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Abstract

Games with Non-Probabilistic Uncertainty

by

JI WOONG LEE

Doctor of Philosophy in Engineering Science - Electrical Engineering and Computer
Sciences

University of California, Berkeley

Professor Jean Walrand, Chair

The thesis studies games with non-probabilistic uncertainty about some parameters that
affect the rewards of the players. The goal is to understand whether players should be
optimistic or pessimistic in such situations.

The first chapter provides a brief overview of the standard solution concepts in Game
Theory.

The second chapter proposes a model where the players are strategic in choosing their
attitude (degree of optimism), instead of having an intrinsic risk aversion. The idea is that
Alice may be able to take advantage of Bob’s pessimism, in which case Bob should not
be pessimistic. The chapter presents a few examples of two-player non-cooperative games
where the agents have a dominant attitude (e.g., optimism), regardless of the unknown
private information of the opponent. The chapter also analyses a Cournot duopoly game
where each firm has confidential knowledge of its production cost. In the symmetric case, it
is shown that pessimism is never a dominant attitude. Finally, the chapter defines a robust
attitude and the price of uncertainty, and analyzes them in the Cournot duopoly game.

The third chapter studies a simple wireless network with two relay nodes that cooperate
to forward information to a common destination. For a range of success probabilities, only
the node with the largest success probability should relay packets to avoid collisions at the
destination. However, the success probability of a node is known initially only to that node.
To improve the performance of the network, the nodes exchange link state messages through
a control channel that is not fully reliable. The chapter studies a protocol where each node
tries to protect the performance against the worst possible choice of the other node. The
performance of that protocol does not converge as the relays exchange more and more link
state messages. Essentially, the relay nodes use an excess of caution. The chapter studies
another protocol where each relay node ignores the possible states of knowledge of the other
node. The throughput of this less cautious protocol converges to the maximum possible
value.
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Chapter 1

Introduction

Decision making is choosing among alternatives to try to maximize a given objective
function. Decision making is deeply embedded in every aspect of life. Most science, en-
gineering, society, politics, and psychology problems with economic objectives demand a
suitable methodology for problems of this kind.

The process of choosing the most preferable alternative among all possible ones is called
optimization when the problem involves a single decision maker. However, many important
decision problems involve multiple autonomous decision makers acting simultaneously. In
such problems, decision making is substantially more complicated than in a single agent
optimization problem since each decision maker’s best decision generally depends on what
the others decide. Game Theory is a field of applied mathematics that addresses such
multi-agent decision making problems. The decision making problem may be either with
full or uncertain information. When the information is uncertain, it may or may not be
characterized by a known probability distribution.

This dissertation proposes a novel way of solving games associated with non-probabilistic
uncertainty, studies the properties of this approach, and discusses insights that might be
applied to other similar problems. In particular, Chapter 2 studies a model of optimism as
an augmented degree of rationalization under uncertainty when agents are non-cooperative.
Chapter 3 studies a limitation of imperfect communication in establishing common knowledge
and robust performance under uncertainty when agents are cooperative.

Chapter 1 provides preliminary background. The first section describes probabilistic and
non-probabilistic single agent decision criteria. The second section defines a game and Nash
equilibrium concepts. The third section introduces a list of historically important game
theory solution concepts. Finally the last section discusses the issue of common knowledge
and communication.
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1.1 Single-agent Decision Making with Uncertainty

A mathematical formulation of an optimization problem should specify the following:
optimization objective, optimization variables, and constraint sets that define feasibility of
the optimization variables.

Consider a single agent problem, whose optimization variable x belongs to some feasible
set X , and with objective function u : X → <. Then the mathematical optimization problem
has the form

arg max
x∈X

u(x). (1.1)

A variable x∗ ∈ X is called a solution of the problem (1.1) if

u(x∗) ≥ u(x) for all x ∈ X .

A solution exists, for instance, if X is a non-empty compact set and u(x) is continuous.
Problem (1.1) is called a full information optimization problem since u and X are fully
known.

However, in many engineering and economic problems, unknown variables affect the
objective function. Suppose these unknown variables are represented by θ ∈ Θ. Then
consider a modified objective function u : X ×Θ→ <, and a modified optimization problem:

arg max
x∈X

u(x, θ). (1.2)

Generally, the solution of problem (1.2) depends on θ, and cannot be solved without knowing
θ.

1.1.1 Alternative Objectives

Instead of using the original objective function u(x, θ), the designer selects an alternative
objective function f(x) that does not depend on the unknown variable θ. This alternative
objective function should be chosen to capture the physical, and useful meaning of the
underlying context, and should be computable with only available information. We explain
the standard choices for f(x). They are classified into probabilistic and non-probabilistic
choices.

2



1.1.2 Probabilistic Criteria

Expected Value

If θ is a random variable (or a vector of random variables) following a probability distri-
bution P , then one alternative objective is the expected value.

f(x, P ) := EP [u(x, θ)].

This is a popular, and well acceptable alternative in a vast number of engineering problems
if: (i) P is known with some accuracy, and (ii) the expected value is a useful performance
metric. The second condition is satisfied when many independent and identically distributed
copies of θ occur in repeated instances of the decision problem and one is interested in the
average value of the objective function.

Expected Utility

The expected value criterion takes into account only the average value of objective func-
tion. It does not capture the human player’s true valuation that may incorporate risk
aversion. In order to overcome this shortfall, John von Neumann and Oska Morgenstern [41]
proposed the use of a concave utility function T following the school of Daniel Bernoulli [8].
The alternative objective function is then defined as

f(x, P, T ) := EP [T (u(x, θ))].

Cumulative Prospect Criterion

Experiments in Behavioral Economics show that human subjects do not behave according
to the expected utility theory. Allais’ paradox [2] and Ellsberg’s paradox [18] are prominent
examples of this observation. The cumulative prospect criterion [39] is an attempt to describe
human behavior, taking into consideration the following major issues: (i) one’s valuation
is relative to a certain reference point; (ii) one weights more losses than gains; (iii) one
overweighs extreme but unlikely events and underweighs average events. In a general form,
this criterion is an expected value with transformations of the objective function (T ) and of
the probability distribution (S) where T and S are chosen in accordance with the behavioral
observations above. Thus, the criterion corresponds to the following function:

f(x, P, T ,S) := ES(P )[T (u(x, θ))].

3



1.1.3 Non-probabilistic Criteria

Any probabilistic criteria assumes a prior knowledge of the probability distribution P of
the uncertainty θ. However, this assumption may not be appropriate and, in some situations,
one may know only the set Θ of possible values of θ. This subsection covers a few popular
non-probabilistic criteria based on only that information.

Pessimism Criterion

The pessimism, or robust, criterion, considers the worst case scenario. Treating the
uncertainty as adversary, one seeks to maximize the worst case performance. That is, the
objective is defined as

f(x,Θ) := min
θ∈Θ

u(x, θ). (1.3)

A solution of (1.3) might be appropriate in some applications.

Optimism Criterion

This criterion assumes that the uncertainty is favorable. It corresponds to the following
objective function:

f(x,Θ) := max
θ∈Θ

u(x, θ).

We combine this criterion with pessimism later.

Regret Criterion

The regret is the loss in performance due to the uncertainty. Define

x∗(θ) = arg max
x∈X

u(x, θ; θ)

Then the alternative objective function is defined as the minimum regret defined as follows:

f(x,Θ) := min
θ∈Θ
{u(x, θ)− u(x∗(θ), θ)}

Instead of the difference, an alternative definition of the regret is the ratio u(x∗(θ), θ)/u(x, θ).

Laplace Criterion

Pierre-Simon Laplace proposed to use the uniform distribution over uncertainty when
no other information is available. This approach, called Laplace’s principle of indifference,

4



corresponds to the following objective function:

f(x, U) := EU [u(x, θ)]

where U is the uniform distribution over all possible θ’s.

Hurwicz Criterion

Hurwicz criterion [22] is a generalization of pessimism and optimism, with the control
parameter α ∈ [0, 1]:

f(x, α,Θ) := αmax
θ∈Θ

u(x, θ) + (1− α) min
θ∈Θ

u(x, θ)

One caveat of this criterion is that the choice of α is arbitrary.

1.1.4 Criteria for Super-Problem

Another modeling approach is to combine probabilistic and non-probabilistic criteria in a
super-problem. A super-problem is defined by constructing a two-fold alternative objective.
The inner alternative objective uses the expected value criterion over a probability distribu-
tion P over θ. The outer alternative objective considers P as uncertain within a collection of
probability distributions P , and then applies one of the above-mentioned non-probabilistic
criteria.

As one example, a pessimism criterion for expected value when one knows the underlying
distribution belongs to P is

f(x,P) := min
P∈P

EP [u(x, θ)].

Similarly, one can define other alternative objectives for optimism, regret, Laplace, and
Hurwicz.

1.2 Complete Information Games

Many decision problems involve more than one decision maker. Decision makers are
autonomous, rational, and independent from each other in making decisions, but they are
tightly connected to each other in the sense that the reward of one agent depends on the oth-
ers’ decisions. We use Game Theory to address such multi-agent decision making problems.
Formally, a strategic form game Γ is defined as a triplet

Γ = (N ,X , u) (1.4)

5



where N is a set of decision makers (or agents, or players), X := ΠiXi is a product space
of each agent i’s strategy space Xi, and u := (ui) is a list of each agent’s objective function
ui : Xi → <.

Together with (1.5), traditional game theory further makes the following assumptions:

Axiom 1.

1. Instrumentally rational individual action;

2. Common knowledge on rationality;

3. Consistent alignment on beliefs.

This dissertation is going to address a few issues when those assumptions are challenged
in some game situations.

An agent i is said to be instrumentally rational if she has a well-defined preference
ordering that is represented by ui. The game is said to have common knowledge on rationality
if each agent is instrumentally rational, each agent knows that each agent is instrumentally
rational, each agent knows that each agent knows that each agent is instrumentally rational,
ad infinitum. Also, each agent knows the set of strategies and the utility function of every
other agent. Consistent alignment on beliefs means no agent expects that an agent with the
same information can develop a different thought process [21].

There exists a rich literature studying solution concepts, their existence, uniqueness,
refinement, stability, and convergence of algorithms in many different contexts. We focus
attention to the decision criteria.

First consider a full information game where all agents are aware of Γ and Axiom 1.

Definition 1 (Nash Equilibrium in Full information game). Let 4Xi be the set of probability

measures on Xi. For σ ∈ Πi4Xi, one defines

ui(σ) = Eσ(ui(X))

where Eσ is the expectation when X has the distribution σ.

Then σ∗ ∈ Πi4Xi is called a Nash equilibrium if, for all i,

ui(σ
∗) ≥ ui(σi, σ

∗
−i) for all σi ∈ 4Xi.

When σ∗ assigns probability one to some x∗ ∈ ΠiXi, the equilibrium is called a pure Nash

equilibrium. Otherwise, it is called a mixed strategy Nash equilibrium.

6



To find a Nash equilibrium, every agent i independently identifies her best response σ∗i
to the choices of the other agents. That is, she determines

σ∗i ∈ arg max
σi∈4Xi

ui(σi, σ
∗
−i).

This solution assumes that all the agents correctly compute the others’ best strategy,
which requires Axiom 1. This search for the fixed point is discussed by Lismont and Mongin
[27], and argued as an interactive rationality by Aumann [5]. Nash has shown that any game
with a finite number of players with finite strategy sets has at least one mixed strategy Nash
equilibrium [33]. When the utility functions are diagonally concave and the sets of strategies
are compact, Rosen [35] has shown that the game has a pure Nash equilibrium.

When the Nash equilibrium is not unique, the meaning of each equilibrium becomes
questionable and the selection among equilibria requires some care. The next sections review
some of those issues.

1.2.1 Iterated Strict Dominance

Iterated strict dominance is a survival strategy solution concept, and introduced by Luce
and Raiffa [28]. The survival process is infinitely repeated. More precisely, let Xi be agent
i’s pure strategy space and let 4Xi be her mixed strategy space.

Definition 2. Initialize sets S0
i := Xi and Σ0

i := 4Xi. Recursively define

Sni := {si ∈ Sn−1
i | @σi ∈ Σn−1

i s.t. ui(σi, s−i) > ui(si, s−i) for all s−i ∈ Sn−1
−i }

Σn
i := {σi ∈ Σi | σi(si) > 0 only if si ∈ Sni }.

Finally we define

S∞i :=
∞⋂

n=0

Sni

Σ∞i := {σi | @σ′i s.t. ui(σ
′
i, s−i) > ui(σi, s−i), for all s−i ∈ S∞−i, σ′i, σi ∈ 4S∞i }

Then S∞i and Σ∞i are agent i’s pure/mixed strategies that survive iterated strict dominance.

1.2.2 Focal Points

This is a view argued by Shelling [37] that the strategic form game definition washed
away too much information by which otherwise agents in a coordination game may be able
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to coordinate better than Nash equilibrium. Shelling’s one experiment was when two players
with no communication are asked to meet at New York City on a fixed day, but not instructed
about neither a time nor a location, most of the participants choose Grand Central Station
at noon. A focal point is a concept, which allows a multitude of different mathematical
definitions, about a feature of such a coordination game that provides to a combination of
actions a distinction from others. While universally acknowledged by game theorists, it has
not been assimilated info formal game theory [14].

1.2.3 Selection Theory (Trembling Hand)

Shelten’s equilibria selection theory [38] is a method for selecting among multiple Nash
equilibria. This theory considers the possibility of small operational error, called a trembling
hand. Shelten argues that agents should reject Nash equilibria when the reward deteriorates
significantly if an agent makes a small error.

1.2.4 Correlated Equilibrium

The correlated equilibrium proposed by R. Aumann [3] is a generalized Nash equilibrium
that introduces a preplay discussion and a public signal from nature that obeys a common
prior. During the preplay discussion, agents agree to a correlating device. A correlating
device is a triple

(Ω, {Hi}, P ),

where Ω is the sample space of the device, P is a probability measure on Ω, and Hi is agent
i’s information partition on Ω. The correlating device notifies the agent i of hi(ω) ∈ Hi

upon ω occuring. Recall that Xi is i’s pure strategy space. Let Ci be the collection of maps
ri : Hi → Xi.

Definition 3 (Correlated Equilibrium). A correlated equilibrium r∗ = (r∗i ) ∈ ΠiCi relative

to the correlating device (Ω, {Hi}, P ) is a Nash equilibrium in r-strategies. That is, for all i,

E
[
ui(r

∗
i (hi(ω)), r∗−i(h−i(ω)))

]
≥ E

[
ui(ri(hi(ω)), r∗−i(h−i(ω)))

]
for all ri ∈ Ci

The set of correlated equilibria is at least as large as the set of mixed strategy Nash
equilibria since the coordination signals can correspond to independent randomizations of
the strategies by the different agents [19]. However, in many games, if such a coordination
is possible, it can improve the agents’ utility.
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1.2.5 Rationalizable Strategies

Rationalizable strategies are all the strategies that a rational player could play. This
concept is complementary to iterated strict dominance, and introduced by Bernheim [7]
Pearce [34].

Definition 4. The rationalizable strategies for agent i are
⋃∞
n=0 Σn

i , where for each i one

defines recursively

Σ0
i = 4Xi

Σn
i := {σi ∈ Σn−1

i | ∃σ−i ∈ ×j 6=i4Σn−1
j s.t. ui(σi, σ−i) ≥ ui(σ

′
i, σ−i) for all σ′i ∈ Σn−1

i }

In general, the set of rationalizable strategies is contained in the set that survives iterated

strict dominance. In two agent games, they are identical.

1.2.6 Rational Expectation

Similarly to Shelling’s focal point motivation, R. Aumann [5] argues that the strategic
form game does not carry enough information. He redefines a game as game situation
G = (Γ, β), where Γ is a strategic form game as we defined earlier, and β is called a belief
system that defines a player strategy for her each type, and represents how each type player
believes how others will behave. A player’s type uniquely determines the whole hierarchy of
her beliefs.

The expectation of a player is her expected payoff with respect to her belief given her
type. If the belief system agrees to a consistent common prior, and if the strategy the type
prescribes maximizes the player’s expected payoff, then the players expectation is called
rational. Still, in general, there exist infinitely many consistent belief systems which can
be paired with Γ, though a game situation is defined with a single consistent belief system.
Now consider a view from the opposite direction: suppose nature governs a random event
and provides a private signal to each player as a function of that event. Given that signal, a
player has a posterior view on how others will behave. Carefully designed, this set of signals
provides a coordination among players from which no one wants to unilaterally deviate. This
is precisely the definition of a correlated equilibrium, for which a player can compute her
conditional payoff. Aumanns contribution is to show a relation between rational expectations
in (Γ, β) and conditional payoffs of correlated equilibria in a game which is closely related to
Γ. This closed related game is 2Γ to be defined shortly.

We first redefine Γ as follows: A strategic form game Γ is defined as a triplet

Γ = (N ,L, u) (1.5)
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where N is a set of decision makers (or agents, or players), L := ΠiLi is a product space
of each agent i’s finite strategy list Li. Let {Li} denote the largest set of elements of Li,
that is, a set of i’s feasible strategies without redundancy. u := (ui) is a list of each agent’s
objective function ui : {L} → <.

A doubled list 2Li is Li × {1, 2}, where the first copy and the second copy of a strategy
are identical. Finally define a doubled game

2Γ = (N , 2L, u) (1.6)

where u : {2L} → < giving the same payoff as in u of Γ, no matter which copy of a strategy
is used. Note {2L} ≡ {L}.

The introduction 2Γ is a trick to assign any correlated equilibrium that will lead to any
consistent belief system in G, by splitting weights of correlated equilibrium distribution.

Theorem 1. The rational expectations in a game (Γ, β) are precisely the conditional payoffs

to correlated equilibria in the doubled game 2Γ.

Aumann provides two intuitions (See [5] Section VI) underlying this theorem:

(i) The common prior probability of a consistent belief system β in a game Γ is essentially
the same thing as a correlated equilibrium of a game ΓB closely related to Γ – that in which
each strategy of each player appears as many times as there are types that play that strategy
in β.

(ii) The conditional expectation of a strategy in a correlated equilibrium does not change
when other strategies that are identical are amalgamated. Amalgamation is replacing iden-
tical strategies by a single strategy, by adding prior probabilities over added strategies.

Then, define 2Γ by amalgamating in ΓB all identical strategies into two. By (ii), a
conditional correlated equilibrium payoff in ΓB for a particular strategy is also a conditional
correlated equilibrium payoff in 2Γ. Together with (i), this yields above theorem.

The goal of this solution concept is somewhat different from traditional ones in two
ways. First, instead of focusing on the recommendation to agents, this formulation focuses
on what rational players should expect to get, or the value of the game. It is named as
rational expectation. Second, as far as the recommendation is concerned, it does not deal
with ‘equilibria’. It simply suggests an agent to do single-agent-like maximization against
one’s subjective probabilities over others’ strategies.

One should note also that the level of consistency Aumann requires is weak. The belief
system is required to be consistent to a common prior that exists, but it is not required to
be consistent to feasibility of outcomes. Rational expectations can be outside of the convex
hull of pure strategy payoffs. This possibility is called the inconsistency of assessment.
An existence of a common prior is not sufficient to guarantee the feasibility of rational
expectations.
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1.3 Incomplete Information Game

As in the case of a single-agent optimization problem, many games of interest have
incomplete information. The uncertainty game we consider is one where each agent has
her own private information which is not known to the others, and all agents know this as
common knowledge. Agent i’s private information influences i’s utility, best response, and
ultimately the solution of the game. Thus, in contrast to the full information game case,
an agent does not know the exact preference ordering of other agents. We summarize the
private information of agent i by a parameter θi ∈ Θi.

Bayesian Nash Equilibrium

The notion of Bayesian Nash equilibrium is Harsanyi’s proposal to model and under-
stand an incomplete information game. This model assumes that there exists a common
prior probability distribution P with which nature randomly chooses each agent’s private
information or type. The utility function of of agent i ui is

ui : X ×Θ→ <.

The probability distribution of θ = (θi) ∈ ΠiΘi is P and (N ,X , u, P,Θ) is common knowl-
edge.

Definition 5 (Mixed Strategy Bayesian Nash Equilibrium). We define 4Xi and ui(σ, θi) as

before. Then σ∗ ∈ Πi4Xi is called a mixed strategy Bayesian Nash equilibrium if, for all i,

σ∗i (θi) ∈ arg max
σi∈4Xi

E[ui(σi, σ
∗
−i(θ−i), θ)|θi].

1.3.1 Motivation for Non-Probabilistic Solution Concept

The concept of Bayesian Nash equilibrium requires some strong assumptions: (i) existence
of common prior that governs nature’s move; (ii) common knowledge on the prior; (iii) error-
free observation of nature’s selection of private information. As in the case of a single-agent
optimization problem, there are many situations where these assumptions are not satisfied.

Many researchers have explored non-Bayesian models of uncertainty. Knight [23] raised
questions about the suitability of probabilistic characterizations of uncertainty in some sit-
uations. Allais’ parodox [2] and Ellsberg’s paradox [18] are examples of situations where
decision makers violate the expected utility hypothesis. More recently, Binmore [12] and
Lec and Leroux [25] explored more philosophical questions on inaccuracy, arbitrariness, and
illegitimacy of Bayesianism in games. The behavioral sociology literature also reports that
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Bayesian strategies fail to occur in some real world games [40]. A few noteworthy experi-
ments demonstrate a certainty effect where people prefer less uncertain events, a refection
effect where people respond differently to gain and loss [6], and preference reversals where
people show different valuations when they buy and when they sell the same lottery [13].
See also [26] for a related discussion of the modeling of uncertainty through a family of
probability distributions.

For such situations, one may consider one of the non-probabilistic criteria developed in
the preceding section: pessimism, optimism, regret, etc. In a single-agent decision making
problem, one is free to choose a criterion as long as it captures the physical meaning of the
problem context. In multi-agent decision making problem, however, that is not sufficient.
The choice should be strategic.

Let’s take pessimism for example. Suppose an agent cares the robust performance (for
herself). However, if this fact is known to other agents, they can exploit this and may strate-
gically select the optimism criterion in order to achieve higher performance for themselves.
Knowing this possibility, one should be careful in choosing the pessimism criterion.

More generally, it should be questioned if it is purely in the best interest of an agent
to follow a particular decision criterion. Based on this argument, the model in Chapter 2
considers that the choice of decision criterion is strategic. The proposed model has a form
similar to Hurwicz’s criterion in single-agent decision making, but now the parameter α will
be chosen strategically.

1.3.2 Common Knowledge

Since optimally coordinated outcome of the game cannot be worse than uncoordinated
outcome, in some game situations, such as cooperative games, agents are willing to commonly
share their private information so as to achieve the most efficient outcome for all. For this
purpose, communication, or message exchange is the most natural way of information sharing
among autonomous agents.

Agents are said to have information consensus if all know that information. Agent are
said to have common information (knowledge) if all know the information, all know that all
know the information, all know that all know that all know the information, ad infinitum.
To reach a coordinated actions, it is obvious that agents need to reach common knowledge
first.

If the communication is perfect and error-free, once a message sender sends a message to
a receiver, the former is very sure the latter gets the message. If the communication is error-
prone however, no matter how small the chance of error is, one needs an additional protective
mechanism to make sure of the message delivery. Consider any in-band mechanism (using
message exchange as a way of protection) of that kind. In 1978, J. Gray maintained there
exists no such mechanism using finite number of message exchanges. His note is simple and
worth to quote here as it is.
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The Generals Paradox [20]
“There are two generals on campaign. They have an objective (a hill) which they want to
capture. If they simultaneously march on the objective they are assured of success. If only
one marches, he will be annihilated. The generals are encamped only a short distance apart,
but due to technical difficulties, they can communicate only via runners. These messengers
have a flaw, every time they venture out of camp they stand some chance of getting lost
(they are not very smart.) The problem is to find some protocol which allows the generals to
march together even though some messengers get lost. There is a simple proof that no fixed
length protocol exists: Let P be the shortest such protocol. Suppose the last messenger in
P gets lost. Then either this messenger is useless or one of the generals doesn’t get a needed
message. By the minimality of P, the last message is not useless so one of the general doesn’t
march if the last message is lost. This contradiction proves that no such protocol P exists.”

We can construct a discrete knowledge hierarchy as the m, the number of message ex-
changes, increases. We expect at infinity m, generals reach common knowledge. Intuition
says if m <∞ is large, generals are likely to reach common knowledge. The Generals Para-
dox asserts however, that no matter how large m is, if it is finite, generals never reach the
common knowledge.

The cost of failure to reach common knowledge is high (death) in this problem. Thus,
we can deduce that if we define an agent’s strategy as a function of m, or s(m), then

lim
m→∞

s(m) 6= s(∞).

In other words, the sequence of strategies does not converge as the knowledge hierarchy
builds up. (An essentially same observation is made by A. Rubinstein in 1989 in incomplete
information game and Bayesian Nash equilibrium context [36].) This observation triggered
sequels of many research interests that attempt to understand the topological properties of
belief spaces. Good pieces of work along this line include [17, 32, 16, 1, 30].

In Chapter 3, we study a cooperative game with private information with robust decision
criterion. Not only we provide an impossibility result aligned with the General Paradox, but
also we provide a way of coordination to achieve guaranteed efficient outcome.
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Chapter 2

Non-cooperative Game with

Non-probabilistic Uncertainty

This chapter studies one-shot two-player games with non-Bayesian uncertainty. The
players have an attitude that ranges from optimism to pessimism in the face of uncertainty.
Given the attitudes, each player forms a belief about the set of possible strategies of the other
player. If these beliefs are consistent, one says that they form an uncertainty equilibrium.
One then considers a two-phase game where the players first choose their attitude and then
play the resulting game. The chapter illustrates these notions with a number of games where
the approach provides a new insight into the plausible strategies of the players.

2.1 Introduction

We study a one-shot non-cooperative game of two rational players with non-probabilistic
information uncertainty. Specifically, we assume that the set of possible values of the un-
certain parameter is known, but that no prior distribution is available. Thus, instead of the
more traditional Bayesian approach where user maximize their expected reward, here, play-
ers have an attitude that models their risk-aversion. An optimistic (respectively, pessimistic)
player assumes that the other player will choose a strategy that is beneficial (respectively,
detrimental) to her. A moderately optimistic player makes an intermediate assumption.
However, in contrast with other approaches, we assume that the players choose their attitude
by analyzing the consequences of their choice, instead of assuming that their risk-aversion is
pre-determined.

Different players may have a different objective in the face of uncertainty. Some popular
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choices include minimax regret, maximin pessimism or maximax optimism. Instead of a
fixing a player’s optimization objective, we allow a rational player to choose somewhere
between worst case and best case. We parametrize a player’s subjective decision criterion as
a convex combination of pessimism and optimism with parameter π, and we call it a player’s
attitude against uncertainty. As we explained in the Introduction, Hurwicz (1951) [22]
proposed a similar convex combination criterion for a single agent decision making problem.
However, one crucial aspect of this study is that the attitude is not fixed ahead of time.
Instead, the players choose their attitude strategically. For instance, the players may realize
that the only rational attitude is to be optimistic because it is the only Nash equilibrium in
a two-stage game where the first stage is to choose the attitude. More generally, there may
be a set of attitudes for each player from which it is not rational to deviate unilaterally. In
such a case, the model provides some information about how to behave rationally in the face
of uncertainty.

Section 2.2 develops a model of two non-cooperative players with non-probabilistic pa-
rameter uncertainty, and introduces the notions of attitude and uncertainty equilibrium.
Section 2.4 presents examples for which the approach provides a new insight into the strate-
gies. Section 2.3 proves the existence condition of an uncertainty equilibrium and relates it
to a Nash equilibrium of the corresponding full information game. Section 2.5 proves that
at least one player should not be pessimistic. Section 2.6 concludes the chapter.

2.2 Uncertainty Equilibrium

The section defines the model of game with uncertainty. It then introduces the notion
of uncertainty equilibrium for players that have specific attitudes. The section then defines
the two-phase game. First, we define a reference game with full information.

Definition 6 (Certainty Game Go).

Two non-cooperative, selfish and rational players i = 1, 2 and j = 3 − i play a game with

strategies x := (x1, x2) ∈ X1,o ×X2,o, where Xi,o ⊂ R is i’s closed bounded strategy interval.

Player i has type θi ∈ R. The reward of player i is real-valued ui(x, θi). This is a full

information game with common knowledge about ui, Xi,o, and θi for all i. We assume that

this game is such that ui(x, θi) is continuous in (x, θi), has a unique maximizer xi(xj, θi) for

every (xj, θi), and has at least one pure Nash equilibrium.

We now consider the game with uncertainty about the opponent’s type.

Definition 7 (Uncertainty Game G).
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Player i knows her own true type θi but only that θj ∈ Θj for j = 3− i, where Θj is a closed

bounded real interval, and this is common knowledge. To avoid triviality, Θj is assumed to

be of non-zero length unless specified otherwise.

The goal of the chapter is to study the notion of equilibrium in such a situation. Our
approach is non-Bayesian. That is, we do assume neither a known posterior distribution of
the parameters nor the existence of a common prior distribution.

We start with a simple approach to refine the set of rational strategies. Assume that it
is known that player i chooses xi ∈ Xi. It may be reasonable to believe that player j will
choose a strategy xj(xi, θj) for some xi ∈ Xi. This best response xj is defined in the strategy
space Xj,o. Since player i does not know θj, she may then believe that player j chooses
xj ∈ φj(Xi) where

φj(Xi) := {xj(xi, θj) | xi ∈ Xi, θj ∈ Θj}. (2.1)

These considerations lead to the following definition.

Definition 8. The sets X†1, X
†
2 are consistent if X†j = φj(X

†
i ) for i = 1, 2 and j = 3− i.

Since the best response xi(xj, θi) is defined in Xi,o, φi(Xj) for any Xj is also defined in

Xi,o. Thus for consistent sets X†1, X
†
2,

X†i ⊆ Xi,o, for all i.

The consistent sets form a product space of strategies beyond which no rational player
plays. Although the sets X†i are smaller than the original strategy spaces Xi,o, they may
be large and provide little recommendation on the strategies the players should choose.
Moreover, one may question whether the players will choose strategies in the consistent sets.

2.2.1 Optimism and Pessimism

We now develop a different formulation of the game that considers the attitudes π =
(π1, π2) ∈ [0, 1]2 of players in the face of uncertainty.

Definition 9 (Game with Attitudes π: G(π)).

If it is known that player j chooses xj ∈ Xj, then player i chooses xi ∈ Xi,o to maximize

fi(xi, Xj, θi, 1) := max
xj∈Xj

ui(x, θi)
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if she is optimistic and to maximize

fi(xi, Xj, θi, 0) := min
xj∈Xj

ui(x, θi)

if she is pessimistic. In general, for 0 ≤ πi ≤ 1, if player i has attitude πi, she chooses

xi ∈ Xi,o to maximize

fi(xi, Xj, θi, πi)

:= πi max
xj∈Xj

ui(x, θi) + (1− πi) min
xj∈Xj

ui(x, θi). (2.2)

We primarily study a discrete attitude space πi ∈ {0, 1}, and later use the continuous
attitude space πi ∈ [0, 1] in developing the notion of robust attitude.

Designate by ri(Xj, θi; πi) the set of maximizers of fi(xi, Xj, θi, πi). That is,

ri(Xj, θi, πi) := arg max
xi∈Xi,o

fi(xi, Xj, θi, πi). (2.3)

Since player j does not know θi, she assumes that xi ∈ ψi(Xj; πi) where

ψi(Xj; πi) :=
⋃

θi∈Θi

ri(Xj, θi; πi). (2.4)

2.2.2 Uncertainty Equilibrium

We then have the following definition.

Definition 10 (Uncertainty Equilibrium of G(π)).

The pair of sets (X1, X2) is an uncertainty equilibrium for players with attitudes π, if Xi =

ψi(Xj; πi) for i = 1, 2 and j = 3− i.

Moreover, if the uncertainty equilibrium is unique, we consider that player i plays
xi ∈ ri(Xj, θi; πi) to maximize her interim anticipated reward fi(xi, Xj, θi, πi). If the cor-
responding xi is unique and equal to xi(θi, π), it results in actual (ex-post) rewards Ui :=
ui(xi(θi, π), xj(θj, π), θi). If the context is clear, we simplify as Ui(π) := ui(xi(π), xj(π), θi)
where xi(π) = xi(θi, π).

2.2.3 Attitude Game

Is it preferable to be optimistic or pessimistic? To answer this question, we consider a
two-stage game.
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Definition 11 (Attitude Game A).

In the first stage, the players choose their attitudes (π1, π2) ∈ {0, 1}2. In the second stage,

they play G(π) and get the rewards Ui(π).

If π = (0, 0) is a unique Nash equilibrium for the two-stage game, we conclude that the
players should be pessimistic. Moreover, the analysis then specifies precisely how they should
choose their second stage strategy. The situation is similar if any π ∈ [0, 1]2 is a unique Nash
equilibrium attitude. A player i’s attitude π∗i is said to be dominant if for any πj and θj,
j = 3− i,

Ui(π
∗
i , πj) ≥ Ui(πi, πj)

for all πi.

In contrast with traditional approaches, we do not consider that players have a fixed
attitude (as a type). Instead, they choose their attitude by analyzing the game instead of
being driven by a preordained risk aversion.

As we show in the following sections, there are games where this approach enables to
rationalize specific strategies under uncertainty.

2.3 Existence of Uncertainty Equilibrium and its Re-

lation to Nash Equilibrium

This section provides a condition for the existence of an uncertainty equilibrium.

Theorem 2 (Existence of Uncertainty Equilibrium).

Assume ri(Xj, θi, πi) is single-valued and continuous in Xj, θi and πi. Then there exists an

uncertainty equilibrium (X∗1 (π), X∗2 (π)).

At an uncertainty equilibrium (X∗1 (π), X∗2 (π)), i’s best response is

x∗i (π) = ri(X
∗
j (π), θi, πi).

From the proof of Theorem 2, note there is one-to-one correspondence between x∗i (π)’s and
X∗i (π)’s via ri’s. In particular, if Θi is a singleton, then X∗i (π) = x∗i (π). This (obvious)
observation is stated in the next theorem.
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Theorem 3. Under the assumptions of Theorem 2, G(π)’s uncertainty equilibrium

(X∗1 (π), X∗2 (π)) coincides with game Go’s Nash equilibrium (x?1, x
?
2) if Θi = {θi} for i = 1, 2,

irrespective of π.

2.4 Examples

The first example is a game with negative externality. In this game, the players should
be optimistic even when they are uncertain about the opponent’s type. The second example
is a game with positive externality. In this game the players are better off when they both
are pessimistic than when they both are optimistic. However, we will see that players are
inconclusive in the choice of attitudes because there are two pure Nash attitudes. The
third example is a Cournot duopoly game [15] with uncertainty. For this game, we study
conditions for the existence of dominant attitudes, and robust attitudes. For clarity, the
algebraic derivations are in the appendix.

2.4.1 A Game with Negative Externality

Consider two agents i = 1, 2 who consume resources xi ∈ [0, 1] to gain some benefit. The
consumption degrades the quality of the environment which affects both players. The agent’s
reward is defined to be the benefit minus the degradation of the environment. The benefit is
assumed to be proportional to the consumption. The environment degrades exponentially in
sum of players’ consumption (exp{x1 +x2}), via scaling factor exp{−θi}, where θ−1

i captures
i’s susceptibility to the environmental degradation. Here, θi is private information for agent
i. xi ∈ [0, 1], θi ∈ [α, β] for some 0 < α < 2α < β < 1. Agent i’s reward is

ui(x, θi) = xi − exp{−θi + xi + xj}.

(One may add a constant to make the rewards positive.)

Theorem 4. Agents should be optimistic and choose the consumption levels xi = θi − α/2

for i = 1, 2. In contrast, if θ1, θ2 are fully known and θ1 < θ2, then the only Nash strategy is

(x1, x2) = (0, θ2).

For this game, the only consistent sets (see Definition 8) are X1 = X2 = [0, β], which
provides little information about the strategies of the agents.
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2.4.2 A Game with Positive Externality

Consider two agents i = 1, 2 and j = 3 − i who spend the effort xi ≥ 0 to gain some
benefit. There is a positive externality in benefit: the opponent agent’s effort spills over and
affects positively the agent’s benefit. The sensitivity of agent i to the spill-over is her private
information θi. Agent i’s utility is

ui =
√
xi + θixj − xi.

Let, for all i, Θi = [1/4, 1/2].

Certainty game

It is easy to see this game has a free-riding effect. Both agents free ride on each other,
to some degree. A social planner would make agents invest more than they do at the Nash
equilibrium. First, we study a Nash equilibrium for the full information game. From the
first order condition, we find

∂ui
∂xi

=
1

2

1√
xi + θixj

− 1 = 0.

Thus i’s best response to xj is

xi = [
1

4
− θixj]+.

This game has only one pure Nash equilibrium

xi =
1

1− θiθj
1− θi

4

with corresponding utility

ui =
1

2
− 1− θi

4(1− θiθj)
.

Uncertainty game: Optimism case

Assume that both agents are optimistic and that both know this: they choose the atti-
tudes π = (O,O). Starting with Xi = [ci, di] at equilibrium, since ui is increasing in xj, we
see that an optimistic agent assumes that the other agent selects her largest strategy. As a
result,

xi = [
1

4
− θidj]+.
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Thus

Xi = [
1

4
− 1

2
dj,

1

4
− 1

4
dj] := [ci, di].

The unique equilibrium is Xi = [3/20, 1/5]. Accordingly, i’s strategy becomes

x∗i (O,O) =
1

4
(1− 4

5
θi).

Uncertainty game: Pessimism case

Assume now that both agents are pessimistic and that both know this: they choose the
attitudesπ = (P, P ). Arguing as before, a pessimistic agent assumes that the other agent
selects her minimum strategy. Hence, starting with Xi = [ci, di], we find

xi = [
1

4
− θicj]+.

Thus

Xi = [
1

4
− 1

2
cj,

1

4
− 1

4
cj] := [ci, di].

The unique equilibrium is Xi = [1/6, 5/24]. Accordingly, i’s strategy becomes

x∗i (P, P ) =
1

4
(1− 2

3
θi).

We can see that a pessimistic agent invests more than an optimistic one.

A right attitude

We can continue similar analysis for π = (O,P ) and π = (P,O). For any θi, one can
easily show that the following inequalities hold:

U1,OP > U1,PP > U1,PO > U1,OO for all θ2 ∈ Θ2,

and

U2,PO > U2,PP > U2,OP > U2,OO for all θ1 ∈ Θ1.

Thus, in this positive externality game, the ex-post utilities when both agents are pes-
simistic are larger than when both of them are optimistic. It is easy to see this game has
two pure Nash equilibria : (O,P) and (P,O). Thus, in terms of picking one single attitude,
players are inconclusive.
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2.4.3 Cournot Duopoly Game

Full Information Case

For i = 1, 2, selfish and rational player i produces a non-negative quantity xi of homo-
geneous items with a non-negative production cost θi ∈ [0, 1/2] per item. The selling price
per item is (1− x1− x2)+ where y+ = max{y, 0} for y ∈ <. Accordingly, the reward (profit)
of player i is ui(x, θi) defined as follows:

ui(x, θi) := xi(1− x1 − x2)+ − θixi (2.5)

where x = (x1, x2).

Player i’s strategy is the quantity xi to produce. The value of xi that maximizes ui(x, θi)
is xi = (1− θi − xj)/2, for i = 1, 2 and j = 3− i. The unique solution of these equations is
the Nash equilibrium x? := (x?1, x

?
2) where

x?i = (1− 2θi + θj)/3. (2.6)

The corresponding utilities are

u?i = x?i
2. (2.7)

Note that the pair x = (x1, x2) that maximizes usocial :=
∑

i=1,2 ui(x, θi) is ((1 − θ1)/2, 0)
when θ1 < θ2. This “social optimum” is quite different from the Nash equilibrium. There

usocial = (1− θ1)2/4. (2.8)

Bayesian Uncertainty Case

In a Bayesian model, one assumes that θ1 and θ2 are independent with known distribu-
tions; each player i = 1, 2 knows θi and only the distribution of θj for j = 3− i, and this is
common knowledge. In that case,

E[u1(x, θ1)|x1, θ1] = x1(1− x1 − E[x2|x1, θ1])− θ1x1

and this expression is maximized by

x1 = (1− E[x2|x1, θ1]− θ1)/2 = (1− E(x2)− θ1)/2.

The last expression follows from the observation that x2 is only a function of θ2 which is
independent of θ1. Consequently, for i = 1, 2,

E(xi) = (1− E(xj)− µi)/2 where µi := E(θi).

Solving this system of two equations, we find

E(x1) = (1− 2µ1 + µ2)/3 and E(x2) = (1− 2µ2 + µ1)/3.
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Accordingly, for i = 1, 2,

xi,B = (2− 3θi − µi + 2µj)/6 where j = 3− i. (2.9)

This solution is a unique Bayesian Nash equilibrium. Note that player i’s strategy maximizes
her interim expected utility E[ui(xB, θi)|xi,B, θi], rather than the ex post utility ui(xB, θi),
which i cannot compute.

Consistent Set

Recall the definition of a consistent set. It provides a strategy bound beyond which a
rational player should not play when non-probabilistic uncertainties prevail.

Consider that player i’s best response to xj at θi, xi(xj, θi), which is real and continuous
in xj and θi. Then φj(Xi) is a continuous and compact interval for any continuous and

compact Xi. Suppose X†1 = [a, b] and X†2 = [c, d]. Using definition Θi = [αi, βi], we find

Theorem 5. The consistent set for Cournot duopoly game is unique and is given as

X†1 = [(1− 2β1 + α2)/3, (1− 2α1 + β2)/3] and

X†2 = [(1− 2β2 + α1)/3, (1− 2α2 + β1)/3].

Proof. Recall xi(xj, θi) = (1− xj − θi)/2. Thus

φ1(X2) = [(1− d− β1)/2, (1− c− α1)/2] := [a, b].

Similarly

φ2(X1) = [(1− b− β2)/2, (1− a− α2)/2] := [c, d].

Solving the two equations above yields the result.

Game with Attitudes

One assumes that, for i = 1, 2, player i knows θi but only that θj ∈ Θj := [αj, βj] for
j = 3 − i where βj ≤ 1/2. This is common knowledge. Moreover, player i has attitude
πi ∈ [0, 1]. The following result is shown in the appendix.
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Theorem 6. The unique uncertainty equilibrium with attitudes π is the pair of intervals

B[si, ti] := [si − ti/2, si + ti/2] for i = 1, 2, where

si =
1

3
∆jπi −

1

6
∆iπj +

1

12
(4− 3βi − 5αi + 4αj) (2.10)

and ∆i := βi−αi and ti = (βi−αi)/4. The strategies that maximize the interim anticipated

rewards are

x∗i (π) =
1

3
∆jπi −

1

6
∆iπj + λi, (2.11)

where λi = (2− αi + 2αj − 3θi)/6.

In fact, the attitudes are added degree of freedom that enables rationalization in choosing
a strategy out of the consistent set. That is, the recommended strategy does swing in the
entire consistent sets by varying π. That result is expressed in the following theorem.

Theorem 7. The consistent set (X†1, X
†
2) and the uncertainty equilibrium (X1(π), X2(π)) at

π establish the following relation:

X†i =

[
inf

π∈{0,1}2
Xi(π), sup

π∈{0,1}2
Xi(π)

]
, (2.12)

for i = 1, 2.

Therefore, the attitude structure is exhaustively descriptive in expressing any feasible
rational strategy in consistent sets. Note that the consistent sets do not require imposition
on any form of knowledge about uncertainties except they are defined within certain ranges.
Thus the same consistent sets are obtained when one considers a set of rational strategies over
a family of probability distributions of uncertainties whose supports are the same ranges. As
a result, one can expect that there always exists a pair of attitudes that corresponds to a par-
ticular choice of probability distributions of uncertainties. Indeed, when a Bayesian Cournot
game assumes distributions of (θ1, θ2) with mean (µ1, µ2), the corresponding attitudes are

πi =
µj − αj
βj − αj

, for all i.

This result is obtained by equating (2.9) and (2.11) for i = 1, 2 and solving these equations.
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Rationalization

The strategies (2.11) are rational when π is known. In an attitude game A, a player first
decides her attitude and then chooses the strategy (2.11). An immediate question is what a
rational attitude is. First of all, there are situations where a player can choose a dominant
attitude based on its private information and common knowledge, but not on the opponent’s
private information. The following lemma is proved in the appendix.

Lemma 1 (Dominant attitude).

Let θi := 1
3
(2 − βi + 4αj − 2βj) and θi := 1

3
(2 − αi + 4βj − 2αj). Assume that the attitude

space is discrete Π = {0, 1}. Then the following properties hold:

1. If θi ≤ θi, then optimism is a dominant strategy for player i;

2. If θi ≥ θi, then pessimism is a dominant strategy for player i;

3. If θi < θi < θi, then there is no dominant strategy for player i.

In particular, if βi < 1/3 for i = 1, 2 (i.e., if the unit production costs are sufficiently
low), both players should be optimistic.

The game is said to be symmetric if u1 = u2 and Θ1 = Θ2.

There is a connection between a symmetric attitude game and a Prisoner’s Dilemma
game when the attitude space is discrete with Π = {0, 1}.

Theorem 8. Consider the symmetric game A with Θ1 = Θ2 = [α, β] where β > α. Then

the following properties hold:

1. (PP ) is never a Nash equilibrium;

2. (PP ) is pareto efficient;

3. (PP ) is pareto superior to (OO);

4. O is the dominant strategy if β ≤ max(1/3, 2α), so that (OO) is the only Nash equi-

librium.

Together with 1), 2), and 3), the condition in the last part makes the attitude game a Pris-

oner’s Dilemma. The last condition requires that the costs are not too large.
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Robust attitude

As we observed from the previous example, game A may not have a dominant attitude for
player i. In such a case, player i may prefer a strategy that guarantees the largest minimum
ex-post reward. That is, player i might seek the robust attitude π]i ∈ [0, 1] defined by

π]i := arg max
πi

min
πj

ui(xi(θi, π), xj(θj, π), θi).

Theorem 9. The robust attitude of Cournot duopoly does not coincide with pessimism and

is given by

π]i = min(1, (2− 3θi − βi + 2αj)/4∆j)

for ∆j > 0. Consequently, π]i > 0, except for a singular case αj = 0 and θi = βi = 1/2.

Example 1. Let β := max(βi, βj). Then if β ≤ 1/4, π]i = π]j = 1. That is, when costs are

sufficiently small, the robust strategy is optimism. To see this, note that π]i = min(1, (2 −

3θi − βi + 2αj)/4(βj − αj)) ≥ min(1, (2− 4β)/4β)) = 1.

Rationalization in a general attitude space Π = [0, 1]

In real economic situations demanding decisions, a human player does not necessarily
take an extreme attitude - complete optimism or complete pessimism. It is more natural to
think that one should take some combination of optimism and pessimism. That is, one can
be πi-optimistic, for some πi ∈ [0, 1].

Define the bounds of a rational attitude for player i by

πi ≤ πi ≤ πi, (2.13)

implying that it is not rational for player i to choose an attitude outside of this interval.
In other words, for any possible true value of the uncertainty that i has and any possible
rational attitude of player j, player i’s best response attitude is neither πi < πi nor πi > πi. If
any attitude in [0, 1] is rational, then πi = 0 and πi = 1. If a particular attitude is dominant,
then πi = πi.

Recall the player i’s ex-post utility of the attitude game when two players choose π =
(π1, π2).

Ui(π) = ui(x
∗
i (π), x∗j(π), θi), for j = 3− i.
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Using
∂x∗i (π)

∂πi
=

1

3
∆j and

∂x∗j(π)

∂πi
= −1

6
∆i,

we find

36
∂Ui(π)

∂πi
= 2− 3θi − 4∆jπi −∆iπj − ai − 4aj + 6θj.

In order to achieve the largest ex-post utility, player i should select the largest attitude
as long as ∂Ui(π)

∂πi
≥ 0. Also she should select the smallest attitude as long as ∂Ui(π)

∂πi
≤ 0. To

find πi and πi, player i needs to consider all possible values of θj and πj.

Assume θj = bj. Then,

36
∂Ui(π)

∂πi
= (2− 3θi − biπi) + 4∆j(1− πi) + (2bj + aiπj − ai) ≥ 0.

Thus, πi = 1 can always be a rational attitude. Therefore πi = 1 for all i.

Also ∂Ui(π)
∂πi

is minimized at πj = 1 and θj = aj. Considering πi is defined in [0, 1], the
ex-post utility is maximized by

πi =
1

4∆j

min((2− 3θi − bi + 2aj), 1),

which is the smallest possible rational attitude. These observations lead to the following
theorem.

Theorem 10. Player i should not select an attitude beyond the interval

[πi, πi] =

[
1

4∆j

min((2− 3θi − bi + 2aj), 1), 1

]
.

Finally, there is a similar dominant attitude criterion for a continuous attitude space.
The proof is immediate from the above theorem, and thus omitted.

Theorem 11 (Dominant attitude).

Let θi := 1
3
(2− βi + 6αj − 4βj) and θi := 1

3
(2− βi + 2αj). Assume that the attitude space is

continuous Π = [0, 1]. Then the following properties hold:

1. If θi ≤ θi, then πi = 1 is a dominant strategy for player i;

2. If θi ≥ θi, then πi = 0 is a dominant strategy for player i;

3. If θi < θi < θi, then there is no dominant strategy for player i.
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Price of Uncertainty

This subsection studies the effect of uncertainty on the social welfare. The social welfare
is defined as the sum of ex-post utilities of players. A basic question is how bad an uncertainty
is to social welfare. To measure this, we define Price of Uncertainty (PoU) as the ratio of
sum utilities of an uncertainty game with respect to the sum utilities of a full information
game at its Nash , assuming that the latter is unique.

Definition 12 (Price of Uncertainty).

The price of uncertainty of the Cournot duopoly game with attitudes π is defined as follows:

PoU :=

∑
i=1,2 ui∑
i=1,2 u

?
i

, (2.14)

where u?i is defined in (2.7).

A different notion, Price of Anarchy captures how bad the lack of coordination in a game
affects the social welfare in comparison to the case where a single designer optimizes the
society. The motivation for the Price of Uncertainty is different: one cannot avoid a game
situation, so that the optimum social welfare cannot be achieved.

All the numerical bound of the Price of Uncertainty can be found by simple algebra or
numerical analysis, and thus the derivations are omitted for simplicity.

As a reference, we start with the PoU of social optimum (SO) case. (This is just a
reciprocal of Price of Anarchy.)

PoU(SO) :=

∑
i=1,2 ui,SO∑
i=1,2 u

?
i

, (2.15)

u
i,SO is found at (2.8). Together with (2.7),

1 ≤ PoU(SO) ≤ 5

4
. (2.16)

The lower bound is obtained when (θ1, θ2) = (0, 1/2), and the upper bound is obtained when
θ2 = 1

5
(1 + 4θ1) for any 0 ≤ θ1 ≤ 3

8
.

For the second reference, we consider the Price of Uncertainty of Bayesian game. Consider
a family of distributions over θ1, θ2 with support of Θ1,Θ2 respectively. Designate µ =
(µ1, µ2) as the means of the uncertainties. Then define

PoU(Bayes) :=

∑
i=1,2 ui,Bayes∑

i=1,2 u
?
i

, (2.17)
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where u
i,Bayes := u(xB, θi) where in turn xB is found at (2.9).

Then

1

2
≤ PoU(Bayes) ≤ 5

4
(2.18)

and the lower bound is obtained at (θ1, θ2) = (0, 1/2) and (µ1, µ2) = (1/2, 0), and the upper
bound is obtained at (θ1, θ2) = (3/8, 1/2) and (µ1, µ2) = (0, 1/2).

Although these bounds are feasible, it does not make sense for a player to willingly change
the distributions of uncertainties.

Finally, define the Price of Uncertainty of an attitude game

PoU(Attitude) :=

∑
i=1,2 Ui∑
i=1,2 u

?
i

. (2.19)

Even for the same (θ1, θ2), players can willingly change their attitudes as long as their
private information does not yield a particular dominant strategy. It is found

39

64
≤ PoU(Attitude) ≤ 5

4
. (2.20)

The lowerbound is obtained when (θ1, θ2) = (0, 1/2) and (π1, π2) → (3/4, 1). The upper-
bound is obtained when (θ1, θ2) = (3/8, 1/2) and (π1, π2) = (1, 0).

Note the lower bound of PoU(Attitude) and that of PoU(Bayes) are obtained at the
same θ′is. However, at the worst case, the first is larger than the second. One implication
follows: Consider a hypothetical scenario where players are not given distributions for the
uncertainties. Suppose a system designer seek the worst case social welfare. If he assumes
the use of Bayesian game mechanism, he would search for the distributions that will yield
the least PoU, which will be 1/2. Now instead, if he assume the use of Attitude game
mechanism, he would found the least PoU larger than 1/2. Obviously the designer would
prefer attitude game mechanism.

One intuitive explanation behind this is optimism framework provides an additional
degree of freedom in rational strategy set (consistent set), and thus enables players to play
more strategically.

2.5 At least one player does not prefer pessimism

We identify conditions when pessimism cannot be dominant for both players.

The first theorem proves this for the non-symmetric Cournot duopoly game. The follow-
ing theorem is for a more general utility structure of symmetric games.
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Theorem 12. Both Cournot duopoly players cannot simultaneously have pessimism as their

dominant attitude.

Now we consider a more general utility function case.

Theorem 13. Consider a symmetric game where ui is strictly monotonic in xj and ri(xj, θi)

is single valued and strictly monotonic in xj and θi. Then pessimism cannot be a dominant

attitude for any of the two players.

2.6 Conclusions

This chapter proposes a framework to analyze two-player games with non-probabilisitc
information uncertainty. The formulation allows a rational player to choose an attitude
against uncertainty characterized by a degree of optimism. Corresponding to a pair of
attitudes, we define an uncertainty equilibrium as a pair of sets of strategies from which
rational players would not depart unilaterally. This concept coincides with the traditional
Nash equilibrium when there is no uncertainty. We then define a two-phase game where
players first choose their attitude. Finally, we illustrate the framework with a consumption
game and a Cournot duopoly game with uncertainty. We show that the framework may
identify uniquely the strategies of the players.

2.7 Proofs

This section presents the proofs of the results of this chapter.

2.7.1 Proof of Theorem 2

Since ri is continuous in θi, and Θi is a bounded and closed interval, Xi is a closed
interval. Let Xi = [xi, xi] ⊂ Xi,o, xi ≤ xi. We define a map φ(xi, xi) = (x′i, x

′
i) such that

x′i = arg min
θi∈Θi

ri([xj, xj], θi, πi)

x′i = arg max
θi∈Θi

ri([xj, xj], θi, πi)

where
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Xi rj(Xi, θj , πj)

ri(Xj , θi, πi) Xj

rj

ri

θi ∈ Θi θj ∈ Θj

φi

Figure 2.1. φi mapping

xj = arg min
θj∈Θj

rj([xi, xi], θj, πj)

xj = arg max
θj∈Θj

rj([xi, xi], θj, πj).

From construction x′i ≤ x′i. If φi is a continuous mapping, then by Brouwer’s fixed point
theorem, there exists (x∗i , x

∗
i ) ∈ X2

i,o such that

φi(x
∗
i , x
∗
i ) = (x∗i , x

∗
i ).

Then Xi = [x∗i , x
∗
i ] is, by definition, an uncertainty equilibrium. Now we show that φi is

continuous in xi, xi.

Let v := y(xi, xi) := arg supxi∈[xi,xi]
uj(xj, xi, θj) and define z such that xi − ε ≤ z ≤

xi + ε. Then limε→0 uj(xj, z, θj) = uj(xj, xi, θj) from uj’s continuity. There are two cases:
(1) y(xi, xi) > xi. Then y(z, xi) = y(xi, xi) as for small ε. (2) y(xi, xi) = xi. Then
xi − ε ≤ w := y(z, xi) ≤ xi + ε. As a result

supxi∈[z,xi]
uj(xj, xi, θj)− supxi∈[xi,xi]

uj(xj, xi, θj)

= uj(xj, w, θj)− uj(xj, xi, θj)→ 0

as ε→ 0 from uj’s continuity.

Therefore supxi∈[xi,xi]
uj(xj, xi, θj) is continuous in xi. Similarly we can show it is con-

tinuous in xi. These steps can be repeated for infxi∈[xi,xi] uj(xj, xi, θj). As a result fj and
rj are continuous in xi, xi. Since rj is continuous in θj and Θj is a closed and bounded
interval, Xj := [xj, xj] := {rj([xi, xi], θ̃j, πj|θ̃j ∈ Θj} is a closed interval too. Using the same
procedure, x′i and x′i are continuous in xj, xj. Since φi is a composite function of continuous
functions in xi, xi, φi is therefore continuous in (xi, xi). This completes the proof.

31



2.7.2 Proof of Theorem 3

Let Θi = {θi} for all i. Then for arbitrary Xj, Xi := {ri(Xj, θi, πi)|θi ∈ Θi} is a singleton.

Let Xi = {x†i}. Then

x†j := rj(Xi, θj, πj) = arg max
xj∈Xj,o

uj(xj, x
†
i , θj)

is j’s best response function of game Go when j predicts i plays x†i . By assumption an
equilibrium of this is a (x?1, x

?
2). And by construction, it is also an uncertainty equilibrium

(X∗1 (π), X∗2 (π)) of G(π), and it does not depend on π.

2.7.3 Proof of Theorem 4

The partial derivative with respect to xi is 1 − exp{−θi + xi + xj}, which is positive
for xi < θi − xj and negative for xi > θi − xj. Accordingly, the best response xi(xj) is
xi(xj) = [θi − xj]

+. If θi < θj, the only Nash equilibrium is then xi = 0, xj = θj. The
outcome of the game is very sensitive to the order of the parameters.

Assume i knows that xj ∈ Xj. For z ∈ R, define [z]10 := min{max{z, 0}, 1}. Then, if i is
optimistic, she maximizes xi − exp{−θi + xi + αj} where αj = minXj. Thus,

xi = [θi − αj]10 ∈ [[α− αj]10, [β − αj]10].

Also, if i is pessimistic, she maximizes xi − exp{−θi + xi + βj} where βj = maxXj. Thus,

xi = [θi − βj]10 ∈ [[α− βj]10, [β − βj]10].

Suppose both players are optimistic. Then the only uncertainty equilibrium is Xi = Xj =
[a, b] where a = α−a and b = β−α. Hence Xi = Xj = [α

2
, β− α

2
]. Consequently, xi = θi− α

2

and
Ui(1, 1) := θi −

α

2
− exp{θj − α}.

Second, suppose both players are pessimistic. Then the only consistent sets are Xi =
Xj = [a, b] where a = α − b and b = β − b. Hence, Xi = Xj = [α − β

2
, β

2
]. Consequently,

xi = θi − β
2

and

Ui(0, 0) := θi −
β

2
− exp{θj − β}.

Third, suppose that player 1 is optimistic and player 2 is pessimistic. In that case,
the only consistent sets are X1 = [a1, b1] and X2 = [a2, b2] where a1 = [α − a2]10, b1 =
[β − a2]10, a2 = [α − b1]10, b2 = [β − b1]10. Hence, X1 = [α, β] and X2 = {0}. Consequently,
x1 = θ1 and x2 = θ2 − β, so that

U1(1, 0) := θ1 − exp{θ2 − β}.
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By symmetry,
U1(0, 1) := θ1 − β − exp{θ2 − β}.

By inspection, we see

U1(1, 0) ≥ U1(0, 0) and U1(1, 1) > U1(0, 1).

Thus, optimism is a dominant strategy for player 1. By symmetry, it is also dominant for
player 2.

2.7.4 Proof of Theorem 6

The proof goes in following steps: First we define the uncertainty set as a ball. Then
we show the ball’s radius is constant. Finally we show the center of the ball is fixed at
equilibrium. Note ui is negatively affine in xj. Let Xo = [0, 1/2] be the strategy space. Thus
inf Xj = arg supxj∈Xj

ui(x, θi) and supXj = arg infxj∈Xj
ui(x, θi). Define

hi(Xj, πi) = πi inf Xj + (1− πi) supXj.

Then fi(xi, Xj, θi, πi) = ui(xi, hi(Xj, πi), θi). From the first order condition and definition,
i’s best response to Xj becomes

ri(Xj, θi, πi) = (1− hi(Xj, πi)− θi)/2.
This yields

supXi = (1− ri(Xj, πi)− αi)/2
inf Xi = (1− ri(Xj, πi)− βi)/2.

Now let X∗i = B[si, ti] for i = 1, 2 and j 6= i where B[s, t] is a closed ball or radius t
centered at s. Then

ti = (supX∗i − inf X∗i )/2 = ∆i/4,

where ∆i := βi − αi. This is independent of X∗i , X
∗
j , θi, θj. Now since supX∗j = sj + tj and

inf X∗j = sj − tj,
hi(X

∗
j , πi) = sj + tj(1− 2πi).

Define σi := (αi + βi)/4,. Then

si = (supX∗i + inf X∗i )/2

= (1− ri(X∗j ))/2− σi = (1− sj − tj(1− 2πi))/2− σi
for i = 1, 2. We have two equations relating si and sj. By solving algebra, we get (2.10).
i’s best response at uncertainty equilibrium xi = ri(X

∗
j , θi, πi) becomes (2.11). B[si, ti] then

is uniquely determined by given (π, θi,Θi,Θj). To show its existence, it is sufficient to
show B[si, ti] ⊂ Xo. To see this, it is straightforward to verify min si + ti ≤ supXo and
max si − ti ≥ inf Xo for all combinations of π,Θ1,Θ2.
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2.7.5 Proof of Lemma 1

1. We need to find a condition, without loss of generality, such that (i) u1(OO) ≥ u1(PO)
and (ii) u1(OP ) ≥ u1(PP ) for every θ2 ∈ [α2, β2]. By algebra,

u1(OO)− u1(PO) ≥ ∆2[θ1 − θ1]/12,

which is non-negative for all θ1 ≤ θ1 := 1
3
(2 − β1 + 4α2 − 2β2) and for all θ2. (ii) is

immediate because

u1(OP )− u1(PP ) ≥ u1(OO)− u1(PO).

2. Similar development yields θi ≥ θi where θi := 1
3
(2− αi − 2αj + 4αi).

2.7.6 Proof of Theorem 8

1. We show at least one player always have an incentive to deviate from (PP ). This
part of the theorem is true even for non-symmetric Θ1 and Θ2. Define ui(π) :=
ui(x

∗
i (π), x∗j(π), θi) and ∆ = β − α. Suppose player 1 does not have the incentive to

deviate from (PP). That is, u1(PP ) ≥ u1(OP ). Then we prove by showing u2(OP ) >
u2(PP ). From the proof of Lemma 1, u1(PP ) ≥ u1(OP ) is equivalent to 3θ1 ≥
2 − 3α − 2β + 6θ2. Then, u2(PO) − u2(PP ) = ∆1

36
(2 − 3α − 2β + 6θ1 − 3θ2) ≥

∆1

36
(6 − 9α − 6β + 9θ2) > 0. The last inequality comes from the boundary condition

0 ≤ α ≤ θi ≤ β ≤ 1/2.

2. We show that a rival player’s optimistic attitude is always detrimental: 36(u1(PP )−
u1(PO)) = ∆(6x1(PP ))+∆(6−6θ1−6x1(PP )−6x2(PP )−∆) > 0. We can similarly
show 36(u1(OP )−u1(OO)) > 0. At (PP ), suppose one player has incentive to change
to O. That change hurts the ex post utility of the other player. This concludes (PP )
is pareto efficient.

3. We need to show ui(PP ) > ui(OO). To see this, 36(ui(PP )−ui(OO)) = 12∆x1(PP )−
∆(6− 6θ1 − 6x1(PP )− 6x2(PP )− 2∆) = ∆(2 + 2α + 2β − 3θ1 − 3θ2) ≥ 0.

4. If β ≤ max(1/3, 2α), then θi ≥ β ≥ θi for all i, and importantly, this fact becomes a
common knowledge. From Lemma 1, O is the dominant strategy. Together with 1), 2)
and 3), this constitutes a Prisoner’s Dilemma game.

2.7.7 Proof of Theorem 9

ui(q
∗(π), θi) is non-increasing in πj for all possible combinations of parameters. Thus ui

is minimized at πj = 1. ui is convex in πi. From the first order condition, the result is
immediately obtained.
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2.7.8 Proof of Theorem 12

Suppose player 1’s dominant attitude is pessimism. From Lemma 1, this implies

β1 ≥ θ1 ≥ θ1 = (2− α1 + 4β2 − 2α2)/3.

Now then,

θ2 = (2− α2 + 4β1 − 2α1)/3

≥ (14− 10α1 − 11α2 + 7β2)/9 + β2 > β2.

Thus θ2 ≤ β2 < θ2. Therefore pessimism cannot be player 2’s dominant strategy.

2.7.9 Proof of Theorem 13

Consider player 1 representatively. We will show U1(OO) > U1(PO) for some θ2 ∈ Θ2.
Let u := ui, r := ri and Θ := [α, β] = Θi for i = 1, 2. α < β. As one case, assume ui is
strictly decreasing in xj, ri is decreasing in xj and θi both. The conclusion is the same if
any of ‘decreasing’ condition is changed to ‘increasing’ condition. Define equilibrium sets for
each π as follows:

X1 = X2 = [a, b] for π = (OO);

X1 = X2 = [c, d] for π = (PP );

X1 = [e, f ], X2 = [g, h] for π = (OP );

X1 = [g, h], X2 = [e, f ] for π = (PO).

Then

a = r(a, β) and b = r(a, α);

c = r(d, β) and d = r(d, α);

e = r(g, β) and f = r(g, α);

g = r(f, β) and h = r(f, α).

From monotonicity of r, we draw relation one by one: From a = r(a, β) and d = r(d, β), it is
immediate to see a < d. Noting d = r(r(d, α), α) and g = r(r(g, α), β), we get g < d. Thus
d < f from d = r(d, α) and f = r(g, α). From a < f , we get g < a. Finally we get a < e.
Take θ2 = β. Then,

U1(OO) = u(x1(θ1, OO), x2(θ2, OO), θ1)

= u(r(a, θ1), r(a, θ2), θ1)

= u(r(a, θ1), r(a, β), θ1)

= u(r(a, θ1), a, θ1)

> u(r(f, θ1), a, θ1)

> u(r(f, θ1), e, θ1) = U1(PO).

Therefore pessimism cannot be a dominant attitude in a symmetric game.
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Chapter 3

A Cooperative Game with

Non-probabilistic Uncertainty

The motivation underlying this chapter is to analyze the effect of uncertainty on the
design and performance of protocols. The chapter considers two types of situation. The
first is when different nodes in the network have bounded knowledge about what other
nodes know. The second, called common knowledge about inconsistent beliefs, is when
the information is inconsistent but everyone knows it. Situations of bounded or inconsistent
information arise naturally in networks because the state of these systems changes and nodes
take time to learn of those changes.

The specific problem that this chapter explores is the relaying of packets in a simple
butterfly network. Despite its apparent simplicity, this problem enables to illustrate key
features of situations of uncertain knowledge that arise in networks. This chapter presents
two impossibility facts and one possibility fact. In the latter, we introduce a scheme that
enables optimal coordination given persisting imperfection in knowledge.

3.1 Introduction

This chapter studies the impact of bounded or inconsistent information on the perfor-
mance of a simple relay network.

In a network, nodes typically implement distributed protocols for routing, relaying, dis-
covery, leader election, congestion control, and other operations. Generally, the nodes have
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delayed and incomplete information about the state of the network. It is therefore natural
to question the impact of this incomplete information on the performance of the protocols.

A first line of inquiry considers delays and lack of synchrony among the nodes. A repre-
sentative result is that a distributed Bellman-Ford protocol converges to the shortest paths if
messages are eventually delivered between nodes, assuming that the network topology does
not change [10]. More general results concern the convergence of parallel and distributed
algorithms [9].

A second tread of investigation addresses impossibility theorems for distributed appli-
cations. An early result is the impossibility of two generals to agree with certainty when
messages they exchange have some probability of not being delivered [20, 29]. Another well-
known result is the Byzantine general problem where loyal generals cannot agree on whether
to attack or retreat if at least one third of the generals are traitors [24, 31].

In game theory, a related formulation of the imperfection of information has received
considerable attention after the publication of Rubinstein’s electronic mail paper [36]. In
that paper, two friends exchange lossy messages to decide whether to go out for coffee. One
friend knows that the weather is bad and tries to agree with his friend that they should
postpone their going out. Even after a large number of messages, they may end up not
making the correct joint decisions.

This chapter examines similar situations where different nodes should coordinate their
actions to prevent a bad outcome. However, because of imperfection of knowledge, the nodes
may choose the wrong actions. We focus on a simple example where only one of two nodes in
a network should relay a packet to prevent a collision. The difficulty is that the nodes do not
know perfectly the two probabilities of success nor what the other node knows. Even after
exchanging an arbitrarily large number of ‘link state messages’ the nodes may end up making
the same decision of either relaying the packet or not. The goal is to explore protocols that
avoid such pitfalls and are robust with respect to imperfect knowledge.

The first part focuses on the impact of bounded knowledge. The second part studies
the situations where the nodes have inconsistent beliefs but they know it as a common
knowledge.

Many other protocol design problems face similar difficulties, such as leader election,
routing, and forwarding. We hope that the discussion here will increase awareness of this
issue.

3.2 Problem Formulation

Consider the network shown in Figure 3.1. There are four wireless nodes: S,A,B, and
D. At time 0, node S broadcasts a packet to increase the chance of delivery to D, and
relay nodes A and B receive it correctly. At time 1, the nodes A and B decide to forward
the packet with probability a and b, respectively. If node A forwards the packet, it gets to
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of information uncertainty on the design and performance of
protocols. The paper considers two types of situations. The first
is when different nodes in the network have bounded knowledge
about what other nodes know. The second, called common
knowledge about inconsistent beliefs, is when the information
is inconsistent but everyone knows it. Situations of bounded or
inconsistent information arise naturally in networks because the
state of these systems changes and nodes take time to learn of
those changes.

The specific problem that the paper explores is the relaying
of packets in a simple butterfly network. Despite its apparent
simplicity, this problem enables to illustrate key features of
situations of uncertain knowledge that arise in networks. The
paper presents two impossibility facts and one possibility fact, in
the latter of which a scheme that enables optimal coordination
given persisting imperfection in knowledge is introduced.
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I. INTRODUCTION

This paper studies the impact of bounded or inconsistent
information on the performance of a simple relay network.

In a network, nodes typically implement distributed proto-
cols for routing, relaying, discovery, leader election, conges-
tion control, and other operations. Generally, the nodes have
delayed and incomplete information about the state of the
network. It is therefore natural to question the impact of this
incomplete information on the performance of the protocols.

A first line of inquiry considers delays and lack of syn-
chrony among the nodes. A representative result is that a
distributed Bellman-Ford protocol converges to the shortest
paths if messages are eventually delivered between nodes,
assuming that the network topology does not change [2].
More general results concern the convergence of parallel and
distributed algorithms [3].

A second tread of investigation addresses impossibility
theorems for distributed applications. An early result is the
impossibility of two generals to agree with certainty when
messages they exchange have some probability of not being
delivered [5], [7]. Another well-known result is the Byzantine
general problem where, using oral messages, loyal generals
cannot agree on whether to attack or retreat if at least one
third of the generals are traitors [6], [8].

In game theory, a related formulation of the imperfection
of information has received considerable attention after the
publication of Rubinstein’s electronic mail paper[9]. In that
paper, two friends exchange lossy messages to decide whether

to go out for coffee. One friend knows that the weather is bad
and tries to agree with his friend that they should postpone
their going out. Even after a large number of messages, they
may end up not making the correct joint decisions.

This paper examines similar situations where different nodes
should coordinate their actions to prevent a bad outcome.
However, because of imperfection of knowledge, the nodes
may choose the wrong actions. The paper focuses on a simple
example where only one of two nodes in a network should
relay a packet to prevent a collision. The difficulty is that the
nodes do not know perfectly the two probabilities of success
nor what the other node knows. Even after exchanging an
arbitrarily large number of ‘link state messages’ the nodes
may end up making the same decision of either relaying the
packet or not. The goal of the paper is to explore protocols
that avoid such pitfalls and are robust with respect to imperfect
knowledge.

The first part of the paper focuses on the impact of bounded
knowledge. The second part studies the situations where the
nodes have inconsistent beliefs but they know it as a common
knowledge.

Many other protocol design problems face similar difficul-
ties, such as leader election, routing, and forwarding. The
authors hope that the paper will increase awareness of this
issue.

II. PROBLEM FORMULATION

Consider the network shown in Figure 1. There are four

S D

A

B

pA

pB

a

b
Fig. 1. Butterfly relay network

wireless nodes: S, A, B, and D. At time 0, node S broadcasts
a packet to increase the chance of delivery to D, and relay
nodes A and B receive it correctly. At time 1, the nodes A
and B decide to forward the packet with probability a and b,

Figure 3.1. Butterfly relay network

node D with probability pA. Otherwise, the link from A to D is in deep fade and no energy
reaches node D. The situation is similar for node B, but with probability pB instead of pA.
The assumption is that if the packet reaches D both from A and from B, then the two copies
of the packet collide and D does not get the packet correctly. The question of interest is
how A and B should choose the probabilities a and b to maximize the probability π(a, b)
that D gets the packet. (One can think of a more general scenario where A and B receive
the packet from S with some probability or where simultaneous forwarding may not yield
packet loss. It does not change the conclusions of the chapter.)

From the description of the system, one finds π(a, b) is given by

π(a, b) = pAa+ pBb− 2pApBab. (3.1)

If the nodes A and B both know p := (pA, pB) and share that knowledge as a common
fact, they can choose the values a∗ and b∗ such that

π(a∗, b∗) = π∗ := max
a,b

π(a, b).

We call this situation perfect knowledge. Thus, both nodes know p and know that both know
it. The knowledge is common and exact: the nodes know the precise state of the network
and they both know that precise knowledge is common to both.

It is easy to verify that

(a∗, b∗) =

{
(1, 1), if p ∈ [0, 1

2
]2

(1{pA≥pB}, 1{pA<pB}), otherwise
(3.2)

with the corresponding optimal performance

π∗ =

{
pA + pB − 2pApB, if p ∈ [0, 1

2
]2

max{pA, pB}, otherwise.
(3.3)
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Roughly speaking, if none of links AD and BD is good (pA and pB are small), both nodes
should relay. Otherwise, only the node with the best link should relay.

However, the success probabilities p of the links change over time and the nodes can
observe only their local link directly. Thus, in practice, the nodes never have a perfect
knowledge. One practical approach is for the nodes to exchange ‘link state’ messages to
improve their knowledge. A key aspect of the formulation is to model precisely the knowledge
of the nodes A and B and to understand how this knowledge affects their decisions and the
resulting performance measures of the network.

The nodes A and B communicate somehow to increase their knowledge about the net-
work. Their communication path is not explicitly shown in the figure. The nodes exchange
lossy messages and we examine what they know after n messages. We call that knowledge
‘Level-n knowledge.’

Initially, before they exchange messages, we assume that A knows pA and B knows pB.
This is Level-0 knowledge. Now synchronously each node sends a message to the other.
Node A sends a message to B saying ‘I know pA.’ At the same time, B sends a message to
A saying ‘I know pB.’ (The synchronous assumption is relaxed later.) When it gets that
message, B knows pB, and that A knows pA. However, B is not sure that A knows that B
knows pA. Similarly, A knows pA, and that B knows pB but A is not sure that B knows
that A knows pB. This is level-1 knowledge. After the next exchange of messages, the nodes
have Level-2 knowledge, and so on. Note that Level-n knowledge is defined when the nodes
receive the n messages, even though the nodes assume that these messages can get lost.

These levels of knowledge can be formalized as follows. Let the notation KA(0) mean
‘A knows pA.’ Similarly, KB(0) means ‘B knows pB.’ Let then KA(1) mean ‘A knows pA
and KB(0).’ That is, KA(1) means ‘A knows pA and that B knows pB.’ Inductively, define
KA(n+ 1) to mean ‘A knows pA and KB(n)’ and similarly KB(n+ 1) to mean ‘B knows pB
and KA(n)’ for n ≥ 0. The interpretation is that the (n+ 1)th message from A to B carries
KA(n), so that upon receiving it node B knows pB and KA(n), which is KB(n + 1). The
situation is similar with A and B interchanged.

Of course, the nth message from A may get lost, in which case the knowledge of B remains
what it was previously. The discussion on this case is postponed to Section 3.4

One expects that, as they exchange more and more messages, the nodes’ knowledge
approaches perfect knowledge. However, it turns out that the values of the relaying proba-
bilities an and bn that the nodes choose with Level-n knowledge may result in a probability
of success π(an, bn) that does not approach π∗.

3.3 Analysis

To study the impact of imperfect knowledge on node decisions, we explore the strategies
of the two nodes A and B under different levels of knowledge.

39



2

respectively. If node A forwards the packet, it gets to node
D with probability pA. Otherwise, the link from A to D is
in deep fade and no energy reaches node D. The situation is
similar for node B, but with probability pB instead of pA. The
assumption is that if the packet reaches D both from A and
from B, then the two copies of the packet collide and D does
not get the packet correctly. The question of interest is how A
and B should choose the probabilities a and b to maximize the
probability π(a, b) that D gets the packet. (One can think of a
more general scenario where A and B receive the packet from
S with some probability or where simultaneous forwarding
may not yield packet loss. It does not change the conclusions
of the paper.)

From the description of the system, one finds π(a, b) is
given by

π(a, b) = pAa + pBb− 2pApBab. (1)

If the nodes A and B both know p := (pA, pB) and share
that knowledge as a common fact, they can choose the values
a∗ and b∗ such that

π(a∗, b∗) = π∗ := max
a,b

π(a, b).

We call this situation perfect knowledge. Thus, both nodes
know p and know that both know it. The knowledge is common
and exact: the nodes know the precise state of the network and
they both know that precise knowledge is common to both.

It is easy to verify that

(a∗, b∗) =
{

(1, 1), if p ∈ [0, 1
2 ]2

(1{pA≥pB}, 1{pA<pB}), otherwise
(2)

with the corresponding optimal performance

π∗ =
{

pA + pB − 2pApB, if p ∈ [0, 1
2 ]2

max{pA, pB}, otherwise.
(3)

Roughly speaking, if none of links AD and BD is good (pA

and pB are small), both nodes should relay. Otherwise, only
the node with the best link should relay.

However, the success probabilities p of the links change over
time and the nodes can observe only their local link directly.
Thus, in practice, the nodes never have a perfect knowledge.
One practical approach is for the nodes to exchange ‘link
state’ messages to improve their knowledge. A key aspect of
the formulation is to model precisely the knowledge of the
nodes A and B and to understand how this knowledge affects
their decisions and the resulting performance measures of the
network.

The nodes A and B communicate somehow to increase their
knowledge about the network. Their communication path is
not explicitly shown in the figure. The nodes exchange lossy
messages and we examine what they know after n messages.
We call that knowledge ‘Level-n knowledge.’

Initially, before they exchange messages, we assume that
A knows pA and B knows pB . This is Level-0 knowledge.
Now synchronously each node sends a message to the other.
Node A sends a message to B saying ‘I know pA.’ At the
same time, B sends a message to A saying ‘I know pB.’ (The
synchronous assumption is relaxed later.) When it gets that
message, B knows pB , and that A knows pA. However, B is

(a)

KA(1) : A knows

pA

B knows pB

KB(1) : B knows

pB

A knows pA

(b)

KA(n + 1) : A knows

pA

KB(n)

KB(n + 1) : B knows

pB

KA(n)

Fig. 2. (a) Level-1 (b) Level-n + 1 knowledge structure. Upper part for A,
lower part for B. Note two dotted boxes contain disparate knowledge for B.

not sure that A knows that B knows pA. Similarly, A knows
pA, and that B knows pB but A is not sure that B knows
that A knows pB . This is level-1 knowledge. After the next
exchange of messages, the nodes have Level-2 knowledge,
and so on. Note that Level-n knowledge is defined when the
nodes receive the n messages, even though the nodes assume
that these messages can get lost.

These levels of knowledge can be formalized as follows.
Let the notation KA(0) mean ‘A knows pA.’ Similarly, KB(0)
means ‘B knows pB .’ Let then KA(1) mean ‘A knows pA and
KB(0).’ That is, KA(1) means ‘A knows pA and that B knows
pB .’ Inductively, define KA(n+1) to mean ‘A knows pA and
KB(n)’ and similarly KB(n + 1) to mean ‘B knows pB and
KA(n)’ for n ≥ 0. The interpretation is that the (n + 1)th

message from A to B carries KA(n), so that upon receiving
it node B knows pB and KA(n), which is KB(n + 1). The
situation is similar with A and B interchanged.

Of course, the nth message from A may get lost, in which
case the knowledge of B remains what it was previously. The
discussion on this case is postponed to Section IV

One expects that, as they exchange more and more mes-
sages, the nodes’ knowledge approaches perfect knowledge.
However, it turns out that the values of the relaying probabili-
ties an and bn that the nodes choose with Level-n knowledge
may result in a probability of success π(an, bn) that does not
approach π∗.

III. ANALYSIS

To study the impact of imperfect knowledge on node
decisions, we explore the strategies of the two nodes A and
B under different levels of knowledge.

A. Level-0

Consider first the case of Level-0 knowledge where node A
knows pA and node B knows pB but not more than that. Since
node A does not know anything about pB and what B knows,
it is sensible for that node to choose a value of its relaying

Figure 3.2. (a) Level-1 (b) Level-n+ 1 knowledge structure. Upper part for A, lower part
for B. Note two dotted boxes contain disparate knowledge for B.

3.3.1 Level-0

Consider first the case of Level-0 knowledge where node A knows pA and node B knows
pB but not more than that. Since node A does not know anything about pB and what
B knows, it is sensible for that node to choose a value of its relaying probability a that
guarantees a good probability of success, no matter what pB is and what the choice of node
B is. That is, node A chooses the reliable value a0 of a given by

a0 = arg max
a

min
b,pB

π(a, b).

Similarly, node B chooses the value b0 of b given by

b0 = arg max
b

min
a,pA

π(a, b).

From (3.1), one finds that

π(a, b) = pAa+ pBb(1− 2pAa),

so that

min
b,pB

π(a, b) =

{
1− pAa, if 1 ≤ 2pAa
pAa, otherwise.
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Consequently, the maximizing value a0 of minb,pB
π(a, b) is given by

a0 = min{ 1

2pA
, 1}. (3.4)

Similarly,

b0 = min{ 1

2pB
, 1}.

The resulting probability of success is

π0 := π(a0, b0) = pAa0 + pBb0 − 2pApBa0b0

= min{1

2
, pA}+ min{1

2
, pB}

−2 min{1

2
, pA}min{1

2
, pB}.

We find that

π0

π∗
=

{
1, if p ∈ [0, 1

2
]2

1
2 max(pA,pB)

, otherwise.
(3.5)

Note that 1
2
π∗ ≤ π0 ≤ π∗. Therefore the network is guaranteed not to lose more than half of

the performance when relays have Level-0 knowledge.

3.3.2 Level-1

After exchanging the first messages, the nodes reach Level-1 knowledge KA(1) and KB(1).
That is, A has learned that B knows KB(0) and, consequently, that B will base the choice
of b on KB(0). That is A considers that B will choose b = b0. Accordingly, A chooses the
value a = a1 such that

a1 = arg max
a
π(a, b0).

Since b0 = min{ 1
2pB

, 1}, one finds

π(a, b0) = pAa+ min{1

2
, pB} − pAamin{1, 2pB}

= pAa(1−min{1, 2pB}) + min{1

2
, pB}.

Consequently the maximizing value a1 is given by

a1 =

{
1, if pB ≤ 1

2

any in [0, 1], otherwise.
(3.6)

Similarly,

b1 =

{
1, if pA ≤ 1

2

any in [0, 1], otherwise.
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For certain set of p, multiple choices are possible for a1 and/or b1, which in turn correspond
to different values of the probability of success π(a1, b1). The worst case is a possible cost of
the lack of knowledge. Define π1 := minπ(a1, b1). One finds

π1 =

{
0, for p ∈ (1

2
, 1]2

pA + pB − 2pApB, otherwise.

Consequently,

π1

π∗
=





1, for p ∈ [0, 1
2
]2

0, for p ∈ (1
2
, 1]2

pA+pB−2pApB

max(pA,pB)
, otherwise,

(3.7)

which shows that the imperfect knowledge can reduce the probability of success to zero.

3.3.3 Level-n and Failure of Convergence

After exchanging (n + 1)th messages, and reaching Level-(n + 1) knowledge, node A
chooses an+1 as the best response to its belief about the node B’s decision, and similarly for
B. That is,

an+1 = arg max
a

min
bn

π(a, bn)

bn+1 = arg max
b

min
an

π(an, b).

It is easy to verify that a2k = a0, b2k = b0 and a2k+1 = a1, b2k+1 = b1 for all k ∈ Z+. Since
a0 6= a1 and b0 6= b1, one sees that the solution does not converge as the level of knowledge
increases. In general, for (pA, pB) /∈ [0, 1

2
]2

lim sup
n→∞

πn ≤ πo < π∗. (3.8)

Thus, robust optimization against uncertainties never leads to the optimal performance
regardless of the number of messages exchanged.

The failure to converge is due to an excess of caution. At step n, the relays try to
maximize the worst-case success probability over the possible choices of the other relay,
based on what the other relay night know at that time. Even if the nodes exchange n
messages successfully, the possibility that a message gets lost suffices to prevent the nodes
from making optimal decisions. Figure 3.3 summarizes the results of this section.

More generally, the node may have only imprecise Level-0 knowledge. For example, node
A knows p belongs to a set Z, or KA(0) = {p ∈ Z}, Z ⊂ [0, 1]2. The imprecise knowledge
situation is widespread because of imperfection of observation or estimation on state of the
nature. As a result, the nodes know only a rough range containing the true state.
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(a) p ∈ [0, 1
2 ]2

nO

1
2

1

π∗

πn

1 2 3 4

(b) p ∈ (1
2 , 1]2

nO

1
2

1
π∗

πn

1 2 3 4

Fig. 3. Evolution of the network performance (a) p ∈ [0, 1
2
]2 (b) p ∈ ( 1

2
, 1]2

IV. KNOWLEDGE WITH MESSAGE LOSS

In the previous section, we implicitly assumed the nodes A
and B synchronously increase their knowledge level despite
the possibility that messages might get lost. Figure 4 illustrates
a more realistic scenario: At some time t0, nodes A and B have
knowledge KA(n) and KB(n) respectively. At time t0 both
nodes send messages to each other. Node A’s message gets
lost and node B does not receive it, whereas node B’s message
reaches node A. At time t1, node A reaches an additional level
of knowledge while node B’s knowledge does not change. At
the next time step, node B’s knowledge level jumps by 2, to
level n + 2, whereas node A’s knowledge does not change
and remains at level n + 1, and so on. Note that the nodes’
knowledge level may lose synchronization when a message is
lost. However, their knowledge level gap is never more than
one because one node’s next knowledge level depends on the
other node’s current knowledge level.

Thus, at any given time t, the network performance can be
either

π(an+1, bn) or π(an, bn) or π(an, bn+1).

Consequently, in addition to the lossless case, it suffices to
consider π(a1, b0) and π(a0, b1). From (III-A) and (6), one
finds

π(a1, b0) =
{

pA + pB − 2pApB, pB ≤ 1
2

1
2 , otherwise.

By symmetry, π(a0, b1) is similarly found.
This completes the claim that the relays cannot reach

optimal coordination via lossy message exchange no matter
how high a knowledge level they obtain.

We conclude this section with a summarizing fact:

Fact 1: A distributed system cannot reach the optimal co-
ordination by building higher level of bounded knowledge via
lossy message exchange.

V. ACHIEVING OPTIMAL COORDINATION

The previous section shows that the lack of certainty in
message delivery prevents the nodes from coordinating their

t0 t1 t2 t3

· · ·

KA(n) KA(n + 1) KA(n + 1) KA(n + 3)

KB(n) KB(n) KB(n + 2) KB(n + 2)

Fig. 4. Assumption of synchronous message exchange is relaxed: Knowledge
evolution when a message from A to B is lost at time t0 .

actions optimaly. This failure of optimal coordination persists
regardless of the level of knowledge. This observation is sim-
ilar to the conclusions of the electronic mail game [9] which
led many researchers to study the continuity of belief structure.
Hopefully, the model of this paper shows the relevance of such
considerations to network protocols.

The practical question is to how find a mechanism that
achieves the optimal coordination based on local knowledge
KA(n) or KB(n) among distributed agents. The preceding
analysis shows that the set of parameters of the system de-
termines the evolution of the performance as n increases. For
instance, the analysis shows that if p := (pA, pB) ∈ [0, 1

2 ]2,
then an = bn = 1 is optimal for n ≥ 0. Also, once node A
knows KA(n) for some n ≥ 1, it knows that π = π∗ regardless
of the level of knowledge that node B has reached. The same
is true for node B. That is, if p ∈ [0, 1

2 ]2, the nodes know that
Level-1 knowledge suffices to enable optimal decisions.

However, the solution does not converge for p /∈ [0, 1
2 ]2. In

that case, the nodes know that basing their decisions on Level-
n knowledge does not lead to optimal coordination. With this
observation, they can choose to deviate from the myopic max-
min strategy and follow instead the following mechanism:

OPTIMAL COORDINATION-ACHIEVING SCHEME

Upon receiving message KB(0) from B, A updates its knowl-
edge and obtains KA(1). However node A does not send
KA(1) to node B. Instead, node A keeps sending KA(0) to
node B. Similarly, node B sends KB(0) to node A, even
though node B actually knows KB(1).

Once node A obtains KA(1), it learns if p ∈ [0, 1
2 ]2. In

that case, the relaying solution based on KA(1) is known
to be optimal. If p /∈ [0, 1

2 ]2, node A knows that gaining a
higher level of knowledge results in oscillations that can in
turn yield a zero probability of success. Accordingly, node A
does not follow the myopic max-min algorithm based on an
additional level of knowledge. Instead, it assumes that KA(1)
is the global information. At that time, although node B still
has knowledge KB(0), the network performance is guaranteed
to be at least half the optimal level, because of the Level-0
result. If node B has knowledge KB(1), then both nodes A
and B agree to the optimal coordination. Since the message is
lossy, node A keeps sending KA(0), so that node B eventually
reaches knowledge KB(1) with probability one.

It is worth mentioning some differences with the Electronic

Figure 3.3. Evolution of the network performance (a) p ∈ [0, 1
2
]2 (b) p ∈ (1

2
, 1]2

Lemma 2. Define Z := [p′A, p
′′
A]× [p′B, p

′′
B]. The reliable solution for a at Level 0 is

a0(Z) =





1, for p′′B ≤ 1
2

1, for p′′B(2p′′A − 1) ≤ (p′′A − p′A)

p′′
B

p′
A+p′′

A(2p′′
B−1)

, otherwise.

See Appendix for proof. An interesting special case is when A has no clue about the
exact link states. That is, Z = [0, 1]2. The result suggests a0(Z) = 1, or to forward always.
This general solution does not change the result of failure of convergence.

3.4 Knowledge with Message Loss

In the previous section, we implicitly assumed the nodes A and B synchronously increase
their knowledge level despite the possibility that messages might get lost. Figure 3.4 illus-
trates a more realistic scenario: At some time t0, nodes A and B have knowledge KA(n) and
KB(n) respectively. At time t0 both nodes send messages to each other. Node A’s message
gets lost and node B does not receive it, whereas node B’s message reaches node A. At
time t1, node A reaches an additional level of knowledge while node B’s knowledge does
not change. At the next time step, node B’s knowledge level jumps by 2, to level n + 2,
whereas node A’s knowledge does not change and remains at level n + 1, and so on. Note
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IV. KNOWLEDGE WITH MESSAGE LOSS

In the previous section, we implicitly assumed the nodes A
and B synchronously increase their knowledge level despite
the possibility that messages might get lost. Figure 4 illustrates
a more realistic scenario: At some time t0, nodes A and B have
knowledge KA(n) and KB(n) respectively. At time t0 both
nodes send messages to each other. Node A’s message gets
lost and node B does not receive it, whereas node B’s message
reaches node A. At time t1, node A reaches an additional level
of knowledge while node B’s knowledge does not change. At
the next time step, node B’s knowledge level jumps by 2, to
level n + 2, whereas node A’s knowledge does not change
and remains at level n + 1, and so on. Note that the nodes’
knowledge level may lose synchronization when a message is
lost. However, their knowledge level gap is never more than
one because one node’s next knowledge level depends on the
other node’s current knowledge level.

Thus, at any given time t, the network performance can be
either

π(an+1, bn) or π(an, bn) or π(an, bn+1).

Consequently, in addition to the lossless case, it suffices to
consider π(a1, b0) and π(a0, b1). From (III-A) and (6), one
finds

π(a1, b0) =
{

pA + pB − 2pApB, pB ≤ 1
2

1
2 , otherwise.

By symmetry, π(a0, b1) is similarly found.
This completes the claim that the relays cannot reach

optimal coordination via lossy message exchange no matter
how high a knowledge level they obtain.

We conclude this section with a summarizing fact:

Fact 1: A distributed system cannot reach the optimal co-
ordination by building higher level of bounded knowledge via
lossy message exchange.

V. ACHIEVING OPTIMAL COORDINATION

The previous section shows that the lack of certainty in
message delivery prevents the nodes from coordinating their

t0 t1 t2 t3

· · ·

KA(n) KA(n + 1) KA(n + 1) KA(n + 3)

KB(n) KB(n) KB(n + 2) KB(n + 2)

Fig. 4. Assumption of synchronous message exchange is relaxed: Knowledge
evolution when a message from A to B is lost at time t0 .

actions optimaly. This failure of optimal coordination persists
regardless of the level of knowledge. This observation is sim-
ilar to the conclusions of the electronic mail game [9] which
led many researchers to study the continuity of belief structure.
Hopefully, the model of this paper shows the relevance of such
considerations to network protocols.

The practical question is to how find a mechanism that
achieves the optimal coordination based on local knowledge
KA(n) or KB(n) among distributed agents. The preceding
analysis shows that the set of parameters of the system de-
termines the evolution of the performance as n increases. For
instance, the analysis shows that if p := (pA, pB) ∈ [0, 1

2 ]2,
then an = bn = 1 is optimal for n ≥ 0. Also, once node A
knows KA(n) for some n ≥ 1, it knows that π = π∗ regardless
of the level of knowledge that node B has reached. The same
is true for node B. That is, if p ∈ [0, 1

2 ]2, the nodes know that
Level-1 knowledge suffices to enable optimal decisions.

However, the solution does not converge for p /∈ [0, 1
2 ]2. In

that case, the nodes know that basing their decisions on Level-
n knowledge does not lead to optimal coordination. With this
observation, they can choose to deviate from the myopic max-
min strategy and follow instead the following mechanism:

OPTIMAL COORDINATION-ACHIEVING SCHEME

Upon receiving message KB(0) from B, A updates its knowl-
edge and obtains KA(1). However node A does not send
KA(1) to node B. Instead, node A keeps sending KA(0) to
node B. Similarly, node B sends KB(0) to node A, even
though node B actually knows KB(1).

Once node A obtains KA(1), it learns if p ∈ [0, 1
2 ]2. In

that case, the relaying solution based on KA(1) is known
to be optimal. If p /∈ [0, 1

2 ]2, node A knows that gaining a
higher level of knowledge results in oscillations that can in
turn yield a zero probability of success. Accordingly, node A
does not follow the myopic max-min algorithm based on an
additional level of knowledge. Instead, it assumes that KA(1)
is the global information. At that time, although node B still
has knowledge KB(0), the network performance is guaranteed
to be at least half the optimal level, because of the Level-0
result. If node B has knowledge KB(1), then both nodes A
and B agree to the optimal coordination. Since the message is
lossy, node A keeps sending KA(0), so that node B eventually
reaches knowledge KB(1) with probability one.

It is worth mentioning some differences with the Electronic

Figure 3.4. Assumption of synchronous message exchange is relaxed: Knowledge evolution
when a message from A to B is lost at time t0.

that the nodes’ knowledge level may lose synchronization when a message is lost. However,
their knowledge level gap is never more than one because one node’s next knowledge level
depends on the other node’s current knowledge level.

Thus, at any given time t, the network performance can be either

π(an+1, bn) or π(an, bn) or π(an, bn+1).

Consequently, in addition to the lossless case, it suffices to consider π(a1, b0) and π(a0, b1).
From (3.3.1) and (3.6), one finds

π(a1, b0) =

{
pA + pB − 2pApB, if pB ≤ 1

2
1
2
, otherwise.

By symmetry, π(a0, b1) is similarly found.

This completes the claim that the relays cannot reach optimal coordination via lossy
message exchange no matter how high a knowledge level they obtain.

We conclude this section with a summarizing fact.

Fact 1. A distributed system cannot reach the optimal coordination by building higher level

of bounded knowledge via lossy message exchange.

3.5 Achieving Optimal Coordination

The previous section shows that the lack of certainty in message delivery prevents the
nodes from coordinating their actions optimaly. This failure of optimal coordination per-
sists regardless of the level of knowledge. This observation is similar to the conclusions of
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the electronic mail game [36] which led many researchers to study the continuity of belief
structure. Hopefully, the model of this paper shows the relevance of such considerations to
network protocols.

The practical question is to how find a mechanism that achieves the optimal coordination
based on local knowledge KA(n) or KB(n) among distributed agents. The preceding analysis
shows that the set of parameters of the system determines the evolution of the performance as
n increases. For instance, the analysis shows that if p := (pA, pB) ∈ [0, 1

2
]2, then an = bn = 1

is optimal for n ≥ 0. Also, once node A knows KA(n) for some n ≥ 1, it knows that π = π∗

regardless of the level of knowledge that node B has reached. The same is true for node
B. That is, if p ∈ [0, 1

2
]2, the nodes know that Level-1 knowledge suffices to enable optimal

decisions.

However, the solution does not converge for p /∈ [0, 1
2
]2. In that case, the nodes know that

basing their decisions on Level-n knowledge does not lead to optimal coordination. With
this observation, they can choose to deviate from the myopic max-min strategy and follow
instead the following mechanism:

OPTIMAL COORDINATION-ACHIEVING SCHEME

Upon receiving message KB(0) from B, A updates its knowledge and
obtains KA(1). However node A does not send KA(1) to node B. In-
stead, node A keeps sending KA(0) to node B. Similarly, node B sends
KB(0) to node A, even though node B actually knows KB(1).

Once node A obtains KA(1), it learns if p ∈ [0, 1
2
]2. In that case, the relaying solution

based on KA(1) is known to be optimal. If p /∈ [0, 1
2
]2, node A knows that gaining a higher

level of knowledge results in oscillations that can in turn yield a zero probability of success.
Accordingly, node A does not follow the myopic max-min algorithm based on an additional
level of knowledge. Instead, it assumes that KA(1) is the global information. At that time,
although node B still has knowledge KB(0), the network performance is guaranteed to be at
least half the optimal level, because of the Level-0 result. If node B has knowledge KB(1),
then both nodes A and B agree to the optimal coordination. Since the message is lossy, node
A keeps sending KA(0), so that node B eventually reaches knowledge KB(1) with probability
one.

This is a strategy combining pessimism and optimism with restriction on knowledge
propagation. At level 0 knowledge, one plays a robust strategy (pessimism). At level 1,
one keep sending level 0 knowledge to each other, although she has built level 1 knowledge,
and pretends to have common knowledge. That is, the relays throw caution to the wind by
restricting knowledge propagation (KR) and hope for the best.

Let Cn be the event that two relays reach the consensus about the complete network
parameters within nth round of message exchange. The probability P (Cn) of the event Cn
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is given by
P (Cn) = 1− (1− (1− ε)2)n ≈ 1− (2ε)n,

where ε is the small probability that a message may get lost between two relays. This
probability approaches to 1 at exponential rate. Also, using this modified protocol, the
two relays choose the probabilities a∗ and b∗ when the event C occurs. Let πKR(n) be the
performance of the protocol after the relays have sent n messages. We find that

π∗P (Cn) ≤ πKR(n) ≤ π∗

and π∗P (Cn)→ π∗, as n→∞. Therefore

lim
n→∞

πKR(n) = π∗. (3.9)

It is worth mentioning some differences with the Electronic Mail Game result where no
finite sequence of message exchanges can result in optimal coordination. First, in the current
problem, the payoff is defined as the max-min performance rather than the von Neumann-
Morgenstern form. Second, there is no negative payoff biasing the players’ decision. Third,
the different message exchange protocol is pivotal because it does not assume an automatic
acknowledgment that is one of the main causes making the coordination impossible as pointed
out in [11].

Fact 2. A distributed system with lossy message exchange can asymptotically reach the op-

timal coordination by restricting the information propagation.

3.6 Throughput

We analyze the throughput performance of 2-stage protocols and 3 stage protocols such
as repetition coding and time division multiplexing (TDM) that we describe next. The
throughput is defined as average rate of successful deliveries per unit time.

Time cost plays a critical role. If learning takes negligible time or no further learning is
needed after initial learning, then throughput of the scheme with learning may outperform
that of oblivious one. However if the scheme requires continuous learning at non-negligible
time cost, then we will see some oblivious scheme in fact outperforms the one with learning.

The first 3-stage protocol is repetition coding. In this protocol, the relays transmit twice
with the probabilities a0 and b0, respectively. The throughput of this protocol is

πREP = 1− (1− π0)2 = 2π0 − π2
0.

Since π0 ≤ 1
2
, πREP ≤ 3

4
. Considering the fact that KR may reach πKR = 1 depending on

the value of p, the repetition coding may not be close to optimal. Note that the throughput
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of repetition coding is always better than or equal to the throughput of the 2-stage oblivious
protocol. That is, define T0 = π0/2 and TREP = πREP/3. Since 6(TREP − T0) = 4π0− 2π2

0 −
3π0 = π0(1− 2π0) ≥ 0,

T0 ≤ TREP . (3.10)

The second 3-stage protocol utilizes time division multiplexing. In this protocol, the
relays take turns to forward. Since there is no collision, both relays forward with probability
1. The corresponding probability of success is

πTDM = 1− (1− pA)(1− pB)

= pA + pB − pApB.

Now let us consider when learning time cost is negligible. Indeed, when p ∈ [0, 1
2
]2,

π∗ = π0 and thus T ∗ = T0. Therefore

T ∗ ≤ max(TREP , TTDM), when p ∈ [0, 1/2]2,

otherwise T ∗ can be greater than max(TREP , TTDM).

Let us consider when learning time cost is non-negligible. Suppose learning is required
per source packet. For convenience, assume that knowledge exchange takes one time unit
until the relays reach the optimal decisions. That is, assume πKR = π∗ at the cost of time
unit.

Under this assumption, since both KR and TDM are 3-stage protocols, their throughput
is proportional to the probability of successful delivery and one finds

πKR ≤ π∗ ≤ πTDM ,

The left inequality is immediate. For the right inequality, we consider two cases. If p ∈ [0, 1
2
]2,

π∗ = pA + pB − 2pApB = πTDM − pApB ≤ πTDM . Otherwise, π∗ = max(pA, pB) ≤ max(pA +
pB(1− pA), pB) ≤ max(pA + pB(1− pA), pB + pA(1− pB)) = pA + pB − pApB = πTDM . Thus,
even with an idealized learning time cost (one unit time) and performance (πKR = π∗), an
oblivious scheme that requires no learning outperforms the ideal scheme requiring learning.

TKR ≤ TTDM .

3.7 Common Knowledge about Inconsistent Beliefs

Information is not knowledge but belief when it does not guarantee the inclusion of the
true state. Suppose node i has a belief about p’s possible values: Bi := {p ∈ Zi}. A
different node may have a different belief. One key observation is however, i does think Bi

as a knowledge rather than a belief since otherwise it would modify Zi to make it include
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broader values. By exchanging Bi, distributed nodes can build common knowledge about
beliefs. Unless Zi and Zj conflict, they cannot distinguish knowledge from belief. We say
they reach the common knowledge state about consistent beliefs, or simply a common belief.
When they discover Zi and Zj conflict, we say they reach the common knowledge state about
inconsistent beliefs. It is of a practical challenge to make a strategic decision in a coordination
game while players have common knowledge about inconsistent beliefs. [4] explained that
the distributed players with the same prior cannot agree to disagree. We study the game
where the prior is not defined.

This situation frequently occurs in many practical games. For an example, consider a
double tennis match game in which two players see each other and need to decide who
returns a ball. Due to different experience, two may have inconsistent views on the game.
Further they know it as a common knowledge. It is likely that they try to hit or leave the
ball simultaneously, failing to coordinate.

Similarly, due to imperfection or randomness of observation, two relays in relaying net-
work may obtain different beliefs about the network state. After information exchange
step, they build common knowledge about inconsistent beliefs. KA = {p ∈ ZA, KB} and
KB = {p ∈ ZB, KA}.

Upon facing inconsistency, an issue about trust arises - trust about information but not
about the intent of the information source. A trust is a meta information of the coordination
game how the distributed information should be interpretated. It is seldom explicitly stated
in the game description. When the way of trust is specified however, it helps the nodes to
reach the conciliation, if required, from inconsistency.

In a coordination game, it is obvious that the nodes with common belief cannot out-
perform those with common knowledge. However, it is not clear if consistent belief will be
always better than inconsistent belief.

3.7.1 Distrust

It is called distrust (in others) when the node trusts only its belief. Then nodes will fail
to reach the coordination. Suppose ZA = {(0.9, 0.2)} and ZB = {(0.2, 0.9)}. Under distrust,
knowing B’s best response, A’s best response is a = 1. Similarly B’s best response is b = 1.
As a result, both know (a, b) = (1, 1) will be played. Note that the true network state p
can be neither of ZA nor ZB, but can be something else. Interestingly, it is not the case the
incoordination from distrust always underperforms; depending on the true network state p,
the failure of coordination may prove to be good.

An example may suffice to convince readers. Let ptrue = (0.4, 0.4), Z = ZA = {(0.9, 0.2)}
and ZB = {(0.2, 0.9)}. The coordination solution is (a, b) = (1, 0) based on Z, whose choice is
to be explained shortly. Then the coordination performance based on Z is π(a∗(Z), b∗(Z)) =
0.4 while the incoordination performance is π(a∗(ZA), b∗(ZB)) = 0.48.

If the game is such that the price of the failure of coordination is significant however,
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players may elect to rely on an external conciliation rule. This rule should be performance
ignorant; since they cannot agree on the range of true network state, there is no common
measure to compare the performance of one rule to other. A simplest way is to adopt a single
belief from the node whose lexicographical order is the highest. Then each node’s decision
will be based on that single belief.

3.7.2 Partial Trust

In some situation the nature of the game suggests that a node give up some trust in its
initial belief and take some beliefs from others. The partial trust may arise in various forms.
We discuss a few cases: Locality trust, Meet type trust and Join type trust.

Here the trust is a way of constructing a new common belief from the distributed and
inconsistent information. The choice of a trust form should be mandated across the players
at the time of the game design, if any conciliation is to be needed.

Define zki to be the set of possible values for pk that node i initially believes. zii is a belief
about its local link and zki , k 6= i about its foreign link. Then

Zi :=
∏

k

zki .

Locality trust

It is possible that link i can be best known to node i. That is, each node has trust in
everyone’s local link belief but not foreign link. In this case, the node with common knowl-
edge about inconsistent beliefs are willing to agree on a common belief that is constructed
with most trusting elements.

ZLocal :=
∏

i

zii .

Meet type trust

In Meet type trust, the node accepts other’s information too and construct a new common
belief as the smallest set containing all beliefs.

ZMeet :=
∏

k

⋃

i

zki .
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Join type trust

In Join type trust, the node constructs a new common belief as the intersection of all
beliefs.

ZJoin :=
∏

k

⋂

i

zki .

Note that ZJoin can be degenerate when
⋂
i z

k
i = ∅ for some k.

Let’s restrict ourselves to the case where the result of construction indeed constitutes a
knowledge. Let ZA = [0.2, 0.9] × {0.2} and ZB = {0.2} × [0.2, 0.9] with ptrue = (0.4, 0.4).
Then ZLocal = [0.2, 0.9]2 = ZMeet. A simple exercise shows that the distrust solution is
(a, b) = (1, 1) and a coordinated solution with local/meet type conciliation is (a, b) = (1, 0).
At ptrue, the distrust solution outperforms coordinated solution after conciliation.

We conclude this section with the a summarizing fact.

Fact 3. Neither belief consistency nor a common knowledge about beliefs is sufficient to

achieve an optimal coordination in a distributed system.

3.8 Conclusion

The distributed system with a common goal often faces the issue of independent deci-
sion with limited knowledge where the price of coordination failure can be significant. In
this chapter we focused to understand the impact of information uncertainties. In particu-
lar we studied bounded knowledge about other’s knowledge and common knowledge about
inconsistent beliefs.

To make the problem down-to-earth, we adopted a simple butterfly relaying network
which has been a popular platform in communication networking area. In the first problem,
we showed that two relay nodes with bounded level of knowledge about other’s knowledge
cannot reach the state of global coordination regardless the depth of the level. However,
we also provided a scheme in which the network can asymptotically achieve the optimal
coordination via the intentional restriction of knowledge propagation. Finally we showed
that belief consistency or the state of common knowledge about beliefs in general is not a
sufficient condition for optimal coordination.
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3.9 Proofs

3.9.1 Proof of Lemma 2

a0 = arg max
a

min
b,p∈Z

π(a, b).

with Z := [p′A, p
′′
A]× [p′B, p

′′
B]. A key observation is that inside minimization problem, nature

and the node B jointly choose either pBb = 0 or pBb = p′′B. Then for a fixed a,

min
b,p∈Z

π(a, b) = min
pA∈[p′

A,p
′′
A]

(pAa, pAa(1− 2p′′B) + p′′B).

When drawn with respect to a, the result of minimization is the lower boundary of the area
spanned by two linear curves pAa and pAa(1− 2p′′B) + p′′B for all feasible values of pA and pB.
a0 is found where this lower boundary is maximized.

When 1 − 2p′′B ≥ 0, both curves are increasing in a. Thus a0 = 1. When 1 − 2p′′B < 0,
the lower boundary is decided by two curves p′Aa and p′′Aa(1 − 2p′′B) + p′′B. If the former is
not greater than the latter for a ∈ [0, 1], then the lower boundary is maximized at a0 = 1.

Otherwise, their intersection is the maximum. Thus a0 =
p′′

B

p′
A+p′′

A(2p′′
B−1)

.

Another simpler case is when KA(0) = {pA ∈ [p′A, p
′′
A]}.

a0 =

{
1, for p′A ≤ 1− p′′A

1
p′

A+p′′
A
, otherwise.

One way to view this result is to think p′A as the base state and p′′A − p′A ≥ 0 as its
maximum departure. One can see that a0 with the imprecise knowledge is always less than
a0 with the precise knowledge where p′′A = p′A. In this view, the node should forward more
cautiously when its knowledge is less precise. (The interpretation is the other way when p′′A
is regarded as the base state.) Irrespectively, the guaranteed performance is always lower in
imprecise knowledge.

When this knowledge is built up in a higher level, the solution and the performance do
not converge in general.
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3) Join type trust: In Join type trust, the node constructs a
new common belief as the intersection of all beliefs.

ZJoin :=
∏

k

⋂

i

zk
i

Note ZJoin can be degenerate when
⋂

i zk
i = ∅ for some k.

Let’s restrict ourselves to the case where the result of
construction indeed constitutes a knowledge. Let ZA =
[0.2, 0.9] × {0.2} and ZB = {0.2} × [0.2, 0.9] with ptrue =
(0.4, 0.4). Then ZLocal = [0.2, 0.9]2 = ZMeet. A simple
exercise shows that the distrust solution is (a, b) = (1, 1)
and a coordinated solution with local/meet type conciliation
is (a, b) = (1, 0). At ptrue, the distrust solution outperforms
coordinated solution after conciliation.

We conclude this section with the a summarizing fact:

Fact 3: Neither belief consistency nor a common knowl-
edge about beliefs is sufficient to achieve an optimal coordi-
nation in a distributed system.

VII. CONCLUSION

The distributed system with a common goal often faces the
issue of independent decision with limited knowledge where
the price of coordination failure can be significant. In this
paper we focused to understand the impact of information un-
certainties. In particular we studied bounded knowledge about
other’s knowledge and common knowledge about inconsistent
beliefs.

To make the problem down-to-earth, we adopted a simple
butterfly relaying network which has been a popular platform
in communication networking area. In the first problem, we
showed that two relay nodes with bounded level of knowledge
about other’s knowledge cannot reach the state of global
coordination regardless the depth of the level. However, we
also provided a scheme in which the network can asymp-
totically achieve the optimal coordination via the intentional
restriction of knowledge propagation. Finally we showed that
belief consistency or the state of common knowledge about
beliefs in general is not a sufficient condition for optimal
coordination.
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APPENDIX

A. Proof of a0(Z) in Section III.

a0 = arg max
a

min
b,p∈Z

π(a, b).

with Z := [p′A, p′′A]×[p′B, p′′B]. A key observation is that inside
minimization problem, nature and the node B jointly choose
either pBb = 0 or pBb = p′′B . Then for a fixed a,

min
b,p∈Z

π(a, b) = min
pA∈[p′

A,p′′
A]

(pAa, pAa(1− 2p′′B) + p′′B).

O

π

1
2

1
2

1 a

1− p′′
A

p′′
A

p′
A

a0

Fig. 5. Feasible region of π is shaded when 1−p′′
A < p′

A < 1
2

, with respect
to a. Minimum is the lower boundary. Its maximum is obtained at a0

When drawn with respect to a, the result of minimization is
the lower boundary of the area spanned by two linear curves
pAa and pAa(1− 2p′′B)+ p′′B for all feasible values of pA and
pB . a0 is found where this lower boundary is maximized.

When 1 − 2p′′B ≥ 0, both curves are increasing in a. Thus
a0 = 1. When 1−2p′′B < 0, the lower boundary is decided by
two curves p′Aa and p′′Aa(1− 2p′′B) + p′′B . If the former is not
greater than the latter for a ∈ [0, 1], then the lower boundary
is maximized at a0 = 1. Otherwise, their intersection is the

maximum. Thus a0 = p′′
B

p′
A+p′′

A(2p′′
B−1) .

Another simpler case is when KA(0) = {pA ∈ [p′A, p′′A]}.

a0 =
{

1, for p′A ≤ 1− p′′A
1

p′
A+p′′

A
, otherwise.

One way to view this result is to think p′A as the base state
and p′′A − p′A ≥ 0 as its maximum departure. One can see
that a0 with the imprecise knowledge is always less than a0

with the precise knowledge where p′′A = p′A. In this view,
the node should forward more cautiously when its knowledge
is less precise. (The interpretation is the other way when p′′A
is regarded as the base state.) Irrespectively, the guaranteed
performance is always lower in imprecise knowledge.

When this knowledge is built up in a higher level, the
solution and the performance do not converge in general.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

Game theory with incomplete information usually assumes preplay knowledge about un-
certainty in the form of a probability distribution of unknown parameters. This dissertation
explores games where no such distribution is assumed, only the knowledge of the support of
the unknown parameters.

This dissertation studies one-shot two-agent non-cooperative and cooperative games.
For the non-cooperative games, we define consistent sets as a product space of rational
strategies under uncertainty, and then introduce the optimism - pessimism attitude as an
additional degree of strategy for the players. Corresponding to given attitudes, we define
consistent sets of strategies from which rational players should not depart. We then consider
a two-stage game where the players first strategically choose their attitude to maximize the
ex-post utilities they receive after the second stage where they play the game with known
attitudes. This formulation sometimes results in a specific strategy such as being optimistic
or pessimistic. In such cases, the agents may have a uniquely specified strategy despite the
uncertainty.

Next, we study a cooperative game where relay nodes collaborate to maximize the prob-
ability of successful delivery of a packet in a wireless network. For this model, the nodes
exchange error prone link state messages to inform each other of their link characteristics.
We show that, in this model, the nodes should not be overly cautious in trying to protect the
throughput against the failure of delivery of a link state message. If they are, the throughput
does not converge to a high value as the number of link state messages increases. We also
show that a more optimistic protocol that does not consider the worst case behavior of the
other node has a throughput that converges to the maximum possible value.
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4.2 Future Work

In this thesis, we considered that agents choose their attitude in the face of uncertainty.
We parametrized this attitude by a degree of optimism and then considered a two-stage
game. Other schemes are conceivable for describing a player’s attitude. Desirable schemes
should be able to describe exhaustively the consistent sets. Its rational equilibrium should
exist under a wide class of utility structures. Also, there should be a close connection between
that equilibrium and the Nash equilibrium under full information, when the uncertainties
decrease.

The relationship between Nash equilibria under full information and the uncertainty equi-
libria of attitudes deserves some further exploration. We imagine that, as the uncertainty
grows, multiple possible distinct Nash equilibria may merge into a single uncertainty equi-
librium. Shelten’s trembling hand selection theory avoided this puzzle by considering only
very small uncertainties.

This dissertation provides a novel computation methodology for two-agent problems, but
has not explored more general n-agent problems. The expansion of the methodology should
be studied, with careful understanding about existence, convergence, uniqueness and beyond.

Finally, the validation of this methodology through behavioral game theory should be
studied.
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