
DCR: Replay Debugging for the Datacenter

Gautam Altekar
Ion Stoica

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-74

http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-74.html

May 13, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

DCR : Replay Debugging for the Datacenter

Gautam Altekar

UC Berkeley

Ion Stoica

UC Berkeley

Abstract

Debugging is hard, but debugging production data-

center applications such as Cassandra, Hadoop, and

Hypertable is downright daunting. The key obsta-

cle is non-deterministic failures–hard-to-reproduce pro-

gram misbehaviors that are immune to traditional cyclic-

debugging techniques. Datacenter applications are rife

with such failures because they operate in highly non-

deterministic environments: a typical setup employs

thousands of nodes, spread across multiple datacenters,

to process terabytes of data per day. In these environ-

ments, existing methods for debugging non-deterministic

failures are of limited use. They either incur exces-

sive production overheads or don’t scale to multi-node,

terabyte-scale processing.

To help remedy the situation, we have built a new re-

play debugging tool. Our tool, called DCR, enables the

reproduction and debugging of non-deterministic failures

in production datacenter runs. The key observation be-

hind DCR is that debugging does not always require a

precise replica of the original datacenter run. Instead,

it often suffices to produce some run that exhibits the

original behaviors of the control-plane–the most error-

prone component of datacenter applications. DCR lever-

ages this observation to relax the determinism guaran-

tees offered by the system, and consequently, to address

all key requirements of production datacenter applica-

tions: lightweight recording of long-running programs,

causally consistent replay of large scale systems, and out

of the box operation on real-world applications.

1 Introduction

The past decade has seen the rise of large scale,

distributed, data-intensive applications such as HDF-

S/GFS [26], HBase/Bigtable [13], and Hadoop/MapRe-

duce [15]. These applications run on thousands of nodes,

spread across multiple datacenters, and process terabytes

of data per day. Companies like Facebook, Google, and

Yahoo! already use these systems to process their mas-

sive data-sets. But an ever-growing user population and

the ensuing need for new and more scalable services

means that novel applications will continue to be built.

Unfortunately, debugging is hard, and we believe that

this difficulty has impeded the development of exist-

ing and new large scale distributed applications. A key

obstacle is non-deterministic failures–hard-to-reproduce

program misbehaviors that are immune to traditional

cyclic-debugging techniques. These failures often man-

ifest only in production runs and may take weeks to

fully diagnose, hence draining the resources that could

otherwise be devoted to developing novel features and

services [42]. Thus effective tools for debugging non-

deterministic failures in production datacenter systems

are sorely needed.

Developers presently use a range of methods for de-

bugging non-deterministic failures. But they all fall

short in the datacenter environment. The widely-used

approach of code instrumentation and logging requires

either extensive instrumentation or foresight of the fail-

ure to be effective–neither of which are realistic in web-

scale systems subject to unexpected production work-

loads. Automated testing, simulation, and source-code

analysis tools [19, 30, 37] can find the errors underlying

several non-deterministic failures before they occur, but

the large state-spaces of datacenter systems hamper com-

plete and/or precise results; some errors will inevitably

fall through to production. Finally, automated console-

log analysis tools show promise in detecting anomalous

events [43] and diagnosing failures [44], but the infer-

ences they draw are fundamentally limited by the fidelity

of developer-instrumented console logs.

In this paper, we show that replay-debugging tech-

nology (a.k.a, deterministic replay) can be used to ef-

fectively debug non-deterministic failures in production

datacenters. Briefly, a replay-debugger works by first

capturing data from non-deterministic data sources such

as the keyboard and network, and then substituting the

captured data into subsequent re-executions of the same

program. These replay runs may then be analyzed using

conventional tracing tools (e.g., GDB and DTrace [12])

or more sophisticated automated analyses (e.g., race and

memory-leak detection , global predicates [24, 34], and

causality tracing [23]).

1.1 Requirements

Many replay debugging systems have been built

over the years and experience indicates that they are

invaluable in reasoning about non-deterministic fail-

ures [5, 10, 18, 24, 25, 33, 34, 36, 39, 45]. However,

no existing system meets the unique demands of the

datacenter environment.

Always-On Operation. The system must be on at

all times during production so that arbitrary segments of

production runs may be replay-debugged at a later time.

In the datacenter, supporting always-on operation is

difficult. The system should have minimal impact on

production throughput (less than 2% is often cited).

But most importantly, the system should log no faster

than traditional console logging on terabyte-quantity

workloads (100 KBps max). This means that it should

not log all non-determinism, and in particular, all disk

and network traffic. The ensuing logging rates, amount-

ing to petabytes/week across all datacenter nodes, not

only incur throughput losses, but also call for additional

storage infrastructure (e.g., another petabyte-scale

distributed file system).

Whole-System Replay. The system should be able

to replay-debug all nodes in the distributed system, if

desired, after a failure is observed.

Providing whole-system replay-debugging is chal-

lenging because datacenter nodes are often inaccessible

at the time a user wants to initiate a replay session.

Node failures, network partitions, and unforeseen main-

tenance are usually to blame , but without the recorded

information on those nodes, replay-debugging cannot be

provided.

Out-of-the-Box Use. The system should record

and replay arbitrary user-level applications on modern

commodity hardware with no administrator or developer

effort. This means that it should not require special

hardware, languages, or source-code analysis and

modifications.

The commodity hardware requirement is essential be-

cause we want to replay existing datacenter systems as

well as future systems. Special languages and source-

code modifications (e.g., custom APIs and annotations,

as used in R2 [27]) are undesirable because they are cum-

bersome to learn, maintain, and retrofit onto existing dat-

acenter applications. Source-code analysis (e.g., as done

in ESD [45] and SherLog [44]) is also prohibitive due to

the extensive use of dynamically generated (i.e., JITed)

code and dynamically linked libraries. For instance, the

Hotspot JVM, used by HDFS, Hadoop, HBase, and Cas-

sandra, employs dynamic compilation.

1.2 Contributions

To meet all of the aforementioned requirements, we’ve

built DCR–a Data Center Replay system that records

and replays production runs of datacenter systems like

Cloudstore, HDFS, Hadoop, HBase, and Hypertable .

DCR contributes and leverages three key techniques.

Control-Plane Determinism. The key observation

behind DCR is that, for debugging, we don’t need a

precise replica of the original production run. Instead,

it often suffices to produce some run that exhibits the

original run’s control-plane behavior. The control-plane

of a datacenter system is the code responsible for

managing or controlling the flow of data through a

distributed system. An example is the code for locating

and placing blocks in a distributed file system.

The control plane tends to be complicated–it often

consists of millions of lines of source code [14]–and

thus serves as the breeding ground for bugs in datacenter

software. But at the same time, the control-plane

often operates at very low data-rates [6]. Hence, by

relaxing the determinism guarantees to control-plane

determinism, DCR circumvents the need to record most

inputs, and consequently achieves low record overheads

with tolerable sacrifices of replay fidelity.

Distributed Inference. The central challenge in

building DCR is that of reproducing the control-plane

behavior of a datacenter application without knowledge

of its original data-plane inputs. This is challenging

because the control-plane’s behavior depends on the

data-plane’s behavior: a HDFS client’s decision to

look up a block in another HDFS data-node (a control

plane behavior) depends on whether or not the block

it received passed checksum verification (a data-plane

behavior).

To address this challenge, DCR employs Distributed

Deterministic-Run Inference (DDRI)–the distributed

extension of an offline inference mechanism we devel-

oped in previous work [7]–to compute data-plane inputs

consistent with the recorded control-plane input/output

behavior of the original run. Once inferred, DCR then

substitutes the data-plane inputs along with the recorded

control-plane inputs into subsequent program runs to

2

generate a control-plane deterministic run.

Just-in-Time Debugging. Though DCR is the first

debugger to generate a relaxed deterministic replay

session for datacenter applications, it is not the

first to leverage the concept of an offline compute

phase [7, 33, 39, 40, 45]. Unfortunately, this compute

phase may take exponential time to finish in these

predecessor systems. A large path space and NP-

hard constraints are usually to blame. Regardless, a

debugging session cannot be started until this phase

is complete. By contrast, DCR can start a debugging

session in time polynomial with the length of the original

run.

DCR achieves a low time-till-debug through the use

of Just-In-Time DDRI (JIT-DDRI)–an optimized ver-

sion of DDRI that avoids reasoning about an entire run

(an expensive proposition) before replay can begin. The

key observation underlying JIT-DDRI is that develop-

ers are often interested in reasoning about only a small

portion of the replay run–a stack trace here or a variable

inspection there. For such usage patterns, it makes little

sense to infer the concrete values of all execution states.

For debugging then, it suffices to infer, in an on-demand

manner, the values for just those portions of state that

interest the user.

2 Overview

We begin this section with the key insight behind DCR.

Then we describe how we turn this insight into an ap-

proach.

2.1 Observation: The Control Plane is Key

The central observation behind DCR is that, for debug-

ging datacenter applications, we do not need a precise

replica of the original run. Rather, it generally suffices

to reproduce some run that exhibits the original control-

plane behavior .

The control-plane of a datacenter application is the

code that manages or controls data-flow. Examples of

control-plane operations are locating a particular block in

a distributed filesystem, maintaining replica consistency

in a meta-data server, or updating routing table entries

in a software router. Control-plane operations tend to

be complicated–they account for over 90% of the newly-

written code in datacenter software [14] and serve, not

surprisingly, as breeding-grounds for distributed race-

condition bugs. On the other hand, the control-plane

is responsible for only 5% of all datacenter traffic [6].

A corollary observation is that datacenter debugging

rarely requires reproducing the same data-plane behav-

ior. The data-plane of a datacenter application is the

Figure 1: DCR’s distributed architecture and operation. It

uses the recorded control-plane I/O to answer debugger

queries.

code that processes the data. Examples include code that

computes the checksum of an HDFS filesystem block or

code that searches for a string as part of a MapReduce

job. In contrast with the control-plane, data-plane op-

erations tend to be simple–they account for under 10%

of the code in a datacenter application [14] and are of-

ten part of well-tested libraries. Yet, the data-plane is

responsible for generating and processing 95% of data-

center traffic [6].

2.2 Approach: Control-Plane Determin-

ism

The complex yet low data-rate of the control-plane mo-

tivates DCR’s approach of relaxing its determinism guar-

antees. Specifically, DCR aims for control-plane deter-

minism–a guarantee that replay runs will exhibit iden-

tical control-plane behavior to that of the original run.

Control-plane determinism enables datacenter replay be-

cause it circumvents the need to record data-plane com-

munications (which have high data-rates), thereby allow-

ing DCR to efficiently record and replay all nodes in the

system.

Figure 1 shows the architecture of our control-plane

deterministic replay-debugging system. Like most

replay systems, it operates in two phases:

Record Mode. DCR records control-plane inputs

and outputs (I/O) for all production CPUs (and hence

nodes) in the distributed system. Control-plane I/O

refers to any inter-CPU communication performed

by control-plane code. This communication may be

between CPUs on different nodes (e.g., via sockets)

or between CPUs on the same node (e.g., via shared

memory). DCR streams the control-plane I/O to a

Hadoop Filesystem (HDFS) cluster–a highly available

3

distributed data-store designed for datacenter operation–

using Chukwa [11].

Replay-Debug Mode. To replay-debug her appli-

cation, an operator or developer interfaces with DCR’s

Distributed-Replay Engine (DRE). The DRE leverages

the previously recorded control-plane I/O to provide

the operator with a causally-consistent, control-plane

deterministic view of the original distributed execution.

The operator interfaces with the DRE using a distributed

variant of GDB that we developed in prior work (see

the Friday replay system [24]). Like GDB, our debug-

ger supports inspection of local state (e.g., variables,

backtraces). But unlike GDB, it provides support for

distributed breakpoints and global predicates–facilities

that enable global invariant checking.

3 Design

In this section we present the key challenges of effi-

ciently recording and replaying datacenter applications,

and describe how we overcame them.

3.1 Recording Control Plane I/O

To record control-plane I/O, DCR must first identify it.

Unfortunately, such identification generally requires a

deep understanding of program semantics, and in partic-

ular, whether or not the I/O emanates from control-plane

code.

Rather than rely on the developer to annotate and

hence understand the nuances of sophisticated sys-

tems software, DCR aims for automatic identification of

control-plane I/O. The observation behind DCR’s identi-

fication method is that control and data plane I/O gener-

ally flow on distinct communication channels, and that

each type of channel has a distinct signature. DCR

leverages this observation to interpose on communica-

tion channels and then record the transactions (i.e., reads

and writes) of only those channels that are classified as

control-plane channels.

Of course, any classification of program semantics

based on observed behavior will likely be imperfect.

Nevertheless, our experimental results show that, in prac-

tice, our techniques provide a tight over-approximation–

enough to eliminate developer burden and be considered

useful.

3.1.1 Interposing on Channels

DCR interposes on commonly-used inter-CPU commu-

nication channels, regardless of whether these channels

connect CPUs on the same node or on different nodes.

The channels we consider not only include explicitly

defined channels such as sockets, pipes, tty, and file I/O,

but also implicitly defined channels such as message

header channels (e.g., the first 32 bytes of every mes-

sage) and shared memory.

Socket, pipe, tty, and file channels are the easiest to

interpose efficiently as they operate through well-defined

interfaces (system calls). Interpositioning is then a mat-

ter of intercepting these system calls, keying the channel

on the file-descriptor used in the system call (e.g., as

specified in sys read() and sys write()), and

observing channel behavior via system call return values.

Shared memory channels are the hardest to inter-

pose efficiently. The key challenge is in detecting

sharing; that is, when a value written by one CPU is

later read by another CPU. A naive approach would

be to maintain per memory-location meta-data about

CPU-access behavior. But this is expensive, as it

would require intercepting every load and store. One

could improve performance by considering accesses to

only shared pages. But this too incurs high overhead

in multi-threaded applications (i.e., most datacenter

applications) where the address-space is shared.

To efficiently detect inter-CPU sharing, DCR em-

ploys the page-based Concurrent-Read Exclusive-Write

(CREW) memory sharing protocol, first suggested in the

context of deterministic replay by Instant Replay [31]

and later implemented and refined by SMP-ReVirt [18].

Page-based CREW leverages page-protection hardware

found in modern MMUs to detect concurrent and con-

flicting accesses to shared pages. When a shared page

comes into conflict, CREW then forces the conflicting

CPUs to access the page one at a time, effectively sim-

ulating a synchronized communication channel through

the shared page.

Page-based CREW in the context of deterministic re-

play has been well-documented by the SMP-ReVirt sys-

tem [18], so we omit the details here. However, we

note that DCR’s use of CREW differs from that of SMP-

ReVirt’s in two major ways. First, rather than record the

ordering of accesses, DCR records the content of each ac-

cess (assuming the access is to the control-plane). Sec-

ond, DCR is interested only in user-level sharing (it’s a

user-level replay system), so false-sharing in the kernel

(e.g., due to spinlocks) isn’t an issue for us (false-sharing

at user space is, though; see our TR [8] for details on how

we handle this).

3.1.2 Classifying Channels

As a simple heuristic, DCR uses the channel’s data-rate

to identify its type. That is, if the channel data-rate

exceeds a threshold, then DCR deems it a data-plane

4

channel and stops recording it. If not, then DCR treats

it as a control-plane channel and records it. The

control-plane threshold for a channel is chosen using a

token bucket algorithm [41]. That is, it is dynamically

computed such that aggregate thresholds of all channels

do not exceed the per-node logging rate (100 KBps in

our trials). This simple scheme is effective because

control-plane channels, though bursty, generally operate

at low data-rates.

Socket, pipe, tty, and file channels. The data-rates on

these channels are measured in bytes per second. DCR

measures these rates by keeping track of the number of

bytes transferred (as indicated by sys read() return

values) over time. We maintain a simple moving average

over a t-second window, where t = 2 by default.

Shared-memory channels. The data-rates here

are measured in terms of CREW-fault rate. The higher

the fault rate, the greater the amount of sharing through

that page. DCR collects the page-fault rate by updating a

counter on each CREW fault, and maintaining a moving

average of a 1 second window. DCR caps the per-node

control-plane threshold for shared memory channels

at 10K faults/sec. A larger cap can incur slowdowns

beyond 20% (see [17] for the impact of CREW fault-rate

on run time).

Though effective in practice, the heuristic of using

CREW page-fault rate to detect control-plane shared-

memory communication can lead to false negatives. In

particular, the behavior of legitimate but high data-rate

control-plane activity (e.g., spin-locks) will not be cap-

tured, hence precluding control-plane determinism of

the communicating code. In our experiments, however,

such false negatives were rare due to the fact that user-

level applications (especially those that use pthreads)

rarely employ busy-waiting. In particular, on a lock miss,

pthread mutex lock() will await notification of

lock availability in the kernel rather than spin incessantly.

3.2 Providing Control-Plane Determinism

The central challenge faced by DCR’s Distributed Replay

Engine (DRE) is that of providing a control-plane de-

terministic view of program state in response to debug-

ger queries. This is challenging because, although DCR

knows the original control-plane inputs, it does not know

the original data-plane inputs. Without the data-plane in-

puts, DCR can’t employ the traditional replay technique

of re-running the program with the original inputs. Even

re-running the program with just the original control-

plane inputs is unlikely to yield a control-plane deter-

ministic run, because the behavior of the control-plane

depends on the behavior of the data-plane.

Figure 2: A closer look at DCR’s Distributed-Replay En-

gine (DRE). It employs Distributed Deterministic-Run

Inference to provide the debugger with a control-plane

deterministic view of distributed state. With the Just-In-

Time optimization enabled, the DRE requires an addi-

tional query argument (dashed).

To address this challenge, the DRE employs Dis-

tributed Deterministic Run Inference (DDRI)–the dis-

tributed extension of a single-node inference mecha-

nism we previously developed to efficiently record mul-

tiprocessor execution (see the ODR replay system [7]).

DDRI leverages the original run’s control-plane I/O

(previously recorded by DCR) and program analysis to

compute a control-plane deterministic view of the query-

specified program state. DDRI’s program analysis op-

erates entirely at the machine-instruction level and does

not require annotations or source-code.

Depicted in Figure 2, DDRI works in two stages. In

the first stage, global formula generation, DDRI trans-

lates the distributed program into a logical formula that

represents the set of all possible distributed, control-

plane deterministic runs. Of course, the debugger-query

isn’t interested in this set. Rather, it is interested in a sub-

set of a node’s program state from just one of these runs.

So in the second phase, global formula solving, DDRI

dispatches the formula to a constraint solver. The solver

computes a satisfiable assignment of variables for the un-

knowns in the formula, thereby instantiating a control-

plane deterministic run. From this run, DDRI then ex-

tracts and returns the debugger-requested execution state.

3.2.1 Global Formula Generation

Generating a single formula that captures the behavior

of a large scale datacenter system is hard, for two key

reasons. First, a datacenter system may be composed

of thousands of CPUs, and the formula must capture all

of their behaviors. Second, the behavior of any given

5

CPU in the system may depend on the behavior of other

CPUs. Thus the formula needs to capture the collective

behavior of the system so that inferences we make from

the formula are causally consistent across CPUs.

To capture the behavior of multiple, distributed CPUs,

DCR generates a local formula for each CPU. A local for-

mula for CPU i, denoted as Li(Cini,Dini) = Couti,

represents the set of all control-plane deterministic runs

for that CPU, independent of the behavior of all other

CPUs. DCR knows the control-plane I/O (Cini and

Couti) of all CPUs, so the only unknowns in the formula

are the CPU’s data-plane inputs (Dini). Local formula

generation is distributed on available nodes in the cluster

and is described in further detail in Section 3.2.3.

To capture the collective behavior of distributed CPUs,

DCR binds the per-CPU local formulas (Li’s) into a fi-

nal global formula G. The binding is done by taking

the logical conjunction of all local formulas and a global

causality condition. The global causality condition is a

set of constraints that requires any message received by

a CPU to have a corresponding and preceding send event

on another CPU, hence ensuring that inferences we make

from the formula are causally consistent across nodes. In

short, G = L0 ∧ . . . ∧ Ln ∧ C, where C is the global

causality condition.

3.2.2 Global Formula Solving

In theory, DDRI could send the generated global for-

mula, in its entirety, to a lone constraint solver. How-

ever, in practice, this strategy is doomed to fail as mod-

ern constraint solvers are incapable of solving the multi-

terabyte formulas and NP-hard constraints produced by

sophisticated and long-running datacenter applications.

Section 3.3.1 discusses how we address this challenge.

3.2.3 Local Formula Generation

DDRI translates a program into a local-formula using

Floyd-style verification condition generation [22]. The

DDRI generator most resembles the generator employed

by Proof-Carrying Code (PCC) [38] in that it works

by symbolically executing the program [28] at the

instruction level, and produces a formula representing

execution along multiple program paths. However,

because the PCC and DDRI generators address different

problems, they differ in the following ways:

Conditional and indirect jumps. Upon reaching

a jump, the PCC generator will conceptually fork and

continue symbolic execution along all possible succes-

sors in the control-flow graph. But when the jump is

conditional or indirect, this strategy may yield formulas

that are exponential in the size of the program.

By contrast, the DDRI generator considers only

those successors implied by the recorded control-plane

I/O. This means that when dealing with control-plane

code, DDRI is able to narrow the number of considered

successors down to one. Of course, the jump may be

data-plane dependent (e.g., data-block checksumming

code). In that case, multiple static paths must still be

considered.

Loops. At some point, symbolic execution will

encounter a jump that it has seen before. Here PCC

stops symbolically executing along that path and instead

relies on developer-provided loop-invariant annotations

to summarize all possible loop iterations, hence avoiding

“path explosion”.

Rather than rely on annotations, DDRI sacrifices

precision: it unrolls the loop a small but fixed number of

times (similar to the unrolling done by ESC-Java [21])

and then uses Engler’s underconstrained execution to

fast-forward to the end of the loop. The number of un-

rolls is computed as the minimum of 100 and the number

of iterations to the next recorded system event (e.g.,

syscall) as determined by its branch count. Unrolling

the loop effectively offloads the work of finding the right

dynamic path through the loop to the constraint solver,

hence avoiding path explosion during the generation

phase (the solving phase is still susceptible, but see

Section 3.3.1).

Indirect accesses (e.g., pointers). Dereferences of

symbolic pointers may access one of many locations.

To reason about this precisely, PCC models memory

as a symbolic array, hence offloading alias analysis to

the constraint solver. Though such offloading can scale

with PCC’s use of annotations, DDRI’s annotation

free requirement results in an intolerable burden on the

constraint solver .

Rather than model all of memory as an array, DDRI

models only those pages that may have been accessed

in the original run by the symbolic dereference. DDRI

knows what those pages are because DCR recorded

their IDs in the original run using conventional page-

protection techniques. In some instances, the number of

potentially touched pages is large, in which case DDRI

sacrifices soundness for the sake of efficiency: it con-

siders only the subset of potentially touched pages refer-

enced by the past k direct accesses.

3.3 Scaling Debugger Response Time

A primary goal of DCR is to provide responsive and inter-

active replay-debugging. But to achieve this goal, DCR’s

6

inference method (DDRI–the post-run inference method

introduced in Section 3.2) must surmount major scalabil-

ity challenges.

3.3.1 Huge Formulas, NP-Hard Constraints

Modern constraint solvers cannot directly solve DDRI-

generated formulas, for two reasons. First, the formula

may be terabytes in size. This is not surprising as DDRI

must reason about long-running data-processing code

that handles terabytes of unrecorded data. Second,

and more fundamentally, the generated formulas may

contain NP-hard constraints. This too is not surprising

as datacenter applications often invoke cryptographic

routines (e.g., Hypertable uses MD5 to name internal

files).

Just-in-Time Inference. To overcome this challenge,

we’ve developed Just-In-Time DDRI (JIT-DDRI)–an

on-demand variant of DDRI that enables responsive

inference-based debugging of datacenter applications.

The observation underlying JIT-DDRI is that, when

debugging, developers observe only a portion of the

execution–a variable inspection here or a stack trace

there. Rarely do they inspect all program states. This

observation then implies that there is no need to solve

the entire formula, as that corresponds to the entire

execution. Instead, it suffices to solve just those parts of

the formula that correspond to developer interest.

Figure 2 (dashed and solid) illustrates the DDRI ar-

chitecture with the JIT optimization enabled. JIT DDRI

accepts an execution segment of interest and state expres-

sion from the debugger. The segment specifies a time

range of the original run and can be derived by manually

inspecting console logs. JIT DDRI then outputs a con-

crete value corresponding to the specified state for the

given execution segment.

JIT DDRI works in two phases that are similar to

non-JIT DDRI. But unlike non-JIT DDRI, each stage

uses the information in the debugger query to make

more targeted inferences:

JIT Global Formula Generation. In this phase,

JIT-DDRI generates a formula that corresponds only to

the execution segment indicated by the debugger query.

The unique challenge faced by JIT FormGen is in

starting the symbolic execution at the segment start point

rather than at the start of program execution. To elab-

orate, the symbolic state at the segment start point is

unknown because DDRI did not symbolically execute

the program before that. The JIT Formula Generator ad-

dresses this challenge by initializing all state (memory

and registers) with fresh symbolic variables before start-

ing symbolic execution, thus employing Engler’s under-

constrained execution technique [20].

For debugging purposes, under-constrained execution

has its tradeoffs. First, the inferred execution segments

may not be possible in a real execution of the program.

Second, even if the segments are realistic, the inferred

concrete state may be causally inconsistent with events

(control-plane or otherwise) before the specified starting

point. This could be especially problematic if the

root-cause being chased originated before the specified

starting point. We have found that, in practice, these

relaxation are of little consequence so long as DCR

reproduces the original control plane behavior.

JIT Global Formula Solving. In this phase, JIT-

DDRI solves only the portion of the previously

generated formula that corresponds to the variables (i.e.,

memory locations) specified in the query.

The main challenge here is to identify the constraints

that must be solved to obtain a concrete value for the

memory location. We do this in two steps. First we re-

solve the memory location to a symbolic variable, and

then we resolve the symbolic variable to a set of con-

straints in the formula. We perform the first resolution by

looking up the symbolic state at the query point (this state

was recorded in the formula generation phase). Then for

the second resolution, we employ a connected compo-

nents algorithm to find all constraints related to the sym-

bolic variable. Connected components takes time linear

in the size of the formula.

3.3.2 Distributed System Causality

A replay-debugger is of limited use if it doesn’t let

the developer backtrack the chain of causality from

the failure to its root cause. But ensuring causality in

inferred datacenter runs is hard: it requires efficiently

reasoning about communications spanning thousands

of CPUs, possibly spread across thousands of nodes.

JIT-DDRI can help with such reasoning by solving only

those constraints involved in the chain of causality of

interest to the developer. However, if the causal chain is

long, then even JIT-DDRI-produced constraints may be

overwhelmingly large for the solver.

Inter-Node Causality Relaxation. To overcome

this challenge, DCR enables the user to limit the degree d

of inter-node causality that it reasons about–a technique

previously employed by the ODR system to scale

multi-processor inference [7]. Specifically, if d is set to

0, then DCR does not guarantee any data-plane causality.

That is, an inferred run may exhibit data-plane values

received on one node that were never sent by another

node. On the other hand, if d is set to 2, for instance,

then DCR provides data-plane values consistent across

7

two node hops. After the third hop, causal relationships

to previously traversed nodes may not be discernible.

The appropriate value of d depends on the system

and error being debugged. We observe that, in many

cases, reasoning about inter-node data-plane causality

is altogether dispensable (i.e., d = 0). For example,

figuring out why a lookup went to slave node 1 rather

than slave node 2 requires tracing the causal path of the

lookup request (a control-plane entity), but not that of

the data being transferred to and from the slave nodes. In

other cases, data-plane causality is needed–for example,

to trace the source of data corruption to the underlying

control-plane error on another node. We have found that

if the data corruption has a short propagation distance,

then d ≤ 3 often suffices (see our case study in Sec-

tion 5.2 for an example in which d had to be at least 2).

4 Implementation

DCR currently runs on Linux/x86. It consists of 120

KLOC of code (95% C, 3% ASM). 70 KLOC is due to

the LibVEX binary translator. We developed the other 50

KLOC over a period of 8 person-years. Here we present

a selection of the implementation challenges we faced.

4.1 Sample Usage

With DCR, a user may record and replay-debug a dis-

tributed system with a few simple commands. Before

starting a production recording, however, we wish to first

configure DCR to never exceed a low threshold logging

rate:

d0:˜/$ dcr-conf Sys.MaxRecRate=100KBps

Next the user may start a recording session. Here we start

Hypertable (a distributed database) on three production

nodes under the “demo” session name:

p0:˜/$ dcr-rec -s "demo" ht-lock-man

p1:˜/$ dcr-rec -s "demo" ht-master

p2:˜/$ dcr-rec -s "demo" ht-slave

Before initiating a replay debugging session, we use

DCR’s session manager to first identify the set of nodes

that we wants to replay debug:

d0:˜/$ dcr-sm --info "demo"

Session "demo" has 3 node(s):

[0] p0 ht-lock-man 10m

[1] p1 ht-master 32m

[2] p2 ht-slave 11m

The output shows that though the master node ran for 32

minutes, the lock-manager and slave terminated early at

about 10 minutes into execution. So we begin a replay-

debugging session for just the early terminating nodes

near the time they terminated:

d0:˜/$ dcr-gdb --time 9m:12m

--nodes 0,2 "demo"

gdb> backtrace node 0

#1 <segmentation fault>

#2 LockManager::handle_message():52

The output shows that node 0 terminated due to a seg-

mentation fault, hence probably bringing down the slave

sometime thereafter.

4.2 User-Level Architecture

We designed DCR to work entirely at user-level for sev-

eral reasons. First, we wanted a tool that works with and

without VMs. After all many important datacenter envi-

ronments don’t use VMs. Secondly, we wanted the im-

plementation to be as simple as possible. VM-level op-

eration would require that the DRE reason about kernel

behavior as well–a hard thing to get right. Moreover it

avoids semantic gap issues . Finally, we found that inter-

posing on control-plane channels to be efficient. Specif-

ically, we were able to Linux’s vsyscall page to avoid

traps. Moreover we avoided high CREW fault rate due

to false-sharing in the kernel.

Implementing the CREW protocol at user-level pre-

sented some challenges, primarily because Linux doesn’t

permit per-thread page protections (i.e., all threads share

a page-table). This means that we can’t turn off protec-

tions for a thread executing on one CPU while enable its

for a thread running on a different CPU. We address this

problem by extending each process’s page table (by mod-

ifying the kernel) with per-CPU page-protection flags.

When a thread gets scheduled in to a CPU, then it uses

the protections for the corresponding CPU.

4.3 Formula Generation

DDRI generates a formula by symbolically executing

the target program (see Section 3.2.3), in manner very

similar to that of the Catchconv symbolic execution

tool [35]. Specifically, symbolic execution proceeds at

the machine instruction level with the aid of the Lib-

VEX binary translation library. VEX translates x86 into

a RISC-style intermediate language once basic block at

a time. DDRI then translates each statement in the basic

block to an STP constraint.

DCR’s symbolic executor borrows several tricks from

prior systems. An important optimization is constraint

elimination, in which constraints for those instructions

not tainted by symbolic inputs (e.g., data-plane inputs)

are skipped.

8

4.4 Debugger Interface

DCR’s debugger enables the developer to inspect pro-

gram state on any node in the system. It is implemented

as a Python script that multiplexes per-node GDB ses-

sions on to a single developer console, much like the

console debugger of the Friday distributed replay sys-

tem [24]. With the aid of GDB, our debugger currently

support four primitives: backtracing, variable inspection,

breakpoints, and execution resume. Watchpoints and

state modification are currently unsupported .

Getting DCR’s debugger to work was hard because

GDB doesn’t know how to interface with the DRE. That

is, unlike classical replay mechanisms, the DRE doesn’t

actually replay the application; it merely infers specified

program state. However, the key observation we make is

that GDB inspects child state through the sys ptrace

system call. This leads to DCR’s approach of intercept-

ing GDB’s ptrace calls and translating them into queries

that the DRE can understand. When the DRE provides

an answer (i.e., a concrete value) to DCR, it then returns

that value to GDB through the ptrace call.

5 Evaluation

Here we present the experimental evaluation of DCR.

5.1 Performance

The goal of this section is to provide a comparative eval-

uation of DCR’s performance. A fair comparison, how-

ever, is difficult because, to our knowledge, no other

publicly available, user-level replay system is capable

of deterministically replaying the datacenter applications

in our suite. Rather than compare apples with oranges,

we base our comparison on a modified version of DCR,

called BASE, that records both control and data plane

non-determinism in a fashion most similar to SMP-

ReVirt [18]–the state of the art in classical multi-core

deterministic replay.

In short, we found that DCR incurs very low recording

overheads suitable for at least brief periods of production

use (a 16% average slowdown and 8 GB/day log rates).

Moreover, we found that DCR’s debugger response times,

though sluggish, are generally fast enough to be useful.

By contrast, BASE provides extremely responsive debug-

ging sessions as would be expected of a classical replay

system. But it incurs impractically high record-mode

overheads (over 50% slowdown and 3 TB/day log rates)

on datacenter-like workloads.

5.1.1 Setup

Applications. We evaluate BASE and DCR on two

real-world datacenter applications: Cloudstore [1] and

Hyptertable [3].

Cloudstore is a distributed filesystem written in 40K

lines of multithreaded C/C++ code. It consists of 3

sub-programs: the master server, slave server, and the

client. The master program consists mostly of control-

plane code: it maintains a mapping from files to loca-

tions and responds to file lookup requests from clients.

The slaves and clients have some control-plane code, but

mostly engage in control plane activities: the slaves store

and serve the contents of the files to and from clients.

Hypertable is a distributed database written in 40K

lines of multithreaded C/C++ code. It consists of 4 key

sub-programs: the master server, metadata server, slave

server, and client. The master and metadata servers

are largely control-plane in nature–they coordinate the

placement and distribution of database tables. The

slaves store and serve the contents of tables placed there

by clients, often without the involvement of the master

or the metadata server. The slaves and clients are thus

largely data-plane entities.

Workloads and Testbed. We chose the workloads

to mimic peak datacenter operation and to finish in

20 minutes. Specifically, for Hypertable, 8 clients

performed concurrent lookups and deletions to a 1

terabyte table of web data. Hypertable was configured

to use 1 master server, 1 meta-data server, and 4 slave

servers. For Cloudstore, we made 8 clients concurrently

get and put 100 gigabyte files. We used 1 master server

and 4 slave servers.

All applications were run on a 10 node cluster con-

nected via Gigabit Ethernet. Each VM in our cluster op-

erates at 2.0GHz and has 4GB of RAM. The OS used

was Debian 5 with a 32-bit 2.6.29 Linux kernel. The ker-

nel was patched to support DCR’s interpositioning hooks.

Our experimental procedure consisted of a warmup run

followed by 6 trials. We report the average numbers of

these 6 trials. The standard deviation of the trials was

within three percent.

5.1.2 Recording Overheads

Logging Rates. Figure 3 gives results for the record rate,

a key performance metric for datacenter workloads. It

shows that, across all applications, DCR’s log rates are

suitable for the datacenter–they’re less than those of tra-

ditional console logs (100 KBps) and up to two orders of

magnitude lower than BASE’s rates (3 TB/day v. 8 GB/-

day). This result is not surprising because, unlike BASE,

DCR does not record data-plane I/O.

A key detail is that DCR outperforms BASE for only

data-intensive programs such as the Hypertable slave

nodes; control-plane dominant programs such as the

9

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

����

��
��
��
��

 1

 10

 100

 1,000

 10,000

 100,000

 1e+06

 1e+07

 1e+08

C
S

−
M

a
s
te

r

C
S

−
S

la
v
e

C
S

−
C

lie
n
t

H
T

−
M

a
s
te

r

H
T

−
M

e
ta

d
a
ta

H
T

−
S

la
v
e

H
T

−
C

lie
n
t

B
p
s
 (

L
o
g
 S

c
a
le

)

Application

Record Rates (1 node, 2 cores)

BASE
DCR

Figure 3: Per-node record rates for BASE and DCR.

DCR’s rate is up to two orders-of-magnitude lower be-

cause it logs just the control-plane I/O.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��

�
�
�
�

�
�
�
�

��
��

 0x

 0.2x

 0.4x

 0.6x

 0.8x

 1x

 1.2x

 1.4x

 1.6x

 1.8x

 2x

1 2 1 2 1 2 1 2 1 2 1 2 1 2

S
lo

w
d

o
w

n

Application

Record Runtime (1 node, 2 cores)

Master Slave Client Master Meta Slave Client

Data I/O
Control I/O
Syscall
CREW
Native

Figure 4: Record runtimes, normalized with native ap-

plication execution time, for (1) BASE which records

control and data planes and (2) DCR which records just

the control plane. DCR’s performance is up to 60% bet-

ter.

Hypertable master node perform equally well on both.

This makes sense, as data intensive programs routinely

exceed DCR’s 100 KBps logging rate threshold and

are capped. The control-plane dominant programs

never exceed this threshold, and thus all of their I/O is

recorded.

Slowdown. Figure 4 gives the slowdown incurred

by DCR broken down by various instrumentation costs.

At about 17%, DCR’s record-mode slowdown is as

much as 65% less than BASE’s. Since DCR records

just the control-plane, it doesn’t have to compete for

disk bandwidth with the application as BASE must. The

effect is most prominent for disk intensive applications

such as the CloudStore slave and Hypertable client.

Overall, the DCR’s slowdowns on data-intensive work-

loads are similar to those of classical replay systems on

data-unintensive workloads.

DCR’s slowdowns are greater than our goal of 2%. The

main bottleneck is shared-memory channel interposition-

ing, with CREW faults largely to blame–the Hypertable

range servers can fault up to 8K times per second. The

page fault rate can be reduced by lowering the default

control-plane threshold of 10K faults/sec. DCR would

then be more willing to deem high data-rate pages as

part of the data-plane and stop intercepting accesses to

them. But the penalty is more work for the inference

mechanism.

5.1.3 Replay-Debugging Latency

Despite a formidable inference task, DCR’s JIT debug-

ger enables surprisingly responsive replay-debugging of

real datacenter applications. To show this, we evalu-

ate DCR’s replay-debugging latency under two configu-

rations: without and with Just-in-Time Inference (JITI)

enabled.

For both configurations, we obtained the debugger

latency using a script that simulates a manual replay-

debugging session. The script makes 10K queries for

state from the first 10 minutes of the replayed distributed

execution. The queries are focused on exactly one node

and may ask the debugger to print a backtrace, return a

variable’s value (chosen from the stack context indicated

by the backtrace), or step forward n instructions on that

node. Queries that take longer than 20 seconds are timed

out.

Impact of Just-in-Time Inference. Figure 5 gives

the average debugger latency, with and without the JITI

optimization, for our application suite. It conveys two

key results.

First, DCR provides native debugger latencies for

data-unintensive nodes (e.g., the Hypertable and Cloud-

Store master nodes), regardless of whether JITI is

enabled or not. Data-unintensive nodes operate below

the control-plane threshold data rate, hence enabling

DCR to efficiently record all transactions on those

channels. Since all information is recorded, there is no

need to infer it and hence no need to generate a formula

and solve it–hence the 0 formula sizes and solving times.

The result is that, as with traditional replay systems, the

user may begin replay debugging data-plane unintensive

nodes immediately.

Second, DCR has surprisingly fast latencies for

queries of data-intensive programs (e.g., Hypertable

and CloudStore slaves), but only if JITI is enabled.

Data-intensive programs operate above the control-plane

threshold data rate and thus DCR does not record most

of their I/O. The resulting inference task, however,

10

(a) Without JITI (b) With JITI

Program Total FormGen FormSolve Total FormGen FormSolve

CloudStore

Master native 0 (0 GB) 0 native 0 (0 GB) 0

Slave timeout timeout (500 GB) - 15 5 (270 KB) 10

Client timeout timeout (300 GB) - 13 4 (90 KB) 9

Hypertable

Master native 0 (0 GB) 0 native 0 (0 GB) 0

Meta native 0 (0 GB) 0 native 0 (0 GB) 0

Slave timeout timeout (500 GB) - 16 5 (880 KB) 11

Client timeout timeout (200 GB) - 13 4 (540 KB) 9

Figure 5: Mean per-query debugger latencies in seconds broken down into formula generation (FormGen) and solving

time (FormSolve). Formula generation (FormGen) times out at 1 hour. The key result is that data-unintensive appli-

cations exhibit low latencies regardless of whether JITI is used or not, but data-intenstive applications require JITI to

avoid query timeouts.

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300 350 400 450 500

L
a

te
n

c
y
 (

S
e

c
o

n
d

s
,

L
o

g
 S

c
a

le
)

Query Number

Debugger Response Time

Figure 6: Debugger query latency profile for a Hyper-

table slave server. The first query is really slow, but sub-

sequents ones are generally much faster. Red dots denote

queries that timed out at 20 seconds.

is insurmountable without JITI, because a mammoth

formula (often over 500 GBs) must be generated and

solved. By contrast, JITI also produces large formulas.

But these formulas are smaller (around 30 GBs) and are

subsequently split into multiple smaller sub-formulas

(500 KB on average) that can be solved fairly quickly

(10 seconds on average).

User Experience. DCR’s mean response time with

JITI, though considerably better than without JITI, is

still sluggish. Should the user expect every JITI query to

take so long? The debugger latency profile given for a

Hypertable slave node in Figure 6 answers this question

in the negative. Specifically, it makes two points.

First, the slowest query by far is the very first query–

it takes 10 hours to complete. This makes sense be-

cause the first query induces the replay engine to gen-

erate a multi-gigabyte formula and split it in preparation

for Just-in-Time Inference. Though both of these opera-

tions take time linear in the length of the execution seg-

ment being debugged, they are slow when they have to

process gigabytes of data.

The second key result is that non-initial queries are

generally fast, with the exception of a few timeouts due

to hard constraints (2% of queries in Figure 6). We at-

tribute the speed to three factors.

First, results of the formula generation and splitting

done in the first query are cached and reused in subse-

quent queries, hence precluding the need to symbolically

execute and split the formula with each new query. Sec-

ond, many queries (38% in Figure 6) are directed at con-

crete state (usually to control-plane state). These queries

do not require constraint solving. Finally, if a query is

directed at data-plane state, then DCR’s debugger (with

JITI) solves only the sub-formula corresponding to the

queried state (see Section 3.3.1). These sub-formulas are

generally small and simple enough (on the order of hun-

dreds of KBs, see Figure 5) to provide 8-12 second re-

sponse times.

5.2 Case Study

Here we report our experience using DCR to debug a real-

world non-deterministic failure. We offer this experience

not as conclusive evidence of DCR’s utility–a difficult

task given the variable amount of domain knowledge the

developer brings to the debugging process– but as a sam-

pling of the potential that DCR may fulfill with further

study.

11

5.2.1 Setup

We focus our study on Hypertable issue 63–a critical

defect entitled “Dropped Updates Under Concurrent

Loading” [4]. Recent versions of Hypertable do not

exhibit the issue, as it was fixed long ago. So we reverted

to an older version [2] that did exhibit the issue.

Failure. Updates to a database table are lost when

multiple Hypertable clients concurrently load rows into

the same table. The load operation appears to be a

success–clients nor the slaves receiving the updates

produce error messages. However, subsequent dumps

of the table don’t return all rows; several thousand are

missing.

Root Cause. In short, the data loss results from

rows being committed to slave nodes (a.k.a, Hypertable

range servers) that are not responsible for hosting them.

The slaves honor subsequent requests for table dumps,

but do not include the mistakenly committed keys in the

dumped data. The committed keys are merely ignored.

The erroneous commits stem from a race condition in

which row ranges migrate to other slave nodes while a

recently received row within the migrated range is being

committed to the current slave node. Instead of aborting

the commit for the row and forwarding it to the newly

designated data node along with other rows in the mi-

grated range, the data node allows the commit to pro-

ceed.

5.2.2 Challenges and Lessons

We gained two key insights in the process of isolating

the root cause:

Data-plane causality is sometimes necessary. We

wanted to know if it was possible to debug this failure

without data-plane causality, so we started the debugger

with d = 0 (see Section 3.3.2). Surprisingly, our initial

attempt to reproduce the failure was a success–we saw

that several previously submitted updates were indeed

missing. But when we tried to backtrack from the

client to the sending slave node, we found that the

sent updates had no correspondence with the received

updates, making further backtracing difficult.

By contrast, the same experiment with d set to 2
yielded causally consistent results. We were able to

comfortably backtrack the dumped key to the client that

initially submitted it. The penalty for reasoning about

inter-node causality, however, was a 10-fold increase in

JIT debugger latency.

Data-plane determinism is dispensible. We wanted to

reason about updates dropped in the original using the

replay execution, as would be possible in a traditional

replay system. But this was challenging, because as we

quickly learned, there was no discernible correspon-

dence between the orignal lost updates and the inferred

lost updates. The was clear in retrospect: because the

value of the updates needn’t be any particular string for

the underlying error to be triggered, DCR inferred an

aribtrary string that happened to differ from that of the

original.

We overcame this challenge by ignoring the originally

dropped updates. Instead, we focused on tracing the

dropped updates in the inferred replay run. Because the

unerlying error was a control-plane defect, the discrepen-

cies in key values between the original and the inferred

mattered little in terms of isolating the root cause. Both

exercised the same defective code.

5.2.3 Debugging in Detail

We isolated the root cause with a series of distributed

invariant checks, each performed with the use of a global

predicate [24].

Check 1: Received and Committed?

Predicate. Were all keys in the update successfully

received and committed by the range servers? To answer

this question, we created a global predicate that fires

when any of the keys sent by a client fails to commit on

the server end.

Result. The global predicate did not fire, hence

indicating that all keys were indeed received and com-

mitted by their respective nodes.

Predicate operation. During replay, the predicate

maintains a global mapping from each key sent by a

client to the range server that committed the key. If

all sent keys do not obtain a mapping by the end of

execution, then the predicate fires.

To obtain the mapping, the predicate places two

distributed breakpoints. The first breakpoint is placed

on the client side RangeLocator::set(key)

function, which is invoked every time a key is sent

to a range server. When triggered, our predicate in-

serts the corresponding key into the map with a null

value. The second breakpoint was set on the slave side

RangeServer::update(key) function, which

is invoked right before a key is committed. When

triggered, the predicate inserts the committing node’s id

as the value for the respective key.

Check 2: Commited to the Right Place?

12

Predicate. The keys were committed, but were

they committed to the right slave nodes? To find out,

we created a global predicate that fires when a key

is committed to the “wrong” node. The committing

node is wrong if it is not the node reponsible for

hosting the key, as indicated by Hypertable’s global key-

range to node-id table (known as the METADATA table).

Result. Partly through the execution our global

predicate fired for row-key x. It fired because, although

key x lies in a range that should be hosted by node 2, it

was actually committed to node 1. Thus, some form of

METADATA inconsistency is to blame.

Predicate operation. The predicate maintains two

global mappings and fires when they mismatch. The

first mapping maps from key-ranges to the node id

responsible for hosting those key-ranges, as indicated by

the METADATA table. The second maps each sent key

to its committing node’s id.

To obtain the first mapping, the predicate inter-

cepts all updates to the METADATA table. This

was done by placing a distributed breakpoint on the

TableMutator::set(key, value) function.

When the breakpoint fires and if this references a

METADATA table, we then map key to value.

To obtain the second mapping, the pred-

icate places a distributed breakpoint at the

callsite of Range::add(key) within the

RangeServer::update(key) function. When it

fires, the predicate maps key to the committing node id.

Check 3: A Stale Mapping to Blame?

Predicate. We know that, before committing a key,

a range server first checks that it is indeed responsible

for the key’s range. If not, the read/update is rejected.

But Part 2 showed that the key is committted even after

the range server’s self check. Could it be the case that

the node assignment for the committing key changed in

between the range server’s self check and commit? To

find out, we created a global predicate that fires when a

key’s node assignment changes in the time between the

self-check and commit.

Result. The predicate fired. The cause was a con-

current migration of the key range (known as a split)

fielded by another thread on the same node. It turns out

that range-servers split their key-ranges, offloading half

of it to another range-server, when the table gets too

large.

Predicate operation. This predicate maintains three

mappings: (1) from keys to node ids at the time of

A
lw
ay
s-
o
n

o
p
er
at
io
n

W
h
o
le
-

sy
st
em

re
p
la
y

O
u
t-
o
f-
th
e-

b
o
x
u
se

D
et
er
m
in
is
m

Hardware

support [16,

32, 36],

CoreDet [9]

No No No Value

liblog [25],

VMWare [5],

PRES [39],

ReSpec [33]

No No Yes I/O

SherLog [44] Yes No No Output
ODR [7],

ESD [45]
Yes No Yes Output

Instant Re-

play [31],

DejaVu [29]

Yes No Yes Value

R2 [27] Yes Yes No Value

DCR Yes Yes Yes Control

Figure 7: A comparison with other replay-debugging

systems. Only DCR meets all the requirements for dat-

acenter applications.

the self check, (2) from keys to node ids at the time

of commit, and (3) from keys to METADATA change

events made in between the self check and commit. The

predicate fires when there is an inconsistency between

the first and the second.

To obtain the first and second map-

pings, we placed a breakpoint on calls to

TableInfo::find containing range(key)

and Range::add(key), respectively.

find containting range() checks that the

key should be committed on this node and add()

commits the row to the local store. When either of

these breakpoints fire, the predicate adds a mapping

from the key to the node id hosting that key. The

predicate obtains the node id by monitoring changes to

the METADATA table in the same manner as done in

Part 2.

To obtain the third mapping, the predicate places a

breakpoint on calls to TableMutator::set(key),

where the table being mutated is the metadata table.

6 Related Work

Figure 7 compares DCR with other replay-debugging

systems along key dimensions. The following para-

graphs explain why existing systems do not meet our

requirements.

13

Always-On Operation. Classical replay systems

such as Instant Replay, liblog, VMWare, and SMP-

ReVirt are capable of, or may be easily adapted for,

large-scale distributed operation. Nevertheless, they

are unsuitable for the datacenter because they record

all inbound disk and network traffic. The ensuing

logging rates, amounting to petabytes/week across all

datacenter nodes, not only incur throughput losses,

but also call for additional storage infrastructure (e.g.,

another petabyte-scale DFS).

Several relaxed-deterministic replay systems (e.g.,

Stone [40], PRES [39], and ReSpec [33]) and hardware

and/or compiler assisted systems (e.g., Capo [36], Lee et

al. [32], DMP [16], CoreDet [9], etc.) support efficient

recording of multi-core, shared-memory intensive

programs. But like classical systems, these schemes still

incur high record-rates on network and disk intensive

distributed systems (i.e., datacenter systems).

Whole-System Replay. Several replay systems can

provide whole-system replay for small clusters, but not

for large-scale, failure-prone datacenters. Specifically,

systems such as liblog [25], Friday [24], VMWare [5],

Capo [36], PRES [39], and ReSpec [33] allow an

arbitrary subset of nodes to be replayed, but only if

recorded state on that subset is accessible. Order-based

systems such as DejaVu and MPIWiz may not be able

to provide even partial-system replay in the event of

node failure, because nodes rely on message senders to

regenerate inbound messages during replay.

Recent output-deterministic replay systems such as

ODR [7] (our prior work), ESD [45], and SherLog [44]

can efficiently replay some single-node applications

(ESD more so than the others). But these systems

were not designed for distributed operation, much less

datacenter applications. Indeed, even single-node replay

is a struggle for these systems. On long-running and

sophisticated datacenter applications (e.g., JVM-based

applications), they require reasoning about an exponen-

tial number of program paths, not to mention NP-hard

computations, before a replay-debugging session can

begin.

Out-of-the-Box Use. Several replay schemes em-

ploy hardware support for efficient multiprocessor

recording . These schemes don’t address the problem of

efficient datacenter recording, however. What’s more,

they currently exist only in simulation, so they don’t

meet our commodity hardware requirement.

Single-node, software-based systems such as Core-

Det [9], ESD [45], and SherLog [44] employ C source

code analyses to speed the inference process. However,

applying such analyses in the presence of dynamic code

generation and linking is still an open problem. Unfortu-

nately, many datacenter applications run within the JVM,

well-known for dynamically generating code.

The R2 system [27] provides an API and annotation

mechanism by which developers may select the appli-

cation code that is recorded and replayed. Conceivably,

the mechanism may be used to record just control-plane

code, thus incurring low recording overheads. Alas, such

annotations are hardly “out of the box”. They require

considerable developer effort to manually identify the

control-plane and to retrofit existing code bases.

7 Conclusion

We have presented DCR, a replay debugging system for

datacenter applications. We believe DCR is the first to

provide always-on operation, whole distributed system

replay, and out of the box operation. The key idea be-

hind DCR is control-plane determinism–the notion that it

suffices to reproduce the behavior of the control plane–

the most error-prone component of the datacenter app.

Coupled with Just-In-Time Inference, DCR enables prac-

tical replay-debugging of large-scale, data-intensive dis-

tributed systems. Looking forward, we hope to further

improve DCR’s recording overheads and debugging re-

sponse times.

References

[1] Cloudstore. http://kosmosfs.sourceforge.net/.

[2] Git commit id of hypertable issue 63.

5e2045aeeb0f38db48d2eddf484b2d00445a1d59.

[3] Hypertable. http://www.hypertable.org/.

[4] Hypertable issue 63. http://code.google.com/p/hypertable/issues/.

[5] Vmware vsphere 4 fault tolerance: Architecture and perfor-

mance, 2009.

[6] ALTEKAR, G. An empirical study of the control and data planes.

Tech. Rep. UCB/EECS-2010, EECS Department, University of

California, Berkeley, 2010.

[7] ALTEKAR, G., AND STOICA, I. Odr: output-deterministic replay

for multicore debugging. In SOSP (2009).

[8] ALTEKAR, G., AND STOICA, I. Dcr: Replay debugging for the

data center. Tech. Rep. UCB/EECS-2009-108, EECS Depart-

ment, University of California, Berkeley, May 2010.

[9] BERGAN, T., ANDERSON, O., DEVIETTI, J., CEZE, L., AND

GROSSMAN, D. Coredet: A compiler and runtime system for

deterministic multithreaded execution. In ASPLOS (2010).

[10] BHANSALI, S., CHEN, W.-K., DE JONG, S., EDWARDS, A.,

MURRAY, R., DRINIĆ, M., MIHOČKA, D., AND CHAU, J.

Framework for instruction-level tracing and analysis of program

executions. In VEE (2006).

[11] BOULON, J., KONWINSKI, A., QI, R., RABKIN, A., YANG,

E., AND YANG, M. Chukwa, a large-scale monitoring system.

In CCA (2008).

14

http://kosmosfs.sourceforge.net/
http://www.hypertable.org/

[12] CANTRILL, B., SHAPIRO, M. W., AND LEVENTHAL, A. H.

Dynamic instrumentation of production systems. In USENIX

(2004).

[13] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-

LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND

GRUBER, R. E. Bigtable: A distributed storage system for struc-

tured data. In OSDI (2006).

[14] CROWLEY, P. Network Processor Design: Issues and Practices.

2002.

[15] DEAN, J., AND GHEMAWAT, S. Mapreduce: a flexible data pro-

cessing tool. CACM 53, 1 (2010).

[16] DEVIETTI, J., LUCIA, B., CEZE, L., AND OSKIN, M. Dmp: de-

terministic shared memory multiprocessing. In ASPLOS (2009).

[17] DUNLAP, G. Execution replay for intrusion analysis. PhD thesis,

Ann Arbor, MI, USA, 2006.

[18] DUNLAP, G. W., LUCCHETTI, D. G., FETTERMAN, M. A.,

AND CHEN, P. M. Execution replay of multiprocessor virtual

machines. In VEE (2008).

[19] ELLITHORPE, J. D., TAN, Z., AND KATZ, R. H. Internet-in-a-

box: emulating datacenter network architectures using fpgas. In

DAC (2009).

[20] ENGLER, D., AND DUNBAR, D. Under-constrained execution:

making automatic code destruction easy and scalable. In ISSTA

(2007).

[21] FLANAGAN, C., LEINO, K. R. M., LILLIBRIDGE, M., NEL-

SON, G., SAXE, J. B., AND STATA, R. Extended static checking

for java. In PLDI (2002).

[22] FLOYD, R. W. Assigning meaning to programs. 19–32.

[23] FONSECA, R., PORTER, G., KATZ, R. H., SHENKER, S., AND

STOICA, I. X-trace: A pervasive network tracing framework. In

NSDI (2007).

[24] GEELS, D., ALTEKAR, G., MANIATIS, P., ROSCOE, T., AND

STOICA, I. Friday: Global comprehension for distributed replay.

In NSDI (2007).

[25] GEELS, D., ALTEKAR, G., SHENKER, S., AND STOICA, I. Re-

play debugging for distributed applications. In USENIX (2006).

[26] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google

file system. In SOSP (2003).

[27] GUO, Z., WANG, X., TANG, J., LIU, X., XU, Z., WU, M.,

KAASHOEK, M. F., AND ZHANG, Z. R2: An application-level

kernel for record and replay. In OSDI (2008).

[28] KING, J. C. Symbolic execution and program testing. Commun.

ACM 19, 7 (1976), 385–394.

[29] KONURU, R. Deterministic replay of distributed java applica-

tions. In IPDPS (2000).

[30] LAHIRI, S. K., QADEER, S., AND RAKAMARIC, Z. Static and

precise detection of concurrency errors in systems code using smt

solvers. In CAV (2009).

[31] LEBLANC, T. J., AND MELLOR-CRUMMEY, J. M. Debugging

parallel programs with instant replay. IEEE Trans. Computers 36,

4 (1987), 471–482.

[32] LEE, D., SAID, M., NARAYANASAMY, S., YANG, Z., AND

PEREIRA, C. Offline symbolic analysis for multi-processor exe-

cution replay. InMICRO (2009).

[33] LEE, D., WESTER, B., VEERARAGHAVAN, K.,

NARAYANASAMY, S., CHEN, P. M., AND FLINN, J. Online

multiprocessor replay via speculation and external determinism.

In ASPLOS (2010).

[34] LIU, X., LIN, W., PAN, A., AND ZHANG, Z. Wids checker:

Combating bugs in distributed systems. In NSDI (2007).

[35] MOLNAR, D. A., AND WAGNER, D. Catchconv: Symbolic exe-

cution and run-time type inference for integer conversion errors.

Tech. Rep. UCB/EECS-2007-23, EECS Department, University

of California, Berkeley, 2007.

[36] MONTESINOS, P., HICKS, M., KING, S. T., AND TORRELLAS,

J. Capo: a software-hardware interface for practical deterministic

multiprocessor replay. In ASPLOS (2009).

[37] MUSUVATHI, M., QADEER, S., BALL, T., BASLER, G.,

NAINAR, P. A., AND NEAMTIU, I. Finding and reproducing

heisenbugs in concurrent programs. In OSDI (2008).

[38] NECULA, G. C., AND LEE, P. Safe kernel extensions without

run-time checking. In OSDI (1996).

[39] PARK, S., ZHOU, Y., XIONG, W., YIN, Z., KAUSHIK, R., LEE,

K. H., AND LU, S. Pres: probabilistic replay with execution

sketching on multiprocessors. In SOSP (2009).

[40] STONE, J. M. Debugging concurrent processes: a case study. In

PLDI (1988).

[41] TANENBAUM, A. Computer Networks. Prentice Hall Profes-

sional Technical Reference, 2002.

[42] VOGELS, W. Keynote address. CCA, 2008.

[43] XU, W., HUANG, L., FOX, A., PATTERSON, D. A., AND JOR-

DAN, M. I. Detecting large-scale system problems by mining

console logs. In SOSP (2009).

[44] YUAN, D., MAI, H., XIONG, W., TAN, L., ZHOU, Y., AND

PASUPATHY, S. Sherlog: Error diagnosis by connecting clues

from run-time logs. In ASPLOS (2010).

[45] ZAMFIR, C., AND CANDEA, G. Execution synthesis: A tech-

nique for automated software debugging. In EuroSys (2010).

15

	Introduction
	Requirements
	Contributions

	Overview
	Observation: The Control Plane is Key
	Approach: Control-Plane Determinism

	Design
	Recording Control Plane I/O
	Interposing on Channels
	Classifying Channels

	Providing Control-Plane Determinism
	Global Formula Generation
	Global Formula Solving
	Local Formula Generation

	Scaling Debugger Response Time
	Huge Formulas, NP-Hard Constraints
	Distributed System Causality

	Implementation
	Sample Usage
	User-Level Architecture
	Formula Generation
	Debugger Interface

	Evaluation
	Performance
	Setup
	Recording Overheads
	Replay-Debugging Latency

	Case Study
	Setup
	Challenges and Lessons
	Debugging in Detail

	Related Work
	Conclusion

