
Secure Learning and Learning for Security: Research

in the Intersection

Benjamin I. P. Rubinstein

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-71

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-71.html

May 13, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Secure Learning and Learning for Security: Research in the Intersection

by

Benjamin Rubinstein

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

and the Designated Emphasis

in

Communication, Computation, and Statistics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Peter L. Bartlett, Chair
Professor Anthony D. Joseph
Professor Andrew E. B. Lim

Spring 2010

The dissertation of Benjamin Rubinstein, titled Secure Learning and Learning for Security:
Research in the Intersection, is approved:

Chair Date

Date

Date

University of California, Berkeley

Secure Learning and Learning for Security: Research in the Intersection

Copyright 2010
by

Benjamin Rubinstein

1

Abstract

Secure Learning and Learning for Security: Research in the Intersection

by

Benjamin Rubinstein

Doctor of Philosophy in Computer Science
and the Designated Emphasis in Communication, Computation, and Statistics

University of California, Berkeley

Professor Peter L. Bartlett, Chair

Statistical Machine Learning is used in many real-world systems, such as web search, network
and power management, online advertising, finance and health services, in which adversaries
are incentivized to attack the learner, motivating the urgent need for a better understand-
ing of the security vulnerabilities of adaptive systems. Conversely, research in Computer
Security stands to reap great benefits by leveraging learning for building adaptive defenses
and even designing intelligent attacks on existing systems. This dissertation contributes
new results in the intersection of Machine Learning and Security, relating to both of these
complementary research agendas.

The first part of this dissertation considers Machine Learning under the lens of Computer
Security, where the goal is to learn in the presence of an adversary. Two large case-studies
on email spam filtering and network-wide anomaly detection explore adversaries that ma-
nipulate a learner by poisoning its training data. In the first study, the False Positive Rate
(FPR) of an open-source spam filter is increased to 40% by feeding the filter a training
set made up of 99% regular legitimate and spam messages, and 1% dictionary attack spam
messages containing legitimate words. By increasing the FPR the adversary affects a Denial
of Service attack on the filter. In the second case-study, the False Negative Rate of a pop-
ular network-wide anomaly detector based on Principal Components Analysis is increased
7-fold (increasing the attacker’s chance of subsequent evasion by the same amount) by a
variance injection attack of chaff traffic inserted into the network at training time. This
high-variance chaff traffic increases the traffic volume by only 10%. In both cases the effects
of increasing the information or the control available to the adversary are explored; and
effective counter-measures are thoroughly evaluated, including a method based on Robust
Statistics for the network anomaly detection domain.

The second class of attack explored on learning systems, involves an adversary aiming
to evade detection by a previously-trained classifier. In the evasion problem the attacker
searches for a negative instance of almost-minimal distance to some target positive, by sub-
mitting a small number of queries to the classifier. Efficient query algorithms are developed
for almost-minimizing Lp cost over any classifier partitioning feature space into two classes,
one of which is convex. For the case of a convex positive class and p ≤ 1, algorithms with

2

linear query complexity are provided, along with lower bounds that almost match; when
p > 1 a threshold phenomenon occurs whereby exponential query complexity is necessary
for good approximations. For the case of a convex negative class and p ≥ 1, a randomized
Ellipsoid-based algorithm finds almost-minimizers with polynomial query complexity. These
results show that learning the decision boundary is sufficient, but not necessary for evasion,
and can require much greater query complexity.

The third class of attack aims to violate the confidentiality of the learner’s training data
given access to a learned hypothesis. Mechanisms for releasing Support Vector Machine
(SVM) classifiers are developed. Algorithmic stability of the SVM is used to prove that the
mechanisms preserve differential privacy, meaning that for an attacker with knowledge of all
but one training example and the learning map, very little can be determined about the final
unknown example using access to the trained classifier. Bounds on utility are established
for the mechanisms: the privacy-preserving classifiers’ predictions should approximate the
SVM’s predictions with high probability. In the case of learning with translation-invariant
kernels corresponding to infinite-dimensional feature spaces (such as the RBF kernel), a
recent result from large-scale learning is used to enable a finite encoding of the SVM while
maintaining utility and privacy. Finally lower bounds on achievable differential privacy are
derived for any mechanism that well-approximates the SVM.

The second part of this dissertation considers Security under the lens of Machine Learn-
ing. The first application of Machine Learning is to a learning-based reactive defense. The
CISO risk management problem is modeled as a repeated game in which the defender must
allocate security budget to the edges of a graph in order to minimize the additive profit
or return on attack (ROA) enjoyed by an attacker. By reducing to results from Online
Learning, it is shown that the profit/ROA from attacking the reactive strategy approaches
that of attacking the best fixed proactive strategy over time. This result contradicts the
conventional dogma that reactive security is usually inferior to proactive risk management.
Moreover in many cases, it is shown that the reactive defender greatly outperforms proactive
approaches.

The second application of Machine Learning to Security is for the construction of an
attack on open-source software systems. When an open-source project releases a new version
of their system, they disclose vulnerabilities in previous versions, sometimes with pointers to
the patches that fixed them. Using features of diffs in the project’s open-source repository,
labeled by such disclosures, an attacker can train a model for discriminating between security
patches and non-security patches. As new patches land in the open-source repository, before
being disclosed as security or not, and before being released to users, the attacker can use
the trained model to rank the patches according to likelihood of being a security fix. The
adversary can then examine the ordered patches one-by-one until finding a security patch.
For an 8 month period of Firefox 3’s development history it is shown that an SVM-assisted
attacker need only examine one or two patches per day (as selected by the SVM) in order
to increase the aggregate window of vulnerability by 5 months.

i

Dedicated to my little Lachlan.

ii

Contents

List of Figures v

List of Tables vii

List of Algorithms viii

1 Introduction 1
1.1 Research in the Intersection . 1

1.1.1 Secure Machine Learning . 2
1.1.2 Machine Learning for Security . 4

1.2 Related Work . 5
1.2.1 Related Tools from Statistics and Learning 5
1.2.2 Attacks on Learning Systems . 7

1.3 The Importance of the Adversary’s Capabilities 11

I Private and Secure Machine Learning 13

2 Poisoning Classifiers 14
2.1 Introduction . 15

2.1.1 Related Work . 16
2.2 Case-Study on Email Spam . 17

2.2.1 Background on Email Spam Filtering 18
2.2.2 Attacks . 20
2.2.3 Attack Results . 23
2.2.4 Defenses . 28

2.3 Case-Study on Network Anomaly Detection 30
2.3.1 Background . 31
2.3.2 Poisoning Strategies . 34
2.3.3 ANTIDOTE: A Robust Defense . 38
2.3.4 Methodology . 43
2.3.5 Poisoning Effectiveness . 49
2.3.6 Defense Performance . 53

2.4 Summary . 56

iii

3 Querying for Evasion 58
3.1 Introduction . 58

3.1.1 Related Work . 60
3.2 Background and Definitions . 60

3.2.1 The Evasion Problem . 61
3.2.2 The Reverse Engineering Problem . 66

3.3 Evasion while Minimizing L1-distance . 67
3.3.1 Convex Positive Classes . 68
3.3.2 Convex Negative Classes . 76

3.4 Evasion while Minimizing Lp-distances . 80
3.4.1 Convex Positive Classes . 80
3.4.2 Convex Negative Classes . 85

3.5 Summary . 86

4 Privacy-Preserving Learning 88
4.1 Introduction . 89

4.1.1 Related Work . 90
4.2 Background and Definitions . 92

4.2.1 Support Vector Machines . 93
4.3 Mechanism for Finite Feature Maps . 94
4.4 Mechanism for Translation-Invariant Kernels 98
4.5 Hinge-Loss and an Upper Bound on Optimal Differential Privacy 105
4.6 Lower Bounding Optimal Differential Privacy 106

4.6.1 Lower Bound for Linear Kernels . 106
4.6.2 Lower Bound for RBF Kernels . 108

4.7 Summary . 112

II Applications of Machine Learning in Computer Security 113

5 Learning-Based Reactive Security 114
5.1 Introduction . 114

5.1.1 Related Work . 116
5.2 Formal Model . 117

5.2.1 System . 118
5.2.2 Objective . 119
5.2.3 Proactive Security . 119

5.3 Case Studies . 120
5.3.1 Perimeter Defense . 120
5.3.2 Defense in Depth . 120

5.4 Reactive Security . 121
5.4.1 Algorithm . 122
5.4.2 Main Theorems . 123
5.4.3 Proofs of the Main Theorems . 124

iv

5.4.4 Lower Bounds . 130
5.5 Advantages of Reactivity . 131
5.6 Generalizations . 133

5.6.1 Horn Clauses . 133
5.6.2 Multiple Attackers . 133
5.6.3 Adaptive Proactive Defenders . 134

5.7 Summary . 134

6 Learning to Find Leaks in Open Source Projects 135
6.1 Introduction . 135
6.2 Life-Cycle of a Vulnerability . 137

6.2.1 Stages in the Life-Cycle . 137
6.2.2 Information Leaks in Each Stage . 139

6.3 Analysis Goals and Setup . 139
6.3.1 Dataset . 139
6.3.2 Success Metrics . 140
6.3.3 Baseline: The Random Ranker . 142
6.3.4 Deriving Random Ranker Expected Effort 142
6.3.5 Deriving Random Ranker Expected Vulnerability Window Increase . 143

6.4 Methodology . 146
6.4.1 Features Used By the Detector . 146
6.4.2 Detection Approach . 148

6.5 Results . 149
6.5.1 Feature Analysis . 149
6.5.2 Classifier Performance . 152
6.5.3 Cost-Benefit of SVM-Assisted Vulnerability Discovery 153
6.5.4 Repeatability of Results Over Independent Periods of Time 160
6.5.5 Feature Analysis Redux: the Effect of Obfuscation 162

6.6 Improving the Security Life-Cycle . 163
6.6.1 Workflow . 163
6.6.2 Quality Assurance . 164
6.6.3 Residual Risks . 164

6.7 Summary . 164

7 Conclusions and Open Problems 166
7.1 Summary of Contributions . 167

7.1.1 Attacks on Learners . 167
7.1.2 Learning for Attack and Defense . 170

7.2 Open Problems . 172
7.2.1 Adversarial Information and Control 172
7.2.2 Covert Attacks . 173
7.2.3 Privacy-Preserving Learning . 174

Bibliography 176

v

List of Figures

1.1 Dissertation organization . 2

2.1 Dictionary attacks on SpamBayes . 25
2.2 Effect of adversarial information on the focused attack 26
2.3 Effect of adversarial control on the focused attack 26
2.4 Results of focused on token scores in three specific emails 27
2.5 Results of threshold defense . 29
2.6 The Abilene network topology . 33
2.7 Architecture of a top-tier network . 33
2.8 Visualizing the effect of poisoning on PCA and PCA-grid 40
2.9 Comparing behavior of the Q-statistic and Laplace residual thresholds 43
2.10 Synthetic model’s goodness of fit results for flow 144 47
2.11 Synthetic model’s goodness of fit results for flow 75 47
2.12 Synthetic model’s goodness of fit results for flow 15 48
2.13 Synthetic model’s goodness of fit results for flow 113 48
2.14 Goodness of fit results for the inter-arrival time model 49
2.15 FNR results of Single-Training Period poisoning of PCA 50
2.16 ROC curves under Single-Training Period poisoning of PCA 50
2.17 FNR results of Boiling Frog poisoning of PCA 52
2.18 Rejection rates of PCA under Boiling Frog poisoning 52
2.19 FNR results of Single-Training Period poisoning of antidote 53
2.20 ROC curves under Single-Training Period poisoning of antidote 53
2.21 AUCs for individual flows . 55
2.22 Mean AUCs vs. chaff volume . 55
2.23 FNR results of Boiling Frog poisoning of antidote 56
2.24 Rejection rates of antidote under Boiling Frog poisoning 56

3.1 Evasion with a convex positive class and L1 cost 67
3.2 Evasion with a convex negative class and L1 cost 67
3.3 Converting L1 cost bounds to L2 cost bounds 81
3.4 Approximations for Lp cost requiring exponential queries 85

4.1 Solving the primal SVM program for the proof of Lemma 41 106

vi

5.1 Attack graph of an enterprise data center . 117
5.2 Attack graph of a simplified data center network 121
5.3 Star-shaped attack graph with unknown payoffs 132
5.4 Attack graph separating ROA minimax and profit minimax strategies 132

6.1 Screenshot of an unauthorized access page in Bugzilla 138
6.2 Patch landing volumes in mozilla-central for Firefox 3 140
6.3 The distribution of random ranker effort . 144
6.4 Random ranker expected effort vs. no. security patches 144
6.5 Random ranker expected effort vs. no. patches 145
6.6 Random ranker expected increase to the window of vulnerability 145
6.7 Screenshot of a Firefox change-set . 147
6.8 Information gain ratios of features for predicting patch type 150
6.9 Developers ordered by proportion of patches related to security 151
6.10 Top-level directories ordered by proportion of security-related patches 151
6.11 Security and non-security diff length CDFs 151
6.12 Raw SVM probability estimates for Firefox 3 153
6.13 Time-series of attacker efforts for Firefox 3 154
6.14 CDF of attacker efforts . 155
6.15 Aggregate increases to the window of vulnerability vs. budget 155
6.16 Time series of attacker efforts for finding severe vulnerabilities 157
6.17 CDFs of attacker efforts for finding severe vulnerabilities 157
6.18 Aggregate vulnerability window increase for severe vulnerabilities 157
6.19 Time series of attacker effort for finding multiple vulnerabilities 159
6.20 Attacker effort CDFs for finding multiple vulnerabilities 159
6.21 Aggregate vulnerability window increase for multiple vulnerabilities 159
6.22 Time series of attacker efforts for Firefox 3.5 161
6.23 Attacker effort CDFs for Firefox 3.5 . 161
6.24 Vulnerability window increases for Firefox 3.5 161
6.25 Attacker effort CDFs when removing individual features 162
6.26 Vulnerability window increases when removing individual features 162

vii

List of Tables

1.1 Classification of dissertation chapters . 3
1.2 Classification of the attacks in each chapter 8

2.1 Parameters for poisoning experiments on SpamBayes 24
2.2 FNR results of Single-Training Period poisoning of PCA 51

4.1 Example translation-invariant kernels . 94

viii

List of Algorithms

1 Grid-Search(Y) . 42
2 PCA-grid(Y, K) . 42
3 Multi-line Search . 69
4 Convex X+ Set Search . 70
5 K-Step Multi-line Search . 70
6 Spiral Search . 75
7 Intersect Search . 76
8 Hit-and-Run Sampling . 77
9 Convex X− Set Search . 79
10 SVM . 93
11 PrivateSVM-Finite . 95
12 PrivateSVM . 99
13 Reactive defender (hidden edge case) . 122
14 Reactive defender (known edge case) . 125

ix

Acknowledgments

I am immensely grateful to my advisor Peter Bartlett who has been a constant positive
force during my time at Berkeley. From making time for regular meetings, to wisely steering
the course of my academic career, Peter has shown great patience, encouragement and
support since I arrived in the U.S. six short years ago. I have been extremely fortunate to
work with several other brilliant faculty and researchers at Berkeley, including Adam Barth,
Ling Huang, Anthony Joseph, Satish Rao, Dawn Song, Nina Taft, and Doug Tygar. I feel
privileged to have worked with each of these scholars, and I greatly appreciate the time
we have spent together and the advice they have offered me on both academia and life in
general.

I would like to especially thank fellow-grads Marco Barreno and Blaine Nelson with
whom I have worked very closely on several of the projects presented here, and whom I also
fondly regard as friends. They each have had particularly strong influences on my thinking
about Adversarial Learning and Security, for which I am deeply grateful.

My research has also greatly benefitted by working with many others including Fuching
Jack Chi, Arpita Ghosh, Shing-hon Lau, Steven Lee, Saung Li, John C. Mitchell, Ali Rahimi,
Udam Saini, Fernando Silveira, Mukund Sundararajan, Charles Sutton, Anthony Tran,
Sergei Vassilvitskii, Kai Xia, and Martin Zinkevich; and many helpful discussions with
member’s and visitors of Peter’s group including Jake Abernethy, Alekh Agarwal, Fares
Hedayati, Matti Kääriäinen, Marius Kloft, Joe Neeman, Anh Pham, David Rosenberg,
Ambuj Tewari, and Mikhail Traskin.

During the course of my doctoral studies I have been either directly or indirectly sup-
ported by several funding agencies. I would like to take this opportunity to gratefully ac-
knowledge the support of the Siebel Scholars Foundation; NSF awards #DMS-0707060 and
#DMS-0434383; support by TRUST (Team for Research in Ubiquitous Secure Technology),
which receives support from the National Science Foundation (NSF award #CCF-0424422)
and AFOSR (#FA9550-06-1-0244); RAD Lab, which receives support from California state
MICRO grants (#06-148 and #07-012); DETERlab (cyber-DEfense Technology Experi-
mental Research laboratory), which receives support from DHS HSARPA (#022412) and
AFOSR (#FA9550-07-1-0501); and the following organizations: Amazon, BT, Cisco, Do-
CoMo USA Labs, EADS, ESCHER, Facebook, Google, HP, IBM, iCAST, Intel, Microsoft,
NetApp, ORNL, Pirelli, Qualcomm, Sun, Symantec, TCS, Telecom Italia, United Technolo-
gies, and VMware.

My life during grad school has been filled with many ups but also some downs. My
closest friends (the ‘chums’) at Berkeley have been a constant source of support during the
tough times, and encouragement and entertainment during the better times. Our weekly
dinners, ‘lunch in the city’, dollar scoops, game (i.e., settlers) nights, karaoke, skiing, and
many many other times shared together have made grad school that much better. Michael
and Diane Holwill, and their extended families, have been fantastic in-laws, supporting my
family in every way possible.

My parents Sue and Hyam have raised me, putting a great emphasis on the value of
education. For this, and their love and support, I will be eternally grateful. Juliet who was
my girlfriend in Melbourne at the end of high school is now my beautiful wife and graduating

x

with me from Berkeley EECS. I am incredibly proud to be Juliet’s husband, and I love her
dearly. She has helped me enjoy many good times, and to overcome incredibly difficult ones
also. Our beautiful son Lachlan, who was with us for far too short a time, touched me in
ways I cannot express with words. I hope that he would be proud of me; I will forever miss
him.

To the many other friends not named here, I also thank you. I have enjoyed taking
courses, helping out in the CSGSA, enjoying CS movie nights, cooking ‘Australian-style’
BBQ for you, or playing Birkball with you all.

1

Chapter 1

Introduction

‘Where shall I begin, please your Majesty?’ he asked. ‘Begin at the beginning,’
the King said, gravely, ‘and go on till you come to the end: then stop.’

– Lewis Carroll

1.1 Research in the Intersection

The intersection of Machine Learning, Statistics and Security is ripe for research. Today
Machine Learning and Statistics are used in an ever-increasing number of real-world systems,
including web search (Agichtein et al., 2006; Arguello et al., 2009; Joachims, 2002), online
advertising (Ciaramita et al., 2008; Ghosh et al., 2009; Immorlica et al., 2005), email spam
filtering (Meyer and Whateley, 2004; Ramachandran et al., 2007; Robinson, 2003), anti-virus
software (Kim and Karp, 2004; Newsome et al., 2005), power management (Bodik et al.,
2009, 2010), network management (Bahl et al., 2007; Cheng et al., 2007; Kandula et al.,
2008; Lakhina et al., 2004a; Lazarevic et al., 2003; Liao and Vemuri, 2002; Mukkamala et al.,
2002; Soule et al., 2005; Zhang et al., 2005), finance (Agarwal et al., 2010; Hazan and Kale,
2010; Stoltz and Lugosi, 2005), and health (Baldi and Brunak, 2001; Brown et al., 2000;
Sankararaman et al., 2009). In many of these systems, human participants are incentivized
to game the system’s adaptive component in an attempt to gain some advantage. It is
important for the success of such applications of Machine Learning and Statistics, that
practitioners quantify the vulnerabilities present in existing learning techniques, and have
access to learning mechanisms designed to operate in adversarial environments. Viewing
Machine Learning and Statistics through such a lens of Computer Security has the potential
to yield significant impact on practice and fundamental understanding of adaptive systems.
Indeed for many application areas of Machine Learning, Security and Privacy should be
placed on the same level as more traditional properties such as statistical performance,
computational efficiency, and model interpretability.

An equally fruitful exercise is to study Computer Security through a lens of Machine
Learning. In Computer Security it is common practice for researchers to construct attacks
exploiting security flaws in existing systems (Nature, 2010). When the protocol of responsible

2

Security &
Privacy

Machine
Learning

 Part I
Secure Learning

Part II
 Learning for Security

Ch3 Evading
 classifiers

Ch4 Breaching
 data privacy

Ch5 Reactive risk
 management

Ch6 Searching for leaks
 in open-source
 projects

Ch2 Poisoning
 classifiers

Figure 1.1: Organization of this dissertation’s chapters into two related parts.

disclosure is followed—whereby a new vulnerability is not publicized until the development
team has had the opportunity to patch the affected system—research into attacks can ben-
efit both the developers and legitimate users of a system. As cyber-criminals are becoming
emboldened by ever-more sophisticated attacks, it is now necessary for Security researchers
to consider how Machine Learning and Statistics might be leveraged for constructing intelli-
gent attacks. In a similar vein, security practitioners can apply tools from Machine Learning
to build effective new defenses that learn from complex patterns of benign and malicious
behavior. In turn, such adaptive defenses fall under the umbrella of learning in adversarial
environments as motivated above.

This dissertation describes several research projects in the intersection of Machine Learn-
ing, Statistics, Security and Privacy, and explores questions relating to each of the topics
in the intersection described above. As depicted in Figure 1.1, this work is made up of
two parts which explore Secure Machine Learning and applications of Machine Learning to
Security respectively.

Chapter Organization. The remainder of this section summarizes the main themes of
the two parts of this dissertation. Section 1.2 summarizes general related work in Learning,
Statistics and Security, and Section 1.3 concludes the chapter with an introduction to an
important aspect of threat models for learning systems—the adversary’s capabilities.

1.1.1 Secure Machine Learning

Understanding the Security (and Privacy) of Machine Learning methods, and design-
ing learners for adversarial environments, are two endeavors of vital importance for the

3

Chapter Experimental Theoretical Attacks Defenses
Part I 2 • • •

3 • •
4 • •

Part II 5 • •
6 • • •

Table 1.1: A classification of this dissertation’s chapters as being experimental or theoretical
in nature, and by the inclusion of attacks and/or defenses.

applicability of Machine Learning in the real-world.
Examples of Machine Learning application domains in which attackers are incentivized

to exploit learning abound. Content publishers desiring increased page views to drive up ad-
vertising income, will undertake black hat search engine optimization through participating
in link farms (Gyöngyi and Garcia-Molina, 2005). Spammers will attempt to evade Gmail
email filtering by obfuscating the true nature of their email spam messages by including good
tokens in their mail (Lowd and Meek, 2005a). Insurance companies will attempt to learn
details of hospitals patient visits and conditions through linking published ‘anonymized’
data or statistics on private hospital databases in order to form better estimates of risk
when considering applicants for health insurance plans (Rindfleisch, 1997; Sweeney, 2002).
These three examples help motivate the problems studied in each of the three chapters of
Part I.

Part I of this dissertation considers both the security analysis of Machine Learning
techniques (the so-called ‘Security of Machine Learning’) and wherever possible, learning
techniques that exhibit desirable Security or Privacy properties. Each chapter within Part I
considers a different class of attack on learning systems.

• Chapter 2. This chapter presents two case-studies on manipulating Machine Learning
systems by poisoning training data. The first study is of the open-source SpamBayes
project for filtering email spam, and the second is of network-wide anomaly detection
based on Principal Component Analysis. Both case-studies quantify the performance
of the learner in the presence of an intelligent attacker, and both studies evaluate
counter-measures for reducing the effects of the constructed attacks.

• Chapter 3. Where Chapter 2 considers manipulation of the training data, this chap-
ter considers manipulation of test data of a previously trained classifier with the goal
of evading detection. In this chapter, the evasion problem is considered in an abstract
setting where the attacker searches for a minimal-cost instance that will go undetected
by the classifier, while submitting only a small (polynomial) number of queries to the
classifier. Efficient attack algorithms are developed for classifiers that partition feature
space into two sets, one of which is convex.

• Chapter 4. Where the previous two chapters study attacks that focus on manipu-
lating the learner or the learner’s predictions, this chapter considers settings where

4

an adversary may wish to extract information about a learner’s specific training data
given access to the learned model that aggregates general statistical information about
the data. The problem of releasing a trained Support Vector Machine (SVM) clas-
sifier while preserving the privacy of the training data is considered. Mechanisms
with privacy and (statistical) utility guarantees are proposed, along-side negative re-
sults that bound the achievable privacy of any mechanism that discloses an accurate
approximation to the SVM.

The chapters of Part I vary in length—Chapter 2 being the largest as it discusses two
major case-studies—and vary in being theoretical vs. experimental in nature–while Chap-
ter 2 is mostly experimental the contributions of Chapters 3 and 4 are theoretical in nature.
The former chapter considers both attacks and defenses on learning systems, while the
later chapters consider only attacks and defenses respectively1. Table 1.1 summarizes these
differences.

Finally the research reported in Chapters 2 and 3 was joint work with two other UC
Berkeley EECS doctoral candidates: Marco Barreno and Blaine Nelson. In both of these
chapters I provide a brief summary of my contributions to the projects, in relation to those
of Barreno and Nelson. I was the sole/lead graduate student on the research reported in
the remainder of this dissertation.

1.1.2 Machine Learning for Security

While Part I considers learning in the presence of adversaries, the chapters of Part II of
this dissertation view Computer Security through a lens of Machine Learning. Two kinds of
opportunities are apparent for Machine Learning and Statistics in Security research. First,
statistical models of a software system can be used to form effective attacks on the system.
Second, learning can be leveraged to model legitimate and/or malicious behavior so as to
build defenses that adapt to intelligent adversaries and benign data drift. Both applications
are represented by the chapters of Part II as follows, and described in Table 1.1.

• Chapter 5. This chapter applies Online Learning Theory, which follows a game-
theoretic approach to learning, to the problem of risk management. Risk management
is modeled as a repeated game in which the adversary may attack a system to gain some
profit or Return on Investment (ROI). The defender’s goal is to allocate her defensive
budget to minimize the attacker’s profit or ROI. A learning-based reactive approach
to risk management (where budget is allocated based on past attacks) is proposed.
Using a reduction to results from Online Learning Theory, the new reactive defender
is compared against fixed proactive strategies (where budget is allocated based on
estimating risks and playing a fixed allocation). A major strength of the theoretical
comparisons is that they hold for all sequences of attacks—no strong assumptions are
placed on the adversary by the analysis.

1The attacks (defenses) presented in Chapter 3 (Chapter 4 respectively) are accompanied by strong
guarantees for the attacker (defender) respectively, obviating the need for counter-measures.

5

• Chapter 6. While Chapter 5 applies machine learning theory to construct defenses,
this chapter describes how to apply practical learning algorithms to construct attacks
on open-source software projects. In particular, as a concrete case-study we apply the
Support Vector Machine (which is also studied under a different setting in Chapter 4)
to finding vulnerabilities in Mozilla’s open-source Firefox web browser. Defensive
measures for mitigating the effects of the developed attacks are also proposed.

1.2 Related Work

We now overview past work that is of general relevance to the topic of this dissertation.
Discussion of related work that is specific to a single chapter is deferred to the particular
chapter.

1.2.1 Related Tools from Statistics and Learning

Two entire subfields of Machine Learning and Statistics address questions related to
learning in the presence of an adversary who attempts to manipulate the learning process by
poisoning the training data (the topic of Chapter 2): Robust Statistics and Online Learning
Theory. We briefly overview these areas here and discuss how each is applied within this
dissertation. Chapter 7 includes a discussion of the current tools’ inadequacies for the
unique challenges of secure learning. The problem of privacy-preserving learning (the topic
of Chapter 4) is a third, burgeoning area of Machine Learning which has been previously
studied in Databases (statistical databases, Adam and Worthmann 1989), TCS (differential
privacy, Dwork 2008), and Statistics (data confidentiality and statistical disclosure control,
Doyle et al. 2001; Willenborg and de Waal 2001). We defer discussion of privacy-preserving
learning to Chapter 4.

Robust Statistics. The field of Statistics that values traditional properties of estimators
such as consistency and asymptotic efficiency, together with robustness—estimators that are
not overly influenced by outliers—is known as Robust Statistics (Hampel et al., 1980; Huber,
1981). In the presence of outliers, or more generally violations of modeling assumptions, a
robust estimator should have low bias, high efficiency and be asymptotically unbiased.

A common measure of the robustness of a statistic is its breakdown point : the largest
p ∈ [0, 0.5] such that letting a fraction p of the sample tend to ∞ does not pull the statistic
to ∞ as well. Classic examples of statistics with good and bad breakdown points are
the estimators of location: the median and mean with maximum and minimum possible
breakdown points of 0.5 and 0 respectively.

One approach to finding robust estimators is via influence functions, which measure the
effect on the asymptotic bias of an estimator, of an infinitesimal contamination at a point.
Robust estimators should have bounded influence functions: the estimator should not go to
∞ as the point diverges. In particular the influence functions of M-estimators (estimators
derived by minimizing the sum of a score function over the sample) are proportional to

6

the derivative of the chosen score function, and so such estimators can be designed with
robustness in mind.

Remark 1. We note in passing, similarities between Robust Statistics and a seemingly un-
related topic touched on in this dissertation. Dwork and Lei (2009) demonstrated through
several detailed examples that robust estimators can serve as the basis for privacy-preserving
mechanisms, by exploiting the limited influence of outliers on robust estimators. Given that
the typical route for transforming a statistic into a mechanism that preserves differential
privacy is via the statistic’s sensitivity to data perturbations (Dwork et al., 2006), such
a connection should not be too surprising. Still, finding a general connection between ro-
bustness and privacy remains an open problem. We develop a privacy-preserving Support
Vector Machine in Chapter 4 via algorithmic stability which is an area of learning theory
that exploits smoothness of the learning map to yield risk bounds.

In Chapter 2 we develop data poisoning attacks on Principal Components Analysis
(PCA), a feature reduction method that selects features which capture the maximal amount
of variance in a dataset. For a counter-measure to our attacks, we turn to robust versions
of PCA that maximize alternative robust measures of scale: the median absolute devia-
tion (with the optimal breakdown point of 0.5) in place of the variance (having the worst
breakdown point of zero). Empirical evaluations of Robust PCA show good resilience to
our attacks, cutting the increased False Negative Rates down by half.

Online Learning Theory. While a common assumption in Machine Learning and Statis-
tics is i.i.d. data or some other independence assumption, Online Learning Theory considers
learning without any assumptions on the data generation process; the data need not even
be stochastic. Online Learning, closely related to universal prediction, thus follows a game-
theoretic approach to learning (Cesa-Bianchi and Lugosi, 2006).

Given a sequence of arbitrary instances, the learner predicts labels for the instances
as they are iteratively revealed. Upon each round the learner incurs some loss, so that
over T rounds the learner accumulates a cumulative loss that can be arbitrarily bad as
measured in absolute terms. Instead, Online Learning compares the learner’s performance
with that of the best performing decision rule or expert among a set of experts that provide
advice to the learner throughout the repeated game. This results in studying the regret :
the difference between the learner’s cumulative loss and the best expert’s cumulative loss
with hindsight. The goal of Online Learning is to design learning strategies that achieve
average regret converging to zero. A motivating example for regret is in online portfolio
optimization (Stoltz and Lugosi, 2005), where a simple goal of an investor selecting between
N stocks (the experts) is to achieve a portfolio (a random strategy over the experts) that
asymptotically performs as well as the best stock on average.

Advantages of this style of analysis include guarantees that hold in a fully adversarial
setting, and the derived algorithms tend to be simple to implement and very efficient to
run.

In Chapter 5 we model the general security problem of risk management as a repeated
game between an attacker who gains profits depending on their chosen attack, and a defender

7

who allocates her security budget in order to reduce the profit enjoyed by the attacker. Via
a reduction to regret bounds from Online Learning Theory, we show that the performance of
a learning-based reactive defender who allocates budget based on past attacks, achieves the
performance of the best proactive defender who can exploit prior knowledge of the system’s
vulnerabilities to form minimax allocates. By appealing to regret bounds, the analysis of
our learning-based defense has the advantage that it allows for a worst-case attacker, even
one that has full knowledge of the learner’s state and algorithm, from which it can form
intelligent attacks.

1.2.2 Attacks on Learning Systems

Barreno et al. (2006, 2010) categorize attacks against machine learning systems along
three dimensions. The axes of their taxonomy are as follows:

Influence

• Causative attacks influence learning with control over training data.

• Exploratory attacks exploit misclassifications but do not affect training.

Security violation

• Integrity attacks compromise assets via false negatives.

• Availability attacks cause denial of service, usually via false positives.

Specificity

• Targeted attacks focus on a particular instance.

• Indiscriminate attacks encompass a wide class of instances.

The first axis of the taxonomy describes the capability of the attacker: whether (a)
the attacker has the ability to influence the training data that is used to learn a model (a
Causative attack) or (b) the attacker does not influence the learner, but can submit test
instances to the learned model, and observe the resulting responses (an Exploratory attack).

The second axis indicates the type of security violation caused on a classifier (where
we consider malicious/benign instances as belonging to the positive/negative class): (a)
false negatives, in which malicious instances slip through the filter (an Integrity violation);
or (b) false positives, in which innocuous instances are incorrectly filtered (an Availability
violation).2

The third axis refers to how specific the attacker’s intention is: whether (a) the attack
is Targeted to degrade the learner’s performance on particular types of instances or (b) the
attack aims to cause the learner to fail in an Indiscriminate fashion on a broad class of
instances.

2Considerations of false positives or false negatives apply specifically to learning for classification, however
these violations extend to other kinds of learning as well (e.g., an Integrity attack on a regression may aim
to avoid a certain real-valued response, while an Availability attack may aim to perturb the responses so
much as to cause a DoS attack on the learner itself).

8

Chapter Influence
Security
Violation

Specificity

Part I 2(i) Causative Availability
Targeted,

Indiscriminate

2(ii) Causative Integrity Targeted

3 Exploratory Integrity Targeted

4
Causative,

Exploratory
Confidentiality Targeted

Part II 5
Causative,

Exploratory
Integrity Targeted

6 N/A Confidentiality Targeted

Table 1.2: The contributions of each chapter classified by the taxonomy on attackers on
learning systems of Barreno et al. (2006). Each classification is discussed within the corre-
sponding chapter.

Table 1.2 classifies the chapters of this dissertation according to the above taxonomy.
Chapter 5 develops defensive risk management strategies (the learner’s task is more complex
than classification) with the goal of minimizing attacker profit or ROI. The adversary’s
attacks can be regarded as attempting to evade allocations of defensive budget, and so can
be regarded as Integrity attacks. Chapters 4 and 6 concern attacks that violate neither
Integrity nor Availability, but rather Confidentiality (a third security violation introduced
below). Moreover while Chapter 6 does not involve an attack on a learner per se, we consider
the public release of patches to the Firefox open-source project to be highly informative
statistics of an underlying dataset (the patches combined with their labels as either ‘security’
or ‘non-security’). Based on these statistics, our attacks violate the Confidentiality of the
data’s undisclosed labels.

Related Work: Attacks on Learners. Several authors have previously considered at-
tacks covering a range of attack types described by the taxonomy.

Most prior work on attacking learning systems consider Exploratory attacks, in which
the adversary submits malicious test points to a pre-trained classifier. To the best of our

9

knowledge, of these Exploratory attacks all focus on Integrity violations that cause false
negatives. Lowd and Meek (2005b) consider an abstract formulation of what we call the
evasion problem, in which the attacker wishes to make minimal-cost alterations to a positive
instance (e.g., an email spam message) such that the modified instance is labeled negative
by classifier (the modified message reaches the victim’s inbox). They derive query-based
algorithms for Boolean and linear classifiers; in the latter case their algorithms not only
find instances that evade detection, but in-so-doing learn the classifier’s decision boundary.
In Chapter 3 we generalize their work to classifiers that partition feature space into two
sets, one of which is convex. For this larger family of classifiers, learning the decision
boundary is known to be NP-hard (Dyer and Frieze, 1992; Rademacher and Goyal, 2009). In
earlier work Tan et al. (2002) and Wagner and Soto (2002) independently designed mimicry
attacks for evading sequence-based intrusion detection systems (IDSs). By analyzing the
IDS offline, they modify exploits to mimic benign behavior not detected by the IDS. Fogla
and Lee (2006) design polymorphic blending attacks on IDSs that encrypt malicious traffic
to become indistinguishable from innocuous traffic. By contrast our algorithms for evading
convex-inducing classifiers searches by querying the classifier online. In the email spam
domain Wittel and Wu (2004) and Lowd and Meek (2005a) consider good word attacks that
add common words to spam messages to allow them to pass through an email spam filter;
in an alternate approach Karlberger et al. (2007) replace tokens in spam messages that have
strong spam scores with synonyms. In the realm of counter-measures designed specifically
for Exploratory attacks, Dalvi et al. (2004) consider an optimal cost-based defense for naive
Bayes for a rational, omniscient attacker. In Chapter 5 we apply Online Learning Theory
to design a learning-based reactive risk management strategy, which faces an adversary
whose attacks may try to side-step the defensive budget allocations to the system. Since
our performance guarantees for the reactive strategy are derived under extremely weak
conditions on the adversary, we can guarantee that over time the success of such Exploratory
attacks is limited.

A relatively small number of prior studies have investigated Causative attacks, in which
the adversary manipulates the learner by poisoning its training data (although the areas
of Online Learning and Robust Statistics both address learning under such attacks, in spe-
cific settings). Newsome et al. (2006) study red herring Causative Integrity attacks on the
Polygraph polymorphic work detector (Newsome et al., 2005), that aim to increase false neg-
atives. Their attacks include spurious features in positive training examples (worms) so that
subsequent malicious instances can evade being detected by the conjunction learner, which
copes poorly with high levels of irrelevant features. The authors also consider correlated
outlier Exploratory Availability attacks which mis-train the learner into blocking benign
traffic. Chung and Mok (2006, 2007) send traffic to the Autograph worm detector (Kim and
Karp, 2004) that is flagged as malicious. Subsequent legitimate-looking traffic sent from
the same node result in rules that block similar traffic patterns, including truly legitimate
traffic. Kearns and Li (1993) consider the Probably Approximately Correct (PAC) model of
learning (Valiant, 1984), in the presence of an adversary that manipulates a portion of the
training data. In this theoretical work the authors bound the classification error in terms of
the level of malicious noise, and bound the maximum level of noise tolerable for learnabil-

10

ity. In Chapter 2 we consider Causative Availability and Causative Integrity attacks on the
SpamBayes email spam filter, and the PCA-based network anomaly detector respectively.
The former case-study is the first Causative Availability attack of its kind, while the second
study explores a system of recent popularity in the Systems and Measurement communi-
ties. In both cases we consider effective counter-measures for our attacks, including one
that uses Robust Statistics. Finally, relative to all fixed proactive strategies, our reactive
risk management strategy presented in Chapter 5 can handle both Exploratory attacks and
Causative attacks by virtue of the worst-case nature of our analysis.

The Third Security Violation: Confidentiality. The taxonomy of Barreno et al.
(2006) describes the attacker’s goals through the violation and specificity axes, broadly
covering most situations where the attacker wishes to manipulate a learner or its predictions.
However, as is apparent from an increasing body of research on the privacy of statistical
estimators (Dwork, 2010) a third security violation that can be achieved by an adversary
attacking an adaptive system may be one of confidentiality. The International Organization
for Standardization (2005) defines confidentiality as “ensuring that information is accessible
only to those authorized to have access”, and indeed confidentiality is a corner-stone of
information security along-side integrity and availability (Wikipedia, 2010). In particular
confidentiality should be considered as a general kind of security violation, and should
include attacks that reveal information about the learner’s state (Barreno, 2008), parameters
to the learner, or the learner’s training data.

Numerous authors have studied Confidentiality attacks on statistical databases that
release statistics, learned models, or even anonymized forms of the data itself. A common
form of real-world attack on statistical databases is to exploit side information available
via public data covering overlapping features and rows of the database. Sweeney (2002)
used public voter registration records to identify individuals (including the Governor) in an
‘anonymized’ database of hospital records of Massachusetts state employees where patient
names had been removed. In a similar case Narayanan and Shmatikov (2008) identified users
in an ‘anonymized’ movie rating dataset released by Netflix for their collaborative filtering
prize competition. Given a small subset of movies a customer had watched, acting as a
unique kind of signature for the customer, their attack accurately identifies the customer’s
ratings in the dataset. They applied their attack using publicly available movie ratings on
IMDB to identify Netflix customers and their previously-private tastes in movies.

The key problem with removing only explicitly personal information such as names from
a released database, is that seemingly innocuous features can implicitly identify individuals
when used together. Sweeney (2002) showed in her study that gender, postal code and
birthdate is enough to uniquely identify 87% of the U.S. population. An early real-world
Confidentiality violation using this same idea was reported by the New York Times, when
journalists Barbaro and Zeller Jr. (2006) identified AOL members from very specific queries
included in an ID-scrubbed search log released by AOL research.

A number of theoretical Confidentiality attacks have been designed in past work, demon-
strating the fundamental privacy limits of statistical database mechanisms. Dinur and Nis-
sim (2003) show that if noise of rate only o(

√
n) is added to subset sum queries on a database

11

of n bits then an adversary can reconstruct a 1 − o(1) fraction of the database. This is a
threshold phenomenon that says if accuracy is too high, no level of privacy can be guaran-
teed. Dwork and Yekhanin (2008) construct realistic, acute attacks in which only a fixed
number of queries is made for each bit revealed. In a similar vein we show negative results
for the privacy-preserving Support Vector Machine (SVM) setting in Chapter 4, where any
mechanism that is too accurate with respect to the SVM, cannot guarantee high levels of
privacy.

Deriving defenses for Confidentiality attacks on learners is an active area of research in
Databases, Machine Learning, Security, Statistics and TCS (Dwork, 2008, 2010). An increas-
ingly popular guarantee of data privacy is provided by differential privacy (Dwork, 2006).
We provide the definition and technical details of differential privacy in Chapter 4, however
the intuition is that even a powerful attacker with full knowledge of all but one row in a
databases, the workings of the statistical database mechanism, and access to responses from
the mechanism, cannot reconstruct the final database row. Differentially private versions of
several statistics and learning algorithms have thus far been developed, including: contin-
gency tables (Barak et al., 2007), histograms, Principal Component Analysis, k means, ID3,
the perceptron algorithm (Blum et al., 2005), regularized logistic regression (Chaudhuri and
Monteleoni, 2009), query and click count logs (Korolova et al., 2009), degree distributions
of graphs (Hay et al., 2009), and several recommender systems that were used in the Netflix
prize contest (McSherry and Mironov, 2009). We derive privacy-preserving mechanisms for
SVM learning in Chapter 4.

1.3 The Importance of the Adversary’s Capabilities

As discussed with respect to the taxonomy above, a crucial step in protecting against
threats on Machine Learning systems is to understand the threat model in adversarial learn-
ing domains. The threat model can broadly be described as the attacker’s goals and ca-
pabilities. Typical attacker goals are well-represented by the taxonomy of Barreno et al.
(2006) described above. However this taxonomy considers the adversary’s capabilities at
the coarsest level as either being able to manipulate the training and/or test data. A finer
grained analysis of adversarial capabilities may consider the level of information and the
level of control possessed by the adversary.

Definition 2. Adversarial information is the adversary’s knowledge of the learning system
and environment, such as the learner’s features, the learning algorithm, the current decision
function, the policy for training and retraining, and the benign data generation process.

Definition 3. Adversarial control is the extent of the attacker’s control over the learning
system’s training and/or test data.

A number of examples illustrating the roles of adversarial information and control now
follow.

Example 4. In email spam filtering, relevant adversarial information may include the user’s
language, common types of email the user receives, which spam filter the user has, and the

12

particular training corpus or distribution used to create the spam filter (or knowledge of a
similar distribution). Adversarial control may include choosing the bodies of a fraction of
emails (perhaps only spam), controlling email headers directly or indirectly, and controlling
how the user receives messages. This control could be exerted over messages used for training
or for run-time testing.

Example 5. In network-wide traffic anomaly detection (Lakhina et al., 2004a), adversarial
information may include the network topology, routing tables, real-time traffic volumes along
one or more links, historical traffic along one or more links, and the training policies of the
anomaly detection system. Adversarial control may include controlling one or more links
to give false traffic reports or compromising one or more routers to inject chaff into the
network.

Example 6. In the domain of phishing webpage detection, adversarial information may
include user language and country, email client, web browser, financial institution, and em-
ployer. Adversarial control may include choosing the content and/or headers of the phishing
emails and potentially influencing training datasets of known phishing sites, such as Phish-
Tank (2010).

In the sequel, assumptions on adversarial information and control will be made explicit.
An interesting and important research direction is to consider analyses that quantify the
value of the information and control available to the adversary for attacks against learning
systems. We revisit such open question in Chapter 7.

Chapter 2 considers case studies in Causative Integrity and Availability attacks on clas-
sifiers with special attention paid to the effects of increasing adversarial information or
control. Chapter 3 develops Exploratory Integrity attacks on classifiers where bounds are
derived on the number of query test points required by the attacker: in-turn these corre-
spond to the amount of control the adversary has over the test data. Finally the attacks on
Firefox constructed in Chapter 6 either utilize meta-data about commits to an open-source
repository or are oblivious to the commit details. Once again, this corresponds to the level
of information available to the attacker. Chapters 4 and 5 grant significant amounts of
information and control to the adversary, as they derive results in worst-case settings.

13

Part I

Private and Secure Machine Learning

14

Chapter 2

Poisoning Classifiers

Expect poison from standing water.

– William Blake

Statistical Machine Learning techniques have recently garnered increased popularity as
a means to filter email spam (Ramachandran et al., 2007; Robinson, 2003) and improve
network design and security (Bahl et al., 2007; Cheng et al., 2007; Kandula et al., 2008;
Lazarevic et al., 2003), as learning techniques can adapt to specifics of an adversary’s be-
havior. However using Statistical Machine Learning for making security decisions introduces
new vulnerabilities in large-scale systems due to this very adaptability. This chapter devel-
ops attacks that exploit Statistical Machine Learning, as used in the SpamBayes email spam
filter (Meyer and Whateley, 2004; Robinson, 2003) and the Principal Component Analy-
sis (PCA)-subspace method for detecting anomalies in backbone networks (Lakhina et al.,
2004a).

In the language of the taxonomy of Barreno et al. (2006) (cf. Section 1.2.2), the attacks
of this chapter are case-studies in Causative attacks: the adversary influences the classifier
by manipulating the learner’s training data. The attacks on SpamBayes are Availability
attacks in that they aim to increase the false positive rate or availability of the spam filter
(constituting a DoS attack on the learning component itself). By contrast the presented
attacks on PCA are Integrity attacks that aim to increase the false negative rate or chance
of evasion. Finally the attacks on PCA are Targeted in that they facilitate specific false
negatives. Both Indiscriminate and Targeted attacks on SpamBayes are presented, and
special attention is paid to the adversary’s capabilities, with attacks exploiting a range of
adversarial information and control compared experimentally throughout.

As the presented attacks highlight and quantify the severity of existing vulnerabili-
ties in the SpamBayes and PCA-based systems, it becomes necessary to design defensive
approaches that are less susceptible to tampering. In both of the training data poisoning
case-studies, counter-measures are proposed that reduce the effects of the presented attacks.

The SpamBayes case-study of Section 2.2 presents joint work with UCB EECS doctoral
candidates Marco Barreno and Blaine Nelson. In that study I contributed equally to the
design of the attacks on SpamBayes, while Barreno and Nelson were responsible for their

15

implementation and the experimental analysis. In Section 2.3’s case-study on PCA-based
anomaly detection I was the lead graduate student, in joint work with Nelson. While we
equally contributed to the design of the attacks and the defenses, I was responsible for the
implementation and experimental analysis.

2.1 Introduction

Applications use Statistical Machine Learning to perform a growing number of critical
tasks in virtually all areas of computing. The key strength of Machine Learning is adapt-
ability; however, this can become a weakness when an adversary manipulates the learner’s
environment. With the continual growth of malicious activity and electronic crime, the in-
creasingly broad adoption of learning makes assessing the vulnerability of learning systems
to manipulation an essential problem.

The question of robust decision making in systems that rely on Machine Learning is of
interest in its own right. But for security practitioners, it is especially important, as a wide
swath of security-sensitive applications build on Machine Learning technology, including
intrusion detection systems, virus and worm detection systems, and spam filters (Bahl et al.,
2007; Cheng et al., 2007; Kandula et al., 2008; Lakhina et al., 2004a,a; Lazarevic et al., 2003;
Liao and Vemuri, 2002; Meyer and Whateley, 2004; Mukkamala et al., 2002; Newsome et al.,
2005; Ramachandran et al., 2007; Robinson, 2003; Soule et al., 2005; Stolfo et al., 2006;
Zhang et al., 2005). These solutions draw upon a variety of techniques from the SML domain
including Singular Value Decomposition, clustering, Bayesian inference, spectral analysis,
maximum-margin classification, etc.; and in many scenarios, these approaches have been
demonstrated to perform well in the absence of Causative attacks on the learner.

Past Machine Learning research has often proceeded under the assumption that learning
systems are provided with training data drawn from a natural distribution of inputs. Such
techniques have a serious vulnerability, however, as in many real-world applications an
attacker has the ability to provide the learning system with maliciously chosen inputs that
cause the system to infer poor classification rules. In the spam domain, for example, the
adversary can send carefully crafted spam messages that a human user will correctly identify
and mark as spam, but which can influence the underlying learning system and adversely
affect its ability to correctly classify future messages. A similar scenario is conceivable for
the network anomaly detection domain, where an adversary could carefully inject traffic
into the network so that the detector mis-learns its model of normal traffic patterns.

This chapter explores two in-depth case-studies into Causative attacks, and correspond-
ing counter-measures, against Machine Learning systems. The first case-study considers the
email spam filtering problem, where the attacker’s goal is to increase False Positive Rates
as a denial-of-service attack on the learner itself. The second case-study explores a problem
in network anomaly detection where the adversary’s goal for poisoning is to increase the
False Negative Rate so that subsequent attacks through the network can go un-detected.
Throughout the chapter, the key roles of the adversary’s capabilities of information and
control are highlighted, and their effect on the attacks’ damage measured.

16

Chapter Organization. This section is completed with a survey of previous work related
to poisoning learners. Section 2.2 describes in detail a Causative attack case-study on email
spam filtering, while Section 2.3 details a case-study on network anomaly detection. Finally
the chapter is concluded with a summary of its main contributions in Section 2.4.

2.1.1 Related Work

Many authors have examined adversarial learning from a theoretical perspective. For
example, within the Probably Approximately Correct framework, Kearns and Li (1993)
bound the classification error an adversary that has control over a fraction β of the training
set can cause. Dalvi et al. (2004) apply game theory to the classification problem: they model
interactions between the classifier and attacker as a game and find the optimal counter-
strategy for the classifier against an optimal opponent. The learning theory community has
focused on online learning (Cesa-Bianchi and Lugosi, 2006), where data is selected by an
adversary with complete knowledge of the learner, and has developed efficient algorithms
with strong guarantees. However, the simplifying assumption of all data being produced
by an omniscient adversary does not hold for many practical threat models. Given the
increasing popularity of SML techniques, we believe exploring adversarial learning with
realistic threat models is important and timely.

A handful of studies have considered Causative attacks on SML-based systems. Newsome
et al. (2006) present attacks against Polygraph (Newsome et al., 2005), a polymorphic
virus detector that uses Machine Learning. They suggest a correlated outlier attack, which
attacks a naive-Bayes-like learner by adding spurious features to positive training instances,
causing the filter to block benign traffic with those features (a Causative Availability attack).
Focusing on conjunction learners, they present Causative Integrity red herring attacks that
again include spurious features in positive training examples so that subsequent malicious
instances can evade detection by excluding these features. Our attacks use similar ideas,
but we develop and test them on real systems in other domains and we also explore the
value of information and control to an attacker, and we present and test defenses against
the attacks. Venkataraman et al. (2008) present lower bounds for learning worm signatures
based on red herring attacks and reductions to classic results from Query Learning. Chung
and Mok (2006, 2007) present a Causative Availability attack against the earlier Autograph
worm signature generation system (Kim and Karp, 2004), which infers blocking rules based
on patterns observed in traffic from suspicious nodes. The main idea is that the attack node
first sends traffic that causes Autograph to mark it suspicious, then sends traffic similar to
legitimate traffic, resulting in rules that cause a denial of service.

Most existing attacks against content-based spam filters in particular are Exploratory
attacks that do not influence training but engineer spam messages so they pass through the
filter. For example, Lowd and Meek (2005a,b) explore reverse-engineering a spam classifier
to find high-value messages that the filter does not block, Karlberger et al. (2007) study the
effect of replacing strong spam words with synonyms, and Wittel and Wu (2004) study the
effect of adding common words to spam to get it through a spam filter. Another Exploratory
attack is the polymorphic blending attack of Fogla and Lee (2006), which encrypts malicious

17

traffic so that the traffic is indistinguishable from innocuous traffic to an intrusion detection
system. By contrast our variance injection attacks add small amounts of high-variance
chaff traffic to PCA’s training data, to make the data appear more like future DoS attacks.
We return to the problem of evading a classifier with carefully crafted test instances in
Chapter 3.

Finally Ringberg et al. (2007) performed a study of the sensitivities of the PCA-based
detection method studied in Section 2.3, that illustrates how the PCA method can be
sensitive to the number of principal components used to describe the normal subspace. This
parameter can limit PCA’s effectiveness if not properly configured. They also show that
routing outages can pollute the normal subspace; a kind of perturbation to the subspace
that is not adversarial. Our work differs in two key ways. First we demonstrate a different
type of sensitivity, namely that of data poisoning. This adversarial perturbation can be
stealthy and subtle, and is more challenging to circumvent than observable routing outages.
Second, Ringberg et al. (2007) focus on showing the variability in PCA’s performance to
certain sensitivities, and not on defenses. In our work, we propose a robust defense against
a malicious adversary and demonstrate its effectiveness. It is conceivable that the technique
we propose could help limit PCA’s sensitivity to routing outages, although such a study
is beyond the scope of this work. A recent study (Brauckhoff et al., 2009) showed that
the sensitivities observed by Ringberg et al. (2007) come from PCA’s inability to capture
temporal correlations. They propose to replace PCA by a Karhunen-Loeve expansion. Our
study indicates that it would be important to examine, in future work, the data poisoning
robustness of this proposal.

2.2 Case-Study on Email Spam

This section demonstrates how attackers can exploit Machine Learning to subvert spam
filters. Our attack strategies exhibit two key differences from previous work: traditional
attacks modify spam emails to evade a spam filter, whereas our attacks interfere with the
training process of the learning algorithm and modify the filter itself ; and rather than focus
only on placing spam emails in the victim’s inbox, we subvert the spam filter to remove
legitimate emails from the inbox (see the theses of Barreno 2008 and Saini 2008 for poisoning
attacks that cause spam to evade filtering).

An attacker may have one of two goals: expose the victim to an advertisement or prevent
the victim from seeing a legitimate message. Potential revenue gain for a spammer drives
the first goal, while the second goal is motivated, for example, by an organization competing
for a contract that wants to prevent competing bids from reaching their intended recipient.

Tying in with adversarial information (cf. Section 1.3), an attacker may have detailed
knowledge of a specific email the victim is likely to receive in the future, or the attacker
may know particular words or general information about the victim’s word distribution. In
many cases, the attacker may know nothing beyond which language the emails are likely to
use.

When an attacker wants the victim to see spam emails, a broad dictionary attack can
render the spam filter unusable, causing the victim to disable the filter (cf. Section 2.2.2.2).

18

With more information about the email distribution, the attacker can select a smaller dic-
tionary of high-value features that are still effective. When an attacker wants to prevent
a victim from seeing particular emails and has some information about those emails, the
attacker can target them with a focused attack (cf. Section 2.2.2.3).

We demonstrate the potency of these attacks and then present two defenses. The Re-
ject On Negative Impact (RONI) defense tests the impact of each email on training and
doesn’t train on messages that have a large negative impact. The dynamic threshold de-
fense dynamically sets the spam filter’s classification thresholds based on the data rather
than using SpamBayes’ static choice of thresholds. We show that both defenses are effective
in preventing some attacks from succeeding.

We focus on the learning algorithm underlying several spam filters, including SpamBayes
(spambayes.sourceforge.net), BogoFilter (bogofilter.sourceforge.net), and the machine learn-
ing component of SpamAssassin (spamassassin.apache.org).1 We target the open-source
SpamBayes system because it uses a pure machine learning method, it is familiar to the
academic community (Meyer and Whateley, 2004), and it is popular, with over 1,800,000
downloads. Although we specifically attack SpamBayes, the widespread use of its statistical
learning algorithm suggests that other filters may also be vulnerable to similar attacks.

Our experimental results confirm that this class of attacks presents a serious concern for
statistical spam filters, when the adversary has only limited control over the learner (again,
tying back to the importance of adversarial capabilities cf. Section 1.3). A dictionary attack
can make a spam filter unusable when controlling just 1% of the messages in the training
set, and a well-informed focused attack can remove the target email from the victim’s inbox
90% of the time. Of our two defenses, one significantly mitigates the effect of the dictionary
attack and the other provides insight into the strengths and limitations of threshold-based
defenses.

2.2.1 Background on Email Spam Filtering

We now briefly overview common learning models for email spam filtering, and detail
the SpamBayes learning algorithm.

2.2.1.1 Training model

SpamBayes produces a classifier from labeled examples to predict the true class of fu-
ture emails. The labels used by SpamBayes consist of spam (bad, unsolicited email), ham
(good, legitimate email), and unsure (SpamBayes isn’t confident one way or the other). The
classifier learns from a labeled training set or corpus of ham and spam emails.

Email clients (applications for viewing and manipulating email messages) use these labels
in different ways—some clients filter email labeled as spam and unsure into “Spam-High”
and “Spam-Low” folders, respectively, while other clients only filter email labeled as spam
into a separate folder. Since the typical user reads most or all email in their inbox and

1The primary difference between the learning elements of these three filters is in their tokenization
methods.

19

rarely (if ever) looks at the spam/spam-high folder, the unsure labels can be problematic. If
unsure messages are filtered into a separate folder, users may periodically read the messages
in that folder to avoid missing important email. If instead unsure messages are not filtered,
then the user is confronted with those messages when checking the email in their inbox.
Too much unsure email is almost as troublesome as too many false positives (ham labeled
as spam) or false negatives (spam labeled as ham). In the extreme, if everything is labeled
unsure then the user obtains no time savings at all from the filter.

In our scenarios, an organization uses SpamBayes to filter multiple users’ incoming email2

and trains on everyone’s received email. SpamBayes may also be used as a personal email
filter, in which case the presented attacks and defenses are likely to be equally effective.

To keep up with changing trends in the statistical characteristics of both legitimate
and spam email, we assume that the organization retrains SpamBayes periodically (e.g.,
weekly). Our attacks are not limited to any particular retraining process; they only require
that the attacker can introduce attack data into the training set somehow (the contamina-
tion assumption). In the next section, we justify this assumption but the purpose of this
investigation is only to analyze the effect of poisoned datasets.

2.2.1.2 SpamBayes Learning Method

SpamBayes makes classifications using token scores based on a simple model of spam
status proposed by Meyer and Whateley (2004); Robinson (2003), based on ideas by Graham
(2002) together with Fisher’s method for combining independent significance tests (Fisher,
1948).

SpamBayes tokenizes the header and body of each email before constructing token spam
scores. Robinson’s method assumes that the presence or absence of tokens in an email affect
its spam status independently. For each token w, the raw token spam score

P(S,w) =
NHNS(w)

NHNS(w) +NSNH(w)

is computed from the counts NS, NH , NS(w), and NH(w)—the number of spam emails, ham
emails, spam emails that include w and ham emails that include w.

Robinson smooths P(S,w) through a convex combination with a prior belief x, weighting
the quantities by N(w) (the number of training emails with w) and s (chosen for strength
of prior), respectively:

f(w) =
s

s+N(w)
x+

N(w)

s+N(w)
P(S,w) . (2.1)

For a new email message E, Robinson uses Fisher’s method to combine the spam scores
of the most significant tokens3 into a message score

2We use the terms user and victim interchangeably for either organization or individual; the meaning
will be clear from context.

3SpamBayes uses at most 150 tokens from E with scores furthest from 0.5 and outside the interval
[0.4, 0.6]. We call this set δ(E).

20

I(E) =
1 +H(E)− S(E)

2
∈ [0, 1] , (2.2)

where H(E) = 1− χ2
2n

−2
∑

w∈δ(E)

log f(w)

 ,

S(E) = 1− χ2
2n

−2
∑

w∈δ(E)

log (1− f(w))

 ,

and where χ2
2n (·) denotes the cumulative distribution function of the chi-square distribution

with 2n degrees of freedom. SpamBayes predicts by thresholding against two user-tunable
thresholds θ0 and θ1, with defaults θ0 = 0.15 and θ1 = 0.9: SpamBayes predicts ham, unsure,
or spam if I falls into the interval [0, θ0], (θ0, θ1], or (θ1, 1], respectively.

The inclusion of an unsure category prevents us from purely using misclassification rates
(false positives and false negatives) for evaluation. We must also consider spam-as-unsure
and ham-as-unsure emails. Because of the considerations in Section 2.2.1.1, unsure misclas-
sifications of ham emails are nearly as bad for the user as false positives.

2.2.2 Attacks

We now present Causative Availability attacks on SpamBayes, i.e., attacks that aim
to increase the False Positive Rate of the learned classifier by manipulating the training
data. After describing the contamination assumption that we can realistically inject spam
messages into the training corpus (Section 2.2.2.1), we detail both Indiscriminate (Sec-
tion 2.2.2.2) and Targeted (Section 2.2.2.3) attacks.

2.2.2.1 The Contamination Assumption

We assume that the attacker can send emails that the victim will use for training—
the contamination assumption—but incorporate two significant restrictions: attackers may
specify arbitrary email bodies but not headers, and attack emails are always trained as
spam and not ham. We examine the implications of the contamination assumption in the
remainder of this section.

How can an attacker contaminate the training set? Consider the following alternatives.
If the victim periodically retrains on all email, any email the attacker sends will be used for
training. If the victim manually labels a training set, the attack emails will be included as
spam because they genuinely are spam. Even if the victim retrains only on mistakes made
by the filter, the attacker may be able to design emails that both perform our attacks and
are also misclassified by the victim’s current filter. We do not address the possibility that a
user might inspect training data to remove attack emails; our attacks could be adjusted to
evade detection strategies such as email size or word distributions, but we avoid pursuing
this arms race here.

21

Our focus on spam-labeled attack emails should be viewed as a restriction and not a
necessary condition for the success of the attacks—using ham-labeled attack emails could
enable more powerful attacks that place spam in a user’s inbox (Barreno, 2008; Saini, 2008).

2.2.2.2 Dictionary Attacks

Our first attack is an Indiscriminate attack. The idea behind the attack is to send attack
emails that contain many words likely to occur in legitimate email. When the victim trains
SpamBayes with these attack emails marked as spam, the spam scores of the words in the
attack emails will increase. Future legitimate email is more likely to be marked as spam
if it contains words from the attack email. With a sufficient increase to the False Positive
Rate, the victim will disable the spam filter, or at least must frequently search through
spam/unsure folders to find legitimate messages that were filtered away. In either case, the
victim loses confidence in the filter and is forced to view more spam—the victim sees the
attacker’s spam.

Depending on the level of information available to the adversary, s/he may be able to
construct more effective attacks on the spam filter.

Knowledge of Victim’s Language. When the attacker lacks knowledge about the vic-
tim’s email, one simple attack is to include an entire dictionary of the English language
(or more generally a dictionary of the victim’s native tongue). This technique is the basic
dictionary attack. We use the GNU aspell English dictionary version 6.0-0, containing
98,568 words.

The dictionary attack increases the score of every token in a dictionary of English words
i.e., it makes them more indicative of spam). After it receives a dictionary spam message,
the victim’s spam filter will have a higher spam score for every token in the dictionary, an
effect that is amplified for less frequent tokens: in particular, the spam scores of vulnerable
tokens dramatically increases. Furthermore, the long-tailed Zipf distribution of natural
human language implies that a victim’s future non-spam email will likely contain several
vulnerable tokens, increasing the filter’s spam score for that email.

(Limited) Knowledge of Victim’s Word Distribution. A further refinement uses
a word source with distribution closer to the victim’s email distribution. For example, a
large pool of Usenet newsgroup postings may have colloquialisms, misspellings, and other
“words” not found in a dictionary; furthermore, using the most frequent words in such a
corpus may allow the attacker to send smaller emails without losing much effectiveness.

This attack exploits the sparsity of tokens in human text (i.e., most people use small
vocabularies). As mentioned above, in natural language there are a small number of words
that are used frequently and a large number of words (a long tail) that are used infrequently.

2.2.2.3 Focused Attack

Our second kind of attack—the focused attack—assumes knowledge of a specific legiti-
mate email or type of email the attacker wants blocked by the victim’s spam filter. This is

22

a Causative Targeted Availability attack. In the focused attack, the attacker sends attack
emails to the victim containing words likely to occur in the target email. When SpamBayes
trains on this attack email, the spam scores of the targeted tokens increase, so the target
message is more likely to be filtered as spam.

For example, consider a malicious contractor wishing to prevent the victim from receiving
messages with competing bids. The attacker sends spam emails to the victim with words
such as the names of competing companies, their products, and their employees. The bid
messages may even follow a common template known to the attacker, making the attack
easier to craft.

The attacker may have different levels of knowledge about the target email. In the
extreme case, the attacker might know the exact content of the target email and use all
of its words. More realistically, the attacker only guesses a fraction of the email’s content.
In either case, the attack email may include additional words as well, e.g., drawn from a
general distribution over email text to obfuscate the message’s intent.

Like the Usenet distribution-based attack, the focused attack is more concise than the
dictionary attack because the attacker has detailed knowledge of the target and need not
affect other messages. The focused attack can be more concise because it leaves out words
that are unlikely to appear. This conciseness makes the attack both more efficient for the
attacker and more difficult to detect as an attack.

2.2.2.4 A Principled Justification of the Dictionary and Focused Attacks

The dictionary and focused attacks can be seen as two instances of a common attack
in which the attacker has different levels of information about the victim’s email. Without
loss of generality, suppose the attacker generates only a single attack message a. The victim
adds it to the training set as spam, trains, and classifies a (random) new text message M
in the future. Since SpamBayes operates under a (typical) bag-of-words model, both a and
M are indicator vectors, where the ith component is true iff word i appears in the email.
The attacker also has some (perhaps limited) knowledge of the next email the victim will
receive. This knowledge can be represented as a distribution D—the vector of probabilities
that each word appears in the next message. That is, the attacker assumes that M ∼ D,
and has reason to believe that D is related to the true underlying email distribution of the
victim.

The goal of the attacker is to choose an attack email a that maximizes the expected spam
score Ia (Equation 2.2 with the attack message a including in the training corpus) of the
next legitimate email M drawn from distribution D; that is, the attacker’s goal is to select
an attack message in

arg max
a

EM∼D [Ia(M)] .

In order to describe the optimal attacks under this criterion, we make two observations.
First, the spam scores of distinct words do not interact; that is, adding a word w to the
attack does not change the score f(u) of some different word u 6= w. Second, it is easy

23

to show that I is non-decreasing in each f(w). Therefore the best way to increase Ia is to
include additional words in the attack message.

Now let us consider specific choices for the next email’s distribution D. First, if the
attacker has little knowledge about the words in target emails, the attacker can set D to be
uniform over all emails. We can optimize the resulting expected spam score by including
all possible words in the attack email. This optimal attack is infeasible in practice (as it
includes misspellings, etc.) but can be approximated: one approximation includes all words
in the victim’s primary language, such as an English dictionary. This yields the dictionary
attack.

Second, if the attacker has specific knowledge of a target email, we can represent this
by setting D(i) to 1 iff the ith word is in the target email. The above ‘optimal attack’ still
maximizes the expected spam score, but a more compact attack that also optimizes the
expected spam score is to include all of the words in the target email. This produces the
focused attack.

The attacker’s knowledge usually falls between these extremes. For example, the attacker
may use information about the distribution of words in English text to make the attack more
efficient, such as characteristic vocabulary or jargon typical for the victim. Either way, the
adversary’s information results in a distribution D over words in the victim’s emails.

2.2.3 Attack Results

We now present experiments launching the attacks described above on the SpamBayes
email spam filter.

2.2.3.1 Experimental Method

Dataset. In our experiments we use the Text Retrieval Conference (TREC) 2005 spam
corpus (Cormack and Lynam, 2005), which is based on the Enron email corpus (Klimt and
Yang, 2004) and contains 92,189 emails (52,790 spam and 39,399 ham). This corpus has
several strengths: it comes from a real-world source, it has a large number of emails, and
its creators took care that the added spam does not have obvious artifacts to differentiate
it. We also use a corpus constructed from a subset of Usenet English postings to generate
words for our attacks (Shaoul and Westbury, 2007).

Training Method. For each experiment, we sample a dataset of email without replace-
ment from the TREC corpus. We create a control model by training SpamBayes once
only on the training set. Each of our attacks creates a different type of attack email for
SpamBayes to use in training, producing tainted models.

When we require mailboxes of a specified size, such as for training and test sets, we
sample ham and spam emails randomly without replacement from the entire TREC spam
corpus. When we require only a portion of an email, such as the header, we randomly select
an email from the dataset that has not been used in the current run, so that we ignore email
messages that have already been selected for use in the training set.

24

Parameter Dictionary
Attack

Focused
Attack

RONI
Defense

Threshold
Defense

Training set size 2,000, 10,000 5,000 20 2,000, 10,000
Test set size 200, 1,000 N/A 50 200, 1,000
Spam preva-
lence

0.50, 0.75 0.50 0.50 0.50

Attack fraction 0.001, 0.005,
0.01, 0.02,
0.05, 0.10

0.02 to 0.50
incrementing
by 0.02

0.05 0.001, 0.01,
0.05, 0.10

Folds of valida-
tion

10 5 repetitions 5 repetitions 5

Target Emails N/A 20 N/A N/A

Table 2.1: Parameters used in our experiments.

Message Generation. We restrict the attacker to have limited control over the headers
of attack emails (see Section 2.2.2.1). We implement this assumption either by using the
entire header from a randomly selected spam email from TREC (focused attack) or by using
an empty header (all other attacks).

Method of Assessment. We measure the effect of each attack by comparing classification
performance of the control and compromised filters using K-fold cross-validation (or K
repetitions with new random dataset samples in the case of the focused attack). In cross-
validation, we partition the dataset into K subsets and perform K train-test epochs. During
the ith epoch, the ith subset is set aside as a test set and the remaining (K − 1) subsets
are used for training. Each email from our original dataset serves independently as both
training and test data.

In the following sections, we show the effect of our attacks on test sets of held-out
messages. Because our attacks are designed to cause ham to be misclassified, we only show
their effect on ham messages; their effect on spam is marginal. Our graphs do not include
error bars since we observed that the variation in our tests was small. See Table 2.1 for our
experimental parameters.

2.2.3.2 Dictionary Attack Results

We examined the effect of adversarial control on the effectiveness of dictionary attacks.
Here adversarial control is parametrized as the percent of attack messages in the training set.
Figure 2.1 shows the misclassification rates of three dictionary attack variants averaging over
ten-fold cross-validation. The optimal attack quickly causes the filter to label all ham emails
as spam. The Usenet dictionary attack (90,000 top ranked words from the Usenet corpus)
causes significantly more ham emails to be misclassified than the Aspell dictionary attack,
since it contains common misspellings and slang terms that are not present in the Aspell
dictionary (the overlap between the Aspell and Usenet dictionaries is around 61,000 words).

25

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Percent Control of Training Set

P
er

ce
nt

 o
f T

es
t H

am
 M

is
cl

as
si

fie
d

Optimal Usenet Aspell

Figure 2.1: Three dictionary attacks on initial training set of 10,000 messages (50% spam).
We plot percent of ham classified as spam (dashed lines) and as spam or unsure (solid lines)
against the attack as percent of the training set. We show the optimal attack (black

a
),

the Usenet dictionary attack (blue �), and the Aspell dictionary attack (green ©). Each
attack renders the filter unusable with as little as 1% control (101 messages).

These variations of the attack require relatively few attack emails to significantly degrade
SpamBayes accuracy. By 101 attack emails (1% of 10,000), the accuracy falls significantly
for each attack variation; at this point most users will gain no advantage from continued
use of the filter.

Remark 7. Although the attack emails make up a small percentage of the number of mes-
sages in a poisoned inbox, they make up a large percentage of the number of tokens. For
example, at 204 attack emails (2% of the messages), the Usenet attack includes approxi-
mately 6.4 times as many tokens as the original dataset and the Aspell attack includes 7
times as many tokens. An attack with fewer tokens would likely be harder to detect; however,
the number of messages is a more visible feature. It is of significant interest that such a
small number of attack messages is sufficient to degrade the performance of a widely-deployed
filtering algorithm to such a degree.

2.2.3.3 Focused Attack Results

In this section, we experimentally analyze how many attack emails are required for the
focused attack to be effective, how accurate the attacker needs to be at guessing the target
email, and whether some emails are easier to target than others.

26

0.1 0.3 0.5 0.9

0
20

40
60

80
10

0

Probability of guessing target tokens

P
er

ce
nt

ag
e

of
 a

tta
ck

 s
uc

ce
ss

ham

spam

unsure

Figure 2.2: Effect of the focused attack
as a function of adversarial information.
Each bar depicts the fraction of target
emails classified as spam, ham, and un-
sure after the attack. The initial inbox
contains 5,000 emails (with 50% spam).

0 2 4 6 8 10
0

20

40

60

80

100

Percent Control of Training Set

 P
er

ce
n
t

o
f

T
ar

g
et

 H
am

 M
is

cl
as

si
fi

ed
Figure 2.3: Effect of the focused attack as a
function of adversarial control (with adversar-
ial information at p=0.5) The dashed (solid) line
shows the percentage of targets misclassified as
spam (unsure or spam) after the attack. The ini-
tial inbox contains 5,000 emails (50% spam).

We run each repetition of the focused attack as follows. First we randomly select a
ham email from the TREC corpus to serve as the target of the attack. We use a clean,
non-malicious 5,000-message inbox with 50% spam. We repeat the entire attack procedure
independently for 20 randomly-selected target emails.

In Figure 2.2, we examine the effectiveness of the attack when the attacker has increasing
knowledge of the target email by simulating the process of the attacker guessing tokens from
the target email. For this figure, there are 300 attack emails—16% of the original number
of training emails. We assume that the attacker correctly guesses each word in the target
with probability p in {0.1, 0.3, 0.5, 0.9}—the x-axis of Figure 2.2. The y-axis shows the
proportion of the 20 targets classified as ham, unsure and spam. As expected, the attack is
increasingly effective as the level of adversarial information p increases. With knowledge of
only 30% of the tokens in the target, 60% of the target emails are mis-classified.

In Figure 2.3, we examine the attack’s effect on misclassifications of the targeted emails
as the number of attack messages—the adversarial control—increases. Here we fix the
probability of guessing each target token at 0.5. The x-axis depicts the number of messages
in the attack and the y-axis is the percent of messages misclassified. With 100 attack emails,
out of a initial mailbox size of 5,000, the target email is misclassified 32% of the time.

Additional insight can be gained by examining the attack’s effect on three representative
emails (see Figure 2.4). Each of the panels in the figure represents a single target email
representing each of three possible attack outcomes: ham misclassified as spam (Left), ham

27

●

●

●
●●

●

●

●●

●

●

●

●●
●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

T
ok

en
 s

co
re

 a
fte

r
at

ta
ck

Token score before attack

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●●

●
●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

T
ok

en
 s

co
re

 a
fte

r
at

ta
ck

Token score before attack

●
●●

●

●

●
●

●●●●●●●●

●
●

●
●

●●●
●●

●●

●

●

●

●

●●●●●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

T
ok

en
 s

co
re

 a
fte

r
at

ta
ck

Token score before attack

Figure 2.4: Effect of the focused attack on three representative emails—one graph for each
target email. Each point is a token in the target email. The x-axis is the token spam score in
Equation (2.1) before the attack (0 means ham and 1 means spam). The y-axis is the spam
score after the attack. The red crosses are tokens that were included in the attack and the
black circles are tokens that were not in the attack. The histograms show the distribution
of spam scores before the attack (at bottom) and after the attack (at right).

misclassified as unsure (Middle), and ham correctly classified as ham (Right). Each point
in the graph represents the before/after score of a token; any point above the line y =
x corresponds to a token score increase due to the attack and any point below the line
corresponds to a decrease. From these graphs it is clear that tokens included in the attack
typically increase significantly while those not included decrease slightly. Since the increase
in score is more significant for included tokens than the decrease in score for excluded tokens,

28

the attack has substantial impact even when the attacker has a low probability of guessing
tokens as seen in Figure 2.2. Furthermore, the before/after histograms in Figure 2.4 provide
a direct indicator of the attack’s success.

Also, comparing the bottom histograms of the three panels, we can see that the attack
was most successful on emails that already contained a significant number of spam tokens
before the attack. All three emails as a whole were confidently classified as ham before the
attack, but in the successful attack, the target was closest to being classified as spam.

2.2.4 Defenses

In the following two sections we consider counter-measures for responding against the
attacks presented above.

2.2.4.1 RONI defense

Our Causative attacks are effective since training on attack emails causes the filter to
learn incorrect token spam scores and misclassify emails. Each attack email contributes
towards the degradation of the filter’s performance; if we can measure each email’s impact
prior to training, then we can remove deleterious messages from the training set before the
classifier is manipulated.

In the Reject On Negative Impact (RONI) defense, we measure the incremental effect of
each query email Q by testing the performance difference with and without that email. We
independently sample a 20-message training set T and a 50-message validation set V five
times from the initial pool of emails given to SpamBayes for training. We train on both T
and T ∪{Q} and measure the impact of each query email as the average change in incorrect
classifications on V over the five trials. We reject candidate message Q from training if the
impact is significantly negative. We test with 120 random non-attack spam messages and
15 repetitions each of seven variants of the dictionary attacks in Section 2.2.2.2.

Experiments show that the RONI defense is extremely successful against dictionary at-
tacks, identifying 100% of the attack emails without flagging any non-attack emails. Each
dictionary attack message causes at least an average decrease of 6.8 ham-as-ham messages.
In sharp contrast, non-attack spam messages cause at most an average decrease of 4.4 ham-
as-ham messages. This clear region of separability means a simple threshold on this statistic
is effective at separating dictionary attack emails from non-attack spam.

This experiment provides some confidence that this defense would work given a larger
test set due to the large impact a small number of attack emails have on performance.

However, the RONI defense fails to differentiate focused attack emails from non-attack
emails. The explanation is simple: the dictionary attack broadly affects emails, including
training emails, while the focused attack is targeted at a future email, so its effects may not
be evident on the training set alone.

29

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Percent Control of Training Set

P
e
rc

e
n
t
o
f
T

e
s
t
H

a
m

 M
is

c
la

s
s
if
e
d

No Defense

Threshold!.05

Threshold!.10

Figure 2.5: Effect of the threshold defense on the classification of ham messages with the
dictionary based attacks. We use a 10, 000 inbox training set of which 50% are spam. The
solid lines represent ham messages classified as spam or unsure while the dashed lines show
the classification rate of ham messages as spam. Threshold-.05 has a wider range for unsure
messages than the Threshold-.10 variation.

2.2.4.2 Dynamic Threshold Defense

Distribution-based attacks increase the spam score of ham email but they also tend to
increase the spam score of spam. Thus with new θ0, θ1 thresholds, it may still be possible
to accurately distinguish between these kinds of messages after an attack. Based on this
hypothesis, we propose and test a dynamic threshold defense, which dynamically adjusts
θ0, θ1. With an adaptive threshold scheme, attacks that shift all scores will not be effective
since rankings are invariant to such shifts.

To determine dynamic values of θ0 and θ1, we split the full training set in half. We
use one half to train a SpamBayes filter F and the other half as a validation set V . Using
F , we obtain a score for each email in V . From this information, we can pick threshold
values that more accurately separate ham and spam emails. We define a utility function for
choosing threshold t, g(t) = NS,<(t) (NS,<(t) +NH,>(t))−1, where NS,<(t) is the number of
spam emails with scores less than t and NH,>(t) is the number of ham emails with scores
greater than t. We select θ0 so that g(θ0) is 0.05 or 0.10, and we select θ1 so that g(θ1) is
0.95 or 0.90, respectively.

This is a promising defense against dictionary attacks. As shown in Figure 2.5, the
misclassification of ham emails is significantly reduced by using the defense. At all stages of
the attack, ham emails are never classified as spam and only a moderate amount of them are
labeled as unsure. However, while ham messages are often classified properly, the dynamic
threshold causes almost all spam messages to be classified as unsure even when the attack
is only 1% of the inbox. This shows that the dynamic threshold defense fails to adequately
separate ham and spam given the number of spam also classified as unsure.

30

2.3 Case-Study on Network Anomaly Detection

In this section we study both poisoning strategies and defenses in the context of the
PCA-subspace method for network-wide anomaly detection (Lakhina et al., 2004a), based
on Principal Component Analysis (PCA). This technique has received a large amount of
attention, leading to extensions (Lakhina et al., 2004b, 2005a,b), and inspiring related re-
search (Brauckhoff et al., 2009; Huang et al., 2007; Li et al., 2006a; Ringberg et al., 2007;
Zhang et al., 2005). Additionally, a few companies are exploring the use of PCA-based
techniques and related SVD algorithms in their products (Guavus, 2010; Narus, 2010).

We consider an adversary who knows that an ISP is using a PCA-based anomaly detector.
The adversary’s aim is to evade future detection by poisoning the training data so that the
detector learns a distorted set of principal components. Because PCA solely focuses on link
traffic covariance, we explore poisoning schemes that add chaff (additional traffic) into the
network to increase the variance of the network’s traffic. The end goal of the attacker is to
increase the false negative rate of the detector, which corresponds to the attacker’s evasion
success rate. That is, we consider Causative Integrity attacks on PCA-based network-wide
anomaly detection.

The first contribution of this section is a detailed analysis of how adversaries subvert the
learning process for the purposes of subsequent evasion. We explore a range of poisoning
strategies in which the attacker’s knowledge about the network traffic state is varied, and
in which the attacker’s time horizon (length of poisoning episode) is varied.

Because the network data on which SML techniques are applied are non-stationary, the
baseline models must be periodically retrained to capture evolving trends in the underlying
data. In previous usage scenarios (Lakhina et al., 2004a; Soule et al., 2005), the PCA
detector is retrained regularly, for example weekly. A consequence is that attackers could
poison PCA slowly over long periods of time—poisoning PCA in a more stealthy fashion.
By perturbing the principal components gradually, the attacker decreases the chance that
the poisoning activity itself is detected. We design such a poisoning scheme, called a Boiling
Frog scheme, and demonstrate that it can boost the false negative rate as high as the non-
stealthy strategies, with far less chaff, albeit over a longer period of time.

Our second main contribution is to design a robust defense against this type of poison-
ing. It is known that PCA can be strongly affected by outliers (Ringberg et al., 2007).
However, instead of selecting principal components as directions that maximize variance,
robust statistics suggests components that maximize more robust measures of dispersion. It
is well known that the median is a more robust measure of location than the mean, in that
it is far less sensitive to the influence of outliers. This concept can be extended to robust
alternatives to variance such as the Median Absolute Deviation (MAD). Over the past two
decades a number of robust PCA algorithms have been developed that maximize MAD in-
stead of variance. Recently the PCA-grid algorithm was proposed as an efficient method
for maximizing MAD without under-estimating variance (a flaw identified in previous solu-
tions) (Croux et al., 2007). We adapt PCA-grid for anomaly detection by combining the
method with a new robust cutoff threshold. Instead of modeling the squared prediction er-
ror as Gaussian (as in the original PCA-based detection method), we model the error using

31

a Laplace distribution. This new threshold is motivated from observing that the residuals
have longer tails than modeled by a Gaussian. We call our method that combines PCA-
grid with a Laplace cutoff threshold, antidote. The key intuition behind this method is
to reduce the effect of outliers and help reject poisonous training data.

Our third contribution is to carry out extensive evaluations of both antidote and the
original PCA method, in a variety of poisoning situations, and to assess their performance
via multiple metrics. To do this, we used traffic matrix data from the Abilene network
since many other studies of traffic matrix estimation and anomaly detection have used
this data. We show that the original PCA method can be easily compromised by any of
our poisoning schemes, with only small amounts of chaff. For moderate amounts of chaff,
the PCA detector starts to approach the performance of a random detector. However
antidote is dramatically more robust. It outperforms PCA in that i) it more effectively
limits the adversary’s ability to increase his evasion success; ii) it can reject a larger portion
of contaminated training data; and iii) it provides robust protection across nearly all origin-
destination flows through a network. The gains of antidote for these performance measures
are large, especially as the amount of poisoning increases. Most importantly, we demonstrate
that antidote incurs insignificant shifts in its false negative and false positive performance,
compared to PCA, in the absence of poisoning.

Our study sheds light on the general problem of poisoning SML techniques, in terms
of the types of poisoning schemes that can be construed, their impact on detection, and
strategies for defense.

2.3.1 Background

To uncover anomalies, many network detection techniques mine the network-wide traffic
matrix, which describes the traffic volume between all pairs of Points-of-Presence (PoP) in
a backbone network and contains the collected traffic volume time series for each origin-
destination (OD) flow. In this section, we define traffic matrices, present our notation, and
summarize the PCA anomaly detection method of Lakhina et al. (2004a).

2.3.1.1 Traffic Matrices and Volume Anomalies

Network link traffic represents the superposition of OD flows. We consider a network
with N links and F OD flows and measure traffic on this network over T time intervals.
The relationship between link traffic and OD flow traffic is concisely captured in the routing
matrix A. This matrix is an N × F matrix such that Aij = 1 if OD flow j passes over link
i, and is zero otherwise. If X is the T × F traffic matrix (TM) containing the time-series
of all OD flows, and if Y is the T × N link TM containing the time-series of traffic on all
links, then Y = XA>. We denote the tth row of Y as y(t) = Yt,• (the vector of N link
traffic measurements at time t), and the original traffic along a source link, S by yS(t). We
denote column f of routing matrix A by Af .

We consider the problem of detecting OD flow volume anomalies across a top-tier net-
work by observing link traffic volumes. Anomalous flow volumes are unusual traffic load
levels in a network caused by anomalies such as Denial of Service (DoS) attacks, Distributed

32

DoS attacks, flash crowds, device failures, misconfigurations, and so on. DoS attacks serve
as the canonical example attack in this study.

Traditionally, network-wide anomaly detection was achieved via inverting the noisy rout-

ing matrix, a technique known as tomography (Zhang et al., 2005): since X ≈ Y
(
A>
)−1

this technique recovers an approximate flow TM from which anomalies can be detected by
simply thresholding. More recently anomography techniques have emerged which detect
anomalies flow volumes directly from the (cheaper to monitor) link measurements.

2.3.1.2 Subspace Method for Anomaly Detection

We briefly summarize the PCA-based anomaly detector introduced by Lakhina et al.
(2004a). The authors observed that high levels of traffic aggregation on ISP backbone links
cause OD flow volume anomalies to often go unnoticed because they are buried within
normal traffic patterns. They also observed that although the measured data has high di-
mensionality N , normal traffic patterns lie in a subspace of low dimension K � N . Inferring
this normal traffic subspace using PCA (which finds the principal traffic components) makes
it easier to identify volume anomalies in the remaining abnormal subspace. For the Abilene
Internet2 backbone network (depicted in Figure 2.6), most variance can be captured by the
first K = 4 principal components. By comparison the network has N = 54 bidirectional
links.

PCA is a dimensionality reduction method that chooses K orthogonal principal compo-
nents to form a K-dimensional subspace capturing maximal variance in the data. Let Ȳ
be the centered link traffic matrix, i.e., with each column of Y is translated to have zero
mean. The kth principal component is computed as

vk = arg max
w:‖w‖=1

∥∥∥∥∥Ȳ
(
I−

k−1∑
i=1

viv
>
i

)
w

∥∥∥∥∥ ,

where the matrix in between the centered link TM and the candidate direction is a projection
matrix that projects data onto the space orthogonal to the previously computed principal
components. Thus the kth principal component is chosen to be the direction that captures
the maximum amount of variance in the data that is unexplained by principal components
1, . . . , k−1. Equivalently, the kth principal component is the kth eigenvector of the empirical
covariance of the centered traffic matrix.

The resulting K-dimensional subspace spanned by the first K principal components
V1:K = [v1,v2, . . . ,vK] is the normal traffic subspace Sn and has a projection matrix
Pn = V1:KV>1:K . The residual (N −K)-dimensional subspace is spanned by the remaining
principal components VK+1:N = [vK+1,vK+2, . . . ,vN]. This space is the abnormal traffic
subspace Sa with a corresponding projection matrix Pa = VK+1:NV>K+1:N = I−Pn.

Volume anomalies can be detected by decomposing the link traffic into y(t) = yn(t) +
ya(t) where yn(t) is the modeled normal traffic and ya(t) is the residual traffic, corresponding
to projecting y(t) onto Sn and Sa, respectively. Lakhina et al. (2004a) observed that a
volume anomaly at time t typically results in a large change to ya(t), which can be detected

33

●
●

●

●

●

●

●

●

●

●

●

●

AM5A

CD

H

IK

L

N

Su

S

W

Figure 2.6: The Abilene network topology. PoPs AM5
and A are located together in Atlanta; the former is
displayed south-east to highlight its connectivity.

Figure 2.7: Links used for data
poisoning.

by thresholding the squared prediction error ‖ya(t)‖2 against Qβ, the Q-statistic at the 1−β
confidence level described below (Jackson and Mudholkar, 1979).

That is, the PCA-based detector classifies a link measurement vector as

c (y (t)) =

{
anomalous, ‖ya(t)‖2 > Qβ

innocuous, ‖ya(t)‖2 ≤ Qβ

. (2.3)

While others have explored more efficient distributed variations of this approach (Huang
et al., 2007; Li et al., 2006a,b), we focus on the basic method introduced by Lakhina et al.
(2004a).

The Q-Statistic. The statistical test for the residual function, known as the Q-statistic
is due to Jackson and Mudholkar (1979). The statistic is computed as a function Qβ =
Qβ(λK+1, . . . , λN), of the (N −K) non-principal eigenvalues of the covariance matrix.

Qβ = φ1

[
cβ
√

2φ2h2
0

φ1

+ 1 +
φ2h0(h0 − 1)

φ2
1

]1/h0

,

where

h0 = 1− 2φ1φ3

3φ2
2

φi =
N∑

j=K+1

λij , i ∈ {1, 2, 3} ,

34

and cβ is the 1− β percentile in the standard normal distribution. With the threshold Qβ,
this statistical test can guarantee that the false alarm probability is no more than β (under
assumptions on the near-normality of the traffic data).

2.3.2 Poisoning Strategies

Consider an adversary who knows an ISP uses a PCA-based anomaly detector. We take
the point of view of the attacker whose goal is to evade detection. The adversary poisons
the training data so the detector learns a distorted set of principal components. When the
attacker later launches an attack, the PCA-based detector will fail to detect it, as a result
of the poisoning. In this section, we propose a number of data poisoning schemes, each
designed to increase the variance of the traffic used in training.

2.3.2.1 The Contamination Assumption

The adversary’s goal is to launch a Denial of Service (DoS) attack on some victim and to
have the attack traffic successfully cross an ISP’s network without being detected. Figure 2.7
illustrates a simple PoP-to-PoP topology. The DoS traffic needs to traverse from a source
ingress point-of-presence (PoP) node D to a sink egress PoP B of the ISP. Before launching
a DoS attack, the attacker poisons the detector for a period of time, by injecting additional
traffic, chaff, along the OD flow (i.e., the D-to-B flow) that he eventually intends to attack.
This kind of poisoning activity is possible if the adversary gains control over clients of an
ingress PoP or if the adversary compromises a router (or set of routers) within the ingress
PoP. For a poisoning strategy, the attacker needs to decide how much chaff to add, and
when to do so. These choices are guided by the amount of information available to the
attacker.

Attacks Exploiting Increasing Adversarial Information. We consider poisoning
strategies in which the attacker has increasing amounts of information at his disposal. The
weakest attacker is one that knows nothing about the traffic at the ingress PoP, and adds
chaff randomly (called an uninformed attack). An intermediate case is when the attacker
is partially informed. Here the attacker knows the current volume of traffic on the ingress
link(s) that he intends to inject chaff on. Because many networks export SNMP records,
an adversary might intercept this information, or possibly monitor it himself (i.e., in the
case of a compromised router). We call this type of poisoning a locally-informed attack.
Although exported data from routers may be delayed in reaching the adversary, we consider
the case of minimal delay for simplicity.

In a third scenario, the attacker is globally-informed because his global view over the
network enables him to know the traffic levels on all network links. Moreover, we assume
this attacker has knowledge of future traffic link levels. (Recall that in the locally-informed
scheme, the attacker only knows the current traffic volume of a link.) Although these
attacker capabilities are very unlikely, we include this in our study in order to understand
the limits of variance injection poisoning schemes.

35

Attacks With Distant Time Horizons. Poisoning strategies can also vary according
to the time horizon over which they are carried out. Most studies on the PCA-subspace
method use a one week training period, so we assume that PCA is retrained each week.
Thus the principal components (PCs) used in any week m are those learned during week
m− 1 with any detected anomalies removed. Thus for our poisoning attacks, the adversary
inserts chaff along the target OD flow throughout the one week training period. We also
consider a long-term attack in which the adversary slowly, but increasingly, poisons the PCs
over several weeks, by adding small amounts of chaff, in gradually increasing quantities. We
call this the Boiling Frog poisoning method after the folk tale that one can boil a frog by
slowly increasing the water temperature over time.4

Adversarial Control. We assume the adversary does not have control over existing traffic
(i.e., he cannot delay or discard traffic). Similarly, the adversary cannot submit false
SNMP reports to PCA. Such approaches to poisoning are more conspicuous because the
inconsistencies in SNMP reporting from neighboring PoPs could expose the compromised
router.

Remark 8. This study focuses on non-distributed poisoning of DoS detectors. Distributed
poisoning that aims to evade a DoS detector is also possible; our globally-informed poisoning
strategy is an example, as the adversary has control over all network links. We focus on DoS
for a three reasons. In the first-ever study on this topic, we aim to solve the basic problem
before tackling a distributed version. Second, we point out that results on evasion via non-
distributed poisoning are stronger than distributed poisoning results: the DDoS attacker can
monitor and influence many more links than the DoS attacker. Hence a DoS poisoning
scenario is stealthier than a DDoS one. Finally, while the main focus of current PCA-based
systems is the detection of DoS attacks (Lakhina et al., 2004a,b,c, 2005a), the application
of PCA to detecting DDoS attacks has so far been limited (cf. Lakhina et al. 2005b).

For each of these scenarios of different information available to the adversary, we now
outline specific poisoning schemes. In each scheme, the adversary decides on the quantity
ct of chaff to add to the target flow time series at a time t. Each strategy has an attack
parameter θ, which controls the intensity of the attack. For each scenario, we present only
one specific poisoning scheme.

2.3.2.2 Uninformed Chaff Selection

At each time t, the adversary decides whether or not to inject chaff according to a
Bernoulli random variable with parameter 0.5. If he decides to inject chaff, the amount of
chaff added is of size θ, i.e., ct = θ. This method is independent of the network traffic since
our attacker is uninformed, and so the variance of the poisoned traffic is increased by the
variance of the chaff. The choice of a fair coin with p = 0.5 maximizes the variance of the
chaff as θ2/4, which in general would be p(1− p)θ2. We call this the Random scheme.

4Note that there is nothing inherent in the choice of a one-week poisoning period. For a general SML
algorithm, our strategies would correspond to poisoning over one training period (whatever its length) or
multiple training periods.

36

2.3.2.3 Locally-Informed Chaff Selection

The attacker’s goal is to increase traffic variance, on which the PCA detector’s model
is based. In the locally-informed scenario, the attacker knows the volume of traffic in the
ingress link he controls, yS(t). Hence this scheme elects to only add chaff when the existing
traffic is already reasonably large. In particular, we add chaff when the traffic volume on the
link exceeds a parameter α (we typically use the mean, assuming that the data is reasonably
stationary in the sense that the mean does not change quickly over time). The amount of
chaff added is ct = (max {0, yS(t)− α}})θ. In other words, we take the difference between
the link traffic and a parameter α and raise it to θ. In this scheme (called Add-More-If-
Bigger), the further the traffic is from the average load, the larger the deviation of chaff
inserted.

2.3.2.4 Globally-Informed Chaff Selection

The globally-informed scheme captures an omnipotent adversary with full knowledge of
Y, A, and the future measurements ỹt, and who is capable of injecting chaff into any network
flow during training. In the poisoning schemes above, the adversary can only inject chaff
along a single compromised link, whereas in this scenario, the adversary can inject chaff
along any link. We formalize the problem of selecting a link n to poison, and selecting an
amount of chaff Ctn as an optimization problem that the adversary solves to maximize the
chances of evasion. Although these globally-informed capabilities are unrealistic in practice,
we analyze globally-informed poisoning in order to understand the limits of variance injection
methods and to gain insight into the poisoning strategies that exploit limited capabilities.

Ideal Objective: The PCA Evasion Problem. In the PCA Evasion Problem an
adversary wishes to launch an undetected DoS attack of volume δ along flow f at future
time t. If the vector of link volumes at time t is ỹt, where the tilde distinguishes this future
measurement from past training data Ȳ, then the vectors of anomalous DoS volumes are
given by ỹ′t = ỹt+δ∗Af . Denote by C the matrix of link traffic injected into the network by
the adversary during training. Then the PCA-based anomaly detector is trained on altered
link traffic matrix Ȳ+C to produce the mean traffic vector µ, the top K eigenvectors V1:K ,
and the squared prediction error threshold Qβ. The adversary’s objective is to enable as
large a DoS attack as possible (maximizing δ) by choosing an appropriate C. The PCA
Evasion Problem corresponds to solving the following program:

max
δ∈R, C∈RT×F

δ

s.t. (µ,V, Qβ) = PCA(Y + C)∥∥V>K+1:N(ỹ′t − µ)
∥∥

2
≤ Qβ

‖C‖1 ≤ θ

Ctn ≥ 0 ∀t, n ,

where θ is an attacker-tunable parameter constraining total chaff. The first constraint
represents the output of PCA (i.e., does not constrain the program’s solution). The second

37

constraint guarantees evasion by requiring that the contaminated link volumes at time t be
classified as innocuous (cf. Equation 2.3). The remaining constraints upper-bound the total
chaff volume by θ and constrain the chaff to be non-negative, corresponding to the level of
adversarial control and the contamination assumption that no negative chaff may be added
to the network.

Relaxations. Unfortunately, the above optimization seems difficult to solve analytically.
Thus we relax the problem to obtain a tractable analytic solution.

First the above objective seeks to maximize the attack direction Af ’s projected length
in the normal subspace, maxC∈RT×F

∥∥V>1:KAf

∥∥
2
. Next, we restrict our focus to traffic

processes that generate spherical K-rank link traffic covariance matrices.5 This property
implies that the eigen-spectrum consists of K ones followed by all zeroes. Such an eigen-
spectrum allows us to approximate the top eigenvectors V1:K in the objective, with the
matrix of all eigenvectors weighted by their corresponding eigenvalues ΛV. We can thus
convert the PCA evasion problem into the following optimization:

max
C∈RT×F

∥∥(Ȳ + C)Af

∥∥
2

(2.4)

s.t. ‖C‖1 ≤ θ

Ctn ≥ 0 ∀t, n .

Solutions to this optimization are obtained by a standard Projection Pursuit method from
optimization: iteratively take a step in the direction of the objective’s gradient and then
project onto the feasible set. Finally the iteration can be initialized by relaxing the L1

constraint on the chaff matrix to the analogous L2 constraint and dropping the remaining
constraints. This produces a differentiable program which can be solved using standard
Lagrangian techniques to initialize the iteration.

Relation to Uninformed and Locally Informed Schemes. The relaxed solution to
the PCA evasion problem yields an interesting insight relating to the uninformed and locally-
informed chaff selection methods. Recall that the adversary is capable of injecting chaff
along any flow. One could imagine that it might be useful to inject chaff along an OD flow
whose traffic dominates the choice of principal components (i.e., an elephant flow), and
then send the DoS traffic along a different flow (that possibly shares a subset of links with
the poisoned OD flow). However Equation (2.4) indicates that the best (relaxed) strategy
to evade detection is to inject chaff only along the links Af associated with the target flow
f . This follows from the form of the initializer C(0) ∝ ȲAfA

>
f (obtained from the L2

relaxation for initialization) as well as the form of the projection and gradient steps. In
particular, all iterates preserve the property that the solution only injects chaff along the
target flow.

5While the spherical assumption does not hold in practice, the assumption of low-rank traffic matrices
is met by published datasets (Lakhina et al., 2004a).

38

In fact, the only difference between our globally-informed solution and the locally-
informed scheme is that the former uses information about the entire traffic matrix Y
to determine chaff allocation along the flow whereas the latter use only local information.

This result adds credence to the intuition that in a chaff-constrained poisoning attack,
all available chaff should be inserted along the target flow.

2.3.2.5 Boiling Frog Attacks

In the above attacks, poisoning occurs during a single week. We next consider a long-term
attack in which the adversary slowly, but increasingly, poisons the principal components over
several weeks, starting with the second week by adding small amounts of chaff, in gradually
increasing quantities. This kind of poisoning approach is useful for adversaries that plan
DoS attacks in advance of special events (like the Olympics, the World Cup soccer finals,
the scheduled release of a new competing product, etc.)

Boiling Frog poisoning can use any of the preceding chaff schemes to select ct. The
amount of poisoning is increased over the duration of the Causative attack as follows. We
initially set the attack parameter θ1 to be zero, so that in the first week, no chaff is added
to the training data and PCA is trained on a week of ‘clean’ data to establish a baseline
model (representing the state of the detector prior to the start of poisoning). Over the
course of the second week, the target flow is injected with chaff generated using parameter
θ2. At the week’s end, PCA is retrained on that week’s data with any anomalies detected
by PCA during that week, excluded from the week’s training set. This process continues
with parameter θt > θt−1 used for week t.

Although PCA is retrained from scratch each week, the training data includes only those
events not flagged as anomalous by the previous detector. Thus, each successive week will
contain additional malicious training data, with the process continuing until the week of the
DoS attack, when the adversary stops injecting chaff.

The effect of this scheme is to slowly rotate the normal subspace, injecting low levels of
chaff relative to the previous week’s traffic levels so that PCA’s rejection rates stay low and
a large portion of the present week’s poisoned traffic matrix is trained on for the proceeding
week’s model.

2.3.3 ANTIDOTE: A Robust Defense

To defend against the above poisoning attacks on PCA-based anomaly detection, we
explore techniques from Robust Statistics. Such methods are less sensitive to outliers, and
as such are ideal defenses against variance injection schemes that perturb data to increase
variance along the target flow. There has previously been two broad approaches to make
PCA robust: the first computes the principal components as the eigenspectrum of a robust
estimate of the covariance matrix (Devlin et al., 1981), while the second approach searches
for directions that maximize a robust scale estimate of the data projection (Croux et al.,
2007). We explore one of the latter methods as a counter-measure to poisoning. After
describing the method, we propose a new threshold statistic that can be used for any PCA-
based method including robust PCA. Robust PCA and the new robust Laplace threshold

39

together form a new network-wide traffic anomaly detection method, named antidote,
that is less sensitive to our poisoning attacks.

2.3.3.1 Intuition

To mitigate the effect of variance injection poisoning attacks, we need a learning algo-
rithm that is stable in spite of data contamination; i.e., a small amount of data contami-
nation should not dramatically change the model produced by the algorithm. This concept
of stability has been studied in the field of Robust Statistics where robustness is used to
describe the notion of stability. In particular, there have been several approaches to devel-
oping robust PCA algorithms that construct a low dimensional subspace that captures most
of the data’s dispersion6 and are stable under data contamination (Croux and Ruiz-Gazen,
2005; Croux et al., 2007; Devlin et al., 1981; Li and Chen, 1985; Maronna, 2005).

The robust PCA algorithms we considered search for a unit direction v on which the
data projections maximize some measure of univariate dispersion S (·); that is,

v ∈ arg max
‖a‖2=1

S (Ya) . (2.5)

The standard deviation is the dispersion measure used by PCA; i.e., SSD (r1, r2, . . . , rn) =(
1

n−1

∑n
i=1 ri − r̄

)1/2
. However, standard deviation is sensitive to outliers making PCA non-

robust to contamination. Robust PCA algorithms instead use measures of dispersion based
on the concept of robust projection pursuit (RPP) estimators (Li and Chen, 1985). As is
shown by Li and Chen (1985), RPP estimators achieve the same breakdown points7 as their
dispersion measure as well as being qualitatively robust; i.e., the estimators are stable.

However, unlike the eigenvector solutions that arise in PCA, there is generally no effi-
ciently computable solution for the maximizers of robust dispersion measures and so the
solutions must be approximated. Below, we describe the PCA-grid algorithm, a successful
method for approximating robust PCA subspaces developed by Croux et al. (2007). Among
the projection pursuit techniques we considered (Croux and Ruiz-Gazen, 2005; Maronna,
2005), PCA-grid proved to be most resilient to our poisoning attacks. It is worth em-
phasizing that the procedure described in the next section is simply a technique for ap-
proximating a projection pursuit estimator and does not itself contribute to the algorithm’s
robustness—that robustness comes from the definition of the projection pursuit estimator
in Equation (2.5).

To better understand the efficacy of a robust PCA algorithm, we demonstrate by example
the effect our poisoning techniques have on the PCA algorithm and contrast them with the
effect on the PCA-grid algorithm. In Figure 2.8, we see the impact of a globally informed
poisoning attack on both algorithms. Initially, the ‘clean’ data was clustered in an ellipse.
In the first plot, we see that both algorithms construct reasonable estimates for the center
and first principal component for this data.

6‘Dispersion’ is an alternative term for variation since the later is often associated with statistical varia-
tion. By a dispersion measure we mean a statistic that measures the variability or spread of a variable.

7The breakdown point of an estimator is the (asymptotic) fraction of the data an adversary must control
in order to arbitrarily change an estimator, and as such is a common measure of statistical robustness.

40

5e+08 6e+08 7e+08 8e+08 9e+08 1e+09

0e
+

00
2e

+
07

4e
+

07
6e

+
07

8e
+

07
1e

+
08

Projection on 1st PC

P
ro

je
ci

to
n

on
to

 T
ar

ge
t F

lo
w

Initial PCA
Initial ANTIDOTE

Subspaces with no Poisoning

5e+08 6e+08 7e+08 8e+08 9e+08 1e+09

0e
+

00
2e

+
07

4e
+

07
6e

+
07

8e
+

07
1e

+
08

Projection on 1st PC

P
ro

je
ci

to
n

on
to

 T
ar

ge
t F

lo
w

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Initial PCA
Initial ANTIDOTE
Poisoned PCA
Poisoned ANTIDOTE

Subspaces with 35 % Poisoning

Figure 2.8: Here the data has been projected into the 2-dimensional space spanned by the
1st principal component and the direction of the attack flow #118 in the Abilene dataset.
The effect on the 1st principal components of PCA and PCA-grid is shown under a globally
informed attack.

However, in the second plot, we see that a large amount of poisoning dramatically
perturbs some of the data and as a result the PCA subspace is dramatically shifted toward
the target flow’s direction (the y-axis in this example). Due to this shift, DoS attacks along
the target flow will be less detectable. Meanwhile, the subspace of PCA-grid is noticeably
less affected.

2.3.3.2 PCA-GRID

The PCA-grid algorithm introduced by Croux et al. (2007) is a projection pursuit tech-
nique as described above. It finds a K-dimensional subspace that approximately maximizes
S (·), a robust measure of dispersion, for the data Y as in Equation (2.5). The first step of
describing the algorithm is to specify the robust measure of dispersion. We use the Median
Absolute Deviation (MAD) over other possible choices for S (·). For scalars r1, . . . , rn the
MAD is defined as

SMAD (r1, . . . , rn) = ω ·mediani∈[n]

{∣∣ri −medianj∈[n]{rj}
∣∣} ,

where the coefficient ω = 1.486 ensures asymptotic consistency on normal distributions.
The next step is to choose an estimate of the data’s central location. In PCA, this

estimate is simply the mean of the data. However, the mean is not robust, so we center the

41

data using the spatial median instead:

ĉ (Y) ∈ arg min
µ∈RN

n∑
i=1

‖yi − µ‖2 ,

which involves a convex optimization that is efficiently solved (see e.g., Hössjer and Croux
1995).

The original projection pursuit technique for robust PCA was first proposed by Li and
Chen (1985), however their method was complicated and inefficient. The desirable statistical
properties of consistency, asymptotic normality (Cui et al., 2003; Li and Chen, 1985) and
robustness in terms of influence functions and breakdown points (Croux and Ruiz-Gazen,
2005) have all been shown for these methods. Croux and Ruiz-Gazen (1996) introduced an
efficient implementation to approximate the above objective, however Croux et al. (2007)
observed that for all datasets the method of Croux and Ruiz-Gazen (1996) implodes in the
presence of many variables: the lower half of the ‘eigenvalues’—the estimates of scale—
are identically zero. Croux et al. (2007) propose the PCA-grid algorithm as an efficient
implementation that does not suffer from this downward bias of the scale estimates.

Given a dispersion measure and location estimate, PCA-grid finds a (unit) direction v
that is an approximate solution to Equation (2.5). The PCA-grid algorithm uses a grid-
search for this task. Namely, suppose we want to find the best candidate between some pair
of unit vectors a1 and a2 (a 2-dimensional search space). The search space is the unit circle
parameterized by φ as aφ = cos(φ)a1 + sin(φ)a2 with φ ∈ [−π/2, π/2]. The grid search

splits the domain of φ into a mesh of Q + 1 candidates φk = π
2

(
2k
Q
− 1
)

, k = 0, . . . , Q.

Each candidate vector aφk is assessed and the one that maximizes S (Yaφk) is chosen as the
approximate maximizer â.

To search in a more general N -dimensional space, the grid search iteratively refines
its current best candidate â by performing a 2-dimensional grid search between â and
each of the unit directions ei in turn. With each iteration, the range of angles considered
progressively narrows around â to better explore its neighborhood. This procedure (outlined
in Algorithm 1) approximates the direction of maximal dispersion analogous to a principal
component in PCA.

To find the K-dimensional subspace {vi | v>i vj = δi,j} that maximizes the dispersion
measure, the Grid-Search is repeated K-times. After each repetition, the data is deflated
to remove the dispersion captured by the last direction from the data. This process is
detailed in Algorithm 2.

2.3.3.3 Robust Laplace Threshold

In addition to the robust PCA-grid algorithm, we also use a robust estimate for its
residual threshold in place of the Q-statistic described in Section 2.3.1.2. Using the Q-
statistic as a threshold was motivated by an assumption of normally distributed residu-
als (Jackson and Mudholkar, 1979). However, we found that the residuals for both the
PCA and PCA-grid subspaces were empirically non-normal leading us to conclude that
the Q-statistic is a poor choice for our detection threshold. Instead, to account for the

42

Algorithm 1 Grid-Search(Y)

Require: Y is a T ×N matrix
1: Let: v̂ = e1;
2: for i = 1 to C do
3: for j = 1 to N do
4: for k = 0 to Q do

5: Let: φk = π
2i

(
2k
Q
− 1
)

;

6: Let: aφk = cos(φk)â + sin(φk)ej;
7: if S (Yaφk) > S (Yv̂) then
8: Assign: v̂← aφk ;
9: Return: v̂;

Algorithm 2 PCA-grid(Y, K)

1: Center Y: Y ← Y − ĉ (Y);
2: for i = 1 to K do
3: vi ← Grid-Search(Y);
4: Y ← projection of Y onto the complement of vi;
5: end for
6: Return subspace centered at ĉ (Y) with principal directions {vi}Ki=1;

outliers and heavy-tailed behavior we observed from our method’s residuals, we choose our
threshold as the 1− β quantile of a Laplace distribution. It is important to note that while
we do not believe the residuals to be distributed according to a Laplace, a Laplace model
better models the heavy-tailed nature observed in the data. Our detector, antidote is the
combination of the PCA-grid algorithm and the Laplace threshold. The non-normality of
the residuals has also been recently pointed out by Brauckhoff et al. (2009).

As with the previous Q-statistic method described in Section 2.3.1.2, we select our
threshold QL,β as the 1 − β quantile of a parametric distribution fit to the residuals in
the training data. However, instead of the normal distribution assumed by the Q-statistic,
we use the quantiles of a Laplace distribution specified by a location parameter c and a
scale parameter b. Critically, though, instead of using the mean and standard deviation, we
robustly fit the distribution’s parameters. We estimate c and b from the residuals ‖ya(t)‖2

using robust consistent estimates of location (median) and scale (MAD)

ĉ = median
(
‖ya(t)‖2

)
,

b̂ =
1√

2P−1(0.75)
median

{∣∣‖ya(t)‖2 − ĉ
∣∣} ,

where P−1(q) is the qth quantile of the standard Laplace distribution. The Laplace quantile
function has the form P−1

c,b (q) = c+ b · k(q) for some k(q). Thus, our threshold only depends

linearly on the (robust) estimates ĉ and b̂ making the threshold itself robust. This form
is also shared by the normal quantiles (differing only in the function k), but because non-

43

Histogram of PCA Residuals

Residual Size

F
re

qu
en

cy

0e+00 2e+08 4e+08 6e+08 8e+08

0
50

10
0

15
0

20
0

Qstat

Laplace

Histogram of PCA−GRID Residuals

Residual Size

F
re

qu
en

cy

0e+00 2e+08 4e+08 6e+08 8e+08

0
50

10
0

15
0

20
0

Qstat

Laplace

Figure 2.9: Histograms of the residuals for the original PCA algorithm (left) and the PCA-
grid algorithm (the largest residual is excluded as an outlier). Red and blue vertical
lines demarcate the threshold selected using the Q-statistic and the Laplace threshold,
respectively.

robust estimates for c and b are implicitly used by the Q-statistic, it is not robust. Further,
by choosing a heavy-tailed distribution like the Laplace, the quantiles are more appropriate
for the heavy-tails we observed.

Empirically, the Laplace threshold appears to be better suited for thresholding the resid-
uals of our robust models than the Q-statistic. As can be seen in Figure 2.9, both the
Q-statistic and the Laplace threshold produce a reasonable threshold on the residuals of
the PCA algorithm but only the Laplace threshold produces a reasonable threshold for the
residuals of the PCA-grid algorithm; the Q-statistic vastly under-estimates the spread of
the residuals. As was consistently seen throughout our experiments, the Laplace threshold
proved to be a more reliable threshold than the Q-statistic for robust PCA.

2.3.4 Methodology

We now describe in-depth the experimental methodology used to measure the perfor-
mance of the proposed poisoning strategies for PCA and the performance of antidote as
a counter-measure for variance injection attacks.

2.3.4.1 Traffic Data

We use OD flow data collected from the Abilene (Internet2 backbone) network to simu-
late attacks on PCA-based anomaly detection. Data was collected over an almost continuous
6 month period from March 1, 2004 through September 10, 2004 (Zhang et al., 2005). Each
week of data consists of 2016 measurements across all 144 network OD flows binned into 5
minute intervals. At the time of collection the network consisted of 12 PoPs and 15 inter-
PoP links. 54 virtual links are present in the data corresponding to two directions for each
inter-PoP link and an ingress and egress link for each PoP. See Figure 2.6 for the Abilene
network topology.

44

2.3.4.2 Validation

To evaluate the PCA subspace method and antidote in the face of poisoning and
DoS attacks, we use two consecutive weeks of data—the first for training and the second
for testing. The poisoning occurs throughout the training phase, while the attack occurs
during the test week. An alternate method (described in Section 2.3.4.3 below) is needed
for the Boiling Frog scheme where training and poisoning occur over multiple weeks. Our
performance metric for measuring the success of the poisoning strategies is through their
impact on a PCA-based detector’s false negative rate (FNR). The FNR is the ratio of the
number of successful evasions to the total number of attacks (i.e., the attacker’s success
rate is PCA’s FNR rate). We also use Receiver Operating Characteristic (ROC) curves to
visualize a detection method’s trade-off between detection rate (TPR) and false positive rate
(FPR).

In order to compute the FNRs and FPRs, we generate synthetic anomalies according to
the method of Lakhina et al. (2004a) and inject them into the Abilene data. While there are
disadvantages to this method, such as the conservative assumption that a single volume size
is anomalous for all flows, we adopt it for the purposes of relative comparison between PCA
and Robust PCA, to measure relative effects of poisoning, and for consistency with prior
studies. We use week-long training sets, as such a time scale is sufficiently large to capture
weekday and weekend cyclic trends (Ringberg et al., 2007), and previous studies operated
on this same time scale (Lakhina et al., 2004a). There is nothing inherent to our method
that limits its use to this time scale; our methods will work as long as the training data is
poisoned throughout. Because the data is binned in 5 minute windows (corresponding to
the reporting interval of SNMP), a decision about whether or not an attack is present can
be made at the end of each 5 minute window; thus attacks can be detected within 5 minutes
of their occurrence. We now describe the method of Lakhina et al. (2004a) adopted here.

Starting with the flow traffic matrix X for the test week, we generate a positive example
(an anomalous OD flow) by setting flow f ’s volume at time t, Xt,f , to be a large value known
to correspond to an anomalous flow (replacing the original traffic volume in this time slot).
This value8 is defined (Lakhina et al., 2004a) to be 1.5 times a cutoff of 8 × 107. After
multiplying by the routing matrix A, the link volume measurement at time t is anomalous.
We repeat this process for each time t (each 5 minute window) in the test week to generate
a set of 2016 anomaly samples for the single target flow f .

In order to obtain FPRs, we generate negative examples (benign OD flows) as follows. We
fit the data to an exponentially weighted moving average (EWMA) model that is intended
to capture the main trends of the data without much noise. We use this model to select
which points in time, in an Abilene flow’s time series, to use as negative examples. We
compare the actual observations and the EWMA model, and if the difference is small (not
in the flow’s top one percentile) for a particular flow at a particular time, Xt,f , then we
label the measurement Xt,f as “benign.” We do this across all flows; when we find time
slots where all flows are labeled as benign, we run our detectors and see whether or not they

8The cutoff was determined by fitting a basis of sinusoids of periods 7, 5, 3 days, 24, 12, 6, 3 and 1.5 hours
to flow traffic and identifying the original flow volume corresponding to a steep drop to the rank-ordered
residuals.

45

raise an alarm for those time slots.
We simulate a DoS attack along every flow at every time, one-at-a-time. We average

FNRs over all 144 possible anomalous flows and all 2016 anomaly times. When reporting the
effect of an attack on traffic volumes, we first average over links within each flow then over
flows. Furthermore we generally report average volumes relative to the pre-attack average
volumes. Thus a single poisoning experiment was based on one week of poisoning with FNRs
computed during the test week that includes 144× 2016 samples coming from the different
flows and time slots. Because the poisoning is deterministic in Add-More-If-Bigger this
experiment was run once for that scheme. In contrast, for the Random poisoning scheme,
we ran 20 independent repetitions of the poisoning experiment to average-out the effects of
randomness in each individual run.

To produce the ROC curves, we use the squared prediction errors produced by the
detection methods, that consist of anomalous and normal examples from the test set. By
varying the method’s threshold (usually fixed as the Q-statistic or the Laplace threshold)
from −∞ to ∞ a curve of possible (FPR, TPR) pairs is produced from the set of SPE’s;
the Q-statistic and Laplace threshold, each correspond to one such point in ROC space.
We adopt the Area Under Curve (AUC) statistic from Information Retrieval to directly
compare ROC curves since one curve out of a pair of curves does not always dominate the
other. The area under an ROC curve of detector A estimates the conditional probability

AUC(A) ≈ Pr (SPEA(y1) > SPEA(y2)) ,

given anomalous and normal random link volume vectors y1 and y2. The ideal detector has
an AUC of 1, while the random predictor achieves an AUC of 0.5.

2.3.4.3 Single Period and Boiling Frog Poisoning

We evaluate the effectiveness of our attacker strategies using weeks 20 and 21 from
the Abilene dataset to simulate the Single-Training Period attacks. The PCA algorithm is
trained on the week 20 traffic matrix poisoned by the attacker; we then inject attacks during
week 21 to see how often the attacker can evade detection. We select these particular weeks
because PCA achieved the lowest FNRs on these during testing.

To test the Boiling Frog attack we simulate traffic matrix data, inspired by methods
used by Lakhina et al. (2004a). Our simulations present multiple weeks of stationary data
to the adversary. While such data is unrealistic in practice, it is an easy case on which PCA
should succeed. Anomaly detection under non-stationary conditions is difficult due to the
learner’s inability to distinguish between benign data drift, and adversarial poisoning. Thus
demonstrated flaws of PCA in the stationary case constitute strong results. We decided
to validate the Boiling Frog attack on a synthesized multi-week dataset, because the 6
month Abilene dataset of Zhang et al. (2005) proved to be too non-stationary for PCA
to consistently operate well from one week to the next. It is unclear whether the non-
stationarity observed in this data is prevalent in general or whether it is an artifact of the
dataset.

We synthesize a multi-week set of OD flow traffic matrices, with stationarity on the inter-
week level. We use a three step generative procedure to model each OD flow separately from

46

the real-world Abilene dataset. First the underlying daily cycle of the OD flow f time series
is modeled by a sinusoidal approximation. Then the times at which the flow is experiencing
an anomaly are modeled by a Binomial arrival process with inter-arrival times distributed
according to the geometric distribution. Finally Gaussian white noise is added to the base
sinusoidal model during times of benign OD flow traffic; and exponential traffic is added to
the base model during times of anomalous traffic. We next describe the process of fitting
this generative model to the week 20 Abilene data in more detail.

In step 1, we capture the underlying cyclic trends via Fourier basis functions. We use
sinusoids of periods of 7, 5 and 3 days, and 24, 12, 6, 3 and 1.5 hours, as well as a constant
function (Lakhina et al., 2004a). For each OD flow, we find the Fourier coefficients from
the flow’s projection onto this basis. We next remove the portion of the traffic modeled
by this Fourier forecaster and model the remaining residual traffic via two processes. One
is a noise process modeled by a zero-mean Gaussian to capture short-term benign traffic
variance. The second process models volume anomalies as being exponentially distributed.
Anomalies existing in the Abilene data result in the necessity of such a model.

In step 2 we select which of the two noise processes is used at each time interval. After
computing our model’s residuals (the difference between the observed and traffic predicted
by the sinusoidal model) we note the smallest negative residual value −m. We assume that
residuals in the interval [−m,m] correspond to benign traffic and that residuals exceeding
m correspond to traffic anomalies. We separate benign variation and anomalies in this
way since these effects behave quite differently. (This is an approximation but it works
reasonably well for most OD flows.) Negative residual traffic reflects benign variance, and
since we assume that benign residuals have a zero-mean distribution, it follows that such
residuals should lie within the interval [−m,m]. Upon classifying residual traffic as benign
or anomalous we then model anomaly arrival times as a Bernoulli arrival process. Under this
model the inter-anomaly arrival times become geometrically distributed. Since we consider
only spatial PCA methods, the placement of anomalies is of secondary importance.

For the final step, the parameters for the two residual traffic volume and the inter-
anomaly arrival processes are inferred from the residual traffic using the Maximum Likeli-
hood estimates of the Gaussian’s variance and exponential and geometric rates respectively.

We include goodness-of-fit results for four OD flows: flow 144 which maximizes mean and
variance among all 144 flows; flow 113 which has one of the smallest means and variances
among all 144 flows; and flows 15 and 75 which have median mean and variance, respectively,
among all 144 flows. After manual inspection on all flows we believe these flows to be
representative elephant, mouse and two mid-level flows, respectively. Figures 2.10–2.14
include evaluations of the fit of the Gaussian, Exponential and Geometric distributions to
the three processes via quantile-quantile plots. In general the Gaussian and Exponential
Q-Q plots for the traffic volume processes are close to linear illustrating good fits. The Q-Q
plots for the Geometric inter-anomaly arrival times, in Figure 2.14 shows more variable
results. However we consider only spatial PCA methods in this work so the placement of
anomalies is of secondary importance. For each of the four flows, we also plot the time series
for a week of both the Abilene data and our simulated model. These results establish the
suitability of this model for the purpose of evaluating the Boiling Frog attack.

47

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−3 −2 −1 0 1 2 3

−
3e

+
07

−
1e

+
07

1e
+

07
2e

+
07

3e
+

07

Normal Q−Q Plot on `normal' Residuals in Flow 144

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●●●●●●●●
●●●●●

●●●●●
●●●●●●

●●●●
●●●●●

●●●●●●
●●●●●●●●●●●

●●●●●
●●●●

●●●
●●●
●●●
●●●●

●●
●●
●●
●●
●●
●●●●●

●●
●●

●●
● ●●

●
●
●
●
●
●
●
●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

0e+00 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07

0e
+

00
1e

+
07

2e
+

07
3e

+
07

4e
+

07
5e

+
07

6e
+

07

Exponential Q−Q Plot on `anomalous' Residuals in Flow 144

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

0 1 2 3 4 5 6 7

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

Comparing Actual and Synthetic Data − Flow 144

Time (days)

V
ol

um
e

(1
00

 b
yt

es
)

synthetic actual

Figure 2.10: For flow 144: (top) Gaussian
Q-Q plot of normal residuals; (middle) ex-
ponential Q-Q plot of anomalous residuals;
(bottom) simulated time series in gray.

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●●

●

●

●●
●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●●

●●●

●

●
●

●●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●●●

●

●

●●

●

●

●●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●●●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●●

●

●
●

●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3−
4e

+
06

−
2e

+
06

0e
+

00
2e

+
06

4e
+

06

Normal Q−Q Plot on `normal' Residuals in Flow 75

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●●
●●

●●
●●●

●●
●●
●●
●
●
●
●

●
●
●
●
●
●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06

Exponential Q−Q Plot on `anomalous' Residuals in Flow 75

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

0 1 2 3 4 5 6 7

0.
0e

+
00

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

Comparing Actual and Synthetic Data − Flow 75

Time (days)

V
ol

um
e

(1
00

 b
yt

es
)

synthetic actual

Figure 2.11: For flow 75: (top) Gaussian
Q-Q plot of normal residuals; (middle) ex-
ponential Q-Q plot of anomalous residuals;
(bottom) simulated time series in gray.

48

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●●●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●●●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●
●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●●●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●●
●●

●

●
●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●
●

●
●
●

●●●

●●●
●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●●
●●

●

●

●●●
●●

●
●

●

●

●

●
●

●

●●

●

●

●●
●

●●

●
●
●

●●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●
●

●●●●

●

●

●

●

●
●

●●●

●
●

●

●

●
●

●
●

●
●●

●

●

●
●

●

●
●●

●

●

●
●

●●●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●●
●

●

●

●
●

●●

●
●

●
●

●●

●
●

●●

●

●

●●

●

●

●

●

●●●
●

●

●
●●
●●

●
●

●

●

●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●
●

●
●

●●

●●
●

●●
●

●

●

●
●

●
●●

●

●

●
●

●
●●
●

●●●
●

●

●

●●●

●
●

●
●

●
●

●
●
●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●●●

●

●●●●

●●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●●

●

●●
●●

●

●

●●
●

●

●
●

●
●●

●

●

●

●

●
●

●
●●

●●
●●●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●●●

●●

●

●
●●●●●

●●
●●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●

●●
●

●
●

●

●

●

●

●
●●●

●
●

●

●

●●
●

●

●

●●●

●
●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●

●

●
●●

●

●●

●
●●

●
●●

●

●

●

●
●

●

●●
●

●

●
●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●●

●
●

●
●

●
●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●●

●
●

●

●●●
●

●●

●

●
●

●

●
●

●

●

●

●●

●●

●
●

●

●

●
●●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●●

●
●●

●

●●
●

●
●●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●
●●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●●●●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●●●

●●●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●

●●
●●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●
●

●

●●●
●

●
●
●

●

●

●

●

●●

●●●●

●●

●

●

●

●

●
●●

●
●

●

●●
●

●
●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●●

●

●

●●●●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●●
●

●●
●

●
●

●

●●

●●●

●●●
●

●●

●

●

●
●

●

●●

●●●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●

●●

●
●●

●
●

●
●

●●

●●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

−3 −2 −1 0 1 2 3

−
4e

+
06

−
2e

+
06

0e
+

00
2e

+
06

4e
+

06

Normal Q−Q Plot on `normal' Residuals in Flow 15

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●●
●●

●●●●
● ●●

●●
● ●●●

●●●
● ●●

●●●●
●
●
●
●

●
●
●
●

●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0e+00 1e+06 2e+06 3e+06 4e+06

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06
5e

+
06

Exponential Q−Q Plot on `anomalous' Residuals in Flow 15

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

0 1 2 3 4 5 6 7

0.
0e

+
00

5.
0e

+
06

1.
0e

+
07

1.
5e

+
07

Comparing Actual and Synthetic Data − Flow 15

Time (days)

V
ol

um
e

(1
00

 b
yt

es
)

synthetic actual

Figure 2.12: For flow 15: (top) Gaussian
Q-Q plot of normal residuals; (middle) ex-
ponential Q-Q plot of anomalous residuals;
(bottom) simulated time series in gray.

●●●●●

●●

●●●
●●

●●
●

●

●●

●

●

●

●

●●

●

●

●●

●

●●●
●

●

●●●

●

●●●●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●●

●

●
●

●●●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●●●●●

●

●●●
●

●

●●

●

●●●●●

●

●●

●

●●●
●●●●●●●●●●

●

●●●●

●

●●●●

●

●●●●●●

●

●●●●●

●

●●●●●●

●

●
●

●
●

●

●

●

●

●●●●●●●●

●

●●

●

●●●●●●●
●●

●●

●

●●●●●●

●●

●●

●

●

●

●●●●●
●●●●●●●●

●

●

●●●

●●●

●

●

●●●●

●●

●

●●

●

●

●●●
●
●●
●●

●

●●●●
●●●●

●
●

●

●

●

●
●

●●●●

●

●●

●

●●●
●

●

●

●

●
●●●

●●●●

●

●●

●●●

●

●●

●

●

●●●●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●●●

●

●●

●

●●●

●

●

●

●

●●●
●●●●

●●

●●●

●

●

●

●●●●

●

●●

●●

●

●

●●

●●

●

●

●●

●

●

●●

●

●

●●●●
●

●
●

●●●●

●●

●●●

●●●●

●●●●

●●●●

●

●

●●●
●●●●

●

●

●

●●●

●

●

●●●●

●●●

●

●

●●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●●●

●

●

●●

●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●●●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●●

●

●●●

●

●

●●

●
●

●

●

●

●

●●

●

●●●

●●●●

●

●

●●

●

●

●

●

●●

●

●●●

●●

●●●●

●

●●●●

●

●●

●

●

●

●●●●

●●

●

●●●●●●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●●●
●●●

●●

●

●

●●●●●●

●

●

●

●

●●

●

●

●●●●●●●

●

●

●

●

●●●●

●

●●●●
●

●
●●●●●●●●●●

●●●●

●

●●

●

●●●●
●●●●●●●●

●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●●●●

●

●●

●

●

●

●

●●●

●

●●●●●
●●

●

●

●●

●●

●

●●●

●

●

●

●

●

●●●

●

●●

●

●●●

●

●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●

●●

●●●
●●

●

●●●●●

●

●●●●●●●●
●●●

●

●●●●●
●

●
●

●

●●●●●●●●
●●

●

●●●●●●●●●
●●●

●

●●
●

●

●●

●

●●●●●●●●●●●

●

●●●●●●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●●●●●●
●

●

●

●

●●
●●

●

●●●

●●

●

●

●●●●●●●●
●●●

●●●●●●●●●

●

●●●

●

●

●

●●

●●

●●●●

●

●

●
●

●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●
●

●

●

●●●●●●

●●

●●●●●●

●

●

●

●●

●

●●
●

●

●●●●●●●

●

●●●

●

●●

●●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●●

●●

●●

●●

●

●●

●

●

●

●

●
●

●●●

●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●●

●

●

●●

●

●

●

●

●

●●

●

●●

●●●

●
●

●●●●●●●

●

●
●

●●●●●

●

●●
●

●●

●●●●●●●

●

●

●●●●
●●●

●●●●●

●

●

●

●●●●●●●●●

●●

●●●

●

●

●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●●

●●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●
●

●

●

●●

●●

●●

●●●●

●

●

●●●●●●●

●

●●

●

●●

●

●●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●●

●●
●●●●●●

●●

●●

●●●●●●●●

●●

●●

●

●

●

●

●●●●●●●●

●

●●

●

●●●●

●

●●●
●

●
●

●

●

●

●●●●●●●●●

●●

●●●●●●●●●
●●●●●●●●●●

●

●

●

●●●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●●

−3 −2 −1 0 1 2 3

−
50

00
0

0
50

00
0

Normal Q−Q Plot on `normal' Residuals in Flow 113

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●●●
●●●●●

●●●●
●●●
●●●
●●
●●
●●
●●
●●
●●●

●●
●●

● ●●●●
●●

●●●
●

●
●
●
●
●

●
●

●
●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

Exponential Q−Q Plot on `anomalous' Residuals in Flow 113

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

0 1 2 3 4 5 6 7

0e
+

00
2e

+
05

4e
+

05
6e

+
05

Comparing Actual and Synthetic Data − Flow 113

Time (days)

V
ol

um
e

(1
00

 b
yt

es
)

Figure 2.13: For flow 113: (top) Gaussian
Q-Q plot of normal residuals; (middle) ex-
ponential Q-Q plot of anomalous residuals;
(bottom) simulated time series in gray.

49

●●●●●●●
●●●●●●●
●●●●●●

●●●●●●
●●● ●●●

●●●●●
●●●●●

●●●●●
●●●●

●●●●●●●●
●●●●●●

●●●●●
●●●
●●●

●●
●●

●●
●●
●●●

●●
●

●●
●●
●
● ●

●
●
●●

●
●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0
20

40
60

Geometric Q−Q Plot on `anomalous' arrivals in Flow 144

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●●
●●
●
●●
●●
●●
●●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400

0
50

10
0

15
0

Geometric Q−Q Plot on `anomalous' arrivals in Flow 75

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●●●
●●●
●●
●●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

0 100 200 300 400

0
20

40
60

80
10

0
12

0
14

0

Geometric Q−Q Plot on `anomalous' arrivals in Flow 15

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●●●●
●●
●●
●●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●
●
●●
●
●
●
●
●
●
●
●●
●

●
●
●
●
●
●
●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

0 50 100 150 200 250 300

0
20

40
60

80
10

0
12

0

Geometric Q−Q Plot on `anomalous' arrivals in Flow 113

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 2.14: The geometric Q-Q plot of the inter-arrival times for flows 144 (top left), 75
(top right), 15 (bottom left), and 113 (bottom right).

In our simulations, we constrain all link volumes to respect the link capacities in the
Abilene network: 10gbps for all but one link that operates at one fourth of this rate. We
cap chaff that would cause traffic to exceed the link capacities.

2.3.5 Poisoning Effectiveness

We now present the results of the aforementioned experiments for evaluating the poi-
soning strategies on PCA-based detection.

2.3.5.1 Single-Training Period Poisoning: Attacker Capabilities vs. Success

We begin by measuring the evasive success of our poisoning strategies, paying special
attention to the effect of adversarial information and control. We then proceed to explore

50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Single Poisoning Period: Evading PCA

Mean chaff volume

E
va

si
on

 s
uc

ce
ss

 (
F

N
R

)

0% 10% 20% 30% 40% 50%

Uninformed
Locally−informed
Globally−informed

Figure 2.15: Success of evading PCA un-
der Single-Training Period poisoning at-
tacks using 3 chaff methods.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Single Poisoning Period: ROC Curves

False Alarm Rate (FPR)

D
oS

 D
et

ec
tio

n
R

at
e

(T
P

R
)

PCA − unpoisoned
PCA − 5% chaff
PCA − 10% chaff
PCA − 20% chaff
PCA − 50% chaff
Random detector
Q−statistic
Laplace threshold

Figure 2.16: ROC curves of PCA under
Single-Training Period poisoning attacks.

the overall performance of PCA-based detection when trained on poisoned data.

Measuring Evasive Success. We evaluate the effectiveness of our three data poisoning
schemes in Single-Training Period attacks. During the testing week, the attacker launches
a DoS attack in each 5 minute time window. The results of these attacks are displayed in
Figure 2.15. Although our poisoning schemes focus on adding variance, the mean traffic of
the OD flow being poisoned increases as well, increasing the means of all links over which
the OD flow traverses. The x-axis in Figure 2.15 displays the relative increase in the mean
rate. We average over all experiments (i.e., over all OD flows). Representative numerical
results are summarized in Table 2.2.

As expected the increase in evasion success is smallest for the uninformed strategy,
intermediate for the locally-informed scheme, and largest for the globally-informed poisoning
scheme. The more adversarial control, the more effective the poisoning attack. A locally-
informed attacker can use the Add-More-If-Bigger scheme to raise his evasion success to
28% from the baseline FNR of 3.67% via a 10% average increase in the mean link rates
due to chaff. Although 28% may not be viewed as a high likelihood of evasion, the attacker
success rate is nearly 8 times larger than the unpoisoned PCA model’s rate. This number
represents an average over attacks launched in each 5 minute window, so the attacker could
simply retry multiple times. With our Globally-Informed with a 10% average increase in
the mean link rates, the unpoisoned FNR is raised by a factor of 10 to 38% and eventually
to over 90%.

51

Poisoning scheme Type FNR (5%) FNR (10%)
Random Uninformed 5.21% (×1.4) 20.28% (×5.5)
Add-More-If-Bigger Locally-informed 9.98% (×2.7) 28.33% (×7.7)
Globally-Informed Globally-informed 13.36% (×3.6) 37.79% (×10.3)

Table 2.2: Single-Training Period attacks using the three poisoning schemes. Test FNRs are
given for chaff that increases attacked link volumes by 5% and 10%. These results correspond
to the curves in Fig. 2.15 at 1.05 and 1.1. Alongside each FNR is the multiplicative increase
to the baseline FNR of 3.67%.

The big difference between the performance of the locally-informed and globally-informed
attacker is intuitive to understand. Recall that the globally-informed attacker knows a great
deal more (traffic on all links, and future traffic levels) than the locally-informed one (who
only knows the traffic status of a single ingress link). We consider the locally-informed
adversary to have succeeded quite well with only a small view of the network. An adversary
is unlikely to be able to acquire, in practice, the capabilities used in the globally-informed
poisoning attack. Moreover, adding 30% chaff, in order to obtain a 90% evasion success is
dangerous in that the poisoning activity itself is likely to be detected. Therefore Add-More-
If-Bigger presents a nice trade-off, from the adversary’s point of view, in terms of poisoning
effectiveness, and attacker capabilities and risks. We therefore use Add-More-If-Bigger, the
locally-informed strategy, for many of the remaining experiments.

Measuring Overall Detector Performance Under Poisoning. We evaluate the PCA
detection algorithm on both anomalous and normal data, as described in Section 2.3.4.2,
producing the Receiver Operating Characteristic (ROC) curves displayed in Figure 2.16.
We produce an ROC curve (as shown) by first training a PCA model on the unpoisoned
data from week 20. We next evaluate the algorithm when trained on data poisoned by
Add-More-If-Bigger.

To validate PCA-based detection on poisoned training data, we poison exactly one flow
at a time as dictated by the threat model. Thus, for relative chaff volumes ranging from
5% to 50%, Add-More-If-Bigger chaff is added to each flow separately to construct 144
separate training sets and 144 corresponding ROC curves for the given level of poisoning.
The poisoned curves in Fig. 2.16 display the averages of these ROC curves (i.e., the average
TPR over the 144 flows for each FPR).

We see that the poisoning scheme can throw off the balance between false positives and
false negatives of the PCA detector: The detection and false alarm rates drop together
rapidly as the level of chaff is increased. At 10% relative chaff volume performance degrades
significantly from the ideal ROC curve (lines from (0, 0) to (0, 1) to (1, 1)) and at 20% the
PCA’s mean ROC curve is already close to that of blind randomized prediction (the y = x
line with 0.5 AUC). Poisoning its training data dramatically reduces the overall efficacy of
the PCA-based detector.

52

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Boiling Frog Poisoning: Evading PCA

Attack duration (weeks)

E
va

si
on

 s
uc

ce
ss

 (
av

er
ag

e
te

st
 F

N
R

)

Growth rates

1.01
1.02
1.05
1.15

Figure 2.17: Evasion success of PCA under
Boiling Frog poisoning attacks.

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Boiling Frog Poisoning: PCA Rejections

Week

P
ro

po
rt

io
n

of
 c

ha
ff

re
je

ct
ed

Growth rates

1.01
1.02
1.05
1.15

Figure 2.18: Chaff rejection rates of PCA
under poisoning attacks shown in Fig-
ure 2.17.

2.3.5.2 Multi-Training Period Poisoning

We now evaluate the effectiveness of the Boiling Frog strategy, that contaminates the
training data over multiple training periods. In Figure 2.17 we plot the FNRs against the
poisoning duration for the PCA detector. We examine four different poisoning schedules
with growth rates g as 1.01, 1.02, 1.05 and 1.15 respectively. The goal of the schedule is to
increase the attacked links’ average traffic by a factor of g from week to week. The attack
strength parameter θ (see Section 2.3.2) is chosen to achieve this goal. We see that the FNR
dramatically increases for all four schedules as the poison duration increases. With a 15%
growth rate the FNR is increased to more than 70% from 3.67% over 3 weeks of poisoning;
even with a 5% growth rate the FNR is increased to 50% over 3 weeks. Thus Boiling Frog
attacks are effective even when the amount of poisoned data increases rather slowly.

Recall that the detector is retrained every week using the data collected from the previous
week. However, the data from the previous week is first filtered by the detector itself. At
any time point flagged as anomalous, the training data is thrown out. Figure 2.18 shows the
proportion of chaff rejected each week by PCA—chaff rejection rate—for the Boiling Frog
strategy. The three slower schedules enjoy a relatively small constant rejection rate close
to 5%. The 15% schedule begins with a relatively high rejection rate, but after a month
sufficient amounts of poisoned traffic mis-train PCA after which point the rates drop to the
level of the slower schedules. We conclude that the Boiling Frog strategy with a moderate
growth rate of 2–5% can significantly poison PCA, dramatically increasing its FNR while
still going unnoticed by the detector.

53

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Single Poisoning Period: Evading ANTIDOTE

Mean chaff volume

E
va

si
on

 s
uc

ce
ss

 (
F

N
R

)

0% 10% 20% 30% 40% 50%

Uninformed
Locally−informed
Globally−informed

Figure 2.19: Evasion success of antidote
under Single-Training Period poisoning at-
tacks using 3 chaff methods.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Single Poisoning Period: ROC Curves

False Alarm Rate (FPR)

D
oS

 D
et

ec
tio

n
R

at
e

(T
P

R
)

PCA − unpoisoned
PCA − 10% chaff
ANTIDOTE − unpoisoned
ANTIDOTE − 10% chaff
Random detector
Q−statistic
Laplace threshold

Figure 2.20: ROC curves of antidote vs.
PCA under Single-Training Period poison-
ing attacks.

By comparing Figures 2.15 and 2.17, we observe that in order to raise the FNR to 50%,
an increase in mean traffic of roughly 18% for the Single-Training Period attack is needed,
whereas in the Boiling Frog attack the same thing can be achieved with only a 5% average
traffic increase spread across 3 weeks. The Boiling Frog attack is much more stealthy than
the Single-Training Period attack.

2.3.6 Defense Performance

We now assess how antidote performs in the face of two types of poisoning attacks,
one that lasts a single training period, and one that lasts for multiple training periods.
For the longer time horizon, we use the Add-More-If-Bigger poisoning scheme to select
how much chaff to add at each point in time. We compare its performance to the original
PCA-subspace method.

2.3.6.1 Single-Training Period Poisoning

Measuring Evasive Success. In Figure 2.19 we illustrate antidote’s FNR for various
levels of average poisoning that occur in a Single-Training Period attack. We can compare
this to Figure 2.15 that shows the same metric for the original PCA solution. We see here
that the evasion success of the attack is dramatically reduced. For any particular level of
chaff, the evasion success rate is approximately cut in half. Interestingly, the most effective
poisoning scheme on PCA, Globally-Informed, is the most ineffective poisoning scheme in

54

the face of our robust PCA solution. We believe the reason for this is that our Globally-
Informed scheme was designed to specifically circumvent PCA. Now that the detector has
changed, Globally-Informed is no longer optimized for the active detector. For the new
detector, Random remains equally effective because constant shifts in a large subset of the
data create a bimodality that is difficult for any subspace method to reconcile. This effect
is still muted compared to the dramatic success of locally-informed methods on the original
detector. Further, constant shift poisoning creates unnatural traffic patterns that we believe
can be detected. Given this evidence. We conclude that antidote is an effective defense
against realistic poisoning attacks.

Measuring Overall Detector Performance Under Poisoning. Since poisoning ac-
tivities distort a detector, it will affect not only the FNRs but also the false positives. To
explore this trade-off, we use ROC curves in Figure 2.20 for both antidote and PCA.
For comparison purposes, we include cases when the training data is both unpoisoned and
poisoned. For the poisoned training scenario, each point on the curve is the average over
144 poisoning scenarios in which the training data is poisoned along one of the 144 possi-
ble flows. While antidote performs very similarly to PCA on unpoisoned training data,
PCA significantly under-performs antidote in the presence of poisoning. With a moderate
mean chaff volume of 10%, antidote’s average ROC curve remains almost unchanged while
PCA’s curve collapses towards the y = x curve of the blind random detector. This means
that the normal balance between FNRs and false positives is completely thrown off with
PCA; however antidote continues to retain a good operating point for these two common
performance measures. In summary, when we consider the two performance measures of
FNRs and FPRs, we give up insignificant performance shifts when using antidote when
no poisoning events occur, yet we see enormous performance gains for both metrics when
poisoning attacks do occur.

Given Figures 2.19 and 2.20 alone, it is conceivable that antidote outperforms PCA
only on average, and not on all flows that could be targeted for poisoning. In place of
plotting all 144 poisoned ROC curves, we display the areas under these curves (AUC) for
the two detection methods in Figure 2.21 under 10% chaff targeting each of the 144 flows
individually. Not only is average performance much better for robust PCA, but it enjoys
better performance for more flows and by a large amount. We note that although PCA
performs slightly better for some flows, we see that in fact both methods have excellent de-
tection performance (because their AUCs are close to 1), and hence the distinction between
the two is insignificant, for those specific flows. In summary antidote enjoys significantly
superior performance for the majority of poisoned flows, while PCA’s performance is only
ever superior by a small margin.

Figure 2.22 plots the mean AUC (averaged from the 144 ROC curves’ AUCs where flows
are poisoned separately) achieved by the detectors, as the level of chaff is intensified. Notice
that antidote behaves similarly to PCA under zero-chaff conditions, yet its performance
quickly becomes superior as the amount of contamination grows. In fact, it does not take
much poisoning for antidote to exhibit much stronger performance. With PCA’s perfor-
mance drop, it starts approaching a random detector (equivalent to 0.5 AUC), for amounts

55

●

●

●

●
●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.6 0.7 0.8 0.9 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

Single Poisoning Period: Flows' AUCs at 10% Chaff

PCA AUCs

A
N

T
ID

O
T

E
 A

U
C

s

● Single flow AUC
Mean AUC
Iso−performance

Figure 2.21: The 144 AUCs from the poi-
soned ROC curves for each possible target
flow and their mean.

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Single Poisoning Period: Mean AUCs

Mean chaff volume

M
ea

n
A

U
C

0% 10% 20% 30% 40% 50%

PCA
ANTIDOTE
Random detector

Figure 2.22: The mean AUCs versus mean
chaff levels for antidote and PCA.

of chaff exceeding 20%.
In these last few figures, we have seen the FNR and FPR performance as it varies across

flows and quantity of poisoning. In all cases, it is clear that antidote is an effective defense
and dramatically outperforms a solution that was not designed to be robust. We believe this
evidence indicates that the robust techniques are a promising avenue for SML algorithms
used for security applications.

2.3.6.2 Multi-Training Period Poisoning

We now evaluate the effectiveness of antidote against the Boiling Frog strategy, that
occurs over multiple successive training periods. In Figure 2.23 we see the FNRs for an-
tidote with the four different poisoning schedules. We observe two interesting behaviors.
First, for the two most stealthy poisoning strategies (1.01 and 1.02), antidote shows re-
markable resistance in that the evasion success increases very slowly, e.g., after 10 training
periods it is still below 20%. This is in stark contrast to PCA (see Figure 2.17) in which,
for example, after 10 weeks, the evasion success is over 50% for the 1.02 poisoning growth
rate scenario. Second, under PCA the evasion success keeps rising over time. However with
antidote under the heavier poisoning strategies, we see that the evasion success actually
starts to decrease after some time. The reason for this is that antidote has started reject-
ing so much of the training data, that the poisoning strategy starts to lose its effectiveness.

To look more closely at this behavior we show the proportion of chaff rejected by anti-
dote under multi-training period poisoning episodes in Figure 2.24. We see that the two

56

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Boiling Frog Poisoning: Evading ANTIDOTE

Attack duration (weeks)

E
va

si
on

 s
uc

ce
ss

 (
av

er
ag

e
te

st
 F

N
R

) Growth rates

1.01
1.02
1.05
1.15

Figure 2.23: Evasion success of antidote
under Boiling Frog poisoning attacks.

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Boiling Frog Poisoning: ANTIDOTE Rejections

Week

P
ro

po
rt

io
n

of
 c

ha
ff

re
je

ct
ed

Growth rates

1.01
1.02
1.05
1.15

Figure 2.24: Chaff rejection rates of anti-
dote under Boiling Frog poisoning attacks.

slower schedules almost have a constant rejection rate close to 9%, which is higher than
that of original PCA (which is close to 5%). For the faster poisoning growth schedules (5%
and 15%) we observe that antidote rejects an increasing amount of the poison data. This
reflects a good target behavior for any robust detector: to reject more training data as the
contamination grows. From these figures we conclude that the combination of techniques we
use in antidote, namely a PCA-based detector designed with robust dispersion goals com-
bined with a Laplace-based cutoff threshold, is very effective at maintaining a good balance
between false negative and false positive rates throughout a variety of poisoning scenarios
(different amounts of poisoning, on different OD flows, and on different time horizons).

2.4 Summary

In this chapter we investigate two large case-studies on Causative attacks on Statisti-
cal Machine Learning systems—attacks in which the adversary manipulates the learner by
poisoning its training data.

In the first case-study we show that an adversary can effectively disable the SpamBayes
email spam filter, by increasing its False Positive Rate (an Availability attack), with rela-
tively little system state information and relatively limited control over the training data.
The Usenet dictionary attack causes misclassification of 36% of legitimate ham messages
with only 1% control over the training messages, rendering SpamBayes unusable. Our fo-
cused attack changes the classification of a target legitimate message 60% of the time with
knowledge of only 30% of the target message’s tokens. We also explore two successful

57

defenses for SpamBayes. The RONI defense filters out dictionary attack messages with
complete success. The dynamic threshold defense also mitigates the effect of the dictionary
attacks. Focused attacks are especially difficult to defend against because of the attacker’s
extra knowledge; developing effective defenses in the targeted case is an important open
problem.

In the second case-study we consider an adversary that manipulates PCA-based network-
wide volume anomaly detection for the purposes of evading detection at test time (an In-
tegrity attack). We study the effects of multiple poisoning strategies while varying the
amount of information available to the attacker and the time horizon over which the poi-
soning occurs. We demonstrate that the PCA-subspace method can be easily compromised
(often dramatically) under all of the considered poisoning scenarios. From the attacker’s
point of view, we illustrate that simple strategies can be effective and conclude that it
is not worth the risk or extra amount of work for the attacker to engage in attempts at
near-optimal globally-informed strategies. For example, when a locally-informed attacker
increases the average volume on a flow’s links by 10%, the False Negative Rate (or chance of
evasion) is increased by a factor of 7. Moreover, with stealthy poisoning strategies executed
over longer time periods, an attacker can increase the FNRs to over 50% with less data
than poisoning schemes carried out during a short time window. We demonstrate that our
antidote counter-measure based on Robust Statistics is robust to these attacks in that it
does not allow poisoning attacks to shift the false positive and false negative rates in any
significant way. We show that antidote provides robustness for nearly all the ingress PoP
to egress PoP flows in a backbone network, rejects much of the contaminated data, and
continues to operate as a DoS defense even in the face of poisoning by variance injection
attacks.

A common theme of the two case-studies on Causative attacks, is the important role of
adversarial information and control. In the first case-study on email spam filtering, informa-
tion corresponds to approximate knowledge of the victim’s token distribution and control
is parameterized by the fraction of the training corpus poisoned by the attack and the size
of the poison spam messages. In the second case-study on network-wide volume anomaly
detection, information corresponds to the ability to monitor traffic on one or multiple links,
while control is most naturally exerted in the volume of chaff added to the network. Inter-
estingly the forms of information and control that seem most natural to these two domains
are very different. By contrast, however, we show that in both studies increased information
or increased control result in more effective attacks. We also observe that attack efficacy is
not necessarily ‘linear’ in adversarial capability: e.g., locally-informed poisoning of PCA-
based detection at up to moderate levels of control are just as effective as globally-informed
poisoning. We return to several of these observations in Chapter 7.

58

Chapter 3

Querying for Evasion

Beware the wolf in sheep’s clothing.

– Aesop

In this chapter we consider attacks on trained classifiers that systematically submit
queries to a classifier with the goal of finding an instance that evades detection while being
of a near-minimal distance to a target malicious instance. According to the taxonomy of
Barreno et al. (2006) discussed in Section 1.2.2, these attacks are Exploratory attacks as
they interact with a learned model at test-time; and while the attacks are most naturally
applied as Integrity attacks (those that cause False Negatives), they are equally suited to
Availability attacks (those that aim for False Positives).

We adopt the abstract theoretical framework of Lowd and Meek (2005b), and extend
their results for evading linear classifiers to evading classifiers that partition feature space
into two classes, one of which is convex. In addition to the primary goal of finding a distance-
minimizing negative instance, we adopt the secondary goal of low query complexity (like
Lowd and Meek 2005b). A corollary of our theoretical results is that in general evasion can
be significantly easier than reverse engineering the decision boundary which is the approach
originally taken by Lowd and Meek (2005b).

The research presented in this chapter was joint work with UCB EECS doctoral candi-
date Blaine Nelson. During the course of this investigation I contributed the initial query
algorithm for the convex positive class case, its lower bound, an initial argument for the
L∞ cost lower bound, and the lower bound’s extension to Lp costs. Nelson led the work on
improving the convex positive class algorithm, the L∞ lower bound, the specialized L2 cost
lower bound, and developing the reduction for the convex negative class case.

3.1 Introduction

Machine learning is often used to filter or detect miscreant activities in a variety of ap-
plications; e.g., spam, intrusion, virus, and fraud detection. All known detection techniques
have blind spots; i.e., classes of miscreant activity that fail to be detected. While learning

59

allows the detection algorithm to adapt over time, constraints on the learning algorithm also
may allow an adversary to programmatically find these vulnerabilities. We consider how an
adversary can systematically discover blind spots by querying the learner to find a low cost
instance that the detector does not filter. Consider a spammer who wishes to minimally
modify a spam message so that it is not classified as a spam and instead reaches a user’s
inbox unfiltered. By observing the responses of the spam detector, for example in a public
webmail service in which he can open accounts and send himself messages, the spammer
can search for a successful modification while using few queries.

The evasion problem of finding a low cost negative instance with few queries was first
posed by Lowd and Meek (2005b). We continue their line of research by generalizing it to the
family of convex-inducing classifiers—classifiers that partition feature space into two sets one
of which is convex. Convex-inducing classifiers are a natural family to examine that include
linear classifiers, neural networks with a single hidden layer (convex polytopes), one-class
classifiers that predict anomalies by thresholding the log-likelihood of a log-concave (or uni-
modal) density function, the one-class SVM with linear kernel, and quadratic classifiers of
the form x>Ax+b>x+c ≥ 0 for semidefinite A. The convex-inducing classifiers also include
classifiers whose support is the intersection of a countable number of halfspaces, cones, or
balls. We also consider more general Lp costs than the weighted L1 costs considered by
Lowd and Meek (2005b).

We show that evasion does not require reverse engineering the classifier—querying the
classifier to learn its decision boundary. The algorithm of Lowd and Meek (2005b) for
evading linear classifiers reverse-engineers the classifier’s decision boundary but is still ef-
ficient. Our algorithms for evading convex-inducing classifiers do not require fully esti-
mating the boundary (which is hard in the general case; see Rademacher and Goyal,
2009) or reverse-engineering the classifier’s state. Instead, we directly search for a mini-
mal cost-evading instance. Our algorithms require only polynomial-many queries to achieve
(1 + ε)-multiplicative approximations of cost-optimal negative instances in feature space
RD, with an algorithm for convex positive classes for Lp cost (p ≤ 1) solving the linear case

with O
(

log 1
ε

+
√

log 1
ε
D
)

queries which is fewer than the previously-published reverse-

engineering technique. A new lower bound of O
(
log 1

ε
+D

)
shows that this complexity is

close to optimal. For p > 1 we show that finding evading instances that come very close to
having optimal Lp cost requires exponential query complexity.

Our geometric random walk-based approach for evading classifiers with convex negative
classes while minimizing Lp costs (p ≥ 1) has query complexity O∗

(
D5 log 1

ε

)
. A conse-

quence of polynomial complexity for convex-inducing classifiers is that in general, evasion
can be significantly easier than reverse engineering the decision boundary.

Chapter Organization. We conclude this introductory section with a brief summary of
related work. Section 3.2 overviews the abstract framework of Lowd and Meek (2005b) upon
which we build and covers preliminaries for Section 3.3, which develops and analyzes query
algorithms for evading convex-inducing classifiers while minimizing L1 cost. Section 3.4
considers evasion for minimizing general Lp costs. We conclude the chapter with a summary
of our key contributions.

60

3.1.1 Related Work

Lowd and Meek (2005b) first explored the evasion problem, and developed a method
that reverse-engineered linear classifiers. Our approach generalizes their result and improves
upon it in three significant ways.

• We consider a more general family of classifiers: the family of convex-inducing clas-
sifiers that partition feature space into two sets one of which is convex. This family
includes the family of linear classifiers as a special case.

• Our approach does not fully estimate the classifier’s decision boundary (which is gen-
erally hard Rademacher and Goyal (2009)) or reverse-engineer the classifier’s state;
instead, we directly search for an instance that the classifier recognizes as negative
that is close to the desired attack instance (an evading instance of near-minimal cost).

• Although our algorithms successfully evade a more general family of classifiers, our
algorithms still only use a limited number of queries: they require only a number of
queries polynomial in the dimension of the instance space. Moreover, our K-step
MultiLineSearch Algorithm 5 solves the linear case with fewer queries than the
previously-published reverse-engineering technique.

Learning the decision boundary by submitting membership queries requires exponential
numbers of queries for general convex-inducing classifiers, since estimating volumes of convex
bodies (known to be NP-hard; Dyer and Frieze 1992; Rademacher and Goyal 2009) reduces
to learning the boundary. Thus a consequence of our algorithms that evade all convex-
inducing classifiers with polynomial complexity, is that evasion is significantly easier than
reverse engineering.

Dalvi et al. (2004) use a cost-sensitive game theoretic approach to preemptively patch
a classifier’s blind spots. They construct a modified classifier designed to detect optimally
modified instances. This work is complementary to our own; we examine optimal evasion
strategies while they have studied mechanisms for adapting the classifier. In this work we
assume the classifier is not adapting during evasion.

A number of authors have studied evading sequence-based intrusion detector systems (Tan
et al., 2002; Wagner and Soto, 2002). In exploring mimicry attacks these authors demon-
strated that real IDSs could be fooled by modifying exploits to mimic normal behaviors.
These authors used offline analysis of the IDSs to construct their modifications whereas our
modifications are optimized by querying the classifier.

Finally, there is an entire field of active learning that also studies a form of query based
optimization; e.g., see Schohn and Cohn (2000). While both active learning and near-
optimal evasion explore optimal querying strategies, the objectives for these two settings
are quite different.

3.2 Background and Definitions

This section is devoted to summarizing the background relevant to this chapter, including
the adversarial classifier reverse engineering (ACRE) problem introduced by

61

Lowd and Meek (2005b) which we re-cast as a problem of evasion, and provide prelimi-
nary notation and definitions important for describing the main results of the chapter.

We will use email spam as a running example. Section 3.2.1.1 enumerates a partial list
of applications of evasion algorithms consistent with this framework.

Example 9. Consider Exploratory attacks on email spam filtering: a spammer wishes to
send a spam email message to a victim’s email account that is protected by a state-of-the-art
learning-based spam filter. The attacker suspects that the spam message is being blocked by
the filter, so he must modify it somehow so that it can evade filtering.

3.2.1 The Evasion Problem

Let X = RD be the feature space; each component of an instance x ∈ X is a feature
denoted by xd. Let δd = (0, . . . , 1, . . . , 0) be the unit vector parallel to the dth coordinate
axis (and sitting in the coordinate’s positive halfspace).

We consider a family of classifiers F with elements f ∈ F mapping X into the binary
response space Y = {'−', '+'}. Our attacks are designed to operate against a static deter-
ministic classifier: the classifier has already been fit to data or is a hand-crafted decision
rule, the adversary does not know the actual mapping a priori but does know the family
F from which it came. We define the two sets that partition X according to the classifier’s
decision rule as the positive and negative classes X+

f = f−1('+') and X−f = f−1('−') respec-

tively; and (arbitrarily) identify X+
f with a malicious class of instances. When the classifier

f can be understood from context (as is often the case since it is fixed) we drop explicit
reference to it and denote the classes by X+ and X−.

Example 10. Consider the email spam problem of Example 9. The feature space for email
spam filtering is typically vectors in {0, 1}D corresponding to a bag-of-words model where
each dimension corresponds to a possible token (e.g., words, URLs, etc.). The positive
(negative) class corresponds to spam (ham) email messages.

Assumptions. We assume that the feature space representation is known to the adversary.
We assume that the classifier is deterministic and fixed (e.g., is designed manually without
learning, is trained offline, or is re-trained only periodically). We make the weak assumption
that the adversary has access to instances x− ∈ X− and xA ∈ X+. And finally we assume
that the adversary has access to a membership query oracle for the true classifier so that f (x)
may be observed for any x ∈ X : there are no restrictions to which points may be queried
by the adversary. While these assumptions may not all hold in all real-world settings, they
allow us to consider a worst-case adversary.

Example 11. Consider the email spam problem of Example 9. If the victim’s account is
hosted by an open membership webmail service such as Yahoo! Mail, Gmail or Hotmail—
i.e., accounts may be opened by anyone for free or relatively small cost (for example by
solving a CAPTCHA)—then the spammer can gain access to the spam filter’s membership
oracle by simply opening an account with the webmail service. To query the oracle, the

62

spammer need only send himself query messages and observe whether they pass through the
filter to the account’s inbox or whether they are filtered. Finally spammers can easily find
emails x− ∈ X− and xA ∈ X+.

Attack Objective. We consider an adversary with special interest in some xA ∈ X+.
In security-sensitive settings this instance typically contains some kind of payload that the
attacker wishes to send to a system guarded by the detector. Let A : X → R0+ be a cost
function of interest to the adversary: we think of the cost as being the distance to the target
positive instance xA i.e., A(x) = d(x,xA) to model an adversary who is willing to alter
xA to evade detection but who is not willing to make too drastic a modification. Thus the
objective of our attack is to minimize A over X−.

We focus on the class of weighted Lp cost functions for 0 < p ≤ ∞

Ap(x) =

(
D∑
d=1

cd
∣∣xd − xA

d

∣∣p)1/p

, (3.1)

where 0 < cd < ∞ is the (relative) cost the adversary associates with changes to the dth

feature. Unless stated otherwise, we understand the feature costs to be identically one. As
with Lowd and Meek (2005b) we focus primarily on weighted L1 costs in Section 3.3 and
explore related Lp costs in Section 3.4. Weighted L1 costs are particularly appropriate for
many adversarial problems since costs are assessed based on the degree to which a feature is
altered and the adversary typically is interested in some features more than others. The next
example provides a more specific discussion of the cost’s relevance in email spam filtering.

Example 12. Consider again the email spam problem of Example 9. The spammer’s orig-
inal goal was to successfully email a spam message to the victim without the message being
filtered. This message contains some payload typically a link (e.g., to an online pharmacy, a
drive-by-download site, etc.) or an attachment (e.g., a document infected by a virus). While
the payload cannot be altered, the surrounding message that entices the user to activate the
payload using social engineering can usually be modified to some extent without degrading
the effectiveness of the enticement too much. Additionally, spurious features may be added
(e.g., parts of the message that go unrendered). The cost function used should capture the
utility of the altered message to the adversary. The L1 cost is particularly appropriate as
for the bag-of-words feature model, this cost corresponds to edit distance, a natural metric
for passages of text. Having low L1 cost corresponds to a message that is actually similar to
the original spam constructed by the spammer.

Denote by BC the closed ball in X with center xA and radius C with respect to the
distance corresponding to the given cost. i.e., BC is the set of instances with cost at most
C. Unless stated otherwise the particular cost should be apparent from the context.

Lowd and Meek (2005b) define minimal adversarial cost (MAC) of a classifier f to be
the scalar

MAC (f,A) = inf
x∈X−f

A (x) .

63

They further define an instance to be an ε-approximate instance of minimal adversarial cost
(ε-IMAC) if it is a negative instance having cost no more than a factor (1 + ε) times the
MAC. Overloading notation, we define the set of ε-IMACs to be

ε-IMAC (f,A) =
{

x ∈ X−f
∣∣ A (x) ≤ (1 + ε) ·MAC (f,A)

}
. (3.2)

The adversary’s goal is to find an ε-IMAC efficiently, by issuing a relatively small number
of queries as measured by ε and D. In the email spam setting of the running example, this
corresponds to finding a message that will reach the victim’s inbox while being as close to
a target spam message as possible. We call the overall problem the Evasion Problem.

Definition 13. A family of classifiers F is ε-IMAC searchable under a family of cost
functions A if for every f ∈ F and A ∈ A, there is an algorithm that finds an instance
in ε-IMAC (f,A) using polynomially-many membership queries in D and log(1/ε). We will
refer to such an algorithm as efficient.

In generalizing the results of Lowd and Meek (2005b) we have made minor alterations
to their corresponding definition of the evasion problem.

Remark 14. Lowd and Meek (2005b) introduced the concept of adversarial classifier reverse
engineering (ACRE) learnability to quantify the difficulty of finding an ε-IMAC instance for
particular families of classifiers F and adversarial costs A. The notion of ACRE ε-learnable
is similar to ε-IMAC searchable however there are some noteworthy differences. Our notion
of efficiency does not take into account the encoded size of f for simplicity (in the linear
case considered by Lowd and Meek 2005b this is simply D); similarly we do not make explicit
dependence on the encodings of the known positive and negative instances xA,x− since these
are implicitly included via the dependence on D. ACRE learnability requires knowledge of
a third point x+ ∈ X+. Here we take x+ = xA making the attacker less covert since it is
typically significantly easier to infer the attacker’s intentions based on their queries.Finally,
we view the original goal of ACRE learnability as being one of evasion and not of reverse
engineering (we discuss the related goal of reverse engineering in Section 3.2.2). As a
consequence we have re-named the problem to highlight this fact.

3.2.1.1 Example Applications

In general, algorithms for the Evasion Problem have applications in attacking decision
rules in many domains.

Content-Based Email Spam Filtering. As discussed in the series of running examples
starting with Example 9, the notions of L1 cost, access to the filter’s membership query
oracle for webmail services, and the desire to minimize cost over the negative class while
submitting few queries, are all appropriate for evading email spam filtering based on message
content.

64

Web Spam Filtering. In order to game search engine rankings, it is common-place
for parties to create spam web pages whose sole purpose is to contain content matching
target search queries and to link to the target webpage to be promoted in an effort to
increase PageRank-like authority scores (Gyöngyi and Garcia-Molina, 2005). To combat
such malicious activities the search company can learn to detect such spam webpages (Drost
and Scheffer, 2005). This creates an arms race in which the adversaries are incentivized to
evade detection using methods such as those discussed here. Feedback is available to the
adversaries via the effects their link farms have on the search engine results, and blacklists
of spam pages.

Polymorphic Worm Detection. In order to make detection of malicious packets difficult
for defenders, attackers design polymorphic worms that mutate their binary while includ-
ing payload instructions that are required to exploit a specific vulnerability in a system.
Learning-based defenses have been designed which can learn (to some extent, see Newsome
et al. 2006; Venkataraman et al. 2008) to detect such polymorphic worms (Kim and Karp,
2004). An intelligent polymorphic worm could utilize evasive strategies to modify its code
in an attempt to evade detection. Cost corresponds to including as much of the desired
payload as possible—higher cost packets could come from including payloads that exploit
less severe vulnerabilities; so it is reasonable to model the worm as wanting to minimize
cost over the class of packets not filtered by a learned signature. Additionally feedback may
be observed by monitoring acknowledgments, acknowledgment timings, and transmissions
from successfully infected systems.

Network Anomaly Detection. In the second case-study of Chapter 2 we investigate
an application of Principal Components Analysis (PCA) to detecting network-wide volume
anomalies. For example, Lakhina et al. (2004a) shows that PCA can be used to detect DoS
attacks that cause high volume flows in top-tier networks. In our case-study, we consider
Causative attacks on PCA. However the adversary may want to evade detection at test
time. Cost may measure the size of the flow initiated by the attacker, or the similarity of
the path taken compared to a desired path in the network. Finally, feedback to queries may
be observed by monitoring egress links to the destination PoP. Indeed our results apply for
the case of PCA in this setting, as the negative set is modeled as the (convex) instances
between a pair of parallel hyperplanes.

3.2.1.2 Multiplicative Optimality and Binary Search

The objective function introduced in Equation (3.2) is that of multiplicative optimality.
The results of this chapter are easily adapted for additive optimality in which we seek
instances with cost no more than η > 0 greater than the MAC. We will use the notation
ε-IMAC∗ and η-IMAC+ to refer to the set in Equation (3.2) and the analogous set

η-IMAC+ (f,A) = {x ∈ X−f | A (x) ≤ η + MAC (f,A)} .

65

In either the multiplicative or additive case, we can organize the search for a near-optimal
instance by iterating over cost bounds on the positive and negative classes using a binary
search as follows.

If there is an instance x ∈ X− with cost C− and if all instances with cost no more than
C+ are in X+, then we can conclude that C− and C+ bound the MAC i.e., MAC (f,A) ∈
[C+, C−]. Moreover x is ε-multiplicatively optimal, trivially, if C−0 /C

+
0 ≤ 1 + ε and is η-

additively optimal if C−0 −C+
0 ≤ η. In the sequel, we will consider algorithms that use binary

search to iteratively reduce the gap between iterates of C− and C+ to achieve additive or
multiplicative optimality. In particular, if a new query point with a given cost establishes
a new upper or lower bound on MAC, then binary search strategies can reduce the tth gap
that is between C−t and C+

t . Given sufficient iterations, optimality will be reached given the
following criteria.

Lemma 15. If an algorithm can provide bounds C+ ≤ MAC (f,A) ≤ C−, then this algo-
rithm has achieved

(1) (C− − C+)-additive optimality; and

(2)
(
C−

C+ − 1
)

-multiplicative optimality.

The measure of performance to be optimized by search algorithms should correspond
to the gap between the bounds that determines the level of approximation to optimality,
as given by this lemma. To achieve additive optimality we define the tth additive gap
to be G

(+)
t = C−t − C+

t with G
(+)
0 corresponding to initial bounds C−0 and C+

0 . In the
additive setting binary search provides for an optimal worst-case query complexity by using
a proposal step of the arithmetic mean Ct =

(
C−t + C+

t

)
/2, stopping once G

(+)
t ≤ η. The

search’s query complexity is

L+
η =

⌈
log2

(
G

(+)
0

η

)⌉
. (3.3)

Multiplicative optimality can also be achieved via a binary search over the space of expo-
nents as follows. Rewriting the upper and lower bounds as C− = 2a and C+ = 2b, the
multiplicative optimality condition becomes an additive condition a − b ≤ log2(1 + ε). Bi-
nary search on the exponent achieves ε-multiplicative optimality with the fewest queries in
the worst-case. The tth multiplicative gap is G

(∗)
t = C−t /C

+
t ; the search uses as a proposal

step the geometric mean Ct =
√
C−t · C+

t and stops once G
(∗)
t ≤ 1 + ε; query complexity is

L∗ε =

log2

 log2

(
G

(∗)
0

)
log2(1 + ε)

 . (3.4)

The search methods for achieving additive and multiplicative optimality are intrinsically
related, however there are two key differences which we now detail. First, multiplicative
optimality is well-defined only when C+

0 > 0 whereas additive optimality is possible for

66

C+
0 = 0. In this special case, xA is on the boundary of X+ and so there can be no ε-IMAC∗

for any ε > 0. This pathological case is a minor technical issue—we demonstrate in Sec-
tion 3.3.1.4 an algorithm that efficiently establishes a non-trivial lower bound C+

0 if such a
bound exists. Second, and more importantly, the additive optimality criterion is not scale
invariant, whereas multiplicative optimality is. An immediate consequence of this fact is
that the units of the cost determine whether a particular level of additive accuracy can be
achieved whereas multiplicative costs are unitless. While multiplicative optimality has the
desirable property of scale-invariance, it does not have the shift invariance possessed by ad-
ditive optimality. We view scale invariance as being more important than shift invariance,
since if the cost function is scale invariant (as is the case for metric-based costs including
the Lp family) then optimality is invariant to rescaling of the feature space.

For the remainder of this chapter, we focus on establishing ε-multiplicative optimality
for an ε-IMAC (except where explicitly noted) and define Lε = L∗ε and Gt = G

(∗)
t . Finally,

we relate query complexity in terms of L∗ε , which will be convenient to reason about in the
sequel, to complexity in terms of ε which is the stated goal of ε-IMAC searchability.

Remark 16. Notice that for sufficiently small ε, binary search’s L∗ε as displayed in Equa-
tion (3.4) is Θ

(
log 1

ε

)
since log(1 + ε) ≈ ε. Thus demanding query complexity that is

polynomial in log 1
ε

is equivalent to complexity that is polynomial in L∗ε .

3.2.2 The Reverse Engineering Problem

As stated in Remark 14, Lowd and Meek (2005b) term the evasion problem “adversarial
classifier reverse engineering (ACRE) ” learnability. While the requirement of ACRE learn-
ability is actually to evade a classifier, their approach for linear classifiers is to learn the
decision boundary. It is this task of learning the classifier’s decision boundary that we refer
to here as the reverse engineering problem.1 And while not identical problems, this notion
of reverse engineering is certainly related to the goal of active learning (Schohn and Cohn,
2000).

Efficient query-based reverse engineering of an f ∈ F is clearly sufficient for minimiz-
ing A over the estimated negative space: once the decision boundary has been determined,
an offline optimization of the cost function (without submitting further queries) yields an
ε-IMAC. However, reverse engineering is in general a query-expensive task (since it relates
to approximating volumes which is hard for even convex bodies, Dyer and Frieze 1992), while
finding an ε-IMAC need not be: the requirements for finding an ε-IMAC differ significantly
from the objectives of reverse engineering. To reverse engineer, the attacker must approxi-
mate the decision boundary globally; to evade, the attacker need only locally approximate
the decision boundary in the neighborhood of a constrained cost-optimizer.

In particular our algorithms construct queries to provably find an ε-IMAC without reverse
engineering the classifier. A corollary of our results are that reverse engineering is indeed

1Our use of ‘reverse engineering’ corresponds to deriving insight into the underlying state of the learner.
Here we take that to mean the effective state of a classifier which is its decision boundary. However it
could also apply to attacks that aim to determine the classifier’s model parameters that implicitly define
the decision boundary, in the case of a known learning algorithm with known parametrization.

67

xA

Positive class

Negative class

Decision boundary

Equ
i-c

os
t b

all
s

x*

increasing cost

Figure 3.1: Evading a classifier with a con-
vex positive class to optimize an L1 cost in-
volves finding the vertex of the ball that first
pierces the negative class.

x*

Negative class

Positive class

Decision boundary

Equi-cost balls

xA
increasing cost

Figure 3.2: Evading a classifier with a con-
vex negative class to optimize an L1 cost is
harder than the convex positive case since
the optimum may not be a vertex of the ball.

significantly more complex than evasion for the rather general case of the positive or negative
class being convex.

3.3 Evasion while Minimizing L1-distance

This section develops algorithms for achieving ε-IMAC searchability for the L1 cost
function and the family of convex-inducing classifiers F convex that partition feature space
into a positive class and a negative class, one of which is convex. As discussed above, the L1

cost is natural for tasks such as email spam filtering, and was the focus of Lowd and Meek
(2005b) in their original work on evading linear classifiers. The convex-inducing classifiers
include the class of linear classifiers, neural networks with a single hidden layer (convex
polytopes), one-class classifiers that predict anomalies by thresholding the log-likelihood of
a log-concave (or uni-modal) density function, the one-class SVM with linear kernel, and
quadratic classifiers of the form x>Ax + b>x + c ≥ 0 for semidefinite A. The convex-
inducing classifiers also include classifiers whose support is the intersection of a countable
number of halfspaces, cones, or balls.

Restricting F to be the family of convex-inducing classifiers considerably simplifies the
general ε-IMAC search problem, as depicted in Figures 3.1 and 3.2. When the negative class
X− is convex (considered in Section 3.3.2), the problem reduces to minimizing a convex
function A constrained to a convex set; if X− were known to the adversary then evasion
would reduce to a convex program. The key challenge is that the adversary only has access

68

to a membership query oracle for the classifier. When the positive class X+ is convex
(considered in Section 3.3.1), our task is to minimize the convex function A outside of a
convex set; this is generally a hard problem however for certain cost functions including L1

cost, it is easy to determine whether a cost ball is completely contained within a convex set,
leading to efficient approximation algorithms.

Surprisingly there is an asymmetry depending on whether the positive or negative class
is convex. When the positive set is convex, determining whether an L1 ball BC ⊂ X+

only requires querying the vertices of the ball, of which there are 2D. When the negative
class is convex, however, determining whether or not BC ∩ X− = ∅ is non-trivial since the
intersection need not occur at a vertex of the ball. We present a very efficient algorithm
for the optimizing the L1 cost when X+ is convex and a polynomial random algorithm for
optimizing any convex cost when X− is convex.

Our algorithms achieve multiplicative optimality via binary search. We use C−0 = A(x−)
as an initial upper bound on the MAC and for technical reasons (cf. Section 3.2.1.2) assume
there is some C+

0 > 0 that lower bounds the MAC (i.e., xA is in the interior of X+).

3.3.1 Convex Positive Classes

Solving the ε-IMAC Search problem when X+ is generally hard, however we will demon-
strate in this section that for the (weighted) L1 cost binary search algorithms render very
efficient solutions with almost-matching lower bounds on query complexity. We now explain
how we exploit the properties of the (weighted) L1 ball together with the convexity of X+

to efficiently determine whether BC ⊂ X+ for any C. We also discuss practical aspects of
our algorithm and extensions to other Lp cost functions.

The existence of an efficient query algorithm relies on three facts: (1) xA ∈ X+; (2)
every weighted L1 cost C-ball centered at xA intersects with X− only if at least one of the
ball’s vertices is in X−; and (3) C-balls of weighted L1 costs only have 2 ·D vertices. The
vertices of the weighted L1 ball differ from xA in exactly one feature d,

xA ± C

cd
δd . (3.5)

We now formalize the second fact, which follows immediately from the observation that the
L1 ball is a (convex) polytope.

Lemma 17. For all C > 0, if there exists some x ∈ X− of cost C = Ac(x), then there is a
vertex of the L1 C-cost ball in X− that trivially also achieves cost C.

As a consequence of this observation, if all vertices of a ball BC are positive, then all x
with Ax ≤ C are positive thus establishing C as a new lower bound on the MAC. Conversely,
if any vertex of BC is negative, then C becomes a new upper bound on MAC. Thus, by
simultaneously querying all 2 ·D equi-cost vertices of BC , we establish C as a new lower or
upper bound. By performing a binary search on C, using the geometric mean proposal step
of Ct =

√
C+
t · C−t , we iteratively halve the multiplicative gap between our bounds until it

is within a factor of 1 + ε yielding an ε-IMAC of the form of Equation (3.5).

69

Algorithm 3 Multi-line Search

1: MLS
(
W ,xA,x−, C+

0 , C
−
0 , ε
)

2: x? ← x−

3: t← 0
4: while C−t /C

+
t > 1 + ε do

5: Ct ←
√
C+
t ∗ C−t

6: for all e ∈ W do
7: Query classifier: f te ← f

(
xA + Cte

)
8: if f te = '−' then
9: x? ← xA + Cte

10: For each i ∈ W : If f ti = '+' then prune i from W
11: Lazy Querying: break for-loop
12: end if
13: end for
14: C+

t+1 ← C+
t and C−t+1 ← C−t

15: if ∀e ∈ W f te = '+' then C+
t+1 ← Ct

16: else C−t+1 ← Ct
17: t← t+ 1
18: end while
19: return x?

A general form of this MultiLineSearch procedure is presented as Algorithm 3 which
searches along all unit-cost search directions in the set W . The set W represents search
directions that radiate from the ball’s origin at xA, together span the ball, and have unit cost.
At each step, MultiLineSearch issues at most |W| queries to construct a bounding shell
(i.e., the convex hull of these queries will either form an upper or lower bound on the MAC)
to determine whether BC ⊂ X+. Once a negative instance is found at cost C, we cease
further queries at cost C since a single negative instance is sufficient to establish a upper
bound. We call this policy lazy querying. Further, when an upper bound is established for a
cost C (a negative vertex is found), our algorithm prunes all directions that were positive at
cost C. This pruning is sound because by convexity any such direction is positive for all costs
less than C and further C is a now an upper bound on the MAC so all further queries will be
at costs less than C. Finally, by performing a binary search on the cost, MultiLineSearch
finds an ε-IMAC with no more than |W| · Lε queries but at least |W| + Lε queries. Thus,
this algorithm is O (|W| · Lε).

Algorithm 4 uses MultiLineSearch for (weighted) L1 costs, setting W to be the
vertices of the unit-cost L1 ball which is centered at xA. In this case, the search issues at
most 2·D queries to determine whether each BC ⊂ X+ and Algorithm 4 has an exceptionally
efficient query complexity of O (Lε ·D).

3.3.1.1 K-step Multi-Line Search

We now develop a variant of the multi-line search algorithm that better exploits pruning

70

Algorithm 4 Convex X+ Set Search

1: ConvexSearch
(
W ,xA,x−, ε, C+

)
2: C− ← A (x−)

3: W ←
{
− 1
ci
· δi, 1

ci
· δi

∣∣∣ i ∈ [D]
}

4: return: MLS
(
W ,xA,x−, C+, C−, ε

)
Algorithm 5 K-Step Multi-line Search

1: KMLS
(
W ,xA,x−, C+

0 , C
−
0 , ε,K

)
2: x? ← x−

3: t← 0
4: while C−t /C

+
t > 1 + ε do

5: Choose a direction e ∈ W
6: B+ ← C+

t and B− ← C−t
7: for K steps do
8: B ←

√
B+ ·B−

9: Query classifier: fe ← f
(
xA +Be

)
10: if fe = '+' then B+ ← B
11: else B− ← B and x? ← xA +Be
12: end for
13: for all i ∈ W\{e} do
14: Query classifier: f ti ← f

(
xA +B+i

)
15: if f ti = '−' then
16: x? ← xA + (B+)i
17: For each k ∈ W : If f tk = '+' then prune k from W
18: Lazy Querying: break for-loop
19: end if
20: end for
21: C−t+1 ← B−

22: if ∀i ∈ W f ti = '+' then C+
t+1 ← B+

23: else C−t+1 ← B+

24: t← t+ 1
25: end while
26: return x?

to further reduce the (already low) query complexity of Algorithm 3—we call this variant
K-step MultiLineSearch. The original MultiLineSearch algorithm makes 2 · |W| si-
multaneous binary searches. Instead of this breadth-first search we could search sequentially
depth-first, and still obtain a best case of Ω (D + Lε) and worst case of O (Lε ·D) but for
exactly the opposite convex bodies. For the parallel search variant described above, the best
case is an elongated ball and the worst case is a rounded ball while for a sequential binary
search variant these cases are reversed. We therefore propose an algorithm that mixes these

71

strategies. We parametrize the mixture via a parameter K to be set later.
At each phase, the K-step MultiLineSearch (displayed as Algorithm 5) chooses a

single direction e and queries it for K steps to generate candidate bounds B− and B+ on
the MAC. The algorithm makes substantial progress towards reducing Gt without querying
other directions, since it is a depth-first procedure. In a breadth-first step, the algorithm
then iteratively queries all remaining directions at the candidate lower bound B+. Again
we use lazy querying and stop as soon as a negative instance is found since B+ is then no
longer a viable lower bound. In this case, although the candidate bound is invalidated, we
can still prune all directions that were positive at B+ including direction e. Thus, in every
iteration, either the gap is decreased or at least one search direction is pruned. We now
show that for K = d

√
Lεe, the algorithm achieves a delicate balance between breadth-first

and depth-first approaches to attain a better worst case complexity than following either
approach alone.

Theorem 18. Algorithm 5, run with K = d
√
Lεe, will find an ε-IMAC by submitting at

most O
(
Lε +

√
Lε|W|

)
queries.

Proof. We consider a defender that is choosing the classifier (and hence the oracle’s responses
to the attacker’s queries) adaptively to force a large number of queries on the attacker. Our
goal is to bound the worst-case number of queries.

During the K steps of binary search, regardless of how the defender responds, the can-
didate gap along e will shrink by an exponent of 2−K ; i.e.,

B−

B+
=

(
C−0
C+

0

)2−K

. (3.6)

The primary decision for the defender occurs when the adversary begins querying directions
other than e. At iteration t, the defender has two options:

Case 1 (t ∈ C1): Respond with '+' for all remaining directions. Here the bounds
B+ and B− are verified and thus the gap is reduced by an exponent of 2−K .

Case 2 (t ∈ C2): Choose at least one direction to respond with '−'. Here the
defender can make the gap decrease by a negligible amount but also must
choose some number Et ≥ 1 of eliminated directions.

By conservatively assuming the gap only decreases in case 1, i.e., if t ∈ C1 we Gt = G2−K
t−1

or otherwise Gt = Gt−1, the total number of queries is bounded regardless of the order in
which the cases are applied,

|C1| ≤
⌈
Lε
K

⌉
, (3.7)

since we need a total of Lε binary search steps and each case 1 iteration is responsible for
K of them.

72

Every case 1 iteration makes exactly K + |Wt| − 1 queries. The size of Wt (depending
on when lazy-querying activates) is controlled by the defender, but we can bound it by |W|.
This and Equation (3.7) bound the number of queries used in case 1 by

Q1 =
∑
t∈C1

(K + |Wt| − 1)

≤ Lε +K +
⌈
Lε
K

⌉
· (|W| − 1) .

Each case 2 iteration uses exactly K + Et queries and eliminates Et ≥ 1 directions. Since
a case 2 iteration eliminates at least 1 direction, |C2| ≤ |W| − 1 and moreover,

∑
t∈C2 Et ≤

|W| − 1 since each direction can only be eliminated once. Thus the number of queries due
to case 2 is bounded by

Q2 =
∑
t∈C2

(K + Et)

≤ (|W| − 1) (K + 1) ,

and so the total queries used by Algorithm 5 is

Q = Q1 +Q2

< Lε +
(⌈

Lε
K

⌉
+K + 1

)
|W| ,

which is minimized by K = d
√
Lεe. Substituting this for K and using Lε/d

√
Lεe ≤

√
Lε we

have

Q < Lε + (2d
√
Lεe+ 1)|W| .

proving that Q = O
(
L+
√
L|W|

)
.

As a consequence of this result, finding an ε-IMAC with Algorithm 5 for a (weighted)
L1 cost requires only O

(
Lε +

√
LεD

)
queries in the worst-case. In particular, Algorithm 4

can incorporate K-step MultiLineSearch directly by replacing its function call to MLS
to a call to KLMS and setting K = d

√
Lεe.

3.3.1.2 Evading Linear Classifiers

Lowd and Meek (2005b) originally developed a method for reverse engineering linear
classifiers for a (weighted) L1 cost. First their method isolates a sequence of points from x−

to xA that cross the classifier’s boundary and then it estimates the hyperplane’s parameters
using D line searches. Their algorithm has complexity O (D · Lε). As a consequence of
our new ability to efficiently minimize the L1 objective for any convex X+, we gain an
alternative method for evading linear classifiers. Because linear classifiers are a special case
of convex-inducing classifiers, our K-step MultiLineSearch algorithm improves slightly
on the reverse-engineering technique’s query complexity and applies to a much larger class
of classifiers.

73

3.3.1.3 Lower Bounds

The following result establish a lower bound on the number of queries required by any
algorithm to find an ε-IMAC when X+ is convex for a (weighted) L1 cost. We present
the result for the case of multiplicative optimality, incorporating a lower bound r > 0 on
the MAC for technical reasons, however the same essential argument yields the same lower
bound of max{D,L+

η } for algorithms achieving η-additive optimality.

Theorem 19. Consider any D ∈ N, xA ∈ X = RD, x− ∈ X , 0 < r < R = A (x−) and
ε ∈

(
0, R

r
− 1
)
. For all query algorithms submitting N < max{D,Lε} queries, there exist

two classifiers inducing convex positive classes in X such that

1. Both positive classes properly contain Br;

2. Neither positive class contains x−;

3. The classifiers return the same responses on the algorithm’s N queries; and

4. The classifiers have no common ε-IMAC.

That is, in the worst-case all query algorithms for convex positive classes must submit at
least max{D,Lε} membership queries in order to be multiplicative ε-optimal.

Proof. Suppose some query-based algorithm submits N membership queries x1, . . . ,xN to
the classifier. For the algorithm to be ε-optimal, these queries must constrain all consistent
positive convex sets to have a common point among their ε-IMAC sets.

First consider the case that N ≥ Lε. By assumption, then, N < D. Suppose classifier f
responds as

f (x) =

{
+1 , if A (x) < R

−1 , otherwise
.

For this classifier, X+ is convex, Br ⊂ X+, and x− /∈ X+. Moreover, since X+ is the open
ball of cost R, MAC (f,A) = R.

Consider an alternative classifier g that responds identically to f for x1, . . . ,xN but has
a different convex positive set X+

g . Without loss of generality, suppose that the first M ≤ N

query responses are positive and the remaining are negative. Let G = conv
(
x1, . . . ,xM

)
the

convex hull of the M positive queries. Now let X+
g be the convex hull of the union of G and

the r-ball around xA i.e., X+
g = conv (G ∪Br). Since G contains all positive queries and

r < R, the convex set X+
g is consistent with the responses from f , Br ⊂ X+, and x− /∈ X+.

Moreover since M ≤ N < D, G is contained in a proper subspace of X whereas Br is not.
Hence, MAC (g,A) = r. Since the accuracy ε is less than R

r
−1, any ε-IMAC of g must have

cost less than R whereas any ε-IMAC of f must have cost greater than or equal to R. Thus
we have constructed two convex-inducing classifiers f and g with consistent query responses
but with no common ε-IMAC.

Now consider the case that N < Lε. First, recall our definitions: C−0 = R is the initial
upper bound on the MAC, C+

0 = r is the initial lower bound on the MAC, and Gt = C−t /C
+
t

74

is the gap between the upper bound and lower bound at iteration t. Here the defender f
responds with

f
(
xt
)

=

{
+1 , if A (xt) ≤

√
C−t−1 · C+

t−1

−1 , otherwise
.

This strategy ensures that at each iteration Gt ≥
√
Gt−1 and since the algorithm can not

terminate until GN ≤ 1+ ε, we have N ≥ Lε from Equation (3.4). As in the N ≥ Lε case we
have constructed two convex-inducing classifiers with consistent query responses but with
no common ε-IMAC. The first classifier’s positive set is the smallest cost-ball enclosing all
positive queries, while the second classifier’s positive set is the largest cost-ball enclosing
all positive queries but no negatives. The MAC values of these sets differ by more than a
factor of (1 + ε) if N < Lε so they have no common ε-IMAC.

Remark 20. For the additive and multiplicative cases we restrict η and ε to the inter-
vals (0,A (x−)) and (0,A (x−) /r) respectively. In fact, outside of these intervals the query
strategies are trivial. For either η = 0 or ε = 0 no approximation algorithm will terminate.
Similarly, for η ≥ A (x−) or ε ≥ R

r
+ 1, the instance x− is a near-optimal instance itself so

no queries are required.

Theorem 19 and the analogous additive result show that η-additive and ε-multiplicative
optimality require Ω

(
L+
η +D

)
and Ω (L∗ε +D) queries respectively. Thus, we see that

our K-step MultiLineSearch algorithm (cf. Algorithm 5) has almost optimal query
complexity with O

(
Lε +

√
LεD

)
queries for weighted L1 costs.

3.3.1.4 Generalizations

We now consider two relaxations that require minor modifications to Algorithms 3 and 5,
primarily as simple preprocessing steps.

No Initial Lower Bound. To find an ε-IMAC our basic algorithms search between initial
bounds C+

0 and C−0 , but in general C+
0 may not be known to a real-world adversary. Algo-

rithm 6 SpiralSearch can efficiently establish a lower bound on the MAC if one exists.
The basic idea of the algorithm is to perform a guess-then-halve search2 on the exponent,
starting from the upper bound. The algorithm also eliminates any direction that exceeds
the current upper bound.

At the tth iteration of SpiralSearch a direction is selected and queried at the current
lower bound of 2−2tC−0 . If the query’s response is positive, that direction is added to the set
V of directions consistent with the lower bound. Otherwise, all directions in V are discarded
and the lower bound is lowered with an exponentially decreasing exponent. Thus, given that
some lower bound C+

0 > 0 does exist, one will be found relatively quickly in O (Lε +D)
queries, for W equal to the 2 ·D directions of the coordinate axes and ε = 1 (corresponding
to no dependence on ε, which is not a parameter of the search).

2The inverse of more well-known guess-then-double algorithms which are used for example, for dynami-
cally allocating arrays.

75

Algorithm 6 Spiral Search

1: spiral
(
W ,xA,x−, C−0

)
2: t← 0 and V ← ∅
3: repeat
4: Choose a direction e ∈ W
5: Query classifier: fe ← f

(
xA + 2−2tC−0 e

)
6: if fe = '−' then
7: t← t+ 1
8: V ← ∅
9: else

10: W ←W\{e}
11: V ← V ∪ {e}
12: end if
13: until W = ∅
14: B+ ← 2−2tC−0
15: return (V , B+, C−0)

Proposition 21. For any classifier with convex positive class X+, xA ∈ X+, x− /∈ X+,
upper bound C−0 > 0, greatest lower bound 0 < C+

0 < C−0 , and set of covering directions
W, Algorithm 6 will find a valid lower bound B+ ≤ C+

0 in at most |W|+ log2 log2(C−0 /C
+
0)

queries.

Proof. Every query submitted by the algorithm results in either the pruning of a direction
fromW or the halving of the lower bound in exponent space. There are at most |W| events
of the first kind. To analyze the maximum number of steps of the second kind consider that
we stop when 2−2tB+ ≤ C+

0 . This is equivalent to t ≥ log2 log2(C−0 /C
+
0). Combining these

query count bounds yields the result.

Thus this algorithm can be used as a precursor to any of the previous searches3 and
can be adapted for additive optimality by halving the lower bound instead of the exponent.
Furthermore, the search directions pruned by SpiralSearch are also invalid for the sub-
sequent MultilineSearch, so the set V returned by SpiralSearch can be used as the
set W for the subsequent search, amortizing some of the multiline search’s effort.

No Initial Negative Example. Our algorithms can also naturally be adapted to the case
when the adversary has no negative example x−. This is accomplished by an inverse process
of the previous no lower bound generalization through a guess-than-double type process of
querying L1 balls of doubly exponentially increasing radii until a negative instance is found.
During the tth iteration, we probe along the f th search direction at a cost 22tC+

0 until a
negative example is found. Once we’ve obtained a negative example (having probed for
T iterations), we must have 22T−1

< MAC (f,A) ≤ 22T . Thus we can now perform our

3In the pathological case of no existing lower bound, this algorithm would not terminate. In practice,
the search should be terminated after sufficiently many iterations.

76

Algorithm 7 Intersect Search

1: IntersectSearch (P0,Q = {xj ∈ P0}, C)
2: for all s = 1 . . . T do
3: Generate 2N samples {xj}2N

j=1

4: Choose xj from Q
5: xj ← HitRun (Ps−1,Q,xj)
6: If ∃xj, A (xj) ≤ C, then terminate the for-loop
7: Put samples into 2 sets of size N
8: R ← {xj}Nj=1 and S ← {xj}2N

j=N+1

9: zs ← 1
N

∑
xj∈R xj

10: Compute Hzs using Equation (3.9)
11: Ps ← Ps−1 ∩Hzs

12: Keep samples in Ps
13: Q ← {x ∈ S ∩ Ps}
14: end for
15: Return: the discovered witness [xj,Ps,Q]; or ‘No Intersect’

multi-line search with C+
0 = 22K−1

and C−0 = 22K . This precursor step requires at most
2 ·D dlog2 log2 MAC (f,A)e to prepare the MultilineSearch algorithm.

3.3.2 Convex Negative Classes

In this section we consider minimizing a weighted L1 cost A (cf. Equation 3.1) when the
feasible set X− is convex. Although any convex function can be efficiently minimized within
a known convex set (e.g., using the Ellipsoid Method and Interior Point methods, Boyd
and Vandenberghe 2004), in the context of the evasion problem the convex set is accessible
only via membership queries. We use a randomized polynomial algorithm due to Bertsimas
and Vempala (2004) to minimize the cost function A given an initial point x− ∈ X−. For
any fixed cost Ct we use their algorithm to determine (with high probability) whether X−
intersects with BCt ; that is, whether or not Ct is a new lower or upper bound on the MAC.
Again by applying a binary search, we find an ε-IMAC with a high degree of confidence in
no more than Lε repetitions. We now focus only on weighted L1 costs and return to more
general cases in Section 3.4.2.

The final Algorithm 9 runs with polynomial query complexity4 O∗ (D5Lε). The following
sections provide a detailed sketch of the steps followed by the algorithm.

3.3.2.1 Procedure to Determine Whether Convex Sets Intersect

We begin by outlining the query-based procedure of Bertsimas and Vempala (2004) for
determining whether two convex sets (e.g., X− and BCt) intersect. Their Intersect-
Search procedure (presented here as Algorithm 7) is a randomized Ellipsoid method for

4O∗ (·) denotes the standard complexity notation O (·) up to logarithmic factors.

77

Algorithm 8 Hit-and-Run Sampling

1: HitRun (P , {yj},x0)
2: for all i = 1 . . . K do
3: Pick a random direction:
4: νj ∼ N (0, 1)
5: v←

∑
j νjy

j

6: Find ω1 and ω2 s.t.
7: xi−1 − ω1v /∈ P and
8: xi−1 + ω2v /∈ P
9: repeat

10: ω ∼ Unif (−ω1, ω2)
11: xi ← xi−1 + ωv
12: if ω < 0 then ω1 ← −ω
13: else ω2 ← ω
14: until xi ∈ P
15: end for
16: Return: xK

determining whether there is an intersection between two bounded convex sets P and B with
the following properties: P is only accessible through membership queries and B provides a
separating hyperplane for any point outside it. The reader should view P and B as some-
thing like X− and BCt which certainly satisfy these properties. Their technique uses efficient
query-based approaches to uniformly sample from the convex set P to obtain sufficiently
many samples such that cutting P through the centroid of these samples with a separating
hyperplane from B will significantly reduce the volume of P with high probability. The
technique thus constructs a sequence of progressively smaller feasible sets Ps ⊂ Ps−1 until
either it finds a point in P ∩B or it is highly unlikely that the sets intersect. We now detail
how we use their technique to efficiently evade filtering.

So far we have reduced our problem to finding the intersection between X− and BCt .
An important initialization step, however, is due to the algorithm being designed to test the
intersection of bounded convex sets, while X− may be unbounded. Let R = 2A (x−) and
B2R(x−) be the L1-ball of radius 2R centered at x−. Since we are minimizing a cost, we
can consider the set P0 = X− ∩B2R(x−), which is a subset of X− containing BCt and thus
also the intersection X− ∩BCt if it exists—since Ct < A(x−). A final initial remark is that
we also assume that there is some r > 0 such that there is an L1-ball of radius r contained
in the convex set X−.

Before detailing the IntersectSearch procedure (cf. Algorithm 7), we summarize the
hit-and-run random walk technique introduced by Smith (1996) (cf. Algorithm 8), which
is the backbone of IntersectSearch and is used to sample uniformly from a bounded
convex body. Given an instance xj ∈ Ps−1, hit-and-run selects a random direction v
through xj (we return to the selection of v in Section 3.3.2.2). Since Ps−1 is a bounded
convex set, the set Ω = {ω | xj + ωv ∈ Ps−1} is a bounded interval of all feasible points
along direction v through xj. Sampling ω uniformly from Ω (using rejection sampling) yields

78

the next step of the random walk; xj + ωv. Under the appropriate conditions (addressed
in Section 3.3.2.2), the hit-and-run random walk generates a sample uniformly from the
convex body after O∗ (D3) steps (Lovász and Vempala, 2004).

Using hit-and-run we obtain samples {xj}2N
j=1 from Ps−1 ⊂ X− and determine if any

satisfy A (xj) ≤ Ct. If so, xj is in the intersection of X− and BCt and the procedure is
complete. Otherwise, our goal is to significantly reduce the size of Ps−1 without excluding
any of BCt , so that our sampling concentrates toward the intersection (if it exists)—for this
we need a separating hyperplane for BCt . For any point y /∈ BCt , the (sub)gradient of the
weighted L1 cost at y is given by hy with components

hyf = cf sgn
(
yf − xA

f

)
. (3.8)

This is the normal to a separating hyperplane for y and BCt .
To achieve efficiency, we choose a point z ∈ Ps−1 so that cutting Ps−1 through z with

the hyperplane hz eliminates a significant fraction of Ps−1. To do so, z must be centrally
located within Ps−1—we use the empirical centroid of half of our samples in z = 1

N

∑N
j=1 xj

(the other half will be used in Section 3.3.2.2). We cut Ps−1 with the hyperplane hz through
z; that is, Ps = Ps−1 ∩Hz where Hz is the halfspace

Hz = {x | x>hz ≤ z>hz} . (3.9)

As shown by Bertsimas and Vempala (2004), this cut achieves vol (Ps) ≤ 2
3
vol (Ps−1) with

high probability so long as N = O∗ (D) and Ps−1 is sufficiently round (see Section 3.3.2.2).
Observing that the ratio of the volumes between the initial circumscribing and inscribing

balls of the feasible set is
(
R
r

)D
, the algorithm can terminate after T = O

(
D log R

r

)
unsuc-

cessful iterations with a high probability that the intersection is empty.
Because every iteration in Algorithm 7 requires N = O∗ (D) samples, each of which

need K = O∗ (D3) random walk steps, and there are O∗ (D) iterations, the total number of
membership queries required by Algorithm 7 is O∗ (D5).

3.3.2.2 Efficient Sampling from Convex Bodies with Membership Oracles

Until this point, we assumed the hit-and-run random walk efficiently produces uni-
formly random samples from any bounded convex body P accessible through membership
queries. However, if the body is severely elongated, randomly selected directions will rarely
align with the long axis of the body and our random walk will take small steps (relative
to the long axis) and mix slowly. Essentially, we require that the convex body be well-
rounded. More formally, for the walk to mix effectively, we need the convex body P to

be near-isotropic; i.e., for any unit vector v, EX∼P

[(
v> (X− EY∼P [Y])

)2
]

is bounded

between 1/2 and 3/2 of vol (P).
If P is not near-isotropic, we must rescale X with an appropriate affine transformation

V so the resulting body P ′ is near-isotropic. With sufficiently many samples from P we can
estimate V as the empirical covariance matrix. However, instead of rescaling X explicitly,
we do so implicitly using a technique described by Bertsimas and Vempala (2004). To do

79

Algorithm 9 Convex X− Set Search

1: SetSearch
(
P ,Q = {xj ∈ P}, C−0 , C+

0 , ε
)

2: x∗ ← x− and t← 0
3: while C−t /C

+
t > 1 + ε do

4: Ct ←
√
C−t · C+

t

5: [x∗,P ′,Q′]← IntersectSearch (P ,Q, C)
6: if intersection found then
7: C−t+1 ← A (x∗) and C+

t+1 ← C+
t

8: P ← P ′ and Q ← Q′
9: else

10: C−t+1 ← C−t and C+
t+1 ← Ct

11: end if
12: t← t+ 1
13: end while
14: Return: x∗

so, we maintain a set Q of sufficiently many uniform samples from the body Ps and in the
hit-and-run algorithm we sample directions based on this set. Intuitively, because the
samples in Q are distributed uniformly in Ps, the directions we sample based on the points
in Q implicitly reflect the covariance structure of Ps. This is equivalent to sampling the
direction from a normal distribution with the covariance of P .

We must ensure that Q has sufficiently many samples from Ps after each cut Ps ←
Ps−1 ∩Hzs . Recall that we initially sampled 2N points from Ps−1 using our hit-and-run
procedure—half of these were used to estimate the centroid zs for the cut and the other
half, S, are used to repopulate Q after the cut. Because S contains independent uniform
samples from Ps−1, those in Ps after the cut constitute independent uniform samples from
Ps (along the same lines of rejection sampling). By choosing N sufficiently large, our cut
will be sufficiently deep and we will have sufficiently many points to resample Ps after the
cut.

Finally, before we start this resampling procedure, we need an initial set Q of uniformly
distributed points from P0 but, in our problem, we only have a single point x− ∈ X−.
Fortunately, there is an iterative procedure for putting our convex set P0 into a near-isotropic
position—the RoundingBody algorithm described by Lovász and Vempala (2003) uses
O∗ (D4) membership queries to transforms the convex body into near-isotropic position.
We use this as a preprocessing step for Algorithms 7 and 9; that is, given X− and x− ∈ X−
we make P0 = X− ∩ B2R(x−) and then use the RoundingBody algorithm to produce
Q = {xj ∈ P0}. These sets are then the inputs to our search algorithms.

3.3.2.3 Optimization over L1 Balls

We now revisit the outermost optimization loop for searching for the minimum feasible
cost and suggest improvements—if naively implemented as described, the algorithm does
work.

80

First, since xA, x− and are the same for every iteration of the optimization procedure,
we only need to run the RoundingBody procedure once as a preprocessing step. The
set of samples {xj ∈ P0} it produces are sufficient to initialize IntersectSearch at each
stage of the binary search over Ct.

Second, the separating hyperplane hy given by Equation (3.8) does not depend on the
target cost Ct but only on xA, the common center of all the L1 balls. In fact, the separating
hyperplane at point y is valid for all weighted L1-balls of cost C < A (y). Further, if C < Ct,
we have BC ⊂ BCt . Thus, the final state from a successful call to IntersectSearch for
the Ct-cost ball can serve as the starting state for any subsequent call to IntersectSearch
for all C < Ct.

These improvements are reflected in our final procedure SetSearch in Algorithm 9.

3.4 Evasion while Minimizing Lp-distances

While the focus of Section 3.3, like that of Lowd and Meek (2005b), is attacks that
almost-minimize L1 cost, an adversary may instead value some other cost function. In this
section we consider attacks for evading convex-inducing classifiers that almost-minimize Lp
costs for p 6= 1. For certain values of p we show that, depending on whether the positive
or negative class is convex, either the evasion problem requires an exponential number of
queries or it can be efficiently solved by our existing algorithms. For other Lp costs, finding
efficient evasion procedures remains an open question.

3.4.1 Convex Positive Classes

We now consider the application of the MultiLineSearch and K-step MultiLine-
Search algorithms for evading convex-inducing classifiers under Lp costs when p 6= 1.

3.4.1.1 Multiline Search for p ∈ (0, 1)

In the case where p < 1, a simple reduction holds. Since a L1-ball of radius R bounds
radius-R Lp-balls for all p < 1, we can simply use our existing algorithms with the 2 · D
vertices of the hyperoctahedron (the L1 ball) as search directions, to find an ε-IMAC while
submitting the same number of queries as before.

3.4.1.2 Multiline Search for p ∈ [1,∞]

If the level of approximation ε is permitted to increase with dimension D, then positive
results are possible using our existing algorithms. The quality of our result, measured by
the level of near-optimality we can guarantee via a range on ε, depends on how well the Lp
ball is approximated by the L1 ball.

Theorem 22. Using the 2 · D axis-parallel search directions, any of our multiline search
algorithms efficiently find an ε-IMAC for

81

xA

Figure 3.3: Relating upper and lower bounds on L1 cost found by multiline search, to bounds
on L2 cost.

(i) Lp cost, for p ∈ [1,∞), for all ε > D(p−1)/p − 1; and

(ii) L∞ cost for all ε > D − 1.

Proof. First observe that for p ∈ (1,∞), the largest Lp ball that is contained inside a unit L1

ball has radius D(1−p)/p since the Lp and L1 balls must meet at the point D−11 by symmetry
and the Lp-norm of this point is αp = D(1−p)/p. Similarly the largest L∞ ball to achieve this
feat has radius α∞ = D−1.

Now consider running multiline search with the set of 2 ·D axis-parallel directions as the
search direction setW , until the L1 cost bounds yield the stopping criterion C−0 /C

+
0 ≤ 1+ε′.

Notice, as depicted in Figure 3.3 for the p = 2 case, that while the upper bound on L1 cost
of C−0 establishes the identical bound on Lp cost, the same is not true for the lower bound.
The lower bound on Lp cost achieved by the search is simply αpC

+
0 where αp is defined

above for p ∈ (1,∞].
Thus we can guarantee that the search has found an ε-IMAC provided that C−0 /(αpC

+
0) ≤

1 + ε which holds if α−1
p (1 + ε′) ≤ 1 + ε. If ε′ is taken so that αp ≥ (1 + ε′)−1 then we have

an ε-IMAC if (1 + ε′)2 ≤ 1 + ε. This condition is satisfied by taking ε′ =
√

1 + ε− 1.
Thus provided that αp ≥ 1/(1 + ε′), running a multiline search with query complexity

82

in terms of the following quantity is sufficient to find an ε-IMAC:

Lε′ = O
(

log

(
1

log(1 + ε′)

))
= O

(
log

(
1

log
√

1 + ε

))
= O

(
log

(
1

log(1 + ε)

))
= O (Lε) .

And so the procedure still has the same polynomial query complexity in D and Lε, but with
worse constants. Finally we have αp ≥ 1/(1 + ε′) for p ∈ [1,∞) iff ε′ ≥ D(p−1)/p− 1, and for
p =∞ iff ε′ ≥ D − 1.

These results incur the same query complexities as for the L1 case since we are using
the same set of search directions.5 Better results, in the sense of achieving lower ε’s, are
possible by using additional search directions (the intuition being that more directions better
approximate Lp balls). The cost of expanding the search setW is that the query complexity
increases.

If ε is constant wrt the dimension D then evasion for p ∈ [2,∞] requires an exponential
number of queries in D: no efficient algorithm exists.

Theorem 23. For any D > 0, any initial bounds 0 < C+
0 < C−0 on the MAC, and 0 < ε < 1,

all algorithms must submit at least αDε membership queries (where αε > 1) in the worst case
to be ε-multiplicatively optimal on all classifiers with convex positive classes, for L∞ costs.

Proof. We proceed by constructing two convex positive sets consistent with the responses of
the oracle, but with MAC’s that are sufficiently different that no algorithm could simultane-
ously find an ε-IMAC for both without submitting many queries. The first convex positive
set P1 is simply the L∞ ball of cost one.

Consider the M queries made by the algorithm relative to xA that have cost at most
1. Each such query must fall in one of the 2D octants of the L∞ ball about xA. Let us
regard an octant as ‘covered’ if there is one or more queries in it. Define our second convex
positive set P2 as the convex hull of all the octants covered by the M queries. P1 responds
positively for these queries (and negatively for all others), while P2 certainly contains the
M queries and so also positively responds to these. It also responds negatively to any other
queries. Thus both candidate positive sets are convex, and responds consistently with any
sequence of queries. The MAC for P1 is trivially one. We now consider when the MAC for
P2 is much smaller, providing a separation between ε-IMAC’s for the two candidate sets.

Each of the covered octants defining P2 can be identified with a point in the D-cube
{0, 1}D. Let C ⊆ {0, 1}D be this subset of points. Suppose C is a K-covering of the D-cube

5As noted, the actual number of queries increases, but only by constant factors. For example, the basic
multiline search’s number of queries increases by an additional D queries: accounting for constants including
in the logarithms’ bases, Lε′ = 1 + Lε.

83

but not a (K−1)-covering, for integer K wrt the hamming distance. Then there must be at
least one element v of the D-cube that is at least K hamming distance from every member
of C; i.e., v would not be covered by any (K − 1)-ball centered around a point in C. v
corresponds to an un-occupied octant, and all occupied octants’ representatives differ by at
least K coordinates from v. WLOG assume that all octants that differ by K coordinates are
in fact in the covering. These octants border a face of the convex hull P2 which separates
v from P2. For simplicity of explanation, we assume WLOG that v is the vector of all
ones. The corners of this face then correspond to all vectors that have K zeros and D −K
ones. Since there must be a total of (D −K)

(
D
K

)
ones distributed uniformly among the D

coordinates over all the corners of the face, the midpoint of this face is then given by

1(
D
K

) (D −K
D

(
D

K

)
,
D −K
D

(
D

K

)
, . . . ,

D −K
D

(
D

K

))
=

D −K
D

(1, 1, . . . , 1) ,

which has an L∞ cost of (D−K)/D. By the symmetry of P2, this midpoint minimizes cost
over P2. That is, the MAC under P2 is (D − K)/D. By contrast the MAC under P1 is
simply one.

Given the consistency of the two convex positive sets’ responses, this implies that any al-
gorithm that submits insufficient queries for a K−1 covering cannot achieve a multiplicative
approximation better than 1 + ε ≥ D/(D −K). Solving for K this yields

K ≤ ε

1 + ε
D , (3.10)

which relates a desirable ε to the radius of the covering; i.e., for better approximations, a
larger (lower radius) covering is required.

We next consider the number of queries required to achieve a covering of a given radius
K. Consider such a cover. Each element of the covering covers exactly

∑K
i=0

(
D
i

)
elements

of the D-cube. Since the cube has 2D vertices, the covering’s cardinality must be at least
2D∑h

k=0 (Dk)
to cover the entire D-cube. To further bound this quantity it suffices to use the

bound

bδDc∑
k=0

(
D

k

)
≤ 2H(δ)D , (3.11)

where 0 < δ < 1/2 and H (δ) = −δ log2 δ− (1− δ) log(1− δ) is the entropy. Let K = D/2 so
that having no K−1 cover implies no approximation better than ε ≥ 1. By Equations (3.10)

and (3.11), any algorithm must submit enough queries so that at least 2D(1−H(ε
1+ε)) vertices of

the hypercube are covered to achieve 0 < ε < 1. By construction of the ‘covered’ octants, an
algorithm would need to submit at least this many queries to achieve (1 + ε)-multiplicative
optimality. However, since H (δ) < 1 for δ < 1/2, we have that the query complexity is

M = Ω
(
αDε
)

for αε = 21−H(ε
1+ε) > 1.

We can apply a similar argument for other Lp costs with p > 1, to yield similar negative
query complexity results.

84

Corollary 24. For any D > 0, any initial bounds 0 < C+
0 < C−0 on the MAC, and

0 < ε < 2
21/p
− 1, all algorithms must submit at least αDε membership queries (where αε > 1)

in the worst case to be ε-multiplicatively optimal on all classifiers with convex positive classes,
for Lp costs with p > 1.

Proof. The same argument as used in Theorem 23 applies here, with minor modifications.
Our first convex positive class P1 is now the unit-cost Lp ball. Again we can consider octants
being covered by queries falling within P1; however octants are not restricted to this Lp ball
too, and again P2 is taken as the convex hull of the covered octants.

The MAC under P1 is again one, however the derivation for P2’s MAC changes slightly.
Now the corners defining the face separating v from P2 are no longer the vectors of K zero’s
and D −K one’s; instead the one’s are replaced by some β such that the resulting vector
has Lp cost one: the appropriate value of β is (D−K)−1/p. As a result, the midpoint of the

face is now (D −K)1−1/p/D1 which has an Lp cost of ((D −K)/D)1−1/p representing the
MAC under P2.

Thus without forming a K − 1 covering, the best approximation achievable is 1 + ε ≥
(D/(D −K))1−1/p. Solving for K this yields

K ≤ D
(1 + ε)p/(p−1) − 1

(1 + ε)p/(p−1)
.

Now setting K = dim /2 as before yields that for ε satisfying this relation, submitting

fewer than M = Ω
(
αDε
)

queries for αε = 2
1−H

(
βε,p−1

βε,p

)
cannot achieve better than a (1 + ε)-

approximation, where βε,p = (1 + ε)p/(p−1). As before we have that α2
ε > 1 since the

argument to the entropy is at least 1/2. Finally 1/2 lower bounded this argument to the
entropy implies a bound of 2(p−1)/p − 1 on ε, under which the result holds, where above the
bound was simply one.

Figure 3.4 plots the range ε ∈
(
0, 2(p−1)/p − 1

)
as a function of p. As p→∞ this upper

bound quickly approaches 1, which coincides with the upper bound derived for the L∞ cost.
While our positive results for the convex positive class p > 1 case provide approximations

ε that must increase fairly quickly with D, it is most important to understand the query
complexity of good approximations for small ε. Theorem 23 and the corollary provide such
results.

Notably for the L2 cost, the upper bound is
√

2 − 1 ≈ 0.414; for this case it is possible
to derive a similar exponential query complexity result that holds for all ε by appealing to
a result of Wyner (1965) on covering numbers for the surface of the hypersphere.

Theorem 25. For any D > 1, any initial bounds 0 < C+
0 < C−0 on the MAC, and 0 < ε <

C−0
C+

0

−1, all algorithms must submit at least α
D−2
2

ε membership queries (where αε = (1+ε)2

(1+ε)2−1
>

1) in the worst case to be ε-multiplicatively optimal wrt the L2 cost, on all classifiers with
convex positive classes.

We provide a proof sketch here. Once again the argument is to construct two candidate
positive convex classes that produce identical responses but have very different MAC’s. One

85

1 2 5 10 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Approximations Needing Exponential Queries

p (log scale)

R
an

ge
 o

f εε

Figure 3.4: The values of ε (shown in gray), for each p > 1, for which minimizing Lp cost
requires exponential numbers of queries according to Corollary 24. The cost parameter p is
shown on a log scale. The upper-bound quickly approaches unity as p→∞.

class corresponds to the hypersphere itself, while the other is simply the convex hull of the
queries that fall within the hypersphere. In the best case (for the attacker) these queries are
on sphere’s boundary. It is easy to see that the achieved approximation corresponds to the
greatest height of the spherical caps defined by the difference between the hypersphere and
the convex hull. Minimizing the spherical cap height (maximizing the accuracy of approxi-
mation) corresponds to covering the sphere’s surface; the size of covers grows exponentially
with D.

We can compare this proof technique with the technique used for general Lp costs. The
looseness of the general technique comes from covering only (hyper)octants—several query
points on the cost ball’s surface, within a single octant, do not contribute to the evasion
algorithm’s approximation beyond a single query’s contribution. In the improved result,
the spherical caps need not be aligned according to the coordinate axes; we better lower
bound the number of queries required to achieve approximations. It is thus conceivable that
a similar argument could yield negative results that hold for all constant (wrt D) levels of
approximation ε, for all p > 1.

3.4.2 Convex Negative Classes

Algorithm 9 applies to all costs that correspond to a weighted Lp distance centered at xA,
for p ≥ 1, since such cost functions are convex. In these cases, the analogous gradient cuts

86

to those proposed in Section 3.3.2 are valid and once again applicable to any ball of smaller
cost. To adapt the algorithm, one need only change cost function A and the separating
hyperplane used for the halfspace cut in Equation (3.8).

Moreover SetSearch is applicable for any convex cost function A so long as we can
compute the separating hyperplanes of any sublevel set6 S of A for any point y /∈ S. For
general convex costs, it still holds that the sublevel set of cost C (the C-cost ball at xA)
is contained in the sublevel set of cost D for all D > C. As a consequence, the separating
hyperplanes for sublevel set at D are also separating hyperplanes for the set at cost C.

3.5 Summary

This chapter explores the evasion problem as defined by ε-IMAC searchability: using a
polynomial number of membership queries to a fixed but unknown classifier, find a negative
instance that almost-minimizes cost. This work generalizes the results of Lowd and Meek
(2005b) which considers how best to launch Exploratory attacks on learning systems, i.e.,
how to submit malicious test instances. The stated goal of this chapter of evasion (False
Negatives) corresponds to Integrity attacks within the taxonomy of Barreno et al. (2006)
as described in Section 1.2.2. However the methods are equally applicable to Availability
attacks (that cause False Positives).

The analysis of our algorithms shows that convex-inducing classifiers is ε-IMAC search-
able for Lp costs, for p ≤ 1 in the convex positive class case and for p ≥ 1 in the convex
negative class case. We observe a phase transition when p crosses one: for convex posi-
tive classes evasion to minimize Lp cost with p > 1 requires exponential queries. When
the positive class is convex we give efficient techniques that achieve a query complexity

of O
(

log(1/ε) +
√

log(1/ε)D
)

, outperforming previous reverse-engineering approaches for

the special case of linear classifiers. We provide a lower bound of O (log(1/ε) +D) on the
query complexity for any algorithm evading classifiers with convex positive class under the
weighted L1 cost, showing that our best algorithm is at least within a

√
log(1/ε) factor to

the optimal query complexity. We also consider variants of the search procedure for when
the attacker does not have a lower bound on the MAC or has no negative instance from
which to begin the search.

When the negative class is convex, we apply the randomized Ellipsoid-based method of
Bertsimas and Vempala (2004) to achieve efficient ε-IMAC search, achieving a polynomial
query complexity of O∗ (D5 log(1/ε)) while minimizing Lp cost for p ≥ 1. With prior
knowledge that a learner produces classifiers with a specific class being convex, an adversary
can select the appropriate query algorithm to evade detection. If the adversary is unaware
of which of the positive and negative sets are convex, but has prior knowledge that one is
convex, they can run both searches concurrently to discover an ε-IMAC with a combined
polynomial query complexity.

Solutions to the reverse engineering problem are clearly sufficient for the evasion problem.

6The sublevel set of any convex function is a convex set (Boyd and Vandenberghe, 2004) so such a
separating hyperplane always exists but may not be easily computed.

87

Lowd and Meek (2005b) used a reverse engineer approach to evading linear classification
without significant cost to query complexity. An important consequence of the polynomial
evadability of convex-inducing classifiers is that for this class of classifiers, reverse engineer-
ing is not necessary for evasion of convex-inducing classifiers and in fact can be significantly
harder.

Exploring near-optimal evasion is important for understanding how an adversary may
circumvent learners in security-sensitive settings. As described here, our algorithms may not
always directly apply in practice since various real-world obstacles persist. Queries may be
only partially observable or noisy and the feature set may be only partially known. Moreover,
an adversary may not be able to query all x ∈ X . Queries are almost always objects (such
as email messages) that are mapped into X by the adaptive system. A real-world adversary
must invert the feature-mapping—a generally difficult task. These limitations necessitate
further research on the impact of partial observability and approximate querying on ε-IMAC
search, and to design more secure filters.

88

Chapter 4

Privacy-Preserving Learning

You have zero privacy anyway. Get over it.

– Scott McNealy, Co-Founder, Sun Microsystems

Privacy-preserving learning is a relatively young field in the intersection of Security,
Database, TCS, Statistics and Machine Learning research. The broad goal of research into
privacy-preserving learning is to release aggregate statistics on a dataset without disclosing
local information about individual elements of the data.

Several recent studies in privacy-preserving learning have considered the trade-off be-
tween utility or risk and the level of differential privacy guaranteed by mechanisms for sta-
tistical query processing. In this chapter we study this trade-off in private Support Vector
Machine (SVM) learning. We present two efficient mechanisms, one for the case of finite-
dimensional feature mappings and one for potentially infinite-dimensional feature mappings
with translation-invariant kernels. For the case of translation-invariant kernels, the pro-
posed mechanism minimizes regularized empirical risk in a random Reproducing Kernel
Hilbert Space whose kernel uniformly approximates the desired kernel with high probabil-
ity. This technique, borrowed from large-scale learning, allows the mechanism to respond
with a finite encoding of the classifier, even when the function class is of infinite Vapnik-
Chervonenkis (VC) dimension. Differential privacy is established using a proof technique
from algorithmic stability. Utility—the mechanism’s response function is pointwise ε-close
to non-private SVM with probability (1− δ)—is proven by appealing to the smoothness of
regularized empirical risk minimization with respect to small perturbations to the feature
mapping. We conclude with a lower bound on the optimal differential privacy of the SVM.
This negative result states that for any δ, no mechanism can be simultaneously (ε, δ)-useful
and β-differentially private for small ε and small β.

In the language of the taxonomy of Barreno et al. (2006), the privacy-preserving mecha-
nisms developed in this chapter are robust to both Exploratory and Causative attacks, which
aim to violate Confidentiality. An attacker with access to the released classifier can probe
it in an attempt to reveal information about the training data; moreover an attacker with
influence over (up to) all but one example of the training data may attempt to manipulate
the mechanism into revealing information about the unknown training example. In both

89

cases our strong guarantees of differential privacy prove that such attacks will fail. Finally,
our analysis considers adversaries with near-complete knowledge of the training data (n− 1
out of n examples), complete knowledge about the mechanism up to sources of randomness,
and access to the released classifier trained on the data. Similarly, the attacker may have
complete control over the known subset of training data. In sum, we allow for substantial
levels of adversarial information and control.

4.1 Introduction

The goal of a well-designed statistical database is to provide aggregate information about
a database’s entries while maintaining individual entries’ privacy. These two goals of utility
and privacy are inherently discordant. For a mechanism to be useful, its responses must
closely resemble some target statistic of the database’s entries. However to protect privacy,
it is often necessary for the mechanism’s response distribution to be ‘smoothed out’, i.e.,
the mechanism must be randomized to reduce the individual entries’ influence on this dis-
tribution. It has been of key interest to the statistical database community to understand
when the goals of utility and privacy can be efficiently achieved simultaneously (Barak et al.,
2007; Blum et al., 2008; Chaudhuri and Monteleoni, 2009; Dinur and Nissim, 2003; Dwork
et al., 2007; Kasiviswanathan et al., 2008). In this chapter we consider the practical goal
of private regularized empirical risk minimization (ERM) in Reproducing Kernel Hilbert
Spaces for the special case of the Support Vector Machine (SVM). We adopt the strong
notion of differential privacy as formalized by Dwork (2006). Our efficient new mechanisms
are shown to parametrize functions that are close to non-private SVM under the L∞-norm,
with high probability. In our setting this notion of utility is stronger than closeness of risk
(cf. Remark 28).

We employ a number of algorithmic and proof techniques new to differential privacy. One
of our new mechanisms borrows a technique from large-scale learning, in which regularized
ERM is performed in a random feature space whose inner-product uniformly approximates
the target feature space inner-product. This random feature space is constructed by viewing
the target kernel as a probability measure in the Fourier domain. This technique enables
the finite parametrization of responses from function classes with infinite VC dimension.
To establish utility, we show that regularized ERM is relatively insensitive to perturbations
of the kernel: not only does the technique of learning in a random RKHS enable finitely-
encoded privacy-preserving responses, but these responses well-approximate the responses
of non-private SVM. Together these two techniques may prove useful in extending privacy-
preserving mechanisms to learn in large function spaces. To prove differential privacy, we
borrow a proof technique from the area of algorithmic stability. We believe that stability
may become a fruitful avenue for constructing new private mechanisms in the future, based
on learning maps presently known to be stable.

Of particular interest, is the optimal differential privacy of the SVM, which loosely
speaking is the best level of privacy achievable by any accurate mechanism for SVM learn-
ing. Through our privacy-preserving mechanisms for the SVM, endowed with guarantees
of utility, we upper bound optimal differential privacy. We also provide lower bounds on

90

the SVM’s optimal differential privacy, which are impossibility results for simultaneously
achieving high levels of utility and privacy.

An earlier version of this chapter appeared as a technical report (Rubinstein et al.,
2009). Subsequently, but independently, Sarwate et al. (2009) recently considered privacy-
preserving mechanisms for SVM learning. Their mechanism for linear SVM guarantees
differential privacy by adding a random term to the objective as they pioneered for regular-
ized logistic regression (Chaudhuri and Monteleoni, 2009). For non-linear SVM the authors
exploit the same technique from large-scale learning we use here. The authors also develop
a method for tuning the regularization parameter while preserving privacy, using a com-
parison procedure due to McSherry and Talwar (2007). It is noteworthy that preserving
privacy via the randomized objective applies only to differentiable loss functions, ruling out
the important case of hinge-loss. Our mechanisms preserve privacy for any convex loss. And
while Sarwate et al. (2009) prove risk bounds for their mechanisms, our utility guarantees
are strictly stronger for hinge-loss (cf. Remark 28) and we provide lower bounds on simulta-
neously achievable utility and privacy. Finally our proof of differential privacy is interesting
due to its novel use of stability.

Chapter Organization. The remainder of this chapter is organized as follows. After
concluding this section with a summary of related work, we recall basic concepts of dif-
ferential privacy and SVM learning in Section 4.2. Sections 4.3 and 4.4 describe the new
mechanisms for private SVM learning for finite-dimensional feature maps and (potentially
infinite-dimensional) feature maps with translation-invariant kernels. Each mechanism is
accompanied with proofs of privacy and utility bounds. Section 4.5 considers the special
case of hinge-loss and presents an upper bound on the SVM’s optimal differential privacy.
A corresponding lower bound is then given in Section 4.6. We conclude the chapter with a
summary of our contributions.

4.1.1 Related Work

There is a rich literature of prior work on differential privacy in the theory community.
The following sections summarize work related to our own, organized to contrast this work
with our main contributions.

Range Spaces Parametrizing Vector-Valued Statistics or Simple Functions. Early
work on private interactive mechanisms focused on approximating real- and vector-valued
statistics (e.g., Barak et al. 2007; Blum et al. 2005; Dinur and Nissim 2003; Dwork 2006;
Dwork et al. 2006). McSherry and Talwar (2007) first considered private mechanisms with
range spaces parametrizing sets more general than real-valued vectors, and used such dif-
ferentially private mappings for mechanism design. More related to our work are the pri-
vate mechanisms for regularized logistic regression proposed and analyzed by Chaudhuri
and Monteleoni (2009). There the mechanism’s range space parametrizes the VC-dimension
d+1 class of linear hyperplanes in Rd. Kasiviswanathan et al. (2008) showed that discretized

91

concept classes can be PAC learned or agnostically learned privately, albeit via an ineffi-
cient mechanism. Blum et al. (2008) showed that non-interactive mechanisms can privately
release anonymized data such that utility is guaranteed over classes of predicate queries
with polynomial VC dimension, when the domain is discretized. Dwork et al. (2009) more
recently characterized when utility and privacy can be achieved by efficient non-interactive
mechanisms. In this paper we consider efficient mechanisms for private SVM learning,
whose range spaces parametrize real-valued functions (whose sign form trained classifiers).
One case covered by our analysis is learning with a Gaussian kernel, which corresponds to
learning over a rich class of infinite dimension.

Practical Privacy-Preserving Learning (Mostly) via Subset-Sums. Most prior
work in differential privacy has focused on the deep analysis of mechanisms for relatively
simple statistics (with histograms and contingency tables as explored by Blum et al. 2005
and Barak et al. 2007 respectively, as examples) and learning algorithms (e.g., interval
queries and half-spaces as explored by Blum et al. 2008), or on constructing learning algo-
rithms that can be decomposed into subset-sum operations (e.g., perceptron, k-NN, ID3
as described by Blum et al. 2005, and various recommender systems due to the work of
McSherry and Mironov 2009). By contrast, we consider the practical goal of SVM learning,
which does not decompose into subset-sums. It is also notable that our mechanisms run in
polynomial time. The most related work to our own in this regard is due to Chaudhuri and
Monteleoni (2009), although their results hold only for differentiable loss, and finite feature
mappings.

The Privacy-Utility Trade-Off. Like several prior studies, we consider the trade-off
between privacy and utility. Barak et al. (2007) presented a mechanism for releasing contin-
gency tables that guarantees differential privacy and also guarantees a notion of accuracy:
with high probability all marginals from the released table are close in L1-norm to the
true table’s marginals. As mentioned above, Blum et al. (2008) developed a private non-
interactive mechanism that releases anonymized data such that all predicate queries in a
VC-class take on similar values on the anonymized data and original data. In the work of
Kasiviswanathan et al. (2008), utility corresponds to PAC learning: with high probability
the response and target concepts are close, averaged over the underlying measure.

A sequence of prior negative results have shown that any mechanism providing overly
accurate responses cannot be private (Dinur and Nissim, 2003; Dwork and Yekhanin, 2008;
Dwork et al., 2007). Dinur and Nissim (2003) showed that if noise of rate only o(

√
n) is

added to subset sum queries on a database of bits then an adversary can reconstruct a
1 − o(1) fraction of the database. This is a threshold phenomenon that says if accuracy
is too high, privacy cannot be guaranteed at all. This result was more recently extended
to allow for mechanisms that answer a small fraction of queries arbitrarily (Dwork et al.,
2007). We show a similar negative result for the private SVM setting: any mechanism that
is too accurate with respect to the SVM cannot guarantee strong levels of privacy.

92

Connections between Stability, Robust Statistics, and Global Sensitivity. To
prove differential privacy, we borrow a proof technique from the area of algorithmic stability.
In passing Kasiviswanathan et al. (2008) note the similarity between notions of algorithmic
stability and differential privacy, however do not exploit this. The connection between
algorithmic stability and differential privacy is qualitatively similar to the recent work of
Dwork and Lei (2009) who demonstrated that robust estimators can serve as the basis for
private mechanisms, by exploiting the limited influence of outliers on such estimators.

4.2 Background and Definitions

A database D is a sequence of n > 1 entries or rows (xi, yi) ∈ Rd × {−1, 1}, which are
input point-label pairs or examples. We say that a pair of databases D1, D2 are neighbors if
they differ on one entry. A mechanism M is a service trusted with access to a database D,
that releases aggregate information about D while maintaining privacy of individual entries.
By M(D) we mean the response of M on D. We assume that this is the only information
released by the mechanism. Denote the range space of M by TM . We adopt the following
strong notion of differential privacy due to Dwork (2006).

Definition 26. For any β > 0, a randomized mechanism M provides β-differential privacy,
if, for all neighboring databases D1, D2 and all responses t ∈ TM the mechanism satisfies

log

(
Pr (M(D1) = t)

Pr (M(D2) = t)

)
≤ β .

The probability in the definition is over the randomization in M . For continuous TM we
mean by this ratio a Radon-Nikodym derivative of the distribution of M(D1) with respect
to the distribution of M(D2). If an adversary knows M and the first n − 1 entries of D,
she may simulate the mechanism with different choices for the missing example. If the
mechanism’s response distribution varies smoothly with her choice, the adversary will not
be able to infer the true value of entry n by querying M . In the sequel we assume WLOG
that each pair of neighboring databases differ on their last entry.

Intuitively the more an ‘interesting’ mechanism M is perturbed to guarantee differen-
tial privacy, the less like M the resulting mechanism M̂ will become. The next definition
formalizes the notion of ‘likeness’.

Definition 27. Consider two mechanisms M̂ and M with the same domain and with re-
sponse spaces TM̂ and TM . Let X be some set and let F be a space of real-valued functions
on X that is parametrized by the response spaces: for every t ∈ TM̂ ∪TM let ft ∈ F be some
function. Finally assume F is endowed with norm ‖ · ‖F . Then for ε > 0 and 0 < δ < 1 we
say that1 M̂ is (ε, δ)-useful with respect to M if, for all databases D,

Pr(‖fM̂(D) − fM(D)‖F ≤ ε) ≥ δ .

1We are overloading the term ‘(ε, δ)-usefulness’ introduced by Blum et al. (2008) for non-interactive
mechanisms. Our definition is analogous for the present setting of privacy-preserving learning, where a
single function is released.

93

Algorithm 10 SVM

Inputs: database D = {(xi, yi)}ni=1 with xi ∈ Rd, yi ∈ {−1, 1}; kernel k : Rd × Rd → R;
convex loss function `; parameter C > 0.

1. α? ← Solve the SVM’s dual QP; and

2. Return vector α?.

Typically M̂ will be a privacy-preserving version ofM , that has been perturbed somehow.
In the sequel we will take ‖ · ‖F to be the sup-norm over a subset M ⊆ Rd containing the
data, which we denote by ‖f‖∞;M = supx∈M |f(x)|. It will also be convenient to use the
notation ‖k‖∞;M = supx,y∈M |k(x,y)| for bivariate functions k(·, ·).

Remark 28. In the sequel we develop privacy-preserving mechanisms that are useful with
respect to the Support Vector Machine (see the next section for a brief introduction to the
SVM). The SVM works to minimize the expected hinge-loss (i.e., risk in terms of the hinge-
loss), which is a convex surrogate for the expected 0-1 loss. Since the hinge-loss is Lipschitz
in the real-valued function output by the SVM, it follows that a mechanism M̂ having utility
with respect to the SVM also has expected hinge-loss that is within ε of the SVM’s hinge-
loss with high probability. That is, (ε, δ)-usefulness with respect to the sup-norm is stronger
than guaranteed closeness of risk We consider the hinge-loss further in Sections 4.5 and 4.6.
Until then we work with arbitrary convex, Lipschitz losses.

We will see that the presented analysis does not simultaneously guarantee privacy at
arbitrary levels and utility at arbitrary accuracy. The highest level of privacy guaranteed
over all (ε, δ)-useful mechanisms with respect to a target mechanism M , is quantified by
the optimal differential privacy for M . We define this notion for the SVM here, but the
concept extends to any target mechanism of interest. We present upper and lower bounds
on β(ε, δ, C, n, `, k) for the SVM in Sections 4.5 and 4.6 respectively.

Definition 29. For ε, C > 0, δ ∈ (0, 1), n > 1, loss function `(y, ŷ) convex in ŷ, and kernel
k, the optimal differential privacy for the SVM is the function

β(ε, δ, C, n, `, k) = inf
M̂∈I

sup
(D1,D2)∈D

sup
t∈TM̂

log

Pr
(
M̂(D1) = t

)
Pr
(
M̂(D2) = t

)
 ,

where I is the set of all (ε, δ)-useful mechanisms with respect to the SVM with parameter C,
loss `, and kernel k; and D is the set of all pairs of neighboring databases with n entries.

4.2.1 Support Vector Machines

Soft-margin SVM has convex Primal program minw∈RF
1
2
‖w‖2

2 + C
n

∑n
i=1 ` (yi, fw(xi)),

where the xi ∈ Rd are training input points and the yi ∈ {−1, 1} are their training labels, n

94

Kernel g(∆) p(ω)

RBF exp
(
−‖∆‖

2
2

2σ2

)
1

(2π)d/2
exp

(
−‖ω‖22

2

)
Laplacian exp (−‖∆‖1)

∏d
i=1

1

π(1+ω2
i)

Cauchy
∏d

i=1
2

1+∆2
i

exp (−‖∆‖1)

Table 4.1: Example translation-invariant kernels, their g functions and the corresponding
Fourier transforms.

is the sample size, φ : Rd → RF is a feature mapping taking points in input space Rd to some
(possibly infinite) F -dimensional feature space, `(y, ŷ) is a loss function convex in ŷ, and w
is a hyperplane normal vector in feature space (Bishop, 2006; Burges, 1998; Cristianini and
Shawe-Taylor, 2000; Schölkopf and Smola, 2001).

For finite F , predictions are taken as the sign of f ?(x) = fw?(x) = 〈φ(x),w?〉. We
will refer to both fw(·) and sgn (fw(·)) as classifiers, with the exact meaning apparent
from the context. When F is large the solution may be more easily obtained via the dual.
For example, see Program (4.9) in Section 4.5 for the dual formulation of the hinge-loss
`(y, ŷ) = (1−yŷ)+, which is the loss most commonly associated with soft-margin SVM. The
vector of maximizing dual variables α? returned by dualized SVM parametrizes the function
f ? = fα? as fα(·) =

∑m
i=1 αiyik(·,xi) where k(x,y) = 〈φ(x), φ(y)〉 is the kernel function.

Translation-invariant kernels are an important class of kernel given by functions with the
form k(x,y) = g(x − y) (see Table 4.1 for examples). We define the mechanism SVM to
be the dual optimization that responds with the vector α?, as described by Algorithm 10.

4.3 Mechanism for Finite Feature Maps

As a first step towards private SVM learning we begin by considering the simple case
of finite F -dimensional feature maps. Algorithm 11 describes the PrivateSVM-Finite
mechanism, which follows the established pattern of preserving differential privacy: after
forming the primal solution to the SVM—an F -dimensional vector—the mechanism adds
Laplace-distributed noise to the weight vector. Guaranteeing differential privacy proceeds
via the established two-step process of calculating the L1-sensitivity of the SVM’s weight
vector, then showing that β-differential privacy follows from sensitivity together with the
choice of Laplace noise with scale equal to sensitivity divided by β.

To calculate sensitivity, we exploit the algorithmic stability of regularized ERM. Intu-
itively, stability corresponds to continuity of a learning map. Several notions of stability
are known to lead to good generalization error bounds (Bousquet and Elisseeff, 2002; De-
vroye and Wagner, 1979; Kearns and Ron, 1999; Kutin and Niyogi, 2002), sometimes in
cases where class capacity-based approaches such as VC theory do not apply. A learning
map A is a function that maps a database D to a classifier fD; it is precisely the com-
position of a mechanism followed by the classifier parametrization mapping. A learning

95

Algorithm 11 PrivateSVM-Finite

Inputs: database D = {(xi, yi)}ni=1 with xi ∈ Rd, yi ∈ {−1, 1}; finite feature map
φ : Rd → RF and induced kernel k; convex loss function `; and parameters λ,C > 0.

1. α? ← Run Algorithm 10 on D with parameter C, kernel k, and loss `;

2. w̃←
∑n

i=1 α
?
i yiφ (xi);

3. µ← Draw i.i.d. sample of F scalars from Laplace (0, λ); and

4. Return ŵ = w̃ + µ

map A is said to have γ-uniform stability with respect to loss `(·, ·) if for all neighboring
databases D,D′, the losses of the classifiers trained on D and D′ are close on all test ex-
amples ‖`(·,A(D)) − `(·,A(D′))‖∞ ≤ γ (Bousquet and Elisseeff, 2002). Our first lemma
computes sensitivity of the SVM’s weight vector for general convex, Lipschitz loss by fol-
lowing the proof of Schölkopf and Smola (2001, Theorem 12.4) which establishes that SVM
learning has uniform stability (a result due to Bousquet and Elisseeff 2002).

Lemma 30. Consider loss function `(y, ŷ) that is convex and L-Lipschitz in ŷ, and RKHS
H induced by finite F -dimensional feature mapping φ with bounded kernel k(x,x) ≤ κ2

for all x ∈ Rd. Let wS ∈ RF be the minimizer of the following regularized empirical risk
function for each database S = {(xi, yi)}ni=1

Rreg(w, S) =
C

n

n∑
i=1

` (yi, fw(xi)) +
1

2
‖w‖2

2 .

Then for every pair of neighboring databases D,D′ of n entries, ‖wD−wD′‖1 ≤ 4LCκ
√
F/n.

Proof. We now calculate the sensitivity of the SVM primal weight vector for general convex,
Lipschitz loss functions. For convenience we define Remp(w, S) = n−1

∑n
i=1 `(yi, fw(xi) for

any training set S, then the first-order necessary KKT conditions imply

0 ∈ ∂wRreg(wD, D) = C∂wRemp(wD, D) + wD , (4.1)

0 ∈ ∂wRreg(wD′ , D
′) = C∂wRemp(wD′ , D

′) + wD′ . (4.2)

where ∂w is the subdifferential operator with respect to w. Define the auxiliary risk function

R̃(w) = C〈∂wRemp(wD, D)− ∂wRemp(wD′ , D
′), w −wD′〉+

1

2
‖w −wD′‖2

2 .

It is easy to see that R̃(w) is strictly convex in w and that R̃(wD′) = {0}. And by
Equation (4.2)

C∂wRemp(wD, D) + w ∈ C∂wRemp(wD, D)− C∂wRemp(wD′ , D
′) + w −wD′

= ∂wR̃(w) ,

96

which combined with Equation (4.1) implies 0 ∈ ∂wR̃(wD), so that R̃(w) is minimized at
wD. Thus there exists some non-positive r ∈ R̃(wD). Next simplify the first term of R̃(wD),
scaled by n/C for notational convenience:

n〈∂wRemp(wD, D)− ∂wRemp(wD′ , D
′), w −wD′〉

=
n∑
i=1

〈∂w` (yi, fwD
(xi))− ∂w`

(
y′i, fwD′

(x′i)
)
, w −wD′〉

=
n−1∑
i=1

(
`′ (yi, fwD

(xi))− `′
(
yi, fwD′

(xi)
)) (

fwD
(xi)− fwD′

(xi)
)

+ `′ (yn, fwD
(xn))

(
fwD

(xn)− fwD′
(xn)

)
− `′

(
y′n, fwD′

(x′n)
) (
fwD

(x′n)− fwD′
(x′n)

)
≥ `′ (yn, fwD

(xn))
(
fwD

(xn)− fwD′
(xn)

)
− `′

(
y′n, fwD′

(x′n)
) (
fwD

(x′n)− fwD′
(x′n)

)
,

where the second equality follows from ∂w` (y, fw(x)) = `′ (y, fw(x)) φ(x), where `′(y, ŷ) =
∂ŷ`(y, ŷ), and x′i = xi and y′i = yi for each i ∈ [n − 1]. The inequality follows from
the convexity of ` in its second argument.2 Combined with the existence of non-positive
r ∈ R̃(wD) this yields that there exists

g ∈ `′
(
y′n, fwD′

(x′n)
) (
fwD

(x′n)− fwD′
(x′n)

)
− `′ (yn, fwD

(xn))
(
fwD

(xn)− fwD′
(xn)

)
such that

0 ≥ n

C
r

≥ g +
n

2C
‖wD −wD′‖2

2 .

And since |g| ≤ 2L
∥∥fwD

− fwD′

∥∥
∞ by the Lipschitz continuity of `, this in turn implies

n

2C
‖wD −wD′‖2

2 ≤ 2L
∥∥fwD

− fwD′

∥∥
∞ . (4.3)

Now by the reproducing property and Cauchy-Schwartz inequality we can upper bound the
classifier difference’s infinity norm by the Euclidean norm on the weight vectors: for each x∣∣fwD

(x)− fwD′
(x)
∣∣ = |〈φ(x),wD −wD′〉|
≤ ‖φ(x)‖2 ‖wD −wD′‖2

=
√
k(x,x) ‖wD −wD′‖2

≤ κ ‖wD −wD′‖2 .

Combining this with Inequality (4.3) yields ‖wD − wD′‖2 ≤ 4LCκ/n as claimed. The
L1-based sensitivity then follows from ‖w‖1 ≤

√
F‖w‖2 for all w ∈ RF .

With the weight vector’s sensitivity in hand, differential privacy follows immediately
from the proof technique established by Dwork et al. (2006).

2Namely for convex f and any a, b ∈ R, (ga − gb) (a− b) ≥ 0 for all ga ∈ ∂f(a) and all gb ∈ ∂f(b).

97

Theorem 31 (Privacy of PrivateSVM-Finite). For any β > 0, database D of size n,
C > 0, loss function `(y, ŷ) that is convex and L-Lipschitz in ŷ, and finite F -dimensional
feature map with kernel k(x,x) ≤ κ2 for all x ∈ Rd, PrivateSVM-Finite run on D
with loss `, kernel k, noise parameter λ ≥ 4LCκ

√
F/(βn) and regularization parameter C

guarantees β-differential privacy.

This first main result establishes differential privacy of the new PrivateSVM-Finite
algorithm. The more “private” the data, the more noise must be added. The more entries
in the database, the less noise is needed to achieve the same level of privacy. Since the
noise vector µ has exponential tails, standard tail bound inequalities quickly lead to (ε, δ)-
usefulness for PrivateSVM-Finite.

Theorem 32 (Utility of PrivateSVM-Finite). Consider any C > 0, n > 1, database
D of n entries, arbitrary convex loss `, and finite F -dimensional feature mapping φ with
kernel k and |φ(x)i| ≤ Φ for all x ∈M and i ∈ [F] for some Φ > 0 and M⊆ Rd. For any
ε > 0 and δ ∈ (0, 1), PrivateSVM-Finite run on D with loss `, kernel k, noise parameter
0 < λ ≤ ε

2Φ(F loge 2+loge
1
δ)

, and regularization parameter C, is (ε, δ)-useful with respect to the

SVM under the ‖ · ‖∞;M-norm.

Proof. Our goal is to compare the SVM and PrivateSVM-Finite classifications of any
point x ∈M: ∣∣∣fM̂(D)(x)− fM(D)(x)

∣∣∣ = |〈ŵ, φ(x)〉 − 〈w̃, φ(x)〉|

= |〈µ, φ(x)〉|
≤ ‖µ‖1 ‖φ(x)‖∞
≤ Φ ‖µ‖1 .

The absolute value of a zero mean Laplace random variable with scale parameter λ is
exponentially distributed with scale λ−1. Moreover the sum of q i.i.d. exponential random
variables has Erlang q-distribution with the same scale parameter.3 Thus we have, for
Erlang F -distributed random variable X and any t > 0,

∀x ∈M,
∣∣∣fM̂(D)(x)− fM(D)(x)

∣∣∣ ≤ ΦX

⇒ ∀ε > 0, Pr

(∥∥∥fM̂(D) − fM(D)

∥∥∥
∞;M

> ε

)
≤ Pr (X > ε/Φ)

≤
E
[
etX
]

eεt/Φ
. (4.4)

Here we have employed the standard Chernoff tail bound technique using Markov’s inequal-
ity. The numerator of (4.4), the moment generating function of the Erlang F -distribution

3The Erlang q-distribution has density xq−1 exp(−x/λ)
λq(q−1)! , CDF 1− e−x/λ

∑q−1
j=0

(x/λ)j

j! , expectation qλ, vari-

ance qλ2.

98

with parameter λ, is (1−λt)−F for all t < λ−1. Together with the choice of t = (2λ)−1, this
gives

Pr

(∥∥∥fM̂(D) − fM(D)

∥∥∥
∞;M

> ε

)
≤ (1− λt)−F e−εt/Φ

= 2F e−ε/(2λΦ)

= exp
(
F loge 2− ε

2λΦ

)
.

And provided that λ ≤ ε/
(
2Φ
(
F loge 2 + loge

1
δ

))
this probability is bounded by δ.

Our second main result establishes that PrivateSVM-Finite is not only differentially
private, but that it releases a classifier that is similar to the SVM. Utility and privacy are
competing properties, however, since utility demands that the noise not be too large.

4.4 Mechanism for Translation-Invariant Kernels

Consider now the problem of privately learning in an RKHS H induced by an infinite
dimensional feature mapping φ. As a mechanism’s response must be finitely encodable, the
primal parametrization seems less appealing as for PrivateSVM-Finite. It is natural to
look to the SVM’s dual solution as a starting point: the Representer Theorem (Kimeldorf
and Wahba, 1971) states that the optimizing f ? ∈ H must be in the span of the data—a
finite-dimensional subspace. While the coordinates in this subspace—the α?i dual variables—
could be perturbed in the usual way to guarantee differential privacy, the subspace’s basis—
the data—are also needed to parametrize f ?. To side-step this apparent stumbling block,
we take another approach by approximating H with a random RKHS Ĥ induced by a
random finite-dimensional map φ̂. This then allows us to respond with a finite primal
parametrization. Algorithm 12 summarizes the PrivateSVM mechanism.

As noted recently by Rahimi and Recht (2008), the Fourier transform p of the g func-
tion of a continuous positive-definite translation-invariant kernel is a non-negative mea-
sure (Rudin, 1994). Rahimi and Recht (2008) exploit this fact to construct a random
finite-dimensional RKHS Ĥ by drawing d̂ vectors from p. These vectors ρ1, . . . ,ρd̂ define

the following random 2d̂-dimensional feature map

φ̂(·) = d̂−1/2 [cos (〈ρ1, ·〉) , sin (〈ρ1, ·〉) , . . . , cos (〈ρd̂, ·〉) , sin (〈ρd̂, ·〉)]
T . (4.5)

Inner-products in the random feature space approximate k(·, ·) uniformly, and to arbitrary
precision for sufficiently large parameter d̂, as restated in Lemma 37. We denote the inner-
product in the random feature space by k̂. Rahimi and Recht (2008) applied this approxi-
mation to large-scale learning. For large-scale learning, good approximations can be found
for d̂� n. Table 4.1 presents three important translation-invariant kernels and their trans-
formations. Here regularized ERM is performed in Ĥ, not to avoid complexity in n, but to
provide a direct finite representation w̃ of the primal solution in the case of infinite dimen-
sional feature spaces. After performing regularized ERM in Ĥ, appropriate Laplace noise is
added to the primal solution w̃ to guarantee differential privacy as before.

99

Algorithm 12 PrivateSVM

Inputs: database D = {(xi, yi)}ni=1 with xi ∈ Rd, yi ∈ {−1, 1}; translation-invariant kernel
k(x,y) = g(x− y) with Fourier transform p(ω) = 2−1

∫
e−j〈ω,x〉g(x) dx; convex loss

function `; parameters λ,C > 0 and d̂ ∈ N.

1. ρ1, . . . ,ρd̂ ←Draw i.i.d. sample of d̂ vectors in Rd from p;

2. α̂← Run Algorithm 10 on D with parameter C, kernel k̂ induced by map (4.5), and
loss `;

3. w̃←
∑n

i=1 yiα̂iφ̂ (xi) where φ̂ is defined in Equation (4.5);

4. µ← Draw i.i.d. sample of 2d̂ scalars from Laplace (0, λ); and

5. Return ŵ = w̃ + µ and ρ1, . . . ,ρd̂

PrivateSVM is computationally efficient. Algorithm 12 takes O(d̂) time to compute
each entry of the kernel matrix, or a total time of O(d̂n2) on top of running dual SVM
in the random feature space which is worst-case O(n3

s) for the analytic solution (where
ns ≤ n is the number of support vectors), and faster using numerical methods such as
chunking (Burges, 1998). To achieve (ε, δ)-usefulness wrt the hinge-loss SVM d̂ must be
taken to be O

(
d
ε4

(
log 1

δ
+ log 1

ε

))
(cf. Corollary 39). By comparison it takes O(dn2) to

construct the kernel matrix for any translation-invariant kernel.
As with the SVM and PrivateSVM-Finite, the response of Algorithm 12 can be

used to make classifications on future test points by constructing the classifier f̂ ?(·) =
fŵ(·) = 〈ŵ, φ̂(·)〉. Unlike the previous mechanisms, however, PrivateSVM must include a

parametrization of feature map φ̂—the sample {ρi}
d̂
i=1—in its response. Of PrivateSVM’s

total response, only ŵ depends on database D. The ρi are data-independent vectors drawn
from the transform p of the kernel, which we assume to be known by the adversary (to
wit the adversary knows the mechanism itself, including k). Thus to establish differential
privacy we need only consider the data-dependent weight vector, fortunately we can build
on the case of PrivateSVM-Finite.

Corollary 33 (Privacy of PrivateSVM). For any β > 0, database D of size n, C > 0, d̂ ∈
N, loss function `(y, ŷ) that is convex and L-Lipschitz in ŷ, and translation-invariant kernel

k, PrivateSVM run on D with loss `, kernel k, noise parameter λ ≥ 22.5LC
√
d̂/(βn), ap-

proximation parameter d̂, and regularization parameter C guarantees β-differential privacy.

Proof. The result follows immediately from Theorem 31 since w̃ is the primal solution of
SVM with kernel k̂, the response vector ŵ = w̃ +µ for i.i.d. Laplace µ, and k̂(x,x) = 1 for
all x ∈ RD.

This result is surprising, in that PrivateSVM is able to guarantee privacy for regular-
ized ERM over a function class of infinite VC-dimension, where the obvious way to return

100

the learned classifier (responding with the dual variables and feature mapping) reveals all
the entries corresponding to the support vectors, completely.

Like PrivateSVM-Finite, PrivateSVM is useful with respect to the SVM. If we
denote the function parametrized by intermediate weight vector w̃ by f̃ , then the same
argument for the utility of PrivateSVM-Finite establishes the high-probability proximity
of f̃ and f ?.

Lemma 34. Consider a run of Algorithms 10 and 12 with d̂ ∈ N, C > 0, convex loss
and translation-invariant kernel. Denote by f̂ ? and f̃ the classifiers parametrized by weight

vectors ŵ and w̃ respectively, where these vectors are related by ŵ = w̃ + µ with µ
iid∼

Laplace(0, λ) in Algorithm 12. For any ε > 0 and δ ∈ (0, 1), if

0 < λ ≤ min

{
ε

24 loge 2
√
d̂
, ε
√
d̂

8 loge
2
δ

}
then Pr

(∥∥∥f̂ ? − f̃∥∥∥
∞
≤ ε

2

)
≥ 1− δ

2
.

Proof. As in the proof of Theorem 32 we can use the Chernoff trick to show that, for Erlang
2d̂-distributed random variable X, the choice of t = (2λ)−1,and for any ε > 0

Pr
(∥∥∥f̂ ? − f̃∥∥∥

∞
> ε/2

)
≤

E
[
etX
]

eεt
√
d̂/2

≤ (1− λt)−2d̂ e−εt
√
d̂/2

= 22d̂e−ε
√
d̂/(4λ)

= exp
(
d̂ loge 4− ε

√
d̂/(4λ)

)
.

Provided that λ ≤ ε/
(

24 loge 2
√
d̂
)

this is bounded by exp
(
−ε
√
d̂/(8λ)

)
. Moreover if

λ ≤ ε
√
d̂/
(
8 loge

2
δ

)
, then the claim follows.

To show a similar result for f ? and f̃ , we exploit smoothness of regularized ERM with
respect to small changes in the RKHS itself. To the best of our knowledge, this kind of
stability to the feature mapping has not been used before. We begin with a technical lemma
that we will use to exploit the convexity of the regularized empirical risk functional.

Lemma 35. Let R be a functional on Hilbert space H satisfying R[f] ≥ R[f ?]+ a
2
‖f −f ?‖2

H

for some a > 0, f ? ∈ H and all f ∈ H. Then R[f] ≤ R[f ?] + ε implies ‖f − f ?‖Ĥ ≤
√

2ε
a

,

for all ε > 0, f ∈ H.

Proof. By assumption and the antecedent

‖f − f ?‖2
Ĥ ≤ 2

a
(R[f]−R[f ?])

≤ 2

a
(R[f ?] + ε−R[f ?])

= 2ε/a .

Taking square roots of both sides yields the consequent.

101

Provided that the kernel functions k and k̂ are uniformly close, the next lemma exploits
insensitivity of regularized ERM to perturbations of the feature mapping to show that f ?

and f̃ are pointwise close.

Lemma 36. Let H be an RKHS with translation-invariant kernel k, and let Ĥ be the random
RKHS corresponding to feature map (4.5) induced by k. Let C be a positive scalar and loss
`(y, ŷ) be convex and L-Lipschitz continuous in ŷ. Consider the regularized empirical risk
minimizers in each RKHS

f ? ∈ arg min
f∈H

C

n

n∑
i=1

`(yi, f(xi)) +
1

2
‖f‖2

H .

g? ∈ arg min
g∈Ĥ

C

n

n∑
i=1

`(yi, g(xi)) +
1

2
‖g‖2

Ĥ .

Let M⊆ Rd be any set containing x1, . . . ,xn. For any ε > 0, if the dual variables from both

optimizations have L1-norms bounded by some Λ > 0 and
∥∥∥k − k̂∥∥∥

∞;M
≤

min

{
1, ε2

22
(

Λ+2
√

(CL+Λ/2)Λ
)2
}

then ‖f ? − g?‖∞;M ≤ ε/2.

Proof. Denote the empirical risk functional Remp[f] = n−1
∑n

i=1 ` (yi, f(xi)) and the regu-
larized empirical risk functional Rreg[f] = C Remp[f] + ‖f‖2/2, for the appropriate RKHS

norm (either H or Ĥ). Let f ? denote the regularized empirical risk minimizer in H, given
by parameter vector α?, and let g? denote the regularized empirical risk minimizer in Ĥ
given by parameter vector β?. Let gα? =

∑n
i=1 α

?
i yiφ̂(xi) and fβ? =

∑n
i=1 β

?
i yiφ(xi) de-

note the images of f ? and g? under the natural mapping between the spans of the data in
RKHS’s Ĥ and H respectively. We will first show that these four functions have arbitrarily
close regularized empirical risk in their respective RKHS, and then that this implies uniform
proximity of the functions themselves. First observe that for any g ∈ Ĥ

RĤreg[g] = C Remp[g] +
1

2
‖g‖2

Ĥ

≥ C〈∂gRemp[g?], g − g?〉Ĥ + C Remp[g?] +
1

2
‖g‖2

Ĥ

= 〈∂gRĤreg[g?], g − g?〉Ĥ − 〈g
?, g − g?〉Ĥ + C Remp[g?] +

1

2
‖g‖2

Ĥ .

The inequality follows from the convexity of Remp[·] and holds for all elements of the subd-

ifferential ∂gRemp[g?]. The subsequent equality holds by ∂gR
Ĥ
reg[g] = C ∂gRemp[g] + g. Now

102

since 0 ∈ ∂gRĤreg[g?], it follows that

RĤreg[g] ≥ C Remp[g?] +
1

2
‖g‖2

Ĥ − 〈g
?, g − g?〉Ĥ

= C Remp[g?] +
1

2
‖g?‖2

Ĥ +
1

2
‖g‖2

Ĥ −
1

2
‖g?‖2

Ĥ − 〈g
?, g − g?〉Ĥ

= RĤreg[g?] +
1

2
‖g‖2

Ĥ − 〈g
?, g〉Ĥ +

1

2
‖g?‖2

Ĥ

= RĤreg[g?] +
1

2
‖g − g?‖2

Ĥ .

With this, Lemma 35 states that for any g ∈ Ĥ and ε′ > 0,

RĤreg[g] ≤ RĤreg[g?] + ε′ ⇒ ‖g − g?‖Ĥ ≤
√

2ε′ . (4.6)

Next we will show that the antecedent is true for g = gα? . Conditioned on{∥∥∥k − k̂∥∥∥
∞;M

≤ ε′
}

, for all x ∈M

|f ?(x)− gα?(x)| =

∣∣∣∣∣
n∑
i=1

α?i yi

(
k(xi,x)− k̂(xi,x)

)∣∣∣∣∣
≤

n∑
i=1

|α?i |
∣∣∣k(xi,x)− k̂(xi,x)

∣∣∣
≤ ε′ ‖α?‖1

≤ ε′Λ , (4.7)

by the bound on ‖α?‖1. This and the Lipschitz continuity of the loss leads to∣∣∣RHreg[f ?]−RĤreg[gα?]
∣∣∣ =

∣∣∣∣C Remp[f ?]− C Remp[gα?] +
1

2
‖f ?‖2

H −
1

2
‖gα?‖2

Ĥ

∣∣∣∣
≤ C

n

n∑
i=1

|` (yi, f
?(xi))− ` (yi, gα?(xi))|+

1

2

∣∣∣α?′ (K− K̂
)
α?
∣∣∣

≤ C

n

n∑
i=1

L ‖f ? − gα?‖∞;M +
1

2

∣∣∣α?′ (K− K̂
)
α?
∣∣∣

≤ CL ‖f ? − gα?‖∞;M +
1

2
‖α?‖1

∥∥∥(K− K̂
)
α?
∥∥∥
∞

≤ CL ‖f ? − gα?‖∞;M +
1

2
‖α?‖2

1 ε
′

≤ CLε′Λ + Λ2ε′/2

=

(
CL+

Λ

2

)
Λε′ .

103

Similarly,
∣∣∣RĤreg[g?]−RHreg[fβ?]

∣∣∣ ≤ (CL + Λ/2)Λε′ by the same argument. And since

RHreg[fβ?] ≥ RHreg[f ?] and RĤreg[gα?] ≥ RĤreg[g?] we have proved that RĤreg[gα?] ≤ RHreg[f ?] +

(CL+ Λ/2)Λε′ ≤ RHreg[fβ?] + (CL+ Λ/2)Λε′ ≤ RĤreg[g?] + 2(CL+ Λ/2)Λε′. And by implica-
tion (4.6),

‖gα? − g?‖Ĥ ≤ 2

√(
CL+

Λ

2

)
Λε′ . (4.8)

Now k̂(x,x) = 1 for each x ∈ Rd implies

|gα?(x)− g?(x)| =
〈
gα? − g?, k̂(x, ·)

〉
Ĥ

≤ ‖gα? − g?‖Ĥ
√
k̂(x,x)

= ‖gα? − g?‖Ĥ ,

This combines with Inequality (4.8) to yield

‖gα? − g?‖∞;M ≤ 2

√(
CL+

Λ

2

)
Λε′ .

Together with Inequality (4.7) this finally implies that ‖f ? − g?‖∞;M ≤
ε′Λ + 2

√
(CL+ Λ/2) Λε′, conditioned on event Aε′ =

{∥∥∥k − k̂∥∥∥
∞
≤ ε′

}
. For desired ac-

curacy ε > 0, conditioning on event Aε′ with ε′ = min
{
ε/
[
2
(

Λ + 2
√

(CL+ Λ/2) Λ
)]
,

ε2/
[
2
(

Λ + 2
√

(CL+ Λ/2) Λ
)]2
}

yields bound ‖f ? − g?‖∞;M ≤ ε/2: if ε′ ≤ 1 then ε/2 ≥
√
ε′
(

Λ + 2
√

(CL+ Λ/2) Λ
)

≥ ε′Λ + 2
√

(CL+ Λ/2) Λε′ provided that

ε′ ≤ ε2/
[
2
(

Λ + 2
√

(CL+ Λ/2) Λ
)]2

. Otherwise if ε′ > 1 then we have

ε/2 ≥ ε′
(

Λ + 2
√

(CL+ Λ/2) Λ
)

≥ ε′Λ + 2
√

(CL+ Λ/2) Λε′ provided

ε′ ≤ ε/
[
2
(

Λ + 2
√

(CL+ Λ/2) Λ
)]

. Since for any H > 0, min {H,H2} ≥ min {1, H2},
the result follows.

We now recall the result due to Rahimi and Recht (2008) that establishes the non-
asymptotic uniform convergence of the kernel functions required by the previous Lemma
(i.e., an upper bound on the probability of event Aε′).

Lemma 37 (Rahimi and Recht 2008, Claim 1). For any ε > 0, δ ∈ (0, 1), translation-

invariant kernel k and compact set M ⊂ Rd, if d̂ ≥ 4(d+2)
ε2

loge

(
28(σpdiam(M))2

δε2

)
, then Algo-

rithm 12’s random feature mapping φ̂ defined in Equation (4.5) satisfies

Pr
(∥∥∥k̂ − k∥∥∥

∞
< ε
)
≥ 1 − δ, where σ2

p = E [〈ω,ω〉] is the second moment of the Fourier

transform p of k’s g function.

104

Combining these ingredients establishes utility for PrivateSVM.

Theorem 38 (Utility of PrivateSVM). Consider any database D, compact set M⊂ Rd

containing D, convex loss `, translation-invariant kernel k, and scalars C, ε > 0 and
δ ∈ (0, 1). Suppose the SVM with loss `, kernel k and parameter C has dual variables
with L1-norm bounded by Λ. Then Algorithm 12 run on D with loss `, kernel k, pa-

rameters d̂ ≥ 4(d+2)
θ(ε)

loge

(
29(σpdiam(M))2

δθ(ε)

)
where θ(ε) = min

{
1, ε4

24
(

Λ+2
√

(CL+Λ/2)Λ
)4
}

, λ ≤

min

{
ε

24 loge 2
√
d̂
, ε
√
d̂

8 loge
2
δ

}
and C is (ε, δ)-useful with respect to Algorithm 10 run on D with

loss `, kernel k and parameter C, wrt the ‖ · ‖∞;M-norm.

Proof. Lemma’s 36 and 34 combined via the triangle inequality, with Lemma 37, together
establish the result as follows. Define A to be the conditioning event regarding the approx-
imation of k by k̂, denote the events in Lemma’s 36 and 32 by B and C (beware we are
overloading C with the regularization parameter; its meaning will be apparent from the
context), and the target event in the theorem by D.

A =

∥∥∥k̂ − k∥∥∥

∞;M
< min

1,
ε2

22
(

Λ + 2
√(

CL+ Λ
2

)
Λ
)2

B =

{∥∥∥f ? − f̃∥∥∥
∞;M

≤ ε/2

}
C =

{∥∥∥f̂ ? − f̃∥∥∥
∞
≤ ε/2

}
D =

{∥∥∥f ? − f̂ ?∥∥∥
∞;M

≤ ε

}
The claim is a bound on Pr(D). By the triangle inequality events B and C together imply
D. Second note that event C is independent of A and B. Thus Pr(D | A) ≥ Pr(B ∩ C |
A) = Pr(B | A) Pr(C) ≥ 1 · (1 − δ/2), for sufficiently small λ. Finally Lemma 37 bounds
Pr(A) as follows: provided that d̂ ≥ 4(d + 2) loge

(
29 (σpdiam(M))2 / (δθ(ε))

)
/θ(ε) where

θ(ε) = min

{
1, ε4/

[
2
(

Λ + 2
√

(CL+ Λ/2) Λ
)]4
}

we have Pr(A) ≥ 1 − δ/2. Together this

yields Pr(D) = Pr(D | A) Pr(A) ≥ (1− δ/2)2 ≥ 1− δ.

Again we see that utility and privacy place competing constraints on the level of noise
λ. Next we will use these interactions to upper-bound the optimal differential privacy of
the SVM.

105

4.5 Hinge-Loss and an Upper Bound on Optimal Dif-

ferential Privacy

We begin by plugging hinge-loss `(y, ŷ) = (1−yŷ)+ into the main results on privacy and
utility of the previous section (similar computations can be done for PrivateSVM-Finite
and other convex loss functions). The following is the dual formulation of hinge-loss SVM
learning:

max
α∈Rn

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi,xj) (4.9)

s.t. 0 ≤ αi ≤
C

n
∀i ∈ [n] .

Corollary 39. Consider any database D of size n, scalar C > 0, and translation-invariant
kernel k.

i. For any β > 0 and d̂ ∈ N, PrivateSVM run on D with hinge-loss, noise parameter

λ ≥ 22.5C
√
d̂

βn
, approximation parameter d̂, and regularization parameter C, guarantees

β-differential privacy.

ii. Moreover for any compact set M⊂ Rd containing D, and scalars ε > 0 and δ ∈ (0, 1),
PrivateSVM run on D with hinge-loss, kernel k, noise parameter

λ ≤ min

{
ε

24 loge 2
√
d̂
, ε
√
d̂

8 loge
2
δ

}
, approximation parameter d̂ ≥ 4(d+2)

θ(ε)
loge

(
29(σpdiam(M))2

δθ(ε)

)
with θ(ε) = min

{
1, ε4

212C4

}
, and regularization parameter C, is (ε, δ)-useful wrt hinge-

loss SVM run on D with kernel k, and parameter C.

Proof. The first result follows from Theorem 31 and the fact that hinge-loss is convex
and 1-Lipschitz on R: i.e., ∂ŷ` = 1[1 ≥ yŷ] ≤ 1. The second result follows almost im-
mediately from Theorem 38. For hinge-loss we have that feasible αi’s are bounded by
C/n (and so Λ = C) by the dual’s box constraints and that L = 1, implying we take

θ(ε) = min

{
1, ε4

24C4(1+
√

6)
4

}
. This is bounded by the stated θ(ε).

Combining the competing requirements on noise level λ upper-bounds optimal differen-
tial privacy of hinge-loss SVM.

Theorem 40. The optimal differential privacy for hinge-loss SVM learning on translation-

invariant kernel k is bounded by β(ε, δ, C, n, `, k) = O
(

1
ε3n

√
log 1

δε

(
log 1

ε
+ log2 1

δε

))
.

Proof. Consider hinge-loss in Corollary 39. Privacy places a lower bound of

β ≥ 22.5C
√
d̂/(λn) for any chosen λ, which we can convert to a lower bound on β in terms of

ε and δ as follows. For small ε, we have θ(ε) = ε42−12C−4 and so to achieve (ε, δ)-usefulness

we must take d̂ = O
(

1
ε4

loge
(

1
δε4

))
. There are two cases for utility, if λ = ε/

(
24 loge

(
2
√
d̂
))

106

0 1
M

1
M

1
M-m

1
M-m

0

CM(n-1)
n

C(M(n-2)+m)
n

C(m-M)
n w

y

0 1
M

1
M

1
M-m

1
M-m

0

C(M-n)
n

C(Mn-m)
n

w

y

Figure 4.1: For each i ∈ [2], the SVM’s primal solution w?i on database Di constructed in the
proof of Lemma 41, corresponds to the crossing point of line y = w with y = w − ∂wfi(w).
Database D1 is shown on the left, database D2 is shown on the right.

then β = O

(√
d̂ loge

√
d̂

εn

)
= O

(
1
ε3n

√
log 1

δε

(
log 1

ε
+ log2 1

δε

))
. Otherwise we are in the sec-

ond case, with λ = ε
√
d̂

8 loge
2
δ

yielding β = O
(

1
εn

log 1
δ

)
which is dominated by the first case as

ε ↓ 0.

A natural question arises from this discussion: given any mechanism that is (ε, δ)-useful
with respect to hinge SVM, for how small a β can we possibly hope to guarantee β-
differential privacy? In other words, what lower bounds exist for the optimal differential
privacy for the SVM?

4.6 Lower Bounding Optimal Differential Privacy

We now present lower bounds on the level β of differential privacy achievable for any
(ε, δ)-useful mechanism with respect to the hinge-loss SVM. We consider both mechanisms
for linear kernels and mechanisms for RBF kernels.

4.6.1 Lower Bound for Linear Kernels

In this section we present a lower bound on the level of differential privacy for any mecha-
nism approximating hinge-loss linear SVM with high accuracy. The first lemma corresponds
to a kind of negative sensitivity result: for a particular pair of neighboring databases we
show that the SVM is sensitive.

Lemma 41. For any C > 0, n > 1 and 0 < ε <
√
C

2n
, there exists a pair of neighboring

databases D1, D2 on n entries, such that the functions f ?1 , f
?
2 parametrized by SVM run with

parameter C, linear kernel, and hinge-loss on D1, D2 respectively, satisfy ‖f ?1 − f ?2‖∞ > 2ε.

107

Proof. We construct the two databases on the line as follows. Let 0 < m < M be scalars
to be chosen later. Both databases share negative examples x1 = . . . = xbn/2c = −M
and positive examples xbn/2c+1 = . . . = xn−1 = M . Each database has xn = M −m, with
yn = −1 for D1 and yn = 1 for D2. In what follows we use subscripts to denote an example’s
parent database, so (xi,j, yi,j) is the jth example from Di. Consider the result of running
primal SVM on each database

w?1 = arg min
w∈R

1

2
w2 +

C

n

n∑
i=1

(1− y1,iwx1,i)+

w?2 = arg min
w∈R

1

2
w2 +

C

n

n∑
i=1

(1− y2,iwx2,i)+ .

Each optimization is strictly convex and unconstrained, so the optimizing w?1, w
?
2 are char-

acterized by the first-order KKT conditions 0 ∈ ∂wfi(w) for fi being the objective function
for learning on Di, and ∂w denoting the subdifferential operator. Now for each i ∈ [2]

∂wfi(w) = w − C

n

n∑
j=1

yi,jxi,j1̃ [1− yi,jwxi,j] ,

where

1̃[x] =

{0} , if x < 0

[0, 1] , if x = 0

{1} , if x > 0

is the subdifferential of (x)+. Thus for each i ∈ [2], w?i ∈ C
n

∑n
j=1 yi,jxi,j1̃ [1− yi,jw?i xi,j]

which is equivalent to

w?1 ∈
CM(n− 1)

n
1̃

[
1

M
− w?1

]
+
C(m−M)

n
1̃

[
w?1 −

1

m−M

]
w?2 ∈

CM(n− 1)

n
1̃

[
1

M
− w?2

]
+
C(M −m)

n
1̃

[
1

M −m
− w?2

]
.

The RHSs of these conditions correspond to decreasing piecewise-constant functions, and the
conditions are met when the corresponding functions intersect with the diagonal y = x line,
as shown in Figure 4.1. If C(M(n−2)+m)

n
< 1

M
then w?1 = C(M(n−2)+m)

n
. And if C(Mn−m)

n
< 1

M

then w?2 = C(Mn−m)
n

. So provided that 1
M
> C(Mn−m)

n
= max

{
C(M(n−2)+m)

n
, C(Mn−m)

n

}
, we

have |w?1 − w?2| = 2C
n
|M −m|. So taking M = 2nε

C
and m = nε

C
, this implies

‖f ?1 − f ?2‖∞ ≥ |f ?1 (1)− f ?2 (1)|
= |w?1 − w?2|
= 2ε ,

provided ε <
√
C

2n
.

108

Next using a probabilistic method argument, we show that the negative sensitivity result
leads to a lower bound.

Theorem 42 (Lower bound on optimal differential privacy for hinge-loss SVM). For any

C > 0, n > 1, δ ∈ (0, 1) and ε ∈
(

0,
√
C

2n

)
, the optimal differential privacy for the hinge-loss

SVM with linear kernel is lower-bounded by loge
1−δ
δ

. In other words, for any C, β > 0 and

n > 1 if a mechanism M̂ is (ε, δ)-useful and β-differentially private then either ε ≥
√
C

2n
or

δ ≥ exp(−β).

Proof. Consider (ε, δ)-useful mechanism M̂ with respect to SVM learning mechanism M
with parameter C > 0, hinge-loss and linear kernel on n training examples, where δ > 0

and
√
C

2n
> ε > 0. By Lemma 41 there exists a pair of neighboring databases D1, D2 on n

entries, such that ‖f ?1 − f ?2‖∞ > 2ε where f ?i = fM(Di) for each i ∈ [2]. Let f̂i = fM̂(Di)
for

each i ∈ [2]. Then by the utility of M̂ ,

Pr
(
f̂1 ∈ B∞ε (f ?1)

)
≥ 1− δ , (4.10)

Pr
(
f̂2 ∈ B∞ε (f ?1)

)
≤ Pr

(
f̂2 /∈ B∞ε (f ?2)

)
< δ . (4.11)

Let P̂1 and P̂2 be the distributions of M̂(D1) and M̂(D2) respectively so that P̂i(t) =

Pr
(
M̂(Di) = t

)
. Then by Inequalities (4.10) and (4.11)

ET∼P1

[
dP2(T)

dP1(T)

∣∣∣∣ T ∈ B∞ε (f ?1)

]
=

∫
B∞ε (f?1)

dP2(t)
dP1(t)

dP1(t)∫
B∞ε (f?1)

dP1(t)
≤ δ

1− δ
.

Thus there exists a t such that log
Pr(M̂(D1)=t)
Pr(M̂(D2)=t)

≥ log 1−δ
δ

.

4.6.2 Lower Bound for RBF Kernels

To lower bound the level β of differential privacy achievable for any (ε, δ)-useful mech-
anism with respect to an RBF hinge-loss SVM, we again begin with negative sensitivity
result for the SVM. But now we can exploit the RBF kernel to construct a sequence of N
pairwise neighboring databases whose images under SVM learning form an ε-packing. By
using the RBF kernel with shrinking variance parameter, we can achieve this for any N .

Lemma 43. For any C > 0, n > C, 0 < ε < C
4n

, and 0 < σ <
√

1
2 loge 2

there exists a

set of N =
⌊

2
σ

√
2

loge 2

⌋
pairwise-neighboring databases {Di}Ni=1 on n examples, such that the

functions f ?i parametrized by hinge-loss SVM run on Di with parameter C and RBF kernel
with parameter σ, satisfy

∥∥f ?i − f ?j ∥∥∞ > 2ε for each i 6= j.

109

Proof. Construct N > 1 pairwise neighboring databases each on n examples in R2 as follows.
Each database i has n − 1 negative examples xi,1 = . . . = xi,n−1 = 0, and database Di

has positive example xi,n = (cos θi, sin θi) where θi = 2πi
N

. Consider the result of running
SVM with hinge-loss and RBF kernel on each Di. For each database k(xi,s,xi,t) = 1 and
k(xi,s,xi,n) = exp

(
− 1

2σ2

)
=: γ for all s, t ∈ [n−1] . Notice that the range space of γ is (0, 1).

Since the inner-products and labels are database-independent, the SVM dual variables are
also database-independent. Each involves solving

max
α∈Rn

α′1− 1

2
α′
(

1 −γ
−γ 1

)
α

s.t. 0 ≤ α ≤ C

n
1

By symmetry α?1 = . . . = α?n−1, so we can reduce this to the equivalent program on two
variables:

max
α∈R2

α′
(
n− 1

1

)
− 1

2
α′
(

(n− 1)2 −γ(n− 1)
−γ(n− 1) 1

)
α

s.t. 0 ≤ α ≤ C

n
1

Consider first the unconstrained program. In this case the necessary first-order KKT con-
dition is that

0 =

(
n− 1

1

)
−
(

(n− 1)2 −γ(n− 1)
−γ(n− 1) 1

)
α? .

This implies

α? =

(
(n− 1)2 −γ(n− 1)
−γ(n− 1) 1

)−1(
n− 1

1

)
=

1

(n− 1)2(1− γ2)

(
1 γ(n− 1)

γ(n− 1) (n− 1)2

)(
n− 1

1

)
=

1

(n− 1)2(1− γ)(1 + γ)

(
1 γ(n− 1)

γ(n− 1) (n− 1)2

)(
n− 1

1

)
=

1

(n− 1)2(1− γ)(1 + γ)

(
(n− 1)(1 + γ)
(n− 1)2(1 + γ)

)
=

(
1

(n−1)(1−γ)
1

1−γ

)
.

Since this solution is strictly positive, it follows that at most two (upper) constraints can
be active. Thus four cases are possible: the solution lies in the interior of the feasible set,
or one or both upper box-constraints hold with equality. Noting that 1

(n−1)(1−γ)
≤ 1

1−γ it

follows that α? is feasible iff 1
1−γ ≤

C
n

. This is equivalent to C ≥ 1
1−γn > n, since γ ∈ (0, 1).

This corresponds to under-regularization.

110

If both constraints hold with equality we have α? = C
n
1, which is always feasible.

In the case where the first constraint holds with equality α?1 = C
n

, the second dual variable
is found by optimizing

α?2 = max
α2∈R

α′
(
n− 1

1

)
− 1

2
α′
(

(n− 1)2 −γ(n− 1)
−γ(n− 1) 1

)
α

= max
α2∈R

C(n− 1)

n
+ α2 −

1

2

((
C(n− 1)

n

)2

− 2
Cγ(n− 1)

n
α2 + α2

2

)

= max
α2∈R
−1

2
α2

2 + α2

(
1 +

Cγ(n− 1)

n

)
,

implying α?2 = 1 +Cγ n−1
n

. This solution is feasible provided 1 +Cγ n−1
n
≤ C

n
iff n ≤ C(1+γ)

1+Cγ
.

Again this corresponds to under-regularization.
Finally in the case where the second constraint holds with equality α?2 = C

n
, the first

dual is found by optimizing

α?2 = max
α1∈R

α′
(
n− 1

1

)
− 1

2
α′
(

(n− 1)2 −γ(n− 1)
−γ(n− 1) 1

)
α

= max
α1∈R

(n− 1)α1 +
C

n
− 1

2

(
(n− 1)2α2

1 − 2Cγ
n− 1

n
α1 +

C2

n2

)
= max

α2∈R
−1

2
(n− 1)2α2

1 + α1

(
1 +

Cγ

n

)
,

implying α?1 =
1+Cγ

n

(n−1)2
. This is feasible provided

1+Cγ
n

(n−1)2
≤ C

n
. Passing back to the program on

n variables, by the invariance of the duals to the database, for any pair Di, Dj

|fi (xi,n)− fj (xi,n)| = α?n (1− k (xi,n,xj,n))

≥ α?n

(
1−max

q 6=i
k (xi,n,xq,n)

)
.

Now a simple argument shows that this maximum is equal to γ4 exp
(
sin2 π

N

)
for all i.

The maximum objective is optimized when |q − i| = 1. In this case |θi − θq| = 2π
N

.

The norm ‖xi,n − xq,n‖ = 2 sin |θi−θq |
2

= 2 sin π
N

by basic geometry. Thus k (xi,n,xq,n) =

exp
(
−‖xi,n−xq,n‖

2

2σ2

)
= exp

(
− 2
σ2 sin2 π

N

)
= γ4 exp

(
sin2 π

N

)
as claimed. Notice that N ≥ 2 so

the second term is in (1, e], while the first term is in (0, 1). In summary we have shown that
for any i 6= j

|fi (xi,n)− fj (xi,n)| ≥
(

1− exp

(
− 2

σ2
sin2 π

N

))
α?n .

Assume γ < 1
2
. If n > C then n > C

2
> (1 − γ)C in which implies case 1 is infeasible.

Similarly since Cγ n−1
n

> 0, n > C implies 1 + Cγ n−1
n

> 1 > C
n

which implies case 3 is

111

infeasible. Thus provided that γ < 1
2

and n > C we have that either case 2 or case 4 must
hold. In both cases α?n = C

n
giving

|fi (xi,n)− fj (xi,n)| ≥
(

1− exp

(
− 2

σ2
sin2 π

N

))
C

n
.

Provided that σ ≤
√

2
log 2

sin π
N

we have
(
1− exp

(
− 2
σ2 sin2 π

N

))
C
n
≥
(
1− 1

2

)
C
n

= C
2n

. Now

for small x we can take the linear approximation sinx ≥ x
π/2

for x ∈ [0, π/2]. If N ≥ 2 then

sin π
N
≥ 2

N
. Thus in this case we can take σ ≤

√
2

log 2
2
N

to imply |fi (xi,n)− fj (xi,n)| ≥
C
2n

. This bound on σ in turn implies the following bound on γ: γ = exp
(
− 1

2σ2

)
≤

exp
(
−N2 loge 2

24

)
. Thus taking N > 4, in conjunction with σ ≤

√
2

log 2
2
N

implies γ ≤ 1
2
.

Rather than selecting N which bounds σ, we can choose N in terms of σ. σ ≤
√

2
log 2

2
N

is

implied by N = 2
σ

√
2

loge 2
. So for small σ we can construct more databases leading to the

desired separation. Finally, N > 4 implies that we must constrain σ <
√

1
2 loge 2

.

In summary, if n > C and σ <
√

1
2 loge 2

then |fi (xi,n)− fj (xi,n)| ≥ C
2n

for each i 6=

j ∈ [N] where N =
⌊

2
σ

√
2

loge 2

⌋
. Moreover if ε ≤ C

4n
then for any i 6= j this implies

‖fi − fj‖∞ ≥ 2ε as claimed.

We again use a similar argument as in the linear kernel section above, to derive the lower
bound on differential privacy.

Theorem 44 (Lower bound on optimal differential privacy for hinge-loss). For C > 0,

n > C, δ ∈ (0, 1), ε ∈
(
0, C

4n

)
, and σ <

√
1

2 loge 2
the optimal differential privacy for the

hinge SVM with RBF kernel having parameter σ is lower-bounded by loge
(1−δ)(N−1)

δ
, where

N =
⌊

2
σ

√
2

loge 2

⌋
. That is, under these conditions, all mechanisms that are (ε, δ)-useful wrt

hinge SVM with RBF kernel for any σ do not achieve differential privacy at any level.

Proof. Consider (ε, δ)-useful mechanism M̂ with respect to hinge SVM learning mechanism

M with parameter C > 0 and RBF kernel with parameter 0 < σ <
√

1
2 loge 2

on n training

examples, where δ > 0 and C
4n
> ε > 0. Let N =

⌊
2
σ

√
2

loge 2

⌋
> 4. By Lemma 43 there exist

pairwise neighboring databases D1, . . . , DN of n entries, such that {f ?i }
N
i=1 is an ε-packing

wrt the L∞-norm, where f ?i = fM(Di). So by the utility of M̂ , for each i ∈ [N]

Pr
(
f̂i ∈ B∞ε (f ?i)

)
≥ 1− δ , (4.12)∑

j 6=1

Pr
(
f̂1 ∈ B∞ε

(
f ?j
))
≤ Pr

(
f̂1 /∈ B∞ε (f ?1)

)
< δ ,

⇒ ∃j 6= 1, Pr
(
f̂1 ∈ B∞ε

(
f ?j
))

<
δ

N − 1
. (4.13)

112

Let P̂1 and P̂j be the distributions of M̂(D1) and M̂(Dj) respectively so that for each,

P̂i(t) = Pr
(
M̂(Di) = t

)
. Then by Inequalities (4.12) and (4.13)

ET∼Pj
[
dP1(T)

dPj(T)

∣∣∣∣ T ∈ B∞ε (f ?j)] =

∫
B∞ε (f?j)

dP1(t)
dPj(t)dPj(t)∫

B∞ε (f?j)
dPj(t)

≤ δ

(1− δ)(N − 1)
.

Thus there exists a t such that log
Pr(M̂(Dj)=t)
Pr(M̂(D1)=t)

≥ log (1−δ)(N−1)
δ

.

Note that n > C is a weak condition, since C should grow like
√
n for universal consis-

tency. Also note that this negative result is consistent with our upper bound on optimal
differential privacy: σ affects σp, increasing the upper bounds as σ ↓ 0.

4.7 Summary

In this chapter we present a pair of new mechanisms for private SVM learning. In each
case we establish differential privacy via the algorithmic stability of regularized empirical risk
minimization. To achieve utility under infinite-dimensional feature mappings, we perform
regularized ERM in a random Reproducing Kernel Hilbert Space whose kernel approximates
the target RKHS kernel. This trick, borrowed from large-scale learning, permits the mech-
anism to privately respond with a finite representation of a maximum-margin hyperplane
classifier. We then establish the high-probability, pointwise similarity between the resulting
function and the SVM classifier through a new smoothness result of regularized ERM with
respect to perturbations of the RKHS. The bounds on differential privacy and utility com-
bine to upper bound the optimal differential privacy of SVM learning for hinge-loss. This
quantity is the optimal level of privacy among all mechanisms that are (ε, δ)-useful with
respect to the hinge-loss SVM. Finally, we derive a lower bound on this quantity which
establishes that any mechanism that is too accurate with respect to the hinge SVM with
RBF kernel, with any non-trivial probability, cannot be β-differentially private for small β.
The lower bounds explicitly depend on the variance of the RBF kernel.

113

Part II

Applications of Machine Learning in
Computer Security

114

Chapter 5

Learning-Based Reactive Security

What’s important is to understand the delineation between
what’s considered “acceptable” and “unacceptable” spending.

The goal is to prevent spending on reactive security “firefighting”.

– John N. Stewart, VP (Chief Security Officer), Cisco Systems

Despite the conventional wisdom that proactive security is superior to reactive security,
this chapter aims to show that reactive security can be competitive with proactive security
as long as the reactive defender learns from past attacks instead of myopically overreacting
to the last attack. A proposed game-theoretic model follows common practice in the security
literature by making worst-case assumptions about the attacker: we grant the attacker com-
plete knowledge of the defender’s strategy and do not require the attacker to act rationally.
In this model, we bound the competitive ratio between a reactive defense algorithm (which
is inspired by online learning theory) and the best fixed proactive defense. Additionally, we
show that, unlike proactive defenses, this reactive strategy is robust to a lack of information
about the attacker’s incentives and knowledge.

The learning-based risk management strategy developed in this chapter faces an attacker
that can manipulate both the training and test data in an attempt to maximize her profit
or multiplicative return on investment—Targeted Causative and Exploratory attacks in the
language of the taxonomy overviewed in Section 1.2.2. Our worst-case analysis, which grants
the attacker complete control over the data and complete knowledge of the learner, shows
that relative to all fixed proactive defenders, the reactive strategy asymptotically performs
well.

5.1 Introduction

Many enterprises employ a Chief Information Security Officer (CISO) to manage the
enterprise’s information security risks. Typically, an enterprise has many more security vul-
nerabilities than it can realistically repair. Instead of declaring the enterprise “insecure”
until every last vulnerability is plugged, CISOs typically perform a cost-benefit analysis

115

to identify which risks to address, but what constitutes an effective CISO strategy? The
conventional wisdom (Kark et al., 2009; Pironti, 2005) is that CISOs ought to adopt a
“forward-looking” proactive approach to mitigating security risk by examining the enter-
prise for vulnerabilities that might be exploited in the future. Advocates of proactive risk
management often equate reactive security with myopic bug-chasing and consider it inef-
fective. We establish sufficient conditions for when reacting strategically to attacks is as
effective in discouraging attackers.

We study the efficacy of reactive strategies in an economic model of the CISO’s secu-
rity cost-benefit trade-offs. Unlike previously proposed economic models of security (see
Section 5.1.1), we do not assume the attacker acts according to a fixed probability distribu-
tion. Instead, we consider a game-theoretic model with a strategic attacker who responds
to the defender’s strategy. As is standard in the security literature, we make worst-case
assumptions about the attacker. For example, we grant the attacker complete knowledge of
the defender’s strategy and do not require the attacker to act rationally. Further, we make
conservative assumptions about the reactive defender’s knowledge and do not assume the
defender knows all the vulnerabilities in the system or the attacker’s incentives. However,
we do assume that the defender can observe the attacker’s past actions, for example via an
intrusion detection system or user metrics (Beard, 2008).

In our model, we find that two properties are sufficient for a reactive strategy to perform
as well as the best proactive strategies. First, no single attack is catastrophic, meaning the
defender can survive a number of attacks. This is consistent with situations where intrusions
(that, say, steal credit card numbers) are regrettable but not business-ending. Second, the
defender’s budget is liquid, meaning the defender can re-allocate resources without penalty.
For example, a CISO can reassign members of the security team from managing firewall
rules to improving database access controls at relatively low switching costs.

Because our model abstracts many vulnerabilities into a single graph edge, we view the
act of defense as increasing the attacker’s cost for mounting an attack instead of preventing
the attack (e.g., by patching a single bug). By making this assumption, we choose not to
study the tactical patch-by-patch interaction of the attacker and defender. Instead, we model
enterprise security at a more abstract level appropriate for the CISO. For example, the CISO
might allocate a portion of his or her budget to engage a consultancy, such as WhiteHat
or iSEC Partners, to find and fix cross-site scripting in a particular web application or to
require that employees use SecurID tokens during authentication. We make the technical
assumption that attacker costs are linearly dependent on defense investments locally. This
assumption does not reflect patch-by-patch interaction, which would be better represented
by a step function (with the step placed at the cost to deploy the patch). Instead, this
assumption reflects the CISO’s higher-level viewpoint where the staircase of summed step
functions fades into a slope.

We evaluate the defender’s strategy by measuring the attacker’s cumulative return-on-
investment, the return-on-attack (ROA), which has been proposed previously (Cremonini,
2005). By studying this metric, we focus on defenders who seek to “cut off the attacker’s
oxygen,” that is to reduce the attacker’s incentives for attacking the enterprise. We do
not distinguish between “successful” and “unsuccessful” attacks. Instead, we compare the

116

payoff the attacker receives from his or her nefarious deeds with the cost of performing said
deeds. We imagine that sufficiently disincentivized attackers will seek alternatives, such as
attacking a different organization or starting a legitimate business.

In our main result, we show sufficient conditions for a learning-based reactive strategy to
be competitive with the best fixed proactive defense in the sense that the competitive ratio
between the reactive ROA and the proactive ROA is at most 1+ε, for all ε > 0, provided the
game lasts sufficiently many rounds (at least Ω(1/ε)). To prove our theorems, we draw on
techniques from the online learning literature. We extend these techniques to the case where
the learner does not know all the game matrix rows a priori, letting us analyze situations
where the defender does not know all the vulnerabilities in advance. Although our main
results are in a graph-based model with a single attacker, our results generalize to a model
based on Horn clauses with multiple attackers, corresponding to hypergraph-based models.
Our results are also robust to switching from ROA to attacker profit and to allowing the
proactive defender to revise the defense allocation a fixed number of times.

Although myopic bug chasing is most likely an ineffective reactive strategy, we find that
in some situations a strategic reactive strategy is as effective as the optimal fixed proactive
defense. In fact, we find that the natural strategy of gradually reinforcing attacked edges
by shifting budget from unattacked edges “learns” the attacker’s incentives and constructs
an effective defense. Such a strategic reactive strategy is both easier to implement than
a proactive strategy—because it does not presume that the defender knows the attacker’s
intent and capabilities—and is less wasteful than a proactive strategy because the defender
does not expend budget on attacks that do not actually occur. Based on our results, we
encourage CISOs to question the assumption that proactive risk management is inherently
superior to reactive risk management.

Chapter Organization. The remainder of this section relates related work. Section 5.2
formalizes our model. Section 5.3 shows that perimeter defense and defense-in-depth arise
naturally in our model. Section 5.4 presents our main results of the chapter bounding
the competitive ratio of reactive versus proactive defense strategies. Section 5.5 outlines
scenarios in which reactive security out-performs proactive security. Section 5.6 generalizes
our results to Horn clauses and multiple attackers. Section 5.7 concludes the chapter with
a short summary of the main contributions.

5.1.1 Related Work

Anderson (2001) and Varian (2000) informally discuss (via anecdotes) how the design of
information security must take incentives into account. August and Tunca (2006) compare
various ways to incentivize users to patch their systems in a setting where the users are
more susceptible to attacks if their neighbors do not patch.

Gordon and Loeb (2002) and Hausken (2006) analyze the costs and benefits of security
in an economic model (with non-strategic attackers) where the probability of a successful
exploit is a function of the defense investment. They use this model to compute the optimal
level of investment. Varian (2001) studies various (single-shot) security games and identifies

117

Figure 5.1: An attack graph representing an enterprise data center.

how much agents invest in security at equilibrium. Grossklags et al. (2008) extends this
model by letting agents self-insure.

Miura-Ko et al. (2008) study externalities that appear due to users having the same
password across various websites and discuss pareto-improving security investments. Miura-
Ko and Bambos (2007) rank vulnerabilities according to a random-attacker model. Skybox
and RedSeal offer practical systems that help enterprises prioritize vulnerabilities based on
a random-attacker model. Kumar et al. (2008) investigate optimal security architectures
for a multi-division enterprise, taking into account losses due to lack of availability and
confidentiality. None of the above papers explicitly model a truly adversarial attacker.

Fultz and Grossklags (2009) generalizes (Grossklags et al., 2008) by modeling attackers
explicitly. Cavusoglu et al. (2008) highlight the importance of using a game-theoretic model
over a decision theoretic model due to the presence of adversarial attackers. However, these
models look at idealized settings that are not generically applicable. Lye and Wing (2002)
study the Nash equilibrium of a single-shot game between an attacker and a defender that
models a particular enterprise security scenario. Arguably this model is most similar to ours
in terms of abstraction level. However, calculating the Nash equilibrium requires detailed
knowledge of the adversary’s incentives, which as discussed in the introduction, might not
be readily available to the defender. Moreover, their game contains multiple equilibria,
weakening their prescriptions.

5.2 Formal Model

In this section, we present a game-theoretic model of attack and defense. Unlike tra-
ditional bug-level attack graphs, our model is meant to capture a managerial perspective
on enterprise security. The model is somewhat general in the sense that attack graphs can
represent a number of concrete situations, including a network (see Figure 5.1), components
in a complex software system (Fisher, 2008), or an Internet Fraud “Battlefield” (Friedberg,
2007).

118

5.2.1 System

We model a system using a directed graph (V,E), which defines the game between an
attacker and a defender. Each vertex v ∈ V in the graph represents a state of the system.
Each edge e ∈ E represents a state transition the attacker can induce. For example, a vertex
might represent whether a particular machine in a network has been compromised by an
attacker. An edge from one machine to another might represent that an attacker who has
compromised the first machine might be able to compromise the second machine because
the two are connected by a network. Alternatively, the vertices might represent different
components in a software system. An edge might represent that an attacker sending input
to the first component can send input to the second.

In attacking the system, the attacker selects a path in the graph that begins with a
designated start vertex s. Our results hold in more general models (e.g., based on Horn
clauses), but we defer discussing such generalizations until Section 5.6. We think of the
attack as driving the system through the series of state transitions indicated by the edges
included in the path. In the networking example in Figure 5.1, an attacker might first
compromise a front-end server and then leverage the server’s connectivity to the back-end
database server to steal credit card numbers from the database.

Incentives and Rewards. Attackers respond to incentives. For example, attackers com-
promise machines and form botnets because they make money from spam (Kanich et al.,
2008) or rent the botnet to others (Warner, 2004). Other attackers steal credit card numbers
because credit card numbers have monetary value (Franklin et al., 2007). We model the
attacker’s incentives by attaching a non-negative reward to each vertex. These rewards are
the utility the attacker derives from driving the system into the state represented by the
vertex. For example, compromising the database server might have a sizable reward because
the database server contains easily monetizable credit card numbers. We assume the start
vertex has zero reward, forcing the attacker to undertake some action before earning utility.
Whenever the attacker mounts an attack, the attacker receives a payoff equal to the sum
of the rewards of the vertices visited in the attack path: payoff(a) =

∑
v∈a reward(a). In

the example from Figure 5.1, if an attacker compromises both a front-end server and the
database server, the attacker receives both rewards.

Attack Surface and Cost. The defender has a fixed defense budget B > 0, which the
defender can divide among the edges in the graph according to a defense allocation d: for
all e ∈ E, d(e) ≥ 0 and

∑
e∈E d(e) ≤ B.

The defender’s allocation of budget to various edges corresponds to the decisions made
by the Chief Information Security Officer (CISO) about where to allocate the enterprise’s se-
curity resources. For example, the CISO might allocate organizational headcount to fuzzing
enterprise web applications for XSS vulnerabilities. These kinds of investments are contin-
uous in the sense that the CISO can allocate 1/4 of a full-time employee to worrying about
XSS. We denote the set of feasible allocations of budget B on edge set E by DB,E.

By defending an edge, the defender makes it more difficult for the attacker to use that
edge in an attack. Each unit of budget the defender allocates to an edge raises the cost

119

that the attacker must pay to use that edge in an attack. Each edge has an attack sur-
face (Howard, 2004) w that represents the difficulty in defending against that state tran-
sition. For example, a server that runs both Apache and Sendmail has a larger attack
surface than one that runs only Apache because defending the first server is more difficult
than the second. Formally, the attacker must pay the following cost to traverse the edge:
cost(a, d) =

∑
e∈a d(e)/w(e). Allocating defense budget to an edge does not “reduce” an

edge’s attack surface. For example, consider defending a hallway with bricks. The wider
the hallway (the larger the attack surface), the more bricks (budget allocation) required to
build a wall of a certain height (the cost to the attacker).

In this formulation, the function mapping the defender’s budget allocation to attacker
cost is linear, preventing the defender from ever fully defending an edge. Our use of a
linear function reflects a level of abstraction more appropriate to a CISO who can never
fully defend assets, which we justify by observing that the rate of vulnerability discovery
in a particular piece of software is roughly constant (Rescorla, 2005). At a lower level of
detail, we might replace this function with a step function, indicating that the defender can
“patch” a vulnerability by allocating a threshold amount of budget.

5.2.2 Objective

To evaluate defense strategies, we measure the attacker’s incentive for attacking using
the return-on-attack (ROA) (Cremonini, 2005), which we define as follows:

ROA(a, d) =
payoff(a)

cost(a, d)

We use this metric for evaluating defense strategy because we believe that if the defender
lowers the ROA sufficiently, the attacker will be discouraged from attacking the system and
will find other uses for his or her capital or industry. For example, the attacker might decide
to attack another system. Analogous results hold if we quantify the attacker’s incentives in
terms of profit (e.g., with profit(a, d) = payoff(a) − cost(a, d)), but we focus on ROA for
simplicity.

A purely rational attacker will mount attacks that maximize ROA. However, a real
attacker might not maximize ROA. For example, the attacker might not have complete
knowledge of the system or its defense. We strengthen our results by considering all attacks,
not just those that maximize ROA.

5.2.3 Proactive Security

We evaluate our learning-based reactive approach by comparing it against a proactive
approach to risk management in which the defender carefully examines the system and
constructs a defense in order to fend off future attacks. We strengthen this benchmark by
providing the proactive defender complete knowledge about the system, but we require that
the defender commit to a fixed strategy. To strengthen our results, we state our main result
in terms of all such proactive defenders. In particular, this class of defenders includes the

120

rational proactive defender who employs a defense allocation that minimizes the maximum
ROA the attacker can extract from the system: arg mind maxa ROA(a, d).

5.3 Case Studies

In this section, we describe instances of our model to build the reader’s intuition. These
examples illustrate that some familiar security concepts, including perimeter defense and
defense in depth, arise naturally as optimal defenses in our model. These defenses can
be constructed either by rational proactive attackers or converged to by a learning-based
reactive defense.

5.3.1 Perimeter Defense

Consider a system in which the attacker’s reward is non-zero at exactly one vertex, t.
For example, in a medical system, the attacker’s reward for obtaining electronic medical
records might well dominate the value of other attack targets such as employees’ vacation
calendars. In such a system, a rational attacker will select the minimum-cost path from the
start vertex s to the valuable vertex t. The optimal defense limits the attacker’s ROA by
maximizing the cost of the minimum s-t path. The algorithm for constructing this defense
is straightforward (Chakrabarty et al., 2006):

1. Let C be the minimum weight s-t cut in (V,E,w).

2. Select the following defense:

d(e) =

{
Bw(e)/Z if e ∈ C
0 otherwise

, where Z =
∑
e∈C

w(e) .

Notice that this algorithm constructs a perimeter defense: the defender allocates the entire
defense budget to a single cut in the graph. Essentially, the defender spreads the defense
budget over the attack surface of the cut. By choosing the minimum-weight cut, the defender
is choosing to defend the smallest attack surface that separates the start vertex from the
target vertex. Real defenders use similar perimeter defenses, for example, when they install
a firewall at the boundary between their organization and the Internet because the network’s
perimeter is much smaller than its interior.

5.3.2 Defense in Depth

Many experts in security practice recommend that defenders employ defense in depth.
Defense in depth rises naturally in our model as an optimal defense for some systems. Con-
sider, for example, the system depicted in Figure 5.2. This attack graph is a simplified
version of the data center network depicted in Figure 5.1. Although the attacker receives
the largest reward for compromising the back-end database server, the attacker also receives

121

w:1 w:1/9

Internet Front End Database

reward:1 reward:9s

Figure 5.2: Attack graph representing a simplified data center network.

some reward for compromising the front-end web server. Moreover, the front-end web server
has a larger attack surface than the back-end database server because the front-end server ex-
poses a more complex interface (an entire enterprise web application), whereas the database
server exposes only a simple SQL interface. Allocating defense budget to the left-most edge
represents trying to protect sensitive database information with a complex web application
firewall instead of database access control lists (i.e., possible, but economically inefficient).

The optimal defense against a rational attacker is to allocate half of the defense budget
to the left-most edge and half of the budget to the right-most edge, limiting the attacker
to a ROA of unity. Shifting the entire budget to the right-most edge (i.e., defending only
the database) is disastrous because the attacker will simply attack the front-end at zero
cost, achieving an unbounded ROA. Shifting the entire budget to the left-most edge is also
problematic because the attacker will attack the database (achieving an ROA of 5).

5.4 Reactive Security

To analyze reactive security, we model the attacker and defender as playing an iterative
game, alternating moves. First, the defender selects a defense, and then the attacker selects
an attack. We present a learning-based reactive defense strategy that is oblivious to vertex
rewards and to edges that have not yet been used in attacks. We prove a theorem bounding
the competitive ratio between this reactive strategy and the best proactive defense via a
series of reductions to results from the online learning theory literature. Other applications
of this literature include managing stock portfolios (Ordentlich and Cover, 1998), playing
zero-sum games (Freund and Schapire, 1999b), and boosting other machine learning heuris-
tics (Freund and Schapire, 1999a). Although we provide a few technical extensions, our
main contribution comes from applying results from online learning to risk management.

Repeated Game. We formalize the repeated game between the defender and the attacker
as follows. In each round t from 1 to T :

1. The defender chooses defense allocation dt(e) over the edges e ∈ E.

2. The attacker chooses an attack path at in G.

3. The path at and attack surfaces {w(e) : e ∈ at} are revealed to the defender.

4. The attacker pays cost(at, dt) and gains payoff(at).

122

Algorithm 13 A reactive defense strategy for hidden edges.

• Initialize E0 = ∅

• For each round t ∈ {2, ..., T}

– Let Et−1 = Et−2 ∪ E(at−1)

– For each e ∈ Et−1, let

St−1(e) =

{
St−2(e) +M(e, at−1) if e ∈ Et−2

M(e, at−1) otherwise.

P̃t(e) = β
St−1(e)
t−1

Pt(e) =
P̃t(e)∑

e′∈Et P̃t(e
′)
,

where M(e, a) = −1 [e ∈ a] /w(e) is a matrix with |E| rows and a column for
each attack.

In each round, we let the attacker choose the attack path after the defender commits to the
defense allocation because the defender’s budget allocation is not a secret (in the sense of a
cryptographic key). Following the “no security through obscurity” principle, we make the
conservative assumption that the attacker can accurately determine the defender’s budget
allocation.

Defender Knowledge. Unlike proactive defenders, reactive defenders do not know all of
the vulnerabilities that exist in the system in advance. (If defenders had complete knowl-
edge of vulnerabilities, conferences such as Black Hat Briefings would serve little purpose.)
Instead, we reveal an edge (and its attack surface) to the defender after the attacker uses the
edge in an attack. For example, the defender might monitor the system and learn how the
attacker attacked the system by doing a post-mortem analysis of intrusion logs. Formally,
we define a reactive defense strategy to be a function from attack sequences {ai} and the
subsystem induced by the edges contained in

⋃
i ai to defense allocations such that d(e) = 0

if edge e 6∈
⋃
i ai. Notice that this requires the defender’s strategy to be oblivious to the

system beyond the edges used by the attacker.

5.4.1 Algorithm

Algorithm 13 is a reactive defense strategy based on the multiplicative update learning
algorithm (Cesa-Bianchi et al., 1997; Freund and Schapire, 1999b). The algorithm reinforces
edges on the attack path multiplicatively, taking the attack surface into account by allocating
more budget to easier-to-defend edges. When new edges are revealed, the algorithm re-
allocates budget uniformly from the already-revealed edges to the newly revealed edges. We

123

state the algorithm in terms of a normalized defense allocation Pt(e) = dt(e)/B. Notice that
this algorithm is oblivious to unattacked edges and the attacker’s reward for visiting each
vertex. An appropriate setting for the algorithm parameters βt ∈ [0, 1) will be described
below.

The algorithm begins without any knowledge of the graph whatsoever, and so allocates
no defense budget to the system. Upon the tth attack on the system, the algorithm updates
Et to be the set of edges revealed up to this point, and updates St(e) to be a weight count
of the number of times e has been used in an attack thus far. For each edge that has ever
been revealed, the defense allocation Pt+1(e) is chosen to be β

St(e)
t normalized to sum to

unity over all edges e ∈ Et. In this way, any edge attacked in round t will have its defense
allocation reinforced.

The parameter β controls how aggressively the defender reallocates defense budget to
recently attacked edges. If β is infinitesimal, the defender will move the entire defense
budget to the edge on the most recent attack path with the smallest attack surface. If β is
enormous, the defender will not be very agile and, instead, leave the defense budget in the
initial allocation. For an appropriate value of β, the algorithm will converge to the optimal
defense strategy. For instance, the min cut in the example from Section 5.3.1.

5.4.2 Main Theorems

To compare this reactive defense strategy to all proactive defense strategies, we use the
notion of regret from online learning theory. The following is an additive regret bound
relating the attacker’s profit under reactive and proactive defense strategies.

Theorem 45. The average attacker profit against Algorithm 13 converges to the average
attacker profit against the best proactive defense. Formally, if defense allocations {dt}Tt=1

are output by Algorithm 13 with parameter sequence βs =
(

1 +
√

2 log |Es|/(s+ 1)
)−1

on

any system (V,E,w, reward, s) revealed online and any attack sequence {at}Tt=1, then

1

T

T∑
t=1

profit(at, dt)−
1

T

T∑
t=1

profit(at, d
?) ≤ B

√
log |E|

2T
+
B(log |E|+ w−1)

T
,

for all proactive defense strategies d? ∈ DB,E where w−1 = |E|−1
∑

e∈E w(e)−1, the mean of
the surface reciprocals.

Remark 46. We can interpret Theorem 45 as establishing sufficient conditions under which
a reactive defense strategy is within an additive constant of the best proactive defense strategy.
Instead of carefully analyzing the system to construct the best proactive defense, the defender
need only react to attacks in a principled manner to achieve almost the same quality of
defense in terms of attacker profit.

Reactive defense strategies can also be competitive with proactive defense strategies
when we consider an attacker motivated by return on attack (ROA). The ROA formulation
is appealing because (unlike with profit) the objective function does not require measuring

124

attacker cost and defender budget in the same units. The next result considers the com-
petitive ratio between the ROA for a reactive defense strategy and the ROA for the best
proactive defense strategy.

Theorem 47. The ROA against Algorithm 13 converges to the ROA against best proactive
defense. Formally, consider the cumulative ROA:

ROA
(
{at}Tt=1, {dt}Tt=1

)
=

∑T
t=1 payoff(at)∑T
t=1 cost(at, dt)

.

(We abuse notation slightly and use singleton arguments to represent the corresponding
constant sequence.) If defense allocations {dt}Tt=1 are output by Algorithm 13 with parameters

βs =
(

1 +
√

2 log |Es|/(s+ 1)
)−1

on any system (V,E,w, reward, s) revealed online, such

that |E| > 1, and any attack sequence {at}Tt=1, then for all α > 0 and proactive defense
strategies d? ∈ DB,E

ROA
(
{at}Tt=1, {dt}Tt=1

)
ROA ({at}Tt=1, d

?)
≤ 1 + α ,

provided T is sufficiently large.1

Remark 48. Notice that the reactive defender can use the same algorithm regardless of
whether the attacker is motivated by profit or by ROA. As discussed in Section 5.5 the
optimal proactive defense is not similarly robust.

5.4.3 Proofs of the Main Theorems

We now describe a series of reductions that establish the main results. First, we prove
Theorem 45 in the simpler setting where the defender knows the entire graph. Second, we
remove the hypothesis that the defender knows the edges is advance. Finally, we extend our
results to ROA.

5.4.3.1 Bound on Profit: Known Edges Case

Suppose that the reactive defender is granted full knowledge of the system
(V,E,w, reward, s) from the outset. Specifically, the graph, attack surfaces, and rewards
are all revealed to the defender prior to the first round. Algorithm 14 is a reactive defense
strategy that makes use of this additional knowledge.

Lemma 49. If defense allocations {dt}Tt=1 are output by Algorithm 14 with parameter β =(
1 +

√
2 log |E|

T

)−1

on any system (V,E,w, reward, s) and attack sequence {at}Tt=1, then

1

T

T∑
t=1

profit(at, dt)−
1

T

T∑
t=1

profit(at, d
?) ≤ B

√
log |E|

2T
+
B log |E|

T
,

1To wit: T ≥
(

13√
2

(
1 + α−1

) (∑
e∈inc(s) w(e)

))2
log |E|.

125

Algorithm 14 Reactive defense strategy for known edges using the multiplicative update
algorithm.

• For each e ∈ E, initialize P1(e) = 1/|E|.

• For each round t ∈ {2, . . . , T} and e ∈ E, let

Pt(e) = Pt−1(e) · βM(e,at−1)/Zt

where Zt =
∑
e′∈E

Pt−1(e)βM(e′,at−1)

for all proactive defense strategies d? ∈ DB,E.

The lemma’s proof is a reduction to the following regret bound from online learning (Fre-
und and Schapire, 1999b, Corollary 4).

Theorem 50. If the multiplicative update algorithm (Algorithm 14) is run with any game

matrix M with elements in [0, 1], and parameter β =
(

1 +
√

2 log |E|/T
)−1

, then

1

T

T∑
t=1

M(Pt, at)− min
P ?≥0:

∑
e∈E P

?(e)=1

{
1

T

T∑
t=1

M(P ?, at)

}
≤

√
log |E|

2T
+

log |E|
T

.

Proof of Lemma 49. Due to the normalization by Zt, the sequence of defense allocations
{Pt}Tt=1 output by Algorithm 14 is invariant to adding a constant to all elements of matrix
M . Let M ′ be the matrix obtained by adding constant C to all entries of arbitrary game
matrix M , and let sequences {Pt}Tt=1 and {P ′t}Tt=1 be obtained by running multiplicative
update with matrix M and M ′ respectively. Then, for all e ∈ E and t ∈ [T − 1],

P ′t+1(e) =
P1(e)β

∑t
i=1M

′(e,ai)∑
e′∈E P1(e′)β

∑t
i=1M

′(e′,ai)

=
P1(e)β(

∑t
i=1M(e,ai))+tC∑

e′∈E P1(e′)β(
∑t
i=1M(e′,ai))+tC

=
P1(e)β

∑t
i=1M(e,ai)∑

e′∈E P1(e′)β
∑t
i=1M(e′,ai)

= Pt+1(e) .

In particular Algorithm 14 produces the same defense allocation sequence as if the game
matrix elements are increased by one to

M ′(e, a) =

{
1− 1/w(e) if e ∈ a .

1 otherwise

126

Because this new matrix has entries in [0, 1] we can apply Theorem 50 to prove for the
original matrix M that

1

T

T∑
t=1

M(Pt, at)− min
P ?∈D1,E

{
1

T

T∑
t=1

M(P ?, at)

}
≤

√
log |E|

2T
+

log |E|
T

. (5.1)

Now, by definition of the original game matrix,

M(Pt, at) =
∑
e∈E

−(Pt(e)/w(e)) · 1 [e ∈ at]

= −
∑
e∈at

Pt(e)/w(e)

= −B−1
∑
e∈at

dt(e)/w(e)

= −B−1 cost(at, dt) .

Thus Inequality (5.1) is equivalent to

− 1

T

T∑
t=1

B−1 cost(at, dt)− min
d?∈D1,E

{
− 1

T

T∑
t=1

B−1 cost(at, d
?)

}

≤
√

log |E|
2T

+
log |E|
T

.

Simple algebraic manipulation yields

1

T

T∑
t=1

profit(at, dt)− min
d?∈DB,E

{
1

T

T∑
t=1

profit(at, d
?)

}

=
1

T

T∑
t=1

(payoff(at)− cost(at, dt))− min
d?∈DB,E

{
1

T

T∑
t=1

(payoff(at)− cost(at, d
?))

}

=
1

T

T∑
t=1

(− cost(at, dt))− min
d?∈DB,E

{
1

T

T∑
t=1

(− cost(at, d
?))

}

≤ B

√
log |E|

2T
+B

log |E|
T

,

completing the proof.

5.4.3.2 Bound on Profit: Hidden Edges Case

The standard algorithms in online learning assume that the rows of the matrix are known
in advance. Here, the edges are not known in advance and we must relax this assumption
using a simulation argument, which is perhaps the least obvious part of the reduction.

127

The defense allocation chosen by Algorithm 13 at time t is precisely the same as the
defense allocation that would have been chosen by Algorithm 14 had the defender run Algo-
rithm 14 on the currently visible subgraph. The following lemma formalizes this equivalence.
Note that Algorithm 13’s parameter is reactive: it corresponds to Algorithm 14’s parame-
ter, but for the subgraph induced by the edges revealed so far. That is, βt depends only on
edges visible to the defender in round t, letting the defender actually run the algorithm in
practice!

Lemma 51. Consider arbitrary round t ∈ [T]. If Algorithms 13 and 14 are run with parame-

ters βs =
(

1 +
√

2 log |Es|/(s+ 1)
)−1

for s ∈ [t] and parameter β =(
1 +

√
2 log |Et|/(t+ 1)

)−1

respectively, with the latter run on the subgraph induced by Et,

then the defense allocations Pt+1(e) output by the algorithms are identical for all e ∈ Et.

Proof. If e ∈ Et then P̃t+1(e) = β
∑t
i=1M(e,ai) because βt = β, and the round t + 1 defense

allocation of Algorithm 13 Pt+1 is simply P̃t+1 normalized to sum to unity over edge set Et,
which is exactly the defense allocation output by Algorithm 14.

Armed with this correspondence, we show that Algorithm 13 is almost as effective as
Algorithm 14. In other words, hiding unattacked edges from the defender does not cause
much harm to the reactive defender’s ability to disincentivize the attacker.

Lemma 52. If defense allocations {d1,t}Tt=1 and {d2,t}Tt=1 are output by Algorithms 13 and 14

with parameters βt =
(

1 +
√

2 log |Et|/(t+ 1)
)−1

or t ∈ [T − 1] and β =(
1 +

√
2 log |E|/(T)

)−1

, respectively, on a system (V,E,w, reward, s) and attack sequence

{at}Tt=1, then

1

T

T∑
t=1

profit(at, d1,t)−
1

T

T∑
t=1

profit(at, d2,t) ≤
B

T
w−1 .

Proof. Consider attack at from a round t ∈ [T] and consider an edge e ∈ at. If e ∈ as for
some s < t, then the defense budget allocated to e at time t by Algorithm 14 cannot be
greater than the budget allocated by Algorithm 13. Thus, the instantaneous cost paid by the
attacker on e when Algorithm 13 defends is at least the cost paid when Algorithm 14 defends:
d1,t(e)/w(e) ≥ d2,t(e)/w(e). If e /∈

⋃t−1
s=1 as then for all s ∈ [t], d1,s(e) = 0, by definition. The

sequence {d2,s(e)}t−1
s=1 is decreasing and positive. Thus maxs<t d2,s(e) − d1,s(e) is optimized

at s = 1 and is equal to B/|E|. Finally because each edge e ∈ E is first revealed exactly
once this leads to

T∑
t=1

cost(at, d2,t)−
T∑
t=1

cost(at, d1,t) =
T∑
t=1

∑
e∈at

d2,t(e)− d1,t(e)

w(e)

≤
∑
e∈E

B

|E|w(e)
.

128

Combined with the fact that the attacker receives the same payout whether Algorithm 14
or Algorithm 13 defends completes the result.

Proof of Theorem 45. The theorem’s result follow immediately from combining Lemma 49
and Lemma 52.

Finally, notice that Algorithm 13 enjoys the same time and space complexities as Algo-
rithm 14, up to constants.

5.4.3.3 Bound on ROA: Hidden Edges Case

We now translate our bounds on profit into bounds on ROA by observing that the ratio of
two quantities is small if the quantities are large and their difference is small. We consider
the competitive ratio between a reactive defense strategy and the best proactive defense
strategy after the following technical lemma, which asserts that the quantities are large.

Lemma 53. For all attack sequences {at}Tt=1, maxd?∈DB,E
∑T

t=1 cost(at, d
?) ≥ V T where

game value V is maxd∈DB,E mina cost(a, d) = B∑
e∈inc(s) w(e)

> 0, where inc(v) ⊆ E denotes the

edges incident to vertex v.

Proof. Let d? = arg maxd∈DB,E mina cost(a, d) witness the game’s value V , then

maxd∈DB,E
∑T

t=1 cost(at, d) ≥
∑T

t=1 cost(at, d
?) ≥ TV . Consider the defensive alloca-

tion for each e ∈ E. If e ∈ inc(s), let d̃(e) = Bw(e)/
∑

e∈inc(s) w(e) > 0, and otherwise

d̃(e) = 0. This allocation is feasible because

∑
e∈E

d̃(e) =
B
∑

e∈inc(s) w(e)∑
e∈inc(s) w(e)

= B .

By definition d̃(e)/w(e) = B/
∑

e∈inc(s) w(e) for each edge e incident to s. Therefore,

cost(a, d̃) ≥ B/
∑

e∈inc(s) w(e) for any non-trivial attack a, which necessarily includes at

least one s-incident edge. Finally, V ≥ mina cost(a, d̃) proves

V ≥ B∑
e∈inc(s) w(e)

. (5.2)

Now, consider a defense allocation d and fix an attack a that minimizes the total attacker
cost under d. At most one edge e ∈ a can have d(e) > 0, for otherwise the cost under d can
be reduced by removing an edge from a. Moreover any attack a ∈ arg mine∈inc(s) d(e)/w(e)
minimizes attacker cost under d. Thus the maximin V is witnessed by defense allocations
that maximize mine∈inc(s) d(e)/w(e). This maximization is achieved by allocation d̃ and so
Inequality (5.2) is an equality.

We are now ready to prove the main ROA theorem:

129

Proof of Theorem 47. First, observe that for all B > 0 and all A,C ∈ R

A

B
≤ C ⇐⇒ A−B ≤ (C − 1)B . (5.3)

We will use this equivalence to convert the regret bound on profit to the desired bound on
ROA. Together Theorem 45 and Lemma 53 imply

α
T∑
t=1

cost(at, dt)

≥ α max
d?∈DB,E

T∑
t=1

cost(at, d
?)− αB

2

√
T log |E| − αB

(
log |E|+ w−1

)
≥ αV T − αB

2

√
T log |E| − αB

(
log |E|+ w−1

)
(5.4)

where V = maxd∈DB,E mina cost(a, d) > 0. If

√
T ≥ 13√

2

(
1 + α−1

)√
log |E|

∑
e∈inc(s)

w(e) ,

we can use inequalities V = B/
∑

e∈inc(s)w(e), w−1 ≤ 2 log |E| (since |E| > 1), and(∑
e∈inc(s) w(e)

)−1

≤ 1 to show

√
T ≥

(
(1 + α)B +

√
[(1 + α)B + 24αV] (1 + α)B

)
(2
√

2αV)−1
√

log |E| ,

which combines with Theorem 45 and Inequality 5.4 to imply

α
T∑
t=1

cost(at, dt) ≥ αV T − αB
2

√
T log |E| − αB

(
log |E|+ w−1

)
≥ B

2

√
T log |E|+B

(
log |E|+ w−1

)
≥

T∑
t=1

profit(at, dt)− min
d?∈DB,E

T∑
t=1

profit(at, d
?)

=
T∑
t=1

(− cost(at, dt))− min
d?∈DB,E

T∑
t=1

(− cost(at, d
?))

= max
d?∈DB,E

T∑
t=1

cost(at, d
?)−

T∑
t=1

cost(at, dt) .

130

Finally, combining this equation with Equivalence 5.3 yields the result

ROA
(
{at}Tt=1, {dt}Tt=1

)
mind?∈DB,E ROA ({at}Tt=1, d

?)

=

∑T
t=1 payoff(at, dt)∑T
t=1 cost(at, dt)

· max
d?∈DB,E

∑T
t=1 cost(at, d

?)∑T
t=1 payoff(at, d?)

=
maxd?∈DB,E

∑T
t=1 cost(at, d

?)∑T
t=1 cost(at, dt)

≤ 1 + α .

5.4.4 Lower Bounds

We briefly argue the optimality of Algorithm 13 for a particular graph, i.e., we show that
Algorithm 13 has optimal convergence time for small enough α, up to constants. (For very
large α, Algorithm 13 converges in constant time, and therefore is optimal up to constants,
vacuously.) This result establishes a lower bound on the competitive ratio of the ROA for all
reactive strategies. The proof gives an example where the best proactive defense (slightly)
out-performs every reactive strategy, suggesting the benchmark is not unreasonably weak.

The argument considers an attacker who randomly selects an attack path, rendering
knowledge of past attacks useless. Consider a two-vertex graph where the start vertex s is
connected to a vertex r (with reward 1) by two parallel edges e1 and e2, each with an attack
surface of 1. Further suppose that the defense budget B = 1. We first show a lower bound
on all reactive algorithms:

Lemma 54. for all reactive algorithms A, the competitive ratio C is at least (x+Ω(
√
T))/x,

i.e., at least (T + Ω(
√
T))/T because x ≤ T .

Proof. Consider the following random attack sequence: For each round, select an attack
path uniform i.i.d. from the set {e1, e2}. A reactive strategy must commit to a defense in
every round without knowledge of the attack, and therefore every strategy that expends
the entire budget of 1 inflicts an expected cost of 1/2 in every round. Thus, every reactive
strategy inflicts a total expected cost of (at most) T/2, where the expectation is over the
coin-tosses of the random attack process.

Given an attack sequence, however, there exists a proactive defense allocation with better
performance. We can think of the proactive defender being prescient as to which edge (e1 or
e2) will be attacked most frequently and allocating the entire defense budget to that edge.
It is well-known (for instance via an analysis of a one-dimensional random walk) that in
such a random process, one of the edges will occur Ω(

√
T) more often than the other, in

expectation.
By the probabilistic method, a property that is true in expectation must hold existen-

tially, and, therefore, for every reactive strategy A, there exists an attack sequence such that

131

A has a cost x, whereas the best proactive strategy (in retrospect) has a cost x + Ω(
√
T).

Because the payoff of each attack is 1, the total reward in either case is T . The prescient
proactive defender, therefore, has an ROA of T/(x + Ω(

√
T)), but the reactive algorithm

has an ROA of T/x, establishing the lemma.

Given this lemma, we show that Algorithm 13 is optimal given the information available.
In this case, n = 2 and, ignoring constants from Theorem 47, we are trying to match a
convergence time T is at most (1 + α−1)2, which is approximately α−2 for small α. For
large enough T , there exists a constant c such that C ≥ (T + c

√
T)/T . By simple algebra,

(T + c
√
T)/T ≥ 1 + α whenever T ≤ c2/α2, concluding the argument.

We can generalize the above argument of optimality to n > 2 using the combinatorial
Lemma 3.2.1 from (Cesa-Bianchi et al., 1993). Specifically, we can show that for every n,
there is an n edge graph for which Algorithm 13 is optimal up to constants for small enough
α.

5.5 Advantages of Reactivity

In this section, we examine some situations in which a reactive defender out-performs
a proactive defender. Proactive defenses hinge on the defender’s model of the attacker’s
incentives. If the defender’s model is inaccurate, the defender will construct a proactive
defense that is far from optimal. By contrast, a reactive defender need not reason about
the attacker’s incentives directly. Instead, the reactive defender learns these incentives by
observing the attacker in action.

Learning Rewards. One way to model inaccuracies in the defender’s estimates of the
attacker’s incentives is to hide the attacker’s rewards from the defender. Without knowledge
of the payoffs, a proactive defender has difficulty limiting the attacker’s ROA. Consider, for
example, the star system whose edges have equal attack surfaces, as depicted in Figure 5.3.
Without knowledge of the attacker’s rewards, a proactive defender has little choice but to
allocate the defense budget equally to each edge (because the edges are indistinguishable).
However, if the attacker’s reward is concentrated at a single vertex, the competitive ratio for
attacker’s ROA (compared to the rational proactive defense) is the number of leaf vertices.
(We can, of course, make the ratio worse by adding more vertices.) By contrast, the reac-
tive algorithm we analyze in Section 5.4 is competitive with the rational proactive defense
because the reactive algorithm effectively learns the rewards by observing which attacks the
attacker chooses.

Robustness to Objective. Another way to model inaccuracies in the defender’s esti-
mates of the attacker’s incentives is to assume the defender mistakes which of profit and
ROA actually matter to the attacker. The defense constructed by a rational proactive de-
fender depends crucially on whether the attacker’s actual incentives are based on profit or
based on ROA, whereas the reactive algorithm we analyze in Section 5.4 is robust to this
variation. In particular, consider the system depicted in Figure 5.4, and assume the defender

132

w:1

reward:0reward:8

reward:0

reward:0

reward:0

reward:0reward:0

reward:0

w:1

w:1
w:1

w:1

w:1
w:1

w:1

s

Figure 5.3: Star-shaped attack graph
with rewards concentrated in an un-
known vertex.

reward:1
w:1 w:1

Satellite Office Internet Headquarters

reward:10s

Figure 5.4: An attack graph that separates the
minimax strategies optimizing ROA and attacker
profit.

has a budget of 9. If the defender believes the attacker is motivated by profit, the rational
proactive defense is to allocate the entire defense budget to the right-most edge (making the
profit 1 on both edges). However, this defense is disastrous when viewed in terms of ROA
because the ROA for the left edge is infinite (as opposed to near unity when the proactive
defender optimizes for ROA).

Catachresis. The defense constructed by the rational proactive defender is optimized for
a rational attacker. If the attacker is not perfectly rational, there is room for out-performing
the rational proactive defense. There are a number of situations in which the attacker might
not mount “optimal” attacks:

• The attacker might not have complete knowledge of the attack graph. Consider, for
example, a software vendor who discovers five equally severe vulnerabilities in one
of their products via fuzzing. According to proactive security, the defender ought to
dedicate equal resources to repairing these five vulnerabilities. However, a reactive
defender might dedicate more resources to fixing a vulnerability actually exploited by
attackers in the wild. We can model these situations by making the attacker oblivious
to some edges.

• The attacker might not have complete knowledge of the defense allocation. For exam-
ple, an attacker attempting to invade a corporate network might target computers in
human resources without realizing that attacking the customer relationship manage-
ment database in sales has a higher return-on-attack because the database is lightly
defended.

133

By observing attacks, the reactive strategy learns a defense tuned for the actual attacker,
causing the attacker to receive a lower ROA.

5.6 Generalizations

We now consider several simple generalizations of our model and results.

5.6.1 Horn Clauses

Thus far, we have presented our results using a graph-based system model. Our results
extend, however, to a more general system model based on Horn clauses and corresponding
to hypergraph-based system models. Datalog programs, which are based on Horn clauses,
have been used in previous work to represent vulnerability-level attack graphs (Ou et al.,
2006). A Horn clause is a statement in propositional logic of the form p1∧ p2∧ · · ·∧ pn → q.
The propositions p1, p2, . . . , pn are called the antecedents, and q is called the consequent. The
set of antecedents might be empty, in which case the clause simply asserts the consequent.
Notice that Horn clauses are negation-free. In some sense, a Horn clause represents an edge
in a hypergraph where multiple pre-conditions are required before taking a certain state
transition.

In the Horn model, a system consists of a set of Horn clauses, an attack surface for each
clause, and a reward for each proposition. The defender allocates defense budget among
the Horn clauses. To mount an attack, the attacker selects a valid proof : an ordered list of
rules such that each antecedent appears as a consequent of a rule earlier in the list. For a
given proof Π,

cost(Π, d) =
∑
c∈Π

d(c)/w(e) payoff(Π) =
∑
p∈[[Π]]

reward(p) ,

where [[Π]] is the set of propositions proved by Π (i.e., those propositions that appear as
consequents in Π). Profit and ROA are computed as before.

Our results generalize to this model directly. Essentially, we need only replace each
instance of the word “edge” with “Horn clause” and “path” with “valid proof.” For example,
the rows of the matrix M used throughout the proof become the Horn clauses, and the
columns become the valid proofs (which are numerous, but no matter). The entries of
the matrix become M(c,Π) = 1/w(c), analogous to the graph case. The one non-obvious
substitution is inc(s), which becomes the set of clauses that lack antecedents.

5.6.2 Multiple Attackers

We have focused on a security game between a single attacker and a defender. In practice,
a security system might be attacked by several uncoordinated attackers, each with different
information and different objectives. Fortunately, we can show that a model with multiple
attackers is mathematically equivalent to a model with a single attacker with a randomized

134

strategy: Use the set of attacks, one per attacker, to define a distribution over edges where
the probability of an edge is linearly proportional to the number of attacks which use the
edge. This precludes the interpretation of an attack as an s-rooted path, but our proofs
do not rely upon this interpretation and our results hold in such a model with appropriate
modifications.

5.6.3 Adaptive Proactive Defenders

A simple application of an online learning result (Herbster and Warmuth, 1998), modifies
our regret bounds to compare the reactive defender to an optimal proactive defender who
re-allocates budget a fixed number of times. In this model, our results remain qualitatively
the same.

5.7 Summary

Many security experts equate reactive security with myopic bug-chasing and ignore prin-
cipled reactive strategies when they recommend adopting a proactive approach to risk man-
agement. In this chapter, we establish sufficient conditions for a learning-based reactive
strategy to be competitive with the best fixed proactive defense. Additionally, we show
that reactive defenders can out-perform proactive defenders when the proactive defender
defends against attacks that never actually occur. Although our model is an abstraction
of the complex interplay between attackers and defenders, our results support the following
practical advice for CISOs making security investments:

• Employ monitoring tools that let you detect and analyze attacks against your enter-
prise. These tools help focus your efforts on thwarting real attacks.

• Make your security organization more agile. For example, build a rigorous testing
lab that lets you roll out security patches quickly once you detect that attackers are
exploiting these vulnerabilities.

• When determining how to expend your security budget, avoid overreacting to the most
recent attack. Instead, consider all previous attacks, but discount the importance of
past attacks exponentially.

In some situations, proactive security can out-perform reactive security. For example, re-
active approaches are ill-suited for defending against catastrophic attacks because there is
no “next round” in which the defender can use information learned from the attack. We
hope our results will lead to a productive discussion of the limitations of our model and the
validity of our conclusions.

Instead of assuming that proactive security is always superior to reactive security, we
invite the reader to consider when a reactive approach might be appropriate. For the parts
of an enterprise where the defender’s budget is liquid and there are no catastrophic losses,
a carefully constructed reactive strategy can be as effective as the best proactive defense in
the worst case and significantly better in the best case.

135

Chapter 6

Learning to Find Leaks in Open
Source Projects

A small leak can sink a great ship.

– Benjamin Franklin

Many open-source projects land security fixes in public repositories before shipping these
patches to users. In this chapter, we show that an attacker who uses off-the-shelf machine
learning techniques can detect these security patches using metadata about the patch (e.g.,
the author of the patch, which files were modified, and the size of the modification). By
analyzing two patches each day for exploitability over a period of 8 months, an attacker
can add 148 days to the window of vulnerability for Firefox 3, increasing the total window
of vulnerability by a factor of 6.4. We argue that obfuscating this metadata is unlikely to
prevent these information leaks because the detection algorithm aggregates weak signals
from a number of features. Instead, open-source projects ought to keep security patches
secret until they are ready to be released.

Although the attacks of this chapter do not target learners per se, we can still classify
them using the taxonomy of Barreno et al. (2006) overviewed in Section 1.2.2. By regarding
the patches of Firefox together with their labels in {‘security’, ‘non-security’} as a training
set, and the public repository consisting of landed pre-release patches as a statistic, our
attacks are Targeted and violate Confidentiality as they aim to determine the labels of
specific patches by examining the repository. While we model an attacker with no control
over the repository, our attacks exploit a significant amount of information in the form of
meta-data from the repository and previously disclosed labels.

6.1 Introduction

Many important and popular software development projects are open-source, including
Firefox, Chromium, Apache, the Linux kernel, and OpenSSL. Software produced by these
projects is run by hundreds of millions of users and machines. Following the open-source

136

spirit, these projects make all code changes immediately visible to the public in open code
repositories, including landing fixes to security vulnerabilities in public “trunk” development
branches before publicly announcing the vulnerability and providing an updated version to
end users. This common practice raises the question of whether this extreme openness
increases the window of vulnerability by letting attackers discover vulnerabilities earlier in
the security life-cycle. The conventional wisdom is that detecting these security patches
is difficult because the patches are hidden among a cacophony of non-security changes.
For example, the central Firefox repository receives, on average, 38.6 patches per day, of
which 0.34 fix security vulnerabilities. Recently, some blackhats in the Metasploit project
have used the “description” metadata field to find Firefox patches that refer to non-public
bug numbers (Veditz, 2009). The Firefox developers have responded by obfuscating the
description field, but where does this cat-and-mouse game end?

In this chapter, we analyze information leaks during the Firefox 3 life-cycle to answer
three key questions: (1) Does the metadata associated with patches in the source code
repository contain information about whether the patch is security sensitive? (2) Using
this information, how much less effort does an attacker need to expend to find unannounced
security vulnerabilities? (3) How much do these information leaks increase the total window
of vulnerability?

To address these questions, we apply off-the-shelf machine learning techniques to dis-
criminate between security and non-security patches by observing some intrinsic metadata
about each patch. For example, we use the patch author, the set of files modified, and the
size of the modifications. We strengthen our conclusions by ignoring the description field
because we assume that the developers can successfully obfuscate the patch description.
Using standard machine learning techniques, we show that each of these features individu-
ally do not contain much information about whether patches are security sensitive. We find
that the patch author contains the most information (followed by the top-level directory
containing the modified files and the size of the modification), but even author has a tiny
information gain ratio of 0.003.

We use a support vector machine (SVM) to aggregate the information in these features,
but still obtain a poor classifier when measured in terms of precision and recall. However, the
attacker’s goal is not to classify every patch as security-sensitive or non-security-sensitive.
The attacker’s goal is to find at least one vulnerability to exploit; in particular, the attacker
can use the SVM to rank patches by how confident the learner is in classifying the patch
security-sensitive. This ranking function gives the attacker an informed way to prioritize
patches to examine when searching for security patches. Thus, we propose new metrics to
measure the effectiveness of the detection algorithm. In the first metric, attacker effort, we
measure the number of patches the attacker would need to examine before finding the first
vulnerability according to the ranked list generated by the detection algorithm. Using this
metric, we show that even our weak classifier is useful to the attacker. For example on 39%
of the days, the detection algorithm ranks at least one security patch in the top two patches.
In the second metric, increase to the window of vulnerability, we show that an attacker who
examines the top two patches ranked by the detection algorithm each day will add an extra
148 days of vulnerability to the 229 day period we study, representing a 6.4-fold increase

137

over the window of vulnerability caused by the latency in deploying security updates.
Our results suggest that Firefox should change its security life-cycle to avoid leaking

information about unannounced vulnerabilities in its public source code repositories. Instead
of landing security patches in the central repository, Firefox developers should land security
patches in a private release branch that is available only to a set of trusted testers. The
developers can then merge the patches into the public repository at the same time they
release the security update to all users and announce the vulnerability.

Although we study Firefox specifically, we believe our results generalize to a number of
other open-source projects, including Chromium, Apache, the Linux kernel, and OpenSSL,
which land vulnerability fixes in public repositories before announcing the vulnerability and
making security updates available. However, we choose to study these issues in Firefox
because Firefox has a state-of-the-art process for responding to vulnerability reports and
publishes the ground truth about which patches fix security vulnerabilities (Mozilla Foun-
dation, 2010).

Chapter Organization. The remainder of the chapter is organized as follows. Section 6.2
describes the existing Firefox security life-cycle. Section 6.3 lays out the dataset we analyze.
Section 6.4 explains our methodology. Section 6.5 presents our results. Section 6.6 recom-
mends a secure security life-cycle. Section 6.7 concludes the chapter with a short summary
of the main contributions.

6.2 Life-Cycle of a Vulnerability

This section describes the life-cycle of a security patch for the Firefox browser. We take
Firefox as a representative example, but many open-source projects use a similar life-cycle.

6.2.1 Stages in the Life-Cycle

In the Firefox open-source project, vulnerabilities proceed through a sequence of observ-
able events:

1. Bug filed. The Firefox project encourages security researchers to report vulnerabili-
ties to the project via the project’s public bug tracker. When filed, security bugs are
marked “private” (meaning access is restricted to a trusted set of individuals on the
security team Veditz 2010; see Figure 6.1) and are assigned a unique number.

2. Patch landed in mozilla-central. Once the developers determine the best way to
fix the vulnerability, a developer writes a patch for the mainline “trunk” of Firefox
development. Other developers review the patch for correctness, and once the patch
is approved, the developer lands the patch in the public mozilla-central Mercurial
repository.

138

Figure 6.1: Information leaked about security-sensitive bug numbers has been exploited by
attackers in the past to identify undisclosed vulnerabilities, when bug numbers were linked
to landed patches via patch descriptions.

3. Patch landed in release branches. After the patch successfully lands on
mozilla-central (including passing all the automated regression and performance
tests), the developers merge the patch to one or more of the Firefox release branches.

4. Security update released. At some point, a release driver decides to release an
updated version of Firefox containing one or more security fixes (and possibly some
non-security related changes). These releases are typically made from the release
branch, not from the mozilla-central repository. The current state of the release
branch is packaged, signed, and made available to users via Firefox’s auto-update
system.

(a) Vulnerability announced. The Firefox developers announce the vulnerabilities
fixed in the release (Mozilla Foundation, 2010). For the majority of vulnerabili-
ties, disclosure is simultaneous with the release of the binary. However in some
cases disclosure can occur weeks later (after the security update is applied by
most users).

5. Security update applied. Once a user’s auto-update client receives an updated
version of the Firefox binary, Firefox updates itself and notifies the user that a security
update has been applied. Once the user chooses to install the update, the user is
protected from an attacker exploiting the vulnerability.

Previous work (Frei et al., 2009) has analyzed the dynamics between steps (4) and (5),
finding that the user experience and download size have a dramatic effect on the time delay
and, hence, the window of vulnerability. With a sufficiently slick update experience, browser
vendors can reduce the lag between (4) and (5) to a matter of days. Recent releases of Firefox
have an improved update experience that reduces the window of vulnerability between steps
(4) and (5).

139

However, not as much attention has been paid to the dynamics between steps (1) and
(4), likely because most people make the assumption that little or nothing is revealed about
a vulnerability until the vulnerability is intentionally disclosed in step (4). Unfortunately,
there are a number of information leaks in this process that invalidate that assumption.

6.2.2 Information Leaks in Each Stage

Each stage in the vulnerability life-cycle leaks some amount of information about vul-
nerabilities to potential attackers. For example, even the first step leaks some amount of
information because bug numbers are issued sequentially and an attacker can brute force
bug numbers to determine which are “forbidden” and hence represent security vulnerabili-
ties. Of course, simply knowing that a vulnerability was reported to Firefox does not give
the attacker much useful information for creating an exploit.

The developers leak more information when they land security patches in
mozilla-central because the mozilla-central is a public repository. It is unclear, a pri-
ori, whether an attacker will be able to find security patches landing in mozilla-central

because these security patches are landed amid a “thundering herd” of other patches (see
Figure 6.2), but if an attacker can detect that a patch fixes a security vulnerability, the
attacker can learn information about the vulnerability. For example, the attacker learns
where in the code base the vulnerability exists. If the patch fixes a vulnerability by adding
a bounds check, the attacker can look for program inputs that generate large buffers of the
checked type. In this work, we do not evaluate the difficulty of reverse engineering an exploit
from a vulnerability fix, but there has been some previous work (Brumley et al., 2008) on
reverse engineering exploits from binary patches (which is, of course, more difficult than
reverse engineering exploits from source patches).

6.3 Analysis Goals and Setup

In this section, we describe the dataset and the success metrics for the detection algo-
rithm.

6.3.1 Dataset

Set of Patches. In our experiment, we considered the complete life-cycle of Firefox 3,
which lasted over 12 months, contained 14,416 non-security patches, 125 security patches,
and 12 security updates. In particular, we use publicly available data starting from the
release of Firefox 3 and ending with the release of Firefox 3.5. Also, to strengthen our
results, we focus on the mozilla-central repository, which receives the vast majority
of Firefox development effort. We cloned the entire mozilla-central repository to our
experimental machines to identify all patches during the life-cycle of Firefox 3. We ignore
the release branches to evaluate how well our detection algorithm is able to find security fixes
amid mainline development (see Figure 6.2). Even though we initially limit our attention

140

0 50 100 150 200 250 300 350

Mozilla−Central Firefox Patch Volume

Time (days after 2008−07−17)

N
um

be
r

of
 p

at
ch

es
 p

er
 d

ay
(lo

g
sc

al
e)

1
2

5
10

10
0

10
00

●

●

●●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●
●
●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●●

●

●

● ● ● ● ● ● ● ●● ●

●

● ●●

●

●● ● ●●●

●

● ● ● ●● ●●

●●

●● ●

●

●

●

●● ●

●

● ●● ●

● ●●

●

●

●

●

●●

● ●

● ●

●

● ●●●

●

●● ●●● ● ● ●

●

● ●●

●

● ●●●●●● ● ●

●

● ●

●

●

●

Non−security patches
Security patches
Security update release dates

Figure 6.2: Attackers must find security patches within a “thundering herd” of non-security
patches.

to Firefox 3, we repeat our results on Firefox 3.5 in Section 6.5.4 and expect our results
generalize to other releases of Firefox and, more generally, to other open-source projects.

Ground Truth. We determined the “ground truth” of whether a patch fixes a security vul-
nerability by examining the list of known vulnerabilities published by Firefox (Mozilla Foun-
dation, 2010). Each CVE listed on the known vulnerability web page contains a link to one
or more entries in the Firefox bug database. At the time we crawled these bug entries
(after disclosure), the bug entries were public and contained links to the Mercurial commits
that fixed the vulnerabilities (both in mozilla-central and in the release branches). Our
crawler harvested these links and extracted the unique identifier for each patch.

The known vulnerability page dates each vulnerability disclosure, and we assume that
these disclosure dates are accurate. Each bug entry is timestamped with its creation date
and every message on the bug thread is dated as well. Finally, the mozilla-central pushlog
website contains the date and time of every change in the “pushlog,” which we also assume
is authoritative.

6.3.2 Success Metrics

Given a dataset of past patches, an attacker can label the patches based on whether
these patches have been announced as vulnerability fixes. Using these labels, the attacker
can train a statistical machine learning algorithm to predict whether a current patch fixes
an (unannounced) vulnerability. Using this machine learning algorithm, the attacker can

141

classify a new patch into one of two classes: security-sensitive and non-security-sensitive.
However, the attacker’s goal is actually not to classify each patch correctly. For example,
the attacker does not care if a detection algorithm has a high false negative rate (often incor-
rectly classifies security vulnerabilities as non-vulnerability patches) if the algorithm reliably
finds at least one security vulnerability—the attacker need only exploit one vulnerability to
compromise users’ computers.

Instead, the attacker’s goal is to build a detection algorithm that makes it easier to find at
least one (unannounced) vulnerability. In particular, we consider detection algorithms that
output a real-valued confidence for their prediction about whether a given patch is a security
patch. The attacker can use this confidence value to rank a set of patches, and then examine
the patches in rank order. In this way, the detection algorithm prioritizes which patches the
attacker should examine for exploitability. The usefulness of the detection algorithm, then,
lies in how much effort the detector saves the attacker by giving real security patches higher
priorities than non-security patches. By reducing the amount of effort the attacker must
expend to find a vulnerability, the attacker can find vulnerabilities earlier, and increase the
window of vulnerability. In particular, we formalize these notions into the following two
success metrics.

6.3.2.1 Cost of Vulnerability Discovery: Attacker Effort

Given a set of patches and a ranking function, we call the rank of the first true security
patch the attacker effort. This quantity reflects the number of patches the attacker has to
examine when searching the ranked list before finding the first patch that fixes a security
vulnerability. For example, if the third-highest ranked patch actually fixes a security vul-
nerability, then the attacker needs to examine three patches before finding the vulnerability,
resulting in an attacker effort of three. Using this metric, we can compute the percent of
days on which an attacker who expends a given effort will be able to find a security patch.

6.3.2.2 Benefit for the Attacker: Window of Vulnerability

Another metric we propose is the increase to the window of vulnerability due to the
assistance of the detection algorithm. In particular, an attacker who discovers a vulnerability
d days before the next security update increases the total window of vulnerability for Firefox
users by d days. (Notice that knowing of multiple vulnerabilities simultaneously does not
increase the aggregate window of vulnerability because knowing multiple vulnerabilities
simultaneously is redundant.)

Previous work (Duebendorfer and Frei, 2009) explores the effectiveness of browser update
mechanisms, finding that security updates take some amount of time to propagate to users.
In particular, they measured the cumulative distribution of the number of days users take to
update their browsers after security updates (Duebendorfer and Frei, 2009, Figure 3). After
about 10 days, the penetration growth rate rapidly decreases, asymptotically approaching
about 80%. By integrating the area above the CDF up to 80%, we can estimate the expected
number of days a user takes to update Firefox 3 conditioned that they are in the first 80%

142

who update. We estimate this quantity, the post-release window of vulnerability, to be 3.4
days, which we use as a baseline value for comparing windows of vulnerability.

6.3.3 Baseline: The Random Ranker

To quantify the benefit of using machine learning, we compare our detection algorithm
with a random ranker who examines available patches in a random order. This straw-man
algorithm has two key properties: (1) our attacker cost and benefit metrics are easy to
measure for the random ranker (as we detail below); (2) perhaps more importantly, the
random ranker models a real-world attacker who has access to mozilla-central but does
not have any reason to examine landed patches in any particular order.

As shown in the next two sections both expected cost and benefit metrics can be com-
puted exactly and efficiently for the random ranker, given the total number of patches and
the number of security patches.

6.3.4 Deriving Random Ranker Expected Effort

We model the random ranker as iteratively selecting patches one-at-a-time, uniformly-
at-random from the pool of patches available in mozilla-central, without replacement.
This attacker’s effort is the random number X of patches the attacker must examine up to
and including the first patch drawn that fixes a vulnerability. We summarize the cost of
using unassisted random ranking via the expected attacker effort, to be

E [X] =

(
n
ns

)−1 n−ns+1∑
x=1

x

(
n− x
ns − 1

)
, (6.1)

where n ∈ N is the total number of patches available in the pool, and 1 ≤ ns < n is the
number of these patches that fix vulnerabilities. We now derive Equation (6.1).

If the ranker’s sampling were performed with replacement, then the distribution of at-
tacker effort X would be geometric with known expectation. Without replacement, if there
are n patches in the pool, ns of which fix vulnerabilities, X has probability mass

Pr (X = x) =
(n− ns)!

(n− ns − x+ 1)!
· (n− x+ 1)!

n!
· ns
n− x+ 1

(6.2)

=

(
n− x
ns − 1

)(
n
ns

)−1

, (6.3)

for x ∈ {1, . . . , n − ns + 1} and zero otherwise. The second equality follows from some
simple algebra. The first equality is derived as follows. The probability of the first draw
being a non-security patch is the number of non-security patches over the number of patches
or (n − ns)/n. Conditioned on the first patch not fixing a vulnerability, the second draw
has probability (n − ns − 1)/(n − 1) of being non-security related since one fewer patch
is in the pool (which is, in particular a non-security patch). This process continues with

143

the kth draw having (conditional) probability (n− ns − k + 1)/(n− k + 1) of being a non-
security patch. After drawing k non-security patches, the probability of selecting a patch
that fixes a vulnerability is ns/(n− k). Equation (6.2) follows by chaining these conditional
probabilities.

With X’s probability mass in hand, the expectation can be efficiently computed for any
moderate (n, ns) pair by summing Equation (6.3).

6.3.5 Deriving Random Ranker Expected Vulnerability Window
Increase

We begin by constructing the distribution of the first day an undisclosed vulnerability
fix is found after a security update, when the random ranker is constrained to a budget b
of patches daily, and never re-examines patches. Let nt and nt,s denote the number of new
patches and new vulnerability fixes landed on day t ∈ N. Let random variable Xn

ns be the
attacker effort required to find one of ns vulnerability fixes out of a pool of n patches as
described above. Finally, let At be the event that the first vulnerability fix is found on day
t ∈ N. Then trivially

Pr (A1) = Pr
(
Xn1
n1,s
≤ b
)
.

Now we may condition on ¬A1 to express the probability of A2 occurring: if A1 does not
occur then b non-security-related patches are removed from the pool, so that the pool consists
of n1,s + n1,s vulnerability fixes and n1 + n2 − b patches total. The conditional probability
of A2 given ¬A2 is then the probability of {Xn1+n2−b

n1,s+n1,s
≤ b}. By induction we can continue

to exploit this conditional independence to yield for all t > 0

Pr (At+1 | ¬A1 ∩ . . . ∩ ¬At) = Pr

(
X

(
∑t+1
i=1 ni)−tb∑t+1

i=1 ni,s
≤ b

)
. (6.4)

The RHS of this expression is easily calculated by summing Equation (6.3) over x ∈ [b].
The unconditional probability distribution now follows from the mutual exclusivity of the
At and the chain rule of probability

Pr (At+1) = Pr (At+1 ∩ ¬At ∩ . . . ∩ ¬A1)

= Pr (At+1 | ¬At ∩ . . . ∩ ¬A1)
t∏
i=1

Pr (¬Ai | ¬Ai−1 ∩ . . . ∩ ¬A1)

= Pr

(
X

(
∑t+1
i=1 ni)−tb∑t+1

i=1 ni,s
≤ b

) t∏
j=1

(
1− Pr

(
X

(
∑j
i=1 ni)−(j−1)b∑j

i=1 ni,s
≤ b

))
.

Thus we need only compute the expression in Equation (6.4) once for each t ∈ [N],
where N is the number of days until the next security update. From these conditional
probabilities we can efficiently calculate the unconditional Pr (At) for each t ∈ [N]. Noting

144

1 2 5 10 20 50 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

PMF of Random Ranker Effort (100 patches)

Random ranker effort (log scale)

P
ro

ba
bi

lit
y

Security Patches

1
5
10
20
50

Figure 6.3: The distribution of the random
ranker’s effort X as a function of ns for n =
100, as given by Equation (6.3).

0 20 40 60 80 100

1
2

5
10

20
50

Expectation of Random Attacker Effort

Number of security patches

E
xp

ec
te

d
at

ta
ck

er
 e

ffo
rt

 (
lo

g
sc

al
e)

Patches n

n=20
n=40
n=60
n=80
n=100

Figure 6.4: The random ranker’s ex-
pected effort E [X] as a function of ns for
n ∈ {20, 40, 60, 80, 100}, as given by Equa-
tion (6.1).

that At implies an increase of Y = N − t + 1 to the window of vulnerability, the expected
increase is

E [Y] =
N∑
t=1

(N − t+ 1) Pr (At) . (6.5)

Remark 55. Notice that there can be a non-trivial probability that no vulnerability fix will be
found by the random ranker in the N day period. This probability is simply 1−

∑N
t=1 Pr (At).

On typical inter-update periods this probability can be higher than 0.5 for budgets ≈ 1. This
fact serves to reduce the expected increase to the window of vulnerability, particularly for
small budgets.

Remark 56. The astute reader will notice that we removed b non-security-related patches
from the pool on all days we do not find a vulnerability fix, irrespective of whether b or more
such patches are present. We have assumed that n is large for simplicity of exposition. Once
n drops to ns + b or lower, we remove all non-security-related patches upon failing to find
a vulnerability fix. On the next day, the probability of finding a vulnerability fix is unity.
The probabilities of finding vulnerability fixes on subsequent days are thus zero. Thus as
b increases, the distribution becomes more and more concentrated at the start of the inter-
update period as we would expect. Finally, if no vulnerability fixes are present in the pool on
a particular day, then the probability of finding such a patch is trivially zero.

145

0 100 200 300 400 500 600

1
2

5
10

20
50

10
0

Effect of Increasing Pool Size with Constant Fraction

Number of patches

E
xp

ec
te

d
at

ta
ck

er
 e

ffo
rt

 (
lo

g
sc

al
e)

Fraction of security patches

10^−2.5
10^−2

10^−1.5
10^−1

10^−0.5

Figure 6.5: The random ranker’s expected
effort E [X] as a function of n for con-
stant fractions of security patches ns/n ∈
{0.0032, 0.01, 0.032, 0.1, 0.32}, as given by
Equation (6.1).

1 2 5 10 20 50

0
5

10
15

20
25

30

Random Ranker: Vulnerability Window vs. Effort
(31 day cycle, with 39 patches landing daily)

Patches attacker is willing to examine daily (log scale)

E
xp

ec
te

d
in

cr
ea

se
 to

 v
ul

ne
ra

bi
lit

y
w

in
do

w
 (

da
ys

)

Frac. security patches

10^−2.5
10^−2
10^−1.5
10^−1
10^−0.5

Figure 6.6: The random ranker’s expected
vulnerability window increase vs. daily bud-
get, for a 31 day cycle with 39 patches daily
(the Firefox 3 averages). Benefits shown for
security patch fractions of Figure 6.5.

6.3.5.1 Understanding the Random Ranker Metrics

The probability mass and expectation of X are explored in Figures 6.3 and 6.4. For
ns = 1 the distribution of effort is uniform; and as the number of security patches increases
under a constant pool size, mass quickly concentrates on lower effort (note that in each
figure attacker effort is depicted on a log scale). Similarly the significant effect of varying
ns on the expected effort can be seen in Figure 6.4.

For constant fractions of patches that fix a security vulnerability, the expected effort to
find a security patch and the expected vulnerability window increase for a typical Firefox
3 inter-point release cycle are shown in Figures 6.5 and 6.6. In both cases effort is shown
in a log scale. The former figure shows that under a growing pool of patches with constant
fraction being security-related, the attacker effort for finding a security patch is not constant
but in fact increases as the pool expands. For a typical cycle (of length 31 days), typical
patch landing rate (of 39 patches daily) and fixed fraction of landed patches that are security-
related, Figure 6.6 shows the expected window increase as a function of the daily budget.
Again we see a great difference over increasing proportions of security patches, and the
effect of the proportion of the dependence of benefit on budget. Finally notice that the
average fraction of security-related patches for Firefox 3 is 0.0085, and so the corresponding
curves at 10−2 should approximate the performance of the random ranker for Firefox 3 as is
verified in Section 6.5. The utility of including curves at atypical security patch rates (from

146

the perspective of Firefox) is to preview the cost and benefit achieved by the random ranker
as applied to other open-source projects.

6.4 Methodology

In this section, we describe the methodology we use to analyze information leaks in the
security life-cycle. We first describe the features we observe and then outline our approach
to building a detection algorithm.

6.4.1 Features Used By the Detector

There are a number of features we could use to identify security patches. Blackhats
in the Metasploit project have used the “description” metadata to determine whether a
patch fixes a security vulnerability. Firefox patches typically reference the bug number that
they fix in their descriptions. By attempting to access the indicated bug, an attacker can
determine whether the patch references a security-sensitive bug (see Figure 6.1). When the
Firefox developers became aware of Metasploit’s actions, they took steps to obfuscate the
patch description (Veditz, 2009).

Obfuscating and de-obfuscating the patch description is clearly a cat-and-mouse game.
Instead of analyzing leaks in the patch description, we strengthen our conclusions by as-
suming that the Firefox developers are able to perfectly obfuscate the patch description.
Instead of the description, we analyze information leaks in other metadata associated with
the patch (see Figure 6.7).

• Author. We hypothesize that information about the patch author (the developer
who wrote the patch) will leak a sizable amount of information because Firefox has
a security team (Veditz, 2010) that is responsible for fixing security vulnerabilities.
Most members of the Firefox community do not have access to security bugs and are
unlikely to write security patches.

• Top-level directory. For each file that was modified by the patch, we observed the
top-level directory in the repository that contained the file. In the Firefox directory
structure, the top-level directory roughly corresponds to the module containing the
file. If a patch touches more than one top-level directory, we picked the directory that
contains the most modified files.

• File type. For each file that was modified by the patch, we observe the file’s extension
to impute the type of the file. For example, patches to Firefox often modify C++
implementation files, interface description files, and XML user interface descriptions.
If a patch touches more than one type of file, we pick the file type with the most
modified files.

• Patch size. We observe a number of size metrics for each patch, including the total
size of the diff in characters, the number of lines in the diff, the number of files in

147

Figure 6.7: An example patch from the Firefox Mercurial repository. In addition to patch
description and bug number, several features leak information about the security-related
nature of a patch.

the diff, and the average size of all modified files. Although these features are highly
correlated, the SVM’s ability to model non-linear patterns lets us take advantage of
all these features.

• Temporal. The timestamp for each patch reveals the time of day and the day of week
the patch was landed in the mozilla-central repository. We include these features
in case, for example, some developers prefer to land security fixes at night or on the
weekends.

We presented nominal features (author, top-level directory, and file type) to the SVM as
binary vectors. For example, the ith author out of N developers in the Firefox project is
represented as N − 1 zeros and a single 1 in the ith position.

Although these features are harder to obfuscate than the free-form description field, we
do not claim that these features cannot be obfuscated. Instead, we claim that there are a
large number of small information leaks that can be combined to detect security patches.
Of course, this set of features is far from exhaustive and serves only to lower bound the
attacker’s abilities.

148

6.4.2 Detection Approach

Algorithm. For our detection algorithm, we use the popular libsvm library for sup-
port vector machine (SVM) learning (Chang and Lin, 2001). Although we could improve
our metrics by tuning the learning algorithm, we choose to use the default configuration
to strengthen our conclusions—extracting basic features (as detailed above) and running
libsvm in its default configuration requires only basic knowledge of Python and no exper-
tise in machine learning.

Support vector machines perform supervised binary classification by learning a maximum-
margin hyperplane in a high-dimensional feature space (Burges, 1998; Cristianini and Shawe-
Taylor, 2000; Schölkopf and Smola, 2001). Many feature mappings are possible, and the
default libsvm configuration uses the feature mapping induced by the Radial Basis Func-
tion kernel, which takes a parameter γ that controls kernel width. The SVM takes an-
other parameter C, which controls regularization. An attacker need not know how to
set these parameters because libsvm chooses the parameters that optimize 5-fold cross-
validation estimates over a grid of (C, γ) pairs. The optimizing pair is then used to train
the final SVM model. We enable a feature of libsvm that learns posterior probability es-
timates Pr (patch fixes a vulnerability | patch) rather than security/non-security class pre-
dictions (Lin et al., 2007). We refer to these posterior probabilities as probabilities or scores.

After training an SVM on patches labeled as security or non-security, we can use the
SVM to rank a set of previously unseen patches by ordering the patches in decreasing order
of score. If the SVM is given sufficient training data, we expect the higher-ranked patches
to be more likely to fix vulnerabilities. As we show in Section 6.5, even though the SVM
scores are unsuitable for classification they are an effective means for ranking patches.

Note that detecting patches that repair vulnerabilities can be cast as learning problems
other than scalar-valued supervised classification. For example, we could take a more direct
approach via ranking or ordinal regression (although these again do not directly optimize
our primary interest: having one security patch ranked high). However, we use an SVM
because it balances statistical performance for learning highly non-linear decision rules and
availability of off-the-shelf software appropriate for data mining novices.

Online learning. To limit the detector to information available to real attackers, we
perform the following simulation using the dates collected in our data set. For each day,
starting on the day Firefox 3 was released and ending on the day Firefox 3.5 was released,
we perform the following steps:

1. We train a fresh SVM on all the patches landed in the repository between the day Fire-
fox 3 was released and the most recent security update before the current day, labeling
each patch according to the publicly known vulnerabilities list (Mozilla Foundation,
2010).1

1Note that not all security patches are disclosed as fixing vulnerabilities by the following release. Such
patches are necessarily (mis)labeled as non-security, and trained on as such. Once the true patch is disclosed,
we re-label and re-train. The net effect of delayed disclosure is a slight degradation to the SML-assisted
ranker’s performance.

149

2. We then use the trained SVM to rank all the patches landed since the most recent
security update.

After running the complete online simulation, we observe the highest ranking received by a
real vulnerability fix on each day. This ranking corresponds to the SVM-assisted attacker
effort for that day—the number of patches an attacker using the SVM would need to analyze
before encountering a security patch. For each day we also compute the expected unassisted
attacker effort as represented by Equation (6.1), using the size of that day’s available pool
of patches and number of security patches.

6.5 Results

We now present the results of searching for security patches in mozilla-central. We
first explore the discriminative power of the individual features and then compare an SVM-
assisted attacker to an unassisted attacker using a random patch ranking.

6.5.1 Feature Analysis

Analyzing Discriminative Power of Individual Features. Prior to computing the
SVM-assisted attacker effort, we analyzed the ability of individual features to discriminate
between security and non-security patches. We adopt the information theoretic information
gain ratio, which reflects the decrease in entropy of the sequence of training set class labels
when split by each individual feature. Before running the feature analysis on Firefox data,
we briefly overview background on the information gain ratio.

The information theoretic quantity known as the information gain measures how well
a feature separates a set of training data, and is popular in information retrieval and in
machine learning within the ID3 and C4.5 decision tree learning algorithms (Mitchell, 1997).

For training set S and nominal feature F taking discrete values in XF , the information
gain is defined as

Gain(S, F) = Entropy(S`)−
∑
x∈XF

|S`,x|
|S|

Entropy(S`,x) , (6.6)

where S` denotes the multiset of S’s example binary labels, S`,x denotes the subset of these
labels for examples with feature F value x, and for multiset T taking possible values in
X we have the usual definition of Entropy(T) = −

∑
x∈X

|Tx|
|T | log2

|Tx|
|T | . The first term of

the information gain, the entropy of the training set, corresponds to the impurity of the
examples’ labels. A pure set with only one repeated label has zero entropy, while a set
having half positive examples and half negative examples has a maximum entropy of one.
The information gain’s second term corresponds to the expected entropy of the training
set conditioned on the value of feature F . Thus a feature having a high information gain
corresponds to a large drop in entropy, meaning that splitting on that feature resulting in
a partition of the training set into subsets of like labels. A low (necessarily non-negative)
information gain corresponds to a feature that is not predictive of class label.

150

author top dir diff length # diff lines file type file size # diff files time of day day of week

Analysis of Individual Features' Discriminative Power

Feature

In
fo

rm
at

io
n

ga
in

 r
at

io

0.
00

00
0.

00
10

0.
00

20
0.

00
30

Figure 6.8: The features ordered by decreasing ability to discriminate between security and
non-security patches, as represented by the information gain ratio.

Two issues require modification of the basic information gain before use in
practice (Mitchell, 1997). The first is that nominal features F with large numbers of discrete
values |XF | tend to have artificially inflated information gains (being as high as log2 |XF |)
since splitting on such features can lead to numerous small partitions of the training set with
trivially pure labels. An example is the author feature, which has close to 500 values. In such
cases it is common practice to correct for this artificial inflation by using the information
gain ratio (Quinlan, 1986) as defined below. We use SF to denote the multiset of examples’
feature F values in the ratio’s denominator, which is known as the split information.

GainRatio(S, F) =
Gain(S, F)

Entropy(SF)
. (6.7)

The second issue comes from taking the idea of many-valued nominal features to the
extreme: continuous features such as the diff length (of which there are 7,572 unique values
out of 14,541 patches in our dataset) and the file size (which enjoys 12,795 unique values)
are analyzed by forming a virtual binary feature for each possible threshold on the feature.
The information gain (ratio) of a continuous feature is defined as the maximum information
gain (ratio) of any induced virtual binary feature (Fayyad, 1992).

The results of our feature analysis are presented in Figures 6.8–6.11. The individual
features’ abilities to discriminate between non-security and security patches, as measured
by the information gain ratio, are recorded in Figure 6.8. For the nominal features—author,
top-level directory, file type, and day of week—we compute the information gain ratios
directly, whereas for the continuous features—diff length, number of lines in diff, file size,
number of files, and time of day—we use the information gain ratio given by choosing the
best threshold value. The author feature has the most discriminative power, providing an
information gain ratio 1.8 times larger than the next most informative feature. The next
two most discriminative features are top-level directory and diff length, which enjoy similar

151

●

●

●

●

●
● ● ● ●

● ●
● ●

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ordered Author Values

Feature value rank

P
ro

p.
 p

at
ch

es
 th

at
 a

re
 s

ec
ur

ity
 p

at
ch

es

Nelson Bolyard (1/1)

Daniel Veditz (8/13)

Jason Duell (2/5)

timeless (1/7)

Figure 6.9: The authors who
committed security patches,
ordered by proportion of
patches that are security
patches. Top four authors are
identified with their security
and total patches along-side.

●

●

●

●

●
●

● ●
● ●

● ●
● ●

●
●

● ●

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

Ordered Top−Level Dir. Values

Feature value rank

P
ro

p.
 p

at
ch

es
 th

at
 a

re
 s

ec
ur

ity
 p

at
ch

es

rdf (1/6)

docshell (4/53)

netwerk (10/232)

caps (1/29)

Figure 6.10: The top-level
directories ordered by the
proportion of patches that
are security patches The top
four directories are identified
with their security and total
patches along-side.

0 10000 30000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDFs of Diff Lengths

Diff length in characters (zoomed)

P
ro

ba
bi

lit
y

Security patches
Non−security patches

Figure 6.11: The CDFs of
the security and non-security
diff lengths. The figure is
“zoomed” in on the left, with
the top 1,000 largest lengths
not shown.

gain ratios. The remainder of the patch size features and the file type have smaller ratios,
and the two temporal features individually contribute significantly less information.

Furthermore, we show that each individual feature alone does not provide significantly
high discriminative power. This observation follows from the maximum information gain
ratio (belonging to author) being tiny: 3 × 10−3. To add credence to these numbers, we
note also that the unnormalized information gains have a similar ordering with the author
feature coming out on top with an information gain of 2 × 10−2, which corresponds to a
small change in entropy. To summarize, we offer the following remark.

Remark 57. Some features provide discriminative power for separating security patches
from non-security patches, with author, top-level directory, and diff length among the most
discriminative. However, individually, no feature provides significant discriminative power
for separating security patches from non-security patches.

Analysis of Discriminating Features. To give intuition why some features provide
discriminating power for security vs. non-security patches, we analyze in more detail the
three most discriminative features: the author, top-level directory, and diff length.

152

For the author and top-level directory features, we analyze their influential feature values.
For each occurring feature value, we compute its proportion value: the number of patches
with that feature value and are security sensitive divided by the total number of patches
with that feature value. Figures 6.9 and 6.10 depict the influential feature values for the
authors and top-level directory features by ranking the feature values by their proportion
values. During the life-cycle of Firefox 3, a total of 516 authors contributed patches out
of which 38 contributed at least one security patch. In Figure 6.9, we show only the 38
authors who wrote at least one security patch and omit the remaining 478 authors who did
not write any security patches. Notice that the top four authors (labeled) are all members
of the Mozilla Security Group (Veditz, 2010).

To explore the third most individually discriminative feature, the continuous diff length,
we plot the feature CDFs for security and non-security patches in Figure 6.11. When all diff
lengths are displayed, the CDFs resemble step-functions because the diff length distribution
is extremely tail heavy. Figure 6.11 zooms in on the left portion of the CDF by plotting
the curves for the first 6, 500 (out of 7, 500) unique diff lengths. From the relative positions
of the CDFs, we observe that security patches have shorter diff lengths than non-security
patches. This matches our expectations that patches that add features to Firefox require
larger diffs.

Although our feature analysis identifies features that are individually more discriminative
than others, the analysis also shows that no individual feature effectively predicts whether
a patch is security-related. This observation demonstrates that motivated attackers should
look to more sophisticated statistical techniques (such as an SVM) to reduce the effort
required to find security patches and suggests that obfuscating individual features will not
plug information leaks in the open-source life-cycle. Moreover certain features cannot be
effectively obfuscated. For example, the Mozilla Committer’s Agreement would be violated
if developer names were redacted from mozilla-central.

6.5.2 Classifier Performance

Figure 6.12 depicts the time series of scores assigned to each patch by the SVM (the
horizontal axis shows the day when each patch is landed in the repository starting at 2008-
09-24; at which point security patches were first announced). Note that as mentioned in
Section 6.4.2, we use an online learning approach, so the score assigned to a patch is only
computed using the SVM trained with labeled patches seen up to the most recent security
update before the day the patch is landed in the repository (and including any out-of-release
delayed disclosures occurring before the patch is landed). Notice that the scores for security
and non-security patches in the first 50 days are quite similar. Over time, the SVM learns
to assign high scores to a handful of vulnerability fixes (and a few non-security patches) and
low scores to a handful of non-security patches. However, many patches are assigned very
similar scores of around 0.01 irrespective of whether they fix vulnerabilities.

Viewed as a binary classifier, the SVM performs quite poorly because there is no sharp
threshold that divides security patches from non-security patches. However, when viewed
in terms of the attacker’s utility, the SVM might still be useful in reducing effort because

153

●●
●●
●

●●

●●
●●●●●●●●
●●●

●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●

●●
●●●
●●
●

●
●●●●
●●●●●●●●●●●●

●

●

●●

●●

●

●
●●●●

●

●

●●
●●●
●●●●●
●

●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●
●●●●●
●
●●●

●

●●
●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●

●
●

●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●

●

●●
●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●

●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●

●
●●
●●

●●●

●

●●
●●●●●●●●●
●
●

●

●●●
●●●●●●●●●●●●●●●●●●

●●●●●●

●●
●●●
●●●●●●
●●●●●

●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●
●●●●●●●●●●●
●●●●●●●●●●●

●
●
●●●

●
●

●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●
●

●
●●
●●●●●●●●●●●●

●

●

●

●●●●●

●
●

●●●●●●●●
●●

●●●●●●●●

●

●●●
●●●●
●

●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●

●
●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●

●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●
●

●●●

●

●●●
●●●●●●●●●●
●●●●

●
●
●●
●
●●
●●●●●●●●●●●●●●●●

●●
●●

●

●

●●●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●

●●●●●●●●●●●
●●
●●
●●●●
●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●
●●●●
●●●●●●●●●●●●●●●●●●

●●●
●

●
●
●●●●●●●●●●●●●●●●●●●●
●

●●
●●

●●●●●●●●●●●●●●●●●●
●
●
●

●●
●●●
●●●●●●●

●
●
●●●●
●●●●●●●●●●●

●
●
●

●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●

●

●●●●
●●

●

●●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●

●●●●●●

●●
●●●●●

●
●
●●●●●

●

●

●
●

●●●●●●●●●

●
●
●

●●●
●

●●
●
●

●●●

●●

●●●●●●●

●
●●

●

●●

●●●

●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●●

●●
●
●●
●●●
●

●●
●

●●

●●
●●●
●

●●

●

●

●●●

●

●

●

●
●
●
●●●●●
●

●
●
●●●

●●●

●●

●●

●●●

●●

●

●

●

●

●

●●●

●

●●

●

●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●
●●●
●
●●
●

●●●●●●

●●●

●
●

●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●

●

●●

●●
●

●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●
●●●●
●●
●
●
●●●●●

●●
●●

●
●●●●●●

●●●●●●●
●●
●●●●●●●●●
●●●●

●●●
●
●●●●●●●
●●
●●●●

●

●●

●

●
●●●●●●●

●

●●
●
●●●●

●●●
●●

●

●

●

●●●●

●●●
●●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●

●●●
●
●
●
●●●●●●
●●●
●●●●●●●●

●●●●●

●
●

●

●

●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●
●
●
●
●●●

●
●●●●●●●
●●
●●●●●

●

●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●●●

●●

●

●●
●●●●
●●●●●●●●●●
●●●●●●●●●

●●●●●
●●
●●
●●●●
●●●
●

●●●

●●

●●●

●

●

●

●●●●●●
●●
●●●●●●●●●●

●
●
●
●●●●
●●●●●●●●
●●
●●
●●●●

●

●●●●●●●●●●●●●●●
●●●
●●●●●●●●

●
●●
●●
●
●●●●●

●●
●●

●●

●●

●

●●●

●●●●●●
●●●●●●●●●●

●

●●●

●●●●●●
●
●●●
●●●●

●●●●

●●

●

●

●●●●

●●

●●●●

●●●

●

●

●
●●

●

●●●●●●●●●●●
●●●●●●●

●
●●

●●●●
●

●●●

●

●

●
●

●●●●●●●●●●●●●●●●●●
●●
●
●
●●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●
●

●●●●●●

●●●●●●●●●●●●●●●●●●●
●
●●

●

●●●
●●●
●●●
●

●●

●
●●●●

●
●
●●●
●

●
●

●●

●
●●

●●

●

●
●●●
●
●●●●●●●
●
●●
●
●

●

●

●
●

●●●
●●●●
●●
●

●
●●
●●
●

●●●●●●●

●●●●
●●

●

●

●●●●●●●●●●●●●
●●●●
●
●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●

●●●●●

●

●●

●

●
●●●●●●
●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●
●●
●●●

●●

●
●●●●●

●
●
●

●

●●●

●●●●

●

●●●●●●●

●●●●●
●●●●●

●●●
●●●●●●●●●●●●●●●●●●
●●●●●●

●●

●

●

●●●●●
●●
●●●●●

●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●
●●

●

●●

●

●●

●
●
●●●

●●●
●
●
●

●●●●●
●●●

●
●●●

●●●●●●●●
●
●●●●●●●●●●

●●●●●
●
●●●●●●

●●

●●●●●
●
●●●●
●●●
●●●
●●
●

●●●
●
●●

●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●

●●
●●
●●●●●●●●●●●●●●
●●●●●

●
●●
●

●

●
●●●
●
●

●

●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●

●●●
●●●

●
●

●
●●●●●●●●●●●

●
●●●

●●●
●●●●●●

●●●

●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●
●

●
●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●

●

●

●●
●●●●●
●
●●●●●
●●●●●●

●

●

●●●●●●●
●

●
●

●

●

●●●
●
●

●●
●
●

●

●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●

●●●

●●

●

●
●●
●●●●●●●●
●●●
●

●●
●●
●
●

●●

●●

●●
●●●●●●●●

●●

●●

●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●

●●

●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●
●●●
●

●

●

●●
●●●●●

●●●
●
●●●●●●●●●●●●●●●●●●●●
●

●
●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●
●●●●

●

●

●●●●●●●
●●●●●●●
●●●●
●●●●●●
●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●

●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●

●●●

●

●
●●

●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●

●

●●●●●●●
●●●●●●●

●
●●
●●●

●●●●●●●●●●●●●●

●●●●●●●●●
●●●

●

●●●●●
●●●
●

●●●●

●
●●

●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●

●

●

●
●●

●

●

●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●

●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●

●●
●

●

●

●

●
●●
●●
●●

●

●●●●●●●●
●●●●
●●●●●●●●●
●●●●●
●

●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●

●

●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●●

●

●

●

●●●
●
●
●●●●●●●●●●
●

●●
●●

●

●

●●●
●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●
●●●

●●●●
●●

●

●

●

●●●
●●
●●●●●●
●
●●

●
●●

●

●

●●●●
●
●
●●●●●●●●
●●
●●●●●●●●●

●
●

●

●

●
●●

●
●●●

●

●
●●●
●

●●●●
●
●●●●●●●●●●●●
●●●●●
●
●
●●●●●
●

●●
●
●●●●●●●●●●●●●●
●●

●●●●●●●●●●
●

●●

●●●

●

●●●
●
●

●●●

●

●

●
●●●

●●●
●

●

●●●●●●●●●●
●
●
●●●●●
●●●●●●
●●●●●●
●
●
●

●

●●●●●●
●
●●●●
●●●●●●●●

●●●

●

●●

●

●●●●●●●●●●
●●
●●●
●

●
●●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●
●●
●●●●●●●●

●

●●●

●

●●

●●●
●●

●●

●●●●

●●

●

●

●

●●●
●●
●●●●●●●●●●●●●●●●
●

●●

●

●

●●

●●●
●●●

●●●●●

●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●
●
●

●

●
●
●●●●

●●●
●●
●●●
●

●

●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●
●●●●●
●●
●●

●

●●●●●

●

●

●

●●
●●●
●
●●
●●

●●●●●●●

●●●●
●●
●●
●

●●●●

●

●●

●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●
●●●●●●

●●●

●●

●

●

●●●●●●●●●●●●
●●●●●●
●●●●●●
●
●

●

●

●●

●

●

●

●
●
●●●●●●●●●●●●●●

●
●●

●

●

●

●●●●●●●●●

●●●●●
●
●●●●●
●
●

●

●

●●●
●
●●
●
●●●●●
●●●●

●

●

●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●
●●●

●
●
●

●●●●
●
●●
●
●
●
●
●●

●

●●
●
●●●
●●●●
●

●

●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●

●

●

●
●●

●
●

●

●

●

●●
●●

●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●

●●●●●●●●●●●●●
●●●●●●
●

●
●

●
●

●●
●●●●●●●●●●●
●●●●●●
●●●●●●●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●

●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●
●●
●

●●

●●

●

●
●●●

●●

●
●

●

●
●●●
●●●●●●●●●●●●●

●●●●

●
●●

●
●●●●●●
●●●●●●●●●●●●●●
●●●
●●●●●●●●
●
●●
●●●●

●

●
●●●●●●●

●●●●●●●

●●

●

●●

●
●●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●
●●●●●

●

●

●

●●

●●●
●●●●●●●●
●●
●●
●●

●

●●●
●●●●●●●●●●

●●●
●●
●

●

●

●

●●
●●●
●

●●
●

●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●
●

●●
●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●

●●
●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●●●●●●●●●●●●●
●●●
●

●●●

●●

●●●●●●●

●●

●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●

●●

●

●●

●
●●

●
●

●●●●●●●●●●●●●●
●●
●●●●●●●●●

●●●●

●
●●●●●●●●●●●●●●●●●●●
●●●●●
●

●
●
●●

●

●
●
●●
●
●●

●

●
●●●●●●●●●●●●●●
●●●
●

●

●●●
●●●●●●
●●●
●●

●
●

●

●
●●
●●●●●

●
●●●●●●●
●●●
●

●●
●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●
●
●●
●
●

●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●

●●●●●●

●●●
●●

●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●

●●●

●●●●
●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●
●

●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●●●

●

●
●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●
●

●
●

●

●●
●

●●●

●●
●●

●●

●
●
●●
●●

●

●

●

●●●●

●
●●●●●●●●●●●●●●●
●●●
●

●●

●

●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●

●●

●●

●●

●

●

●
●●

●
●

●●
●

●

●
●●
●●

●

●

●●●

●
●●●●●●●●
●●●

●

●

●●
●
●●●●●
●●●●●
●●

●●
●●●●●●●●●●●●●●
●●●●
●

●
●

●●
●
●

●

●

●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●

●

●
●●●●●
●●●●●

●
●

●●●●●
●
●
●
●●

●●●
●

●

●●

●●●●●●●●●●●●●
●●●●●●●●●

●

●
●●

●

●●

●
●●
●●

●

●
●●●●●●●
●●●●●●●●

●
●

●

●●●●
●
●●●

●

●●●●●●●●●
●●●
●

●

●
●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●

●

●●●
●●●●●
●●●●

●

●●

●●●●●●●●●●●●●●●
●●

●

●●●●

●
●●●●●●●●●●●●●●

●●●●

●●
●●
●●

●●●
●●

●

●●●
●●●●●●●
●
●
●●

●

●

●●●

●
●●●
●●
●●●

●

●

●●●●●●●●●●●●●●●●●●●●
●●●●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●●●●●●●
●●●●
●●●●●●

●●
●●

●

●●

●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●
●●●●●
●
●
●●●
●

●●●

●
●
●●●●●●●
●●
●●●●●●●
●●●●
●●●●
●●

●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●

●

●
●●●●●●●●●●

●●●●●
●●●●●●

●●●●●

●●
●●

●●●●●●

●●●

●

●

●

●

●
●
●●●

●
●●●●●●●

●

●

●●●●●●●●●●●●●●●●
●●

●●●●●●●●●
●●●●●●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●

●

●●

●●●●●●●
●●●
●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●
●
●●
●●

●●

●●●●●●
●●●●●

●

●

●●●●
●●●●●●●●●●●●●●●●●●

●●●●●

0 50 100 150 200 2501e
−

05
1e

−
03

1e
−

01

SVM Probability Estimates

Time (days after 2008−09−24)

P
ro

ba
bi

lit
y

of
 b

ei
ng

 a
 s

ec
ur

ity
 p

at
ch

 (
lo

g
sc

al
e)

●●
●●

●●

●●
●●●●●●●●
●●●

●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●●
●●●
●●

●
●●●●
●●●●●●●●●●●●

●

●

●●

●●

●

●
●●●●

●

●

●●
●●●
●●●●●
●

●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●
●●●●●
●
●●●

●

●●
●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●

●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●

●●
●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●

●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●

●
●●
●●

●●●

●

●●
●●●●●●●●●
●
●

●

●●
●●●●●●●●●●●●●●●●●●

●●●●●●

●●
●●●
●●●●●●
●●●●●

●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●
●●●●●●●●●●●
●●●●●●●●●●●

●
●
●●●

●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●
●●

●
●●
●●●●●●●●●●●●

●

●●●●●

●
●

●●●●●●●●
●●

●●●●●●●●

●

●●●
●●●●
●

●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●

●
●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●

●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●
●

●●●

●

●●●
●●●●●●●●●●
●●●●

●
●
●●
●
●●
●●●●●●●●●●●●●●●●

●●
●●

●

●●●●●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●

●●●●●●●●●●●
●●
●●
●●●●
●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●
●●●●
●●●●●●●●●●●●●●●●●●

●●●
●

●
●●●●●●●●●●●●●●●●●●●●
●

●●
●●

●●●●●●●●●●●●●●●●●●
●
●
●

●●
●●●
●●●●●●●

●
●●●●
●●●●●●●●●●●

●
●
●

●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●

●

●●●●
●●

●●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●

●●●●●●

●●
●●●●●

●
●
●●●●●

●

●

●●●●●●●●●

●
●
●

●●●
●

●●
●
●

●●●

●●

●●●●●●●

●
●●

●

●●

●●●

●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●●

●●
●
●●
●●●
●

●●
●

●

●●
●●●
●

●●

●

●

●●●

●

●

●
●
●
●●●●●
●

●
●
●●●

●●●

●●

●●

●●●

●●

●

●

●

●

●

●●●

●

●●

●

●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●
●●●
●
●●
●

●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●

●

●●

●●
●

●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●
●●●●
●●
●
●
●●●●●

●●
●●

●
●●●●●●

●●●●●●
●●
●●●●●●●●●
●●●●

●●●
●
●●●●●●●
●●
●●●●

●

●●

●

●
●●●●●●●

●●
●
●●●●

●●●
●●

●

●

●

●●●●

●●●
●●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●

●●●
●
●
●
●●●●●●
●●●
●●●●●●●●

●●●●●

●
●

●

●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●
●
●
●
●●●

●
●●●●●●●
●●
●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●
●●●●●●

●●

●

●
●●●●
●●●●●●●●●●
●●●●●●●●●

●●●●●
●●
●●
●●●●
●●●
●

●●●

●●

●●●

●

●

●

●●●●●●
●●
●●●●●●●●●●

●
●
●
●●●●
●●●●●●●●
●●
●●
●●●●

●

●●●●●●●●●●●●●●●
●●●
●●●●●●●●

●
●●
●●
●
●●●●●

●●
●●

●●

●●●

●●●●●●
●●●●●●●●●●

●

●●●

●●●●●●
●
●●●
●●●●

●●●●

●●

●

●●●●

●●

●●●●

●●●

●

●

●
●●

●

●●●●●●●●●●●
●●●●●●●

●
●●

●●●●
●

●●●

●

●
●

●●●●●●●●●●●●●●●●●●
●●
●
●
●●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●
●

●●●●●●

●●●●●●●●●●●●●●●●●●●
●
●●

●

●●●
●●●
●●●
●

●●

●
●●●●

●
●
●●●
●

●
●

●●

●
●●

●●

●

●
●●●
●
●●●●●●●
●
●●
●
●

●

●

●
●

●●
●●●●
●●
●

●
●●
●●
●

●●●●●●●

●●●●
●●

●

●

●●●●●●●●●●●●●
●●●●
●
●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●

●●●●●

●

●●

●

●
●●●●●●
●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●
●●
●●
●●●

●●

●●●

●
●
●

●

●●

●●●●

●

●●●●●●●

●●●●●
●●●●●

●●●
●●●●●●●●●●●●●●●●●●
●●●●●●

●●

●

●

●●●●●
●●
●●●●●

●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●
●●

●

●●

●

●●

●
●
●●●

●●●
●
●
●

●●●●●
●●●

●
●●●

●●●●●●●●
●
●●●●●●●●●●

●●●●●
●
●●●●●●

●●

●●●●●
●
●●●●
●●●
●●●
●●
●

●●●
●
●●

●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●

●●
●●
●●●●●●●●●●●●●●
●●●●●

●
●●
●

●

●●●
●
●

●

●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●

●●●
●●●

●
●

●●●●●●●●●●●

●
●●●

●●●
●●●●●●

●●●

●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●
●

●
●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●

●

●

●●
●●●●●
●
●●●●●
●●●●●●

●

●

●●●●●●●
●

●
●

●

●

●●●
●
●

●●
●
●

●

●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●
●●●●

●●●

●●

●

●
●●
●●●●●●●●
●●●
●

●●
●●
●
●

●●

●●
●●●●●●●●

●●

●●

●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●

●●

●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●
●●●
●

●

●

●●●●●

●●●
●
●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●
●●●●

●

●

●●●●●●●
●●●●●●●
●●●●
●●●●●●
●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●

●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●

●●●

●

●
●●

●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●

●

●●●●●●●
●●●●●●●

●
●●
●●●

●●●●●●●●●●●●●●

●●●●●●●●●
●●●

●

●●●●●
●●●
●

●●●●

●
●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●

●

●

●

●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●

●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●

●

●●
●

●

●

●
●●
●●
●●

●

●●●●●●●●
●●●●
●●●●●●●●●
●●●●●
●

●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●

●

●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●

●●

●

●

●●●
●
●
●●●●●●●●●●
●

●●
●●

●

●

●●●
●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●
●●●

●●●●
●●

●

●

●●●
●●
●●●●●●
●
●●

●
●●

●

●

●●●●
●
●
●●●●●●●●
●●
●●●●●●●●●

●
●

●

●

●
●●

●
●●●

●

●
●●●
●

●●●●
●
●●●●●●●●●●●●
●●●●●
●
●
●●●●●
●

●●
●
●●●●●●●●●●●●●●
●●

●●●●●●●●●●
●

●●

●●●

●

●●●
●
●

●●●

●

●

●
●●●

●●●
●

●

●●●●●●●●●●
●
●
●●●●●
●●●●●●
●●●●●●
●
●
●

●

●●●●●●
●
●●●●
●●●●●●●●

●●●

●

●●

●

●●●●●●●●●●
●●
●●●
●

●
●●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●
●●
●●●●●●●●

●

●●●

●

●●

●●●
●●

●●

●●●●

●

●

●●●
●●
●●●●●●●●●●●●●●●●
●

●●

●

●

●●

●●●
●●●

●●●●●

●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●
●
●

●

●
●
●●●●

●●●
●●
●●●
●

●

●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●
●●●●●
●●
●●

●

●●●●●

●●
●●●
●
●●
●●

●●●●●●●

●●●●
●●
●●
●

●●●●

●

●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●
●●●●●●

●●●

●●

●

●

●●●●●●●●●●●●
●●●●●●
●●●●●●
●
●

●

●

●●

●

●

●

●
●
●●●●●●●●●●●●●●

●
●●

●

●

●

●●●●●●●●●

●●●●●
●
●●●●●
●
●

●

●●●
●
●●
●
●●●●●
●●●●

●

●

●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●
●●●

●
●
●

●●●●
●
●●
●
●
●
●
●●

●

●●
●
●●●
●●●●
●

●

●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●

●
●●

●
●

●

●

●●
●●

●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●

●●●●●●●●●●●●●
●●●●●●
●

●
●

●
●

●●
●●●●●●●●●●●
●●●●●●
●●●●●●●

●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●
●●
●

●●

●●

●
●●●

●●

●
●

●
●●●
●●●●●●●●●●●●●

●●●●

●
●●

●
●●●●●●
●●●●●●●●●●●●●●
●●●
●●●●●●●●
●
●●
●●●●

●

●
●●●●●●●

●●●●●●●

●●

●

●●

●
●●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●
●●●●●

●

●

●●●
●●●●●●●●
●●
●●
●●

●●●
●●●●●●●●●●

●●●
●●
●

●

●

●●
●●●

●●

●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●
●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●

●●●●●●●●●●●●●
●●●

●●●

●●

●●●●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●●●●●●●●

●●

●●●●●●●●●●●●●●●●

●●

●

●
●●

●
●

●●●●●●●●●●●●●●
●●
●●●●●●●●●

●●●●

●
●●●●●●●●●●●●●●●●●●●
●●●●●
●

●
●
●●

●

●
●
●●
●
●●

●

●
●●●●●●●●●●●●●●
●●●
●

●

●●●
●●●●●●
●●●
●●

●
●

●

●
●●
●●●●●

●
●●●●●●●
●●●
●

●●
●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●
●
●●
●
●

●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●

●●●●●●

●●●
●●

●
●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●

●●●

●●●●
●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●
●

●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●●●

●

●
●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●
●

●
●

●

●●
●

●●●

●●
●●

●●

●
●●
●●

●

●

●

●●●●

●
●●●●●●●●●●●●●●●
●●●
●

●●

●

●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●

●●●

●●

●●

●

●
●●

●
●

●●
●

●

●
●●
●●

●●●

●
●●●●●●●●
●●●

●

●●
●
●●●●●
●●●●●
●●

●●
●●●●●●●●●●●●●●
●●●●
●

●
●

●●
●
●

●

●

●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●

●

●
●●●●●
●●●●●

●
●

●●●●●
●
●
●
●●

●●●
●

●

●●

●●●●●●●●●●●●●
●●●●●●●●●

●

●
●●

●

●●

●
●●
●●

●

●
●●●●●●●
●●●●●●●●

●
●

●

●●●●
●
●●●

●

●●●●●●●●●
●●●
●

●

●
●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●
●●

●

●●●
●●●●●
●●●●

●

●●

●●●●●●●●●●●●●●●
●●

●

●●●●

●
●●●●●●●●●●●●●●

●●●●

●●
●●
●●

●●●
●●

●

●●●
●●●●●●●
●
●
●●

●

●

●●●

●
●●●
●●
●●●

●

●

●●●●●●●●●●●●●●●●●●●●
●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●
●●●●
●●●●●●

●●
●●

●

●●

●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●
●●●●●
●
●
●●●
●

●●●

●
●●●●●●●
●●
●●●●●●●
●●●●
●●●●
●●

●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●

●

●
●●●●●●●●●●

●●●●●
●●●●●●

●●●●●

●●
●●

●●●●●●

●●●

●

●

●

●

●
●
●●●

●
●●●●●●●

●

●

●●●●●●●●●●●●●●●●
●●

●●●●●●●●●
●●●●●●

●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●

●

●●

●●●●●●●
●●●
●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●
●
●●
●●

●●

●●●●●●
●●●●●

●

●

●●
●●●●●●●●●●●●●●●●●●

●●●●●

●●●

●●

●
●

●●

●
●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●●●●

●

●●●● ●●

●●

● ●
●
●●● ●

●

●

●●
●●

●

●

● ●
●●

●

● ●
●

●
●

●●

●

●

●

●●●

●

●
●

●

●

●● ●

●●
●

●

●●● ● ● ● ●●
●

● ●●●●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●

Security patches
Non−security patches
Release dates

Figure 6.12: The time series of SVM probability estimates, with security patches and non-
security patches delineated by color.

the relative rankings of the vulnerability fixes are generally higher than most non-security
patches. We make this notion precise in the next subsection.

Remark 58. When used as a classifier, the SVM classifier performs poorly. However,
attacker effort depends only on the relative patch rankings assigned by the detector and is
not necessarily affected by poor absolute predictive performance.

6.5.3 Cost-Benefit of SVM-Assisted Vulnerability Discovery

6.5.3.1 Attacker Effort

Figure 6.13 shows the time series of the effort the attacker expends to find a vulner-
ability (as measured by the number of patches the attacker examines), as described in
Section 6.3.2.1. The attacker effort measured for a given day is computed to reflect the fol-
lowing estimate. Imagine, for example, an attacker who “wakes up” on a given day, trains
an SVM on publicly available information (including all labeled patches before the current
day), and then starts looking for security patches among all the (unlabeled) patches landed
in the repository since the most recent security update, in rank order provided by the SVM.
Then the attacker effort measured for a given day is the number of patches that the attacker
has to examine before finding a security patch using the rank order provided by the SVM.

Each continuous segment in the graph corresponds to one of the 12 security updates
during our study. For a period of time after each release, there are no security patches
in mozilla-central, which is represented on the graph as a gap between the segments.

154

0 50 100 150 200 250

1
2

5
10

20
50

20
0

50
0

Attacker Effort Time Series

Time (days after 2008−09−24)

A
tta

ck
er

 e
ffo

rt
 (

lo
g

sc
al

e)

SVM−assisted
Random ranker
Release events

Figure 6.13: The attacker effort (number of patches to check before finding a vulnerability)
of the SVM, and the expected attacker effort of the random ranker, as a function of time.

For the first 50 days of the experiment both the random ranker and the SVM-assisted
attacker expend relatively large amounts of effort to find security patches. This poor initial
performance of the SVM, also observed in Figure 6.12, is due to insufficient training. The
SVM, like any statistical estimator, requires enough data with which to generalize.

Remark 59. During the latter 2/3rds of the year (the 8 month period starting 50 days after
2008-09-24) the SVM-assisted attacker, now with enough training data, regularly expends
significantly less effort than an attacker who examines patches in a random order.

Note. Given the “warm-up” effects of the first 50 days when the SVM has insufficient
training data, all non-time-series figures in the sequel are shown using the data after 2008-
11-13.

The general cyclic trends of the SVM-assisted and random rankers are also noteworthy.
In most inter-update periods, the random ranker enjoys a relatively low attacker effort
(though higher than the SVM’s) which quickly increases. The reason for this behavior
can be understood by plotting the expected effort for the random ranker with respect to
the number of security patches for various total patch pool sizes as shown in Figure 6.4.
Immediately after the landing of a first post-update security patch, the pool of available
patches gets swamped by non-security patches (cf. Figure 6.2), corresponding to increasing
n in Figure 6.4 and greatly increasing the expectation. Further landings of security patches
are few and far between (by virtue of the rarity of such patches), and so moving across the
figure with increasing ns is rare. As the periods progress, non-security patches continue to

155

1 2 5 10 20 50 100 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDFs of Attacker Efforts − From 2008−11−13

Attacker effort (log scale)

P
ro

po
rt

io
n

of
 ti

m
e

SVM−assisted
Random ranker
Security patch exists

Figure 6.14: The cumulative distribution
functions of the attacker effort displayed
in Figure 6.13, from 11/13/2008 onwards.
CDFs are shown for both the SVM and the
random ranker.

1 2 5 10 20 50 100

0
50

10
0

15
0

20
0

Vulnerability Window vs. Attacker Effort

Patches attacker is willing to examine daily (log scale)

To
ta

l i
nc

re
as

e
to

 v
ul

ne
ra

bi
lit

y
w

in
do

w
 (

da
ys

)

SVM−assisted
Random ranker

Figure 6.15: The total increase to the vul-
nerability window size throughout the year,
for a given level of daily attacker effort
with or without SVM assistance. Results
trimmed to 11/13/2008 onwards.

swamp security patches. This trend for the random ranker’s expected effort is more directly
seen in Figure 6.5, which plots expected effort over an prototypical cycle of Firefox 3. Over
the single 31 day cycle, 39 patches land daily of which a constant proportion are security
patches. The curve for 10−2 most closely represents Firefox 3 where the security patch rate
is 0.0085 of the total patch rate. The trend observed empirically in Figure 6.13 matches
both the overall shape and location of the predicted trend.

At times early on in the inter-release periods, the SVM-assisted attacker experiences
the same upward trending effort, but eventually the developers land a security patch that
resembles the training data. Given just one “easy” fix, the effort required of the SVM-
assisted attacker plummets. In two cycles (and partially in two others) the SVM-assisted
attacker must expend more effort than the random ranker. This is due to a combination
of factors including the small rates of landing security patches which means that the only
unreleased security patches may not resemble previous training data.

6.5.3.2 Proportion of Days of Successful Vulnerability Discovery

Figure 6.14 depicts the cumulative distribution function (CDF) of attacker effort (Fig-
ure 6.13), showing how often the SVM-assisted and random ranker can find a security patch
as a function of effort. Note that the CDFs asymptote to 0.90 rather than 1.0 because
mozilla-central did not contain any security patches during 10% of the 8 month period.

156

Remark 60. The SVM-assisted attacker discovers a security patch with the first examined
patch for 34% of the 8 month period. Moreover by examining only 2 patches, the SVM-
assisted attacker can find security patches over 39% of the period.

If the unassisted attacker expends the minimum effort of 18.5, it can only find security
patches for less than 0.5% of the 8 month period. By contrast, an SVM-assisted attacker
who examines 17 patches will find a security patch during 44% of the period. In order to
find security patches for 22% of the 8 month period, the random ranker must examine on
average up to 70.3 patches. The SVM-assisted attacker achieves significantly greater benefit
than an attacker who examines patches in random order, when small to moderate numbers
of patches are examined (i.e., up to 100 patches).

When examining 100 or more patches, the SVM-assisted and random rankers find secu-
rity patches for similar proportions of the 8 month period, with the random ranker achieving
slightly better performance.

6.5.3.3 Total Increase in the Window of Vulnerabilities

Although the CDF of attacker effort measures how hard the attacker must work in
order to find a patch that fixes a vulnerability, the CDF does not measure how valuable
that vulnerability is to an attacker. In Figure 6.15, we estimate the value of discovering a
vulnerability by measuring the total increase in the window of vulnerability gained by an
attacker who expends a given amount of effort each day (as described in Section 6.3.2.2).
Note that this differs from the previous section by considering an attacker who aggregates
work over multiple days, and who does not re-examine patches from day-to-day.

Remark 61. At 1 or 2 patches examined daily over the 8 month period, the SVM-assisted
attacker increases the window of vulnerability by 89 or 148 days total, respectively. By
contrast the random ranker must examine 3 or 7 patches a day (roughly 3 times the work) to
achieve the approximate same benefit. At small budgets of 1 or 2 patches daily, the random
ranker achieves window increases of 47 or 82 days which are just over half the SVM-assisted
attacker’s benefits. At higher daily budgets of 7 patches or more, the two attackers achieve
very similar benefits with the random ranker’s being slightly (insignificantly) greater.

Compared to the Firefox 3 base-line vulnerability window size of 3.4 days (see Sec-
tion 6.3.2.2), the increases to window size of 89 and 148 represent multiplicative increases
by factors of 3.9 and 6.4 respectively.

6.5.3.4 In Search of Severe Vulnerabilities

Thus far, we have treated all vulnerabilities equally. In reality, attackers prefer to ex-
ploit higher severity vulnerabilities because those vulnerabilities let the attacker gain more
control over the user’s system. To evaluate how well the attacker fairs at finding severe
vulnerabilities—those labeled as either “high” or “critical” in impact (Adamski, 2009)—we
measure the attacker effort required to find the first high or critical vulnerability (that is,
we ignore “low” and “moderate” vulnerabilities). Note that we did not re-train the SVM

157

0 50 100 150 200 250

1
2

5
10

20
50

10
0

Attacker Effort Time Series − Severe Vulnerability Discovery

Time (days after 2008−09−24)

A
tta

ck
er

 e
ffo

rt
 (

lo
g

sc
al

e)

SVM−assisted
Random ranker
Release events

Figure 6.16: The time series of SVM-assisted and random ranker effort for finding severe
(high or critical level) vulnerabilities.

1 2 5 10 20 50 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDFs of Attacker Efforts (Severe Vulnerabilities)

Attacker effort (log scale)

P
ro

po
rt

io
n

of
 ti

m
e

SVM−assisted
Random ranker
Security patch exists

Figure 6.17: The CDFs of the SVM-assisted
and random ranker efforts for discover-
ing severe vulnerabilities, from 11/13/2008
onwards.

1 2 5 10 20 50 100

0
50

10
0

15
0

20
0

Severe Vulnerability Window vs. Attacker Effort

Patches attacker is willing to examine daily (log scale)

To
ta

l i
nc

re
as

e
to

 v
ul

ne
ra

bi
lit

y
w

in
do

w
 (

da
ys

)

SVM−assisted
Random ranker

Figure 6.18: Total increase to the vulnera-
bility window for finding severe vulnerabili-
ties given levels of daily attacker effort, from
11/13/2008 onwards.

on severe vulnerabilities even though re-training could lead to better results for the special

158

case of discovering high-severity vulnerabilities. Figures 6.16–6.18 present our results for
finding severe vulnerability fixes. The attacker effort time series for the SVM-assisted and
random ranker is displayed in Figure 6.16. Overall, attacker effort curves are similar for all
vulnerabilities, just shifted upwards away from 1 during several inter-update periods.

We can interpret the effect of focusing on severe vulnerabilities by examining the attacker
effort CDFs in Figure 6.17. Although both attackers asymptote to the lower proportion of
the period containing severe vulnerability fixes (down from 90% for identifying arbitrary
vulnerabilities to 86%), only the random ranker’s CDF is otherwise relatively unchanged.
The random ranker’s minimum effort has increased from 18.5 to 20.3 patches with a sim-
ilarly low probability. The SVM-assisted attacker CDF undergoes a more drastic change.
Examining one patch results in a vulnerability for 14% of the 8 month period, whereas an
effort of 6 and 21 produce vulnerabilities for 20% and 34% of the 8 month period, respec-
tively. To achieve these three proportions the random ranker must examine 48, 52, and 76
patches respectively.

Remark 62. The SVM-assisted attacker is still able to outperform the random ranker in
finding severe vulnerabilities, in particular finding such security fixes 20% of the time by
examining 6 patches.

The increases to the severe vulnerability window are shown for the two attackers in
Figure 6.18. Again, we see a shift, with the SVM-assisted attacker continuing to outperform
the random ranker on small budgets (except for a budget of 1 patch) or otherwise perform
similarly.

Remark 63. By examining 2 patches daily during the 8 month period, the SVM-assisted
attacker increases the vulnerability window by 131 days. By contrast the random ranker with
budget 2 achieves an expected window increase of 72 days.

6.5.3.5 When One is Not Enough: Finding Multiple Vulnerabilities

An attacker searching for security patches might suffer from false negatives: the attacker
might mistakenly take a security patch as a non-security patch. In practice, an attacker
may wish to examine more patches than represented by the attacker effort defined above.
To model this situation, we considered the problem of finding 2 or 3 security patches instead
of just one.

As depicted in Figures 6.19–6.21, finding 1, 2, or 3 security patches requires progressively
more effort. When computing the increase to the window of vulnerabilities in Figure 6.21,
we assume that the attacker’s analysis of the examined patches only turns up the 1st, 2nd

and 3rd security fixes respectively. To find 2 or 3 security patches over 34% of the 8 month
period, the SVM-assisted attacker must examine 35 or 36 patches respectively.

Finally consider approximating the window of vulnerability achieved by an attacker ex-
amining a single patch daily with no false negatives. Examining 3 patches a day increases
the total vulnerability window by 83 days even if the attacker’s analysis produces one false
negative each day. Assuming two false negatives each day, examining 4 patches daily in-
creases the window by 80 days total. Similarly increasing the window by 151 or 148 days,

159

0 50 100 150 200 250

1
2

5
10

20
50

20
0

50
0

Attacker Effort Time Series − 1st, 2nd, 3rd Vulnerabilities

Time (days after 2008−09−24)

A
tta

ck
er

 e
ffo

rt
 (

lo
g

sc
al

e)

1st vulnerability
2nd vulnerability
3rd vulnerability
Release events

Figure 6.19: The time series of SVM-assisted ranker effort for finding 1, 2 or 3 vulnerabilities.

1 2 5 10 20 50 100 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDFs of Attacker Efforts − 1st, 2nd, 3rd Vulnerabilities

Attacker effort (log scale)

P
ro

po
rt

io
n

of
 ti

m
e

1st vulnerability
2nd vulnerability
3rd vulnerability
Security fixes exist

Figure 6.20: The CDFs of the SVM-assisted
efforts for discovering 1, 2 or 3 vulnerabili-
ties, from 11/13/2008 onwards.

1 2 5 10 20 50 100

0
50

10
0

15
0

20
0

Vulnerability Window vs. Effort − 1−3 Vulnerabilities

Patches attacker is willing to examine daily (log scale)

To
ta

l i
nc

re
as

e
to

 v
ul

ne
ra

bi
lit

y
w

in
do

w
 (

da
ys

)

1st vulnerability
2nd vulnerability
3rd vulnerability

Figure 6.21: Total increase to the vulnera-
bility window for finding 1, 2 or 3 vulnera-
bilities given levels of daily attacker effort,
from 11/13/2008 onwards.

approximating the error-free result under a two patch per day budget, requires examining
12 or 18 patches daily when suffering one or two false negatives respectively.

160

6.5.4 Repeatability of Results Over Independent Periods of Time

In the above sections we explore how an attacker can find vulnerabilities over the lifetime
of a major release of a large open-source project. It is natural to ask: how repeatable are
these results over subsequent releases? As a first step towards answering this question, we
repeat our analysis on the complete life-cycle of Firefox 3.5.

In order to test the hypothesis of repeatability of our results for the SVM-assisted and
random rankers on other releases of Firefox, we repeated our analysis of Firefox 3, on
Firefox 3.5. We again focus on mozilla-central, cloning the entire repository to identify
patches landed during the Firefox 3.5 life-cycle. Firefox 3.5 was released June 30, 2009 and
remained active until the release of Firefox 3.6 on January 21, 2010. During this 6 month
period 7 minor releases to Firefox were made ending with Firefox 3.5.7 on January 5, 2010.
We consider patches landed between the release of Firefox 3.5.7 and Firefox 3.6, whose
identities as security patches or non-security patches were disclosed February 17, 2010 upon
the release of Firefox 3.5.8. During the 6 month period, 7,033 patches were landed of which
54 fixed vulnerabilities.

While the Firefox 3.5 patch volumes correspond to roughly half those of the year-long
period of active development on Firefox 3, it is possible that the patches’ metadata may
have changed subtly, resulting in significant differences in SVM-assisted ranker performance.
Changes to contributing authors, functions of top-level directories, diff sizes or other side-
effects of changes to coding policies, time of day or day of week when patches tend to be
landed, could each contribute to changes to the attacker’s performance. Given the similar
rates of patch landings, one can expect the random ranker’s performance to be generally
comparable to the Firefox 3 results.

Figures 6.22–6.24 depict the cost-benefit analysis of the SVM-assisted and random
rankers searching for vulnerabilities in Firefox 3.5. It is immediately clear that the same
kind of performance is enjoyed by the attackers as achieved for Firefox 3, if not slightly
better.The CDFs of attacker effort displayed in Figure 6.23 show that while the random
ranker’s performance is roughly the same as before, the SVM-assisted ranker’s performance
at very low effort (1 or 2 patches) is inferior compared to Firefox 3, while the assisted
attacker enjoys much better performance at low to moderate efforts.

Remark 64. The SVM-assisted attacker discovers a security patch in Firefox 3.5 by the
third patch examined, for 22% of the 5.5 month period; by the 20th patch the SVM-assisted
attacker finds a security patch for 50% of the period. By contrast the random ranker must
examine 69.1 or 95 patches in expectation to find a security patch for these proportions of
the 5.5 month period.

In a similar vein, the increase to the window of vulnerability achieved by the random
ranker is comparable between Firefox 3 and 3.5 (correcting for the differences in release
lifetimes), while the SVM-assisted attacker achieves superior performance (cf. Figure 6.24).

Remark 65. By examining one or two patches daily, the SVM-assisted ranker increases
the window of vulnerability (in aggregate) by 97 or 113 days total (representing increases to
the base vulnerability window of factors of 5.8 and 6.7 respectively). By contrast the random
ranker achieves increases of 25.1 or 43.8 days total under the same budgets.

161

0 50 100 150

1
2

5
10

20
50

20
0

50
0

Attacker Effort Time Series

Time (days after 2009−07−17)

A
tta

ck
er

 e
ffo

rt
 (

lo
g

sc
al

e)

Firefox 3.5

SVM−assisted
Random ranker
Release events

Figure 6.22: SVM-assisted and random ranker efforts for finding Firefox 3.5 vulnerabilities.

1 2 5 10 20 50 100 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDFs of Attacker Efforts

Attacker effort (log scale)

P
ro

po
rt

io
n

of
 ti

m
e

Firefox 3.5

SVM−assisted
Random ranker
Security patch exists

Figure 6.23: The CDFs of the SVM-assisted
and random ranker attacker efforts, for Fire-
fox 3.5.

1 2 5 10 20 50 100

0
20

40
60

80
10

0
12

0
14

0

Vulnerability Window vs. Attacker Effort

Patches attacker is willing to examine daily (log scale)

To
ta

l i
nc

re
as

e
to

 v
ul

ne
ra

bi
lit

y
w

in
do

w
 (

da
ys

) Firefox 3.5

SVM−assisted
Random ranker

Figure 6.24: Increase to the total window of
vulnerability achieved for varying levels of
daily attacker effort, for Firefox 3.5.

We may conclude from these results that the presented attacks on Firefox 3 are repeatable
for Firefox 3.5, and we expect our analysis to extend to other major releases of Firefox and
major open-source projects other than Firefox.

162

1 2 5 10 20 50 100 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDFs of Attacker Efforts − Feature Removal

Attacker effort (log scale)

P
ro

po
rt

io
n

of
 ti

m
e

All features
No author
No topDir
No fileType
No diffSizeGroup
No timeOfDay
No dayOfWeek
Security fix exists

Figure 6.25: The effect of removing individ-
ual features on the SVM-assisted attacker
effort CDFs, from 11/13/2008 onwards.

1 2 5 10 20 50 100

0
50

10
0

15
0

20
0

Vulnerability Window vs. Effort − Feature Removal

Patches attacker is willing to examine daily (log scale)

To
ta

l i
nc

re
as

e
to

 v
ul

ne
ra

bi
lit

y
w

in
do

w
 (

da
ys

)

All features
No author
No topDir
No fileType
No diffSizeGroup
No timeOfDay
No dayOfWeek

Figure 6.26: The effect of removing features
on the SVM-assisted increase to the vulner-
ability window, from 11/13/2008 onwards.

6.5.5 Feature Analysis Redux: the Effect of Obfuscation

In Section 6.5.1 we perform a filter-based feature analysis for discriminating between
security patches and non-security patches. In this section we ask: what is the effect of
obfuscating individual features? We answer this question through a wrapper-based feature
analysis in which we perform the same simulation of an SVM-assisted ranker as above, but
now with one feature removed.

Figure 6.25 depicts the attacker effort CDFs for the SVM-assisted ranker when trained
with all features, and trained with either the author, top directory, file type, time of day,
day of week, or the set of diff size features removed. We remove the number of characters in
the diff, number of lines in the diff, number of files in the diff, and file size simultaneously,
since we observed no difference when only one of these features was removed. A plausible
explanation for this invariance would be high correlation among these features. Removing
the author feature has the most negative impact on the attacker effort CDF, reducing the
proportion by 0.048 on average over attacker efforts in [1, 315]. That is, on average over
attacker efforts for 5% of the 8 month period a security patch is found by the SVM-assisted
ranker trained with the author feature while the attacker without access to patch author
information find no security patch; and while the effect is most significant over attacker
efforts in [1, 10], the performance of the SVM-assisted ranker without the author feature
is still strong in this range. Removing the file type, time of day, diff size, day of week, or
top directory have increasingly positive impacts on the overall attacker effort CDF. Despite
libsvm’s use of cross-validation for tuning the SVM’s parameters, the positive improvements

163

point to overfitting which could be a product of the high dimensionality of the learning
problem together with a very small sample of security patches: as noted above, our goal is
merely to lower bound the performance of an attacker assisted by machine learning.

The increase to the window of vulnerability achieved by an SVM-assisted attacker with-
out access to individual features (or the group of diff size features) is shown in Figure 6.26.
For some attacker efforts the increase is less without certain features, but overall we see a
more positive effect. The least positive effect is observed when removing the author feature:
the increase in window size is only 5 days more on average over attacker efforts in [1, 57]
than when the author feature is included.

We thus draw the following conclusion, which agrees with the filter-based feature analysis
presented in Section 6.5.1.

Remark 66. Obfuscating the patch author has the greatest negative impact on the SVM-
assisted ranker’s performance, relative to obfuscating other features individually. However
the magnitude of impact is negligible.

As noted above, even if the impact of obfuscating patch authors were greater, doing so
would violate the Mozilla Committer’s Agreement.

6.6 Improving the Security Life-Cycle

In this section, we explore ways in which open-source projects can avoid information
leaks in their security life-cycle. Instead of attempting to obfuscate the features an attacker
could use to find security patches, we recommend that the developers land vulnerability fixes
in a “private” repository and use a set of trusted testers to ensure the quality of releases.

6.6.1 Workflow

A natural reaction to our experiment is to attempt to plug the information leaks by
obfuscating patches. However, we argue that this approach does not scale well enough
to prevent a sophisticated attacker from detecting security patches before announcement
because an attacker can use standard machine learning techniques to aggregate information
from a number of weak indicators. In general, it is difficult to predict how such a “cat-
and-mouse” game would play out, but, in this case, the attacker appears to have significant
advantage over the defender.

Instead of trying to plug each information leak individually, we recommend re-organizing
the vulnerability life-cycle to prevent information about vulnerabilities from flowing to the
public (regardless of how well the information is obfuscated). Instead of landing security
patches in the public mozilla-central repository first, we propose landing them in a private
release branch. This release branch can then be made public (and the security patches
merged into the public repository) on the day the patch is deployed to users. This workflow
reverses the usual integration path by merging security fixes from the release branch to
mozilla-central instead of from mozilla-central to the release branch.

164

6.6.2 Quality Assurance

The main cost of landing security patches later is that the patches receive less testing
before release. When the Firefox developers land security patches in mozilla-central,
those patches are tested by a large number of users who run nightly builds of Firefox. If a
security patch causes a regression (for example, a crash), these users can report the issue
to the Firefox developers before the patch is deployed to all users. The Firefox developers
can then iterate on the patch and improve the quality of security updates (thereby making
it less costly for users to apply security updates as soon as they are available).

Instead of having the public at large test security updates prior to release, we recommend
that testing be limited to a set of trusted testers. Ideally, this set of trusted testers would
be vetted by members of the security team and potentially sign a non-disclosure agreement
regarding the contents of security updates. The size of the trusted tester pool is a trade-off
between test coverage and the ease with which an attacker can infiltrate the program, which
is a risk management decision.

6.6.3 Residual Risks

There are two residual risks with this approach. First, the bug report itself still leaks
some amount of information because the bug is assigned a sequential bug number that the
attacker can probe to determine when a security bug was filed. This information leak seems
fairly innocuous. Second, the process leaks information about security fixes on the day the
patch becomes available. This leak is problematic because not all users are updated instan-
taneously (Duebendorfer and Frei, 2009). However, disclosing the source code contained
in each release is required by many open-source licenses. As a practical matter, source
patches are easier to analyze than binary-only patches, but attackers can reverse engineer
vulnerabilities from binaries alone (Brumley et al., 2008). One way to mitigate this risk is
to update all users as quickly as possible (Duebendorfer and Frei, 2009).

6.7 Summary

Landing security patches in public source code repositories significantly increases the
window of vulnerability of open source projects. Even though security patches are landed
amid a cacophony of non-security patches, we show that an attacker can use off-the-shelf
machine learning techniques to rank patches based on intrinsic metadata. Our results show
that a handful of features are sufficient (in aggregate) to reduce the number of non-security
patches an attacker need examine before encountering a security patch. For 22% of the
period we study, the highest ranked patch actually fixes a security vulnerability. Because
our algorithm establishes only a lower bound on attacker efficacy, it is likely that real
attackers will be able to perform even better by considering more features or using more
sophisticated detection algorithms.

A natural reaction to these findings is to obfuscate more features in an attempt to
make the security patches harder to detect. However, our analysis shows that no single

165

feature contains much information about whether a patch fixes a vulnerability. Instead, the
detection algorithm aggregates information from a number of weak signals to rank patches,
suggesting that obfuscation is a losing battle. Instead of obfuscating patch metadata, we
recommend changing the security life-cycle of open-source projects to avoid landing security
fixes in public repositories. We suggest landing these fixes in private repositories and having
a pool of trusted testers test security updates (rather than the public at large).

Our recommendations reduce the openness of open-source projects by withholding some
patches from the community until the project is ready to release those patches to end
users. However, open-source projects already recognize the need to withhold some security-
sensitive information from the community (as evidenced by these projects limiting access to
security bugs to a vetted security group). In a broad view, limiting access to the security
patches themselves prior to release is a small price to pay to significantly reduce the window
of vulnerability.

166

Chapter 7

Conclusions and Open Problems

As for the future, your task is not to foresee it, but to enable it.

– Antoine de Saint-Exupéry

Machine Learning, Statistics and Security stand to gain much from their cross-disciplinary
research. On the one hand, many real-world security-sensitive systems are now using Ma-
chine Learning, opening up the possibility of new vulnerabilities due to attacks on Machine
Learning algorithms themselves. Understanding the effects of various kinds of attacks on
learners and designing algorithms for learning in adversarial environments are important
first steps before users will trust ‘black-box’ adaptive systems. On the other hand, many
defenses and even attacks on non-adaptive systems, can greatly benefit by leveraging the
ability of Statistical Machine Learning based approaches to model both malicious and benign
patterns in data.

This dissertation’s main contributions lie in this intersection of Machine Learning, Statis-
tics and Security. Viewing Machine Learning under a lens of Security and Privacy, Part I
explores three kinds of attacks on adaptive systems in which an adversary can manipulate a
learner by poisoning its training data, submit queries to a previously-trained learner in order
to evade detection, or try to infer information about a learner’s privacy-sensitive training
data by observing models trained on that data. In the first and last cases, defenses are pro-
posed that are either evaluated experimentally or analyzed theoretically to provide strong
guarantees. In Part II Machine Learning is leveraged for building general defenses, and for
constructing a specific attack on a non-adaptive software system. Again, either strong the-
oretical guarantees or extensive experimental evaluation demonstrate the significant gains
made by using learning over non-adaptive approaches.

Chapter Organization. The remainder of this chapter summarizes the main contribu-
tions of this dissertation in greater detail in Section 7.1, and lists several open problems in
the intersection of Machine Learning and Security in Section 7.2.

167

7.1 Summary of Contributions

The contributions of this dissertation span the spectrum of practical attacks on real
systems, theoretical bounds, new algorithms, and thorough experimental evaluation. We
detail these contributions to the state-of-the-art in Machine Learning and Computer Security
research below.

7.1.1 Attacks on Learners

The taxonomy of attacks on Machine Learning systems of Barreno et al. (2006), amended
with the attacker goal of breaching training data privacy in Section 1.2.2, considers adver-
saries aiming to affect one of three security violations: Integrity (False Negative events),
Availability (False Positive events), and Confidentiality (unauthorized access to informa-
tion), by either manipulating the training data (a Causative attack) or the learner’s test
data (an Exploratory attack). The three chapters of Part I consider Causative attacks, Ex-
ploratory attacks, and Confidentiality attacks respectively. In the two former cases, both
Integrity and Availability goals are considered. And in the latter case, Confidentiality at-
tacks may result from either Causative or Exploratory access to a learner.

Attacks that Poison the Training Data. Chapter 2 reports on two large experimental
case-studies on Causative attacks, where the adversary manipulates the learner by poisoning
its training data. In the first case-study on SpamBayes (Meyer and Whateley, 2004; Robin-
son, 2003), we construct poisoning attacks with the goal of increasing the False Positive rate
of the open-source email spam filter, as a Denial of Service (DoS) attack on the learner itself.
By contrast, previous work on attacking statistical spam filters has focussed on Exploratory
attacks in which good words are inserted into spam messages (Lowd and Meek, 2005a; Wit-
tel and Wu, 2004), or spammy words are replaced with synonyms (Karlberger et al., 2007).
Our general approach is to send messages containing representative non-spam words to the
victim. By flagging such messages as spam, the victim unwittingly trains SpamBayes to
block legitimate mail. We study the effect of adversarial information and control on the
effectiveness of our attacks. We experiment with attacks using knowledge of the victim’s
native language (English) by including an entire dictionary in the message, knowledge of
the user’s colloquialism’s modeled by incorporating words from a Usenet newsgroup, or
intimate knowledge of the tokens used to train the filter. Depending on the adversary’s
knowledge, the attack’s spams can be better tailored to the filter or can be shorter in size.
We also experiment with varying amounts of adversarial control over the training corpus
through tuning the proportion of training messages that are attack spams. We determine,
for example, that with only 1% control over the training corpus and intermediate knowledge
of the non-attack training corpus, the filter’s FPR can be increased to 40%. At this point
most victim’s would shut-off their filter, resulting in all subsequent spam messages being
sent straight to the user’s inbox. We also experiment with Targeted attacks in which the
adversary’s goal is to block specific legitimate messages. Here again we experiment with
adversarial control and information through the level of knowledge the adversary possess

168

about the specific message’s tokens. With knowledge of only 30% of the target message, the
attack results in 60% of the target messages being incorrectly filtered. Finally we consider
two defenses based on measuring the impact of new messages on the classifier’s predictions
before inclusion in training, and dynamic thresholds on the spam scores. Experimental
results show these to be effective counter-measures against our Indiscriminate dictionary
attacks.

In the second case-study of Chapter 2 we consider Integrity attacks that poison the train-
ing data of Principal Component Analysis (PCA) based network-wide volume anomaly de-
tection, with the aim of increasing the False Negative Rate for evasion during test time. PCA
became a popular tool in the Systems Measurement community for detecting DoS flows in
networks based on (relatively cheap to monitor) link traffic volume measurements (Guavus,
2010; Lakhina et al., 2004a,b, 2005a,b; Narus, 2010). While it has recently been observed
that PCA can in certain situations be sensitive to benign network faults (Ringberg et al.,
2007), our study is the first to quantify malicious tampering of PCA. To combat PCA, which
models the principal components in link space that capture the maximum variance in the
training set, our variance injection attacks inject chaff into the network in such a way as
to increase variance in a desired direction while minimally impacting traffic volume; the
goal being to enable future evasion of the detector by manipulating its model of normal
traffic patterns, while poisoning covertly so that the manipulation itself is not caught. We
design attacks that exploit increasing adversarial information about the underlying network
traffic: uninformed poisoning in which the attacker cannot monitor traffic and must add
Bernoulli noise to the network, locally-informed poisoning in which the attacker can moni-
tor the traffic passing along a single ingress link, and globally-informed poisoning where a
worst-case attacker can monitor all links of the network. In each poisoning scheme, we in-
clude a parameter for tuning the adversary’s control over the data in the form of the amount
of traffic injected into the network. Experiments on a single week of training and a single
week of test data show that, for example, the locally-informed scheme can increase the FNR
seven-fold while increasing the mean traffic volume on the links of the target flow by only
10%. As in the case of our SpamBayes attacks, increased information or increased control
hands the adversary a distinct advantage. We explore covert attacks on PCA in which the
attacker slowly increases his amount of poison chaff over the course of several weeks. Even
when allowing PCA to reject data from its training set, a 5% compound growth rate of
traffic volume per week resulted in a 13-fold increase of the FNR to 50% over just a 3 week
period. To counter our variance-injection attacks, we propose a detector based on Robust
Statistics. antidote selects its subspace using the PCA-grid algorithm that maximizes
the robust MAD estimator of scale instead of variance, and a new Laplace threshold. Exper-
iments show that antidote can halve the FNR due to the most realistic locally-informed
poisoning scheme which maintaining the performance of PCA on un-poisoned data.

Attacks that Query a Classifier to Evade Detection. In this dissertation’s second
set of contributions on attacks on learners, Chapter 3 considers algorithms for querying
previously-trained classifiers in order to find minimal-cost instances labeled negative by
the classifier. In this theoretical study, we build on the abstract model of the evasion

169

problem due to Lowd and Meek (2005b): given query access to a classifier, a target positive
instance xA and a cost function A measuring distance from xA, our goal is to find a negative
instance that almost-minimizes A while submitting only a small number of queries to the
classifier. Lowd and Meek (2005b) showed that by querying to learn the decision boundary—
what we call reverse engineering—an attacker can evade linear classifiers with near-minimal
L1 cost with query complexity O

(
D log 1

ε

)
for feature space dimension D and a cost of

factor 1 + ε from optimal. Our work extends this result in several ways. We consider
the much larger class of classifiers which partition feature space into two classes, one of
which is convex; and we consider more general Lp cost functions. For p ≤ 1 our multiline
search algorithm can evade detection by classifiers with convex positive class using very low

query complexity O
(

log 1
ε

+D
√

log 1
ε

)
which improves on the result of Lowd and Meek

(2005b) without reverse engineering the decision boundary. Moreover a new lower bound
of O

(
log 1

ε
+D

)
shows that our query complexity is close to optimal. For the case of

p > 1, evasion for convex positive classes takes exponential query complexity to achieve
good approximations. This result is a threshold-type phenomenon where the p threshold for
query complexity is at 1. For approximations that worsen with D our multiline search yields
polynomial complexity solutions. For the case of p ≥ 1 and classifiers with convex negative
classes, we apply the geometric random walk-based method of Bertsimas and Vempala
(2004) that tests for intersections between convex sets using a query oracle. In this case our
randomized method has polynomial query complexityO∗

(
D5 log 1

ε

)
. An important corollary

of polynomial complexity for evading convex-inducing classifiers is that reverse engineering
is sufficient but not necessary for evasion, and can be much harder (i.e., reverse engineering
convex-inducing classifiers requires exponential complexity for some classifiers).

Attacks that Violate Training Data Privacy. As this dissertation’s third and final
study on attacks on learners, Chapter 4 explores privacy-preserving learning in the setting
where a statistician wishes to release a Support Vector Machine (SVM) classifier trained
on a database of examples, without disclosing significant information about any individual
example. We adopt the strong definition of β-differential privacy (Dwork, 2006) which
allows an attacker knowledge and/or control over n − 1 of the n rows in the database,
knowledge of the release mechanism’s mapping, and access to the released classifier. Even
in the presence of such an (arguably unrealistically) powerful adversary differential privacy
guarantees the privacy of a single hidden training example, where lower β guarantees more
privacy. The chapter includes two positive results in the form of mechanisms for SVM with
finite feature spaces (e.g., linear SVM and some nonlinear SVMs including the polynomial
kernel with any degree) and nonlinear SVM with translation-invariant kernels inducing
infinite dimensional feature spaces (e.g., the RBF or Gaussian kernel). For both mechanisms
we guarantee differential privacy given sufficient noise is added to the SVM’s weight vector
by the mechanism. For a new notion of utility, which states that a privacy-preserving
mechanism’s classifier makes predictions that closely match those of the original SVM (a
property strictly stronger than good accuracy), we prove that both mechanisms are useful
provided that not too much noise is added. Thus we quantify what is an intuitive trade-
off between privacy and utility for the case of SVM learning. Finally we provide negative

170

results in the form of lower bounds that state that no mechanism that approximates the
SVM well (i.e., has very good utility) can have β-differential privacy for low values of
β: i.e., it is not possible to have very high levels of utility and privacy simultaneously.
This work makes several contributions within the area of privacy-preserving learning and
statistical databases. First our mechanisms respond with parametrizations of functions that
can belong to classes of infinite VC-dimension; by contrast existing mechanisms parametrize
scalars or vectors, or in a few cases relatively simple functions. Second the SVM does not
reduce to simple subset-sum computations, and so does not fit within the most common
technique for calculating sensitivity and proving differential privacy. Third the SVM is a
particularly practical learning method, while in many previous studies the emphasis was on
deep analysis of more simplistic learning methods. Finally our proofs draw new connections
between privacy, algorithmic stability and large-scale learning.

7.1.2 Learning for Attack and Defense

Just as Security and Privacy offers potential benefits for improving applicability and
understanding of Machine Learning methods in practice, Machine Learning can be leveraged
to build effective defenses or to construct attacks on large software systems. Part II of
this dissertation explores two case-studies in which Machine Learning can be used to build
powerful defenses and attacks, greatly improving on the performance of related non-adaptive
approaches.

Learning-Based Risk Management. Chapter 5 serves as a case-study in applying Ma-
chine Learning as a defense, where known guarantees from the learning literature have
import consequences in Security. In the CISO problem, a Chief Information Security Officer
(CISO) must allocate her security budget over her organization with the goal of minimiz-
ing the attacker’s additive profit or multiplicative return on attack (ROA). We model this
incentives-based risk management problem as a repeated game on a graph where nodes rep-
resent states that can be reached by the attacker (e.g., root access to a server), and edges
represent actions the attacker can take to reach new nodes (e.g., exploit a buffer overflow).
Upon each attack, the adversary chooses a subgraph to attack. From reaching certain nodes
in the graph, the attacker can receive a payoff. On the other hand budget allocated by the
CISO to edges result in a cost incurred by the attacker. Moreover some edges are more diffi-
cult to defend than others, in the sense that more budget must be allocated by the CISO in
order to force the same cost on the adversary. By viewing the risk management problem as
a repeated game, we model high-level organizations, systems, or country-level cyber-warfare
battlefields in which attackers repeatedly attack the system causing damage to the organi-
zation but not critical organization-ending damage. We construct a reactive risk manager
using the exponential weights algorithm from Online Learning Theory which learns to al-
locate budget according to past attacks. Using a reduction to known regret bounds from
learning theory, we show that the average profit or ROA enjoyed by an adversary attacking
the reactive defender approaches that of an adversary attacking any fixed strategy. In par-
ticular this includes the rational proactive risk manager that is aware of the vulnerabilities

171

(edges) in her organization, the valuation of the attacker, and uses this information to play
a minimax strategy over the course of the game. By contrast, through a simple modification
to the exponential weights algorithm, the reactive defender need not know any vulnerabili-
ties (edges) before-hand. This result is at odds with the conventional security wisdom that
reactive defense is akin to myopic bug chasing and is almost always inferior to proactive ap-
proaches. Moreover we show that in several realistic situations, the reactive defender vastly
outperforms the fixed proactive defender. Example situations include when the proactive
defender minimizes attacker profit instead of ROA (or vice versa), when the attacker is not
rational, and when the proactive defender makes incorrect assumptions about the attacker’s
valuations.

Learning-Based Attacks on Open-Source Software. As detailed in Chapter 6, in
order to effectively attack open-source software systems, we can use Machine Learning to
exploit features of the source code that lands in public repositories long before users’ systems
are patched for vulnerabilities. We consider Firefox 3 as a representative open-source system,
where security patches and non-security patches land in the project’s public trunk in between
(roughly) monthly releases of the project. Upon each minor release of Firefox, Mozilla
retroactively discloses discovered vulnerabilities in the previous version of the software which
are patched in the latest release. We use these disclosures to label the source code available
in the repository up to the latest release. Using features of the source code change-sets
such as author, time the patch landed in the repository, top-level directory of the project
and file-types most effected by the diff, and diff size, we can train a discriminative model
to differentiate between non-security and security patches. As new patches land in the
repository we use the model to rank them according to the likelihood of fixing a vulnerability.
An attacker using this ranking would then examine the patches by-hand (or perhaps with
expensive program analysis) until a security patch is found. The benefit of this attack is
that the window of vulnerability is extended back in time to the point at which the first
security patch is found within an inter-release period. The attack’s cost is simply the number
of patches that must be examined to find a security patch. We use off-the-shelf software
for Support Vector Machine (SVM) learning which requires no knowledge of the SVM, to
learn to rank patches online throughout the year of active Firefox 3 development. We show
that after a warm-up period, for 39% of the days within a span of 8 months the SVM-
assisted attacker need only examine one or two patches to find a security patch. Moreover
the same attacker, by examining the top two ranked patches every day during the same
8 month period extends her aggregate window of vulnerability (over all the inter-release
periods during the 8 months) by 5 months. We compare these results to an unassisted
attacker, who selects patches to examine uniformly at random. Finally we propose that
Mozilla alter their vulnerability life-cycle by landing security patches in a private release
branch instead of the public trunk. The cost of such a counter-measure (which can be
mitigated by opening the private branch prior to the next release) is to quality assurance,
since security patches would not be tested as thoroughly and bugs could be introduced by
merging branches further into the process.

172

7.2 Open Problems

While the research presented here makes several contributions to Machine Learning and
Security as described above, a number of new problems remain open.

7.2.1 Adversarial Information and Control

Section 1.3 defined the adversarial capabilities of information and control as the infor-
mation available to the adversary regarding the learning map, learner state, feature space
and benign data generation process, and the amount of control the adversary can exert over
the learner’s training or test data.

A common theme throughout this dissertation is that the level of adversarial informa-
tion and control governing an adversary greatly affects the performance of that adversary’s
attacks on a learning system.

Similar conclusions can be made based on previous studies. For example, Kearns and
Li (1993) characterized the effects of a β proportion of malicious noise on learning under
the PAC model (Valiant, 1984). They also bound the maximum level β? of malicious noise
under which learnability is still possible. In Robust Statistics, the notion of break down
point is similar, characterizing the proportion of a sample that can be arbitrarily corrupted
without an estimator being forced to diverge to∞. However, in these cases and many others
including standard Online Learning Theory results, worst-case assumptions are made on the
adversary. In Online Learning the adversary has complete information and control; and for
breakdown points and in the work of Kearns and Li (1993), the data that is corrupted gets
corrupted arbitrarily.

In reality, as is highlighted by the two case-studies of Chapter 2, useful threat models tend
to limit the adversary’s capabilities. As described in the examples of Section 1.3, the form
of information or control possessed by the adversary can vary greatly from one adversarial
domain to another. For example, in the email spam domain control corresponds to inserting
messages of label spam into the training corpus without altering existing training messages.
In the network intrusion domain, by contrast, control is most naturally viewed as adding
volume to a small number of columns of the link traffic matrix (corresponding to injecting
chaff into a single flow). Thus we may model these domains, and perhaps many others, by a
benign data generation process whose output is corrupted according to some transformation
T ∈ Tθ before being revealed to the learner. In the above examples, Tθ corresponds to the
set of possible transformations the adversary could apply, having level of control θ. For
example this may be injections of a proportion θ of spam messages, or addition of chaff
of average volume θ to a flow matrix. The adversary (or perhaps an adversarial ‘nature’)
selects which element of T is used. We might assume that the learner is aware of the family
of transformations Tθ but not the particular T .

One open question is to represent typical forms of adversarial control found in real-world
applications of Machine Learning. Given such example T ’s we may ask how much control
is too much.

Open Problem 67. For a given transformation class Tθ, under what levels of control θ is

173

learning possible?

We may further want to characterize which forms of control are tolerable and which are
not.

Open Problem 68. What combinatorial properties of transformation classes T character-
ize learnability under transformations T ∈ T ?

In addition to control, we may wish to understand the fundamental benefits to the
attacker of adversarial information. In this case one could form a repeated game as is
typical in Online Learning. However again we could ask that benign data come from some
data generation process. This time the adversary, prior to transforming the data, is given
access to some limited view of the data V ∈ V . For example in the email spam domain
our attackers had access to a sample (of a Usenet newsgroup) drawn from a distribution
like that which generated the training corpus. The level of information φ corresponded to
the similarity between the adversary’s and victim’s generating distributions. In the network
anomaly detection problem, the adversary may be able to view some subset of the link traffic
matrix columns. The adversary may not know which view V ∈ Vφ will be in effect, but she
may have knowledge of Vφ including an estimate of φ. Thus the adversary is given access
to the image of the data under some V ∈ Vφ after which she applies the transformation
T ∈ Tθ to the data. Of course this transformation (or the entire family) may depend on
the information the attacker received. The learner is then revealed the corrupted data as
before. We may ask similar questions to above.

Open Problem 69. Under what levels of information φ is learning possible, for given
information class Vφ?

Open Problem 70. What combinatorial properties of information class Vφ characterize
learnability? What about when the data revealed to the learner is also transformed by some
T ∈ Tθ?

Finally, it would be interesting to understand the relationship between information,
control and learnability.

Open Problem 71. What are the trade-offs between learnability, adversarial information,
and adversarial control? Both for varying levels φ and θ, but also for different classes of
information and control.

These questions would make interesting extensions to the basic Online Learning Theory
model, for example. Similar modifications to ideas of influence and breakdown points could
also be conceivably made in Robust Statistics.

7.2.2 Covert Attacks

Several attacks on Machine Learning have been constructed in this dissertation: the
Causative Availability attacks on the SpamBayes email spam filter, the Causative Integrity

174

attacks on the PCA-based network-wide anomaly detector, and the Exploratory attacks on
convex-inducing classifiers. In each case, our motivation for limiting the attack intensity
was implicitly related to desiring a covert attack. Stealthiness was explicitly measured in
the case-study on poisoning PCA, in which during the Boiling Frog poisoning attacks, we
allowed the model (PCA and antidote) to reject traffic from being included in the training
set. The lower the level of rejection, the more stealthy the level of poisoning. In the evasion
problem, we motivated the secondary goal of low query complexity by the desire to be covert.
Intuitively, given too many queries, the classifier may become suspicious that an attack is
underway. An interesting direction for future research is attacks that are covert by design.

Open Problem 72. What are good general strategies for designing attacks on learners that
are covert?

One way to view the stealthiness question is as a kind of complement of designing learners
that have good worst-case performance. For example the reactive risk management strategy
of Chapter 5 came with guarantees about its performance for any sequence of attacks. In
this way we could be confident that it would perform well as a defense.

Open Problem 73. Consider a learning-based defender that is periodically re-trained; dur-
ing training, the previously learned model is used to reject training data that appears to be
malicious. How can data poisoning attacks be designed with guarantees on stealthiness i.e.,
guarantees on a minimal level of poisoned data being included in the training set despite the
learner’s best efforts?

We have used stealthiness to justify limited adversarial control in the learner’s threat
model. Conversely it is clear that some forms of adversarial control will be stealthier than
others. On the other hand, those forms of control that are stealthy would likely have less
of a manipulative effect on the learner.

Open Problem 74. What trade-offs between stealthiness and learner manipulation are
possible?

7.2.3 Privacy-Preserving Learning

Chapter 4 drew several new connections between differential privacy and learning the-
ory. To prove that our mechanisms preserve differential privacy we computed the global
sensitivity of the SVM’s primal solution using results from algorithmic stability.

Open Problem 75. What other stable learning algorithms can be made to preserve differ-
ential privacy using techniques similar to our own?

Various notions of stability have been shown to be necessary and/or sufficient for learn-
ability (Bousquet and Elisseeff, 2002; Mukherjee et al., 2006). How could such results be
connected to differential privacy?

175

Open Problem 76. What is the relationship between algorithms that learn (e.g., are
consistent) and those that can be made differentially private with minimal perturbations? In
particular, can necessary notions of stability for learnability be used to achieve differential
privacy?

If the answer is positive, then learnability implies differential privacy (with minimal
changes to the algorithm). Many similar questions to these exist, such as what are the
fundamental trade-offs between privacy and utility? And how can Robust Statistics be
related to differential privacy in general, extending the results of Dwork and Lei (2009)?

176

Bibliography

Nabil R. Adam and John C. Worthmann. Security-control methods for statistical databases:
a comparative study. ACM Computing Surveys, 21(4):515–556, 1989.

Lucas Adamski. Security severity ratings, 2009. https://wiki.mozilla.org/Security_

Severity_Ratings [Online; accessed 6-May-2010].

Alekh Agarwal, Peter Bartlett, and Max Dama. Optimal allocation strategies for the dark
pool problem. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics (AISTATS’2010), volume 9 of Journal of Machine Learning
Research, pages 9–16, 2010.

Eugene Agichtein, Eric Brill, and Susan Dumais. Improving web search ranking by incorpo-
rating user behavior information. In Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’06),
pages 19–26, 2006.

Ross Anderson. Why information security is hard—An economic perspective. Proceedings
of the 17th Annual Computer Security Applications Conference (ACSAC ’01), pages 358–
365, 2001.

Jaime Arguello, Fernando Diaz, Jamie Callan, and Jean-Francois Crespo. Sources of evi-
dence for vertical selection. In Proceedings of the 32nd International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval (SIGIR ’09), pages 315–322,
2009.

Terrence August and Tunay I. Tunca. Network software security and user incentives. Man-
agement Science, 52(11):1703–1720, 2006.

Paramvir Bahl, Ranveer Chandra, Albert Greenberg, Srikanth Kandula, David A. Maltz,
and Ming Zhang. Towards highly reliable enterprise network services via inference of
multi-level dependencies. In Proceedings of the ACM SIGCOMM 2007 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communications,
pages 13–24, 2007.

Pierre Baldi and Søren Brunak. Bioinformatics: the machine learning approach. MIT Press,
Cambridge, MA, USA, 2001.

https://wiki.mozilla.org/Security_Severity_Ratings
https://wiki.mozilla.org/Security_Severity_Ratings

177

Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry, and Ku-
nal Talwar. Privacy, accuracy, and consistency too: a holistic solution to contingency table
release. In Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (PODS ’07), pages 273–282, 2007.

Michael Barbaro and Tom Zeller Jr. A face is exposed for aol searcher no. 4417749. New
York Times. Aug 9, 2006.

Marco Barreno, Blaine Nelson, Russel Sears, Anthony D. Joseph, and J. D. Tygar. Can
machine learning be secure? In Proceedings of the ACM Symposium on InformAtion,
Computer and Communications Security (ASIACCS’06), pages 16–25, 2006.

Marco Barreno, Blaine Nelson, Anthony D. Joseph, and J. D. Tygar. The security of machine
learning. Machine Learning, 2010. to appear.

Marco Antonio Barreno. Evaluating the security of machine learning algorithms. Disserta-
tion UCB/EECS-2008-63, Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, 2008.

Chris Beard. Introducing Test Pilot, March 2008. http://labs.mozilla.com/2008/03/

introducing-test-pilot/ [Online; accessed 6-May-2010].

Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random walks. Jour-
nal of the ACM, 51(4):540–556, 2004.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, 2006.

Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the
SuLQ framework. In Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS ’05), pages 128–138, 2005.

Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-interactive
database privacy. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing (STOC ’08), pages 609–618, 2008.

Peter Bodik, Rean Griffith, Charles Sutton, Armando Fox, Michael I. Jordan, and David A.
Patterson. Statistical machine learning makes automatic control practical for internet dat-
acenters. In Proceedings of the Workshop on Hot Topics in Cloud Computing (HotCloud
’09), 2009.

Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B. Woodard, and Hans Andersen.
Fingerprinting the datacenter: Automated classification of performance crises. In Pro-
ceedings of EuroSys 2010, 2010. To appear.

Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of Machine
Learning Research, 2(Mar):499–526, 2002.

http://labs.mozilla.com/2008/03/introducing-test-pilot/
http://labs.mozilla.com/2008/03/introducing-test-pilot/

178

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

Daniela Brauckhoff, Kave Salamatian, and Martin May. Applying PCA for traffic anomaly
detection: Problems and solutions. In Proceedings of the 28th IEEE International Con-
ference on Computer Communications (INFOCOM 2009), pages 2866–2870, 2009.

Michael P. S. Brown, William Noble Grundy, David Lin, Nello Cristianini, Charles Walsh
Sugnet, Terrence S. Furey, Manuel Ares, Jr., and David Haussler. Knowledge-based
analysis of microarray gene expression data by using support vector machines. Proceedings
of the National Academy of Sciences, 97(1):262–267, 2000.

David Brumley, Pongsin Poosankam, Dawn Song, and Jiang Zheng. Automatic patch-based
exploit generation is possible: Techniques and implications. In Proceedings of the 2008
IEEE Symposium on Security and Privacy (SP ’08), pages 143–157, 2008.

Christopher J. C. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

Huseyin Cavusoglu, Srinivasan Raghunathan, and Wei Yue. Decision-theoretic and game-
theoretic approaches to IT security investment. Journal of Management Information
Systems, 25(2):281–304, 2008.

Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cambridge
University Press, 2006.

Nicolò Cesa-Bianchi, Yoav Freund, David P. Helmbold, David Haussler, Robert E. Schapire,
and Manfred K. Warmuth. How to use expert advice. In Proceedings of the Twenty-Fifth
Annual ACM Symposium on Theory of Computing, pages 382–391, 1993.

Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire,
and Manfred K. Warmuth. How to use expert advice. Journal of the Association for
Computing Machinery, 44(3):427–485, May 1997.

Deeparnab Chakrabarty, Aranyak Mehta, and Vijay V. Vazirani. Design is as easy as opti-
mization. In Proceedings of the 33rd International Colloquium on Automata, Languages
and Programming (ICALP), volume Part I of LNCS 4051, pages 477–488, 2006.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm [Online; accessed
5-May-2010].

Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression. In Ad-
vances in Neural Information Processing Systems 21, pages 289–296, 2009.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

179

Yu-Chung Cheng, Mikhail Afanasyev, Patrick Verkaik, Péter Benkö, Jennifer Chiang,
Alex C. Snoeren, Stefan Savage, and Geoffrey M. Voelker. Automating cross-layer diag-
nosis of enterprise wireless networks. In Proceedings of the ACM SIGCOMM 2007 Con-
ference on Applications, Technologies, Architectures, and Protocols for Computer Com-
munications, pages 25–36, 2007.

Simon P. Chung and Aloysius K. Mok. Allergy attack against automatic signature gener-
ation. In Proceedings of the International Symposium on Recent Advances in Intrusion
Detection (RAID), pages 61–80, September 2006.

Simon P. Chung and Aloysius K. Mok. Advanced allergy attacks: Does a corpus really
help? In Proceedings of the International Symposium on Recent Advances in Intrusion
Detection (RAID), pages 236–255, September 2007.

Massimiliano Ciaramita, Vanessa Murdock, and Vassilis Plachouras. Online learning from
click data for sponsored search. In Proceeding of the 17th International Conference on
World Wide Web (WWW ’08), pages 227–236, 2008.

Gordon Cormack and Thomas Lynam. Spam corpus creation for TREC. In Proceedings of
the Conference on Email and Anti-Spam (CEAS), July 2005.

Marco Cremonini. Evaluating information security investments from attackers perspective:
the return-on-attack (ROA). In Fourth Workshop on the Economics of Information Se-
curity, 2005.

Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, 2000.

Christophe Croux and Anne Ruiz-Gazen. A fast algorithm for robust principal components
based on projection pursuit. In Proccedings in Computational Statistics (Compstat’96),
pages 211–216, 1996.

Christophe Croux and Anne Ruiz-Gazen. High breakdown estimators for principal compo-
nents: the projection-pursuit approach revisited. Journal of Multivariate Analysis, 95(1),
2005.

Christophe Croux, Peter Filzmoser, and M. Rosario Oliveira. Algorithms for projection-
pursuit robust principal component analysis. Chemometrics and Intelligent Laboratory
Systems, 87(2), 2007.

Hengjian Cui, Xuming He, and Kai W. Ng. Asymptotic distributions of principal compo-
nents based on robust dispersions. Biometrika, 90(4):953–966, 2003.

Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak Verma. Adversarial
classification. In Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD’04), pages 99–108, 2004.

180

Susan J. Devlin, Ramanathan Gnanadesikan, and Jon R. Kettenring. Robust estimation
of dispersion matrices and principal components. Journal of the American Statistical
Association, 76(374):354–362, 1981.

Luc P. Devroye and T. J. Wagner. Distribution-free performance bounds for potential
function rules. IEEE Transactions on Information Theory, 25(5):601–604, 1979.

Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In Proceedings
of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (PODS ’03), pages 202–210, 2003.

Pat Doyle, Julia I. Lane, Jules J. M. Theeuwes, and Laura V. Zayatz, editors. Confidentiality,
Disclosure and Data Access: Theory and Practical Application for Statistical Agencies.
Elsevier, 2001.

Isabel Drost and Tobias Scheffer. Thwarting the nigritude ultramarine: Learning to identify
link spam. In Proceedings of the European Conference on Machine Learning (ECML ’05),
pages 96–107, 2005.

Thomas Duebendorfer and Stefan Frei. Why silent updates boost security. Tech Report
TIK 302, ETH, 2009.

Cynthia Dwork. Differential privacy. In Proceedings of the 33rd International Colloquium
on Automata, Languages and Programming (ICALP), pages 1–12, 2006.

Cynthia Dwork. Differential privacy: A survey of results. In Proceedings of the 5th In-
ternational Conference on Theory and Applications of Models of Computation (TAMC),
volume 4978 of Lecture Notes in Computer Science, pages 1–19, 2008.

Cynthia Dwork. A firm foundation for private data analysis. Communications of the ACM,
2010. to appear.

Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proceedings of
the 41st Annual ACM Symposium on Theory of Computing (STOC ’09), pages 371–380,
2009.

Cynthia Dwork and Sergey Yekhanin. New efficient attacks on statistical disclosure control
mechanisms. In Proceedings of the 28th Annual Conference on Cryptology (CRYPTO
2008), pages 469–480, 2008.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Proceedings of the 3rd Theory of Cryptography
Conference (TCC 2006), pages 265–284, 2006.

Cynthia Dwork, Frank McSherry, and Kunal Talwar. The price of privacy and the limits of
LP decoding. In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of
Computing (STOC ’07), pages 85–94, 2007.

181

Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil Vadhan. On the
complexity of differentially private data release: efficient algorithms and hardness results.
In Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC ’09),
pages 381–390, 2009.

Martin Dyer and Alan Frieze. Computing the volume of convex bodies: A case where
randomness provably helps. In Proceedings of the AMS Symposium on Probabilistic Com-
binatorics and Its Applications, pages 123–170, 1992.

Usama Mohammad Fayyad. On the induction of decision trees for multiple concept learning.
PhD thesis, University of Michigan, Ann Arbor, MI, USA, 1992.

Darin Fisher. Multi-process architecture, July 2008. http://dev.chromium.org/

developers/design-documents/multi-process-architecture [Online; accessed 6-
May-2010].

Ronald A. Fisher. Question 14: Combining independent tests of significance. American
Statistician, 2(5):30–30J, 1948.

Prahlad Fogla and Wenke Lee. Evading network anomaly detection systems: Formal reason-
ing and practical techniques. In Proceedings of the 13th ACM Conference on Computer
and Communications Security (CCS’06), pages 59–68, 2006.

Jason Franklin, Vern Paxson, Adrian Perrig, and Stefan Savage. An inquiry into the na-
ture and causes of the wealth of internet miscreants. In Proceedings of the 2007 ACM
Conference on Computer and Communications Security, pages 375–388, 2007.

Stefan Frei, Thomas Duebendorfer, and Bernhard Plattner. Firefox (in) security update
dynamics exposed. SIGCOMM Computer Communication Review, 39(1):16–22, 2009.

Yoav Freund and Robert Schapire. A short introduction to boosting. Journal of the Japanese
Society for Artificial Intelligence, 14(5):771–780, 1999a.

Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative weights.
Games and Economic Behavior, 29:79–103, 1999b.

Jeffrey Friedberg. Internet fraud battlefield, April 2007. http://www.ftc.gov/bcp/

workshops/proofpositive/Battlefield_Overview.pdf [Online; accessed 6-May-2010].

Neal Fultz and Jens Grossklags. Blue versus red: Towards a model of distributed security
attacks. In Proceedings of the Thirteenth International Conference Financial Cryptography
and Data Security, pages 167–183, 2009.

Arpita Ghosh, Benjamin I. P. Rubinstein, Sergei Vassilvitskii, and Martin Zinkevich. Adap-
tive bidding for display advertising. In Proceedings of the 18th International World Wide
Web Conference (WWW 2009), pages 251–260, 2009.

http://dev.chromium.org/developers/design-documents/multi-process-architecture
http://dev.chromium.org/developers/design-documents/multi-process-architecture
http://www.ftc.gov/bcp/workshops/proofpositive/Battlefield_Overview.pdf
http://www.ftc.gov/bcp/workshops/proofpositive/Battlefield_Overview.pdf

182

Lawrence A. Gordon and Martin P. Loeb. The economics of information security investment.
ACM Transactions on Information and System Security, 5(4):438–457, 2002.

Paul Graham. A plan for spam. http://www.paulgraham.com/spam.html, August 2002.

Jens Grossklags, Nicolas Christin, and John Chuang. Secure or insure?: A game-theoretic
analysis of information security games. In Proceeding of the 17th International Conference
on World Wide Web, pages 209–218, 2008.

Guavus, 2010. http://www.guavus.com [Online; accessed 22-April-2010].

Zoltán Gyöngyi and Hector Garcia-Molina. Link spam alliances. In Proceedings of the 31st
International Conference on Very Large Data Bases (VLDB ’05), pages 517–528, 2005.

Frank R Hampel, Elvezio M Ronchetti, Peter J Rousseeuw, and Werner A Stahel. Robust
Statistics: The Approach Based on Influence Functions. Wiley Series in Probability and
Mathematical Statistics. Wiley, 1980.

Kjell Hausken. Returns to information security investment: The effect of alternative infor-
mation security breach functions on optimal investment and sensitivity to vulnerability.
Information Systems Frontiers, 8(5):338–349, 2006.

Michael Hay, Chao Li, Gerome Miklau, and David Jensen. Accurate estimation of the degree
distribution of private networks. In Proceedings of the 2009 Ninth IEEE International
Conference on Data Mining (ICDM’09), pages 169–178, 2009.

Elad Hazan and Satyen Kale. On stochastic and worst-case models for investing. In Advances
in Neural Information Processing Systems (NIPS) 22, pages 709–717, 2010.

Mark Herbster and Manfred K. Warmuth. Tracking the best expert. Machine Learning, 32
(2):151–178, 1998.

Ola Hössjer and Christophe Croux. Generalizing univariate signed rank statistics for testing
and estimating a multivariate location parameter. Journal of Nonparametric Statistics, 4
(3):293–308, 1995.

Michael Howard. Attack surface: Mitigate security risks by minimizing the code you expose
to untrusted users. MSDN Magazine, November 2004.

Ling Huang, Michael I. Jordan, Anthony Joseph, Minos Garofalakis, and Nina Taft. In-
network PCA and anomaly detection. In Advances in Neural Information Processing
Systems 19 (NIPS 2006), pages 617–624, 2007.

Peter. J. Huber. Robust Statistics. Wiley Series in Probability and Mathematical Statistics.
Wiley, 1981.

http://www.paulgraham.com/spam.html
http://www.guavus.com

183

Nicole Immorlica, Kamal Jain, Mohammad Mahdian, and Kunal Talwar. Click fraud resis-
tant methods for learning click-through rates. In Proceedings of the First International
Workshop on Internet and Network Economics (WINE 2005), volume 3828 of Lecture
Notes in Computer Science, pages 34–45, 2005.

International Organization for Standardization. Information technology – security tech-
niques – code of practice for information security management. ISO/IEC 17799:2005,
ISO, 2005.

J. Edward Jackson and Govind S. Mudholkar. Control procedures for residuals associated
with principal component analysis. Technometrics, 21(3):341–349, 1979.

Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings of
the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ’02), pages 133–142, 2002.

Srikanth Kandula, Ranveer Chandra, and Dina Katabi. What’s going on? Learning commu-
nication rules in edge networks. In Proceedings of the ACM SIGCOMM 2008 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communica-
tions, pages 87–98, 2008.

Chris Kanich, Christian Kreibich, Kirill Levchenko, Brandon Enright, Geoffrey M. Voelker,
Vern Paxson, and Stefan Savage. Spamalytics: An empirical analysis of spam marketing
conversion. In Proceedings of the 2008 ACM Conference on Computer and Communica-
tions Security, pages 3–14, 2008.

Khalid Kark, Jonathan Penn, and Alissa Dill. 2008 CISO priorities: The right objectives
but the wrong focus. Le Magazine de la Sécurité Informatique, April 2009.

Christoph Karlberger, Günther Bayler, Christopher Kruegel, and Engin Kirda. Exploiting
redundancy in natural language to penetrate Bayesian spam filters. In Proceedings of the
USENIX Workshop on Offensive Technologies (WOOT), pages 1–7, August 2007.

Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and
Adam Smith. What can we learn privately? In Proceedings of the 49th Annual IEEE
Symposium on Foundations of Computer Science (FOCS ’08), pages 531–540, 2008.

Michael Kearns and Ming Li. Learning in the presence of malicious errors. SIAM Journal
on Computing, 22(4):807–837, 1993.

Michael Kearns and Dana Ron. Algorithmic stability and sanity-check bounds for leave-
one-out cross-validation. Neural Computation, 11:1427–1453, 1999.

Hyang-Ah Kim and Brad Karp. Autograph: Toward automated, distributed worm signature
detection. In Proceedings of the USENIX Security Symposium, pages 271–286, 2004.

George Kimeldorf and Grace Wahba. Some results on Tchebycheffian spline functions.
Journal of Mathematical Analysis and Applications, 33(1):82–95, 1971.

184

Bryan Klimt and Yiming Yang. Introducing the Enron corpus. In Proceedings of the Con-
ference on Email and Anti-Spam (CEAS), July 2004.

Aleksandra Korolova, Krishnaram Kenthapadi, Nina Mishra, and Alex Ntoulas. Releasing
search queries and clicks privately. In Proceedings of 18th International World Wide Web
Conference (WWW’09), pages 171–180, 2009.

Vineet Kumar, Rahul Telang, and Tridas Mukhopadhyay. Optimal information security
architecture for the enterprise, 2008. http://ssrn.com/abstract=1086690 [Online; ac-
cessed 6-May-2010].

Samuel Kutin and Partha Niyogi. Almost-everywhere algorithmic stability and generaliza-
tion error. Technical report TR-2002-03, Computer Science Department, University of
Chicago, 2002.

Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing network-wide traffic
anomalies. In Proceedings of the ACM SIGCOMM 2004 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, pages 219–
230, 2004a.

Anukool Lakhina, Mark Crovella, and Christophe Diot. Characterization of network-wide
anomalies in traffic flows. In Proceedings of the 4th ACM SIGCOMM Conference on
Internet Measurement (IMC ’04), pages 201–206, 2004b.

Anukool Lakhina, Konstantina Papagiannaki, Mark Crovella, Christophe Diot, Eric D. Ko-
laczyk, and Nina Taft. Structural analysis of network traffic flows. SIGMETRICS Per-
formance Evaluation Review, 32(1):61–72, 2004c.

Anukool Lakhina, Mark Crovella, and Christophe Diot. Mining anomalies using traffic
feature distributions. In Proceedings of the 2005 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM ’05), pages 217–
228, 2005a.

Anukool Lakhina, Mark Crovella, and Christophe Diot. Detecting distributed attacks using
network-wide flow traffic. In Proceedings of the FloCon 2005 Analysis Workshop, 2005b.

Aleksandar Lazarevic, Levent Ertöz, Vipin Kumar, Aysel Ozgur, and Jaideep Srivastava.
A comparative study of anomaly detection schemes in network intrusion detection. In
Proceedings of the SIAM International Conference on Data Mining, pages 25–36, 2003.

Guoying Li and Zhonglian Chen. Projection-pursuit approach to robust dispersion matrices
and principal components: Primary theory and Monte Carlo. Journal of the American
Statistical Association, 80(391):759–766, 1985.

Xin Li, Fang Bian, Mark Crovella, Christophe Diot, Ramesh Govindan, Gianluca Iannac-
cone, and Anukool Lakhina. Detection and identification of network anomalies using
sketch subspaces. In Proceedings of the 6th ACM SIGCOMM Conference on Internet
Measurement (IMC ’06), pages 147–152, 2006a.

http://ssrn.com/abstract=1086690

185

Xin Li, Fang Bian, Hui Zhang, Christophe Diot, Ramesh Govindan, Wei Hong, , and Gian-
luca Iannaccone. MIND: A distributed multidimensional indexing for network diagnosis.
In Proceedings of the 25th IEEE International Conference on Computer Communications
(INFOCOM 2006), pages 1422–1433, 2006b.

Yihua Liao and V. Rao Vemuri. Using text categorization techniques for intrusion detection.
In Proceedings of the USENIX Security Symposium, pages 51–59, 2002.

Hsuan-Tien Lin, Chih-Jen Lin, and Ruby C. Weng. A note on Platt’s probabilistic outputs
for support vector machines. Machine Learning, 68:267–276, 2007.

László Lovász and Santosh Vempala. Simulated annealing in convex bodies and an O∗(n4)
volume algorithm. In Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science (FOCS ’03), pages 650–659, 2003.

László Lovász and Santosh Vempala. Hit-and-run from a corner. In Proceedings of the
Thirty-Sixth Annual ACM Symposium on Theory of Computing (STOC ’04), pages 310–
314, 2004.

Daniel Lowd and Christopher Meek. Good word attacks on statistical spam filters. In
Proceedings of the Conference on Email and Anti-Spam (CEAS), July 2005a.

Daniel Lowd and Christopher Meek. Adversarial learning. In Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (KDD
’05), pages 641–647, 2005b.

Kong-wei Lye and Jeannette M. Wing. Game strategies in network security. In Proceedings
of the Foundations of Computer Security Workshop, pages 13–22, 2002.

Ricardo Maronna. Principal components and orthogonal regression based on robust scales.
Technometrics, 47(3):264–273, 2005.

Frank McSherry and Ilya Mironov. Differentially private recommender systems: building
privacy into the net. In Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’09), pages 627–636, 2009.

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In Proceedings
of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’07),
pages 94–103, 2007.

Tony Meyer and Brendon Whateley. SpamBayes: Effective open-source, Bayesian based,
email classification system. In Proceedings of the Conference on Email and Anti-Spam
(CEAS), July 2004.

Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

186

R. Ann Miura-Ko and Nicholas Bambos. SecureRank: A risk-based vulnerability man-
agement scheme for computing infrastructures. In Proceedings of IEEE International
Conference on Communications, pages 1455–1460, 2007.

R. Ann Miura-Ko, Benjamin Yolken, John Mitchell, and Nicholas Bambos. Security decision-
making among interdependent organizations. In Proceedings of the 21st IEEE Computer
Security Foundations Symposium, pages 66–80, 2008.

Mozilla Foundation. Known vulnerabilities in Mozilla products, 2010. http://www.

mozilla.org/security/known-vulnerabilities/ [Online; accessed 14-January-2010].

Sayan Mukherjee, Partha Niyogi, Tomaso Poggio, and Ryan Rifkin. Learning theory: Stabil-
ity is sufficient for generalization and necessary and sufficient for consistency of empirical
risk minimization. Advances in Computational Mathematics, 25:161–193, 2006.

Srinivas Mukkamala, Guadalupe Janoski, and Andrew Sung. Intrusion detection using
neural networks and support vector machines. In Proceedings of the International Joint
Conference on Neural Networks (IJCNN), pages 1702–1707, 2002.

Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse datasets.
In Proceedings of the 2008 IEEE Symposium on Security and Privacy, pages 111–125,
2008.

Narus, 2010. http://www.narus.com [Online; accessed 22-April-2010].

Nature. Security ethics. Nature, 463(7278):136, 14 Jan 2010. Editorial.

James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically generating sig-
natures for polymorphic worms. In Proceedings of the IEEE Symposium on Security and
Privacy, pages 226–241, 2005.

James Newsome, Brad Karp, and Dawn Song. Paragraph: Thwarting signature learning
by training maliciously. In Proceedings of the 9th International Symposium on Recent
Advances in Intrusion Detection (RAID 2006), pages 81–105, 2006.

Erik Ordentlich and Thomas M. Cover. The cost of achieving the best portfolio in hindsight.
Mathematics of Operations Research, 23(4):960–982, 1998.

Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A scalable approach to attack graph
generation. In Proceedings of the 13th ACM Conference on Computer and Communica-
tions Security, pages 336–345, 2006.

PhishTank. http://www.phishtank.com, 2010. [Online; accessed 13-April-2010].

John P. Pironti. Key elements of an information security program. Information Systems
Control Journal, 1, 2005.

John Ross Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.

http://www.mozilla.org/security/known-vulnerabilities/
http://www.mozilla.org/security/known-vulnerabilities/
http://www.narus.com
http://www.phishtank.com

187

Luis Rademacher and Navin Goyal. Learning convex bodies is hard. In Proceedings of the
22nd Annual Conference on Learning Theory (COLT 2009), pages 303–308, 2009.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
Advances in Neural Information Processing Systems 20, pages 1177–1184, 2008.

Anirudh Ramachandran, Nick Feamster, and Santosh Vempala. Filtering spam with behav-
ioral blacklisting. In Proceedings of the 14th ACM Conference on Computer and Commu-
nications Security (CCS ’07), pages 342–351, 2007.

Eric Rescorla. Is finding security holes a good idea? IEEE Security and Privacy, 3(1):
14–19, 2005.

Thomas C. Rindfleisch. Privacy, information technology, and health care. Communications
of the ACM, 40(8):92–100, 1997.

Haakon Ringberg, Augustin Soule, Jennifer Rexford, and Christophe Diot. Sensitivity of
PCA for traffic anomaly detection. In Proceedings of the 2007 ACM SIGMETRICS In-
ternational Conference on Measurement and Modeling of Computer Systems (SIGMET-
RICS’07), pages 109–120, 2007.

Gary Robinson. A statistical approach to the spam problem. Linux Journal, March 2003.

Benjamin I. P. Rubinstein, Peter L. Bartlett, Ling Huang, and Nina Taft. Learning in a large
function space: Privacy-preserving mechanisms for SVM learning. CoRR, abs/0911.5708,
2009. Submitted 30 Nov 2009.

Walter Rudin. Fourier Analysis on Groups. Wiley Classics Library. Wiley-Interscience,
reprint edition, 1994.

Udam Saini. Machine learning in the presence of an adversary: Attacking and defending
the spambayes spam filter. Dissertation UCB/EECS-2008-62, Department of Electrical
Engineering and Computer Sciences, University of California at Berkeley, 2008.

Sriram Sankararaman, Guillaume Obozinski, Michael I. Jordan, and Eran Halperin. Ge-
nomic privacy and limits of individual detection in a pool. Nature Genetics, 41(9):965–967,
2009.

Anand D. Sarwate, Kamalika Chaudhuri, and Claire Monteleoni. Differentially private
support vector machines. CoRR, abs/0912.0071, 2009. Submitted 1 Dec 2009.

Greg Schohn and David Cohn. Less is more: Active learning with support vector machines.
In Proceedings of the Seventeenth International Conference on Machine Learning (ICML
2000), pages 839–846, 2000.

Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine
Learning. MIT Press, 2001.

188

Cyrus Shaoul and Chris Westbury. A USENET corpus (2005-2007), October 2007.

Robert L. Smith. The hit-and-run sampler: A globally reaching Markov chain sampler for
generating arbitrary multivariate distributions. In Proceedings of the 28th Conference on
Winter Simulation (WSC ’96), pages 260–264, 1996.

Augustin Soule, Kavé Salamatian, and Nina Taft. Combining filtering and statistical meth-
ods for anomaly detection. In Proceedings of the 5th ACM SIGCOMM Conference on
Internet Measurement (IMC ’05), pages 31–31, 2005.

Salvatore J. Stolfo, Shlomo Hershkop, Chia-Wei Hu, Wei-Jen Li, Olivier Nimeskern, and
Ke Wang. Behavior-based modeling and its application to Email analysis. ACM Trans-
actions on Internet Technology, pages 187–221, 2006.

Gilles Stoltz and Gábor Lugosi. Internal regret in on-line portfolio selection. Machine
Learning, 59(1-2):125–159, 2005.

Latanya Sweeney. k-anonymity: a model for protecting privacy. International Journal on
Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):557–570, 2002.

Kymie M. C. Tan, Kevin S. Killourhy, and Roy A. Maxion. Undermining an anomaly-based
intrusion detection system using common exploits. In Proceedings of the 5th International
Conference on Recent Advances in Intrusion Detection (RAID’02), pages 54–73, 2002.

Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, November 1984.

Hal R. Varian. Managing online security risks. New York Times. Jun 1, 2000.

Hal R. Varian. System reliability and free riding, 2001. Note available at http://www.

sims.berkeley.edu/~hal/Papers/2004/reliability.

Daniel Veditz. Personal communication, 2009.

Daniel Veditz. Mozilla security group, 2010. http://www.mozilla.org/projects/

security/secgrouplist.html.

Shobha Venkataraman, Avrim Blum, and Dawn Song. Limits of learning-based signature
generation with adversaries. In Proceedings of the Network and Distributed System Secu-
rity Symposium (NDSS’2008), 2008.

David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion detection systems.
In Proceedings of the 9th ACM Conference on Computer and Communications Security,
pages 255–264, 2002.

Bernhard Warner. Home PCs rented out in sabotage-for-hire racket. Reuters, July 2004.

http://www.sims.berkeley.edu/~hal/Papers/2004/reliability
http://www.sims.berkeley.edu/~hal/Papers/2004/reliability
http://www.mozilla.org/projects/security/secgrouplist.html
http://www.mozilla.org/projects/security/secgrouplist.html

189

Wikipedia. Information security — Wikipedia, The Free Encyclopedia, 2010.
URL http://en.wikipedia.org/w/index.php?title=Information_security&oldid=

355701059. [Online; accessed 13-April-2010].

Leon Willenborg and Ton de Waal. Elements of Statistical Disclosure Control. Springer-
Verlag, 2001.

Gregory L. Wittel and S. Felix Wu. On attacking statistical spam filters. In Proceedings of
the Conference on Email and Anti-Spam (CEAS’04), 2004.

Aaron D. Wyner. Capabilities of bounded discrepancy decoding. The Bell System Technical
Journal, 44:1061–1122, Jul/Aug 1965.

Yin Zhang, Zihui Ge, Albert Greenberg, and Matthew Roughan. Network anomography.
In Proceedings of the 5th ACM SIGCOMM Conference on Internet Measurement (IMC
’05), pages 30–30, 2005.

http://en.wikipedia.org/w/index.php?title=Information_security&oldid=355701059
http://en.wikipedia.org/w/index.php?title=Information_security&oldid=355701059

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Research in the Intersection
	Secure Machine Learning
	Machine Learning for Security

	Related Work
	Related Tools from Statistics and Learning
	Attacks on Learning Systems

	The Importance of the Adversary's Capabilities

	I Private and Secure Machine Learning
	Poisoning Classifiers
	Introduction
	Related Work

	Case-Study on Email Spam
	Background on Email Spam Filtering
	Attacks
	Attack Results
	Defenses

	Case-Study on Network Anomaly Detection
	Background
	Poisoning Strategies
	ANTIDOTE: A Robust Defense
	Methodology
	Poisoning Effectiveness
	Defense Performance

	Summary

	Querying for Evasion
	Introduction
	Related Work

	Background and Definitions
	The Evasion Problem
	The Reverse Engineering Problem

	Evasion while Minimizing L1-distance
	Convex Positive Classes
	Convex Negative Classes

	Evasion while Minimizing Lp-distances
	Convex Positive Classes
	Convex Negative Classes

	Summary

	Privacy-Preserving Learning
	Introduction
	Related Work

	Background and Definitions
	Support Vector Machines

	Mechanism for Finite Feature Maps
	Mechanism for Translation-Invariant Kernels
	Hinge-Loss and an Upper Bound on Optimal Differential Privacy
	Lower Bounding Optimal Differential Privacy
	Lower Bound for Linear Kernels
	Lower Bound for RBF Kernels

	Summary

	II Applications of Machine Learning in Computer Security
	Learning-Based Reactive Security
	Introduction
	Related Work

	Formal Model
	System
	Objective
	Proactive Security

	Case Studies
	Perimeter Defense
	Defense in Depth

	Reactive Security
	Algorithm
	Main Theorems
	Proofs of the Main Theorems
	Lower Bounds

	Advantages of Reactivity
	Generalizations
	Horn Clauses
	Multiple Attackers
	Adaptive Proactive Defenders

	Summary

	Learning to Find Leaks in Open Source Projects
	Introduction
	Life-Cycle of a Vulnerability
	Stages in the Life-Cycle
	Information Leaks in Each Stage

	Analysis Goals and Setup
	Dataset
	Success Metrics
	Baseline: The Random Ranker
	Deriving Random Ranker Expected Effort
	Deriving Random Ranker Expected Vulnerability Window Increase

	Methodology
	Features Used By the Detector
	Detection Approach

	Results
	Feature Analysis
	Classifier Performance
	Cost-Benefit of SVM-Assisted Vulnerability Discovery
	Repeatability of Results Over Independent Periods of Time
	Feature Analysis Redux: the Effect of Obfuscation

	Improving the Security Life-Cycle
	Workflow
	Quality Assurance
	Residual Risks

	Summary

	Conclusions and Open Problems
	Summary of Contributions
	Attacks on Learners
	Learning for Attack and Defense

	Open Problems
	Adversarial Information and Control
	Covert Attacks
	Privacy-Preserving Learning

	Bibliography

