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Abstract

This thesis presents Beaver – an efficient SMT solver for the quantifier-free
fixed-size bit-vector logic (QF BV). Beaver is an eager solver, that is, given
an SMT formula, it first performs word-level simplications and then bitblasts
the simplified formula to a Boolean formula, which is then solved using any
SAT solver. Several engineering techniques are behind its efficiency: 1) effi-
cient constant/constraint propagation using event-driven approach, 2) several
word-level rewrite rules, 3) efficient bitblasting to SAT, by first converting
to and-inverter-graph (AIG) representation and using Boolean simplication
techniques of ABC logic synthesis system [33].

In this thesis, we highlight the implementation details of Beaver that dis-
tinguishes it from other solvers. We also present an experimental evaluation
and analysis of the effectiveness of our solver against all available QF BV
solvers on the SMT-LIB benchmark suite.

Beaver is an open-source tool implemented in OCaml, usable with any
back-end SAT engine, and has a well-documented extensible code base that
can be used to experiment with new algorithms and techniques.



Chapter 1

Introduction

The Boolean satisfiability (SAT) problem is defined as checking whether a
given Boolean formula is satisfiable, that is, whether there exists a Boolean
assignment to the inputs that make the formula true. Although it is a classic
NP-complete problem, in practice, SAT solving techniques have improved
dramatically over the last decade. Several fast SAT solvers, capable of han-
dling significantly large problem instances, are easily available today. Still,
SAT solvers perform rather low-level reasoning with only Boolean variables,
whereas most problem domains have higher-level information and data types
such as integers, reals, finite precision (e.g. 32-bit) integers (i.e. bit-vectors),
arrays, strings, lists, and so on.

The problem of Satisfiability Modulo Theories (SMT) concerns satisfia-
bility of a formula made up of not just Boolean variables and operators, but
also those from other first-order theories. Most obvious ways of encoding
of such formulas to Boolean SAT are often too expensive. Hence the idea
is to apply higher-level reasoning, instead of or before handing it down to
SAT. Additionally, SMT provides generic ways to combine multiple theories
in a single problem instance. And it gives guidance in defining new theories
specific for one’s problem domain. More rigorous exposition to the field of
SMT solvers, or decision procedures can be obtained from a recent book [25],
and a book chapter [5].

Although researched since 70’s, decision procedures and SMT solvers have
seen especially dramatic improvements in their practical capabilities in the
last decade. This has been a consequence and a cause of developments in
multitude of applications of SMT. SMT solvers are one of the core compo-
nents of tools in several areas, such as formal verification of hardware, static
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and dynamic program analysis, software test generation, software synthesis,
and software security.

1.1 Theory of Bit-vectors and QF BV Logic

A bit-vector is a sequence of bits. The size of a bit-vector is the length of
this sequence. For example, 0110 is a bit-vector of length 4. A fixed-size
bit-vector is a bit-vector of a known constant size. The theory of fixed-size
bit-vectors [32] is made of variables and constants of arbitrary but fixed sizes,
and functions and predicates operating on them. The quantifier-free bit-
vector (QF BV) logic [30] comprises of formulas built using the theory of bit-
vectors and Boolean connectives, constants, and variables. These formulas
can be expressed using the grammar of Figure 1.1. This grammar contains
all the operations defined by the SMT-LIB standard, and adds a few extra
operations. An example formula – (bvule (bvadd a b) bv7[32]), where
a, b are 32-bit variables – is equivalent a C expression a + b <= 7, where
a, b are unsigned ints. Bit-vector logic provides more accurate modeling of
the finite-precision implementation details as compared to integer logic.

1.2 Bit-vector SMT Solvers

Contemporary QF BV solvers can be listed quickly by looking at the yearly
SMT competition webpages – SMT-COMP’07 [27], SMT-COMP’08 [28],
SMT-COMP’09 [29]. Apart from the solvers described herein, currently avail-
able solvers are Boolector, Z3, MathSAT, STP, OpenSMT, Yices, Spear, and
CVC3.

Currently all bit-vector SMT solvers ultimately rely on bit-blasting. Bit-
blasting means encoding a word-level, QF BV formula to an equisatisfiable,
Boolean representation by representing bit-vector variables as a string of
Boolean variables and encoding bit-vector operations using their correspond-
ing Boolean circuits. This Boolean formula is then solved using a SAT solver.
Thus, bit-vector SMT is still heavily dependent on SAT solvers. However,
word-level simplifications done before bit-blasting do make a vital difference
in the performance of the solver. And that is where all the SMT solvers
differ.

Spear [2,3] is a bit-vector-only solver that won SMT-COMP’07 in QF BV
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ψ ::= p p ∈ P (set of Boolean variables)

| true | false

| not ψ | and ψ+ | or ψ+ | xor ψ+ | iff ψ+

| implies ψ1 ψ2 | if then else ψ1 ψ2 ψ3

| = τ+ | distinct τ+

| bvule τ1 τ2 | bvult τ1 τ2 | bvuge τ1 τ2 | bvugt τ1 τ2

| bvsle τ1 τ2 | bvslt τ1 τ2 | bvsge τ1 τ2 | bvsgt τ1 τ2

τ ::= v v ∈ V (set of bit-vector variables)

| b b ∈ B (set of bit-vector numerals)

| ite ψ τ1 τ2
| bvadd τ+ | bvmul τ+ | bvsub τ1 τ2 | bvneg τ

| bvuaddp τ+ | bvumulp τ+

| bvuaddo τ+ | bvumulo τ+

| bvuaddno τ+ | bvumulno τ+

| bvudiv τ1 τ2 | bvurem τ1 τ2

| bvsdiv τ1 τ2 | bvsrem τ1 τ2 | bvsmod τ1 τ2

| bvnot τ | bvand τ+ | bvor τ+ | bvxor τ+

| bvnand τ+ | bvnor τ+ | bvxnor τ+

| bvredor τ | bvredand τ

| bvshl τ1 τ2 | bvlshr τ1 τ2 | bvashr τ1 τ2

| shift left[n] τ | shift right logical[n] τ | shift right arith[n] τ

| concat τ+ | extract[i : j] τ | repeat[n] τ

| zero extend[n] τ | sign extend[n] τ

| rotate left[n] τ | rotate right[n] τ

Figure 1.1: Grammar for formulas in QF BV. ψ denotes formulas, τ denotes
terms, which are of type BitVec[n], where n is bit-width. Not shown are the
typing constraints on the terms (e.g. bvadd takes arguments of identical
bit-width, and produces the result of the same bit-width). bvuaddp etc.
are our extensions to the SMT-LIB grammar, and their meanings are listed
in Table 1.1.
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Function Meaning

bvuaddp Precise unsigned addition, i.e. if inputs are of bitwidth w,
the output has w + 1 bits to accomodate the full result.

bvumulp Precise unsigned multiplication, i.e. if inputs are of
bitwidth w, the output has 2w bits to accomodate the
full result.

bvuaddo One-bit output equal to the overflow bit of unsigned ad-
dition of inputs. Also present in Boolector.

bvumulo One-bit output equal to the overflow bit of unsigned mul-
tiplication of inputs. Also present in Boolector.

bvuaddno Unsigned addition with implicit assumption that no over-
flow occurs. This is equivalent to normal bvadd plus
top-level inequality assumption of no overflow during ad-
dition.

bvumulno Unsigned multiplication with implicit assumption that no
overflow occurs.

Table 1.1: Extensions to SMT-LIB QF BV logic.

category. It is based on bit-blasting using several word-level simplification
rules and a specialized, fast SAT solver with numerous optimization param-
eters. The parameters are tuned for a particular class of benchmarks using
automatic exploration of the parameter value space [20].

STP [19] is a decision procedure for both bit-vector arithmetic and the
theory of arrays that is especially geared towards solving path feasibility
queries in software verification and testing. The main novelty of STP’s bit-
vector component was an online solver for general linear constraints modulo
a power of two. Our experience with Beaver on such path feasibility queries
indicates that the full power of linear constraint solving is not quite needed
for practical formulas.

Boolector [8] uses word-level rewrites, followed by bit-blasting to Pi-
coSAT [7] with the use of under-approximation techniques that rely strongly
on the connection to PicoSAT. This well-optimized implementation earned
Boolector 1st spot in SMT-COMP’08.

Z3 [16] is a feature-rich SMT solver from Microsoft that supports multiple
theories, and also quantifiers to some extent. Not many details are available
regarding its bit-vector handling. MathSAT [9, 10] is a lazy, layered SMT
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solver for multiple theories. Its bit-vector performance improved dramatically
for SMT-COMP’09. Other solvers in the lazy, multi-theory category are
OpenSMT [11], Yices [17], and CVC3 [6]. Roughly, these solvers use some
word-level simplifications followed by bit-blasting that adds new clauses to
the core DPLL engine.

UCLID [13, 14], precursor to Beaver, uses an abstraction-refinement ap-
proach to solving bit-vector formulas, into which any model-generating SMT
solver for QF BV, including Beaver, can be easily integrated.

A few other solvers have been developed for specific domains, but are not
directly usable for solving generic SMT formulas coming from multiple ap-
plications. Case in point is BAT [26], which focuses on hardware verification
problems. It is in fact quite similar to Beaver in theory, however a few dif-
ferences can be noted. It uses bit-blasting, but to an internal Boolean DAG
format called NICE, from which efficient CNF generation is employed. In
contrast with BAT, Beaver uses an and-inverter graph back-end with circuit
optimization techniques drawn from the logic synthesis literature, as well as
offline template optimizations (described in the following section), which is
an automated optimization, distinct from the use of user-defined functions
in BAT.

One distinguishing feature of Beaver is that it can use any off-the-shelf
SAT solver, including circuit-based SAT solvers, e.g. NFLSAT [22], . In fact,
currently NFLSAT gives us the best performance as compared to other CNF-
based SAT solvers. This ability to switch SAT solvers is absent in all other
SMT solvers, as they integrate one specific, often specialized, implementation
of a SAT solver in a tight coupling with the word-level processing. Freedom
to switch a SAT solver is important because for different formulas, different
SAT heuristics work better.

Finally, during last year there have been attempts to move away from bit-
blasting. One partial solution is to restrict to extractions and concatanations
of bit-vectors, which are easily translated to equality logic [12]. This would
be useful for formulas that make heavy use of these operations as compared to
other operations of bit-vector theory. Alternatively, [4] proposes a direct way
of solving generic bit-vector constraints without using SAT. However, it only
improves upon the previous similar attempts that used constraint program-
ming, but still does not prove to be efficient alternative to bit-blasting+SAT.

Further reading about current and past bit-vector decision procedures
can be found in [14].
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Chapter 2

Beaver Design and
Implementation

Being an eager SMT solver, Beaver is essentially a compiler from word-level,
bit-vector SMT formula to Boolean SAT formula. Thus, like any compiler, it
has a pipe-and-filter architecture as shown in Figure 2.1. In this chapter, we
give the algorithms and implementation tricks underlying this architecture.

Beaver accepts as input a QF BV formula in SMT-LIB syntax [31] 1. The
parser builds a formula graph by calling the API functions of the formula
graph data structure. The simplifier performs word-level simplifications on
the formula graph. Although builder and simplifier are shown as separate
stages in the figure, they are in fact interleaved, with simplification hap-
pening on-the-fly. This is important, because otherwise the intermediate,
unoptimized formula graph would be too large to deal with. After the sim-
plifications are done, bit-blaster converts the formula into a combinational
And-Inverter-Graph (AIG) circuit using the ABC logic synthesis package [33].
Then we have the option of performing further simplifications on this Boolean
circuit. And in the end, the circuit is passed to an off-the-shelf SAT solver
either natively as AIG (if it is a circuit-based SAT solver), or by conversion
to CNF (if it is a CNF-based SAT solver).

A natural representation for an SMT formula is a DAG – directed acyclic
graph. The vertices represent the sub-expressions of the formula, and are
labeled with the operator type (e.g. bvmul, bvadd, and, not), and sort

1Only version 1.2 is supported at this time. Support for newly proposed version 2.0
will be added later.
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Figure 2.1: Beaver top-level flow
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(etc. BitVec[32], Bool), and a few other attributes. Each vertex has zero
or more inputs (fan-ins), and zero or more outputs (fan-outs). The input
variables of the formula (“:extrafuns”, “:extrapreds” of SMT-LIB) are the
only vertices (excluding the constant numerals) with no inputs. The top-
level assertions (“:assertion”, “:formula” of SMT-LIB) have no fan-outs, and
are called roots of the formula graph.

The formula graph is implemented as a generic graph data structure hav-
ing the same interface as a widely-used graph library – “ocamlgraph” [15].
This allows the use of generic graph algorithms of “ocamlgraph” directly on
our formula graph.

In the rest of the chapter, we present all the word-level simplifications,
event-driven simplifier, bit-blasting, and the few remaining details of map-
ping onto SAT.

2.1 Word-level Simplifications

Word-level simplifications are crucial in any bit-vector SMT solver. In Beaver,
we have implemented a range of simplifications that are listed below.

• Common sub-expression elimination (that is, structural hashing)
• Associativity
• Commutativity
• Forward constant propagation
• Backward constant propagation
• Don’t-care propagation
• Forward symbolic evaluation
• Equality propagation
• Div/rem rewrite
• Multiplication rewrite

All of the above simplifications should always be performed, and it does
not matter in what order they are performed. Hence, conceptually, the sim-
plifier is a loop that repeatedly performs the simplifications until no more
are possible. Keep in mind that some simplifications, such as commutativity,
have a canonical form so that we do not keep on applying them in an infinite
loop. Although conceptually simple, the simplifier loop needs a few imple-
mentation tricks to be efficient, and we use a technique called event-driven
simplification as described in Section 2.2.
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Some of the simplifications that are not implemented in Beaver are as
follows.

• Canonization: this is the process of expressing all the supported op-
erators using a few canonical ones. For example, all the Boolean con-
nectives can be expressed using just and, not. Or, the unsigned bit-
vector predicates can be expressed as Boolean combinations of bvult
and =. Advantage of canonization is that the simplifications need to
worry about only the minimal set of operators, while a disadvantage
is that some simplifications might be skipped because atomic expres-
sions are converted to more complex ones. In Beaver, we do not use
canonization at word-level, but it is used at Boolean level through AIG
representation in ABC.

• Solving general linear equalities: general bit-vector linear equal-
ities can be solved using a modified Gaussian elimination that takes
care of modulo-2n multiplication, addition and equality. However, we
did not implement this general procedure. Some simple equalities do
get simplified by backward propagation and equality propagation.

• Fan-out-free cone elimination: a fan-out-free cone in a formula
graph is a subgraph in which every vertex has at most one fan-out,
except for the vertex at the root (i.e. output) of the cone. Note that
every function or predicate in our logic has at least one input combi-
nation for every possible output value. Thus, if we assert any value at
the output of a fan-out-free cone, we can satisfy the cone trivially by
choosing apropriate values for the internal vertices of the cone. This
means that only the outputs of fan-out-free cones need to be visible to
the SAT solver. This can help in cutting down the SAT formula size,
and thus affect the search heuristics.

2.1.1 Generic Structural Simplifications

Common sub-expression elimination is an obvious simplification technique
for formula graphs. It is also called structural hashing in the logic synthesis
world. The basic operation involves combining two vertices of identical at-
tributes and inputs, as shown in Figure 2.2. Associativity optimization uses
associativity property of some bit-vector operators (e.g. bvadd, bvmul) to
reduce expressions involving only one kind of operator to a canonical form,

9



Figure 2.2: Common sub-expression elimination (i.e. structural hashing)

e.g. (bvadd (bvadd a (bvadd b c)) d) is reduced to (bvadd a b c d).
Commutativity optimization also reduces certain expressions to canonical
form based on commutativity of the operators. Note that we make use of
unique ordering of vertices based on their integral IDs, so that (bvadd a b)

is chosen as canonical over (bvadd b a), if a has lower vertex ID than b.
One local application of one of these simplifications creates further oppor-

tunities of simplification. These simplifications do make a vital difference in
the performance of SAT solver after bit-blasting, because proving a formula
such as a+ (b+ c) = (b+ a) + c using a SAT solver is not necessarily trivial
when a, b, c have large bit-widths.

2.1.2 Constant Propagation

Forward constant propagation means inferring a constant value (that is, con-
crete value) at the output of a vertex when some or all of its inputs have
constant values. Backward constant propagation means inferring constant
values at some or all inputs of a vertex when its output is constrained to be
equal to a constant value. Thus, each constant propagation rule looks at a
single vertex and values at its output and inputs. Figure 2.3 illustrates these
simplifications.

Forward constant propagation

The simplest forward propagation happens when all inputs of a vertex have
constant values. It is then trivial to evaluate the vertex based on its type
and infer a constant value at the output.

Controlling values for some functions and predicates allow inference even
if some inputs do not have a constant value. For example, “false” is the
controlling value for and, “zero” is the controlling value for bvmul. Another
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4 
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(b) Backward constant propaga-
tion.

Figure 2.3: Constant propagation. Black values denote existing values of
vertices, and green, boxed values denote new inferred values. “dc” denotes
don’t-care attribute.

Vertex type Controlling value

and false
or true

implies first input false
bvmul zero

bvurem, bvsrem, bvsmod second input bv1
bvlshr, bvashr, bvshl first input zero

Table 2.1: Controlling values

effect of controlling value is that, the non-controlling inputs become don’t-
cares (see Section 2.1.3). The list of (almost) all controlling values is given
in Table 2.1.

Backward Constant Propagation

If for a function or predicate, a particular constant value is generated by
exactly one input vector, then inputs are inferred when the output is con-
strained to have that value. Examples are true for and, false for or, false
for implies. For the following functions any constant output value can be
propagated backward: concat, zeroextend, signextend.

Another form of backward propagation results when the output value
and some input values are used to infer value at another input. Example is
illustrated by the following rule for bvmul.
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n := n0 ×w n1 value(n) = c value(n0) = c0 c0 odd

value(n1) = c×w (c0)−1w

where, ×w denotes bvmul of bit-width w, and x−1w computes multiplica-
tive inverse of x modulo 2w. This backward propagation for bvmul does the
job of solving simple linear equalities. For example, an assertion “(= (bvmul
x 7) 3)” is solved to x = 37, if the bit-width of x is 8.

2.1.3 Don’t-care Propagation

Marking a vertex as don’t-care means that the value of the vertex does not
affect satisfiability or unsatisfiability of the formula. Vertices unreachable
from the formula graph roots fall trivially into this category. They com-
prise of dead code in the formula. Additionally, during constant propagation,
inputs of certain vertices might be marked as don’t-cares. Conceptually,
the don’t-care attributes propagate backwards through the formula graph
according to the following rule.

If all fan-outs of a vertex are don’t-cares, then the vertex is
marked as don’t-care.

However, instead of implementing this propagation as it is, we use a
different approach as described in Section 2.2.

2.1.4 Symbolic / Structural Evaluation

This is a type of forward propagation in which a particular combination of
input values, or structure of input vertices allows inferring that the output
has a constant value, or is equal to one of the inputs. Existence of identi-
ties for certain functions and predicates enables such inferences as listed in
Table 2.2. The way to read the table is as follows: if for example there is
vertex n := (bvmul n1 bv1), then inference is that “n = n1”, and hence all
fan-outs of “n” are transferred to “n1”, that is wherever “n” is used in the
formula, “n1” will be used instead. Some structural evaluations are listed in
Table 2.3. Figure 2.4 illustrates these simplifications.
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(a) Symbolic evaluation.

0 
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(b) Structural evaluation.

Figure 2.4: Symbolic / structural evaluation.

Input values that triggers reduction Equivalent reduction

and n1 true n1
bvshl n1 bv0 n1

bvudiv n1 bv1 n1
bvsdiv n1 bv1 n1
bvmul n1 bv1 n1
bvadd n1 bv0 n1
bvsub n1 bv0 n1

Table 2.2: Symbolic evaluation

Specific structure that triggers reduction Equivalent reduction

and n1 n1 n1
implies n1 n1 true
ite X n1 n1 n1
ite F X n1 n1
ite T n1 X n1

bvudiv n1 n1 bv1
bvurem n1 n1 bv0

extract[bw-1:0] n1 (where bw is bit-width of n1) n1

Table 2.3: Structual evaluation
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Figure 2.5: Equality Propagation

2.1.5 Equality Propagation

Equality propagation implements the following simple rule:

If (= inp (expr)) is constrained to be true, where inp is a term
of type input, and expr is any arbitrary term, then transfer all
fan-outs of inp to term.

Transferring fan-outs from vertex v1 to v2 is equivalent to expression
substitution – replacing all occurrences of v1 in the formula by v2.

This rule helps significantly in simplifying formulas arising from various
software analyses that use static single assignment (SSA) form. These for-
mulas consist of large number of intermediate variables, and conjunction of
large number of shallow assertions, as illustrated in the following example.

Example :assumption (= var1 (bvadd a b))

:assumption (= var2 (bvmul var1 c))

:assumption (= var3 (bvadd var2 d))

:assumption (bvugt var3 bv0)

The equality propagation would simplify the above three assumptions to
build a single assumption with deeper expression as given below.

Example :assumption (bvugt (bvadd (bvmul (bvadd a b) c) d) bv0)

This is equivalent to (a +w b) ×w c +w d >u 0. This is also illustrated
in Figure 2.5. Deeper expressions give further opportunities of word-level
simplification. Even if that does not happen, complexity of the SAT problem
after bit-blasting is greatly reduced, because the superfluous variables var1,
var2, var3 do not need to be passed to the SAT solver.
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2.1.6 Division / Remainder Simplification

As bit-vector division generates larger circuit as compared to multiplication
for the same bitwidth, we replace division by multiplication. Essentially,
q = a/b is expressed using constraints (a = q ∗ b + r)AND(r < b). One has
to be careful about overflows. The exact details are as follows.

For “n := (bvudiv a b)”,

1. Add new inputs “q”, “r” of same bitwidth as “n”
2. Add constraint “(= a (bvuaddno (bvumulno q b) r))”
3. Add constraint “(bvult r b)”
4. Transfer fan-outs from “n” to “q”

Here, “bvuaddno” is non-overflowing unsigned addition, that is bit-vector
addition with implicit constraint that overflow must not occur. This implicit
constraint is easily enforced during bit-blasting. Similarly, “bvumulno” is
non-overflowing multiplication.

When fan-outs are transferred from n to q, n becomes unreachable from
roots of the formula, and is therefore eliminated.

Similarly, for unsigned remainder, if “n := (bvurem a b)”,

1. Add new inputs “q”, “r” of same bitwidth as “n”
2. Add constraint “(= a (bvuaddno (bvumulno q b) r))”
3. Add constraint “(bvult r b)”
4. Transfer fan-outs from “n” to “r”

Care is taken to avoid adding duplicate constraints if both “(bvudiv a b)”
and “(bvurem a b)” occur in the formula.

Signed division (bvsdiv) and remainder (bvsrem) are handled by first
expressing them using their unsigned counterparts as follows. Vertex “n :=
bvsdiv a b” is equivalent to the output of following collection of vertices.

param bitwidth = bitwidth of n

let zero = bv0[bitwidth] in

let abs_a = (ite (bvslt a zero) (bvneg a) a) in

let abs_b = (ite (bvslt b zero) (bvneg b) b) in

let uresult = (bvudiv abs_a abs_b) in

let neg_ureselt = (bvneg uresult) in

let condition = (xor (bvslt a zero) (bvslt b zero) in

(ite condition (bvneg uresult) uresult)

15



Vertex “n := bvsrem a b” is equivalent to the output of following collection
of vertices.

param bitwidth = bitwidth of n

let zero = bv0[bitwidth] in

let abs_a = (ite (bvslt a zero) (bvneg a) a) in

let abs_b = (ite (bvslt b zero) (bvneg b) b) in

let uresult = (bvurem abs_a abs_b) in

let neg_ureselt = (bvneg uresult) in

let condition = (bvslt a zero) in

(ite condition (bvneg uresult) uresult)

The only difference from “bvsdiv” is in use of “bvurem” instead of “bvu-
div”, and modified “condition”.

Constant-divisor division / remainder

Unsigned division by power-of-2 divisor is converted to logical right shift
(bvlshr), while signed one is converted to arithmetic right shift (bvashr).
Unsigned remainder is converted to extraction (extract), while signed re-
mainder is first converted to unsigned remainder using the above conversion.

We also experimented with use of magic numbers to turn division by a
constant into multiplication by a constant. The technique is taken from the
book – Hacker’s Delight [34]. It is available as a command-line option in
Beaver. However, neither did we use it in our experiments nor is it turned
on by default.

2.2 Event-driven, On-the-fly Simplification

All of the word-level simplifications are local in nature, that is, they are
centered at a single vertex, and depending on the connections and values
surrounding that vertex, some modifications are made to the vertex and its
surroundings. This motivates an implementation based on even-driven simu-
lation. An event defined as a vertex that needs to be checked for opportunities
of simplifications. Processing an event means checking whether any of the
simplications are applicable to the vertex, and then doing the appropriate
local modifications. These modifications might generate new simplification
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Figure 2.6: Event-driven simplification.

opportunities at the neighbouring vertices, and hence those are queued in
the form of new events. Thus, the simplifier is a event-processing loop as
shown in Figure 2.6a.

In addition, many of the simplifications are forward in nature, that is,
they only affect the fan-outs of vertices that they simplify. Thus, if one event
is in the fan-out of another event, then it makes sense to process the latter
event first. This is done by levelizing the formula graph where every vertex
is assigned as integral level that is larger than the levels of its inputs, with
inputs being assigned level 0. Then the event queue is split into a priority
queue where the lower level means higher priority. This levelized simplifier
loop is shown in Figure 2.6b.

Also, the simplifications are done on-the-fly while parsing and build-
ing the formula graph. This is implemented by adding simplification steps
to the add_vertex, assert_vertex functions of the formula graph. Some
simplifications, such as structural hashing, associativity, commutativity, for-
ward evaluations, are done immediately while adding a vertex without going
through the event queue. Others are put in the queue, which is processed
periodically when it has collected enough events.

Finally, the don’t-care elimination is implemented by keeping a “solved”
flag for vertices and then traversing the vertices using DFS/BFS from the
formula graph roots. The vertices that are unreachable, possibly because they
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are hidden behind solved vertices, remain unvisited and thus eliminated.

2.3 Bit-blasting and Mapping to SAT

After word-level simplifications, the bit-vector formula graph is translated
to an equi-satisfiable Boolean formula in the form of combinational AIG
circuit. AIG – And-Inverter-Graph – has become a popular format for gate-
level circuits in logic synthesis and verification. It allows us to use the circuit
simplification techniques of ABC. In addition, ABC provides an extremely
optimized implementation of AIG, which is important because for some SMT
formulas, Boolean graphs can have over million gates.

Another novel feature of our bit-blaster is the use of circuit templates.
Templates are AIG implementations of the bit-vector operators such as bvadd,
bvmul, bvudiv. They are made by first writing structural Verilog imple-
mentations of these operators, and then flattening them to AIG represen-
tation. The Verilog implementations can be tested by simulation using test
inputs. Having AIG templates also allows us to perform offline simplifications
on them using ABC. The bit-blaster code consists of a generic instantiation
procedure that reads templates and instantiates them for every vertex in the
formula graph. If one wants to bit-blast certain operator differently, then
just the template needs to replaced. This approach is more systematic, ef-
ficient, flexible and well-tested than the most obvious way of bit-blasting
implemented by almost all other SMT solvers: given a Boolean graph data
structure having basic functions such as mk_and, mk_not, implement func-
tions such as mk_fulladder, mk_adder, mk_add, mk_mul, mk_udiv, and so
on. The problem with this is that one ends up with over 1000 lines of un-
intellible code with no clear way to test the generated circuits, or to quickly
change implementations.

Finally after bit-blasting, we use ABC to do some simple Boolean sim-
plifications. Then the formula is to be passed to a SAT solver. If it is a
circuit-based SAT solver, we directly write out ABC’s AIG. Otherwise for
CNF-based SAT solvers, we use ABC’s CNF generation methods to write
out a CNF formula. We experimented with two methods of CNF genera-
tion in ABC – 1) Tseitin encoding, and 2) technology-mapping-based CNF
generation. The latter generates smaller CNF formulas, and does provide
some speed-up for some formulas, but it is not a uniform improvement of
very large factor for all formulas. These comparisons are available in our
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technical report [24]. Both the methods are available through command-line
options, and their effects should be evaluated for specific applications.
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Chapter 3

Experiments using SMT-LIB
benchmarks

We evaluated our solver and other bit-vector solvers on QF BV benchmarks
in SMT-LIB [31]. Currently, this library has over 30000 benchmarks, but
about 28000 are from single source, Sage, and are of similar nature. Hence
we narrowed down to 3678 benchmarks for our experiments. These contain all
the benchmarks other than those from Sage, and a few of Sage benchmarks.

We used the PSI cluster of the Millennium clusters [1] to conduct the
experiments. Each workstation had an Intel(R) Xeon(TM) 3.00 GHz CPU,
3 GB RAM, and running 64-bit Debian “etch” Linux 2.6.18. We enforced
memory limit of 1 GB and timeout of 1 hour on all runs. Versions of the
solvers used are listed in Table 3.1. For Beaver, we used NFLSAT [21,22] as
the backend SAT solver. In our previous technical report, we make compar-
isons of using NFLSAT vs. other CNF-based SAT solvers [23, 24].

Basic summary of the runs is as shown in Table 3.2. The scatter plots
of total runtimes are shown in Figure 3.1, Figure 3.2, Figure 3.3. In these
scatter plots, x-axis is time taken by Beaver, y-axis is time taken by the other
solver. Timeouts or errors make the time 3600s, i.e. the maximum. All axes
are in log scale.

Beaver is not the best solver, but has comparable performance among
the group. MathSAT, Boolector are the fastest, with ability to solve most
number of formulas, and in shorter times. OpenSMT gives syntax errors
on a large number of formulas (this is not entirely surprising, because many
of the SMT-LIB formulas deviate from the standard a little, e.g. having
and connective with only one input). Curiously, MathSAT and Z3 reported
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Solver Version Options

Beaver svn version r864 NFLSAT
Z3 2.6 Default
OpenSMT svn version r29 Default
MathSAT 4.3 of SMT-COMP’09 -smt-comp option
Yices yices2smt09 Default
Boolector 1.2 Default
STP svn version r709 Cryptominisat2

Table 3.1: Versions of solvers and other info. The svn versions correspond
to the official svn repositories of the respective solvers.

Exit status Beaver Boolector MathSAT Z3 Yices STP OpenSMT

0 3222 3554 3577 3191 3193 3423 1714
1 0 43 0 0 0 0 1743

139 0 0 5 0 0 0 11
101 0 0 0 14 0 0 0

2 2 0 0 0 0 0 0
37 13 0 0 0 0 0 0

NOLOG 0 0 0 0 2 2 0
UNFINISHED 441 81 93 469 483 253 210

WRONG 0 0 3 4 0 0 0
total 3678 3678 3678 3678 3678 3678 3678

Table 3.2: Basic summary of runs using different solvers on SMT-LIB bench-
marks. Exit status 0 means that solver ended successfully, and returned the
expected result. Other non-zero exit statuses are the ones reported by the
solvers on hitting some kind of failure. UNFINISHED, NOLOG mean that
solver was not able to finish within time/memory limit. WRONG means
that solver ended successfully, but reported unexpected result.
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unexpected result for a few formulas. For MathSAT, these formulas are:
calypto/problem_7, calypto/problem_8, calypto/problem_9. MathSAT
reports UNSAT, when expected status is SAT (at least three other solvers
report SAT). Z3 seems to go wrong on spear/wget_v1.10.2/src_wget_-

vc18196, spear/wget_v1.10.2/src_wget_vc18197, spear/wget_v1.10.2/src_-
wget_vc18755, spear/wget_v1.10.2/src_wget_vc18756 – all other solvers
report the expected result UNSAT, while Z3 reports SAT.

Looking in detail at the comparison of Beaver vs. MathSAT, we ob-
serve that for about 320 formulas, Beaver times out after 3600 seconds, but
MathSAT is able to finish successfully within 10 seconds. For additional 220
formulas, both the solvers finish, but MathSAT gives speed-up of more than
1000x over Beaver. Most of these formulas are from bruttomesso family,
with the remaining few from brummayerbiere*, wienand-cav2008, calypto,
and VS3. In our past experience, we have observed that such a great per-
formance gap usually means missing rewrite rules, in absence of which the
bit-blasted formula is too complex for the SAT solver to solve. To look for
these missing rewrites is an item for future work.

3.1 Effectiveness of simplifications in Beaver

As reported earlier in [23, 24], we evaluated the effectiveness of various sim-
plifications performed in Beaver. Figure 3.4 is a scatter plot of runtimes with
and without word-level simplifications. Big cluster of points above the diag-
onal shows the effectiveness of these simplifications. In addition, the path
feasibility queries (marked by × in the plot) benefit greatly from word-level
rewrites – especially equality propagation.

We evaluated two CNF generation techniques available in ABC – 1) stan-
dard Tseitin encoding, with some minimal optimizations like detection of
multi-input ANDs, ORs and muxes, and 2) technology mapping based CNF
generation [18], which uses optimization techniques commonly found in the
technology mapping phase of logic synthesis to produce more compact CNF.
Comparison of these two techniques using ABC’s internal Minisat 1.14 is
shown in Figure 3.5a. The TM-based CNF generation significantly reduced
the SAT run-time for the spear benchmarks, but actually increased the run-
time for the brummayerbiere family of benchmarks. For other SAT solvers,
the two techniques didn’t result in appreciable difference. Also, neither CNF
generation technique improved much on NFLSAT.
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Figure 3.1: Run-time comparison of Beaver with Boolector and MathSAT.
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Figure 3.2: Run-time comparison of Beaver with Z3 and Yices2.

24



 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

to
ta

l_
tim

e 
st

p/
r7

09
sv

n/
cr

yp
to

m
in

is
at

2/
1

total_time beaver/r864/default/1

total_time

(a) Beaver vs. STP

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.1  1  10  100  1000  10000

to
ta

l_
tim

e 
op

en
sm

t/r
29

/d
ef

au
lt/

1

total_time beaver/r864/default/1

total_time

(b) Beaver vs. OpenSMT.

Figure 3.3: Run-time comparison of Beaver with STP and OpenSMT.
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Figure 3.4: Impact of word-level simplifications (the path feasibility queries
are marked with ×). x-axis is the run-time with simplifications, and y-axis
is without simplifications. Both axes are in log-scale.

The use of logic optimization techniques on the template circuits for arith-
metic operators was beneficial in general, as can be seen from Figure 3.5b.
The speed-up obtained from optimizing the templates was especially large
for the spear benchmarks. We hypothesize that this is because that family
of benchmarks has a wide variety of arithmetic operations, including several
non-linear operations, which are the ones for which template optimization
helps the most.

26



 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01  0.1  1  10  100  1000  10000

R
un

tim
e 

w
ith

ou
t t

ec
h.

 m
ap

pi
ng

 (
se

co
nd

s)
 

Runtime with tech. mapping (seconds)

(a) Impact of tech-mapping-based CNF generation.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01  0.1  1  10  100  1000  10000

R
un

tim
e 

w
ith

ou
t t

em
pl

at
e 

si
m

pl
ifi

ca
tio

n 
(s

ec
on

ds
) 

Runtime with template simplification (seconds)

(b) Impact of template optimizations.

Figure 3.5: Impact of Boolean simplifications. In both the plots, x-axis is
run-time with simplification, and y-axis is without it. All axes use log-scale.
Satisfiable benchmarks are marked using × and unsatisfiable benchmarks as
◦.

27



Chapter 4

Conclusion

We presented the details of design of our SMT solver, Beaver, for quantifier-
free bit-vector logic. Like its contemporaries, Beaver uses the obvious way
of solving bit-vector formulas – word-level simplifications, followed by bit-
blasting to SAT. However, a few sound design decisions seem to have helped
making it a decent solver for QF BV logic. At word-level, generic formula
graph data structure, and event-drien, on-the-fly simplification scheme can
be utilized to construct SMT solvers for theories beyond bit-vectors. In
addition, the choice of using ABC as the backend is a systematic, modular
approach to implementing bit-blasting. Some key features are still missing
in our solver, and they are listed below. They might be items of future work.

• Backtracking: currently Beaver works like a single-pass compiler, and
there is no support for adding and removing assertions (which will be
a nice-to-have feature once Beaver is made into a library).
• UNSAT core: support for generation of UNSAT core would be a good

additional feature.
• More rewrites: as mentioned in Chapter 3, for several benchmarks in

SMT-LIB, Beaver times out after 1 hour, while other solvers finish
within a few seconds. This usually indicates one or two missing rewrite
rules. In general, it would be great to have an easy way to manually
hunt for such missed simplifications, and add the corresponding rewrite
rules.
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