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Abstract

Fast Image Filters for Depth of Field Post-Processing

by

Todd Jerome Kosloff

Doctor of Philosophy in Computer Science

University of California, Berkeley

Brian A. Barsky, Chair

The original and primary motivation for the work described in this thesis is depth of field

post-processing. Previous methods for simulating depth of field were either too slow, or of low

quality. Depth of field post-processing is a critical component of high quality rendering. Without

depth of field, everything is in perfectly sharp focus, lending an unnatural, overly crisp look. In fact,

lack of depth of field is an important tip-off that an image is computer generated. Depth of field

is challenging to achieve when both high quality and high speed are desired simultaneously. This

is because high quality methods are traditionally based on brute force, and fast methods make too

many approximations. Intuitively, it seems odd that depth of field is so computationally expensive.

Depth of field is a type of blur, and blur inherently removes information from an image, producing

an output lacking high frequencies. Producing a simpler image should not be so expensive, and this

thesis shows that, indeed, high quality depth of field blurring can be achieved in real time.

Central to this thesis are the concepts of gathering and spreading. Gathering is the process

of forming an output pixel by taking a linear combination of input pixels. Spreading is the process of

expanding each input pixel into a point spread function (PSF) of some kind, and accumulating those

PSFs into the output image. Image filtering is traditionally thought of as gathering, but a central

idea of this thesis is that depth of field (and a variety of other applications) is much better suited

to spreading. In the course of developing the mathematical theory of filter spreading, we happened

upon a new type of image filter that is equally well-described as gathering and spreading. This new

method, which we refer to as the tensor filter, is conceptually simple and can leverage the benefits

of any combination of gathering and spreading algorithms.

We have developed a variety of new fast, high quality image filtering algorithms. Except
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for the tensor method, all of these are spreading methods. The reason why we have a variety of

techniques is because there are a variety of PSFs that one may wish to use. Our methods achieve

speed by exploiting structure in the PSFs. As such, truly arbitrary PSFs are problematic, but high

quality results can be achieved with both polynomial and Gaussian PSFs, as well as PSFs that have

an arbitrary outline but a constant-intensity interior.

While the original motivation for this work was depth of field, filter spreading actually has

a variety of other applications. We have developed proof-of-concept applications for motion blur,

implicit curves, and image warping. Filter spreading may also be useful for radial basis function

evaluation and volume rendering.
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Chapter 1

Introduction

1.1 Overview

Blur can be defined in many ways: a blurred image often lacks high frequencies, blurred

images lack fine details, small objects cannot be seen after being blurred, because they are smeared

out and blend in with their surroundings. Although computers can add blur to images, it is challeng-

ing to simultaneously achieve speed and quality. Speed means no more than a few seconds to blur

an image if implemented on the CPU, or at least 30 frames per second when implemented on the

GPU. Naive algorithms can take 30 seconds or more on the CPU, and fall far short of real time per-

formance, even on the GPU. Quality means that the blurred image has the desired appearance, and

this depends on the application. In general, we desire blurred images that are free of artifacts. Fast

algorithms often introduce artifacts [71], as it is generally believed that quality must be sacrificed in

order to achieve speed.

For depth of field postprocessing, quality means a pleasing or realistic point spread func-

tion (PSF). Having a pleasing point spread function is especially important for high contrast and

high dynamic range (HDR) images. The point spread function can be seen very clearly in places

where there is a bright point of light against a dark background. Similarly, strong edges will be

blurred in a manner quite characteristic of the point spread function. For example, a disc-shaped

PSF will lead to blurred edges appearing relatively abrupt, but a Gaussian PSF will lead to blurred

edges fading out gradually. For motion blur, we also want an appropriate point spread function,

ideally one that varies correctly to match the desired motion. In general, blurred images should look

smooth. Another desired property is shift invariance. That is, if we are requesting a blur that is the

same throughout an image, we should actually get that. Certain pyramid methods lack this property
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[54], and an incorrect shimmering can be seen as objects move across the screen.

It is very easy to implement blur filters. It is even easy to achieve very high quality [67].

However, these simple, direct methods are very slow, unless the amount of blur is very small. For

the special case where the amount of blur is the same, the filter is known as a convolution, and

the Fast Fourier Transform can be used to accelerate it [27]. Filters have long been needed for

texture map downsampling, to average all the texels that fall under a pixel [80]. This type of filter

is referred to as a gathering filter [32][68]. Gathering filters have long been accelerated [80] [26]

[29]. Unfortunately, gathering is the wrong approach for depth of field, motion blur, and other

applications. Spreading (the process of expanding each input pixel into a point spread function and

accumulating PSFs in the output image) is required instead [48], and spreading is a major emphasis

of this thesis. Please see section 2.3 for a more detailed introduction to spreading and gathering.

Filter spreading is easy to implement [67], but it is not easy to implement to be fast. When

the PSF is large, each input pixel makes contributions to a great many output pixels. Laboriously

spreading to each of these output pixels, one by one, leads to very slow performance. It is reasonable

at this point to question why any acceleration should be possible at all. Indeed, for the general case

of arbitrary PSFs that vary arbitrarily across the image, no shortcuts are possible. A simple way

to understand why performance is bound to be slow in the general case is to consider the sheer

amount of input. All algorithms require at least the time to walk through all of their input, as a bare

minimum. If each pixel has a different PSF and if each PSF is an arbitrary function, then these PSFs

will form a vast amount of input to the blur algorithm. Even the simple task of briefly examining

each pixel of each PSF will not possible in real time.

Fortunately, beautiful results can be achieved without resorting to arbitrary PSFs. The fast

methods in this thesis exploit the underlying simplicity of common, useful PSFs to achieve speed,

such as polynomial structure. If the PSF can be described as a piecewise polynomial with relatively

few terms, then that PSF can be applied very efficiently. Piecewise polynomials can provide very

good approximations of Gaussians; thus the polynomial method works well for applying Gaussian

blur. We have also developed two other methods specifically for applying Gaussian blur. The first

one uses a novel form of pyramidal image processing. The second of these methods exploits large-

scale structure in the blur tensor. Another very useful class of PSFs, aside from polynomial and

Gaussian, are those that have a complex outline, but with a constant-intensity interior. For example,

PSFs that are shaped like circles or polygons are very common in real photographs. Therefore, we

have developed a fast spreading method for blurring with this specific type of PSF.

Except for the tensor method, all these methods share a common approach. This approach
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is first to spread the PSFs in compressed form, and then, after all of the spreading is done, to

extract the final, blurred image via a postprocessing step. The compressed form of the PSF differs

depending on which method is being used. The compressed form for the polynomial method is the

derivative of the PSF. This leads to an efficient algorithm because the nth derivative of an nth order

polynomial is a sparse set of deltas. The compressed form for the pyramid method is simply a low

resolution representation of the PSF. Gaussians can be compressed in this way because they are

band-limited and hence can be subsampled without loss of information. For the arbitrary-outline

method, the compressed form is simply the outline. This method is much faster than naive spreading

because the vast interior of the PSF is left implicit.

However, the tensor method is different. Rather than working with a compressed repre-

sentation of the PSF, the tensor method works with a compressed representation of the blur operator.

Since our image filters are linear operators, they can be represented as matrices. These matrices are

huge and dense, which underlies the slow performance of naive methods. Because our matrix is

acting on an image, rather than a vector, it is better to treat the matrix as an order-4 tensor. This

tensor contains a great deal of structure, seeing as it is very smooth. It turns out that there is a way

to compress the tensor, and then perform the blurring directly from the compressed representation.

Although the resulting method is not as fast as the polynomial method, the tensor method achieves

true Gaussian filtering, rather than making polynomial approximations.

During the development of these methods, it was not clear which method would be the

fastest. After implementation, it became clear that the polynomial method is significantly faster

than the others. Therefore we chose the polynomial method for GPU implementation. This GPU

implementation was done in conjunction with AMD, as part of a launch demo for the ATI Radeon

HD58xx line of video cards. This demo achieved real time performance by using the new features

of DirectX 11, such as scatter and atomic addition.

This thesis is not a catalogue of equally useful methods. For example, the polynomial

method is significantly faster, and thus more useful than the other methods. This thesis is description

of the thought processes that went on while investigating fast blur algorithms. Beyond providing

potentially useful algorithms, an important goal of this thesis is to lend insight into the nature of the

space of blur algorithms, and the various ways in which acceleration can be achieved.
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1.2 Problems Addressed

Given an input image and given a blur map, our filters transform the input image into a

blurred image. A blur map is a monochromatic image of the same size as the input image where

intensity corresponds to how much that pixel should be blurred. For depth of field post-processing,

the blur map is created by combining the depth map with a lens model. By choosing an appropriate

filter, different point spread functions can be achieved. Our methods are fast. In asymptotic terms,

we usually mean constant time per pixel, independent of amount of blur. This can also be described

as linear time per image with respect to number of input pixels. The traditional gathering filters were

described as constant time per pixel, because they were used for texture map anti-aliasing, where

we are interested in how long it takes to filter each texture mapped pixel. For blurring images, we

find that linear time per image is a more appropriate viewpoint, because we are interested in how

long it takes to blur an image.

In practical terms, our fastest method runs at real time in high resolution (upwards of 30

frames per second) in a GPU implementation. Our methods require between half a second per frame

to a few seconds per frame in the CPU implementation.

1.3 Problems Not Addressed

Depth of field and motion blur cannot be fully solved simply with linear image filters, be-

cause of the nonlinear visibility term. To solve visibility in general requires expensive methods such

as distributed or stochastic ray tracing [17] [21]. Fortunately, the visibility artifacts are relatively

acceptable when filter spreading is used instead of gathering. We find that when filter spreading is

used, the errors caused by ignoring visibility are not severe.

Another problem that is not addressed is the view-dependent shading inherent in real-

world depth of field. A lens gathers a cone of light emitted from each scene point. The different

rays within this cone will have different colors, unless the material properties are completely diffuse.

Distributed ray tracing captures such view-dependent shading, but postprocessing methods such as

the subject matter of this thesis do not. In practice, that means that our depth of field results have

slight errors in the handling of specular highlights.
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Chapter 2

Background

2.1 Depth of Field

In the real world, it is rare for images to be entirely in perfect focus. Photographs, films,

and even the images formed on our retinas all have limited depth of field, where some parts of the

image are in-focus, and other parts appear blurred. The term “depth of field” technically refers to

the portion of the image that is in focus. In the computer graphics literature, the term “depth of

field” is used to refer to the effect of having some objects in focus and others blurred. Computer

generated images typically not have depth of field effects. This is because simulating depth of field

requires significant computational resources.

2.1.1 The Image Formation Process

Typical rendering of computer generated images is based on a pinhole camera model. A

pinhole camera model assumes that all light entering the camera must pass through a single point,

or pinhole. Pinhole cameras allow only a very small amount of light to enter the camera, so they

are of limited utility for real world cameras. Pinhole cameras are geometrically the simplest type

of camera, and they are efficient to simulate. However, they lead to images where all objects are in

perfect focus.

To allow more light to enter the camera, an aperture of some size is used, instead of a

pinhole. A lens is needed, or else everything will be highly blurred. However, a lens has to be

focused at a single depth. The light from objects located at any other distance from the lens will not

converge to a single point, but will instead form a disk on the camera’s sensor or film. However,
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sensors and film have a finite resolution. As long as the disk is smaller than a film grain or pixel

of a sensor, the object will appear in perfect focus. However, when the disk is large enough to be

resolved, blur occurs.

Distributed, or stochastic ray tracing is the natural way to simulate depth of field [17] [21].

Each pixel sends out a number of rays to various points on the aperture. These ray are refracted by

the lens and enter the scene. Since this is a direct simulation of the image formation process,

high quality depth of field effects fall out naturally. Unfortunately, a great many rays are required

to adequately sample an aperture of moderate to large size, thus distributed ray tracing is a slow

algorithm.

2.1.2 Post-Processing

Post-processing is the technique of using image processing to add depth of field to an im-

age that was originally rendered with everything in perfect focus [67]. A depth map must accompany

the image, to determine how much to blur each pixel. A variety of depth of field post-processing

techniques are present in the literature, e.g. [67] [17] [69] [32] [46] [53] [54] [48] [75]. The work

in this thesis is motivated because none of those methods simultaneously achieved enough quality

and speed.

2.1.3 Bokeh

Bokeh is a Japanese word that photographers use to describe the appearance of the out-

of-focus regions of a photograph. Different lenses and different shaped apertures lead to different

bokeh. Bokeh is determined entirely by the PSF of the lens. Photographers consider some lenses to

have good bokeh, and other lenses to have bad bokeh. A typical PSF that leads to good Bokeh is a

disc of constant intensity, possibly soft-edged. A typical PSF that leads to bad Bokeh is a ring. A

good depth of field algorithm will produce good bokeh, and an ideal depth of field algorithm would

produce whatever arbitrary bokeh may be desired. Because fast depth of field algorithms achieve

speed by using structured PSFs, care must be taken that the structure is appropriate. For example, a

Gaussian PSF produces acceptable bokeh, but a square PSF does not.
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2.2 Sampling Theory

When an image is blurred, we intuitively know that it contains less information com-

pared to one that is in perfect focus. Indeed, a blurred image can be subsampled without loss of

information. That is, we can reduce the resolution of the image without losing any details. The

full-resolution blurred image can later be reconstructed from the samples. One consequence of

sampling theory is that there is no need to laboriously render every pixel of a blurred image. We

can instead render a reduced resolution image, and reconstruct. This is the basis for the pyramid

method. Sampling theory will also be important for the tensor method.

2.3 Spreading vs. Gathering

(a) An image blurred by gathering. Notice the banding

artifacts caused by depth quantization.

(b) An image blurred by spreading. Notice the lack of

artifacts, even though it has the same quantization as (a).

Figure 2.1: Comparison of spreading vs. gathering.

2.3.1 Spreading

Spreading is a type of filter implemented as follows: for each input pixel, determine the

point spread function, and place it in the output image, centered at the location of the input pixel.

The point spread functions are summed to determine the output picture.



8

Spreading filters are appropriate for depth of field and motion blur, due to the image

formation process. In the case of depth of field, each pixel in the input image can be roughly

thought of as corresponding to a point in the input scene. Each point in the input image emits or

reflects light, and that light spreads out in all directions. Some of that light enters the lens and is

focused towards the film. This light forms the shape of a cone. If the point is in perfect focus, the

apex of the cone will hit the image plane (film, retina, sensor, etc). When the apex of the cone hits

the image plane, the scene point is imaged in perfect focus. When a different part of the cone hits

the sensor, the point will image as a disk of some kind, i.e. a point spread function. The image

formation process suggests that spreading is the right way to model depth of field. The filters in this

thesis were motivated by the need for depth of field post-processing.

A bright point of light ought to image as a PSF with size and shape determined by that

point. In a post-processing method, it is easy to simply spread each input pixel and obtain the desired

effect. For a gather filter to handle PSFs correctly, it would have to consider that potentially any

pixel in the input image could contribute to any output pixel, each with a different PSF. The effective

filter kernel for this high quality gather method would have a complicated shape that depends on the

scene. This complicated shape prevents acceleration methods from being effective.

The image formation process for motion blur works as follows: each point in the scene

(pixel in the input image) moves through some path during the time when the shutter is open. This

means that each input pixel draws out a path of light on the sensor. That is, the point spreads out into

a path-shaped point spread function. Clearly, motion blur is naturally implemented as a spreading

filter.

See Figure 2.1 (left) for an example of an image blurred by spreading.

2.3.2 Gathering

Gathering is a type of filter that is implemented as follows: the color of each output pixel

is determined by taking a linear combination of input pixels, typically from the region surrounding

the location of the desired output pixel. The input pixels are weighted according to an application-

dependent filter kernel.

Gathering is the appropriate type of filter for texture map antialiasing, as will be clear

when we examine how antialiasing works. Texture map antialiasing works as follows: when a

textured object is viewed from a distance, the texture will appear relatively small on the screen.

Several or even many texels will appear under each pixel in the rendered image. Since the texture
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mapping is many to one, the appropriate thing to do is to average all the texels that fall under a pixel.

The averaging should use appropriate weights, generally weights that fall off with distance. Clearly,

texture map antialiasing is a gathering process, because each output pixel is found by averaging

several input pixels. Gathering can be used to blur images, but the results will suffer from artifacts

See Figure 2.1 (right) for an example of an image blurred by gathering. Observe the banding

artifacts. Each band is a discrete region of blur. The continuous blur map is rounded to the nearest

integers, to make the filters faster. With gathering, each output pixel is determined independent of

the others, so the bands are easily visible. With spreading, the output pixels near the boundaries of

the bands contain contributions from pixels on either side of the bands, so the bands are not visible.

Gathering As an Approximation For Depth of Field

Fast gathering methods are common [26, 29, 80], but until the methods described in this

thesis were introduced, fast spreading was virtually unknown. Therefore fast depth of field was

implemented as gathering, because this was seen as the best way to make it fast. The approach to

using gathering is simply to determine the PSF, but then use it as a filter kernel for gathering [36].

This is simple and fast, and indeed produces blurred images with a blur that varies according to

depth. However, this generates incorrect results. Artifacts can be seen wherever the blur is variable

from one pixel to the next. For high contrast images, artifacts can be seen even for smoothly varying

blur. Bright points ought to image as perfect images of the PSF, but due to the use of gathering,

the PSF appears distorted. The worst artifacts occur at depth discontinuities. Blurred foreground

objects ought to have soft silhouettes, but when gathering is used, sharp discontinuities appear at

the silhouettes.

Gathering As a Correct Solution For Depth of Field

Distributed ray tracing is usually implemented as backwards ray tracing, i.e. rays are

traced from the input pixels, through the lens, and into the scene. Output pixels are thus created as

linear combinations of points from the input scene. Clearly this is gathering, because each output

pixel is determined as a weighted average of colors from the input scene. However, distributed ray

tracing produces correct results, and we in fact consider it to be the gold standard by which post-

processing is measured. So if gathering produces artifacts, how does ray tracing avoid the artifacts?

Distributed ray tracing achieves correct results by taking a very complex linear combination. It is

interesting to observe that a very complex set of weights is required to achieve the effect of spread-
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ing. Ray tracing can pull in scene points from anywhere in the scene, in exactly the correct way.

The downside is that this is very slow, and methods to accelerate it are inadequate. Each ray must

be laboriously traced, and when the blur is large, a great many rays are required. Fast gathering

methods, on the other hand, exploit simplicity in the filter kernel weights to achieve speed. Thus

fast gathering methods are doomed to be inaccurate, and accurate gathering methods are doomed to

be slow.

(a) A region with essentially uniform

blur. Observe that the PSF and filter ker-

nel are essentially the same.

(b) A region with smoothly varying

blur. Observe that the PSF is distorted

in a smoothly varying way.

(c) A region with discontinuous blur.

Observe that the PSF is extremely com-

plex and discontinuous.

Figure 2.2: When gathering is used, the effective PSF becomes distorted. The filter kernel in this
example is a square (bottom inset) but the PSF can end up wildly different (top inset) from the
desired square. Due to duality, this figure also illustrates the complex filter kernels required to force
gathering to achieve the correct PSF. Under this interpretation, the bottom inset shows the PSF, and
the top inset shows the necessary filter kernel. The complexity of these filter kernels precludes their
use in fast gathering methods.

There is an interesting duality that occurs when gathering is substituted for spreading. We

have already established that complex filter kernels are required for gathering to emulate spreading.

Interestingly, complex PSFs are inadvertently introduced when simple filter kernels are used during

gathering. These complex PSFs are essentially the same as the aforementioned complex weights.

These complex PSFs are the distorted PSFs that we wish to avoid. See Figure 2.2 for an illustration

of this duality.

Symmetric Filters

There exists a class of filters that we call symmetric. These filters are equally well de-

scribed as spreading and gathering. For symmetric filters, the filter kernel is the same as the PSF.

Spatially varying symmetric filters do not have particularly simple PSFs, nor do they have particu-

larly simple filter kernels. However, as long as the filter is smoothly varying, very high performance
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can be achieved through a very simple technique that we call the tensor method. Symmetric filters

are an interesting and unexpected development of this research.

Any time the PSF is of the same size and shape throughout the entire image, we have a

symmetric filter. Spatially-varying symmetric filters are not very intuitive, and are best understood

in terms of the blur matrix. Simply put, we can construct a symmetric blur matrix by placing

Gaussians down the diagonal. Another way to think of it is to treat the fundamental operation not

as a gather or as a spread, but instead as a gather followed by a spread. That is, for each pixel, first

gather some filter kernel, then use that filter kernel to spread. The symmetric case works best when

the blur varies smoothly.

Converting Between Spreading And Gathering

Spreading and gathering are really just two different ways of looking at linear filters,

whether by columns or by rows. A spreading matrix will have simple columns, but a gathering

matrix will have simple rows. However, all matrices, whether spreading or gathering, have both

columns and rows. If we were to construct the entire matrix, whether row by row or column by

column, we could easily extract either rows or columns. In this manner, we can in theory convert

between spreading and gathering. However, the conversion is not straightforward in practice, be-

cause the matrix is very large. For example, if the image under consideration is 1000x1000, then

the matrix has dimensions 1000x1000x1000x1000. Building this matrix would be prohibitive both

in time and space.

We can speculate about ways to carry out the conversion more efficiently, though we have

not implemented any conversion method. We can imagine building the matrix directly in com-

pressed form, using compressed rows or columns, and then reading compressed rows or columns

out. As long as the compression is good enough, this approach could potentially be reasonably fast

and efficient.

2.4 Exploiting Kernel Structure

The fast spreading methods achieve speed by working with compressed PSFs. First, a

compressed form of the PSF is found. Next, the image is filtered with the compressed PSF to yield

an intermediate buffer. Finally, the blurred image is constructed from the intermediate buffer by

reversing the compression step. We can create a variety of different methods depending on what
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compression scheme we choose.

One class of methods compresses the PSFs by taking their derivative. Clearly this only

leads to fast methods when the derivative is sparse. Derivatives are simplest in 1D. Box functions

have particularly simple derivatives, being nonzero only in two places. Piecewise-polynomial PSFs

are also useful, as they can describe a variety of shapes, and become sparse when differentiated

several times.

One way to differentiate a 2D function is to take a partial derivative. For example, we can

take the horizontal derivative of a circle, yielding a function that is nonzero only along the perimeter.

This is simple, but very large circles have very large perimeters, so the compressed PSF might not

be sparse enough. Another way to differentiate a 2D function is to hope that it is separable. We

can factor it into two vectors, then differentiate the vectors. This is very useful for polynomials, as

tensor-product polynomials are a standard way to create 2D surfaces.

Another class of methods compresses the PSF by sampling it at the Nyquist limit. The

PSF may be large, but so long as it is band-limited, we can express it compactly. This idea will lead

to the pyramid method.

2.5 Summary of Important Terms

Image filter: An image filter is any process that transforms one image into another. This

is so general that very little can be said about it without specializing.

Linear filter: A linear filter is an image filter that determines each output pixel by taking

a linear combination of input pixels. Linear algebra tells us that any linear filter can be described by

a matrix action on a vector, where the filter is the matrix and the image is the vector.

Tensor: A tensor is a matrix that can have order other than 2. Specifically, we will make

use of an order 4 tensor. This is so that we can consider our image as an order 2 vector, i.e. we

maintain the 2D structure. Tensor multiplication can be easily defined by analogy with how ordinary

matrix-vector multiply works.

Blur filter: Blur filters are a type of image filter that makes images look out-of-focus. In

more technical terms, blur filters attenuate high frequencies.

Point spread function: Point spread function (PSF) is another word for impulse response.

The PSF is the image of a single pixel after having been filtered. If we know the PSF for ever pixel,

we have fully defined a linear filter.

Filter kernel: Seeing how each output pixel of a linear filter can be described as a linear
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combination of input pixels, we can define a filter in terms of what weights the linear combination

uses. The set of weights needed to determine a single output pixel is that pixel’s filter kernel.

Spreading: Spreading filters are the type of linear filter where each input pixel is expanded

into a point spread function, and the point spread function are accumulated into the output image.

Spreading is the appropriate type of filter for depth of field, motion blur, and other applications.

Gathering: Gathering filters are the type of linear filter that is best described as com-

puting output pixels by taking a linear combination of input pixels. Note that gathering filters are

appropriate for texture mapping downsampling.
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Chapter 3

A Linear Algebra Theory of Image

Filters

3.1 Introduction to Linear Filters

We take a linear algebra approach to analyze and discover blurring acceleration tech-

niques. Consider the all-in-focus image to be a vector, and consider the blurring operation to be

a matrix acting on that vector. The matrix is a function of the depth map, the focus and aperture

parameters, and the desired PSFs. For an image of N pixels, the resulting matrix has N2 entries.

Except in the case of only small amounts of blur, enough of these N2 entries are nonzero that direct

application of the matrix leads to very slow performance. See Figure 3.1 for an example of a blur

matrix (a convolution, in this case). Fast blur methods can be found by analyzing structure in the

rows, columns, or blocks of this matrix.

In the above discussion, an image was considered a vector, ignoring the important issue

of how to convert an image into a 1D vector. There are several different ways to treat an image as

a vector, we could stack the rows, or stack the columns, or we could keep the 2D structure intact,

and consider the linear operator as an order-4 tensor. The latter option is best, as it preserves the

structure of the operator, in that adjacent elements always correspond to adjacent pixels. For clarity,

we will generally present in terms of the order-2 matrix, operating on a 1D image. However, the

insights apply to the order-4, 2D case in a straightforward way.

Matrix-vector multiply can be understood as operating row-by-row (Figure 3.2) or column-

by-column (Figure 3.3). In the row approach, each element of the output vector is computed as a
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Figure 3.1: A convolution matrix. Multiplying this matrix by a vector convolves that vector with a
Gaussian.

Figure 3.2: Matrix vector multiply can be implemented row-by-row. This corresponds to a gathering
filter.

linear combination elements of the input vector, weighted by a row of the matrix. In the column

approach, the output vector is a linear combination of the columns of the matrix, weighted by the

elements of the input vector. The row approach corresponds to gathering, and the column approach
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Figure 3.3: Matrix vector multiply can be implemented column-by-column. This corresponds to a
spreading filter.

corresponds to spreading.

Much work has been done on fast blurring for antialiasing minimized texture maps. These

methods work by exploiting structure in the filter kernel used for averaging. The filter kernels corre-

spond to the rows of the blur matrix, though this fact is generally not discussed. These methods can

be seen as achieving speed by representing the matrix compactly via simple, high-level descriptions

of the rows.

Texture filtering methods work well for texture mapping, but unfortunately don’t serve

well for depth of field. The rows in a depth of field blurring matrix are incoherent, because PSFs lie

down the columns, rather than the rows. Attempts to shoehorn the texture filter methods into depth

of field rendering lead to artifacts, which are particularly visible at depth discontinuities.

The difference between the matrix built row-by-row and the matrix built column-by-

column can be described as gathering and spreading. In the row matrix, input pixels are averaged

to produce an output. In the column matrix, input pixels are spread out amongst the surrounding

region. In some cases, such as when the filter kernel or PSF is the same for each pixel, the matrix is

symmetric, so this distinction vanishes.
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3.2 Details Of Linear Filters

Let I be an image that we wish to blur (input). Let O be the blurred image (output). In

general, linear image filters can be written as follows:

Ox,y = ∑
i, j

Ix+i,y+ j ×Kx,y,i, j

Each pixel in the output image is a linear combination of pixels in the input image. The

input pixels are weighted with entries of K . We will find it convenient to consider O and I to

be matrices, and K to be an order-4 tensor. Assuming an appropriate definition for matrix-tensor

multiplication, we can rewrite the filter as follows:

O = K I

This formalization is very general, and we can design any type of linear filter by creating

an appropriate K . Visualizing and discussing K is difficult, because it is four dimensional. For

purposes of discussion, we will make analogy to the two dimensional case, where O and I are

vectors, and K is a matrix. This allows us to speak of rows and columns. We define the (x,y)th

“row” of K as the matrix found by allowing (i, j) to vary while keeping (x,y) fixed. We define the

(i, j)th “column” of K as the matrix found by allowing (x,y) to vary while keeping (i, j) fixed.

Image processing often deals with convolution of an image with a 2D filter kernel. K

represents a convolution when each row or column is a copy of the filter kernel, shifted by 1 relative

to the previous row or column. It is interesting to note that if we construct K by placing the filter

kernel in the rows, we get exactly the same K as if we placed the filter kernel in the columns.

This thesis is concerned with spatially-varying filters. Therefore K will be made up of

different filter kernels, rather than translates of a single kernel. In the spatially-varying case, we get

one K if we put the filter kernels in the columns, and a different K if we instead put the kernels in

the rows. We will refer to K as a spreading filter if it was constructed by columns. We will refer

to K as a gathering filter if it was constructed by rows. We will refer to the columns of a spreading

filter as point spread functions (PSFs).

For a width by height image, K has dimensions width by height by width by height.

Therefore evaluating the matrix-tensor multiply is exceedingly expensive in general. Usually the

PSFs are substantially smaller than the image, so K is often somewhat sparse. Direct filtering

with small PSFs is therefore efficient. Direct filtering with moderate-to-large blurs is still quite

expensive, even though a substantial fraction of K is zero. This is because K is extremely large,

so if even a small fraction is nonzero, there are still very many nonzero entries.

This thesis introduces methods for efficiently evaluating the product K I , even when the
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PSFs are large and spatially-varying. We achieve speed by working with a compressed representa-

tion of K . Not just any compression scheme will do, we need a form of compressed matrix where

the product K I can be implemented without ever decompressing K .

Broadly speaking, we consider three types of compression. The first type compresses the

rows. Compressing the rows makes sense for gather filters; we simply represent the filter kernel in

some compact form. Several examples of this first type of compression are known in the literature,

these are the constant-time texture mapping anti-aliasing filters. The second type compresses the

columns. Compressing the columns makes sense for spreading filters; we simply represent the PSF

in some compact form. Spreading filters are desirable for creating blurred images, and are thus a

major component of this thesis. The third type compresses blocks in K . This makes sense when

K is smooth. K will be smooth when the PSFs are smooth and the variation between adjacent

PSFs is gradual.
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Chapter 4

Previous Work

4.1 Gathering

Fast image filters of the gathering type have been extensively investigated, primarily for

texture map antialiasing.

Antialiasing is an area of computer graphics that has important ideas in common with

image filters. In fact, gathering filters were originally created to aid in texture map antialiasing.

Antialiasing deals with the fact that a pixel can only have a single color, yet multiple objects often

exist within a single pixel. The naive solution is just to take a single sample, typically at the center

of the pixel. This leads to aliasing, which looks like flickering, jagged edges, and moiré patterns.

Much work has been done to come up with solutions to the aliasing problem.

The most common antialiasing method is to take multiple samples inside the pixel. An

important question is how to distribute the samples within the pixel. For a given number of samples,

it is found that random (stochastic) distributions are better than uniformly spaced distributions.

Among the random distributions, Dippe and Wold found that a Poisson disk distribution produces

the best results [21]. The Poisson disk distribution is an example of what is known as a blue noise

distribution. Blue noise means that the samples lack low frequency correlation, possessing only high

frequencies. Blue noise is a desirable property because low frequencies in the distribution leads to

artifacts. Point-sampling anti-aliasing methods can be used as gather methods for image filtering.

That is, blue noise distributions can be used to gather samples from an input image in order to filter

it. Stochastic sampling is not applicable to spreading, so we will not explore it further.

The fast spreading methods that this thesis is concerned with are in a sense duals of

gathering filters. Gathering filters were originally intended for texture map antialiasing, but they
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can also be used to blur images.

Crow’s summed area table is a gathering method that enables arbitrarily large box filters

in constant time [19]. First, a table is built from the image. Second, each output pixel is determined

by adding and subtracting four values from the table. Summed area tables are fast and simple, but

are limited to box filters, and support gathering only. This thesis is mostly about spreading filters,

rather than gathering, and our goal is to be far more general than mere box filters.

Hensley described a real-time implementation of summed-area tables that runs on the

GPU [36]. He uses a parallel technique called recursive doubling to split the operation up into

multiple threads. He maps the algorithm onto the DirectX graphics pipeline to allow easy imple-

mentation. It is possible to use Hensley’s method as one step in our fast rectangle spreading and fast

polynomial spreading methods. Hensley’s method, being a summed-area table method, is limited to

rectangular or polynomial PSFs.

Heckbert extended summed area tables to enable gathering with arbitrary polynomial filter

kernels [33]. Our polynomial PSF spreading method is related to Heckbert’s method but ours is

spreading whereas his is gathering. Heckbert did not address the spreading issues that this thesis

does.

Williams introduced MIP-maps, a very popular gathering filter usually used for texture

mapping [80]. A MIP-map is a pyramid, i.e. it contains multiple copies of the input image, each

copy at an increasingly reduced size. Image pyramids have a long tradition in computer graphics,

dating back at least to [2]. To gather a kernel of a given size using MIP-maps, color is read from

an appropriate pyramid level. To get around the fact that the levels are discrete (and that the pixels

are large in the reduced size images), trilinear interpolation is used. Unfortunately, MIP-maps are

gathering-only, and the trilinear interpolation leads to a less-than-ideal filter kernel. We instead

introduce spreading methods with flexible filter kernels.

Both Fournier and Fiume [26] and Gotsman [29] introduced high quality gather filters.

While these two methods differ in details, they operate under essentially the same underlying prin-

ciples. They achieve speed by precomputation. The simplest type of precomputation is to filter the

image ahead of time, and then read from the filtered image at runtime. These two papers improve

on the basic precomputation idea by prefiltering not with the actual desired filters, but rather with

basis functions such as polynomials or Gaussians. These basis functions span a space of filters, and

output images can be created by taking linear combinations of the prefiltered images. If the pre-

computation approach were reversed to turn it into a spreading method, the cost of these methods

would be prohibitive for our purposes, as the precomputation is a time consuming process.
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4.2 Spreading

Splatting is a technique originally introduced for volume rendering for medical imaging.

Each sample in the 3D volume is rendered as a small blob, or splat [83]. When the samples are far

apart, larger splats are used, and when the samples are close together, smaller splats are used. The

purpose of using splats, rather than mere point samples is to fill the spaces in between samples, so

that there are no holes in the output image. Splatting is very similar to filter spreading, as in both

cases Gaussians are accumulated in the image plane. Splatting generally does not use acceleration

techniques, so performance is slow if the splats are large and overlap substantially. We suggest that

it is possible to accelerate splatting using our fast filter spreading techniques.

Krivanek described a method of introducing efficient depth of field rendering into a splat-

ting framework [50]. The basic rendering framework is to display point-sample models via splatting.

Depth of field is introduced by allowing the size of the splats to grow in size within the blurred re-

gions. To prevent performance from degrading when splats are large, reduced resolution versions

of the scene are used in the blurred regions. Krivanek’s method is an object-space technique, but it

bears some similarity to our tensor-based image filter.

Hierarchical splatting is a technique for performing volume rendering at interactive rates

[51]. This technique achieves the real time rates by taking advantage of large regions of approx-

imately homogeneous materials. When rendering such regions, there is no reason to draw a great

number of small, overlapping splats. Instead, a fewer number of larger splats can be used. Addi-

tional speed can always be achieved, at the expense of some quality, by forcing this compression

to happen, even in regions where it introduces error. Hierarchical splatting bears some similarity to

our tensor technique, as both compress nearby splats into fewer, larger splats. However, hierarchical

splatting is purely a volume rendering technique, whereas our methods are suitable more general

use, both for volume rendering and for a variety of other applications.

Potmesil and Chakravarty were the first to describe depth of field postprocessing methods

in computer graphics [67]. They used a filter spreading method, although they did not use the

term filter spreading to describe what they were doing. They used a very detailed optical model

to derive PSFs that include realistic complex diffraction fringes. Potmesil and Chakravarty used a

direct spreading technique, with no acceleration. As such, their method is quite slow. One aim of

this current thesis is to introduce faster algorithms for implementing methods such as Potmesil and

Chakravarty’s image filter.

Lee introduced several improvements to Potmesil and Chakravarty’s method [53]. First,
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they used layers to help resolve visibility. The did so in a novel way, using a technique they call per-

pixel layers. As pixels are spread, each pixel of the splat is potentially written to a different layer,

depending on the relative depths involved. Pixels closer to the front get written to a foreground layer,

pixels written to the back get written to a background layer, and pixels in the middle get written to

a midground layer. After spreading, the layers are composited to produce the final result. Lee’s

method is fairly slow, as they use a direct spreading method, unlike the fast methods of the current

thesis. Our fast spreading methods may be of some use in accelerating Lee’s layering scheme.

We have recently published our first paper that is explicitly about filter spreading [48]. In

this paper, we introduce the notion that filter spreading can and should be accelerated via appropriate

techniques. Specifically, we used a variant of summed area tables, modified to perform spreading.

The basic inverted summed area table (SAT) method only works for rectangular PSFs. We extend

this to allow two additional kinds of PSF. The first kind is that which has an arbitrary outline, but

a constant-intensity interior. The arbitary outline introduces a quality/performance tradeoff, as this

extended method is somewhat slower than the rectangle method. Our alternative extension allows

hybridizing with arbitrary PSFs. In regions where the truly desired PSF is especially likely to be

visible, we spread the truly desired PSF. In regions where contrast is low, the PSF cannot be seen

clearly, so we use the fast rectangular PSF to achieve speed. In this paper we used a simple heuristic

to determine at each pixel whether to use an accurate or whether to use a fast PSF.

In [47], Kosloff, Hensley, and Barsky have extended the fast filter spreading method to

enable arbitrary polynomial PSFs. The technique uses the fact that the Nth derivative of an Nth

order polynomial is sparse. The technique easily handles piecewise polynomials, and allows the use

of more pieces and higher order to achieve smoother, more flexible PSFs. Lower order polynomials

are useful for situations where speed and simplicity are paramount.

4.3 Other Fast Image Filters

The fast Gauss transform [77] is a method from the applied mathematics community for

computing the sum of a great many Gaussians efficiently, with provable error bounds. The fast

Gauss transforms works by binning the input into boxes and approximating the contents of each

box with a Taylor expansion. The output is similarly represented. Various theorems are employed

to transform the input boxes into the output boxes. Finally‘, the Taylor series are evaluated to extract

the output. The fast Gauss transform can be used as an image filter for implementing Gaussian blur.

Unfortunately, to produce reasonable image quality, it requires a great many terms in the Taylor
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expansion, and so performance is inadequate compared to methods custom made for fast computer

graphics.

The Fast Fourier transform (FFT) is a traditional signal processing tool [27]. A mathemat-

ical identity known as the convolution theorem shows that image filters can be applied efficiently

with the help of the FFT. However, convolution is limited to filters that are spatially invariant, i.e.

they have the same filter kernel for all pixels. Convolution is a useful tool, but for many applications,

spatially varying filters are required, so the FFT is not a solution.

Recursive filters are a class of algorithms that efficiently compute each pixel by reusing

previously computed pixels. Recursive filters can in principle work with a wide variety of filter

kernels, but in practice care must be taken to ensure that the filter remains fast. Tan showed how to

use recursive filters for Gaussian kernels, using several different formulations [78]. Piponi showed

how to use recursive filters for polygonal shaped filter kernels, particularly hexagons [65]. Tan’s

method is strictly speaking neither spreading nor gathering, so it is not applicable to the applications

of this proposal. Piponi’s method comes in both a spreading and a gathering form, and is thus useful

for our purposes. However, Piponi’s method works only for polygonal PSFs, and is efficient only

for polygons with a small number of edges. While Piponi’s method is useful, we seek more general

techniques.

Concurrent with the work described in this thesis, Piponi described the relationship be-

tween gathering and spreading filters, and showed how to convert from one to the other [65]. He

observed that gathering and spreading are related via a matrix transpose. He then showed how the

code that implements linear filters can be modified in a mechanical fashion to compute the transpose.

4.4 Other Relevant Depth-of-Field Previous Work

One common class of techniques for calculating depth of field involves working with the

original 3D scene representation. We refer to these as object-space techniques, because they work

directly with the underlying scene objects. Typical object space techniques include distributed ray

tracing, accumulation buffer, and light field techniques. These method are outside the scope of

this thesis, because such methods are not image filters at all. Please see Barsky’s survey for more

information on object-space techniques [7].

Much work on producing blurred images has been carried out in the name of depth of

field postprocessing. Some of these methods require nothing more than images and depth maps, we

refer to these as image space techniques [8]. Please refer to Demers’ survey for a further review of
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previous approaches to depth of field rendering [20].

Discretization, i.e. the partitioning of the continuous space of blur levels into a manage-

able set of bins, is an important issue in image filtering and depth of field [10] [9]. Discretization

can improve performance and help simplify image filters, both the gathering type and the spreading

type. Discretization must be done very carefully, or artifacts will result. Barsky’s previous work

showed that a nonlinear spacing of the bins is preferable, due to the logarithmic nature of the human

visual system. Our previous work on discretization also contained work on occlusion. Occlusion

is the phenomenon where foreground objects block the view of background objects. In the case

of depth of field, occlusion can be very complicated to deal with correctly. Please see Barsky’s

previous work for a detailed discussion of occlusion, as occlusion is mostly outside the scope of the

current thesis.

Generalized depth of field (gDOF) is the notion that there is no need for synthetic depth

of field to be bound by the same physical and optical limitations that bound real depth of field.

Specifically, gDOF allows effects such as tilted focus planes, nonplanar focus regions, and multiple

non-adjacent in-focus regions. There are at least as many different ways of rendering gDOF as there

are ways of rendering realistic depth of field. Some of these methods involve image filters, and are

thus relevant to this thesis.

One method that works well involves simulated heat diffusion [46]. Pixel colors are

treated as heat, and simulated heat flow leads to the appearance of blur. This method has the ad-

vantage that it produces very general results; an arbitrary blur field can be used, and heat diffusion

leads to a reasonable-looking blurred output.

A different type of gDOF technique is based on distributed ray tracing. The novelty lies in

using nonlinear rays, meaning the rays curve rather than simply follow straight lines. Nonlinear dis-

tributed ray tracing provides an interesting tradeoff, enabling higher quality than the heat diffusion

method, at the expense of somewhat less flexibility.

Barsky used wavefront data from human patients to drive a depth of field simulation [6].

The wavefront data gives us the point spread functions for the patient’s eyes. Those point spread

functions were used to realistically blur real and synthetic images. Speed was not the issue, and

render times were measured in minutes. It may be possible to speed up vision realistic rendering

using the fast filter spreading methods of this thesis.

A light field [55] or lumigraph [28] is a method for storing the rays of light that are present

in a region of space. A light field captures the appearance of objects from many points of view. A

light field can thus be used to render an object from various vantage points. Aside from being a
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general-purpose image-based rendering tool, light fields are of particular interest to depth of field.

If we capture all the rays of light that pass between the lens and the sensor of a camera, we have

all the information we need to to render images with depth of field, with various focus and aperture

parameters. Distributed ray tracing can be viewed as tracing all the rays in the lens/sensor light

field, and then accumulating those rays on the sensor.

Shinya [74] described a depth of field postprocessing method that correctly handles visi-

bility. Shinya’s method involves creating a ray distribution buffer (what we now call a lens/sensor

light field) for an image with a given depth map. When two rays land at the same position in the ray

distribution buffer, visibility is handled via Z-buffering. Shinya’s method achieves excellent results,

but is very expensive in terms of memory and speed.

Kolb simulated particular systems of camera lenses, including aberrations and distortions,

using distributed ray tracing [44]. Methods based on distributed ray tracing faithfully simulate

geometric optics, but due to the number of rays required, are very slow. The accumulation buffer

uses rasterization hardware instead of tracing rays, but also becomes very slow for large blurs,

especially in complex scenes.

A realtime postprocess method was developed by Scheuermann and Tatarchuk, suitable

for interactive applications such as video games [72]. However, this approach suffers from depth

discontinuity artifacts, due to the use of gathering. This method selectively ignores certain pixels

during the gathering in order to reduce intensity leakage artifacts; however, due to the use of a

reduced resolution image that aggregates pixels from many different depths, this method does not

eliminate them completely. Their method does not allow for a choice of point spread function; it

produces an effective PSF that is a convolution of a bilinearly resampled image with random noise.

Our methods enable a choice of PSF, and eliminate the depth discontinuity artifacts.

A more recent realtime depth of field postprocess method was developed by Kraus and

Strengert, who used pyramids to perform fast uniform blurring [49]. By running the pyramid al-

gorithm multiple times at different pyramid levels, they approximate a continuously varying blur.

Bertalmio et al. showed that depth of field can be simulated as heat diffusion [11]. Later, Kass et al.

used a GPU to solve the diffusion equation for depth of field in real time using an implicit method

[43]. Diffusion is notable for being a blurring process that is neither spreading nor gathering. Dif-

fusion, much like pyramids, inherently leads to Gaussian PSFs. Mulder and van Lier used a fast

pyramid method at the periphery, and a slower method with better PSF at the center of the image

[60]. This is somewhat similar to our hybrid method, but we use an image-dependent heuristic to

adaptively decide where the high quality PSF is required.
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Zhou described a depth of field postprocessing method based on separable image filters

[82]. Separable filters perform 2D filtering by first filtering horizontally, then vertically. When

using direct filtering without acceleration, the separable approach is significantly faster than the

non-separable approach. Note that separable image filters have performance that scales linearly with

the width of the point spread function. Note that this is better than naive blurring, with performance

that scales with the area, rather than the width. We aim, however, to produce constant-time image

filters, whose performance does not degrade at all with increased filter size.

Rokita described a fast image filter that operates via repeated 3x3 gathering [69]. 3x3

gathering is fast and simple, and can be implemented in hardware. By repeatedly performing the

convolution, Gaussian filters larger than 3x3 can be achieved. Rokita’s method is fast and simple,

but it is not a spreading method, and is limited to very smooth kernels such as Gaussians, due to the

central limit theorem.

Lee created an improved gather filter for depth of field postprocessing by extending MIP-

maps [54]. First, while creating the MIP-maps, 3x3 filters are used for downsampling, leading

to enhanced filter quality compared to the usual 2x2 filters. Second, higher quality is achieved

by reading more entries from the MIP-map, compared to what Williams originally proposed. The

quality is enhanced compared to the original MIP-map formulation, but still falls short of other

methods, even the simplistic summed-area tables. Our methods have higher quality than Lee’s

enhanced MIP-maps, and are spreading, rather than gathering.

Lee showed that raytracing, which is typically designed to take scene geometry as input,

can in fact be used as a postprocess method. This technique treats the depth buffer as an image based

scene representation. The depth buffer is essentially a heightfield, enabling efficient ray traversal.

This technique can be considered a gathering method, because it gathers numerous rays to form a

single pixel. However, the gathering produces similar results to spreading, because ray tracing is an

accurate simulation of the optical image formation process. Lee’s raytracing method is specifically

designed to simulate depth of field, and is thus not applicable to the wide range of applications that

our filter spreading techniques are designed for.
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Chapter 5

Details of Fast Gather Filters

This thesis is primarily concerned with spreading filters, but it is necessary to first discus

gather filters, to establish the basic steps of fast filtering. Fast gathering filters were invented first,

and I construct fast spreading filter by reformulating the gather filters.

These methods are usually described as prefiltering; some kind of preprocessing is per-

formed to build a table, then the table can be efficiently queried to retrieve blurred pixels. The

simplest such table is simply an array of images, blurred with different filter kernels. If this array

is computed ahead of time, blurred pixels can be directly read, assuming the desired filter kernel

was included in the set. For kernels not in the set, we can take a linear combination of the available

kernels. Gotsman’s method works along these lines, using the SVD to find an optimal set of kernels

to span the desired set. Prefiltering can be quite time consuming, and so we seek faster methods for

real time use.

MIP-maps are a form of prefiltering where the prefiltered images are of reduced size. A

half sized image is created by averaging 2x2 blocks. The half-sized image is recursively down-

sampled to form the MIP-maps. Creating the MIP-maps is much more efficient than prefiltering

full-sized images, because the MIP-maps are small. Fast gathering can be performed by reading

pixels from appropriate levels of the MIP-map, as pixels from the coarse levels contain averages

over some region of the input. Trilinear interpolation is used when the desired pixel does not lie

precisely on any pixel in the MIP-map. MIP-maps are very fast and are directly supported by graph-

ics hardware, but the effective filter kernel is blocky and spatially-variant in an uncontrollable way,

leading to ugly-looking blur.

Summed-area tables (SATs) [19] are a clever way of tabulating the sum of all rectangular

regions within an image. A SAT has the same width and height as the image, but the precision
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requirements are higher. Each pixel in the SAT stores the sum of all pixels in the entire rectangular

region above and to the left of the pixel. The table can be constructed incrementally and separably,

such that only two quick passes through the image are required. To read the sum of an arbitrary

rectangular region, all that is necessary is to read the four corners of that rectangle. The four corners

must be added and subtracted appropriately to yield the correct sum.

Summed area tables are limiting because they only enable constant-intensity filter kernels.

Repeated integration tables [33] are a generalization of summed area table that allows polynomial-

valued filter kernels. The key insight is to realize that the summed area table is an integral of the

image. We then can see that the four corners form the separable derivative of the rectangular filter

kernel. The generalization is to perform multiple rounds of integration to yield a table. To read

from the table, we then construct the separable Nth derivative of the filter kernel. This derivative

tells us where to read from the table, and how to weight the values that are read. The integrals and

derivatives cancel, yielding the correct blurred image. However, the overall process is much faster

than direct filtering, because the derivatives of the filter kernel are sparse.

We developed a variant of summed area tables that enables filter kernels of arbitrary shape,

but constant intensity. The table is built by integrating only horizontally. Rather than storing sums

of areas, this table stores sums along scanlines. To read a shape of arbitrary outline, values must be

read from the table at each pixel along the perimeter of the filter kernel. The ability to handle filter

kernels with arbitrary outline is compelling, but performance suffers somewhat, as now the entire

perimeter must be read, rather than just the four corners.

All prefiltering methods are gathering methods. This is because output pixels are gener-

ated one at a time, by reading the table. The table is indexed by the location of the desired pixel,

and some description of how large and possibly what shape the filter kernel should be. The filter

kernel that should be applied to the input image to produce an output pixel is by definition a gather

kernel, corresponding to a row of K .

All of these gathering methods share a common structure; build a table from the input

image, and then perform a sparse gather on the table. The table is constructed such that the efficient

sparse gather has the same effect that a slow, dense gather would have on the original image. We will

show how to construct fast spreading filters by reversing the order of operations. That is, spreading

filters work by first performing a sparse spread to a table, and then constructing a final, blurred

image from that table. It is the nature of the table that a sparse spread will have the same effect that

a slow, dense spread would have in a naive spreading algorithm.
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Chapter 6

Fast Spreading Filters

6.1 Normalization

All blur algorithms have the potential to produce overly bright and overly dim pixels

unless special care is taken to normalize the filter. Normalization is simple in gather filters; simply

divide the blurred pixel by the volume under the filter surface (integral). The analogous approach

in spreading is to make sure that each PSF sums to one, by dividing through by the volume under

the filter surface (integral). This is sufficient when all PSFs are the same, but when overlapping

PSFs are different size or shape, hyper and hypo intensities show up at the overlap. Fixing this

requires an additional normalization step; filter an additional color channel. This additional channel

is initialized to have value 1.0 everywhere. After filtering is complete, normalize the colors by

dividing by the result of filtering this additional channel. The spreading filters and the tensor filter

in this thesis all require this extra normalization step. The normalization process is identical for all

filters, so the details will not be repeated in the description of the individual algorithms.

6.2 Rectangle Spreading

6.2.1 Algorithm

The idea behind the rectangle spreading algorithm is that we will achieve speed by re-

stricting our PSFs to rectangles of constant intensity. Rather than directly spreading the rectangles,

we will just write accumulate the four corners of each rectangle to an intermediate buffer. Some

of these corners will be positive, and others will be negative, to indicate whether we are entering
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(a) A simplified input image

with only three pixels.

(b) The result of spreading the

four corners of each pixel.

(c) After integrating horizon-

tally.

(d) After integrating verti-

cally, we have the final output

image.

Figure 6.1: An example of fast rectangle spreading in action.

or leaving the rectangle. After writing these corners, a reconstruction step must be performed on

the intermediate buffer to transform it into the final, blurred image. See Figure 6.1 for a simplified

example. In this figure, green indicates positive values, and red indicates negative values.

Below is the pseudocode for the delta spreading phase.

intermediate_buffer = allocate_zeroed_array(width,height);

For x = 0 to width-1
For y = 0 to height-1

{
radius = blur_map[x][y];
color = input_image[x][y];

top = clamp(y - radius,0,height-1);
bottom = clamp(y + radius,0,height-1);
left = clamp(x - radius,0,width-1);
right = clamp(x + radius,0,width-1);

area = ( (radius*2+1)*(radius*2+1) );

intermediate_buffer[left][top] += color/area;
intermediate_buffer[right][top] -= color/area;
intermediate_buffer[left][bottom] -= color/area;
intermediate_buffer[right][bottom] += color/area;
}

After all pixels have been spread, transform the intermediate buffer into the blurred im-

age by integrating the buffer horizontally, and then vertically. Below is the pseudocode for the
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integration phase.

For y = 0 to height - 1
For x = 1 to width - 1
intermediate_buffer[x][y] += intermediate_buffer[x-1][y];

For x = 0 to width -1
For y = 1 to height - 1
intermediate_buffer[x][y] += intermediate_buffer[x][y-1];

output_image = intermediate_buffer;

Figure 6.2: Tensor Product

To understand why the rectangle spreading method works, we must think in terms of

integrals and derivatives, and it is easiest to work in 1D. If we take the derivative of a 1D box

function, we find a positive impulse at the left end, and a negative delta at the right end. The

fast rectangle spreading method can be viewed as first taking the derivative of the box filter, then

filtering with that derivative, then finally integrating. This works because integrals, derivatives, and

filtering are all linear. The 1D method gets extended into 2D by taking the tensor product. First,

the four corner deltas can be derived by taking the tensor product of the 1D delta vector with itself

(see Figure 6.2). Second, the integration is performed in a separable manner, first horizontally, then

vertically.

6.2.2 Cost Analysis

The spreading step requires 4 writes per pixel. The integration step requires 1 write per

pixel for the horizontal phase, and 1 write per pixel for the integration phase. Therefore the rectangle
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spreading method has a cost of 6 writes per pixel. Observe that this cost is constant with respect to

the amount of blur. Rectangle spreading is thus O(1) per pixel, or O(N) in the number of pixels.

6.3 Polynomial Spreading

6.3.1 Intuition

The polynomial spreading method achieves speed by using the fact that piecewise poly-

nomial impulse responses become sparse after we take enough derivatives. We can view the polyno-

mial method as a generalization of the rectangle spreading method, where rectangles are simply first

order, constant-valued polynomials. For example, a constant-valued impulse response has a sparse

derivative, a linearly-varying impulse response has a sparse second derivative, and a quadratic im-

pulse response has a sparse third derivative. The method filters in real time by filtering with the

sparse Nth derivative, rather than directly with the impulse response. The filtered image is then

transformed into the correct output by taking the Nth integral.

To apply this process to 2D images, the filters are first constructed in 1D. Then, the 2D

filters are created as a tensor product of 1D filters. The 2D filter is spread, and integration proceeds

first by rows, then by columns. Integrating by rows and then by columns works because summed

area table construction is separable. The tensor-product nature of the filters is a restriction imposed

by the separable nature of summed area tables. This precludes, for example, radially symmetric

polynomials. The tensor-product restriction is less limiting than it may seem, however, because

it is possible to construct impulse responses by placing separable polynomials adjacent to each

other, leading to a piecewise separable impulse response. It may appear that introducing additional

polynomial pieces will degrade performance. In practice, this is not the case; when more blocks are

used, the order of the polynomials can be decreased, keeping costs approximately constant.

6.3.2 Algorithm

To blur an image using the polynomial method, iterate over each pixel in the input image.

An impulse response is selected for that pixel, in an application-dependent manner (see Figure 6.4).

For example, in the case of depth-of-field postprocessing, the impulse response is the point spread

function of that pixel for the desired lens model. Deltas for that impulse are determined, by taking

the derivative until sparsity emerges. In practice, the sparse derivative is found directly without the

need to ever explicitly construct the impulse response. These deltas are accumulated into a buffer
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at locations centered around the pixel in question. After each pixel has been spread, the buffer is

integrated to yield the final, blurred image (see Figure 6.5).

The pseudocode below implements our algorithm. In this pseudocode, input is the input

image, buffer is the buffer into which we accumulate, and output is the final, blurred image. The

aforementioned images and buffer are two dimensional floating point arrays of size width by height.

delta is a structure containing pixel coordinates x and y, and a floating point number intensity. For

clarity of exposition, this code operates on monochromatic images. RGB images are easily and

efficiently handled by slightly modifying this code to use RGBA vectors and SIMD operations.

//Initialization:
//Clear all entries in buffer and output to 0.
//(clearing code omitted)
//Phase I: Spreading
for(int i=0; i<width; i++)
for(int j=0; j<height;j++)

//The filter size is application-defined
int filter_size = get_filter_size(i,j);

//Section 6.2 describes make_deltas
delta d[] = make_deltas(i,j,filter_size);
for k = 0:d.length

buffer[d[k].x][d[k].y] += d[k].intensity*
input_color[i][j];

//Phase II: Integration
for(int i=0; i < order; i++)
for(int y=1; y < height;y++)

accum = 0;
for(int x=0; x<width; x++)

accum += buffer[x][y];
output[x][y] = accum + output[x][y-1];

Figure 6.3: Pseudocode implementation of the polynomial method.

6.3.3 Impulse Response Design

The polynomial method is widely applicable to a range of image-processing operations

because it can apply a variety of different impulse responses. In this section, we describe how to
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(a) Deltas

Figure 6.4: The polynomial method requires only that these 9 values need to be written per PSF, for
PSFs of any size

(a) Deltas

Figure 6.5: An example of how a sparse set of deltas becomes a smooth approximation to a Gaus-
sian, after a few rounds of integration.
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construct deltas for those impulse responses, without the need to first construct the impulse response

and then differentiate.

The simplest possible impulse response for this method is a box. This is a simple example

of the polynomial method and is exactly the same as the rectangle spreading method. This is a first

order method with deltas located at the four corners of the desired box. The intensity of all four

corners is the same, and is determined by the color of the pixel. At the top left, top right, bottom

right, and bottom left corners, the signs are positive, negative, negative, and positive, respectively.

This filter is extremely fast and simple, but box filters are rarely the ideal choice of filter.

By convolving a box filter with itself N times, it is possible achieve an Nth order B-spline

basis function, which approximates a Gaussian. Nth order box filters are useful, for example, for

image smoothing and depth-of-field postprocessing.

Instead of four corners, there will be a grid of (order +1)× (order +1) deltas distributed

uniformly across the filter support. First, evaluate (−1)i
(order

i

)
to determine the signed intensities

for a one dimensional filter, where i ranges from 0 to order. Next, expand the vector of signed

intensities into two dimensions by taking the outer product of the vector with itself.

A simple way to use Nth order box filters to approximate an arbitrary low-frequency

impulse response is to subsample the desired response onto, say, an m×m grid. Then use an m×m

grid of repeated box filters as the approximate impulse response. Effectively, the repeated box filter

is a reconstruction kernel, used to upsample the low-resolution impulse response to the desired,

possibly large size. This works well, because Gaussians make good reconstruction kernels.

In general, it is possible to spread Nth order piecewise polynomials, using Nth order

repeated integration. To generate the deltas, differentiate the polynomial N times. For “well-

behaved” polynomials that can be described by controlling only the Nth derivative, the process

works smoothly. However, degenerate scenarios can occur, requiring lower order derivatives to be

directly controlled as well. In such cases it is necessary to split the filter into lower order components

and higher order components, filter each separately, and then combine.

6.3.4 Precision

The polynomial method can require a great deal of precision in the variable type used for

accumulating deltas and performing integration. It is critical that no bits of precision are lost during

any of the operations, because otherwise intensities will leak, leading to unacceptable artifacts. This

becomes problematic because during the course of integration, the values involved can become
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quite large. For high order polynomials, integration can cause overflow, rendering the algorithm

useless. I find that single precision floating point numbers are sufficient for second order integration.

Double precision polynomials can work at much higher order. Doubles should be sufficient for any

reasonable application.

6.3.5 Performance

The performance of the polynomial method depends on the order of the polynomial used,

and on the specific PSF being used. We found that the most useful PSF for this method is an

approximation of Gaussians. The number of deltas in this case is (order+1)2. I found second order

polynomials to have the right balance of performance and quality, so 9 deltas need to be spread,

incurring 9 writes.

Multiple integration proceeds by integrating one time after another. Since each integration

step has a horizontal and a vertical step, the total cost of integration is 2×order per pixel. Therefore

second order polynomials require 4 writes for integration. In total, the second order polynomial

requires 9 writes to spread the deltas, and 4 writes during integration, for a total of 13 writes.

Observe that the polynomial method is a constant-time filter, because no matter what order we

choose, performance does not depend on filter size.

6.4 Perimeter Spreading

6.4.1 Algorithm

PSFs in actual photographs are rarely if ever Gaussian, and certainly not boxes. In fact,

real PSFs commonly are circular or polygonal, with a roughly constant intensity. Piecewise polyno-

mial is not particularly convenient for such cases. PSFs of arbitrary perimeter can be achieved with

a variation of the rectangle spreading method. Simply write deltas at the left and right border of the

PSF, during the spreading phase, then integrate only horizontally. See Figure 6.6 for an illustration

of how this process works. The deltas on the left have a positive sign, and the deltas on the right have

a negative sign. This is much more expensive than the rectangular approach, as cost grows linearly

with PSF size, rather than stays constant. This cost is unavoidable, however, as it is impossible to

describe an arbitrarily-shaped PSF any more compactly.

Like the previous methods, this method can be understood as working with integrals and

derivatives. We are simply working purely horizontally, obviating the need for the tensor product.
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(a) The deltas for circular PSF. (b) The result of performing horizontal integration on the

deltas.

Figure 6.6: Illustration of the perimeter method for a circular PSF

The deltas at the left and right edge of a PSF are obtained simply by taking the horizontal derivative

of the PSF. The horizontal integral undoes the differentiation, much like the integration step in the

polynomial method. It is important to note that the differentation must be performed ahead of time,

with the deltas stored in a table. This amortizes the time-consuming process of scanning through

the PSF to find the deltas.

Below is the pseudocode that implements perimeter spreading.

//Preprocess the PSF at each scale (offline)
For each desired PSF radius r
scaled_psf = scale PSF to radius r;
i = 0;
For x = 1 to scaled_width-1
For y = 0 to scaled_height-1
difference = scaled_psf[x][y] - scaled_PSf[x-1][y];
if (difference != 0)
deltas[r][i].value = difference;
deltas[r][i].x = x - scaled_width/2;
deltas[r][i].y = y - scaled_height/2;
i++
deltas[r].count = i;

//At runtime
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intermediate_buffer = allocate_zeroed_array(width,height);

For x = 1 to width - 1
For y = 1 to height- 1
radius = blur_map[x][y];
color = input_image[x][y];
For i = 0 to deltas[r].count - 1
u = clamp(x + deltas[r][i].x,0,width-1);

v = clamp(y + deltas[r][i].y,0,height-1);
intermediate_buffer[u][v] += color*detas[r][i].value

For y = 0 to height - 1
For x = 1 to width - 1
intermediate_buffer[x][y] += intermediate_buffer[x-1][y];

output_image = intermediate_buffer;

6.4.2 Performance

The cost of spreading is 2 writes per row of the PSF. Therefore for a PSF of height H,

2×H writes are required for the spreading phase. The integration phase, being horizontal only,

requires just a single write per pixel. Observe that the perimeter spreading method is not a constant-

time filter, because cost does depend on the height of the PSF. Still, linear in height is a lot better

than the naive method, which is linear in the area of the PSF.

6.5 Pyramid Spreading

6.5.1 Algorithm

Our next fast spreading method is based on pyramids, and can be viewed as running MIP-

mapping [?] in reverse. The pyramid has its final level set to the resolution of the image. First,

the pyramid is initialized to all zeros. Next, each pixel in the input image is spread by selecting

a level of the pyramid, and writing a PSF to that level. Larger PSFs are written to coarser levels,

thereby keeping the cost approximately irrespective of the PSF size. It is straightforward to outfit

this method with a speed/quality tradeoff: although writing to finer levels enables more control over
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the PSF appearance, writing to coarser levels is faster. The final step is to upsample the coarse levels

through the pyramid, collapsing the pyramid into a final, blurred image. Care must be taken to use

upsampling filters that are sufficiently wide, otherwise block artifacts can appear. See Figure 6.8 for

an example of a pyramid and the resulting blurred output.

Since the number of levels that a pyramid has are finite, it is difficult to represent PSF sizes

that lie between two pyramid levels. We considered two possible solutions to this. The first approach

is to write to both of those two levels, each at an intensity proportional to where the continuous value

truly lies. The second solution is to write to the finer level, using a slightly larger PSF to compensate

for being at too fine a level. Both of these methods increase quality, but incur additional cost. In

practice, the first method was found to produce superior results insofar as nterpolating between two

smooth PSFs of different size happens to produce the appearance of an intermediate-sized PSF.

Whereas, although writing a slightly larger PSF to a slightly finer level does indeed lead to a PSF

of the correct intermediate size, this PSF will undergo a visible discontinuity if its size is increased

or decreased such that it lands in a different level. Even though the size is correct, PSFs at different

levels appear different, due to different rasterizations at different levels.

Figure 6.7: When computing a subpixel Gaussian, the continuous distance between Gaussian center
and pixel center is taken. It is critical that the Gaussian center is not snapped to a pixel location.

It is worth delving into the details of how to properly spread PSFs to a given level, and

how to upsample the pyramid. Although these operations could be implemented in various ways,

great care must be taken to produce the smoothest possible images, free of grid artifacts.

During spreading, we want to place a PSF located at a position dictated by the location

of a pixel in the input image. However, since the PSF is being spread to a coarse pyramid level,
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(a) Finest pyramid level. (b) Middle pyramid

level.

(c)

Coarsest

pyramid

level.

(d) Output of upsampling this pyramid.

Figure 6.8: The pyramid method spreads PSFs to various pyramid levels, then upsamples the levels
through the pyramid to yield a final, blurred image.

the PSF must be rendered with subpixel accuracy. Issues of how to properly anti-alias the PSF

can be simplified if we restrict ourselves to Gaussian PSFs, with Gaussian anti-aliasing filters. A

Gaussian convolved with another Gaussian is simply a larger Gaussian, so our filtered PSF is simply

a Gaussian of slightly larger size. The analytical nature of Gaussians makes them straightforward to

render with subpixel precision (see Figure 6.7). For each pixel within the support of the Gaussian,

determine the distance from the floating-point- valued center to the integer-valued pixel center; This

distance provides the distance within the Gaussian, with subpixel accuracy.

During upsampling, the pixels from the coarse layer should blend together in the finer

layer such that no grid artifacts are introduced. This is done by calculating each pixel in the finer

layer as a weighted average of pixels in the coarser level. The weighted average is performed using

a subpixel Gaussian in a manner very similar to the spreading step.

Below is the code for spreading a PSF to level i of the pyramid.

//Initialize pyramid

//pyramid[i] is a 2ˆi x 2ˆi image

//Therefore the levels have resolutions as follows.
//The following entries fill the pyramid_widths table.
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//level resolution
//0 1x1
//1 2x2
//2 4x4
//3 8x8
//4 16x16
//5 32x32
//6 64x64
//7 128x128
//8 256x256
//9 512x512
//10 1024x1024

//X and Y are initially at the full resolution of the
//output image.
//Scale them so that we are within the coordinate system
//of the current pyramid level.
X = (X/width)*pyramid_widths[i];
Y = (Y/width)*pyramid_widths[i];

int radius = 3;

float_type U;
float_type V;

//Spread a 7x7 Gaussian
for(int u = -3; u <= 3; u++)
for(int v = -3; v <= 3; v++)
{

//Find the floating point pixel location of
//where we are spreading to
U = X + u;
V = Y + v;

//Round U and V to the integer pixel grid,
// add .5 to get the pixel center
// and subtract from X and Y, the
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//floating point center of the Gaussian
//This yields du and dv are the
//floating point offset from the Gaussian
// center to the pixel center
float_type du = (int)U - (X-.5);
float_type dv = (int)V - (Y-.5);

//Compute the length of the offset
float_type dist = sqrt( du*du + dv*dv);

//The standard deviation was chosen by trial and error to be 1/3.
float_type stddev = 1/3.0;

//Evaluate the Gaussian
float_type G = exp(-(dist*dist)/(2*stddev*stddev));

//Divide through by the volume under the Gaussian
//for normalization purposes.
float_type weight = 1/(2.5*stddev*sqrt(2*3.14159));

//Cast the pixel location to an integer so we can write to the image
int iU, iV;
iU = U;
iV = V;

pixel_red(pyramid[i], iU,iV) += r*weight*G;
pixel_green(pyramid[i],iU,iV) += g*weight*G;
pixel_blue(pyramid[i],iU,iV) += b*weight*G;
pixel_fourth(pyramid[i],iU,iV) += 1.0*weight*G;

}

Below is the code for upsampling through the pyramid.

//Upsample

//Assuming that the pyramid level is of unit width,
// calculate the width of one pixel
float_type one_pixel = 1.0/pyramid_widths[i];
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//Iterate over the pyramid levels that we will upsample
for(int i = 0; i <= 8; i++)
{

//Iterate over each of the pixels in
//the level that we are upsampling to
for(int x = 0; x < pyramid_widths[i+1]; x++)
for(int y = 0; y < pyramid_widths[i+1]; y++)
{
int X = x;
int Y = y;

int radius = 3;
int U;
int V;

//Calculate the size of one pixel,
//assuming the pyramid level is of unit width.

float_type one_pixel = 1.0/pyramid_widths[i];

//Iterate over all the pixels
//within the support of the filter kernel.

for(int u = -radius; u <= radius; u++)
for(int v = -radius; v <= radius; v++)
{

//Scale the pixel location
//to match the coarser level,
//and shift to the location
//within the support of the filter kernel.

U = X/2.0+u+.5;
V = Y/2.0+v+.5;

//Compute the floating point offset based on where
//we are sampling the filter kernel.

float_type du, dv;
du = (X-.5) - U*2;
dv = (Y-.5) - V*2;

//Evaluate the magnitude of that offset.
float_type dist = sqrt((float_type) (du)*(du) + (dv)*(dv));

//Evaluate the Gaussian filter kernel.
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float_type stddev = radius*one_pixel;
stddev = radius/3.0;
float_type G = exp(-(dist*dist)/(2*stddev*stddev));
G /= (stddev*sqrt(2*3.14159));

//Write the weighted value to the next pyramid level.
pixel_red(pyramid[i+1],X,Y) += pixel_red(pyramid[i],U,V)*G;

pixel_green(pyramid[i+1],X,Y) += pixel_green(pyramid[i],U,V)*G;
pixel_blue(pyramid[i+1],X,Y) += pixel_blue(pyramid[i],U,V)*G;
pixel_fourth(pyramid[i+1],X,Y) += pixel_fourth(pyramid[i],U,V)*G;

}
}

6.5.2 Performance

The cost of spreading a Gaussian depends on the resolution of that Gaussian. However,

larger Gaussians can get written to coarser levels of the pyramid, so all Gaussians have approxi-

mately the same resolution, and hence the same cost.

We found that a 7x7 Gaussian is necessary to produce the smoothest results. The effect of

intermediate sizes are achieved by writing to two different levels. This means that 7×7×2, or 98

writes, are required per pixel. This means that the pyramid method is an expensive method. This is

necessary if we wish our PSFs to be effectively perfect Gaussians.

The cost of upsampling the pyramid must also be taken into account. For each level of

the pyramid except for the coarsest, upsampling from the next coarsest level must occur.

Since the entire pyramid can fit into a space somewhat less than twice as big as the finest

level, we can bound the cost by calculating the cost of upsampling 2×N pixels. Each pixel that

must be upsampled requires spreading 7x7 pixels, to achieve high quality. Therefore we can bound

the cost of upsampling by 98×N writes.
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Chapter 7

Tensor Filter

7.1 Algorithm

This next method is known as the tensor method, because it is derived from an analysis

of the blur tensor. To build intuition, we will develop the algorithm for the case of applying a 2D

matrix applied to a 1D image vector. The full version of this method can be viewed as arising from a

similar derivation, but for applying a 4D tensor to a 2D image. Fortunately, it will not be necessary

to work in 4D. The full algorithm will be clear once the simplified version has been elucidated.

The tensor method works by exploiting structure in the matrix. We need to find a way to

simplify the matrix such that the matrix vector multiplication is more efficient. A simple type of

matrix is one that is separable, meaning that it can be factored into the outer product of two vectors.

Given the factorization, the matrix-vector multiplication can be applied simply by multiplying the

input vector by the factors. Although blur matrices are not separable, we can still use this idea of

separable matrices to our advantage.

The first idea was to break the matrix into blocks, and then approximate each block as

being separable, but this turned out not to be a good approximation, thus the next idea was to use

the singular value decomposition (SVD) to get a better approximation. The SVD can be used to

find the best low-rank approximation to a matrix, for any given rank. A matrix of rank N can be

efficiently multiplied (if N is sufficiently small), because it is the sum of N separable matrices.

We used the SVD to find the best low-rank approximation for each of the blocks (see Figure 7.1).

Although this SVD method does work, it does not lead to the same level of performance gains that

our other methods achieve. Furthermore, the blur matrices for reasonable sized images are so large

that taking the SVD would be prohibitively expensive. Finally, all these problems notwithstanding,



46

Figure 7.1: Using the SVD to find the best separable approximation of blocks within the matrix.
From left right, the blocks are of increasingly small size.

the SVD would have to be taken ahead of time, offline, as a preprocess, making this method useless

for dynamic scenes.

(a) A radially symmetric Gaussian can factored into two vectors. Multiplying by these two vectors is much more efficient

than multiplying by the original matrix.

Figure 7.2: A radially symmetric Gaussian can be factored into the outer product of two one dimen-
sional Gaussians.

A better idea is to directly exploit the smoothness of the matrix by downsampling it. A

matrix can be understood as smooth if we view it as a grayscale image, and that image appears
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smooth. The larger the magnitude of the blur we are applying, the smoother the matrix is; this

enables coarser samplings without losing any detail. Given the coarse matrix, we then need a

way to apply that matrix to the full-resolution vector. This is done by observing that we could

reconstruct the original matrix by using reconstruction kernels. Reconstruction kernels restore the

original matrix by spreading a Gaussian for each sample. However, we do not in actuality want to

actually reconstruct the original matrix, but merely want to calculate the effect of its multiplication.

Fortunately, our Gaussian reconstruction kernels are separable (see Figure 7.2), so we can apply

them to the vector directly from their factorization as the outer product of two vectors.. We have

effectively represented our matrix as overlapping separable matrices. The overlapping nature of our

sub-matrices is a critical difference compared to the SVD method. The massive preprocessing of

the SVD method is also avoided, since the subsampled matrix can be computed much more easily

than the SVD.

Figure 7.3: A blur matrix can be adequately reconstructed by Gaussians placed down the diagonal.
For illustrative purposes, this example is for 1D blurring, i.e. we are only blurring horizontally. Left:
the blur matrix constructed out of Gaussians down the diagonal. Center: Every other Gaussian
removed, to make the remaining Gaussians more visible. Right: The result of blurring an image
with the matrix on the left.

Fortunately it is unnecessary to sample the matrix on a full 2D grid. Rather, samples can

be placed only down the diagonal (see Figure 7.3). This is because the blur matrix happens to have

all of its energy (nonzero values) centered around the diagonal. The band of energy has varying

size, depending on how much blur is required. To handle this varying size, the reconstruction

kernels must also have varying size. Substantial time is saved by only sampling on compared to

sampling on a full grid.

The application of a separable Gaussian matrix has a direct interpretation in terms of
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spreading and gathering. First, we multiply by the row vector. Multiplication by the row vector is

a gathering operation, computing a weighted average of the elements of the input vector. The filter

kernel for this gathering operation is itself a Gaussian. Second, this scalar weighted average is mul-

tiplied by the column vector to determine the output. Since our separable matrices are overlapping,

we sum them to get the blurred image, because our tensor is constructed as the sum of separable

blocks. This means that application of the column vector involves summing Gaussians, a spreading

operation. Therefore each separable matrix involves a gather, followed by a spread.

Given this interpretation, it is straightforward to extend the method from 1D images to 2D

images. Simply select a number of sites (locations) in the image, and specify a Gaussian size for

each site. The locations and size of the sites will need to be determined by consulting the blur map.

For each site, perform a gather followed by a spread. It is clear that this works just as well in 2D as

it did in 1D.

The remaining challenge is figuring out how many Gaussians to place and where to place

them. If we place too many, performance will be slow. But if we place too few, there will be gaps

in the blurred image. If we don’t place them with just the right spacing, the blurred image will

contain artifacts. To simplify first consider how the placement should work for the case where the

blur amount is the same throughout the image. This simplification enables constant spacing and a

constant size for all the sites. We can control the amount of blur varying the spacing between sites,

close together for less blur, or farther apart for more blur. The Gaussians must be large enough to

cause them to overlap without leaving gaps, but the Gaussians should not be too large, however, or

else performance will degrade and excessive blur will occur.

We could consider storing the results of the gathering phase, and viewing each of these

values as a pixels in an image. Although not actually necessary, it is useful for building intuition.

The resulting image would be a lower-resolution version of the input image. The Gaussians in the

row vectors would be the downsampling filters. Later, applying the column vectors recreates a full

resolution image, effectively upsampling with a Gaussian reconstruction kernel. When viewed in

this manner, the tensor filter algorithm is simply a new way of viewing the simplistic blur method

of downsampling followed by upsampling (see Figure 7.4). The blur is caused because the low-

resolution image is incapable of representing fine details.

To extend this method to the general case of an arbitrarily varying blur map, we need

a way to place sites with a density that varies according to the blur map. This is similar to the

importance sampling problem in rendering [45], which places more samples in important areas

to gather light more effectively. Our problem is also similar to stippling from non-photorealistic
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Figure 7.4: The tensor method for uniform blur is equivalent to downsampling followed by
upsampling.

rendering [45], where points are placed to indicate variations in shading. We considered borrowing

a couple of methods from the importance sampling and stippling literature, but we eventually settled

on something far simpler.

For each pixel, consider the possibility of inserting a site. We will not place a site at every

pixel, but we will rather skip a number of pixels based on the desired amount of blur. We calculate

a variable called skip level, which is simply a scaled version of the blur map value for that pixel.

The scale factor was determined by trial and error. Next, the decision about whether or not to insert

a site is made by modding the pixel location with skip level. This very simple method has the effect

of placing points with exactly the right density, in a spatially-varying way. The simplicity means

that the method is fast and easy to implement.

Below is the code that implements the tensor filter.

for(int x = 0; x < width; x++)
for(int y = 0; y < height; y++)
{

int skip_level = .8*pixel_red(blur_map,x,y,width*3,3)/4.0;

if ( (skip_level < 1) || (x % skip_level == 0 && y % skip_level == 0))
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{
float_type radius = .8*pixel_red(blur_map,x,y,width*3,3);

gather(x,y,radius,r,g,b,a);
spread(x,y,radius,r,g,b,a);
}
}

This very simple method of placing points has a limitation which is that there may be no

sites at all on small but very blurred objects; in fact, such objects can be missed completely. To

really make this method useful in the general case, a more sophisticated site placement method is

needed, one that can ensure sure that no objects are missed. This method is useful not as a tool to be

used in practice, but rather as a new and interesting way of thinking about the structure of the blur

operator.

One solution to this problem is to use a more sophisticated method for placing the sites.

A useful way to think of this problem is to consider that we are compressing the blur map. Since the

sites are sparsely placed, there are relatively few degrees of freedom for controlling the amount of

blur. A useful fact from study of human perception is that the higher the blur, the more difficult it is

to perceive differences in the amount of blur. Therefore in regions with high blur blur, we can man-

age by with fewer sites. The quadtree method exploits this structure by representing blurred regions

of the blur map with large nodes (see Figure 7.5). This is the standard method for compressing an

image with a quadtree. We then place a site at the center of each leaf node. The quadtree building

process ensures that no detail is lost, because sites are always placed where needed.

Each application of a site involves a gather followed by a spread. Consequently it is pos-

sible to accelerate the tensor filter by using fast gathering and spreading techniques. For gathering,

any method that enables Gaussian filter kernels can be used, and for spreading, any method that

enables Gaussian PSFs can be used. In practice, Heckbert’s repeated integration technique is the

fastest choice for gathering, and the polynomial method is the fastest option for spreading. Although

accelerating the tensor filter in this manner does make it faster, it still leads to a slower method than

simply using fast polynomial spreading as the entire filter. The reason to use the tensor filter is its

simplicity; it is the easiest to implement of all the fast blur methods, and gives a high quality Gaus-

sian blur. Adding in fast gather and spread methods defeats the simplicity by adding complexity.

Therefore, we suggest using the tensor method in its original form, rather than in accelerated form.
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(a) A blur map. (b) Sites selected via a quadtree that

compresses the blur map.

(c) Output of using the tensor method

with sites located at the center of the

quadtree leaf nodes.

Figure 7.5: Illustration of the tensor method with a quadtree used to lay out the sites.

7.2 Performance

It is easiest to analyze performance if we stick to the case of uniform blur. For each

site, there is a gather and a spread. The uniform case is easy because the size of the gathers and

spreads are constant. The number of sites is inversely proportional to the size of the blur, but the

cost of each site is directly proportional to the size of the blur. Therefore the total cost of the tensor

filter is constant, because the added cost of blurring larger Gaussians is offset by the fact that fewer

Gaussians are required.

The case of continuously variable blur is difficult to analyze. Fortunately, the quadtree

method does not distribute sites in a truly continuously variable manner. The quadtree has discrete

levels, and each level implies a region of the blur map with uniform spacing. While the sites are

placed on a uniform grid (within a level), they do not have uniform size. Their size can vary within

a range. This range is bounded from below by the spacing of the grid; we don’t allow Gaussians to

be so small relative to their spacing that gaps appear. The range is bounded from above by the fact

that if the Gaussian is too large, it will be placed in a coarser pyramid level. Since the size of the

Gaussian is bounded, our analysis for constant-sized Gaussians is applicable. Therefore the cost of

each level is bounded by a constant with respect to blur size. The total cost for blurring an image is

therefore bounded by the sum of these constants, so this is overall a constant time algorithm.
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Chapter 8

Comparisons

8.1 Discussion Of The Relationship Between The Various Methods.

This thesis describes a number of new image filters. The relative advantages and disad-

vantages of them may not be clear, so this section explains what properties each method has that

makes it stand out.

When blur is small, there is no need for complex algorithms. PSFs up to 5x5 or 7x7 are

easy and efficient when implemented directly. The small-blur situation is fortunate, because when

direct spreading is used, any PSF can easily be used, with no restrictions whatsoever. However,

performance drops very quickly as blur gets larger, so direct spreading is appropriate only for the

smallest of blurs.

For cases where we want large blur to be efficient, and simplicity is paramount, the rect-

angle spreading method is best. The rectangle spreading method is very simple to implement,

requiring only a few lines of code. The GPU implementation is relatively straightforward as well.

The downside is that image quality is not ideal, because of the very simple rectangular-shaped PSF.

The perimeter method is unique in that it allows for circular PSFs, which allow for an

accurate bokeh simulation of typical lenses. The perimeter method can get relatively slow for large

blurs, however. Therefore the perimeter method occupies a high point in the quality / performance

tradeoff.

The polynomial method spreads polynomial-valued PSFs in constant time with respect to

size. Cost is proportional to the number of terms in the polynomial. Polynomials are quite appropri-

ate for creating approximations to Gaussians. The polynomial method is probably the simplest and

easiest to understand of the methods that can truly spread approximate Gaussians. The ability to use



53

arbitrary polynomials is potentially of great utility, due to its generality. Performance enjoys a con-

venient tradeoff, as higher quality can always be achieved by the use of higher order polynomials,

at the cost of some performance.

The pyramid method has the unique advantage of being the only method that can spread

true Gaussians. When appropriately large filters are used during each stage of the pyramid method,

the resulting PSF is effectively a true Gaussian. The pyramid method has the disadantage of being

somewhat slower than the other methods. The pyramid method is still constant-time per pixel, but

it has a high constant.

The tensor method is unique because it uses true Gaussians, but is much simpler and

faster than the pyramid method. The downside is that the tensor method works best for symmetric

matrices, and hence is not truly a spreading method, because spreading matrices are not symmetric.

Being a true spreading method is not critical in all circumstances, especially for those situations

where the blur map is constant or varies smoothly. The tensor method is less appropriate when the

blur map is rapidly changing. The tensor method is unique in its mathematical structure, as it is

conceptually very elegant compared to the other methods.

8.2 Visual Comparison Of Results

We have run our algorithms on several different images, both high dynamic range (HDR)

and low dynamic range (LDR). For LDR comparisons, see Figures 8.1 and 8.2. For the HDR

comparisons, see Figures 8.3 and 8.4. The difference in quality between the various algorithms is

much more apparent for HDR images. This is because bright spots in an HDR image become highly

visible images of the PSF. Therefore any approximations in the PSF will be visible. We conclude

that more expensive, higher quality methods are needed for HDR images, but faster, approximate

methods can be used for LDR images.

We have also included a few competing algorithms, to see how our methods compare. The

competing methods include naive blurring, FFT with layers, and Piponi’s hexagon method [65]. The

polynomial method is clearly the best for Gaussian blur. Our perimeter method is the only algorithm

we are aware of that can efficiently apply continuously-varying circle-shaped PSFs. Our rectangle

spreading method (square spreading) is the fastest method available in our tests, which might make

it applicable for situations where speed is more important than quality. Piponi’s hexagon method is

the only method that we know of that can apply polygonal shaped PSFs in constant time.

The perimeter spreading method can apply any PSF of arbitrary shape, so long as it has



54

(a) Square (0.4693 seconds) (b) Hexagon (0.5109 seconds) (c) Polynomial (0.5832 seconds)

(d) Pyramid (10.4064 seconds) (e) Perimeter (2.5416 seconds) (f) FFT (10.5438 seconds))

(g) Naive (126.399 seconds)

Figure 8.1: Various blur methods used on a low dynamic range image. Observe that each method
produce similar result to the others.

a constant-intensity interior. The effects of using the perimeter method with different PSFs can be
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(a) Square (0.4383 seconds) (b) Hexagon (0.5448 seconds) (c) Polynomial (0.6022 seconds)

(d) Pyramid (11.7141 seconds) (e) Perimeter (2.2822 seconds) (f) FFT (11.2467 seconds)

(g) Naive (99.7249)

Figure 8.2: Various blur methods used on a low dynamic range image. Observe that each method
produce similar result to the others.

seen in Figure 8.6. The circle and hexagon PSFs are useful because they match the effect of using
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(a) Square (0.4496 seconds) (b) Hexagon (0.5148 seconds) (c) Polynomial (0.5918 seconds)

(d) Pyramid (10.0052 seconds) (e) Perimeter (1.2428 seconds) (f) FFT (10.8601 seconds)

(g) Naive (32.8386 seconds)

Figure 8.3: Various blur methods used on a high dynamic range image. Observe that the methods
produce significantly different results.

real cameras with high quality lenses. Therefore the perimeter method is useful for photorealistic
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(a) Square (0.5008 seconds) (b) Hexagon (0.5155 seconds) (c) Polynomial (0.5749 seconds)

(d) Pyramid (6.5418 seconds) (e) Perimeter (0.6365 seconds) (f) FFT (11.0106 seconds)

(g) Naive (9.98269)

Figure 8.4: Various blur methods used on a high dynamic range image. Observe that the methods
produce significantly different results.

blur. The ring-shaped PSF is interesting because it produces strikingly different results. A ring-
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(a) Circle (b) Hexagon (c) Ring

(d) Sun (e) PSFs (f) Arrow

Figure 8.5: The results of using the perimeter method with various arbitrary-outline constant-
intensity PSFs.

shaped PSF is known in the photography community for producing notoriously bad bokeh; it is

interesting to be able to simulate this efficiently. The sun and arrow PSFs are unusual special

effects. PSFs like these are possible with real cameras if a cardboard cutout is placed in front of the

lens.

We configured the tensor method three different ways. First, using naive gathering and

spreading, second using the polynomial method for spreading and Heckbert’s repeated integration

method for gathering, and third, the pyramid method, both in a gathering and in a spreading formu-

lation. Not surprisingly, using the polynomial method was fastest, because the polynomial method

is faster than the both naive spreading and the pyramid method.

Finally, we compare gathering vs. spreading, both for the polynomial method and for the

circle method (see Figure 8.7).
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(a) Tensor blurring with naive gathering

and spreading. (7.4686 seconds)

(b) Tensor blurring with polynomial

gathering and spreading (0.8064 sec-

onds)

(c) Tensor blurring with pyramid gath-

ering and spreading. (6.9167 seconds)

(d) For comparison, naive spreading

without the tensor method. (37.8613

seconds)

Figure 8.6: Various configurations of the tensor method.

While we were developing the polynomial, pyramid, and tensor methods, it wasn’t clear

which one would be best. After implementing them, the polynomial method turned out to have

significantly better performance than the other two, with comparable quality.
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(a) Circle gathering (b) Polynomial gathering

(c) Circle spreading (d) Polynomial spreading

Figure 8.7: Gathering vs. Spreading
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Chapter 9

The AMD HD58xx Ladybug Launch

Demo: A GPU Implementation Of The

Polynomial Method

9.1 Introduction

When a new video card is released, there are generally no video games yet available to

take advantage of the new capabilities. In order to demonstrate the video card, several demonstration

applications are generally released at the same time as the video card. For the ATI Radeon HD58xx

series of video cards, one of the demos, known as the ladybug demo, was based on depth of field

postprocessing using our polynomial spreading method. It turns out that creating an optimized GPU

implementation is far more challenging than it may seem. First, a parallel form of the algorithm

must be found. Second, the unique architecture of the GPU must be kept in mind. Great care must

be taken to ensure that the the entire GPU is utilized; straightforward algorithms often lead to large

portions of the GPU left unused.

9.2 GPU Implementation of the Polynomial Method

Of all our filters, the polynomial method is the most useful in practice. This is because it

has the best blend of performance and quality. Therefore we chose the polynomial method for GPU

implementation.
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GPUs traditionally have followed the typical graphics pipeline. The basic operation is

rendering a triangle, which involves a vertex processing stage, rasterization, and pixel shading. The

vertex shader stage and the pixel shader stage have been programmable for several years, allowing

flexibility in rendering and even the possibility of general purpose computation on the GPU. While

the graphics pipeline is great for straightforward rendering tasks, it is not a good match for many

general purpose computation tasks, including my filters. We did manage to implement the polyno-

mial method in DirectX 10 (which strictly follows the graphics pipeline), but the implementation

was complex and slow. DirectX 11 introduces a new mode of execution known as the compute

shader. The compute shader simply executes code in parallel; there is no graphics pipeline involved

at all.

In DirectX 10, delta spreading must be accomplished by rendering point primitives. The

blending units are turned on and configured to perform additive blending, rather than the more com-

mon alpha blending. Rendering point primitives is inefficient on GPUs, because the rasterizers are

optimized for rendering large triangles. The integration step is performed via a standard approach

known as recursive doubling [36]. Recursive doubling is a multipass technique that requires log(N)

passes where N is the width of the screen. Besides the large number of passes, recursive doubling

is suboptimal because it performs more computations than are strictly needed, as the price paid for

making things parallel.

DirectX 11 introduces means to perform more efficient delta spreading as well as more

efficient integration. Delta spreading can be implemented in a very efficient, straightforward way,

using two new features of DirectX 11: scatter and atomic addition. Scattering means that a shader

can write to arbitrary locations in memory. Atomic addition means that when multiple threads at-

tempt to accumulate to the same position in memory, the operations will be automatically serialized,

and no conflicts will occur.

Initially, we tried implementing delta spreading in DirectX 11 as follows. For each input

pixel, a thread is launched. Within a thread, all the deltas for that pixels are sequentially accumulated

at the appropriate location. It turned out that a slightly different implementation leads to better

performance. Rather than dispatch the entire operation at once, it is better to divide it up by delta.

For example, in second order polynomial spreading, 9 deltas are used per pixel. First, the top left

delta for all pixels will be accumulated in parallel. Next, the top center delta for all pixels will

be accumulated in parallel. This leads to more passes, but even so, performance is significantly

improved. The reason is probably because splitting it up leads to a better serialization compared to

whatever the atomic addition operation is automatically doing.
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Figure 9.1: Illustration of straightforward integration in DirectX 11. For clarity, this example is
shown for a single row. In the full implementation, integration is performed for all rows in parallel,
and then for all columns in parallel. Top: a simple input, chosen because the integral is trivial.
Middle: Integration proceeds sequentially, from left to right. Bottom: result of integration.

The first integration method we tried was very straightforward (see Figure 9.1). For each

row, launch one thread. Each thread then integrates the row sequentially, from left to right. A similar

integration is later performed for each column. Note that because each thread ends up writing to

all the elements in a row, scatter is required, so this simple method of integration was not available

before DirectX 11. Unfortunately, one thread per row is not enough to keep the GPU occupied.

Modern GPUs can execute in the neighborhood of 1,000 threads simultaneously. Additionally,

threads are put to sleep when memory access is requested, to await response from the memory

units. While one thread is asleep, there better be another thread on the queue waiting to execute, or

else the GPU will be underutilized. In general, approximately 5000 threads must be in flight at any

one time, to keep the GPU fully utilized.

Figure 9.2: We need more than one thread per row to fully utilize the GPU. Therefore we integrate
simultaneously in four domains. Top: the four domains are highlighted. Middle: integration pro-
ceeds from left to right within each domain. Bottom: result of parallel integration. Observe that
except for the first domain, we do not yet have the correct integral. A fixup step will be required.

Fortunately, there is a way to reformulate the integration step to use several threads per

row. Each row is divided into several domains, and each domain is integrated in parallel. See

Figure 9.2 for an illustration. Unfortunately, the correct result is not obtained, because the result
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Figure 9.3: The second, third, and fourth domains need to be fixed up. The fixup stage proceeds for
each domain simply by adding the last value of the previous omain. The domains must be fixed up
sequentially, but the fixup stage within each domain proceeds in parallel. Top: fixing up the second
domain. Middle: fixing up the third domain. Bottom: fixing up the fourth domain.

of integrating the later domains depends on the result of the previous ones. A simple fixup step is

required (see Figure 9.3, which adds the value at the end of the previous domain to the entirety of

the next domain.

9.3 Components Of The Demo

Aside from an implementation of the repeated integration method, the key asset of this

demo is the artwork. The artwork includes a garden scene with several flowers and flower buds.

The garden serves as the backdrop for a highly detailed ladybug. Flowers, leaves, and a ladybug

are the perfect scene for depth of field because these objects are all very small. To get the objects

to take up a sufficiently large portion of the image, the camera must be placed very close to the

objects. This scenario is the regime of macro photography. In macro photography, depth of field

is extremely prominent, because the aperture is very large relative to the subject matter. Extreme

depth of field means that there is a sharp contrast between the in-focus regions and the out-of-focus

regions. These extremes make depth of field especially dramatic.

First, there is a rolling demo mode. The user simply sits back and watches a predefined

animation. A series of scripted camera paths were carefully designed to show off the depth of field

most vividly. Second, there is an interactive mode, which plays a little bit like a simplified video

game. The user can fly the camera around, with the camera behaving like a rigid body, driven by

an underlying physics simulation. The user can press keys on the keyboard to manually adjust the

size of the aperture. The user can use the mouse wheel to manually move the focus depth forward

and back. There is also an autofocus mode, accessible by pressing space bar. While spacebar is

being held, the focus continuously tracks the object located at the center of the screen. A crosshair
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is displayed in interactive mode, made up to look like a camera’s viewfinder. The crosshair shows

where on the screen autofocus is trying to focus on, as a visual guide to the user.

(a) Autofocus mode with focus on the background
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(b) Screenshot of splitscreen mode.
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(c) Another screenshot of splitscreen mode.
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Chapter 10

Conclusion

10.1 Summary

This thesis has introduced several new methods for blurring images quickly and with

high quality. Each of these methods achieve speed by exploiting a different kind of structure in

the problem. Most of our methods exploit structure in the PSF. These methods keep the PSF in

a compact form until the last possible minute, constructing a final image with a postprocessing

step. The polynomial method expresses PSFs as coefficients of a polynomial. The pyramid method

represents PSFs as low-resolution Gaussians. The perimeter spreading method describes only the

outline of a PSF, implicitly filling it in with a constant value. The tensor method is different. It

attempts to access all the structure possible, by dealing with the full 4D blur operator.

Any of these methods are candidates for a real time GPU implementation. However,

in initial CPU implementations, the polynomial method proved to have excellent quality and had

the best performance. Therefore we chose the polynomial method for GPU implementation, and

managed to achieve over 30 frames per second at high resolution.

In the course of developing fast blur filters, we uncovered an interesting linear algebraic

theory. Since the blurring operation is linear, the process can be expressed as a (very large) matrix

vector multiply. If we apply this matrix row-by-row, with a filter kernel in each row, we get a gather

filter. If we apply the vector column-by-column, with a PSF in each column, we get a spreading

filter. Viewing gathering and spreading in this way explains why gathering produces incorrect results

if we use it in situations where spreading is indicated; we are effectively using the transpose of the

correct filter. The linear algebra perspective on blur also led to the development of a completely

new type of image filter, based on overlapping separable blocks.



69

10.2 Future Work

Figure 10.1: A vision realistic PSF can be simplified considerably before noticeable changes in the
blurred output occur. This gives hope that a reasonably simple polynomial can do a good job at
approximating vision realistic PSFs. My polynomial method thus may be useful for accelerated
vision realistic rendering.

Max introduced a method for motion blur based on shear, blurring, and unshearing [57].

His method starts with the notion that there are methods for efficiently applying a 1D box filter,

with uniform filter size. This type of filter can do an acceptable job of simulating motion blur for

a trivial case of motion blur (linear, axis-aligned motion). However, if the image is first sheared,

then blurred, then unsheared, then the motion blur can follow curved paths. Our fast spatially-

varying filters could be of great use in an extended version of Max’s method. The spatially-varying

capabilities of my filters would enable different parts of the image to have different amounts of

motion blur. The polynomial method would be of particular use here, because the smoothly curved

polynomial impulse response can accurately simulate the effect of variable-speed motion blur, with

various shutter behaviors.

Vision realistic rendering, which uses PSFs from actual human patients to simulate the

way individual people see the world, is typically a slow process. My fast image filters have the po-

tential to accelerate vision realistic rendering. The polynomial method, for example, could be used

if vision realistic PSFs can be reasonably approximated by polynomials. An informal experiment

(Figure 10.1) shows that vision realistic PSFs can be smoothed out considerably before noticeable

degradation occurs in the blurred image. It may be possible to use the methods of this thesis to
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blur images in real time with these smoothed vision realistic PSFs on a near-future generation of

graphics hardware.

Fast convolution via FFT is a very appealing blur method. It is the only method to our

knowledge that can efficiently apply arbitrary PSFs of arbitrary size. The great flaw of the FFT

is that it requires the PSF to be the same size at all pixels throughout the image. One way of

overcoming this limitation is to use layers. The image is binned by depth, each depth layer is

blurred via FFT, and the layers are composited. One important issue is what depths to place the

layers at. The natural way to do this is logarithmically with respect to blur size [6]; layers are

placed closer together where blur is small, and further apart where blur is large. This is reasonable

because the eye is better at distinguishing differences in blur when the amount of blur is small.

However, even with this logarithmic distribution, there is room for improvement. Ideally,

the layers should adapt to the scene. For example, there is no need to place layers at depths where

there are no pixels. In general, the more pixels lie at a given depth, the more likely it should be

that a layer is placed at that depth. The problem of allocating layers is in fact very similar to the

problem of quantizing a grayscale image to fewer levels of gray. If we consider the blur map to be

a grayscale image, we want to produce a quantized image with as few gray levels as possible, while

matching the original blur map as best we can. One promising quantization method is based on k-

means clustering. Each pixel is considered as a point in a one dimensional space, where position in

that space is determined by the blur value of that pixel. The points are then clustered using k-means

clustering. Each cluster then becomes a layer.

While layers can allow for a variety of blur levels, the blur levels are still discrete. It would

be very useful if FFT convolution could be used with continuously varying blur levels. Continuous

blur levels may be possible with a warp, blur, unwarp approach. The warp would cause some parts

of the image to shrink, and other parts of the image to expand. A uniform blur is applied via FFT

to the warped image. Finally, the inverse of the warp is applied. The parts of the image that were

shrunk by the warp will appear more blurred, and the parts of the image that were expanded will

appear less blurred. Since the warp can be continuous, we can have a continuously varying level of

blur. The PSF can be any size and of arbitrary shape, because an FFT convolution was used.

One challenge is in designing a warp that matches a desired blur map. Fortunately, re-

sults from the importance sampling literature can be used. In importance sampling, point samples

are placed densely in important regions, and sparsely in less important regions. To achieve the

desired point distribution, a uniform grid is warped according to the importance function. Our

warp/blur/unwarp method can be used with this same kind of warping function, where a blur map
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is used in place of the importance function.

The warping method has difficulty with regions that are completely unblurred. The req-

uisite warp would need to expand the unblurred region to infinite size. Since this is impossible,

unblurred regions have to be handled separately, i.e. they are removed before the warping method

begins, and then reinserted at the end.

Another area of future work is to create additional applications, beyond depth of field and

generic blurring. For example, our filters could be used to blur hard shadows, as an approximation

to soft shadows. One challenge that this shadow method would face is that it would have to blur

the shadows without blurring the underlying surface texture. We could handle this by rendering

shadows in a separate pass, into a separate image. That way the shadow can be blurred and then

later applied to the textured scene. This might make sense in a deferred rendering scenario. The

polynomial method could also be used to implement edge detection filters, simply by spreading the

appropriate polynomial coefficients. For example, we can generate an Nth order approximation to

a difference of Gaussians filter using an Nth order piecewise polynomial, requiring N integrations.

The spatially-variant feature of the method would allow scale-adaptive edge detection in a single

pass. Once we have edge detection in place, it might be possible to use knowledge of edges to

improve magnification quality in image warping. Our filter kernels could simply adapt their shape

to not blur across edges. Volume rendering via splatting is an area where fast filter spreading could

be useful. Volume rendering is quite computationally expensive, so acceleration via methods like

ours are likely to help quite a bit. Fast filter spreading could be used as a fast, approximate method

of evaluating radial basis functions. RBFs are useful in 2D for applications such as scattered data

interpolation and image warping, but the evaluation step can be expensive when there are many

centers. A potential pitfall is that our filter kernels are piecewise-tensor-product polynomial, unlike

radially-symmetric RBFs. However, we can approximate radially-symmetric kernels with arbitrary

accuracy by subdividing our polynomials.

Finally, we believe that exploiting the matrix structure of filtering operations is a fertile

area for future work. We intend to examine other structures that we might find in the filter matrix,

aside from simply rows, columns, and blocks, as a way of finding new algorithms.
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