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Abstract

Perceptual and Context Aware Interfaces on Mobile Devices

by

Jingtao Wang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John F. Canny, Chair

With an estimated 4.6 billion units in use, mobile phones have already become the most
popular computing device in human history. Their portability and communication capabil-
ities may revolutionize how people do their daily work and interact with other people in
ways PCs have done during the past 30 years. Despite decades of experiences in creating
modern WIMP (windows, icons, mouse, pointer) interfaces, our knowledge in building ef-
fective mobile interfaces is still limited, especially for emerging interaction modalities that
are only available on mobile devices.

This dissertation explores how emerging sensors on a mobile phone, such as the built-in
camera, the microphone, the touch sensor and the GPS module can be leveraged to make
everyday interactions easier and more efficient. We present studies and models to quantify
the capabilities of these sensing channels, and show how effective interfaces in text entry,
gaming, and CSCW can be built on mobile phones.

The first such technology is TinyMotion. TinyMotion detects the movements of a mobile
phone in real time by analyzing image sequences captured by its built-in camera, providing a
usable analog pointing channel to existing mobile phone users. We quantified TinyMotion’s
human performance as a basic input control sensor. We found target acquisition tasks via
TinyMotion follow Fitts’ law, and Fitts’ law parameters can be used for TinyMotion-based
pointing performance measurements. We show that using camera phone as a handwriting
capture device and performing large vocabulary, multilingual real time handwriting recog-
nition on the mobile phone are feasible. Based on experiences and lessons learned from
TinyMotion, this dissertation also introducesSHRIMP (Small Handheld Rapid Input with
Motion and Prediction), a predictive mobile text input method runs on camera phones
equipped with a standard 12-key keypad. SHRIMP maintains the speed advantage of
Dictionary-Based Disambiguation (DBD) driven predictive text input while enabling the
user to overcome collision and OOV problems seamlessly without explicit mode switch-
ing. Then, FingerSense is presented as another example of perceptual interface to enhance
the expressiveness of physical buttons on space-constrained mobile devices. This disserta-
tion also introduces a context-aware system named GLAZE (Generalized Location Aware
ModelZ for End-users). GLAZE allows average user without any programming experiences,
to create everyday location-aware applications directly on their mobile phones. Last, this
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thesis describes the design, implementation and evaluation of Event Maps, a web-based cal-
endaring system targeted at improving the experience of attending and organizing large,
multi-track conferences on both desktop computers and mobile devices. Event Maps has
been successfully deployed in multiple large, real world conferences.
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Chapter 1

Introduction

“Unlike the steady, predictable hardware price/performance
improvement described by Moore’s law, there has been no such

year-to-year progress in user interface design. Instead, the
history of user interfaces can be characterized using evolutionary

biologist Steven Jay Gould’s notion of punctuated equilibrium:
long periods of stability interrupted by rapid change.”

—Andries van Dam, 1997 [130]

With an estimated 4.6 billion units in use [91], mobile phones have already become
the most popular computing device in human history. Their portability and communication
capabilities may revolutionize how people do their daily work and interact with other people
in ways PCs have done during the past 30 years. Further, Gartner Inc predicts that mobile
phones will overtake PCs as the most common Web access device worldwide by 2013 [16]. In
1991, Mark Weiser envisioned “The technology required for ubiquitous computing comes in
three parts: cheap, low-power computers that include equally convenient displays, software
for ubiquitous applications and a network that ties them all together.”[144] 19 years later, it
is clear that his vision about ubiquitous computing is becoming a reality with the popularity
of mobile phones.

Unfortunately, despite decades of experience in creating modern WIMP (windows, icons,
mouse, pointer) interfaces, our knowledge in building effective mobile interfaces is still lim-
ited, this is especially true for emerging interaction modalities that are only available on
mobile devices. On one hand, we have accumulated substantial knowledge in building GUI
applications for desktop computers. All major commercial desktop operating systems, such
as Windows, Mac OS and Linux, look similar five feet away. This is in-part, due to the
fact that generic WIMP based GUI design for desktop computers is considered a mature
area and the corresponding design ‘know-how ’ has converged in many topics. On the other
hand, the user interfaces on mobile devices went through multiple rounds of redesigns and
overhauls since the release of Apple Newton PDA (Personal Data Assistant) in 1992. Even
with the redesigns and overhauls of the Palm Pilot, Windows CE, Symbian, iPhone, We-
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bOS, Android and Windows Phone 7 series, just to name a few, there is still no common
agreement on what is the most effective UI design guideline for mobile devices. The highly
diversified mobile market implies that we are still in the very early stage towards a full
exploration of the mobile design space.

Due to Moore’s law, the computing power of mobile devices increases steadily over
the years. The state-of-the-art mobile devices are as fast as a desktop computer was ten
years ago and have no problem in running a major portion of desktop applications from a
decade ago after minor adaptations. However, in this dissertation, we argue that porting
or existing applications from desktops directly to PCs will most likely lead to inferior user
experiences, due to the limitation on size, input/output channels of mobile devices and the
fragmented nature of attentional resources [96]. Instead, we show with concrete examples
that by leveraging the unique capabilities on mobile devices (coupled with careful design to
hide the corresponding weaknesses), it is possible to support activities on mobile that are
hard to achieve on traditional desktop computers.

What are the unique capabilities of mobile devices? First, portable computers that not
only support instant-on, but are also always connected to the internet as well. The rich,
local interactions on mobile phones, combined with back-end services in the cloud, will be a
paradigm shift that changes how we build and use computers. Second, most mobile phones
are equipped with sensors that are not commonly available on desktop computers, such as
the built-in camera, touch screen, microphone, GPS and accelerometers. These sensors are
new opportunities for effective mobile interactions.

This thesis summarizes research work on understanding how emerging sensors on a
mobile phone can be leveraged to make everyday interactions easier and more efficient.
We present studies and models to quantify the capabilities of these sensing channels. We
also illustrate how effective perceptual and context aware interfaces in text entry, gam-
ing, and computer supported cooperative working (CSCW) can be built on mobile phones.
Most of the interfaces we introduce in this dissertation fall in the definition of perceptual
and context-aware interfaces [19].

1.1 Dissertation Outline

This chapter has illustrated the potential value of designing interfaces that leverage the
unique capability of mobile devices. The rest of the thesis is organized as follows:

Chapter 2 presents TinyMotion, a pure software approach for detecting a mobile phone
user’s hand movement in real time by analyzing image sequences captured by the built-in
camera. In this chapter, we describe in detail the design and implementation of TinyMotion
and several interactive applications based on TinyMotion. Through an informal evalua-
tion and a formal 17-participant user study, we found: (1), TinyMotion can detect camera
movement reliably under most background and illumination conditions. (2), Target acqui-
sition tasks based on TinyMotion follow Fitts’ law and Fitts’ law parameters can be used
for TinyMotion based pointing performance measurement. (3), The users can use Vision
TiltText, a TinyMotion enabled input method, to enter sentences faster than MultiTap
with a few minutes of practice. (4), Using camera phone as a handwriting capturing device
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and performing large vocabulary, multilingual real time handwriting recognition on the cell
phone are feasible. (5), TinyMotion based gaming is enjoyable and immediately available
for the current generation camera phones. We also report user experiences and problems
with TinyMotion based interaction as resources

Based on experiences we get in designing and using TinyMotion, we advance the state-of-
the-art in mobile input in chapter 3 - Dictionary-based disambiguation (DBD) is a very pop-
ular solution for text entry on mobile phone keypads but suffers from two problems: (1), the
resolution of complete ambiguity or collision (two or more words sharing the same numeric
key sequence) and (2), entering out-of-vocabulary (OOV) words. We present SHRIMP, a
system and method that solves these two problems by integrating DBD with camera-based
motion sensing that enables the user to express preference through a tilting or movement
gesture. SHRIMP (Small Handheld Rapid Input with Motion and Prediction) runs on
camera phones equipped with a standard 12-key keypad. SHRIMP maintains the speed
advantage of DBD driven predictive text input while enabling the user to overcome DBD
collision and OOV problems seamlessly without even a mode switch. In a novice user study,
we found the text entry speed of SHRIMP (12.1 wpm) was significantly faster than that of
MultiTap (7.64 wpm), with less than ten minutes of practice.

Chapter 4 proposes a novel method, FingerSense to enhance the expressiveness of phys-
ical buttons. In a FingerSense enabled input device, a pressing action is differentiated
according to the finger involved. We modeled the human performance of FingerSense inter-
faces via a GOMS style analysis and derived related parameters from a preliminary usability
study.

Chapter 5 presents a system for creating location-aware mini-applications, GLAZE
(Generalized Location Aware modelZ for End-users). This system enables average end-
users to create everyday location-aware applications by themselves and on their cell phones.
The GLAZE system provides a set of location-aware primitives named REWIND (READ,
WRITE and FIND) to help end-users model and generate their intended applications
though the help of a set of form-style smart templates. The GLAZE system is designed
to lower the threshold of location-aware application creation and encourage both expertise
sharing and group interactions in a community.

Chapter 6 describes Event Maps, a web-based collaborative calendaring system targeted
at improving the experience of attending and organizing large, multi-track conferences.
Event Maps runs on both desktop computers and mobile devices. Through its zoomable Tab-
ular Timeline, users can navigate conference schedules, seamlessly moving between global
and local views. Through a compact decoration widget named Active Corners, Event Maps
enables contextual asynchronous collaboration before, during, and after a conference. Or-
ganizers can easily create or import conference schedules via a backend interface, and also
use the provided analytic toolkits to get insights from visiting patterns and statistics.

We conclude in chapter 7 with a summary of findings and lessons learned.
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Chapter 2

TinyMotion : Camera Phone Based
Motion Sensing

“Everything is best for something and worst for something else.
The trick is knowing what is what, for what, when, for whom,

where, and most importantly, why.”

—Bill Buxton, 2007 [17]

2.1 Motivation

Mobile phones have become an indispensable part of our daily life. Their compact form
has the advantage of portability, but also imposes limitations on the interaction methods
that can be used. While the computing and display capabilities of mobile phones have
increased significantly in recent years, the input methods on phones largely remain button
based. For basic voice functions, a button press based keypad is quite adequate. But mobile
phones are rapidly moving beyond voice calls into domains such as gaming, web browsing,
personal information management, location services, and image and video browsing. Many
of these functions can greatly benefit from a usable analog input device. Mobile phones may
take on even more computing functions in the future if higher performance user interfaces
can be developed. We show in this chapter that the built-in camera in mobile phones can
be utilized as an input sensor enabling many types of user interactions.

Various technologies have been proposed and tested to improve interaction on mobile
devices by enhancing expressiveness [46, 53, 105, 98, 146], or sensing contextual features of
the surrounding environment [53]. Accelerometers [53, 105, 98, 146], touch sensors [46, 53]
and proximity sensors [53] have been used. While some of these technologies may eventually
make their way inside the phone, they are rarely seen in phones today.

On the other hand, camera phones are already popular and pervasive. The global cell
phone shipment in 2005 was 795 million units, 57% of which (about 455 million units) were
camera phones. At the same time, 85% of the mobile phones were camera phones in 2008
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Figure 2.1: Using TinyMotion enabled applications out-doors (left) and in-doors (right)

with a shipment of 800 million units [18].
We have developed a technique called TinyMotion (figure 2.1) for camera phones. Tiny-

Motion detects the movements of a cell phone in real time by analyzing image sequences
captured by its built-in camera. Typical movements that TinyMotion detects include hor-
izontal and vertical movements, rotational movements and tilt movements. In contrast to
earlier work, TinyMotion does not require additional sensors, special scenes or backgrounds.
A key contribution of this chapter is an experimental validation of the approach on a wide
variety of background scenes, and a quantitative performance study of TinyMotion on stan-
dard target acquisition tasks and in real world applications.

2.2 Related Work

Related work fall into three categories: emerging camera phone applications, new inter-
action techniques for mobile devices and computer vision based interaction systems.

2.2.1 Emerging Camera Phone Applications

Inspired by the success of CyberCode [106] from SONY, several researchers [109] and
companies have designed customized 2D barcodes that can be recognized easily by camera
phones. Most of these systems measure the size, position and angle of the barcode relative
to the cameras optical axis, which can be used to infer the camera’s 3D position relative to
the barcode, and provide an alternative spatial input channel. SemaCode [111] is positioned
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as a general purpose tagging solution, SpotCode (a.k.a. ShotCode [114]) has a feature that
maps 2D bar codes to online URLs. On top of their barcode system Visual Codes [109] have
also built UI widgets to achieve desktop-level interaction metaphors. Visual Codes is also
used to manipulate objects on large public displays interactively [5].

Hansen and colleagues [44] proposed the idea of a “mixed interaction space” to augment
camera phone interaction. Their method relies on camera imaging of a light uniform back-
ground with a circular marker. This image needs to be laid out on a suitable flat surface. 2D
bar codes [5], Orthogonal axis tags [94], high gradient still objects [31] and human faces [45]
can all be used as markers to facilitate the tracking task. In contrast, TinyMotion provides
general motion sensing from whatever scene the camera is pointed at, near or far.

If we make assumptions on the texture/gradient distribution of surrounding environ-
ments, other vision based approach such as Projection Shift Analysis [28] or gradient feature
matching [43] could also provide real time motion detection on mobile devices. However,
these approaches will fail when these strong assumptions do not hold. E.g., image projection
based approach won’t work on background with repeating patterns [28]. Many everyday
backgrounds with less gradient, e.g. floors, carpets and the sky, will make gradient feature
detection infeasible.

2.2.2 New Interaction Techniques for Mobile Devices

Previous work has proposed many compelling interaction techniques based on physical
manipulation of a small screen device, including contact, pressure, tilt, motion and implicit
biometric information. Specifically with regard to navigation, Rekimoto [105] used tilt input
for navigating menus, maps, and 3-D scenes, and Harrison et al. [46] and Hinckley et al. [53]
have used tilt for scrolling through documents and lists. Peephole Displays [152] explored the
pen interactions on spatially aware displays on a PDA. Earlier before the current generation
of phones and PDAs, Fitzmaurice et al. [33] explored spatially aware ‘Palmtop VR’ on a
miniature handheld TV monitor.

2.2.3 Computer Vision in Interactive Systems

Considering the amount of information captured by human eyes, using computer vision
in interactive systems has long been a popular topic [35]. Much previous research in this
category covers multimodal interaction [34], gesture recognition, face tracking, body tracking
[93] etc. There are also numerous systems that map certain types of user’s movements, for
example, body, gesture, finger, face, and mouth movements into computer inputs. Please
refer to [34, 93], which include some extensive survey in the related directions, and [35] for
some commonly used basic algorithms. However, most of those applications are built on
powerful desktop computers in controlled lab environments.
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2.3 The TinyMotion Algorithm

Computer vision techniques such as edge detection [43], region detection [35] and optical
flow [56] can be used for motion sensing. Ballagas et al [5] had implemented an optical
flow based interaction method - “sweep” on camera phones. However, optical flow [56]
is a gradient based approach and it uses local gradient information and the assumption
that the brightness pattern varies smoothly to detect a dense motion field with vectors at
each pixel. Due to the additional assumptions on gradient distribution and the smoothness
of illumination, they are usually less robust than direct methods based on correlation or
image difference. The latter are used in optical mice, video codecs etc, and we follow suit.
TinyMotion has used both image differencing and correlation of blocks [37, 72] for motion
estimation.

The TinyMotion algorithm consists of four major steps:

1. Color space conversion.

2. Grid sampling.

3. Motion estimation.

4. Post processing.

All of these steps are realized efficiently by integer only operations. To use TinyMotion,
the camera is set in preview mode, capturing color images at a resolution of 176∗112 pixels,
at a rate of 12 frames/sec 1.

2.3.1 Color Space Conversion

After a captured image arrives, we use a bit shifting method (equation 2.2, an arithmetic
approximation of equation 2.1) to convert the 24-bit2 RGB color to an 8-bit gray scale image.

Y = 0.299 ∗R + 0.587G+ 0.114B (2.1)

Y = (R >> 2) + (G >> 1) + (G >> 3) + (B >> 3) (2.2)

2.3.2 Grid Sampling

Grid Sampling, a common multi-resolution sampling technique [72], is then applied on
the gray scale image to reduce the computation complexity and memory bandwidth for the
follow-up calculations. We use 8 ∗ 8 sampling window in our current implementation after
much experimentation.

1Without displaying the captured image and additional computation, the camera phones in our experi-
ments can capture images at the maximal rate of 15.2 frames/sec.

2There are only 20 effective bits in each pixel for our specific camera phone used.
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Figure 2.2: Estimate the relative motion of a macro-block between frame Ik−1 and Ik

2.3.3 Motion Estimation

The motion estimation technique we use is similar to those commonly used by video
encoders (MPEG2, MPEG4 etc). We denote the result of grid sampling as a macro-block
(MB) and apply Full-search Block Matching algorithm (FBMA) [72, 37] on temporally
adjacent fames. Let Ik represent the current frame and Ik−1 represent the previous frame. In
any frame I, I(x, y) is the pixel value at location (x, y). For FBMA, the MB in current frame
Ik is shifted and compared with corresponding pixels in previous frame Ik−1. The shifting
range is represented as Rx and Ry respectively (Figure 2.2). In our current implementation,
Rx = (−3, 3), Ry = (−3, 3). Common distance measurements include Mean Square Error
(MSE, equation 2.3 [72]), Sum of Absolute Difference (SAD) and Cross-Correlation Function
(CCF). After block matching the motion vector MV is chose as the corresponding block
shifting distance (equation 2.4).

MSE(dx, dy) =
1

MN

x+M−1∑

m=x

y+N−1∑

n=y

(Ik(m,n)− Ik−1(m+ dx, n+ dy))2 (2.3)
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−−→
MV = (MVx,MVy) = min(dx,dy)∈R2MSE(dx, dy) (2.4)

The motion vector
−−→
MV = (MVx,MVy) represents the displacement of the block with the

best result for the distance criterion after the search procedure is finished. According to the
output of the motion estimation, tilting left is equivalent to moving the phone left, tilting
the upper part of the phone towards the user is equivalent to moving the phone upwards,
and so on. To detect camera rotation, we split each global MB into 2 ∗ 2 = 4 sub MBs and
estimate their relative motions respectively.

2.3.4 Post Processing

The relative movements detected in the motion estimation step are distance changes in
the x and y directions. These relative changes are also accumulated to provide an absolute
measurement from a starting position.

In the current implementation, TinyMotion generates 12 movement estimations per sec-
ond, and takes 19 - 22 ms to process each image frame on a Motorola v710 phone. The
memory needed is around 300KB.

2.4 Implementation

Our primary implementation platform is the Motorola v710 (a CDMA Phone from Ver-
izon Wireless), a common off-the-shelf camera phone at the time our implementation. The
v710 has an ARM9 processor, 4M RAM, 176 ∗ 220 pixel color display. Our application is
written in C++ for BREW (the Binary Runtime Environment for Wireless [13]) 2.11. We
use Realview ARM Compiler 1.2 for BREW [104] to cross-compile the target application.
BREW is an efficient binary format that can be downloaded over the air, so there is a rapid
distribution path for commercial applications built using TinyMotion. We believe TinyMo-
tion can also be ported easily to other platforms such as Windows Mobile and Symbian.
To test the efficacy of TinyMotion as an input control sensor, we wrote four applications
( Motion Menu, Vision TiltText, Image/Map Viewer, Mobile Gesture ) and three games (
Camera Tetris, Camera Snake and Camera BreakOut ). All these prototypes can be oper-
ated by moving and tilting the camera phone. Figure 2.3 shows some screen shots of the
TinyMotion-enabled prototype applications. Not including the recognizer used in Mobile
Gesture, the current TinyMotion package includes a total of 23, 271 lines of source code
in C++. We now discuss the Mobile Gesture and Vision TiltText applications in greater
detail.

2.4.1 Mobile Gesture

The Mobile Gesture application was inspired by the idea of using the camera sensor
on the cell phone as a stylus for handwriting recognition and gesture based command and
control. In the current implementation of Mobile Gesture, the user presses the “OK” button
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Figure 2.3: Sample TinyMotion applications and games. From left to right, top to bottom
C Motion Menu, Image/Map Viewer, Mobile Gesture, Camera Tetris, Camera Snake and
Camera BreakOut
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on the phone to trigger the “pen down” operation on the phone. Instead of restricting ges-
ture/handwriting to be single stroke or setting a timeout threshold to start the recognition,
the user presses the POUND (“#”) key to signal the end of a character.

The recognizer used by the Mobile Gesture application is a commercial product designed
by one of the authors. The original recognizer was designed for handheld devices running
Palm Pilot, Windows CE or Linux etc. It supports multilingual input of western character
and East Asian double byte characters (e.g. Chinese, Japanese characters). By default, we
use a recognition library which supports all the English characters, punctuation symbols and
around 8000 Chinese and Japanese characters (6763 simplified Chinese characters defined by
the GB2312 national standard and around 1300 Hiragana, Katakana and Kanji characters
in Japanese). The size of the recognizer is around 800KB including both the code and the
recognition library. If we remove the support for Asian double byte characters, the size
of the recognizer and related library can be reduced to around 350kb. On the Motorola
v710 phone, it takes 15-20ms to recognize a handwritten Roman character, and 35-40ms to
recognize one of the 8000 supported double byte characters. As a reference, it takes the same
recognizer around 700ms to recognize the same double byte character on a Palm V PDA
with 2 Mb memories, which implies an off-the-shelf cell phone in year 2005 is about 20 times
faster than a common PDA in the year 1999 for this specific recognition task. We made
one modification on the recognizer after porting it to BREW by adding a four-pixel wide
smoothing window filter on the handwriting traces before starting the actual recognition
process. This is designed to reduce the hand shaking noise captured by TinyMotion. The
handwriting traces displayed on the user’s screen are not smoothed.

2.4.2 Vision TiltText

We use the following configuration in our Vision TiltText text input method, which is
a remake of the accelerometer based mobile input method by Wigdor and colleagues [146].
To input character ‘A’, a user need to press keypad button ‘2’, hold it, tilt or move the
phone to the left, release button ‘2’. To input character ‘B’, press and release button ‘2’
without movement, to input character ‘C’, press button ‘2’, hold it and tilt or move the
phone to the right, then release the button. This definition is based on the convention that
the alphabet characters displayed on telephone button ‘2’ is ordered as ‘A’,‘B’,‘C’ from left
to right respectively. To input numeric characters, one presses the corresponding numeric
key, move the phone up, then release it. To input the fourth character ‘S’ or ‘Z’ on button
‘7’ and ‘9’, the user can press the related button, move down, then release. To avoid noisy
movement generated by hand shaking, we set a movement threshold for all the characters
that need tilting to enter. When the movement in one direction exceeds the corresponding
threshold, the phone will vibrate for 70ms to signal that the input state had changed so the
button can be safely released.
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Left Right Up Down
Outdoor direct sunshine 97% 100% 96% 97%
Outdoor in the shadow 100% 99% 99% 100%
In-door ambient light 100% 100% 100% 100%

In-door fluorescent lamp 100% 100% 99% 100%

Table 2.1: Movement benchmarking results in four typical environments (shifting and tilting
movements in the same direction are not differentiated)

2.5 First Informal Evaluation

We evaluated the reliability of TinyMotion by two methods. First, we benchmarked the
detection rate of camera movements in four typical conditions and four different directions.
To measure each direction 50 shift action and 50 tilt actions were performed. In total,
1, 600 actions were recorded. A shift action required at least a half inch of movement,
while a tilt action had to exceed 15 degrees. If the accumulated movements value in a
certain direction exceeded the threshold value 5, our system will output that direction as
the detected movement direction. The summarized detection rates in each condition are
listed in table 1. Most of the errors in the outdoor direct sunshine condition were caused by
unexpected objects (mostly vehicles or people) moving into/out of the camera view during
the testing process.

We also conducted an informal usability test by distributing camera phones installed
with TinyMotion-enabled applications/games to 13 users, most of them students or faculty
members in a local university. We asked them to play with the Motion Menu application,
the Camera Tetris game and the Camera Snake game (Some applications such as Mobile
Gesture and Camera BreakOut were not ready at the time of the informal evaluation) and
encouraged them to challenge TinyMotion in any background and illumination conditions
that they could think of or had access to.

All of the users reported success against backgrounds such as an outdoor building, piles
of garbage, different types of floors indoor and outdoor, grass in a garden, cloth, and a bus
stop at night, areas with low illumination or colored illumination, different areas in pubs,
etc. Most were surprised to learn that the motion sensing was based on camera input. One
participant was shocked when he found that TinyMotion still worked when he pointed the
camera at a blue sky and moved the phone (even motion of smooth gradient images can be
detected). Figure 2.4 shows some difficult situations where traditional edge detection based
methods may fail but TinyMotion can still work. The environments in which TinyMotion
won’t work include completely dark rooms, extremely uniform background without any
pattern (e.g. the glass surface when an LCD monitor is turned off) and pointing the camera
to the outside of a window in a moving vehicle.

The participants in our informal study were clearly amazed with TinyMotion and inter-
ested in its use. Comments include

“Cool, I didn’t expect the tracking can work that well.”



13

Figure 2.4: Environment/Backgrounds in which TinyMotion work properly
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“Using this (motion menu) makes [operating] cell phones a lot more fun.”

“it will be an ideal method to play the monkey ball game on a cell phone.”

One user quickly realized that instead of moving the camera phone directly, he can put
his other hand in front of the camera lens and control the TinyMotion games by moving
that hand. Another user initially felt TinyMotion was not very sensitive, only to find that
his extended index finger covered the camera lens.

2.6 Formal Evaluation

Although the results of the first informal user study were very encouraging, a formal
study was necessary for understanding the capabilities and limitations of TinyMotion as
an input sensing mechanism. We had two basic goals for the formal study. One was to
quantify human performance using TinyMotion as a basic input control sensor. In partic-
ular we measured the performance of pointing, menu selection, and text entry by tap-tilt
action. The second goal was to evaluate the scope of applications that can be built on the
TinyMotion sensor, for example using TinyMotion to play games and do handwriting /
gesture recognition.

2.6.1 Experimental Design

The experiment consisted of six parts:

Overview In this session we gave a brief overview of the TinyMotion project, and demon-
strated some of the TinyMotion applications to the participant. We also answered
their questions and let them play with TinyMotion applications freely.

Target Acquisition/Pointing This session was designed to quantify the human perfor-
mance of the TinyMotion based pointing tasks. The section started with a warm up
practice session to allow the participants to become familiar with the pointing task.
Pressing UP button started a trial from an information screen indicating the number
of trials left to be completed. Each trial involved moving the cell phone UP, DOWN,
LEFT or RIGHT to drive the on screen cursor (a slim line) from an initial position to
the target and then pressing OK button (Figure 2.5, left). If the user hit the target,
the target acquisition screen disappeared and the information screen returned. If the
user missed the target, the cursor returned to the initial position and the trial re-
peated until the user successfully hit the target. The users were encouraged to hit the
target as fast as possible and as accurately as possible during the target acquisition
stage, but could rest as long as needed when the information screen was displayed.
We encouraged the users to practice as long as they wanted before the actual test,
most of the users practiced for 3 to 5 minutes.

There were 4 different target sizes (20, 30, 40, 50 pixels), 4 different distances (30, 50,
70, 90 pixels) and 4 different movement directions (left, right, up, down) in this task.
Each participant completed 160 randomized trials.
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Menu Selection In each trial of this task, a participant was required to select a target
name from a contact list. After reading the target name from an information screen,
the participant could press the STAR (“*”) button to switch to the contact list and
start the actual trial. The contact list included 30 alphabetically sorted names and the
cell phone could display 6 names per screen. After highlighting the intended name,
the user can press the “OK” button to complete the trial and switch back to the
information screen (Figure 2.5, middle).

There were three conditions in this task: cursor button based selection, TinyMotion
based selection, and TinyMotion based selection with tactile feedback. In the tactile
feedback condition every time when the highlighted menu item changed as a result of
moving the phone, the phone vibrated for around 100ms, providing a non-visual cue
to the user about her progress on the menu item movements. We added this condition
to check the potential influences of tactile feedback on menu selection.

Each participant was asked to complete 16 selections in each condition. The order of
the three conditions was randomized to counter balance the learning effects.

Text Input In this task, we compared the performance of the most popular mobile text
entry method C MultiTap with our Vision TiltText input method. We followed config-
urations similar to those used in Wigdor et al’s original TiltText study [146]. The short
phrases of text were selected from MacKenzie’s text entry test phrase set [83, 112].
The timeout for the MultiTap method was 2 seconds. Due to time constraint of our
study, each participant entered only 8 sentences with each input method. Note that
in studies like [146], each participant entered at least 320 sentences for each input
method tested. As a result, our study was not intended to reveal the learning curve
and eventual performance of the input methods tested. Instead, we only measured
users’ initial performance without much practice. This task started with a warm up
practice session, the users could practice with the two methods tested as long as they
wanted. Most of them choose to practice for 2-5 minutes before the actual test. The
order of the two methods tested was randomized.

More Complex Applications After completing the three basic quantitative performance
tasks described above, we asked the participants to play with the games we created
(Camera Tetris, Camera BreakOut, and Camera Snake) and the handwriting recogni-
tion application (Mobile Gesture).

After demonstrating the games and the handwriting recognition application to the
users, we let the users play with these applications by themselves. They were en-
couraged to play the games as long as they wanted and enter at least 3 different
characters/gestures in our handwriting recognition application.

Collecting qualitative feedback We conducted a final survey immediately after a user
completed all the tasks. In the survey the user completed a questionnaire and com-
mented on the applications they tested and on the idea of TinyMotion in general.
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Figure 2.5: From left to right, screen shots of the target acquisition task, menu selection
task and text input task.

To simulate the real world situations of cell phone usage, we did not control the
environment used for the study. The participants were encouraged to choose their
desired locations to complete the study. Most of the studies were completed in the
participants’ own chair or at a public discussion area in a lab. Figure 2.6 shows some
of the actual environments used during the study.

2.6.2 Test Participants

17 people participated in our study. 15 of them were undergraduate or graduate students
in a university, the other two were staff members of the university. 6 of the participants
were female and 11 male. Five of them owned a PDA and all of them owned a cell phone at
the time of the study. 12 of the 17 cell phones were camera phones. Four of the participants
sent text messages daily, six weekly, three monthly and four never sent text messages.
Interestingly, no user in our study use the camera function of their cell phone on a daily
basis, three of them use the camera function weekly, four monthly, four yearly and one of
them never uses the camera function.

Two participants didn’t complete the menu selection task and one participant didn’t
complete the text input task due to time constraints. One of the studies was interrupted
by a false fire alarm for around 25 minutes. All of the participants completed the target
acquisition task, played with all the applications we created and completed our survey and
questionnaire.
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Figure 2.6: Some sample pictures taken from our user study.
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Figure 2.7: Scatter-plot of the Movement Time (MT) vs. the Fitts’ Law Index of Difficulty
(ID) for the overall target acquisition task.

2.7 Evaluation Results

2.7.1 Target Acquisition/Pointing

2842 target acquisition trials were recorded. Despite the low sampling rate of TinyMotion
and the novel experience of using it, 2720 of the pointing trials were successful, resulting in
an error rate of 4.3%, which is common in Fitts’ law [32] studies. This means that it is safe to
say that it is already possible to use TinyMotion as a pointing control sensor. While there is
a vast literature showing hand movements involving various joints and muscle groups follow
Fitts’ law[4], it is still informative to test whether Fitts’ law holds given the particular way
a TinyMotion instrumented cell phone is held and operated, and the current sampling rate
limitation of the cameras in phones.

Linear regression between movement time (MT) and Fitts’ index of difficulty (ID) shows
(Figure 2.7):

MT = 0.4583 + 1.1117 log2 (
A

W
+ 1), (sec) (2.5)
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Figure 2.8: Scatter-plot of the Movement Time (MT) vs. the Fitts’ Law Index of Difficulty
(ID), separately grouped by horizontal and vertical directions.

In equation 2.5, A is the target distance and W is the target size. While the empirical
relationship between movement time (MT) and index of difficulty (ID = log(A/W +1)) fol-
lowed Fitts’ law quite well (with r2 = 0.94, see Figure 2.7), both of the two Fitts law param-
eters (time constant a = 0.458 sec and information transmission rate 1/b = 1/1.1117 = 0.9
bits/sec) indicated relatively low performance of pointing. This is not surprising given the
low sampling rate of the camera (12 frames per second as opposed to 40+ frames per second
in a typical computer mouse). However since we now know TinyMotion based pointing
follows Fitts’ law, these parameters can serve as an informative benchmark for future im-
provement in hardware (e.g. image frame rate, image capturing quality) or the software
(detection algorithms and related parameters).

An interesting finding is the difference in manipulation direction of TinyMotion instru-
mented mobile phones. The error rates for four different moving directions (left, right,
down, up) were 3.3%, 2.6%, 5.4% and 5.9% respectively. Analysis of variance showed that
there was a significant main effect ( p < 0.05 ) between horizontal movements and vertical
movements in error rate. There was no significant main effect ( p = 0.29 ) between hor-
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izontal and vertical movements in movement time, although on average it took longer to
accomplish vertical target acquisitions than horizontal acquisitions under the same ID value,
particularly when ID was high (Figure 2.8). Participants also subjectively felt that it was
more difficult to acquire vertical targets. This result could have implications to TinyMotion
application design.

2.7.2 Menu Selection

The menu selection results show that it is also possible to use TinyMotion as a menu
selection mechanism. Of the 755 menu selection actions recorded in our study, 720 of
them were successful selections. The overall error rate was 4.6%. The error rates for the
three experimental conditions - cursor key selection, TinyMotion selection and TinyMotion
selection with tactile feedback (referred as TinyForce later) were 3.2%, 4.8%, and 5.9%
respectively. Analysis of variance did not show a significant difference among these error
rates. As shown in Figure 2.9, the average menu selection time was 3.57s, 5.92s, 4.97s for
the Cursor Key, TinyMotion and TinyForce condition respectively. Analysis of variance
results showed that there was a significant difference ( p < 0.001 ) in completion time. Pair-
wise mean comparison (t-tests) showed that completion time between the cursor key and
TinyMotion methods, and the cursor key and TinyForce methods were significantly different
from each other (p < 0.01), but not between the TinyMotion and TinyForce conditions.
While on average the tactile feedback did reduce menu selection time, the difference was
not significant due to the large performance variance.

There were several factors that lead to the low observed performance of TinyMotion-
based menu selection techniques. First, the contact list used in our study was relatively long
(30 names or 5 screens). Although the names were sorted alphabetically, it was still hard
for the participants to estimate the approximate location of the name in the contact list
given that the name distribution was unlikely to be uniform. As a result, if the desired item
was not on the first screen, the participants had to scroll down the contact list slowly to
locate the name, which proved to be a difficult task based on our observation. Second, our
current Motion Menu was based on the menu behavior provided by the BREW platform,
when the highlighted item reached the bottom (the sixth) row and a move down command
was received, all the currently on-screen items would move up one row and a new item
appeared on the sixth row and was highlighted. This feature was not a problem for cursor
key based selection, because the user can simply pay only attention to the sixth row, while
holding the phone steadily. However, this feature became troublesome when the users use
camera movement for menu selection, most users felt it was difficult to keep track of the
last row while keep the phone moving.

2.7.3 Text Input

In total 6150 characters were entered (including editing characters) in this experiment.
Consistent with Wigdor et al’s finding [146], the overall speed of Vision TiltText was

higher than that of MultiTap (Figure 2.10) and the error rate of Vision TiltText (13.7%)
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Figure 2.9: Menu selection time from the experiment.
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Figure 2.10: Entry speed (wpm) by technique and sentence for the entire experiment.
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Figure 2.11: Error rate (%) by technique and sentence for the entire experiment.
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was much higher than for MultiTap (4.0%) (Figure 2.11). The difference in error rate was
statistically significant (p < 0.001), but the difference in input speed was not. Overall, the
results of vision based TiltText were similar to or slightly better than the accelerometer
based TiltText reported by Wigdor et al [146] at the same (initial) learning stage. This
shows that as an input sensor TinyMotion is at least as effective as an accelerometer for
tap-tilt action based text input.

Nearly all the users believed that Vision TiltText is an efficient text entry method (av-
erage rating 4.2, SD = 0.8, on a 5 point Likert scale [78], 5 means most efficient, 3 means
neutral, 1 means least efficient, no one rated Vision TiltText “less efficient” or “least effi-
cient”) and is easy to learn (average rating 4.3, SD = 0.7, on a 5 point Likert scale scale,
5 means extremely easy to learn, 3 means neutral, 1 means extremely difficult to learn,
no one rated Vision TiltText difficult or extremely difficult to learn). 13 users commented
explicitly that they would like to use Vision TiltText in their daily life immediately.

Subjectively, participants liked the vision based TiltText over MultiTap.

“[For Vision TiltText,] doing a gesture can really speed things up, it was very
intuitive.”

“[Vision] TiltText [is] faster once you learn it, fewer clicks.”

“[VisionTiltText based] text entry is truly useful because the multitap for names
is annoying, the T9 helps with words, but not names.”

2.7.4 More Complex Applications

The participants were excited about their experience of using camera phone movement
for gaming. They played the provided games for around 5 - 12 minutes. One user rated
use of motion sensing for games as “extremely useful”, 10 rated “useful”, 6 rated “neutral”.
No one rated these games “not useful” or “extremely not useful”. As a comparison, 9
participants reported that they never played games on their cell phones before, 4 played
games yearly and 4 played monthly. In the closing questions, 7 users commented explicitly
that these TinyMotion games were very fun and they would like to play these games on
their own phones frequently.

The user study also revealed several usability problems related with gaming. A lot of
participants pointed out that the “conceptual model” or “control” is inconsistent across the
current games. e.g. in the Camera Tetris game, when a user moves the cell phone to the
left, the block under control will move to the right and vice versa (assuming we are moving
the frame, or the background of the game, the block is still). On the other hand, in the
Camera BreakOut game, moving the camera phone to the left will move the paddle to the
left (assuming we are moving the paddle, the background is still). Around two third of the
users believe the “moving background” model is more intuitive while the other one third
of users believe the “moving foreground object” model is more intuitive. All of them agree
that such game settings should be consistent across all games and it is better to let the user
decide which control model to use.
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Figure 2.12: Some handwriting samples collected by mobile gesture that had been success-
fully recognized. The last row is a list of four Chinese words (with two Chinese characters in
each word) meaning telephone, design, science, and foundation respectively. No smoothing
operation was applied on any of the handwriting samples.

The users also had diverse opinions on the sensitivity of the game control; three users
felt the games control should be more sensitive than the current setting while other two
users want the game control to be less sensitive, which seem to suggest games controlled
by arm/wrist movements should provide adjustable sensitivity setting for each game (the
current game control sensitivity was decided by the authors subjectively).

Most of the users were surprised by the ability of using camera phones to do handwriting
and receiving recognition results in real time. After a brief demonstration on how to use
the mobile gesture application, all the participants successfully entered some alphabetical
characters/numeric characters after 1 - 2 minutes of practice (some handwriting samples
shown in Figure 2.12). One of the test users, whose native language is Chinese, even
tested for more than ten Chinese characters after knowing that the recognizer also supports
Chinese and Japanese characters. Based on our observation, it took a participant around 5
- 15 seconds to write an alphabet character and around 15 - 30 seconds to write a Chinese
character by using the mobile gesture application. Although from text input speed point of
view, Mobile Gesture was obviously slower than most of the keypad input method, most of
the users felt really excited when their handwritings (sometimes distorted) got recognized
by the cell phone correctly. Indeed most of the users did not believe Mobile Gesture was
an efficient text input method (average rating 3.2, SD = 1.3, on a 5 point Likert scale,
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TinyMotion Accelerometer
Working Mechanism Movement Sensing Acceleration Sensing
Refresh Rate 12 frames/sec 10 - 500 updates/sec
Computing Power High Low
Illumination condition Low influence No influence
Holding Position No influence Some influence
Inside Moving Vehicles Still Works No longer works
Acceleration Estimates Less accurate Accurate
Motion Estimates Accurate Less Accurate

Table 2.2: A comparision of TinyMotion vs. Accelerometer

5 means most efficient, 3 means neutral, 1 means least efficient). But they also thought
Mobile Gesture was intuitive to use (average rating 4.0, SD = 1.0). 4 users suggested the
ideas of using Mobile Gesture for sentence level input rather than character level input, i.e.
predefine some frequent sentences by arm gestures and use Mobile Gesture to trigger those
sentences by directly writing the corresponding gesture.

One participant suggested the idea of using Mobile Gesture for authentication tasks.
i.e. distinguishing whether a user using the phone is the actual owner by measuring the
movement characteristics of predefined trajectories.

2.8 Discussions and Future Work

2.8.1 Battery Life

One major concern related with the popularization of TinyMotion could be the battery
life. We measured the battery life of TinyMotion in two conditions: a power saving situation
and an exhaustive usage situation. For the power saving condition, we tested TinyMotion by
continuously running the Camera Tetris game with the backlight and the vibration function
turned off. Our Motorola v710 cell phone ran 8 hours and 7 minutes after a full charge. For
the exhaustive usage situation, we measured battery life while TinyMotion was constantly
running in the background, with the backlight of the camera phone always on, and the
vibration function activated around 40% of the total time, and keypad frequently used. In
these conditions the same cell phone lasted around 3 hours and 20 minutes to 3 hours and 50
minutes. In more moderate use (less than 5% continuous use each time) the phone battery
should last for several days. On most modern phones, the biggest power drain results from
screen backlight, and radio use.

2.8.2 TinyMotion vs. Accelerometer

The most relevant movement sensing technology for mobile devices might be accelerome-
ters. Much mobile device related research [53, 105, 98, 146] uses one or more accelerometers
to sense device movements, for fall protection, user context detection [53], UI navigation



27

and text input [105, 98, 146]. Due to its small size and relatively low manufacturing cost, we
feel accelerometers also have the potential to become pervasive on mobile devices. Hence we
feel a fair comparison of TinyMotion and accelerometer will be helpful to mobile interface
designers.

Table 2.2 highlights the major differences between TinyMotion and Accelerometers. Ac-
celerometers do not require the computing power of host mobile devices in the sensing
process and do not depend on illumination condition or view background. In contrast,
TinyMotion requires certain amount of computing power from the device to generate move-
ment estimates and may not work well in extreme illumination and background conditions.
The working mechanisms in accelerometers and TinyMotion are very different. The piezo-
electric or MEMS sensors in accelerometers are actually sensing movement accelerations and
the magnitude of gravitational field. In contrast, TinyMotion is detecting deviation/shifting
of backgrounds. Double integral operations are needed to estimate position from the raw
output of acceleration sensors, which cause accumulate drift errors and make distance esti-
mation less reliable than acceleration. Similarly, acceleration estimations from TinyMotion,
derived by differential operations, are less reliable than the original deviation estimations.

2.8.3 Future Work

There are many interesting questions worth exploring in the near future. For one exam-
ple, we feel it might be important to carefully consider the use a “clutch” that can engage
and disengage motion sensing from screen action. For another example, the traditional one
dimensional linear menu is obviously not the most effective method for camera movement
based navigation. We are exploring the possibility of applying a marking menu [73] approach
using gesture angles rather than movement distance for menu selection. We feel that the
Vision TiltText input method is quite promising and can be further improved, for example,
by adding visual feedback to guide the user and speed up the error correction process. Many
more applications, such as those involving panning and zooming, should also be explored,
particularly in the context of domain specific applications.

2.9 Conclusion

In this chapter, we proposed a method called TinyMotion that measures cell phone
movements in real time by analyzing images captured by the built-in camera. Through an
informal evaluation and a formal 17-participant user study we found that:

1. TinyMotion can detect camera movement reliably under most background and illu-
mination conditions.

2. Task acquisition tasks based on TinyMotion follows Fitts’ law and the Fitts’ law
parameters can be used to benchmark TinyMotion based pointing tasks.

3. The users can use Vision TiltText, a TinyMotion enabled input method, to input
sentences faster than MultiTap with a few minutes of practice.
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4. Using camera phone as a handwriting capture device and performing large vocabulary,
multilingual real time handwriting recognition on the cell phone are feasible.

5. TinyMotion based gaming is fun and immediately available for the current generation
camera phones.

Overall, we conclude that by adding software the use of the built-in camera in phones
can go beyond taking pictures into the interaction domain. It is already possible to use
the motion sensing result for basic input actions such as pointing, menu selection and text
input, and the performance of these tasks can be further improved as hardware performance
(in particular the camera frame rate) in phones advances. We showed that it is also possible
to build higher level interactive applications, such as gaming and gesture recognition, based
on our sensing method and we expect broader and more creative use of camera motion in
the future. A major port of the results reported in this chapter previously appeared in
[140, 136].

TinyMotion is a pure software project. We choose not to make any hardware changes
to the standard phone so results of our research are immediately available for download
and use. TinyMotion is open source software released under BSD license. The current
implementation can be downloaded freely from URL http://tinymotion.org [128].
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Chapter 3

SHRIMP : Predictive Mobile Input
via Motion Gestures

“the dictionary method is not a sufficient input method on its own
but having two modes is likely to lead to great confusion.”

—Mark Dunlop, 2000 [29]

3.1 Motivation

With an estimated 4.6 billion units in use in December 2009 [91] 1, mobile phones have
already become the most popular computing device in human history. Their portability
and communication capabilities have revolutionized how people interact with each other.
However, despite the rapid growth of mobile phones, text entry on small devices remains
a major challenge. Due to trade-offs in both size and compatibility, most mobile phones
today are equipped with a 12-key keypad (Figure 3.1). This keypad is effective for dialing
phone numbers but not for editing contact lists, composing SMS messages or writing emails.
Other input devices, such as mini QWERTY keyboards and touch screens are on the rise,
but the 12-button keypad-based mobile phones are still, and will likely to be for years to
come, the majority in the market.

One fundamental difficulty in text entry using a 12-key keypad is that the mapping of 26
alphabet characters to the 12 keys is inherently ambiguous. In the ITU E.161 standard [59],
one numeric button corresponds to 3 or 4 alphabet characters on the keypad (Figure 3.1).
All mobile text input techniques relying on the 12-key keypad have to resolve the ambiguity
that arises from this one-to-many mapping.

Most disambiguation methods can be categorized into the following two categories:

Action Based Disambiguation Users rely on multiple key presses (e.g. MultiTap, TNT
[58]), concurrent chording [147], tilting [146] or motion [140] to select one character
from the multiple alphabetical characters on each key.

1The number was 4.0 billion in December 2008 [90]
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2 ABC1 _ , @ 3 DEF

4 GHI 5 JKL 6 MNO

7 PQRS 8 TUV 9 WXYZ

0* ] #

Figure 3.1: The standard 12-key telephone keypad, character layout follows the ITU E.161
standard [59]

Linguistic Disambiguation Also known as predictive input, these methods use redun-
dant information in language to disambiguate users’ input when entering standard
English words. Linguistic knowledge can be leveraged either through Dictionary-based
Disambiguation (DBD e.g. T9 [42]), character level N-gram models (e.g. LetterWise
[81]), or a combination of both. Besides disambiguating uncertain input strings, lin-
guistic knowledge can also be used for predicting users’ future intention (a.k.a. word
completion [150, 148]).

Methods in both categories have their unique strengths and weaknesses. Action based
disambiguation allows users to enter any character deterministically, but requires additional
sequential or concurrent actions. DBD input techniques such as T9 can achieve approxi-
mately 1.007 KSPC (Key Stroke Per Character) for words that are in the dictionary [81].
However, they depend on an alternative input method to enter words that are not in the
dictionary known as out-of-vocabulary (OOV) words and suffer from the encoding collision
problem (to be detailed in the next section). Character level n-gram model based disam-
biguation, such as LetterWise [81], can achieve a KSPC that is close to DBD and works for
OOV words; however, continuous visual attention is required to confirm suggested characters
after each key press.

In this chapter, we present a novel method called SHRIMP 2(Small Handheld Rapid
Input with Motion and Prediction) which enable the user to handle the collision and OOV

2The method presented in this chapter, SHRIMP, is named in the tradition of SHARK [155, 70] and Fisch
[150]. SHARK requires a relatively large touch screen for the virtual keyboard overlay; Fisch is originally
designed for a small touch screen and can be extended to a touch-ball or a joystick [148], SHRIMP works
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problems of DBD input more easily. SHRIMP is a predictive text input method based
on Vision TiltText [140] and runs on camera phones equipped with a standard 12-button
keypad. SHRIMP is as effective as conventional DBD when entering unambiguous in-
dictionary words. SHRIMP uses seamlessly integrated concurrent motion gestures to handle
ambiguous dictionary words or OOV words without mode switching.

3.2 Related Work

3.2.1 MultiTap

MultiTap is perhaps the most popular text entry method for mobile phones. It requires
the user to press the key labeled with the desired character repeatedly until the correct
character appears on the screen. MultiTap is simple, unambiguous but tedious. It has an
average KSPC of 2.03 [116].

3.2.2 Vision TiltText

Vision TiltText by Wang et al [140] is a remake of the TiltText input method by Wigdor
and Balakrishnan [146]. Instead of using an accelerometer, Vision TiltText uses the built-in
camera on a phone to detect motion so that it can run on unmodified mainstream camera
phones. Implementation details can be found in [146] and [140]. With the help of a concur-
rent gesture movement, Vision TiltText can achieve 1 KSPC on any character. However,
moving a cell phone left and right for entering about 60% of characters is an overhead which
can be further reduced. In this chapter, we present SHRIMP that combines Vision TiltText
with DBD. SHRIMP can minimize the concurrent movement requirement of Vision TiltText
when entering in-dictionary words but leverage vision TiltText when entering OOV words.

3.2.3 Predictive Input

Dictionary based disambiguation (DBD) has been well-researched since the 1970s [117].
A popular commercial implementation of this kind is marketed as T9 by Tegic Communi-
cations, a former subsidiary of AOL and now Nuance Communications Inc [123]. DBD uses
a dictionary to detect all the possible words that match users’ numeric keypad input. For
example, the numeric sequence 2-6-6-7-8-8-3-7 will result in “computer” because that
is the only English word in the dictionary that meets the constraints defined by the input
string, When multiple words in the dictionary map to the same numeric string (encoding
collision), manual selection is needed if the intended word is not displayed as the first choice.
For example, the sequence 6-3 may mean either “of” or “me”, while the sequence 2-5-6-8-3
could mean “cloud”, “aloud” or “clove”. In an extreme situation, this encoding collision
problem has caused the “SMS generation” to accept “book” as “cool” since the former is
more frequent in formal English hence presented as the first choice and many users don’t
bother to change it to the latter [10]. Language models [63] can be used to predict the more

on unmodified camera phones equipped with a standard 12-key keypad.
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Figure 3.2: Treating DBD as a Regular Expression Matching process

likely one from the colliding candidates [103], but they cannot totally eliminate uncertainty.
Another problem is that DBD only works when the user enters English words that are in
the dictionary. Both Dunlop and Crossan [29] and Mackenzie et al. [81] questioned the flex-
ibility of such a dictionary based approach. Person names, place names, company names,
new product names, abbreviations, acronyms, or combinations of letters and numbers are
frequently used in mobile environment but are not likely in the dictionary. According to
Jansen et al. [62], 20% of Twitter posts mention specific product and brand names. Dunlop
summarized the dilemma well: “the dictionary method is not a sufficient input method on
its own but having two modes is likely to lead to great confusion” [29].

OOV words can be handled with additional time consuming work around steps. For
example, the following approach is usually implemented in commercial products running
DBD input such as T9 (used in mobile phones from Nokia, Samsung LG and others). For
an OOV word, the user can use the “UP” and “DOWN” arrow key to navigate though the
character candidates from each key press and use the “RIGHT” arrow button to confirm
character after character. Similarly, collision words are handled by navigating through the
multiple matching words via the “UP” and “DOWN” arrow if the intended word is not the
most frequent one. In this chapter, we show that SHRIMP is a dictionary based predictive
input method that supports the entry of any word efficiently without mode switching.

3.3 The Design of SHRIMP

3.3.1 DBD as Regular Expression Matching

Predictive text entry via DBD can be considered a regular expression [2] matching prob-
lem and SHRIMP can be defined as a natural upgrade of DBD under the regular expression
matching framework.

When a user starts to press button ‘2’ in DBD, he/she tells the system that the intended
word starts with either ‘a’, ‘b’, or ‘c’. This kind of constraint can be captured by the regular
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Figure 3.3: Treating DBD as a Regular Expression Matching process

expression /^[abc]$/ 3 (Figure 3.2); if the user follows with a key press ‘6’, the regular
expression is extended as /^[abc][mno]$/. If the user finishes the whole word with two
more characters ‘6’ and ‘5’, the regular expression becomes /^[abc][mno][mno][jkl]$/.
As a result, DBD input can be considered as a query to the dictionary to retrieve all words
that match the given regular expression (Figure 3.3). In this example, the words “book”
and “cool” are the candidates that match the regular expression and would be the output
of DBD.

3.3.2 SHRIMP as an Extension of DBD

Pressing a numeric button in DBD can be considered as adding a [wxyz] style constraint
to the existing regular expression. However, it is not the only constraint we can add from
a regular expression perspective. If we use a Vision TiltText gesture to enter character ‘c’
at the beginning, i.e. press and hold button ‘2’, move right, release. This action will tell
the computer that the intended word starts with ‘c’ rather than [abc], the corresponding
regular expression for this action will be /^c$/. If we continue the input without motion
by typing ‘6-6-5’, the final regular expression will become /^c[mno][mno][jkl]$/ and
‘cool’ will be the only word that matches the given regular expression (Figure 3.4). Vision
TiltText can be incorporated at any stage of the word entry. Any time a motion gesture

3Symbol ˆ and $ in the regular expression mark the beginning and end of a character string. [abc]
means that either a, b or c could be a valid match.
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ABC2 mno6 mno6 JKL5

/^c[mno][mno][jkl]$/
……
……
…….
…….
……

Key Presses

Dictionary

Regular Expression

Figure 3.4: Treating SHRIMP as a natural upgrade of DBD under the regular expression
matching framework

is used, it is telling the system that only one character, determined by Vistion TiltText,
should appear at the current character location and the specific character, rather than the
bracket enclosed character set will be used to construct the corresponding component in the
regular expression. Figure 3.5 shows the steps and corresponding screen output to enter
word ‘cool’ by using MultiTap, DBD and SHRIMP (here motion based constraint is used
to enter the last character ‘l’).

DBD and Vision TiltText can be considered two extreme cases of SHRIMP (Figure 3.6)
- if we type every character without motion, then the output of SHRIMP will be no different
from DBD. If we type each character with motion constraints, then SHRIMP becomes Vision
TiltText so OOV words can be entered easily. Figure 3.7 shows how DBD and SHRIMP
could be used to enter an OOV word - “hci”. SHRIMP can save four out of the seven key
strokes required by DBD with concurrent motion. Note that the character level confirmation
approach that appeared in commercial products is used in DBD to enter OOV word in this
example. If the user chooses to switch to MultiTap, the total number of key presses would
become - 1(switch to MultiTap) + 2 (h) + 3(c) + 3(i) + 1(switch back to DBD) = 10.

There is one more case that needs additional consideration in SHRIMP - the action of
typing a key without movement. It could mean the user did not bother to express his/her
preference so he/she may intend any of the characters shown on that key. Alternatively,
it could mean the user intended to type the middle character on the button via Vision
TiltText (by default, no motion means entering the middle character in Vision TiltText).
Such ambiguity can be addressed with two different approaches. First, we can redefine
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Figure 3.5: Using MultiTap, Predictive Input (DBD) and SHRIMP to enter a word ‘cool’
with encoding collision
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Figure 3.6: SHRIMP is a seamless integration of Vision TiltText and DBD(T9)
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Figure 3.7: Using DBD and SHRIMP to enter out of the dictionary words

typing the middle character in Vision TiltText as a “press”-“move up”-“release” action to
eliminate such kind of ambiguity completely. Second, the following heuristics can be used -
we first assume the no movement situation as DBD style ambiguous input to construct the
regular expression. If some words in the dictionary can match the given regular expression,
and the Vision TiltText style unambiguous interpretation corresponds to an OOV word,
then the OOV word will be added as the last candidate just in case the user intends to type
the OOV word rather than the word within the dictionary. If no word matches the given
regular expression, then we can interpret every no-movement key press as typing the middle
character via Vision TiltText. We have implemented both approaches in our prototype and
have found that the second approach more convenient in actual usage. This is because
when entering an OOV word, the users have to type every character in Vision TiltText and
the chance that this constrained input will match existing words in the dictionary is small
(please refer to the next section for details).

SHRIMP has three major advantages when compared with other linguistic based dis-
ambiguation or word completion methods. First, SHRIMP can enter both in-dictionary
words and OOV words, without mode switching. Second, searching for correct candidates
visually after each key press is not required; users only need to visually confirm the result
at the end of a word. Third, SHRIMP provides a smooth learning curve for beginners - it
is not necessary to remember when and where to add motion constraints and adding more
motion constraints than necessary won’t change the input result (as illustrated in the next
section - adding one, at most two motion constraints will disambiguate encoding collisions
in the worst case). Even if a user completely ignores to use motion constraints, SHRIMP
is equivalent to DBD in this worst case. Different from DBD, SHRIMP provides users an
opportunity to enter “troublesome” words more effectively next time. If the same problem-
atic word shows up frequently (e.g. “book” for “cool”), a user is more likely to use the
motion based gesture to deal with it next time. In short, SHRIMP allows the user to be
more ”expressive” than traditional DBD, but to a completely voluntary degree. There is no
downgrade from DBD for not using the additional expressive power through motion gesture.
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In the next section, we show the feasibility and power of SHRIMP via corpus analysis.

3.4 Analysis

Analyzing text entry performance realistically is a challenging task. For the current
topic, we need to consider three different types of words:

1. Words in the dictionary without encoding collision

2. Words in the dictionary with encoding collision

3. OOV Words

Previous studies tend to focus on words in categories 1 and 2 [30].
As discussed in the previous section, SHRIMP is similar to DBD when typing words

in the dictionary without encoding collisions (Type 1 words). When typing words with
encoding collisions (Type 2 words), some of the characters can be entered with motion
sensing to reduce ambiguity. When typing OOV words (Type 3 words), users need to
provide a motion gesture for each character, and the experience of SHRIMP is no different
from Vision TiltText. As a result, the actual performance of SHRIMP vs. DBD will depend
on the distribution of the three types of words in the user’s writing.

In order to understand the distributions of these types of words, we performed quan-
titative analyses on two text corpora. The first is the Brown Corpus [71] from which we
extracted the top 17,805 words based on frequency rank, stripped punctuations and normal-
ized them to lower case. This corpus is similar to the one used in [40]. We used this corpus
to study the encoding collision problem in DBD. The second corpus is the NUS SMS Corpus
[57] 4; it has 7,189 distinct words representing text messaging vocabulary. This corpus gives
an opportunity to study the OOV problem in mobile environment.

Two types of encoding collision analysis were conducted - raw (treating each distinct
word with the same weight) and frequency weighted (each word weighted by its frequency
of occurrence calculated from the corpus). The raw analysis gives a sense of proportion to
all unique words including rare words. The weighted frequency analysis is proportional to
natural occurrence in real use (according to the word frequency distribution in the corpus
used).

3.4.1 Encoding Collision Analysis

Figure 3.8 shows the distribution of words encoding collisions on the standard 12-key
keypad (Figure 3.1) in the Brown Corpus. The horizontal axis is the category of collisions
(namely the number of words sharing the same key press sequence). For example, the
percentage shown in the first two bars (raw and frequency weighted percentage respectively)

4Available for download at http://www.comp.nus.edu.sg/~rpnlpir/downloads/corpora/smsCorpus/
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Figure 3.9: Collision distribution by Numeric Button.

where the collision number is 1 are the percentage of words without encoding collision. From
Figure 3.8 we see that there can be as many as eight words that collide on the same numeric
encoding. For DBD, 6.4% of words have encoding collisions in the raw analysis. In the
weighted analysis, the collision rate raises to 44.9%. Not all of these 45% collisions would
require additional action of the DBD users. For example, when two (and only two) words
collide on the same code, outputting the word with higher frequency will be correct in more
than 50% of the time by definition. More complicated prediction methods based on for
example a word level N-gram statistical model may further increase the chance of success
when multiple words are in collision. However, not only these methods may require the
amount of CPU and memory still not available on mobile phones, statistical models based
on large and formal corpus analyses may not apply well to actual mobile use at all. The
previously mentioned book vs. cool is one example.

Which buttons do words tend to collide on? The analysis summarized in Figure 3.95

5Button “0” and button “1” are not used for encoding alphabet characters in the ITU E.161 standard
[59].
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Words Sharing the Same Encoding.

shows that based on the weighted analysis most ambiguities appear on button “3”, “6”,
“4”, “8”, corresponding to the character groups “[def]”, “[mno]”, “[ghi]” and “[tuv]”.
So these buttons can benefit the most from SHRIMP ’s motion gesture enhancement. In
contrast, words rarely collide on buttons “5[jkl]” and “9[wxyz]”. A possible design im-
plication is to graphically mark the collision prone buttons in a way that encourages the use
of motion gesture on them.

As previously stated, if motion gesture is used for every button press, then SHRIMP
becomes Vision Tilt Text and the output will be completely unambiguous. If motion gesture
is only used on some of the button presses, then the frequency of word collisions can still be
reduced although not completely eliminated. Figure 3.10 and 3.11 show the result of using
hypothetical strategies of partial motion gesture use: on first letter only, on last letter only,
on both first and last letter, on the first two letters, and on the last two letters of a word.
Compare them with Figure 3.8 one can see the dramatic reduction in collision with these
partial use strategies. For example if we only use motion gesture to disambiguate the first
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key press, the encoding collision will drop from 6.4% in DBD to 3.1% in the raw analysis (a
52% drop) and from 40.4% to 21.9% in the weighted analysis.

When motion gesture is used with SHRIMP, even only some of the times (e.g. on first
and last only), the maximum number of words colliding when collision do occur can be
reduced to less than three. Three words can be disambiguated easily selected through a
space button press coupled with a motion gesture (left, none, right).

3.4.2 OOV Analysis

It is well known that the users’ vocabulary in mobile text entry is different from formal
written English collected in more formal text corpora [29, 81]. However, due to the lack
of large scale, publically available text corpora from mobile users, it is difficult to quantify
the difference between formal written English and the language people use in mobile text
entry. To our knowledge, the only publically available mobile text corpus is the NUS SMS
Corpus [57]. Despite its relatively small size (121k words with 7,189 distinct words), it
has been adopted by HCI researchers to simulate word frequencies in mobile applications
[40]. The corpus is a collection of self-submitted SMS messages from students at National
University of Singapore (NUS). Because of the limited sample size, it is difficult to estimate
how representative this corpus is when compared with the whole mobile population. As a
result, the NUS SMS corpus could only serve as a case study on the OOV problem.

Based on our analysis, the NUS SMS word frequency is quite different from that in
traditional written English. For example, the top 8 words in the Brown Corpus - “the, of,
and, to, a, in, that, is” have little overlap with the top 8 words in the NUS SMS Corpus
- “i, u, to, me, at, my, go, you”. Only the word “to” appears in both lists. The top three
words in formal English - “the, of, and” did not even make it into the top 8 list of NUS
SMS corpus.

Our analysis shows that only 49% of the words in the SMS Corpus can be found in
the traditional word corpus by raw frequency. In the frequency weighted calculation, only
36% of the words in SMS can be found in the traditional word corpus. Sample out-of-the-
dictionary words include “lor, liao, okie, slackin, thkin”. This means that if we create
the DBD dictionary by parsing a traditional corpus based on written English and use a
DBD method based on that dictionary to enter the NUS SMS Corpus, 64% of the intended
entries will be OOV.

As mentioned earlier, a fully 20% of Twitter micro blogs contain product and brand
names [62]. A very high percentage of these names are likely to be OOV. Twitter imposes a
140 character limit per posting. This limit, plus the relatively slow process of entering text
on mobile phones in general, are likely to encourage users to create ad hoc abbreviations
that are OOV.

In conclusion, although we have only one quantitative case study available, it is safe
to say a large percentage of words in SMS and Twitter like applications are OOV. The
problems of collision and OOV with the traditional DBD method are frequent enough to
warrant a SHRIMP or SHRIMP like solution.

A follow up question is when a user enters an OOV word, would he/she realize the word
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is OOV therefore engages SHRIMP ’s motion gesture to preempt DBD’s failure or the need
to switch to a different mode? The question is important to both DBD and SHRIMP and
will be addressed in the user study reported later in this chapter.

3.5 Implementation

Although lacking in some mobile HCI research, it is important to test mobile interface
concepts and methods with real mobile device for both engineering feasibility and interaction
form factor reasons. We have made a complete implementation of SHRIMP on a Motorola
v710 phone (a CDMA Phone from Verizon Wireless). This was a common off-the-shelf
camera phone at the time of our implementation. The v710 has an ARM9 processor, 4M
RAM and a 176 ∗ 220 pixel color display. Our application is written in C++ in BREW 2.11
(the Binary Runtime Environment for Wireless [13]). We used the Realview ARM Compiler
1.2 for BREW [104] to cross-compile the target application. We used the TinyMotion library
[128, 140] for real time camera phone based motion sensing. The compiled target application,
including the implementation of MultiTap, DBD, Vision TiltText, SHRIMP, as well as a 15k
words dictionary and the corresponding index data is around 1.3MB in size6. The required
runtime memory is about 250k. At this time, we have also ported SHRIMP to a Motorola
RAZR V3 cell phone that runs BREW 3.12. We believe that porting our code to other
platforms, such as Windows Mobile, Symbian and Android, would be straightforward.

3.5.1 DBD

The programming of DBD is straightforward. Particularly worth noting is how collision
and OOV are handled in its UI. When there is a word collision, our implementation of
DBD allows the user to use the “UP” and “DOWN” arrow buttons to navigate through
the word candidate list and use the space key (i.e. the star button in Motorola V7107 )
or the “RIGHT” arrow button to confirm. Basic DBD input methods [61] cannot handle
OOV words. In our implementation, in addition to allowing the user to switch to another
input method such as MultiTap, we also implemented an extension to DBD that is available
in most Nokia, Samsung and LG phones. When entering an OOV word, the ”UP” and
”DOWN” arrow button can be used to navigate though the candidates of each character
and use the “RIGHT” arrow button to confirm character after character. Most users in our
user study prefer this extension rather than switching to and from MultiTap to enter OOV
words.

3.5.2 SHRIMP

We implemented SHRIMP as a natural extension of both Vision TiltText and DBD, so
most of the operation conventions in Vision TiltText and DBD are kept intact. For instance,

6In the current implementation, DBD and SHRIMP shares the same dictionary and a major portion of
the index data, the input method code plus the motion sensing code alone, is about 150k in size.

7The space button could be assigned to the pound (“#”) key or the zero (“0”) key in other cell phones.
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users can press button “2”, hold it, move/tilt the phone to the left until a vibration is felt
and then release the button to indicate that character “a” is desired. The user can also use
“UP” and “DOWN” buttons like in DBD to correct an ambiguous word. Of course, the
candidate list is much smaller than that of DBD if additional motion constraints are used.
The same 70 ms vibrato-tactile feedback mechanism [140] is also used in SHRIMP to signal
that the critical movement amount has been reached.

3.6 An Initial Empirical Study

The quantitative analyses presented have shown the following.

1. Collision and OOV are both quite frequent problems for DBD;

2. SHRIMP can significantly reduce collision even if motion gestures are only used spar-
ingly (on first letter or only when a word has been known to be troublesome from
previous experience);

3. SHRIMP can handle OOV more effectively than previous DBD workaround methods.

To complement these analytical findings, we also conducted an empirical study to do an
initial but holistic test of SHRIMP as an everyday text entry method. We had two basic
goals for the study. One was to figure out whether or not the idea behind SHRIMP is easy
to understand and if the current SHRIMP implementation is easy to learn. The second goal
was to evaluate the initial performance of SHRIMP in comparison with existing text entry
methods such as MultiTap, DBD and Vision TiltText. A successful mobile text entry method
should not have a steep learning curve. The users should be able to pick up the method in
a few minutes, and users should gain immediate benefits. Otherwise, many users may give
up and switch back to older methods they were accustomed to. As part of the study we also
measured users’ ability to recognize OOV words. Analyzing the longitudinal performance of
SHRIMP, which may reveal its advantage in handling collision, and a systematic empirical
comparison across different word categories (unambiguous, collision, and OOV words) are
beyond the scope of this chapter and will be deferred to future work.

3.6.1 Study Design

Our study consisted of five parts.

Overview We gave a brief overview of the tests to be conducted and demonstrated the
four text entry methods, MultiTap, DBD, Vision TiltText and SHRIMP, to the par-
ticipants. To help them better understand the motion sensing idea behind Vision
TiltText and SHRIMP, we also gave a brief introduction of TinyMotion and demon-
strated other motion sensing applications to the user. We let the users play with the
demo applications and answered their questions. This session lasted 10 to 15 minutes.
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Pre-test Questionnaire In this session we collected basic information of the study par-
ticipants including gender, educational background, current occupation, experiences
with cell phones and camera phones, frequency of mobile tasks such as voice commu-
nication, SMS usage, picture taking, use of other mobile phone applications etc.

Out of Vocabulary Word Recognition In this session we tested participants’ ability in
identifying OOV words. We told users that, similar to a spell checker, many mobile
text entry methods maintain a list of words to predict users’ intended words based on
the keypad presses. We told the users that the input methods to be tested used a word
list of 15K of the most popular words and showed them samples of words in the list
as well as words not in the word list. We then gave the participants a list of 21 words
and let them identify each of them as in-dictionary or OOV (Table 3.1). It’s worth
noting that none of the OOV words in this section appeared in the follow-up text
entry tasks and the subjects didn’t know their performance on the OOV recognition
task throughout the study. So the confounding effect between the OOV recognition
task and the actual text entry task was minimal.

Text Input In this session, we compared the performance of four mobile text entry methods
- MultiTap, Vision TiltText, DBD and SHRIMP. The testing phrases were selected
randomly from MacKenzie’s text entry test phrase set. The timeout for the MultiTap
method was 2 seconds. DBD and SHRIMP share the same dictionary, which has 15k
words sorted by word frequency. Due to time constraints, each participant entered 12
sentences with a total of 52 words for each input method. Although a popular source
of testing phrases used in recent studies on text entry such as [146], MacKenzie’s
phrase set [83, 112] has a limitation to our study - most of the sentences were formal
and “correct” English and the word frequency in this phrase set were designed to
simulate the corpus of formal written English [83, 89], not those used in SMS or other
mobile applications. However, we felt these phrases would still serve the purpose of
this initial pilot study - to test if users can understand and use SHRIMP without
much practice. A Motorola V710 mobile phone loaded with our application was used
in the experiment.

This session started with a warm up practice phase in which the users could practice
with the four methods tested for as long as they desired. Most of them choose to
practice for 2 to 10 minutes before the actual test. The order of the four input
methods was balanced via the order four Latin square patterns.

Collecting Qualitative Feedback We conducted a final survey immediately after a par-
ticipant completed all the sessions. In the survey the participant completed a ques-
tionnaire and commented on the input methods they tested.

To simulate the real world situations of cell phone usage, we did not control the environ-
ment used for the study. The participants were encouraged to choose their desired locations
to complete the study. Most of the studies were completed in the participants’ own chair
or at a public discussion area in a lab. Figure 3.12 shows some of the actual environments
used during the study.
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Sample in-
dictionary words

the I use cab fox looks priority computers com-
puting computation jeopardize Israel hodges smell
smells smoked accommodation accommodations Cali-
fornia England diplomacy amazon Arnold Michael Tom
Smith

Sample OOV words iPhone leet Ramirez Emeryville Ohlone NYPD facebook
Chang twitter gmail Google Obama thanx eBay Jingtao
Cerrito Canny

Testing words Shaharyar compelling FastTrak Sillers Costco Yvette
learning forgot effectiveness babies Carlson deadline
please StarBucks know craigslist room airport Michigan
organizations advisor

Table 3.1: Sample in dictionary, out of vocabulary words and testing words used in the
OOV words recognition task.

Figure 3.12: Sample pictures taken from the user study.
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All our input methods run on real, unmodified cell phone hardware and confounding
factors such as dictionary size, user interface and screen resolution have been controlled.
We will release the source code of all four text entry methods, data collection application
and log processing application under the BSD license. We hope it can establish a standard
and realistic testing platform for mobile text entry research and provide a baseline for future
studies.

3.6.2 Participants

Twelve people participated in the study. Nine of them were undergraduate or graduate
students in a university, two were visiting researchers of the university and one was an
instructor at a local high school. Three of the participants were female and nine were male.
All of them owned a cell phone at the time of the study and 11 of the 12 cell phones were
camera phones. On average they had 7.5 years of experience in using cell phones (stddev
= 2.2). 10 out of 12 cell phones were equipped with the standard 12-key keypad. One cell
phone had a mini-QWERTY keyboard (Palm Centro) and one cell phone was touch screen
only (Apple iPhone). 9 participants reported that MultiTap was their primary text entry
method on cell phones; The other three participants used DBD, mini-QWERITY keyboard,
or a virtual on-screen keyboard for mobile text entry. All of the participants completed all
the five sessions in our user study.

3.7 Empirical Results

3.7.1 Out of Vocabulary Word Recognition

Participants correctly identified OOV words 97.6% of the time. No in-dictionary word
in the test was incorrectly recognized as OOV. Among the 6 OOV recognition misses,
the person name “Carlson” was incorrectly categorized as “in the dictionary” four times.
Similarly, “Yvette” was incorrectly categorized as “in the dictionary” two times. Both
participants who mislabeled “Yvette” also mislabeled “Carlson”. From this preliminary
test, it seemed that people were overall fairly proficient at estimating whether a word was in
the vocabulary even if they only had a few samples from the dictionary. In our experiment,
the participants had no problem in identifying OOV business names, place names, and
abbreviations. It was more difficult estimating the popularity of person names. People’s
social networks may have a huge impact on their perception of “frequent names”.

3.7.2 Text Input

In total 14,281 characters were entered (including white space and editing characters).
There were 41 unique words in the test sentences. 17 of them had no encoding collisions
and 21 of them had encoding collisions. Among the 21 words that had encoding collisions,
16 of them do not require explicit action of the user if we output the words with the highest
word frequency from the candidate list. 2 words were OOV words.



48

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12

Te
xt

 E
nt

ry
 S

pe
ed

 (W
PM

)

Sentence Number

MultiTap

SHRIMP

T9

TiltText

DBD

Figure 3.13: Text entry speed (WPM) by technique and sentence number for the entire
experiment.



49

0

2

4

6

8

10

12

14

16

MultiTap TiltText DBD SHRIMP

Te
xt

 E
nt

ry
 S

pe
ed

 (W
PM

)

Figure 3.14: Text entry speed from the experiment.

Figure 3.13 shows the speed of the four different text entry methods we have tests in
the pilot user study. As stated in the experimental design section, users started the tests
only after 2 to 10 minutes of practicing. All of the users had previously used MultiTap
(with an average of 5.3 years of experience) while only one user had used DBD frequently
before our study. So the results on Vision TiltText, DBD and SHRIMP can be viewed as
users’ initial text entry speed without much practicing. A longitudinal study is needed to
understand the expert performance of these methods. From Figure 3.13, we can see that
SHRIMP and DBD are already faster than MutiTap and Vision TiltText when typing the
first three sentences.

As shown in Figure 3.14, input speed varied from one method to another. Repeated
measure variance analysis showed significant difference due to input method: F(3,33) =
110.9, p < .0001. Fisher’s post hoc tests showed that the speed of SHRIMP was significantly
higher than the speed of MultiTap (p < 0.001) or the speed of Vision TiltText. The average
speed of SHRIMP (12.1 wpm) was higher than that of DBD (10.86 wpm), the difference
was significant in paired-sample t-Test (p < 0.001) but not significant in two sample t-Test
(p = 0.12). DBD was significantly faster than MultiTap (p < 0.001). Vision TiltText
(8.34 wpm) was faster than MultiTap (7.64 wpm) in average, but the difference was not
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Figure 3.15: Text entry speed for the OOV words.

statistically significant (p = 0.07).
As we discussed earlier, the testing phrases in the study resembled formal English. As a

result there were only two OOV words in the 12 sentences. The close performance of DBD
and SHRIMP in Figure 3.14 was in part caused by the relative low percentage of OOV words
in our test sentences. As a follow up analysis, we isolated logs for OOV words. As shown
in Figure 3.15, the text entry speed of DBD (3.3 wpm) dropped drastically when entering
OOV words. In fact DBD became the slowest input method among all four methods. The
speed of DBD for OOV words was significantly lower than MultiTap (p < 0.001), Vision
TiltText (p < 0.001) and SHRIMP (p < 0.001). The speeds of SHRIMP (9.3 wpm) and
Vision TiltText (9.5 wpm) in handling OOV were not significant (p = 0.059).

The uncorrected error rate was less than 0.5% for each method. The average error
rates for MultiTap, Vision TiltText, DBD, SHRIMP were 7.2%, 14.1%, 2.8% and 2.4%
respectively (Figure 3.16. The overall error rate [149] of SHRIMP was significantly lower
than that of MultiTap (p = 0.017). There was no significant difference in error rate between
SHRIMP and DBD (p = 0.76). The error rate difference between SHRIMP and Vision
TiltText was also significant (p < 0.001). The error rate difference between Vision TiltText
and MultiTap was also significant (p = 0.04). This result agrees with previously reported
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Figure 3.16: Overall text entry error rate by technique and sentence number for the entire
experiment.
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error rates in similar tasks [146, 140].
Users in general have no trouble understanding the working mechanism of SHRIMP.

Initially, many users tended to add more motion gestures than necessary, trying to enter a
few characters with motion in each word. “I just want to verify whether the system works
exactly as you described” one user explained. After they confirmed that adding motion
gestures truly worked in SHRIMP, they started to trust the system. They typed familiar
words without motion and used motion gestures when they were not sure whether a word,
such as “jedi”, was in the dictionary.

After finishing the study, the users generally felt positive about SHRIMP. They expressed
their desire to switch from MultiTap to alternative input methods such as SHRIMP if they
were available on their cell phone. Sample comments included -

“I found [ SHRIMP based] predictive text input [effective] due to the reduced
number of button presses.”

“T9 + Tilt was pretty handy, if just b/c it’s more interactive yet efficient with
common words.”

“I found it convenient to have dictionary based input methods.”

“SHRIMP is easy to learn, an improvement on T9, and resolve the problem of
T9 when facing names or other special words which do not exist in the T9 lib.”

“It’s more efficient to remember the spatial location pattern in T9 and SHRIMP,
’the’ is a big left arrow and ’you’ is a small up arrow [on the keypad].”

Users also discovered some usability problems in the current SHRIMP prototype. One
user complained that sometimes SHRIMP was not fast enough to follow her typing. She had
to wait about half a second for the screen to refresh while she was typing a long word. Users
also suggested that in addition to tactile feedback, some kind of visual feedback should be
added when using the motion gesture.

It is worth noting that the text entry speed of DBD reported in our study was slower
than studies such as [30]. We suspect that two major reasons caused the difference. First,
the subjects in our study might be less experienced in DBD than those in other studies.
Second, the experiment settings were also different e.g. in [30], the bigram model used
by the predictive input method was trained from 500 sentences and testing sentences were
selected from those sentences, so users won’t meet OOV words in the study and incorrect
predictions for words with encoding collisions would be minimal in such a setting.

3.8 Future Work

Our current study is only an initial step towards having a full understanding of SHRIMP.
Enhancements such as adding new words to dictionary and richer visual/audio feedback can
be made to the current prototype. A longitudinal study can be conducted to figure out the
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learning curve and expert performance of SHRIMP. A human performance model can be
built to estimate its theoretical performance; of course, such a model will depend on a more
accurate estimation of the distribution of words with encoding collision and OOV words in
mobile environments.

3.9 Conclusion

Dictionary-based disambiguation (DBD) is a popular solution for text entry on mobile
phone keypad, but it suffers from two problems: the resolution of collision (two or more
words sharing the same key code) and entering out-of-vocabulary (OOV) words. Our anal-
ysis shows that both types of problems are quite frequently encountered. SHRIMP (Small
Handheld Rapid Input with Motion and Prediction) is a system and method that address
these two problems by integrating DBD with camera based motion sensing. It enables the
user to express preference through a tilt or move gesture. SHRIMP runs on camera phones
equipped with a standard 12-key keypad. SHRIMP maintains the speed advantage of DBD
driven predictive text input while overcoming the collision and OOV problems seamlessly
without mode switching. By coupling a motion gesture with the action of typing the first
character, SHRIMP can reduce encoding collision by more than 50%. By coupling two
motion gestures, one with typing the first character and the other with typing the last
character, SHRIMP can eliminate almost all encoding collisions.

An initial empirical user study showed that users can easily understand and learn
SHRIMP with less than 10 minutes of practice. The text entry speed of SHRIMP (12.1
wpm) was significantly faster than that of MultiTap (7.64 wpm). The study also showed
that SHRIMP can handle OOV words much faster than a traditional DBD method.

The SHRIMP concept is not limited to camera phone based motion sensing - this chap-
ter also contributes to the understanding of text entry based on ambiguous input in general.
We unified the representation of action-based disambiguation and dictionary based disam-
biguation under the regular expression matching framework. The paradigm for SHRIMP
can be applied to other multi-model input systems such as chording [147], accelerometer
based tilting [146] and Nintendo Wiimote to achieve faster speed with a shorter learning
curve. A major port of the results reported in this chapter previously appeared in [141].

SHRIMP has been implemented on unmodified, off the shelf Motorola V710 and Mo-
torola RAZR V3 camera phones. SHRIMP is open source software released under BSD
license. The current implementation can be downloaded from [115]. We hope SHRIMP can
inspire commercial implementations that change how people enter text on mobile phones in
everyday life.
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Chapter 4

FingerSense : Augmenting Physical
Buttons by Fingertip Identification

“Information at your fingertips.”

—Bill Gates, Fall Comdex, 1990

4.1 Motivation

Tapping physical buttons is one of the most frequent tasks in computer-human interac-
tion. In a button-based input device, e.g. the QWERTY keyboard, 1/2/3-button mouse or
the telephone keypad, the user’s fingers act as triggers for executing commands. Although
alternative input modalities such as speech and handwriting are available, button-based
interfaces, especially the keyboard, are still the most widely used input device.

The emergence of handheld, cell phone and other forms of mobile computing devices,
however, present unique challenges to traditional button interfaces - due to the size of human
fingers and the corresponding motor control accuracy, buttons can not be made too small.
It becomes increasingly difficult for a full QWERTY keyboard to fit into the ever smaller
mobile devices.

In this chapter, we propose an alternative method, FingerSense, to improve the ex-
pressiveness of pushing buttons without the cost of minimizing the button size or adding
additional key strokes1. In a FingerSense enabled input device, a button will respond dif-
ferently when it is pressed by different fingers. As illustrated in figure 4.1, when the thumb
finger taps the given button, the action can be interpreted as event A. If index finger is
used, the system will interpret this action as event B, similarly the middle finger will corre-
spond to event C, etc. As a result, a single pressing action could generate as many events
as the number of user’s fingers. We define FingerSense as the method of multiplexing a
physical button according to the actual finger selected in taping, despite the underlining
sensing/recognition technology used to distinguish fingers.

1Here additional keystrokes also mean pressing multiple buttons at the same time.
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Figure 4.1: From classic buttons to FingerSense button.

To verify the effectiveness of FingerSense, we investigate the follow three questions in
this chapter:

1. Is FingerSense technologically feasible? i.e. is it possible to classify the finger tapping
at a button in real time and in a cost effective manner?

2. To use FingerSense, the user must select and switch to the correct finger before tapping
the intended button; is this procedure a cognitive workload too high to be adopted by
most of the users?

3. Is there any speed advantage for the FingerSense enabled text input when it is com-
pared with the state-of-the-art?

In the next section, we give a survey of projects and sensing technology related with
FingerSense, and then we describe the implementation of a computer-vision based proto-
type, which aims to demonstrate the feasibility of FingerSense. In the follow-on section, we
present a theoretical model of FingerSense and quantitatively calculate the parameters in
this model through a preliminary usability study.

4.2 Related Work

The key idea behind FingerSense is to detect and use the information implicitly encoded
in specific fingers. To acquire and use such “information at your fingertips”, many potential
sensing technologies are possible. In this short review, we focus on projects and methods
related with detecting and identifying human fingers and hand gestures. Visual Panel [156]
uses a camera to track finger movements and translates the user’s virtual typing on a
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Figure 4.2: Threshold in H-S space to segment predefined color tags. Color tags are (from
left to right) C blue (index finger), light green (middle finger), pink (the third finger)..

paper to characters. In this project, only finger movements, not the specific finger involved
is detected. Additional techniques can be applied to make the corresponding computer
vision algorithms easier C cameras could be mounted under the forearm to simplify the
captured images [131]; LED tags could be attached to finger joints and wrists to facilitate
the segmentation of finger images[120].

It is possible to identify fingers by capturing and recognizing the associated fingerprints.
Sugiura et al [121] uses fingerprint scanner and an out-of-the-box fingerprint recognizer to
create a “finger aware” user interfaces. Different fingers are used as shortcuts to launch com-
mon applications or invoke commands in that project. It’s also possible to attach sensors
to fingers to capture and identify finger movements. Actually, most of the methods used in
building digital gloves could be applied to identify fingers. See [120] for a comprehensive
survey of different sensing technologies behind digital gloves. Sensors which could be at-
tached to fingers or palms include Infra-red sensor, pressure sensor, acceleration sensor[36],
or Electromyographic (EMG) sensor [145] etc.

4.3 Prototype

In the initial stage, we build a computer vision based prototype as a proof-of-concept.
In this prototype, we attach color tags on different fingertips and use images captured from
a CMOS camera to detect colors, so as to identify the corresponding finger.

We used a PrimaScan iCam 320 camera with USB interface to capture still images
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at a resolution of 320 ∗ 240. Five color tags - (pink, blue, green, yellow, purple) were
attached to the corresponding fingers on a hand. In Figure 4.2, the first row shows sample
images captured by our camera. Thanks to the usage of color tags, the image segmentation
algorithm becomes very straightforward, we first convert the captured image from RGB
color space to the HSV color space. In addition, we only use the Hue and Saturation
information and ignore V(brightness) in order to minimize the influence of shadow and
uneven lighting. The second row of figure 4.2 are the image segmentation results after
applying global thresholds on H-S space for the 5 preregistered color tags. We can see that
after attaching color tags to fingertips, it’s computationally efficient to identify the finger
used in tapping buttons.

Although the camera-based prototype is relatively large and not comfortable to use due
to the additional color tags, it provides a starting point for us to identify potential usability
problems related with FingerSense. We plan to build the second prototype by mounting
Frustrated Total Internal Reflection (FTIR) fingerprint sensors on buttons and detect finger
used by matching the partial fingerprint collected in the tapping process through a modified
minutiae-matching algorithm [60].

4.4 Usability Study

As mentioned in the first section, several concerns exist with FingerSense, such as, is it
natural for the user to switch and tap fingers to reach enhanced functions via the FingerSense
interface? How fast can the user performance be? We feel that both theoretical analysis
and usability study are necessary to answer these questions.

4.4.1 Modeling of Finger Switching Task

It is evident that hitting a FingerSense enabled button is an interaction task composed
of a series of sub-tasks, including:

t1 Withdraw the formerly used finger (prev-finger) from the button face.

t2 Cognitively determine the intended finger (cur-finger) that maps to the anticipated func-
tion.

t3 Extend the intended finger.

t4 Visually search the target button from a list of button candidates.

t5 Move the intended finger from its starting position to the target button and press it.

In the worst case, the total time used to hit one button is:

T = t1 + t2 + t3 + t4 + t5 (4.1)
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Note that the time consumed in t1 and t3 are not constant - it will depend on the prev-
finger and the cur-finger involved and some other existing conditions, which we will discuss
in detail later.

t2 can be improved by practice. The power law of practice [22] models such learning
effect.

t4 corresponds to the choice reaction time of a user. Reaction time can be modeled by
Hicks’ law [22]. Since the mapping from functions to fingers is fixed in our system, according
to [119], the choice reaction time should only be considered for the performance of novice
users, for expert users who are familiar with the keyboard layout, time consumed in t4 can
be ignored.

t5 is also called target acquisition, which can be modeled by Fitts’ law [32, 22], note
that the index of performance (IP) in Fitts’ law equation might not be deemed as a const
in our system because the five fingers may have different performance on target acquisition.
Essentially, sub-task t5 is the same as other pointing tasks (e.g. [82]) modeled by Fitts’ law.

Note that some sub-tasks are not executed in a uniform and sequential manner. There
are at least two variations. First, if the prev-finger and the cur-finger are the same, t1 and
t3 will take less time than usual since it is not necessary for the user to fully withdraw
and spread the same finger in order to hit the target button. In this case we rename the
sub-tasks as t′1 and t′3 correspondingly. Second, t1 and t3 can be performed in parallel if the
prev-finger and the curfinger do not hit the same button. In addition, when t3 is finished,
the finger is ready to perform follow-on sub-tasks even if t1 is not completely finished. A
user must perform t1 and t3 in a fully sequential manner only if

1. the prefinger and the cur-finger are not the same.

2. the prefinger and the cur-finger hit the same button.

To measure the performance of FingerSense, we need to understand the corresponding
time consumed in each subtasks. As described above, time for t2, t4, t5 can be modeled and
measured with existing knowledge in human-computer interaction. Unfortunately there is
no existing method to measure t1 and t3 in our system, so estimating t1 and t3 is the primary
goal of our initial usability study. Using the conditions described above, we can decompose
t1 and t3. For example, when an expert user is hitting different buttons with different
fingers, and if no target acquisition is necessary (i.e. the button to push is right below the
curfinger), the task conducted here can be represented as:

Te1 = t2 + t3 (4.2)

Note that t2 here is the cognitive generation time for expert users, an expert user spends
less time than novice user due to practice effects. As an example, in random character
entry tasks, the probability that we use two different fingers to hit two different buttons on
a FingerSense enabled telephone keypad can be estimated 2 as 27∗(27−3)∗(2/3)/(27∗27) =
0.59. So this is the most common “actual” task for expert users. Similarly, the task for
expert users to use different fingers to hit the same button can be represented as:
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Te2 = t1 + t2 + t3 (4.3)

This event has a probability of 27 ∗ 2/(27 ∗ 27) = 0.07 to occur on random character
input. In addition, the task of expert users to use the same finger to hit the same button
can be represented as:

Te3 = t′1 + t2 + t′3 (4.4)

This event has a probability of 27 ∗ 1/(27 ∗ 27) = 0.04 to occur.
Lastly, the task of expert users to use the same finger to hit different buttons has a

probability of 27 ∗ (27− 3) ∗ (1/3)/(27 ∗ 27) = 0.30 to occur. Since this task was measured
and analyzed by previous research [82], we did not measure the performance of this task in
the following study. Based on the three conditions represented in equations 4.2 C 4.4, we
designed an experiment to measure the user performance parameters of FingerSense.

Three subjects participated in this preliminary usability study - two males and one
female with an average age of 26. Two of them are graduate students at UC Berkeley. All
of them are right-handed and had former experiences with mobile devices such as cell phone
and PDA. A within subject test was conducted. The three conditions are Te1, Te2 and Te3.
Each subject was presented with all three conditions. The order of the conditions presented
was counter balanced in a Latin Square pattern across the three subjects.

4.4.2 Experimental Task

In the experiment, each user was tested under all three conditions in the experiment. For
conditions Te1 and Te2, we measure the usages of all five fingers as the pre-fingers and the
cur-fingers respectively so 5∗4 = 20 potential finger transitions are measured. For condition
Te3 we measure the performance of the usage of all five fingers, i.e. 5 subconditions. We
tested each condition at least 20 times.

4.4.3 Result

The results of conditions Te1 and Te3 are shown as a bi-tap transition matrix in Table 4.1
below (the unit is millisecond). The diagonal cells represents results related with Te3 and
all the other cells are results for equations Te1.

Similarly, the bi-tap transition matrix for conditions Te2 and Te3 are shown in table 4.2
below. Similar as table 4.1, the diagonal cells represents results related with equation 4.4
and all the other cells are results for equation 4.3.

The four findings in the usability study are -

1. The performance of T1 and T3 (Table 4.2) depend on the actual prev-finger and cur-
finger pair and the performance is asymmetric among any two fingers.

2. In most of the testing cases (i.e. Te1 represented by equation 4.2), t1 and t3 can
be paralleled and finger switching is faster than single finger tapping no matter which
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Thumb Index Middle Third Little
Thumb 172.37 159.22 115.13 113.56 107.50
Index 144.56 130.16 116.38 103.20 126.67
Middle 122.63 115.13 137.53 114.30 159.11
Third 105.00 100.11 146.78 141.79 143.67
Little 132.88 116.75 189.13 206.38 145.47

Table 4.1: Finger switching speed matrix (ms) for condition Te1 and Te3. Diagonal cells
represent t′1 + t2 + t′3, other cells represent t2 + t3.

Thumb Index Middle Third Little
Thumb 172.37 275.00 264.78 280.56 281.44
Index 278.30 130.16 234.67 270.22 271.56
Middle 245.40 248.40 137.53 257.11 273.67
Third 286.30 268.60 281.30 141.79 287.11
Little 277.50 309.40 268.40 301.40 145.47

Table 4.2: Finger switching speed matrix (ms) for condition Te2 and Te3. Diagonal cells
represent t′1 + t2 + t′3 and are duplicated from table 1. All other cells represent t1 + t2 + t3.

finger is involved. This finding yields the insight that that FingerSense systems should
be designed to facilitate parallel typing in order to get better performance.

3. If t1 and t3 must be carried out in a sequential order, the time for finger switching
will be significantly slower than single finger tapping. In this case, some combinations
such as the third finger + the little finger, are especially inefficient. The worst finger
combination is about 100% slower than single finger tapping.

4. The results of single finger, same button condition Te3 ranges from 130ms to 172ms,
which accords with the performance 200ms per keystroke of skilled user quite well. (the
difference should be considered as t5 - horizontal movement for target acquisition)

4.5 Conclusion

In this chapter, we proposed a novel technology named FingerSense to enhance the ex-
pressiveness of physical pushing buttons by fingertip identification. We surveyed potential
technologies which can be used by FingerSense. We created a computer-vision based pro-
totype which uses color tags to facilitate finger identification as a proof-ofconcept. After a
GOMS analysis of FingerSense, we derived the related bi-taping matrixes in a preliminary
user study. A major port of the results reported in this chapter previously appeared in [134].
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Chapter 5

End-User Generated Location-Aware
Applications on Mobile Devices

“Space is the opportunity; place is the understood reality.”

—Steve Harrison, 1996 [47]

5.1 Motivation

A user’s current location plays an important role in her everyday activities. With the
popularization of true-GPS enabled cell phones, location aware applications such as Map-
ping, Point-of-Interests (POI) finding (a.k.a. local search) [4], driving directions [4, 125],
location-aware reminders [66, 80], and location-based gaming have become increasingly pop-
ular in recent years. However, when compared to the millions of daily tasks that involve
participants’ locations, researchers have only scratched the surface of what can be done.
This situation is due, in part, to the high level of expertise and a significant amount of
time required in building a typical location-aware mobile application. As a result, many of
the users’ diversified and ad-hoc needs, such as virtual garage sale, virtual bulletin board,
virtual lost-found, ride-sharing and street parking finding, etc, are unlikely to be addressed
in the near future.

At the same time, commercial products (e.g. [4, 125] are unlikely to be a feasible solu-
tion in the foreseeable future. Considering the costs of developing, testing and distributing
products, companies tend to focus on uniform, well defined products with a large poten-
tial user base, and will avoid applications that are can only be used in small communities
or applications are highly dynamic in nature. Un-fortunately, a major portion of the ev-
eryday location-aware applications fall into the “low commercial value” category in many
commercial companies’ eyes.

As a step toward addressing this problem, we present a system calledGLAZE (Generalized
Location Aware modelZ for End-users) which enables end-users to create location-aware
applications on their cell phones (shown in figure 5.1). GLAZE also supports sharing of
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Figure 5.1: The GLAZE client running on a Motorola v325 cell phone. A. main menu. B.
top part of the “write-to” primitive definition template.

generated applications with friends and some community members.

5.2 The Design of GLAZE

5.2.1 The REWIND Model

Our hypothesis is that a large set of everyday location-aware applications can be devel-
oped by providing a set of three simple primitives encapsulated in what we call the REWIND
model: READ, WRITE and FIND. The use of these three primitives is easy enough for end-
users to use but expressive enough to implement a significant set of interesting location-aware
applications.

In the REWIND model, location-aware applications work by exchanging and filtering
messages (plain text, picture and special tags) coupled with multiple constraints on people,
time and location. Messages can be exchanged with other people, places, or virtual tags
with additional constraints.

The READ and WRITE primitives allow reading and writing messages from and to
given sources and destinations (people, locations, virtual tags etc). A continuous version of
the read primitive named “listen-to” and a continuous version of the write primitive named
“write-to” provide sup-port for “push model” tasks such as tracking and monitoring.

The FIND primitive retrieves messages or virtual tags by providing constraints on people,
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Figure 5.2: Brief steps for an end user to generate a “ride-sharing” application called “Car-
pool” in GLAZE.

time and location. Map-ping and driving directions functions are supported in GLAZE via
the Find primitive.

In addition to using longitude and latitude information directly, GLAZE also supports
using the notation “place” to refer to locations. GLAZE supports defining places by re-verse
geo-coding and collecting place-annotation interactively from end-users.

As an example, A Location-aware reminder application [80] can be created by first
defining a write operation to the desired place, then defining a continuous read operation
(“listen-to”) to read any text messages that are within a given radius from the receiver.
Figure 5.2 shows another example for creating a ride-sharing application named - “Carpool”
by using the REWIND model. Applications that the current REWIND model does not
create fall into the following two categories -

• Leveraging information or resources (e.g. UPC bar-code, voices, network packets, tour
guide video clips) that are currently not available in the implementation of GLAZE

• Using complex interaction logic (e.g. in-game AI) or using complex graphics/UI effects
as a key function. The REWIND model is not intended to be a silver bullet to all
the possible location-aware applications. Instead, it is designed to significantly lower
the barrier to creating location-aware application , allowing average users to generate
useful location aware applications.

Please note that the REWIND model is not intended to be a silver bullet to all the
possible location-aware applications. It is designed to significantly lower the floor of loca-
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tion aware application creation, allowing average users to generate useful location aware
applications.

5.2.2 Community Exchange

In addition to creating a location-aware application by the user herself, she can also
browse and download location-aware applications that are created and shared by other users
via the GLAZE cell phone client. Considering that a major portion of everyday location-
aware applications are group based, downloading and using the applications created by other
people will let a user not only take advantage of the GLAZE system, but also contribute to
the corresponding application community at the same time.

To encourage expertise sharing and group interactions in a small community, GLAZE
provides two types of incentive mechanisms to encourage users to create and share location-
aware applications that are might be useful to other people. According to the current
incentive mechanism, a user receives “Activity Tokens” (AT) when she shares her con-
tents/applications. A user will also receive “Status Tokens” (ST) when other users use the
contributed con-tents/applications from this user. The amount of AT and ST that a user
earn are shown in the user’s public profile and on the ranking lists maintained in GLAZE.
AT and ST earned can be used to unlock “bonus functions” (e.g. camera phone based
motion sensing games) in GLAZE, but can not be transferred.

GLAZE is an end-user programming (EUP) system running on mobile devices for lo-
cation based services. However, the design philosophy of GLAZE differs from traditional
end-user programming systems such as EAGER [25] and ToonTalk [67] in two major aspects.
First, GLAZE supports creating “group applications” while most of the applications gener-
ated by traditional EUP systems are essentially single user applications. Second, by taking
advantage of the communication channels in cell phones, GLAZE supports and encourages
the sharing of user generated artifacts with others. A typical GLAZE user does not have
to create her own applications in order to take advantage of the GLAZE system and con-
tribute to GLAZE. GLAZE is not a Programming By Demonstration (PBD) system [77], a
popular solution to enable end-users to automate some repetitive tasks; in contrast, GLAZE
leverages wizard/template style form-filling interfaces to generate mini LBS applications.

5.2.3 System Architecture

The GLAZE system is composed of two parts - the GLAZE server and the GLAZE
client. Figure 5.3 is a high level diagram of the GLAZE system.

The first iteration of GLAZE server was written in C#, running on an ASP.net applica-
tion server for Windows. In the recent iterations, it is written in Ruby on top of the Ruby
on Rails [110] framework. All the user profiles/logs/generated contents are transimited in
JSON format [65]. Most of the Map and POI information are from Microsoft MapPoint via
a COM interface and via Google Map API. Additional Map and POI data come from other
publicly available online data sources such as Tiger/Line. The GLAZE server communicates
with the GLAZE client via the HTTP protocol.
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Figure 5.3: The Architecture Diagram of GLAZE.

The GLAZE client is written in Adobe Flash Lite 2.0 and C++ for BREW [13]. Some
screen shots of the GLAZE client are shown in figure 5.4. The GLAZE client runs on
Motorola v325 and v710 cell phones. These two models are entry level CDMA phones from
Verizon Wireless. The built-in gpsOne Assisted-GPS [41] in these handsets support two
critical location sensing features that are not available in regular GPS [80] or GSM cell
tower based solutions [66, 74] -

1. No time-to-first-fix delay.

2. Works both indoors, outdoors and in “urban canyons”.

These two features make the location-aware interaction scenarios highly practical and
usable.

The GLAZE client address the common “battery drain” weakness in most GPS cell
phone based tracking and notification solutions by leveraging a technique named BREW
directed SMS (BDSMS) [6]. BDSMS is an official API supported by all BREW enabled
CDMA phones for launching specific applications on a cell phones via an SMS message with
special encoding. With BDSMS, the GLAZE client does not need to keep running in the
background to be ready for receiving server initiated notifications or sending updates to the
server. As a result, the client application no longer interferes with the power-management
functions of the cell phone, the battery life of cell phones is no longer significantly reduced a
running background application. The battery of Motorola v310 phones can last more than
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Figure 5.4: Screen shots of the current GLAZE client.
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three days with normal use for BDSMS based GLAZE client implementation, in compari-
son, the same battery can only last nine hours when the GLAZE client is implemented as
an “always alive” background application. Another advantage of the BDSMS based imple-
mentation is that inquiries and notifications to the cell phone are guaranteed to reach the
cell phone later even if the user shut down her cell phone temporarily or the cell phone is
not in the wireless carrier’s service region at the time of notification.

5.2.4 Privacy Issues

Privacy issues are extremely important in almost any con-text-aware systems. Due to
the scope of this research, in the current GLAZE system we implemented a role based ac-
cess control list (RBACL) for controlling the disclosure of location related information. This
meets or exceeds the privacy protection in place in current commercial systems. However,
several researchers (e.g. [124]) have proposed more sophisticated means for preserving per-
sonal or group privacy in ubiquitous computing. There is no innate architectural limitation
that prevents GLAZE from adopting other more advanced privacy preserving techniques in
the future.

5.3 Discussions

Toolkits for location-based services such as Location Stack [52] and PlaceLab [74] provide
LBS libraries and frameworks to programmers. It still requires a high level of programming
expertise and considerable time to use them. Lash-Ups [11] provides light-weight APIs for
grass-root programmers to retrieve existing information on the web or distribute web applets
based on locations. Instead, GLAZE is a system for end-users with little or no programming
knowledge. Topiary [75] is an informal prototyping tool for location enhanced applications.
Topiary provides Wizard-of-Oz support for interaction designers to walk-though the inter-
action scenarios of their intended applications in the early stage of design. BrickRoad [79]
is another informal prototyping tool aims at an even earlier design stage than Topiary, no
only senor output and UI, but also the interaction logic can be simulated by using WOz
technique by designers. iCAP [118] is another informal prototyping tool for designers to
mock-up a context aware system via an actor and sensor centered approach. GLAZE, on
the other hand, is used by end-users and GLAZE generated applications are fully functional
and can be directly used in daily life.

GLAZE is a system to support the “long tail” of location-aware applications as GPS
enabled cell phones are becoming pervasive in daily lives. Different from existing LBS
applications in this area, GLAZE can be considered as a “meta” LBS application, enables
average end-users to build and share the location-aware applications they need. Based on
our experiences in the design and implementation of GLAZE, there is an interesting trade-
off between ease of use and the flexibility of an EUP system. In GLAZE, we intentionally
took a different direction from previous prototyping tools and designed a system that can
be used directly by average users to directly build usable location-aware applications on
their cell phones. To our knowledge, GLAZE is the first system that enables the creation
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of location-aware applications directly from cell phones. Due to the same trade-off, GLAZE
is not-capable of creating applications that require highly customizable “look-and-feel” or
applications that requires complex interaction or data processing logic.

GLAZE can also be used as an unobtrusive data collection platform for ubicomp projects
that need to collect data via the experience sampling technique. We believe it will be
interesting to observe and analyze the social dynamics in a small community via system
logs and user generated artifacts. Particularly, it would be interesting in knowing how the
sharing of location-aware applications compares to the sharing of user created content on
the web.

5.4 Case Study : The End-User Place Annotation Com-

ponent

Due to the complexity of GLAZE, the systematic, longitudinal deployment and evalua-
tion of GLAZE is an still an ongoing work and is beyond the scope of this chapter. In this
section, we present one case study - i.e. the design, implementation and informal evaluation
of the place annotation component in GLAZE. Instead of putting some edit boxes directly
on the screens of cell phones, we show that more efficient, easier to use place annexation in-
terfaces can be designed by leveraging the unique sensors on cell phones, such as the camera
(again), the microphone and the GPS module.

In almost every location-aware application, there is one critical conceptual mismatch
[50] that needs to be addressed regarding the access and reference of locations - i.e. while
computers work with physical locations like latitude and longitude, people usually think and
speak in terms of places, like “my home” or “Tom’s office” which adds personal, environmen-
tal and social meaning to a location [39, 50]. Therefore, most location-aware applications
will encounter the problem of translating raw location data (longitude, latitude, cell tower
information, access point information, etc.) to more symbolic, personally meaningful places.
Most of the existing LBS toolkits such as LocationStack [52] and PlaceLab [74] acknowl-
edged such a conceptual mismatch between location and place and provided abstractions
and models for mapping locations to places, however, none of them provided effective and
scalable techniques for collecting the data to address this mapping problem. As such, most
of the current LBS prototypes [66, 88] still require system developers to collect and load
place names for users manually.

It’s possible to discover personal meaningful places from users’ history location traces
automatically [3, 76] by using spatial and/or temporal data clustering algorithms. It’s also
possible to identify important place in everyday life semi-automatically by a set of heuristics
such as GPS signal availability [88]. However, these methods still can not eliminate human
intervention completely: First, automatic/semiautomatic methods will never become 100%
accurate; Second, most of the automatic algorithms nowadays are focusing on discovering
the positions of places; it is still a humans responsibility to annotate the names of places.

Due to the above reasons, we feel it is compelling to identify intuitive and non-intrusive
place annotation methods to collect place annotations from end-users. In the rest of this
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paper, we propose four prototypes that can be used to collect place annotations interac-
tively from mobile devices, and describe the results of an experiment which aims to obtain
preliminary understandings of the following two questions.

• How to effectively collect place labeling information from grassroots contributors?

• Whether and what users are willing to disclose regarding their personal place profiles?

5.4.1 Place Annotation - The End-User Approach

In this section, we focus on end-user manual annotation methods for two reasons: First,
pure pre-loading approaches used in current prototypes do not scale well with more users.
Second, even for semi-automatic or automatic methods, they still need end-users to enter
feedback and corrections, input the label name and additional properties etc, so manual
annotation is still required to complement automated methods.

We designed and implemented four techniques for end-users to make place annotations
on mobile devices. We explored different modalities and input capabilities available on cell
phones in these prototypes.

Direct Text Annotation The first end-user place annotation interface we created is “Di-
rect Text Annotation” (a.k.a. DText, figure 5.5). DText is a relatively straightforward
method C after pressing a hot key, the primary interface of DText will pop up, the user
can give a name to her current location, specify a type of the location (There are 7
predefined location types in the current version, i.e. unlabeled, home, work, shopping,
dining, leisure and others), define the valid range of the current annotation ( current
configuration includes: 20 feet, 50 feet, 100 feet and custom), and choose the access
control property for the current annotation (existing options are self, family members,
friends and anybody). The DText method is not just a standalone annotation tech-
nique. It was also used by the other three techniques to prompt the user for the name
and other properties of the current place at appropriate moments.

Map Selection and Text Annotation The second place annotation technique is “Map
selection and Text annotation” (a.k.a Map, figure 5.6). Unlike DText, this interface is
designed to allow users to define places other than their current location. After pressing
the hot key, a map corresponding to the user’s current location will be downloaded
to the cell phone. The users can pan, zoom-in and zoom-out the current map. He
can also move the hot-spot cursor on the map by using the built-in cursor keys and
context menu keys of the cell phone. After pressing the ok button, the DText interface
described in technique 1 will pop up to collect the place information for the location
under the hot-spot cursor. We propose this technique to give users the flexibility
to annotate places other than their current location through selecting places from a
graphical map display.

Photo Memo plus Offline Text Annotation The third technique is “Photo Memo plus
Offline Text Annotation” (a.k.a. Photo, figure 5.7). After pressing a hot key, the user
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Figure 5.5: Cell phone Interfaces for DText. (number order is left to right, top to bottom)
figure 5.5.1 represents the upper part of the primary menu. 5.5.2 represents the middle part.
5.5.3 is the place type collection sub-menu. 5.5.4 is the place range collection sub-menu.
5.5.5 is access control sub-menu. 5.5.6 is the bottom part of the primary menu.
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Figure 5.6: Cell phone interfaces for Map. After pressing the ok button, the DText interface
will pop up for place annotation collection.

Figure 5.7: Cell phone interfaces for Photo. (number order - left to right) 5.7.1 is the initial
interface after activation. 5.7.2 is the photo capture interface. 5.7.3 is the photo history.
After pressing the ok button in 5.7.3, the DText interface will pop up.
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Figure 5.8: Cell phone interfaces for Voice. 5.8.1 Initial interface after activation. 5.8.2
voice capture interface, 5.8.3 voice history. After pressing the ok button in 5.8.3, the DText
interface will pop up.

can take a picture using her camera phone to create a reminder of such a place that she
is visiting, after which, when it is convenient for the user, such as when she is waiting
for a bus at the bus stop or waiting for food in a restaurant, she could activate the
label picture function and annotate places she visited based on the photo memos she
had taken. After annotation, only the properties appeared in the DText interface will
be transmitted to the server, the pictures taken will only stay in the user’s local cell
phone as a reminder and will not be shared by other users. This design is motivated
by our observation that when people are in personally significant places, it may not
be the ideal time for them to spend significant amount of time to annotate the place
immediately even though the place is meaningful to them.

Voice Memo plus Offline Text Annotation The fourth and the last technique we cre-
ated is “Voice Memo plus Offline Text Annotation” (a.k.a. Voice, figure 5.8). The
basic idea is similar to the photo memo method, except that instead of taking a pic-
ture as the reference to the interested place, the user records a short voice memo to
describe the place she is interested in. When it is convenient for her subsequently, she
can then retrieve her previous voice memos and label them the associated places after
hearing the content of the voice memos. Similar to the photo memo method, voices
recorded are only used as reminders. They are not shared with other people as part
of the place annotations.

5.4.2 Usability Test

We conducted a trial usability study to investigate the performance of the four place
annotation techniques described above.
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Figure 5.9: End user ratings on the four annotation techniques. Ratings are on a 5 point
Likert scale (1 means worst, 5 means best and 3 means neutral).

Experimental Design

Six subjects participated in this preliminary usability study - three males and three
females with an average age of 26.7. Five of them are undergraduate and graduate students
at a local university. The user study consists of three parts. First, subjects complete an
opening questionnaire, which include a background survey, a task asking the user to identify
the important places he/she had visited in the past one week and assign a name to each of
the place identified; and a form asking the user whether they are willing to share the location
to place information that they provide during the study with their family members, their
friends, their classmates/colleagues or just anybody. Second, the subject is asked to use
each of the four prototype interfaces to annotate a place that she visited in the past two
hours and the restaurant where she had lunch (or planned to) on the day of the study. The
order of interfaces tested in this part was counterbalanced by the Latin-Square pattern.

Third, the subject is required to complete a closing questionnaire. Each subject gives
each prototype interfaces tested a score on the whether the user interface is easy to under-
stood and a score on the ease of use of the interface. The subject is also given blank spaces
to leave her own usability feedbacks and suggestions in this section. Opening Questionnaire
Results In the place identification task, all the six subjects identified 74 personally meaning-
ful places totally (12.3 places on average. min = 6, max = 21). The average length of place
names used by subjects is 1.8 words (min=1, max=3) or 7.1 English characters (min=3,
max=15).

Top referred places from the opening questionnaire include - home, office, restaurant,
shopping mall, bus stop, ATM etc. One interesting finding is that about 78% (58 out of
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74) of the places are indoor places. This finding not only provide supports to the lost
signal heuristic used in the ComMotion [88] project, but also suggested us that effective
place annotation techniques shouldn’t use the assumption that “live” GPS fix signals are
available at the time of activation. Instead, the application should try to use either historical
data or switch to different positioning techniques (e.g. AGPS [41], cell tower ID) when direct
GPS signals are not available. All of the subjects indicate that they won’t mind to share all
of their place profiles with friends and family members. Four of them even indicated that
they won’t mind to share their location profiles (the customized mappings from locations to
places) with anybody. These numbers are interesting because they appeared to differ from
people’s opinion on disclosing their current location [24]. There are two possible explanations
to this phenomenon: First, people may think information related with their personal places,
such as their home address are no longer a secret already. Indeed, considering that most
people won’t pay the telephone company to hide their contact methods from phone books
and there are so many companies that collect and sell personal contact information, such
reaction looks reasonable. Second, people may simply not define places which they don’t
want to disclose via the annotation application. Performance of Four Prototypes All the
six subjects completed the assigned tasks successfully. Their rating of the four method are
summarized in figure 5.9. From figure 5.9, we can see that users believe all the four designs
are very easy to understand. (Average score =3.9, min=3.7, max = 4.0). The users also
have mixed feeling on the four techniques according to the criteria of “ease of use”. The Map
selection method received a relative low score (2.9) according to this standard. We assume
that the low score on the Map method is caused by the relative clumsy interaction methods
to navigate on a map without proper pointing devices. It may also be caused by the fact
that defining a place other than the user’s current location might not be a very frequent
task. Last, 78% of the significant places are indoors, which can not be located effectively
from standard maps. The Voice annotation method received the lowest score (2.7) score on
ease of use, among the four techniques. Most subjects dislike this method for two reasons
C recording a voice memo for a place might look silly in many scenarios. What is more,
selecting a desired voice memo later is often difficult since the users must listen to the voice
memos one by one.

The Photo method received a significantly higher ease of user score among the four.
Subjects thinks the idea of using photos as reminders and annotate the place name later is
a neat idea, considering the relative slow text entry speed on cell phones.

Closing Questionnaire Results

Many usability issues have been identified from the usability study and the closing ques-
tionnaire. For example, some users feel that a confirmation screen is necessary when a place
has been annotated successfully. More mode switching supports in the place label editing
box are desired according to the users’ feedback. E.g. one subject got stuck for more than
5 minutes in the usability test when he switched to the T9 input method by mistake and
couldn’t figure out how to switch back to the default MultiTap input method.

Although users gave the photo memo plus offline text annotation method the highest
score in ease of use, they also indicated their desire to have more than one annotation
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method in the final application. Thus they can choose the one that best fits their need
according to the given context.

5.5 Conclusion

We have presented GLAZE, a system which enables average users to create and share
everyday location-aware applications directly on their cell phones. The GLAZE system
provides a set of location-aware primitives named REWIND (READ, WRITE and FIND)
to help end-users model and generate their intended applications though the help of a set
of form-style smart templates. The GLAZE system is designed to lower the threshold of
location-aware application creation and encourage both expertise sharing and group inter-
actions in a community.

As a case study, we presented the design and implementation of four interfaces for col-
lecting end-user place annotations interactively on cell phones. In addition to the baseline
interface that relays on entering texts direction in edit boxes, most other interfaces lever-
aged the unique sensors (such as the camera, the microphone and the GPS) and provided
asynchrony functionalities to support offline annotation. A trial user study is suggest that
while all the four methods got similar preference ratings in understandability, the “photo
memo plus offline editing” method is the most favorite approach in ease of use. In addition,
users indicate their desire of adopting more than one place annotation methods in location
aware applications. Part of the results reported in this chapter previously appeared in [135].
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Chapter 6

Event Maps : A Collaborative
Calendaring System for Navigating
Large-Scale Events

“minimizing computer admin debris; spatial distribution of information rather
than temporal stacking.”

—Edward Tufte, 2008 [129]

6.1 Motivation

Attending conferences and trade shows is important to our professional and social life
[108]. Large conferences often have many concurrent sessions, and it may be challenging to
get a good sense of all available activities and plan one’s attendance. Having a guiding map
can help tremendously.

Online schedules on traditional conference web sites [23] are built as a static collection
of hyperlinked pages, where users may have to click multiple times and go back and forth to
locate the information they need. Such a design makes it difficult to simultaneously explore
both depth and breadth, and the user loses context rapidly. It is also hard to create tailored
views of the schedule according to your preference.

Exchanging information with other conference participants, a key objective while at-
tending conferences, is also not supported by this design. Although many conferences do
provide complementary blog/wiki systems, they are generic to the conference and not tightly
coupled to specific sessions. Why can’t comments of senior researchers on an award winning
paper be made available to new students?

Finally, according to our informal survey, creating the schedule on a conference web
site and keeping it up-to-date is a challenging, tedious and error-prone task for conference
organizers with present day systems.

Event Maps is a rich internet application we have built to address these shortcomings
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in navigation, collaboration, personalization, and organization. Event Maps aims to make
the experience of interacting with an online conference calendar engaging, productive and
intuitive. It supports seamless navigation between broad and deep views of the schedule
information, asynchronous interaction in the context of individual sessions, and the ability
to tailor preferences and favorites. As such, it suggestively sets up the conference calendar
as a focal point for interaction and data mining for participants, organizers, and any other
interested parties, which has value before, during and after the conference is held.

The main research contributions of the work described in this chapter are in devising
and exploring the use of:

Tabular Timeline A zoomable calendar interface for large event navigation to minimize
page switching.

Active Corners Compact decoration widgets for awareness and activation of features.

We provide tangible evidence that, aided by these mechanisms, Event Maps indeed
supports task efficiency while being enjoyable to use.

Event Maps also makes it easier for conference organizers and administrators to maintain
an updated conference schedule. The system also provides analytic administrative tools that
help get insights from visiting patterns and statistics.

We have been focusing our attention on the applicability of Event Maps to multi-track
conferences. However, its design makes it more broadly suited for handling rich schedule-
related data such as group calendars and personal calendars.

The rest of the chapter is organized as follows. After discussing related work, we describe
the Event Maps system, its evolution and implementation. We then describe the user
studies and deployments to date, followed by a discussion of lessons learned, future work,
and conclusion.

6.2 Related Work

Research in group/collaborative calendaring systems has explored topics such as schedul-
ing a group activity based on the availability of each team member, ambiguous time con-
straints [15] or special audiences such as family members [95]. However, less research has
been devoted to addressing the needs of conference participants.

The idea of using a zoomable interface (ZUI) to view calendars is not new. In 1991,
Furnas [38] proposed a textual Lisp-based calendar program with fisheye distortion. Bed-
erson et al. [8] later extended this idea and built a scalable visual fisheye calendar named
DateLens. Event Maps differs from DateLens in several ways: First, DateLens focuses on
personal events while Event Maps is targeted at multi-track conference events with selective
expansion of more than one track. Second, DateLens is a single user application while Event
Maps supports asynchronous collaboration in the context of conference sessions. Finally,
as DateLens is not a web-based application, it lacks facilities for user tracking and data
analysis to help administrators and system developers.
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Where When
Google/Yahoo Maps Event Maps

Who What
Social Networks, Organizational Charts,
Directory Services

Wiki, Web Widgets, Blog

Table 6.1: The Design Space of Web 2.0 Services

Event Maps deals with temporal data [64]. Visualization systems for temporal data
have been available for decades, supporting activities such as abnormality detection, record
management [1] and decision making. LifeLines [100] presents a timeline style interface to
manage personal medical record and supports zooming, panning and text filtering. Time-
Searcher [54] lets users select stock price patterns of interest via a direct manipulation
interface named TimeBox that filters through thousands of temporal records of numerical
data.

Several pieces of work address the scalability problems encountered when visualizing
temporal data [1, 14, 127, 54, 143]. In addition to data level transformations [69], most of
the solutions are domain specific and fall into the following two categories:

1. Using a zoomable interface to highlight the region of interests when necessary [14, 127].

2. Designing a query interface, either by setting up parameters via on-screen data widgets
such as sliderbars, or by using techniques such as direct manipulation or query by
example to refine targets of interests [1, 55, 95, 143].

Recently, we have seen the emergence of collaborative visualization systems like Many
Eyes [132], sense.us [49], and Swivel [122], which support creating visualizations from statis-
tical data, and also provide text comments, tagging and view-sharing through book-marking.
“By partitioning work across both time and space, collaborative visualization offers greater
scalabilitygreater scalability for group-oriented analysis” [48]. Our work extends some of
these principles to the arena of multi-track conference schedules.

6.3 The Event Maps System

A collaborative calendaring system optimized for large, multi-track conferences. Event
Maps focuses on organizing temporal information via a web based interface (Table 6.1).
The major features of the Event Maps system include:

1. A zoomable interface that allows quick transition between views at different levels of
detail, and simultaneous viewing of multiple levels of detail.

2. In-place support for asynchronous collaboration features such as highlighting, and
commenting directly in the context of conference sessions.
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3. Functions for conference organizers to create and import conference schedules, keep
them updated, and obtain insights from visiting patterns and statistics.

Our greatest challenge in designing Event Maps has been to support the rich feature-set
in a clean, intuitive and efficient interface. Quick event navigation and location is supported
via a zoomable interface coupled with features such as progressive searching, brushing [86],
and details on demand [20]. Contextual personalization and collaboration are supported via
compact decoration widgets. Event Maps encourages spontaneous interface exploration by
mapping frequent operations to mouse hovering clicking.

6.3.1 User Interface

The primary interface for Event Maps is shown in Figure 6.1. In the center region is
a zoomable widget named Tabular Timeline to display all the activities in a conference.
The top panel provides a button to set the Tabular Timeline to the original state, a search
box (Figure 6.1.f), widgets for selecting the current view and time zone, and color-coded
session-category labels. The bottom panel is an area for managing the user’s “favorite”
sessions; sessions with time conflicts will be marked in red in the “My Favorites” region.
The rectangles inside the Tabular Timeline are conference sessions, color-coded by their
associated categories. The top-left and top-right corners of each session are called Tabular
Timeline, and are used to support personalization and asynchronous.

6.3.2 Tabular Timeline

Most Event Maps interactions happen inside the Tabular Timeline. The initial view of
Tabular Timeline is an overview of the entire conference, with each of the tracks 1 collapsed.
Our Tabular Timeline widget is a combination of traditional calendar visualization and a
zoomable timeline. Tabular Timeline differs from existing zoomable timeline visualizations
such as [14, 127, 101] in that it uses a tabular layout to maintain the “look-and-feel” of
a calendar rather a scatter plot. At the same time, regardless of the zooming level and
the state of the system, time information is always represented in the horizontal axis in a
timeline fashion. This behavior differs from existing calendar interfaces such as MS Outlook,
Google Calendar or DateLens [8], where the time representation usually jumps between
axes depending on the viewing mode (day, week, month etc.). Both informal feedback and
our user study show that maintaining a consistent timeline in a zoomable interface helps
maintain a consistent user experience.

Along the vertical axis of Tabular Timeline are tracks which can be independently ex-
panded and collapsed via mouse clicks (similar to the design of nodes in DOI trees [21]).
The colored rectangles within tracks correspond to sessions. When a track is collapsed, con-
current sessions are collapsed into a single rectangle. Clicking on a session in an expanded
track will bring up its details pop-up (Figure 6.2). Clicking on the “Related Information”

1The definition of track depends on the conference: it can either be a theme including sessions happening
in multiple locations at the same time (e.g. Lotusphere 2009), or sessions in a single location (e.g. CHI
2009 [23]). Event Maps supports both definitions.
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Figure 6.1: The Event Maps System. (a) Map area in global overview state; each colored
block is a conference activity; hovering reveals details of the activity; clicking on it zooms in
(both in X and in Y) to show more detail. (b) Region for saving a user’s favorite sessions,
highlighted scheduling conflicts. (c) The X-axis is a zoomable timeline; first click zooms
to expand the corresponding day, second click zooms back out to the original view. (d)
Color-coded session category labels; hovering will highlight (via embossing) all the sessions
in the corresponding category. (e) Reset view button, for restoring the overview state.
(f) The search box; search results, updated on each keystroke, show up on a panel on
the left, and corresponding sessions are highlighted on the map. (g) Collaboration corner
widget; hovering displays comments associated with the corresponding session, click pops
up a commenting/annotating widget. (h) Switches for controlling the current view mode
and displayed time zone.
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Figure 6.2: The Tabular Timeline zoomed into the day view, with one track expanded and
the details pop-up open.

button on the details pop-up creates a large frame populated with an external web page
pertinent to the session. This frame can be closed to return to the previous visual context,
or detached to a separate browser tab.

In addition to discrete zooming (by clicking on different regions of the view), the Tabular
Timeline supports continuous zoom and pan via mouse dragging. Hovering over a category
label on the top right region highlights corresponding sessions on the Tabular Timeline. With
this quick action the user can see how sessions of a certain type are distributed throughout
the conference.

Regardless of the current zoom level, clicking the “reset view” button (Figure 6.1.e) on
the top left will reset the Tabular Timeline to its original global overview state.

6.3.3 Embedded Search

When the user types into the search box, search results, updated on each keystroke,
show up on a panel on the left, and corresponding sessions are highlighted on the map
(Figure 6.3). For example, typing in “Washington” and restricting the search to titles and
names will quickly show the sessions for papers authored by individuals from the University
of Washington. Clicking on a search result shows/hides its session details popup in place
on the map.
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Figure 6.3: The search feature of Event Maps.

6.3.4 Active Corners

Rather than allocating designated regions to support personalization and asynchronous
collaboration, we implanted a compact decorator widget named Tabular Timeline. Tabular
Timeline serve both as an awareness indicator and a trigger for supported features. In the
current implementation, the top-left corner of an event rectangle is used as the “personal-
ization corner” and the top-right corner is used as the “collaboration corner”. In the future,
the two corners on the bottom of an event rectangle can also be mapped, e.g., for showing
visiting statistics. Each Active Corner can have three states -

1. The default state is the awareness state, shown as a small icon at the corresponding
corner to indicate Boolean information such as whether this session is marked as a
favorite by the current user, or whether there are comments associated with the session.

2. If a session is expanded, hovering over an Active Corner can provide a quick preview
of information associated with that corner.

3. If a session is expanded, clicking on the corresponding Active Corner can trigger an
action, such as modifying the favorite state of the session or popping up a widget for
browsing and adding comments on the session. We describe in detail the two Tabular
Timeline currently in use in Event Maps below.
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Figure 6.4: Collaboration features in Event Maps. (Left: a solid square on the top right
corner indicates that there are associated comments; hovering over the indicator will display
them. Right: clicking on the indicator brings up a comment-entering widget).

Personalization/Favorites Management

After logging in, a user can add an event to “My Favorites” by simply checking the check
box at the “personalization corner” of a session or clicking the “Add to Favorites” button
in its details pop-up. Proxies for favorite session are placed at the bottom of the screen.
A user can remove a favorite by unchecking the check box the same button in the details
pop-up, now labeled “remove from favorites”. Any sessions that a user has added to his
favorites are shown with a check mark on the “personalization corner” thus giving the user
a quick indication of when she is free to schedule other activities.

Asynchronous Collaboration

In contrast to collaborative visualization web sites such as sense.us [49] and swivel [122],
which were designed to support and promote collaborative sense-making, we believe that
different Event Maps users may have different goals in mind. Some might only be inter-
ested in getting the schedule information they need quickly and exhaustively, while others
might be interested in exchanging information or discovering interesting things from other
participants. Thus, our major design principle for the asynchronous collaboration feature is
that it can be ignored easily by people who do not need it, yet be discovered and accessed
conveniently by interested parties.

Asynchronous collaboration features are accessed from the top-rightActive Corner (a.k.a.
“collaboration corner”) of any session. Mouse hovering on it will display comments associ-
ated with the session (Figure 6.4, left). After logging in, mouse clicking on the collaboration
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corner will pop up a commenting/annotating widget (Figure 6.4, right). A tiny black dot
will show up on the “collaboration corners” of sessions with comments or user generated tags.
Again, adhering to our design principle, the user does not have to go to a new destination
to access the collaboration features.

Like in a wiki system, a user who has logged in, optionally with administrator privileges,
can edit the event details in place by clicking an “edit” button on event details pop-up.

6.4 The Evolution of Event Maps

Event Maps draws its design from its earlier prototypes and a broad set of inspiring
earlier works. While the individual features of Event Maps represent variations of existing
approaches, our primary contribution is the integration of several techniques to create a
novel application that is both usable and useful in an important domain. As of this writing,
Event Maps has gone through three major rounds of iterative design, Here we report the
insights and lessons learned during this process.

Our first design (P1) used a hierarchical, tree style zoomable layout as the primary
interface as shown in Figure 6.5, Figure 6.6 and was drastically different from the traditional
look and feel of a calendar. P1 was implemented as a Rich Internet Application in Adobe
Flex 3.0. The primary view of P1 is a zoomable “event tree”. Conference events are
aggregated and placed on different levels based on properties, such as day, time, topic,
speakers, location and keywords of the event by using an approach similar to Potter’s Wheel
[102]. We also implemented features such as semantic zooming [7], brushing, and drilling
down [20] in P1. To support collaboration we implemented a double-linked commenting
feature. Comments are shown in a foldable panel on the left, a separate comments view and
as miniaturized, color encoded dots on conference events.

Our first prototype received mixed feedback from early testers - on the one hand, many
people were excited by the rich interactions provided by our prototype. On the other
hand, we also identified significant usability problems, especially from people who were less
technically savvy.

For example, the tree-based interface requires extra learning time before people can take
advantage of the rich interactions supported by the interface. Based on the authors’ rough
estimation, it took a novice user around ten minutes to get familiar. A frequent question we
received was “how are conference events placed at different levels?” In retrospect, a tree-
based hierarchy might not be the most intuitive conceptual model for conference events.
Promoting a drastically new interface should take into account leveraging users’ expertise
in existing interfaces.

In the process of creating P1, we also discovered the effectiveness of certain features,
which we carried out to future prototypes. Two important lessons were:

1. It is effective to use semantic zooming [7], i.e., revealing information differently based
on the zooming level, to keep a good balance of legibility vs. visibility in a zoomable
interface for temporal data.
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Figure 6.5: The first iteration of Event Maps implemented in Adobe Flex. (In overview
mode, events are organized in a tree structure).
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Figure 6.6: The first iteration of Event Maps implemented in Adobe Flex. (The zoomed in
view of a day).
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2. Although the entire schedule information might easily overwhelm the human eye, it
can be stored quite compactly on a computer in standard format. For example, the
entire CHI 2009 conference schedule, even with paper abstracts not available on the
official website, is around 498KB in plain text. With compression this goes down to
150KB. We learned that we can provide a more responsive system by sending the whole
schedule at the start rather downloading session details on demand via fine-grained
web services.

We built the second system (P2) based on the lessons learned from the first proto-
type. We switched the browser side technology from Adobe Flex to JavaScript/AJAX to
enable access from even mobile device browsers. The look and feel of the second proto-
type is similar to the current prototype (P3) shown in Figure 6.1. The biggest change
we made in P2 is the introduction of the Tabular Timeline interface. P2 was deployed
in an intra-company conference named SRS 2009 (described in detail in the next section).
Based on both quantitative analysis of access logs on the server and qualitative interview
results with 6 active users of Event Maps during the conference, we built P3, and ran a 12
participant user study to compare P3 directly with a state-of-the art conference schedule
website (that of CHI 2009 [23]). P3 was hosted in a public conference - IEEE SCC 2009
(http://conferences.computer.org/scc/2009/), International Conference on Services Com-
puting between September 21 and September 25, 2009. The major changes made between
P2 and P3 were:

• Addressed usability problems identified in previous studies. Two examples, the search
box and the reset view button, will be detailed in the next section.

• Designed and implemented the Tabular Timeline feature for personalization and asyn-
chronous collaboration.

• Built the server side administrative interface and infrastructure for creating/importing
new conferences and updating existing events efficiently.

• Improved the backend logging, analytic functions and interfaces for conference orga-
nizers.

With an improved server side administrative interface for managing conference events,
it becomes convenient for administrators to import and maintain the schedule. We have
tested P3 with event data from 19 conferences so far, some sample conferences we tested
are listed in Table 6.2.

6.5 Implementation

The current implementation of Event Maps includes two parts: a client side and a
server side. The client side is implemented in JavaScript/AJAX and can run on major
web browsers such as FireFox, Safari, Internet Explorer, and Chrome. The server side is
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Conference Total Events Categories of Events Duration (days) # of Rooms
CHI 2009 475 14 4 14
CHI 2008 467 12 4 14
Lotusphere 2009 351 7 5 19
SCC 2009 241 14 5 7
OSCON 2009 306 24 5 19
SRS 2009 126 8 4 9
RailsConf 2009 115 4 4 10
MySQL 2009 190 22 4 16

Table 6.2: Statistics of some sample conferences supported by Event Maps

implemented in Ruby on Rails 2.3 [110]. MySQL or IBM DB2 is used on the server side
for data persistence. Excluding third party libraries and code for unit testing, the current
Event Maps implementation includes a total of 11,032 lines of code in JavaScript that runs
in the browser and a total of 12,980 lines of code in Ruby.

The JavaScript client is object-oriented, with objects corresponding to the major model,
view and controller elements. It uses only standard JavaScript with no special libraries, and
relies heavily on dynamic manipulation of the DOM and associated style sheets. The various
animations are performed via timeout loops, and the DOM is only partially recomputed
during an animation for improved performance. As browser support for JavaScript efficiency
improves (the recent upgrades to Firefox 3.5 and IE 8 are good examples), so does the
performance of Event Maps.

In our system, the client side and the server side use JSON [65] over HTTP to exchange
user-profile data and user-generated data. The conference schedule data (including detailed
times and descriptions) are sent to the client as a single text file (around 498KB for CHI
2009 [23] before compression) in iCalendar format [107]. By adopting open standards, when
necessary, both the client side and the server side can be changed to a different technology
in the future without impacting the interoperability.

As a result of our decision to use only standard JavaScript and AJAX, Event Maps can
run on a wide range of operating systems and browsers. For example, Figure 6.7 shows
two screen shots of Event Maps running on an iPhone. Event Maps maintains a similar
user experience to that on desktop computers and portable, and the pinch operation on
the iPhone maps rather nicely to the basic zoom operation. That said, the effectiveness of
Event Maps on small form-factor devices needs to be evaluated. We plan to study this issue,
as well as providing some user interface optimizations for portable devices e.g., leveraging
multi-touch gestures as alternatives to mouse-hovering.

6.6 User Study

We now report both the insights and lessons learned during the iterative design process
for building Event Maps.
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Figure 6.7: Screen shots of Event Maps running on iPhone (top-left: CHI 2009 schedule in
overview mode, top-right: zoomed in view with in-place event editor enabled, bottom-left:
CHI 2009 schedule in zoomed in day view, bottom-right: showing the details popup windows
of an event).
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6.6.1 First User Study and Feedback

Initial user feedback on an early version of P2 was obtained via an informal study during
an hour-long department meeting. After a short general introduction to Event Maps with
no training, the 16 participants were given a link to a questionnaire hosted on SurveyMon-
key.com that guided them through 3 tasks as if they were conference attendees (before,
during, after the conference). Each task required some sort of result (e.g., a session name)
and a free-form response on how well Event Maps supports the task scenario. The final
page listed 18 Event Maps features and asked, for each one, to check “didn’t use it”, “don’t
like it”, “it’s OK”, or “nice!”. Some noteworthy lessons we learned from this study were:

Support unexpected interactions double-click caused a bug in a place in the code we
had designed for single-click.

Don’t be overly cute in the “related information” frame we used a semi-transparent red
X in the middle. Some users did not see it, and were stuck, unable to close the frame!

Support freedom of use the following comment led us to make the “related information”
URL explicit: “I found the recording of this talk, which was very valuable, but I wish
the page would open in a new window, so that I can add it to my Firefox bookmarks
for listening it later.”

Nudge them (within reason) Paradoxically, it was a good idea to make the free-form
questions mandatory - that’s where we learned the most. It would have been good to
also ask users who did not like a feature to explain why.

6.6.2 Live Deployment

We conducted a live deployment of Event Maps version P2 for an internal Software
Research Strategy meeting (SRS 2009) held across eight IBM Research sites worldwide. It
had 126 events spread over four days (Table 6.2). Participants could either attend local
events or watch live online broadcasts of remote sessions. A link for Event Maps was posted
on the primary conference website and an announcement was made during the opening
plenary.

During the course of this conference, we collected a total of 3,297 significant logs from
298 unique IP addresses. Figure 6.8 reveals the visitation frequency from these unique
addresses. Similar to most web-based activities; the visitation frequency conforms to the
power law distribution.

76.1% of users were Windows users and 23.9% of users were Mac users. Firefox 3 was
the most popular browser (52.9%) and Internet Explorer 7 accounted for 23.2% percent of
the total access. 13.1% used Safari, and 6.4% used Chrome (figure 6.9). The effort we put
to target and test on multiple browsers had paid dividends.

While nearly 69% percent of the traffic was from three sites in U.S., there were visitors
who came from ten different time zones of the globe. This fact confirmed the importance of
the “time zone” selection feature we implemented.
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Figure 6.8: Visiting frequency by IP during SRS 2009. No IP includes events from two or
more registered users.

Figure 6.9: Distribution of browsers for the SRS 2009 deployment.
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Figure 6.10: Distribution of users’ location and time zone for the SRS 2009 deployment.

Figure 6.11: User activity by type of operations for the SRS 2009 deployment.
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Figure 6.12: Site visiting frequency by hour of the day for the SRS 2009 deployment.

By analyzing the traffic log, we also identified several areas for improvement in Event
Maps :

• Despite the relatively large number of visitors, only 19 visitors (around 6%) registered
an account on Event Maps, most people used the web site anonymously. As a result,
they didn’t have a chance to try features such as persistent favorites or preferred time
zone. Only 53 users re-visited Event Maps after more than one hour.

• To our surprise, the search function was rarely used during the deployment; most
interactions were drill down operations for obtaining detailed information.

• Although we provided a simple tutorial in a highly visible tab on the website, less than
3% of the users actually visited it. Literally no one used the feedback form on the
website during the study, though we did receive suggestions from several via e-mail.

6.6.3 Interview Results

After the conference, we identified frequent users that had registered, and sent them
interview invitations. 6 users (2 females and 4 males) accepted the invitation and agreed to
have an interview with us regarding their experiences with Event Maps (four interviews were
conducted face-to-face; two were conducted over the phone). No incentives were offered to
participate. The interviews were semi-structured including questions on how they heard of
Event Maps, their experiences with specific features, such as favorites and search, and their
opinions on prospective features to be implemented. We also went through open questions
such as likes, dislikes, suggestions and comments. The Interviews lasted 30 to 40 minutes;
five were audio-recorded with explicit consent of the interviewees.
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Figure 6.13: Sample UI change after the SRS 2009 deployment.

Highlights of the face to face interviews:

Tabular Timeline is Intuitive most interviewees said that the zoomable interface of
Event Maps was easy to master and use. The color-coded events and the hovering-to-
highlight category labels were used by most interviewees. In general, they all liked this
feature and indicated that it improved their awareness of ongoing conference events.

Not looking at any help, mouse click as the probe Rather than looking for a help
page, almost all the users explored the interface directly. Clicking and hovering the
mouse on various regions of the screen were the two most popular probing activities. At
the same time, dragging, drag and drop, right button clicking and keyboard shortcuts
(one interviewee “didn’t even think of it!”) were rarely used to explore the interface.
As a lesson learned, when we add new features to Event Maps, we always make sure
that they can be discovered by left mouse clicking or hovering.

Interests in other people’s opinions In addition to all the “official” information (in-
cluding slides and video), most interviewees indicated their keen interest in knowing
other people’s opinions and interests on conference events, especially people they know
and trust.

As detailed in the design evolution section, most of the new features we added in P3
were driven by the lessons and insights from the SRS 2009 live deployment. In addition to
new features, we also made various adjustments to the UI to address usability problems we
had identified.

Figure 6.13 shows a sample UI revision we made - since the keyword search function
is completely locally without internet connection, Removing the search button suggests
that searching is responsive and encourages the users explore with different keywords. We
also noticed via analyzing the access logs that the most common action after accessing the
detailed information of a session was going back to the global view, so we added an explicit



95

the reset view button (figure 6.1.e) in addition to keyboard shortcut on the top left corner to
support this action. The reset view button now becomes one of the most frequently access
features in Event Maps.

6.6.4 Lab Study

After completing P3, we ran a formal lab study to evaluate the effectiveness of Event
Maps in completing common tasks in a conference, especially its relative performance when
compared with an existing state-of-the-art conference web site for accessing the same sched-
ule information.

Participants

12 people (3 female, 9 male) between 22 - 36 years of age (mean = 26.1) participated
in the user study. Subjects were collected via recruiting emails to multiple internal mailing
lists in a university. All participants were right-handed. All participants have some previous
experiences in attending a conference before the study. 10 subjects had an educational
background in engineering, one in business administration and one in linguistics.

Apparatus

The experiment was conducted using a Lenovo Thinkpad T400 Laptop computer with
an external Microsoft Laser Mouse 6000 as the pointing device. The computer had an Intel
Core 2 Duo 2.26GHZ CPU, a 14 inch LCD monitor at a resolution of 1440 ∗ 900 pixels.
The operating system was Windows XP SP3. Firefox 3.5 was used as the browser for all
the tasks in our study. The Event Maps server used in this study was hosted on a Dell
PowerEdge server running Ubuntu Linux 8.04 server edition, with a Pentium 4 2.8 GHZ
CPU and 2GB Ram.

We pre-loaded 14 conferences to the Event Maps server, including those listed in Ta-
ble 6.2. Subjects could freely browse these conferences on Event Maps during the exploration
stage of the test. Subjects were asked to complete tasks for ACM CHI 2009. We also mir-
rored the ACM CHI 2009 conference schedule pages [23] on the same server as an alternative
technology. The two major reasons for mirroring were to have both systems studied have
the same network access speed, and to enable logging of users’ visitation behavior on the
web pages during the study. No modifications were made for to mirrored web pages.

Experimental Design

The experiment used a within-subject design, using two sets of comparable tasks. Each
set included 12 tasks. The tasks were created by interviewing frequent conference partici-
pants about their high-frequency activities in a conference and by consulting domain experts
in CSCW.

The nature of the tasks in each set is summarized below -

1. Locating the starting time of a talk;
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2. Locating an author based on a keyword in the title of a talk;

3. Planning a short-term (2 hour) schedule for a given interest;

4. Determining the time and location of a talk by a given author on a given day;

5. Obtaining details of an event, given the time and event category;

6. Planning a long-term (half day) schedule for a given interest;

7. Counting events in a given category within a certain time span;

8. Obtaining details of an event given relatively vague time constraints;

9. Obtaining details of an event given accurate time and location information;

10. Finding a co-author of a given author;

11. Comparing the popularity of two technologies (in terms of keyword frequency);

12. Counting events in a given category within part of a day.

Brief tutorials (around 7 minutes) were provided prior to each set of tasks on each system.
During the tutorial, the experimenter first demonstrated major features of the corresponding
system. Then we encouraged users to spend some time to explore the system. We waited
to start the actual tasks until the participant indicated explicitly to the experimenter that
he/she was comfortable with the current interface. Most participants spent around 5 -
10 minutes in exploring each interface before starting the actual tasks. The participants
performed the set of 12 tasks mentioned above using each calendar. The order of calendar
use and task set for the calendar were both counterbalanced in order to minimize the effects
of training, or the possibility of one task-set being slightly more difficult than the other.
However, tasks within a set were not randomized.

Results

The average completion time of all the tasks are shown in Figure 6.14. Average com-
pletion times for Event Maps were shorter than on the official website in all tasks. Using
Event Maps, the average completion time for each task was less than 46 seconds; while in
the traditional web site, the average time for some tasks, e.g. task 6 (long planning) and
task 11 (counting), could be more than 2 minutes. However, the differences are statistically
significant only for tasks 1, 4, 6, 8, 10 and 12 (task 1: p < 0.005 ) , task 4 ( p < 0.001 ),
task 6 ( p < 0.005), task 8 (p < 0.005), task 10 (p < 0.02), task 11 (p < 0.001), task 12
(p < 0.001).

The difference in average completion time for task 2 (p = 0.12 ), 3 (p = 0.15 ), 5
(p = 3.76), 7 (p = 0.21), 9 (p = 0.12) were not statistically significant.

An interesting observation was the performance of task 3 (planning a 2 hour schedule
for a given interest) and task 6 (planning a similar half-day schedule) in both conditions.



97

Figure 6.14: The average completion time (seconds) vs. task number. The error bar indi-
cates the standard deviation of corresponding completion time.
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Figure 6.15: The average perceived difficulty for each task. (1 = extremely difficult, 3 =
neutral, 5 = extremely easy). The error bar is the corresponding standard deviation.

Unsurprisingly, on the traditional web site, the time spent in completing the task increased
as the required planning time-span increased, as more page switching was needed. However,
although the difference is not statistically significant, on average it took less time to schedule
a longer trip in the Event Maps condition! We attribute this observation to two reasons:
First, these two tasks can be completed in the global view mode with either mouse hovering
or keyword search, as there is no view switching involved despite the extended planning
time-span. Second, there might be learning effects between task 3 and task 6, since the
order of tasks in each test set is not randomized.

Figure 6.15 shows the subjective “perceived” difficulty of the tasks on a 5 point Likert
scale [78] (5 means extremely easy, 3 means neutral and 1 means extremely difficult). In
accordance with the actual performance, Event Maps was perceived easier to use than the
traditional web site in most tasks. Interestingly, task 5 (Locating the name of a panel that
meets the provided date and time constraints) was perceived to be easier to finish via the
traditional web interface even though the average completion time of that task was slightly
shorter using Event Maps.

In the closing questionnaire, many users indicated explicitly that they like the zoomable
Tabular Timeline layout and the search feature in Event Maps. Sample quotes include

“[Event Maps] links time with location clearly.”

“Presentation is clear, Integrated search is very helpful and is more helpful even
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Satisfaction question regarding Event Maps Mean Stdev
Overall, I am satisfied with this system 4.58 0.67
It was easy to learn 4.25 0.62
Improved my awareness of ongoing events 4.50 0.67
Improved my ability to find info on a specific topic 4.75 0.45
Helped me to keep track of events I’m interested in 4.25 0.45
Saved my time in locating the information I need 4.83 0.39
I could effectively complete the tasks in my mind 4.42 0.67
I was able to complete the tasks and scenarios quickly 4.42 0.51
The “look-and-feel” of this system was pleasant 3.92 0.67
Organization of information in this system was clear 4.42 0.51

Table 6.3: Summary of the satisfaction rating in the closing questionnaire (on 5 point Likert
scale, 1 means strongly disagree, 3 means neutral, 5 means strongly agree)

than the type ahead search in the [Firefox] browser which I use constantly and
leveraged to complete the tasks on the old web site.”

“The search ability, and the representation of all events in categories in the
timeline fashion made [it] easy for navigation.”

During the study, at least 4 users clicked on category labels while exploring the system.
When asked why, the given answers were similar: those labels are button-shaped, when the
mouse is over a label, that label gets embossed and looks exactly like a button, implying
that they are click-able. Some users noted that when hovering on the “course” category
label, they could not see anything because those courses are out of the current view port
- they suggested that it might be better to pan the current view automatically to make
most of the “course” events visible. One user suggested that when a category is clicked,
events of all other categories become homogeneously dark, until the same category label or
other category labels are clicked. In this way, the users could scroll the current view up and
down to get some global feelings about a specific category. Interestingly, the iPhone already
supports “sticky” category highlighting in lieu of hovering support!

Table 6.3 summarizes the average satisfaction rating after using Event Maps. Overall,
the ratings were highly favorable. Participants strongly believed that using Event Maps
could save their time in locating the information they need (mean = 4.83, stdev = 0.39).
The “look-and-feel”, especially the color theme of the current system was considered to still
have significant room for improvements.

6.7 Discussions

Based on evidence from studies and deployments we have demonstrated that users feel
Event Maps provides a good mental map and faster access to several typical pieces of infor-
mation conference attendees need through its use of a zoomable interface and by exposing
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information on demand conveniently via tool tips and mousing. Our practical experience in
building Event Maps leads us to the following observations:

• “It is faster to make a four-inch mirror, then a six-inch mirror than to make a six-
inch mirror” - The Thomson’s Rule for First-Time Telescope Makers [9] also applies
to building interactive systems.

• Build simple components as services with clean interfaces for adoption in broader
contexts.

• Avoid premature optimization to get to the right design faster.

• Disk is cheap, so log and analyze more data than less.

• Scripting languages speed up prototyping [97].

Some areas for future work include the following:

• Customize Event Maps for access from popular mobile devices with particular at-
tention to usability, i.e., interaction in mouse-less environments, legibility on small
screens, and limitations in compute power.

• Use information provided by attendees, including browsing patterns within Event
Maps, to improve the conference experience.

• Enable micro-tagging on a wide variety of conference material - including sections of
papers, authors, institutions, recordings, etc.

• Make the conference site the hub for activity even after the end of the conference to
benefit both attendees and those not fortunate enough to get the live experience.

• Incorporate indoor floor maps to enable several location-based services pertinent to
conference attendees.

6.8 Summary

Event Maps is a highly interactive web-based collaborative calendaring system optimized
to provide quick access to information at multiple levels of detail for large, multi-track
conferences. Further, Event Maps can be used as a “collaboration space” for visualizing
and collaborating on large, complex temporal data with a hierarchical nature. The results
reported in this chapter previously appeared in [138, 139].

The Event Maps system has been refined twice based on quantitative and qualitative
feedback from user studies, lab studies and deployments. The feedback we have received
thus far on how Event Maps enhances the conference attendee’s user experience has been
very encouraging and we will thus be pursuing even larger deployment opportunities to
gain insights into how conference collaboration substrates get used during various stages
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of a conference and from different device form factors, build a prioritization of the feature
set based on several factors, and use the findings to allow Event Maps to meet the user’s
needs in various times and situations. We will analyze and report in depth the insights
from face-to-face interviews, lab based studies and real world deployments throughout the
iterative design process. In addition to a holistic evaluation of the overall effectiveness of
Event Maps, we are also interested in getting a deeper understanding of the impact of each
specific feature in its corresponding design space.
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Chapter 7

Conclusion

“All understanding begins with our not accepting the world as it appears.”

—Alan Kay, 1998 [113]

7.1 Summary of Contributions

This thesis summarized research work on understanding how emerging sensors on mobile
phones, such as built-in cameras, microphones, touch sensors and the GPS module can be
leveraged to make everyday interactions easier and more efficient. We presented studies and
models to quantify the capabilities of these sensing channels, and illustrated how effective
interfaces for text entry, gaming, and CSCW can be built on mobile phones.

The main contributions presented in this dissertation are:

• We have developed a technology named TinyMotion for camera phones. TinyMotion
detects the movements of a cell phone in real time by analyzing image sequences cap-
tured by its built-in camera, providing a usable analog pointing channel to existing cell
phone users. In contrast to earlier technology, TinyMotion does not require additional
sensors, special scenes, or backgrounds.

• We quantified TinyMotion’s human performance as a basic input control sensor. We
found target acquisition tasks via TinyMotion follow Fitts’ law , and Fitts’ law pa-
rameters can be used for TinyMotion-based pointing performance measurements. We
established a benchmark baseline for future improvements in both hardware and de-
tection algorithms.

• We designed and implemented Mobile Gesture, an application that can convert the
camera phone into a stylus capable of capturing and recognizing more than 8,000
characters and gestures written in English, simplified Chinese, traditional Chinese and
Japanese characters at the speed of 35ms per character on a Motorola v710. This is a
first-in-the-world application to demonstrate the feasibility of using the camera phone
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as a handwriting capture device, and for performing large vocabulary, multilingual,
real-time handwriting recognition.

• We designed and implemented an effective mobile text input method named SHRIMP
(Small Handheld Rapid Input with Motion and Prediction). SHRIMP runs on cam-
era phones equipped with a standard 12-key keypad. SHRIMP maintains the speed
advantage of Dictionary-Based Disambiguation (DBD) driven predictive text input
while enabling the user to overcome collision and OOV problems seamlessly without
explicit mode switching.

• We invented a novel interaction technique, FingerSense to enhance the expressiveness
of physical buttons on space-constrained mobile devices. In a FingerSense enabled
input device, pressing actions are differentiated according to the finger involved. We
modeled the human performance of FingerSense interfaces via a GMOS analysis and
derived related parameters from a preliminary usability study.

• We presented GLAZE, Generalized Location Aware modelZ for End-users, for creat-
ing location-aware mini-applications. The GLAZE system allows average users, who
do not have programming experiences, to create many everyday location-aware appli-
cations through a set of form-filling and menu selection operations on mobile devices.

• We designed and implemented Event Maps, a web-based calendaring system targeted
at improving the experience of attending and organizing large, multi-track conferences.
Through its zoomable Tabular Timeline, users can navigate a conference schedule,
seamlessly moving between global and local views. Through a compact decoration
widget named Active Corners, Event Maps enables contextual asynchronous collab-
oration before, during, and after the conference. Event Maps has been successfully
deployed in large, real world conferences including IEEE SCC 2009, Lotusphere 2010
and CHI 2010.

7.2 Experience Designing Effective Mobile Interfaces

This thesis highlighted about six years of research work in creating effective interfaces
on mobile devices. It covered multiple projects on different aspects of mobile interfaces
under the umbrella - “perceptual and context-aware interfaces”[19]. But what can be said in
general? Here we summarize briefly some reflections and insights generated in the process
of designing, building, and evaluating these technologies.

The importance of iterative design First and foremost, we can’t emphasize enough the
importance of rapid iteration in building research systems. Instead of citing some clas-
sic text books, we’d like to draw from a few concrete examples from previous chapters.
(a), Just as the Thomson’s Rule for First-Time Telescope Makers goes - “It is faster
to make a four-inch mirror, then a six-inch mirror than to make a six-inch mirror”[9].
Indeed, even under tight time constraints, starting from simpler implementations and
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building multiple prototypes can save the overall time spent. For example, in the Event
Maps project (chapter 6), a total of three prototypes were built and the look-and-feel
of P1 differs significantly from P3. Many failed ideas were thrown away quickly and
effective solutions were kept in the iterative process. It’s clear that we wouldn’t be
able to deploy the Event Maps system quickly and successfully in real world confer-
ences without all these rapid iterations. (b), To create really compelling innovations,
it’s critical to build the prototype and have the creators use it everyday, a.k.a. “eating
one’s own dog food”. This approach does help researchers to understand the tech-
nology, identify usability problems as well as fix them in follow-up iterations. Many
designs described in this thesis, e.g. the tactile feedback technique in chapter 2, the
SHRIMP predictive input in chapter 3 and the numerous revisions of Event Maps in
chapter 6 are inspired this way. (c), User studies can indeed help to capture unex-
pected problems and bottlenecks of interaction. For example, the ”moving the frame”
vs. “moving the background” problem and the “clutch” problem in chapter 2, the lim-
itation of tree based visualization of temporal events and the non-clickable category
label problem in chapter 6 are just a small sample of the countless usability problems
we identified through user studies. Such experiences can be explained by the Zone of
Proximal Development (ZPD) theory [133] in learning.

Design is about making trade-offs One common theme, which gets reinforced in al-
most every research project, is - we researchers shouldn’t expect “silver bullets” when
designing mobile interfaces. Bill Buxton summarized this observation well - “Every-
thing is best for something and worst for something else. The trick is knowing what is
what, for what, when, for whom, where, and most importantly, why” [17]. As an ex-
ample, according to our benchmark in chapter 2, the motion sensing channel enabled
by TinyMotion is reliable, but has a very low input bandwidth. Directly mapping the
TinyMotion channel to traditional interaction tasks may lead to inferior results, as
we measured in the menu selection task in chapter 2. However, with careful design,
it’s possible to leverage the strength of TinyMotion (i.e. an input channel that is
parallel to the existing channels) and hide its weakness (low bandwidth), and create
efficient, easy-to-learn and enjoyable-to-use input methods such as Vision TiltText and
SHRIMP. We made multiple similar trade-offs among ‘familiarity to users’, ‘consump-
tion of on screen resources’ and efficiency in the Event Maps project and the GLAZE
project.

Development environments and UI toolkits are important BREW [13], a C/C++
based mobile phone API created by Qualcomm Corp. for non-smart feature phones
was adopted in multiple projects described in chapter 2, 3 and 5. In retrospect, there
are both pros and cons about this decision. On one hand, the C/C++ based API
in BREW allows us to get the maximal possible performance from non-smart feature
phones and hack deep into hardware components that are usually inaccessible via more
high level APIs and frameworks. These feature phones account for more than 90%
of the mobile phone market and are highly constrained in memory and computing
power. Running our systems successfully on feature phones meant that our research
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results are applicable to nearly any mobile phone on the market, not just high-end
smart phones. The number of citations and follow-up projects of TinyMotion indeed
supports this judgment. On the other hand, choosing BREW as the primary devel-
opment platform significantly hindered our productivity in building more compelling
prototypes. Just to name a few challenges in using BREW - (a), Main stream versions
of BREW (i.e. 2.x - 3.x) at the time did not provide a complete set of necessary
APIs to build even regular UI elements. Multiple add-on toolkits were proposed by
Qualcomm as a solution, but none of them hit the market in time, or met the expected
standard. (b), The API and development environment are unfriendly to developers.
For example, almost every system call, including file/network IO, are asynchronous,
as a result, call backs and complex exception handlers have to be set even for trivial
system calls; worse, the emulator on the PC could neither emulate the exact look-
and-feel, nor the behavior of programs on the real devices. Meanwhile, the debugging
support on real devices is close to non-existent and developers have to relay on logs
to figure out what’s happening when something suspicious is observed. (c), Most
tools and services relevant to BREW are private (e.g. the service for testing signature
generation, the access to the BREW application loader and extranet), expensive (e.g.
the RealView ARM Compiler, VeriSign signature service) and tightly controlled by
Qualcomm (e.g. enabling the debug model on BREW phones in early days). (d),
The documentation and implementations of BREW are inconsistent, full of bugs and
typos(please refer to [12] for some bugs/typos we found and reported). Behaviors of
APIs could be quite different on different handsets. As a conservative estimation, at
least two person years of efforts could have been saved if we had chosen a more mature
mobile development platform at the beginning. Considering the benefits, is this kind
of additional investment worthwhile? It is up to the readers to decide.

KISS - Keep It Simple and Straightforward As researchers in computer science, we
have the innate impulse to solve a problem as general as possible, and once and for
all, even in the planning stage. A commonly advocated technique is - when a choice
decision is needed, add another level of abstraction to postpone the design decision
hence providing more “flexibility” to prospective users. Another common trend is -
taking the extensibility/scalability/performance problem of every component in the
system into account even in the planning stage. Third, solving problems with more
complex solutions even when a much simpler solution could achieve close or better
performance. Instead, we believe it is important to resist the temptation of “treat-
ing complexity as beauty” for at least two reasons. First, it is hard for most people,
including experienced researchers, to estimate the true bottlenecks when approach-
ing a new problem at the very beginning. On one hand, the expected performance
bottleneck may not exist even under high workload (e.g. the case of loading all the
evens to the browser at the beginning rather than request a small portion of them on
demand in Event Maps); on the other hand, certain features, which researchers might
be very proud of and have spent a lot of time refining, may not be extremely attractive
from the end-user’s perspective. It’s important to allocate limited resource on things
that truly matter from the user’s perspective. Second, complex solutions, although
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they may look compelling from the intellectual perspective, usually contain additional
or unnecessary assumptions that may not hold in real world scenarios. Complex so-
lutions can also lead to higher costs in implementation, debugging and maintenance.
The pixel level motion estimation algorithm in chapter 2, the simple, modeless solution
of SHRIMP mobile input in chapter 3, and the brute-force iCalendar file generation
algorithm in chapter 6 are three examples of our own experiences.
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