. We will do a more extensive com-
parison with gridmix during our discussion on trace analysis.

The Mumak Hadoop simulator seeks to replicate the de-
tailed behavior of a Hadoop cluster [6]. The design goal is
to expedite evaluation and debugging of new mechanisms.
Such simulators and our work complement each other. Us-
ing realistic workloads as simulator input, we can replicate
cluster behavior under a production workload.

A closely related work is [15]. The work seeks to improve
HDFS energy efficiency by “sleeping” the nodes during peri-
ods of low load. This innovative idea exemplifies the shift-
ing focus from active to idle energy in realistic workloads.
However, the evaluation is still focused on sort and grid-
mix, and suffers a few methodological distractions such as
using the CPU power interpolation method, evaluating only
for default Hadoop configurations, and assuming sleeping
nodes have zero power, which would not be true if the nodes
still need to participate in data replication. We hope our
contributions in the workload generator and methodological
reflections would help fellow researchers make even greater
contributions to the field.

A direct predecessor to our work is [11]. The study looked at
MapReduce energy consumption for a variety of jobs, stress-
ing each part of the MapReduce data path. It examined de-
sign choices including cluster size, configuration parameters,
and input sizes, to name a few. The remainder of this paper
makes it evident that like other recent work on MapReduce
energy efficiency, the exclusive focus on active energy for
data intensive jobs fails to caputure the realistic behavior in
production workloads.

Another direct predecessor developed a multi-dimensional
statistical method to accurately predict the execution time
of MapReduce jobs [13]. The inputs to the prediction frame-
work point to aspects of production traces worth capturing



to characterize a workload. Combining realistic workloads
with accurate execution time predictions, we can implement
mechanisms such as deadline schedulers and load sculpters,
which would enrich the design space for energy efficient dat-
acenter management.

3. TRACE ANALYSIS

Before building a tool for realistic workload replay, we must
first analyze production traces and identify necessary and
sufficient information for realistic workload generation and
replay. We obtained 6 months worth of MapReduce job
history log traces from a production cluster at a large, well-
known Internet service. This production cluster represents
a multi-user environment, running the Hadoop open source
implementation of MapReduce on a cluster of hundreds of
nodes.

A brief overview of MapReduce is helpful at this point. At
its core, MapReduce has two user-defined functions. The
Map function takes in a key-value pair, and generates a set
of intermediate key-value pairs. The Reduce function takes
in all intermediate pairs associated with a particular key, and
emits a final set of key-value pairs. Both the input pairs to
Map and the output pairs of Reduce reside in an underlying
distributed file system (DFS). The run-time system takes
care of reading input from and writing output to the DFS,
shuffling the intermediate data, scheduling and coordinating
parallel execution, and handling machine failures.

We can describe a single MapReduce job by several dimen-
sions - the inter-job arrival time, the input, shuffle, and
output data size, and the computation done for the map
and reduce functions. A necessary and sufficient synthetic
workload generator accurately captures the empirical mix
of behavior, along these dimensions, for a large number of
jobs. For some dimensions, a description using parametric
statistics looks promising. For other dimensions, our analy-
sis provides empirical evidence that parametric models are
insufficient. We therefore identify necessary and sufficient
non-parametric statistics to characterize MapReduce work-
loads.

3.1 Inter-Job Arrival Time

Figure 1 shows the cummulative distribution function (CDF)
of inter-job arrival times for our production trace, displaying
the overall 6 months statistics and the statistics from two
randomly chosen weeks. Most inter-job arrival intervals last
as long as tens of seconds. In comparison, sort and gridmix
launch jobs in quick succession with negligible inter-job ar-
rival time, thus capturing only one extreme of the statistical
distribution.

The shape of the curves all indicate a Zipf-like distribution,
suggesting that the trace is self-similar and captures a wide
range of behavior over time.

3.2 Data Sizes

The distribution of job data sizes is in Figure 2. The shape
of the curves do not follow any well known parametric dis-
tributions. Further, we see that data sizes range from the
KB scale to the TB scale. Again, sort and gridmix captures
only an extreme end of the workload by using solely GB and
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Figure 1: CDF of inter-job arrival times for all jobs.
The shaded circle represents the range of inter-job arrival
times in sort and gridmix.

TB size workloads. When realistically replaying workload,
we need to capture the entire range of data sizes to facilitate
informed design decisions.

CDF
l -
: = input 6 months
0.8 === input week A
----- input week B
0.6 shuffle 6 months
shuffle week A
0.4 - shuffle week B
output 6 months
0.2 output week A
g output week B
0 = T T T 1
Byte KB MB GB B8

Data size for all jobs (bytes)

Figure 2: CDF of data sizes for all jobs. The shaded
circle represents the range of data sizes in sort and grid-
mix.

3.3 Data Ratios

Since MapReduce jobs typically follow a three-stage execu-
tion pattern, another major factor that uniquely character-
izes jobs is the data decrease (or increase) between the input,
shuffle, and output phases. Figure 3 shows the distribution
of shuffle-input, output-shuffle and output-input ratios for
jobs in our workload. Similar to data sizes, non-parametric
statistics would be more appropriate to summarize the dis-
tributions.

Our production workload contains a substantial number of
jobs that have hugely disproportionate input and output
sizes. An example of data expansion jobs is reading a set
of file pointers as input, and loading the contents of the
file using MapReduce, resulting in a output data size many
orders of magnitude larger than the input. An example of
data aggregation jobs is computing the sum, or average of a
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Figure 3: CDF of data ratios for all jobs. The shaded
rectangle represents the range of data ratios in sort and
gridmix.

input < 6.4KB (40% of jobs) 6 months

input < 8.6KB (40% of jobs) week A

input < 8.4KB (40% of jobs) week B
= input > 6.4KB (60% of jobs) 6 months
)
)

0.2 === input > 8.6KB (60% of jobs) week A
------ input > 8.4KB (60% of jobs) week B

10°% 10 1 104 108

Output/input data ratio for all jobs

Figure 4: CDF of output/input data ratio grouped by
40th %tile in input size.

large set of numerical values using MapReduce, resulting in
a output data size many orders of magnitude smaller than
the input.

Existing sort and gridmix pseudo-benchmarks contain jobs
with data ratios close to unity, and thus fails to accurately
represent data expansion and data aggregation jobs. We be-
lieve these two types of jobs routinely appear in production
MapReduce environments with big data processing needs.
Thus, the empirical data again highlights the need for ex-
tracting representative distributions for each metric rather
than focusing on a specific range of values.

3.4 Per-Job Input Sizes

Figures 4 and 5 respectively show the CDF of output/input
data ratio for big and small input jobs, and the input data
size CDF for very frequent jobs in our production traces.
These distributions are quite different from the CDF of all
output/input data ratios in Figure 3 and the CDF of all
input sizes in Figure 2. This suggests that there is a three-
way dependency between the job, the distribution of its data
sizes, and the distribution of its data ratios. Thus, our work-
load generation mechanism need to capture this dependency.
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Figure 5: CDF of input sizes for several frequent jobs.

3.5 Sufficient Statistics

Our analysis of MapReduce trace characteristics strongly
suggests the need for non-parametric statistical summaries
to represent our production workload.

The simplest non-parametric statistics are average and stan-
dard deviation. It should be obvious from Figures 1 and
2 that the distributions are irregular, skewed, and asym-
metric. Hence, averages and standard deviations are in-
sufficient. Percentiles would give more or less an accurate
description. However, the description may be overly accu-
rate and raise data anonymity concerns. A good trade-off
would be the five-number summary (1st, 25th, 50th, 75th,
99th percentiles). It captures the skew and dispersion of the
data without making any assumptions about the underlying
statistical distribution. The seven-number summary (2nd,
9th, 25th, 50th, 75th, 91st, 98th percentiles) also suffice,
even though the choice of percentiles is based on a Gaussian
model, i.e. the distance between the points would be regular
if the distribution is Gaussian.

Also, data sizes is not necessary. In fact, divulging the full
distribution of job data sizes may allow reverse engineering
of the amount of computation on the cluster. Knowing the
per node data size is enough, and we do not even need to
know the cluster size. In addition to data anonymity con-
cerns, when we replay the workload, we have to be agnostic
to cluster size. The workload generator would be agnostic
to cluster size if we replay using per node data size instead
of per cluster data size, and scale the data size with the size
of the cluster. Without this mechanism, workload replay
would make little sense. It is meaningless to do on 10 node
cluster a job as large as that done on a 1000 node cluster.
The data simply would not fit in the available storage. Even
if storage permits, the running time would be distorted by
several orders of magnitude.

It would be straight forward to take the five-number sum-
mary of the overall inter-job arrival time and data sizes.
However, doing so is still insufficient. We also need a way
to identify different jobs. Any kind of unique ID would do,
including ID by job name string comparisons. However, if
the traces are anonymous, we would have no way of knowing
the computation semantics of different job IDs. In partic-
ular, the unique ID could be numerical. Fortunately, since



we want the workload generator to anonymize the compute
semantics anyway, we do not need to know the compute se-
mantics at all. Also, we do not need to worry about different
IDs aliasing to the same job. If we sample the frequency mix
of jobs with the corresponding probability, we are guaran-
teed to get the right mix of data sizes regardless of redundant
job ID aliases.

Thus, the necessary and sufficient workload descriptor vec-
tor, used as input data to our workload generator, contains:

1. PDF of job frequency by job indices.
2. Five point summary (1st, 25th, 50th,
75th, and 99th percentiles) of

inter job arrival rates.

3. For each job index, the five point
summary of per-node input, shuffle
and output data sizes.

In general, trace analysis must distill what characteristics
are important, what statistical summary is sufficient and
necessary, and what are the dependencies between the char-
acteristics.

We know from a pre-release snapshot of Hadoop that the
next version gridmix is starting to take on the trace-driven
approach that we are advocating [8], although there are
still major differences in the level of detail and anonymity
that limits the extensibility and applicability of the pseudo-
benchmark. We have been in touch with our industry part-
ners, and we are confident that our insights will contribute
to an improved gridmix pseudo-benchmark.

4. WORKLOAD GENERATOR

The workload generator comprises of two distinct compo-
nents — (1) a mechanism to compose synthetic workloads
from the trace-based five-number percentile summaries, and
(2) a mechanism to replay the synthetic workload on a tar-
get platform. We discuss our design goals for the workload
generation framework and describe the implementation of
both components.

4.1 Design Goals
We identified two main design goals for our workload gener-
ator.

Our primary design goal is for our workload generation frame-

work to be agnostic to hardware and software configuration,
cluster size, and specific MapReduce implementation. It is
unrealistic to expect access to production clusters to replay
workloads. Not only would such access interfere with core
business processes, but it would also restrict our evaluation
to the specific configuration of the production cluster. The
overhead of reproducing a production cluster’s hardware and
software configurations, as well as reproducing the data lay-
out and consequent skew, would impose signficant cost and
effort. Thus, we must be able to replay our workload on a va-
riety of platforms. This flexibility allows us to evaluate scale
and configuration choices based on workload performance.

A second design goals was to anonymize sensitive data in the
traces by masking raw computation done by the jobs. Cap-

turing job-specific computations potentially reveals compet-
itive core-business computations, and would prevent us from
making our synthetic workload publicly available. Leaving
out the compute portion of production jobs would allow us
to compare workloads with different computations, thus cre-
ating a far more generic and widely applicable workload gen-
eration tool. Despite ignoring the compute part, we can still
capture the essential characteristics of the jobs that facilitate
configuration and trade-off design analysis. In the long term,
we believe MapReduce type systems would become more 10
bound, since CPU performance improves faster than IO per-
formance. Thus, in the future, the cost ignoring compute
would become progressively less. We later measure the cost
of ignoring the compute component for present technology.

4.2 Trace Statistics to Synthetic Workloads

From our five-number summary statistics for each metric we
collect for our jobs, we construct an approximate CDF for
that metric by linearly extrapolating between the percentile
metrics. We construct our synthetic workload by probabilis-
tically sampling the approximated distributions per-metric
and per-job. The sampling algorithm is as follows:

1. Sample the five-number summary-based
CDF of job inter arrival times.
2. Sample the CDF of job indices.
3. For the job index obtained in Step 2,
sample the five-number summary for
the CDFs of per-node input data size,
shuffle-input ratio, and output-shuffle
ratio.
4. Construct vector
[ inter job arrival time,
job index,
input data size,
shuffle-input ratio,
output-shuffle ratio ]
and append to the workload.
5. Repeat until reaching the desired
number of jobs or the desired workload
time interval length.

Thus, the synthetic workload would be a list of jobs de-
scribed by

[ inter job arrival time,
job index,
input data size,
shuffle-input ratio,
output-shuffle ratio ]

We can extend the algorithm in several ways. We can in-
crease the sampling frequency of higher percentile values, to
create a workload that emphasize data intense stress jobs.
We can also customize the five-number summaries to inves-
tigate workloads with different statistical profiles. We can
further plug-and-play the distributions from different orga-
nizations with completely different computation needs. In
addition, we can create hypothetical future workloads by
replacing the input summary statistics with manually cre-
ated distributions. We see this extensibility as a step in
the right direction towards evaluating cross-workload design
decisions.



4.3 Realistic Workload Replay

The primary objective for our framework is to enable realis-
tic workload replay. To this end, we created a workload ex-
ecutor that takes our synthetically created workloads vectors
and produces a sequence of MapReduce jobs with varying
characteristics. At a high level, our workload generator con-
sists of a shell script that launches jobs with specified data
sizes and data ratios, and sleeps between successive jobs to
account for inter-arrival times:

HDFS randomwrite (max_input_size)

sleep intervall[0]

RatioMapReduce inputFiles[0] \
output0 \
shuffleInputRatio[0] \
outputShuffleRatio[0]

HDFS -rmr outputO &

sleep interval[1]

RatioMapReduce inputFiles[1] \
outputl \
shuffleInputRatio[1] \
outputShuffleRatio[1]

HDFS -rmr outputl &

Our workload replay tool includes (1) a mechanism to pop-
ulate the input data, (2) a MapReduce job that can adhere
to specified input-shuffle and output-shuffle ratios, and (3)
a mechanism to remove the MapReduce job output to pre-
vent storage capacity overload. We discuss each of these
three elements in turn.

Populating data:

We leverage the RandomWriter MapReduce job to write to
HDFS the input data. This job creates a directory of fixed
size files, each of which corresponds to the output of a re-
duce task. We need to populate the input data only once,
writing enough data to account for the maximum input data
size in our workload. All subsequent workload jobs can take
as their input a random sample of these files, determined
by their corresponding input data size. The input data size
would have the same granularity as the file size, an inevitable
tradeoff. We set each file to be 64MB, the same size as the
default HDFS block size. We believe this setting is rea-
sonable because our input files would be as granular as the
underlying HDFS. Through experimentation, we also vali-
dated that there is negligible performance overhead when
concurrent jobs reading from the same HDF'S input.

MapReduce job to preserve data ratios:

We wrote a MapReduce job that reproduces job-specific
shuffle-input and output-shuffle data ratios specified by the
workload vector. Our implementation of this RatioMapRe-
duce job uses a straightforward probabilitic identify filter:

class RatioMapReduce {

X
y

shuffleInputRatio
outputShuffleRatio

map (K1 key, V1 value, <K2, V2> shuffle) {

repeat floor(x) times {
shuffle.collect(new K2(randomKey),
new V2(randomValue)) ;
}

if (randomFloat(0,1) < decimal(x)) {
shuffle.collect (new K2(randomKey),

new V2(randomValue));
}

} // end map()
reduce (K2 key, <V2> values, <K3, V3> output) {

for each v in values {
repeat floor(y) times {
output.collect(new K3(randomKey),
new V3(randomValue));
}
}

if (randomFloat(0,1) < decimal(y)) {
output.collect(new K3(randomKey),
new V3(randomValue));

}
} // end reduce()

} // end class RatioMapReduce

Preventing HDF'S storage overload:

Lastly, we need a way to remove the data generated by the
workload to avoid exceeding the storage capacity of our clus-
ter. This mechanism is necessary because one could gen-
erate a workload with arbitrarily many jobs, which would
certainly fill up any storage if the workload output is never
removed. The mechanism we used was a straightforward
HDF'S remove command, issued to run as a background pro-
cess while running the workload. We experimentally ensured
that this mechanism imposes no performance overhead.

4.4 Acceptability of Ignoring Compute

A necessary step in anonymizing our trace data is to ignore
specific job names and the computation they perform. While
losing computation reproducibility does not impact our abil-
ity to evaluate design decisions, our replay accuracy may be
impacted due to the absence of compute-bottlenecked jobs in
the workload. Although we have sufficient evidence from job
names in our traces to suggest that most MapReduce jobs
are not compute-bottlenecked, we perform due diligence to
justify that it is acceptable to ignore compute. We with-
hold publication of job names precisely due to anonymity
concerns.

We ran a MapReduce job that performed a word count on
varying sizes of Wikipedia data loaded into our HDFS. Al-
though word count is not the most compute-intensive exam-
ple, it represents the higher end of computation performed
in our production traces. Figure 6 compares the difference
between performing the actual word count and running Ra-
tioMapReduce with the same data size. There is about 20%
difference in duration and energy. The power consumed is
virtually identical.
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Figure 6: Quantifying the cost of ignoring compute in
wordcount.

To provide a more complete analysis, we also evaluate the
cost of ignoring the computation on jobs known to be com-
pute bound, such as calculating 7 using 18 map tasks, each
doing 5,000,000,000 Monte-Carlo samples. Since our sum-
mary statistics make no effort to normalize for computa-
tion, our synthetically reproduced 7 has trivial data size,
and the job completed in 23.6 seconds, compared to the ac-
tual compute 7 counterpart, which took almost 9 minutes to
complete. The synthetic job consumed 1.33 joules per node
compared to 99290 joules per node. Power consumption, on
the other hand, differed by a mere 10 Watts. Thus, in the
extreme worst case, discrepancies are significant, but they
are easily prevented within our framework if the workload
generator inputs also include job computation semantics.

5. ENERGY EFFICIENT MAPREDUCE

In this section, we evaluate several MapReduce energy ef-
ficiency mechanisms, and discuss the implication of our re-
sults. The key lesson is that trace-driven workloads lead
to different design priorities than many on-going efforts in
optimizing MapReduce, for both energy and time efficiency.

5.1 Mechanisms Considered

We look at design choices along four dimensions:

Launch jobs as they arrive vs. queue up the jobs
and launch them in batches:

Most current systems are not power proportional. Thus,
batched execution would lead to significant improvements
in under-utilized clusters.

We implement batched execution by launching the queued
jobs using N threads, with each thread sequentially launch-
ing % of all jobs. In other words, the next job would not
be launched until the previous job completes. Without this
mechanism, if we launch all queued jobs simultaneously, the
Hadoop master would be severely overloaded. To set N, we
had to perform exploratory tuning. Too few threads would
not fully occupy the cluster with active jobs while too many
threads would slow down the Hadoop master. After trial
and error, we found that a reasonable compromise is to set
N to be the number of task trackers in the cluster.

For batched execution, launch all jobs on the queue
at the same time vs. in a staggered fashion:

The master node is a single point of failure, and often be-
comes the bottleneck component of Hadoop. Launching jobs
in a staggered fashion seeks to minimize additional inefficien-
cies in the Hadoop master, improving both energy and time
efficiency.

We implement staggered batch execution by inserting a sleep
period of random length, between 0 and 20 seconds, at the
start of each job launching thread.

Use the standard HDF'S block size of 64MB vs. larger
block sizes:

We know from prior work that large HDF'S block sizes results
in faster finishing time and higher energy efficiency [21, 11].
If the cluster is highly utilized, large HDF'S block sizes would
result in significant improvements.

We alter the HDF'S block size by modifying the dfs.block.size
parameter in the hadoop-site.xml configuration file.

Assign the default 4 task trackers per node vs. more
task trackers per node:

If the per-node coordination overhead is low, having more
task trackers per node would allow jobs to finish sooner.
Given most current systems are not power proportional, fin-
ishing faster translates to lower energy consumption.

We alter the task trackers per node by modifying the max-
imum map tasks and maximum reduce tasks parameters in
the hadoop-site.xml configuration file.

Our evaluation uses a day’s worth of generated workload.
Running this workload under default settings would require
a day. It takes significant time to perform repeated mea-
surements for each mix of design choices, and it would be
infeasible to scan the entire parameter space. Thus, we need
to carefully select a few combinations of design choices to
extract maximum insight from a minimum number of data
points. We use the mix of design choices in Table 1.

Using these configurations, we compare design choices in
each dimension as follows: Batching vs. no batching - com-
pare Configurations 1 and 2. Staggered launch vs. no stag-
gered launch - compare Configurations 6 and 7. Large vs.
small HDFS blocks - compare Configurations 2 and 4, or
Configurations 3 and 6. Many vs. few task trackers per
node - compare Configurations 2 and 3, or Configurations
4-6.

5.2 Cluster Setup

Our cluster has 10 nodes, each a Sun Microsystems X2200
M22 machine, with two dual-core AMD Opteron Processor
2214 at 2.2GHz, 3.80GB RAM, 250GB SATA Drive, running
Linux 2.6.26-1-xen-amd64. Machines in the cluster connects
to each other via 1Gbps Ethernet through a single switch.
Each machine has approximately 150W fully idle power and
250W fully active power [7].



Table 1: Configurations for MapReduce workload energy measurements

Configuration number Batch? Staggered launch? HDEFS block size Task trackers per node

1 No N/A
2 Yes No
3 Yes No
4 Yes No
5 Yes No
6 Yes No
7 Yes Yes

64MB 4
64MB
64MB
80MB
80MB
80MB
80MB

Q0 00 O W~ 0O W~

Although a cluster of 10 nodes appears small for our ex-
periments, a survey of production clusters at a diverse col-
lection of enterprises suggest that around 70% of MapRe-
duce clusters contain fewer than 50 machines [5]. Thus,
our findings on 10 machines easily generalize to clusters at
that scale. Only a handful of large Internet enterprises have
clusters with more than hundreds or thousands of machines.
The scale of large production clusters are hard to accurately
replicate. Our workload preserves the per-node data inten-
sity, enabling designers to evaluate mechanisms on produc-
tion size clusters if such resources are available.

We use the Hadoop implementation of MapReduce [4]. We
use Hadoop distribution 0.18.2 running on Java version 6.0,
update 11. We decided against newer distributions to en-
sure data comparability with our early experiments and the
results in [11]. Unless otherwise noted, we used default con-
figuration parameters for Hadoop.

We run experiments in a controlled environment. Because
we use a shared cluster and cannot guarantee that absence
of background tasks on the machines we used, we perform
our experiments during periods of low or no background
load on the cluster. We closely monitor the CPU, disk, and
network load during our experiments. When we detect any
activity not due to Hadoop, we stop data collection and
repeat the measurement at a later time. We run Hadoop
with no virtualization. A subject of future work is to extend
our workload generation framework to incorporate realistic
non-MapReduce background loads.

5.3 Energy Measurement Method

We measure energy at the wall power socket. As a result,
the power-energy measurements capture the holistic system
performance, including any components that may be idle
and drawing wasted power.

We make several methodological simplifications. Ideally,
measurements should include the MapReduce master, all
MapReduce workers, and the network switch. As we found
in [11], including the master in power energy measurements
distorts data trends for small clusters, since the energy con-
sumption of the master amortizes across increasing cluster
size. So a larger cluster would appear to have better energy
efficiency simply by amortizing the fixed MapReduce mas-
ter overhead. Monitoring the network switch is problematic
for the same reason. Furthermore, for a homogenous cluster
not optimized for rack locality, the behavior of one worker
is statistically identical to the behavior of other workers.
Additionally, reproducing data skew is unrealistic without

the exact data and computation on which the jobs were
run. Anonymized trace would not contain this information.
Thus, given anonymity limitations and the randomized na-
ture of Hadoop scheduling and block placement algorithms,
we need to monitor only one worker, and capture the varia-
tion between workers by taking repeated measurements.

We use a Brand Electronics Model 21-1850/CI power meter.
It has 1W power resolution with logging capabilities, and we
set it to sample at 1Hz.

5.4 Results

Figure 7 shows the results of our experiment. The table
shows raw numerical values for duration, energy, and av-
erage per node active power. The graph shows normalized
values, with Configuration 1 being the baseline. The error
range in the table and error bars in the graph represent 95%
confidence intervals from 3 repeated runs. We did not do
more repeated runs to narrow the confidence intervals fur-
ther because each run of the workload takes a long time, and
we are limited by the availability of the shared cluster. In
our experience, variability increases with cluster size, since
there is a greater probability of data skews and network bot-
tlenecks. Thus, variability will likely increase when we scale
our experiments to clusters of hundreds or even thousands
of nodes.

Since we are interested in energy efficiency, our primary per-
formance metric is the energy consumed. Using this metric,
design choices in the four dimensions are resolved below.

Batching causes up to an order of magnitude decrease in du-
ration and energy, for a modest increase in per node average
power. We see this by comparing Configuration 1 with all
the other configurations.

Staggered launch of batched jobs lead to no statistically
significant improvement, since Configurations 6 and 7 have
overlapping 95% confidence intervals in energy consumption.
However, the average energy of Configuration 7 is lower.

Larger HDF'S blocks lead to statistically significant improve-
ments when there are 8 task trackers per node. This fact is
evident by Configuration 6 having a lower energy consump-
tion than Configuration 3, with non-overlapping confidence
intervals. However, at 4 task trackers per node, the choice
of HDFS block size leads to no significant energy decreases,
evident from the heavily overlapping confidence intervals of
Configurations 2 and 4.
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Figure 7: Performance of different MapReduce optimization mechanisms. In the graph, the raw values are normalized
with Configuration 1 being the baseline. See Table 1 for details of each configuration.

More task trackers per node lead to a performance penalty
with 64MB HDEFS blocks, evident from the higher aver-
age energy of Configuration 3 compared with Configuration
2, with non-overlapping confidence intervals. However, at
80MB HDFS blocks, the energy variations are not statisti-
cally significant.

We interpret the results with regard to HDFS block size
and task trackers per node to indicate that there are non-
negligible coordination overheads when there are a large
number of concurrent tasks. Along both design dimensions,
the performance penalty is visible only when compared with
Configuration 3, which has 8 task trackers per node and
small HDFS blocks. This configuration produces the largest
number of concurrent tasks, since there is one map task
for each HDFS block in the input, and the number of re-
duce tasks is fixed. The slowdown is caused by the Hadoop
master coordinating task states across the cluster. Because
small HDFS blocks do not affect the maximum number of
concurrent tasks on a single node, the per node coordina-
tion overhead remains fixed, and thus Hadoop workers are
not the cause of the slowdown.

Collectively, the results show that for the particular work-
load we analyzed, batching leads to significant first order im-
provements. Once we harness the first order improvements,
further optimizations are difficult to achieve.

5.5 Discussion

Our results suggest that we should not launch MapReduce
jobs as they arrive, but queue the incoming jobs, and launch
them in regular batched fashion. As a result, we can turn off
the entire cluster, between batch intervals, when all jobs in a
batch complete. This mechanism allows us to achieve energy
proportionality through workload management and applica-
tion scheduling, even in the absence of energy proportional
hardware.

If we want to deploy a batch MapReduce scheduler, the
batch interval duration is an important concern. First, the
batch interval length must be longer than the time it takes
to bring up and shut down a MapReduce cluster. Second,
the batch interval must be long enough to ensure that there
are enough jobs on queue to fully utilize the cluster. Third,

the batch interval must not be so long that applications con-
suming MapReduce outputs would be severely impacted.

An additional concern is whether we increase hardware fail-
ure probability if we frequently turn on and turn off clusters.
Recent estimates suggest that over the lifetime of equipment,
both disk storage and integrated circuits can sustain power
cycle frequency as high as one per hour. An ongoing 18
month experiment on a research cluster at the Information
Science Institute (ISI) suggests that turning off nodes after
one hour of idleness has no impact on hardware reliability
[18]. Thus, until new empirical data suggests otherwise, we
believe turning off entire clusters would not hurt hardware
reliability.

Furthermore, cluster idling between batches of workloads is
an undesirable property despite minimal energy consump-
tion. To compensate for the upfront cost of cluster equip-
ment, already paid for by the organization, it is more de-
sirable to keep the cluster active with useful work. In the
extreme case, if the cluster is almost always idle, one could
conclude that the cluster was over-provisioned, perhaps to
handle hypothetical peak demand.

One solution is to offer several different service levels, one for
immediate job launch, one for frequent batchs on the order
of minutes, one for regular batches on the order of hours,
and another for daily batches. With such a service model,
we can develop additional insight with regard to the volume
of jobs suitable for each class of batch workload. With this
insight, we can assign different batch service models to dif-
ferent clusters, and size each cluster for high utilization at
all times.

Another mechanism already in use in some large datacen-
ters is to mix interactive and batch jobs in the same cluster.
By appropriately controlling batch intervals, one can com-
pletely shape the volume of actively running batched jobs.
In particular, one can shape batch job volume to match any
diurnal patterns in interactive jobs. This mechanism also
ensures that the cluster sustains high utilizations.

A more fundamental way to increase cluster utilization is
to develop new business processes that extract value from



additional cluster usage.

Once the cluster utilization is high, the focus shifts from
energy proportionality back to energy efficiency. Having re-
alistic workloads would allow us to further explore design
choices at high cluster utilization levels.

Our data also informs discussions on hardware energy pro-
portionality. The hardware in our cluster is highly power
disproportional. The average per node power at high uti-
lization (Configurations 2-7) is nearly the same as per node
power at low utilization (Configuration 1). With highly
power disproportional hardware, improving time efficiency
is frequently a proxy for improving energy efficiency, since
energy is the product of time and power, and power is ap-
proximately constant. When hardware becomes power pro-
portional, low cluster utilization would waste the investment
in equipment, and there would be zero power consumption
when the cluster is idle. That said, energy efficiency would
continue to be important as higher efficiency would still al-
low us to do the same computation with lower energy cost.

Most importantly, the discussion here is completely con-
cerned with workload level optimizations, which is a funda-
mental shift from individual job level optimizations. Thus
far, job level optimizations drives work in both MapReduce
energy efficiency [11, 15] and MapReduce time efficiency [23,
22]. This trend is mostly an artifact of the exclusive focus
on sort and gridmix as evaluation tools. Both measure per
job performance at high data intensities. Since most clusters
are currently provisioned for peak usage rather than aver-
age usage, clusters are under-utilized. Consequently, work
on improving configurations, scheduling, data locality may
entirely miss the point because such optimizations are rele-
vant only when the cluster is active.

Based on our findings, we argue for a change in research
focus from job level optimizations to workload level opti-
mizations.

6. METHODOLOGY REFLECTIONS

The experience and results from our energy efficiency case
study revealed insights on subtle methodological necessities
of distributed system energy efficiency studies. We share our
insights below in the hope that they will help future work
obtain high quality results.

Energy is the right metric; power is the wrong one.

Figure 7 clearly distinguishes between energy and power.
If we had optimized for low power, then Configuration 1
would perform the best, even though the energy consump-
tion is much higher due to longer workload duration. In the
extreme case, a machine that computes arbitrarily slowly
by being idle would have the active power equivalent to idle
power. Obviously, since idle power is lower than non-idle
machine power, the duration, and hence energy, would be
infinite.

Power meters are necessary.

High quality power meters represent a non-negligible invest-
ment and are not yet a widespread research, let alone pro-

duction, tool. In the absence of power meters, one alterna-
tive is to use SPECpower measurements coupled with CPU
extrapolations, already explained to be insufficient in Sec-
tion 2. Another alternative is to assume name-plate power
or constant average power, and use duration as a proxy for
energy. The assumption of constant average power hardly
ever holds, even if the dynamic power range is small. For the
machines in our cluster, the dynamic power range is 40% of
name-plate power. This range compounds the roughly 40%
variation in job duration in Figure 7. Thus, without a power
meter, an energy by duration estimate could be as low as
36% or as high as 196% of the actual value.

Also, we were fortunate that our Hadoop job durations were
on the order of seconds and even minutes, and the dynamic
power range of our machines are on the order of tens of
Watts. Consequently, we were able to use power meters
with 1W resolution and 1Hz sampling rate. This class of
equipment is still reasonably easy to find. If we were to
tackle per-component power studies at the hardware level,
the events would have durations on the order of microsec-
onds, and dynamic power range could possibly go as low as
a few mW. Such studies would require power meters of an
even higher caliber.

Overall, high quality power meters represent a necessary in-
vestment for research groups interested in computer systems
energy efficiency.

Repeated measurements are necessary.

Our results in Figure 7 show that the duration and energy for
Configurations 2, 4, 5, 6, 7 are statistically identical. How-
ever, if we had taken only one measurement for each con-
figuration, then we would incorrectly conclude that some of
these configurations are better than others. Thus, while re-
peated measurements are standard good experimental prac-
tices, they are essential in distributed systems performance
measurements.

For our repeated measurements, we compute 95% confidence
intervals by assuming the underlying statistical distribution
to be Gaussian. This practice is common and we explain why
it is statistically sound. We can assume the underlying dis-
trbution is Gaussian using the Central Limit Theorem. This
theorem states that the sample mean of a large number of
independent, identically distributed random variables with
finite mean and variance would approach a Gaussian distri-
bution. For repeated measurements, each measurement cor-
responds to sampling the random variable that represents
the performance of the underlying system. This random
variable has finite mean and variance because the system
performance has finite mean and variance. Thus, if we as-
sume that each measurement is independent, and the under-
lying system has the same performance distribution between
measurements, then the premises in the Central Limit Theo-
rem hold, and the distribution of the sample mean converges
to a Gaussian for a large number of samples. By the Berry-
Esseen Theorem, in the worst case, the convergence error
decreases at O(1/4/n), where n is the number of samples.

With the Gaussian assumption, confidence intervals also de-
crease at O(1/4/n). Thus, for a given confidence level, halv-



ing the confidence interval would require taking four times
as many measurements. Conversely, for the same number
of measurements, the width of confidence intervals increases
inversely to the Gaussian CDF of the associated confidence
levels. A helpful numerical example is at [1].

Small improvements difficult to justify for highly
variable systems.

This fact is a direct consequence of the statistical proper-
ties of confidence intervals. Intuitively, we can arbitrar-
ily narrow confidence intervals by taking arbitrarily many
measurements. To validate improvements in a statistically
sound manner, we need non-overlapping confidence inter-
vals, which would require many measurements if the size of
the improvements is less than the performance variation of
the underlying system. At such design points, it becomes
debatable whether we should prioritize improving the mean
performance or decreasing the performance variation.

To use a concrete example, suppose we are trying to verify a
20% improvement for a system with performance standard
deviation that is 30% of the mean, which is comparable to
the average performance standard deviation for Configura-
tions 2-7 in Figure 7. For non-overlapping confidence inter-
vals, we need to narrow the confidence interval to £10% of
the mean, which is half of the fraction of improvement. At
the 95% confidence level, this resolution requires approxi-
mately 35 measurements to achieve. Thus, reducing perfor-
mance variance from 40% to 20% may be a higher design
priority than improving average performance by 20%.

The performance variations we observed are typical to sys-
tems like MapReduce. Thus, improvements on the order
of a few tens of percent are difficult to statistically justify.
Fortunately, our primary improvements in Figure 7 are an
order of magnitude instead of a few tens of percent.

Need per-workload performance metrics.

Prior work in JouleSort [19] introduced per-job energy ef-
ficiency metrics such as joules per sorted record. However,
once we shift the design focus from job level decisions to
workload level optimizations, we need per-workload energy
efficiency metrics, since per-job metrics only measures en-
ergy efficiency for the active portion of the workload.

In our study, we avoided this issue by using the same work-
load for evaluating design choices. We believe it is non-
trivial to develop good workload metrics because a work-
load has many more characteristics than a job. For example,
while the joules per sorted record metric applies to sort jobs
regardless of data size and sorting algorithm, it would be dif-
ficult to develop a “joules per _something ” metric for work-
loads with different durations, number of jobs, data sizes,
and mix of computations. That said, just as the JouleSort
metric continues to drive job level energy efficiency improve-
ments, a good metric for workload energy efficiency would
be vital for workload level optimizations.

7. FUTURE WORK

We see several future uses for our MapReduce workload gen-
erator as well as the more general trace-driven statistical

framework. Both have applications outside energy efficiency.
We group future work under two sections - capabilities im-
mediately enabled by having realistic workloads, and long
term applications of our approach.

7.1 Immediate Enablers

The immediate implications of our analysis suggest that
prior work on MapReduce scheduling results in far less per-
formance gains compared to batching workloads and running
them periodically. This result makes a case for research on
deadline-driven scheduling, where jobs with relaxed dead-
lines can run in batches at convenient times instead of being
serviced upon arrival.

The anonymization properties of our framework are essen-
tial for alleviating privacy concerns that have thus far pre-
vented organizations from sharing their production traces.
Using five-number summary statistics, we effectively capture
the variability in workload characteristics while abstracting
away sensitive information. We believe this methodology en-
ables us to compare workloads across organizations, which
will eventually lead to a more widely accepted MapReduce
benchmark. We are in the process of aquiring traces from
other MapReduce production environments and plan to use
summary statistics to make them publicly available.

While our five-number summary percentiles are based on
traditional statistical techniques for summarizing distribu-
tions, we believe the systems community will find value in
focusing on percentile values higher than the 99th. Data
that exceeds the 99th percentile potentially represents worst
case behavior. System developers would benefit from under-
standing their system’s performance under unusually high
load as it enables them to evaluate mechanisms to better
safe-guard their system from corner-cases. Our framework
can sample more densely between the 99th to 100th per-
centile values to produce worst case scenario distributions.
This is an argument that data intensive jobs remain useful
for stress tests, and should not be discarded altogether.

7.2 Long-Term Potential

An compelling use of the MapReduce workload generator is
to evaluate future platform architecture design. Since our
workload replay mechanisms are agnostic to hardware and
software configurations, we can use our tools to extrapolate
performance on different cluster sizes as well as on clusters
built on experimental architectures.

In the absence of anonymization concerns, e.g. within the or-
ganization that generates the original trace data, our frame-
work can seemlessly integrate computation, I/O and mem-
ory characteristics of workloads. Thus, MapReduce opera-
tors can use our framework to evaluate design decisions to
improve their resource utilization. With low-level perfor-
mance measurements, we can also obtain the five-number
summary statistics for these resources. We can extend the
workload replay mechanism to include CPU cycles, cache
activity, or data transfers. We can further quantify how
much information is lost by using only five-number summary
statistics instead of the full distribution.

Another interesting extension of our framework is to model
depenendencies between jobs, for instance, in job-chains rep-



resenting multi-stage compute processes. With transparent
access to time series behavior, we could augment our work-
load generation framework with transition probabilities be-
tween job types and/or Markov models to reproduse inter-
job dependencies.

Additionally, with our statistics-driven workload replay frame-

work, we could ask “what-if” questions to evaluate the impli-
cations of hypothetical future workloads. We simply change
the input statistics to the workload generator. This capa-
bility would be especially useful for capacity planning and
resource provisioning.

We believe that non-MapReduce paradigms can use our statis-
tial framework as well. We have promising initial results for
using the same statistics-driven methodology for generating
Web 2.0 workloads. We plan to explore the applicability of
our techniques for other distributed systems workloads, such
as high performance computing.

8. SUMMARY AND CONCLUSION

In this paper, we presented a case for a statistics-driven
workload generator that extracts summary statistics from
production traces and replays realistic workloads agnostic
to hardware/software configuration. The statistics-driven
framework preserves the anonymity of business-sensitive com-
putations, allowing the publication of production traces, and
the evaluation of experimental designs using realistic work-
loads.

We showed that our methodology is useful for understanding
design trade-offs, and presented results from a case study of
MapReduce energy efficiency. Our experimental results re-
veal several effective design strategies for improving cluster
energy efficiency. Most importantly, workload level perfor-
mance evaluations allowed us to reset our design priorities.
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