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Chapter 1

Introduction

The localization and tracking of objects is a very important area of research today, with a myriad of
different applications. Some example applications are tracking vehicles for safety, tracking cellular
phones for the purpose of quick responses to emergency 911 calls, tracking the location of inventory
in a large warehouse, tracking the location of people and equipment in a hospital environment,
etc. To further complicate matters, different applications have different requirements - different
applications may need functionality in vastly different environments and may require different
levels of accuracy.

As a result of these varied needs, many different systems for localization and tracking have been
developed that utilize a wide range of different technologies. One of the most popular technologies
for localization and tracking is the global position system, or GPS. A terrestrial GPS unit can
measure the distance to several geosynchronous satellites and combine those distance measurements
to estimate its location on earth. GPS has many positive qualities - it has wide coverage and high
accuracy in wide-open environments, like rural areas or areas without many tall buildings. However,
its accuracy is poor in indoor or urban environments with many tall buildings. As a result, several
other technologies have emerged for localization and tracking - many of these are designed for
smaller scales and in those urban and indoor environments where GPS accuracy degrades.

One type of technology performs localization by measuring the time of arrival (TOA) or time
of flight (TOF). These are two different names for the same type of technology. If we have two
units, we can get an estimate of the distance between the two units by measuring how long it takes
an RF signal transmitted by one unit to arrive at the other unit and dividing this time by the
speed of light. If we have three or more units with known positions, and if we can measure the
distance between an object of interest to each of those three units, we can determine the location
of the object of interest. A second type of technology performs localization by measuring the
time difference of arrival (TDOA). This type of technology is similar to TOA/TOF technology;
once again we have an object of interest and several units with known positions. The object of
interest will send an RF signal to the other units, but instead of trying to measure the time of
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6 Chapter 1.

flight, the other units simply note the difference of the arrival times among each of them and use
this information to determine the location. A third type of technology uses angle of arrival (AOA)
measurements; units with known locations measure the angle of arrival of a signal transmitted from
the object of interest, and combine those measurements to determine the location of the object of
interest. A fourth type of technology uses received signal strength (RSS) measurements; units with
known locations measure the received signal strength of a signal transmitted from the object of
interest and combine those measurements to determine the location of the object of interest. In
our work, we look at time of flight ranging systems.

In the event that the time of flight range measurements are perfect, we can determine the
position of the object of interest perfectly. However, this is generally not the case. Range estimation
errors can arise from noise, multipath, and obstructions that block the line-of-sight path between the
the two units performing a ranging operation. Errors in the range estimates can severely impact
the accuracy of the location estimations. Therefore, any technology, techniques, or algorithms
developed for localization and tracking need to be able to mitigate such errors. However, as
building prototypes is costly and inefficient, it is important to be able to accurately simulate the
effects of noise, multipath, and obstruction of the line-of-sight path on ranging, localization and
tracking. In literature, algorithms have been proposed assuming different statistical models for the
ranging errors. However, very little work has been done in terms of justifying the assumed models.
There has been a lot of work done on how to simulate a wireless channel, but not much work has
been done on translating that channel into a good model for the time of flight ranging errors.

The goal of my work is to bridge the gap and utilize accepted channel models to provide models
for time of flight ranging errors under different scenarios and in different environments. These
models will be useful to those who develop and design new techniques and algorithms for localization
and tracking in that they will not be required to get into the details of actually simulating the
physical channel.



Chapter 2

Motivation

In order to have a full appreciation for the work we present in this report, there first needs to be a
greater understanding of the needs and issues in localization and tracking research. We begin this
chapter by looking at prior research work in the area of developing algorithms for localization. Much
of this prior work has a high-level approach to localization and tracking - the authors are interested
in intelligent ways of filtering and combining range measurements in order to mitigate errors in the
range measurements that come from noise, multipath, and non-line-of-sight conditions - they are
less interested in how those measurements are actually obtained or the underlying physics of ranging
operations. So, instead of simulating ranging operations, they adopt simplified statistical models
for the estimation errors, often times without robust justifications or calculations to support their
models. It is here that our work can be of great benefit - our work can provide a better model that
is backed up by simulation data. After that, we will take a look at work that actually implemented
time of flight ranging systems or tried to simulate the wireless channel and the ranging operation
and address weaknesses that our work will address.

2.1 Statistical Models for Estimation Errors

The models used in prior literature are not consistent; there are many different kinds of models
for time of flight ranging errors. We describe some of the models in this section. In general, these
models do not deal with the time of flight, but rather the distance between our two units. This is
reasonable since we are more interested in the distance, and the time of flight is merely the distance
scaled by the speed of light. We denote the true distance between the two units as d, and we denote
the distance estimate as d̂. In general, the relationship between d and d̂ is:

d̂ = d+ e (2.1)

where e is the estimation error and a random variable. We are interested in models for e.
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Before looking at the models used in the literature, we will first take a high-level look at the
different contributors to the time of flight ranging error. In a perfect situation, the RF signal at
the receiver will just be a delayed version of the RF signal sent from the transmitter, and this
delay will be exactly equal to the time of flight. However, the signal is garbled and corrupted by
noise, multipath, and non-line-of-sight conditions. The noise refers to the additive noise from the
environment - it may come from the thermal noise or from other RF devices. Multipath refers to
the corruption that comes from delayed and attenuated copies of the signal that arise from the
signal bouncing off of different objects in the environment before arriving at the receiver. Non-line-
of-sight (NLOS) conditions arise when the direct (or line-of-sight) path between the transmitter
and receiver is completely blocked by some obstruction. Whether or not there is a line-of-sight
(LOS) path between the transmitter and receiver can change the distance estimate drastically.
Thus, much of the literature considers separately the case when there is a LOS path and the case
when there is not a LOS path. We denote the distance estimate when there is a LOS path as d̂LOS
and the distance estimate when the LOS path is obstructed as d̂NLOS . These two quantities are
related to d:

d̂LOS = d+ eLOS

d̂NLOS = d+ eNLOS

We want to consider the different models for the random variables eLOS and eNLOS .
Chan, et al. in [3] and Chen, et al. in [7] assume that the estimation error in the LOS and NLOS

cases have the following form:

eLOS = ε (2.2)
eNLOS = ε+ α (2.3)

where ε is a Gaussian random variable, and α is a uniform random variable.
Zhang and Wong in [41] investigate the performance of localization and tracking when there is

no LOS path at all; however, both the time of flight and the angle of arrival are known. In their
simulations they assume that the estimation error under NLOS conditions has the following form:

eNLOS = b+ |ε| (2.4)

where ε is a Gaussian random variable. In their simulations, since the exact path that the signal
took was known, b was a known offset that comes from the extra distance that the signal needed
to travel.

Huerta, et al. in [22] assume the following form for the estimation error in the LOS and NLOS
cases:

eLOS = εLOS

eNLOS = εNLOS

In these definitions, εLOS is a Gaussian random variable, and εNLOS is a Rayleigh random variable.
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2.2 Experimental Measurements of Estimation Errors

There has been work done that implements or simulates a time of flight ranging system and tries
to characterize the estimation error. However, many of these examples of prior work have some
weaknesses that our work will try to address.

Ciurana and Barcelo-Arroyo in [13] did not try to come up with a theoretical model for the
estimation error; instead, they compiled a database of actual time of flight ranging measurements
under different scenarios (when the LOS path is blocked, when the LOS path is partially blocked,
and when the LOS path is unblocked) and took samples from this database. Although a database of
measurements is useful, we have no idea how dependent the distribution of error is on the particular
environment that the measurements were obtained from. A more theoretical model can help to
address this problem.

Ciurana, et al. in [11] also took actual time of flight ranging measurements; however, they only
considered the LOS scenario, and they found a Gaussian model to be the best fit for the estimation
error, eLOS . However, many of the problems with systems that utilize time of flight ranging come
from the NLOS scenario - thus, it is imperative that we have a model for errors in the NLOS
scenario.

Izquierdo, et al. in [23] took actual time of flight ranging measurements and fit the error to a
Gaussian model. Unlike much of the other work, they did not differentiate between the LOS and
the NLOS scenario. Their model was used by Ciurana, et al. in [12]. Our work differs from their
work in that we will differentiate between the LOS and the NLOS scenario. The problem with
combining the LOS and NLOS scenarios is that in any given environment, we really have no idea
what fraction of the measurements are LOS and what fraction are NLOS. Thus, it is far more useful
to consider separate models for the LOS scenario and the NLOS scenario.

Comsa, et al. in [14] tried to simulate ranging operations, as we do. Their work was focused
on determining location, not just measuring ranges, and instead of using time of flight to estimate
location they used time difference of arrival. For their simulation, they assumed that they had a
number of reference sensors - they simulated the wireless channel between the mobile and one of
sensors as AWGN, and they used the COST 207 model for wireless channels with 6 Rayleigh faded
rays for the wireless channel between the mobile and the other sensors. The models that they used
for their wireless channel are not as general as the models that we use. To assume that one of the
channels will be AWGN is unrealistic; in addition to that, the COST 207 model assumes that the
excess delays of the multipaths are deterministic; thus, it is not as useful a model for simulating
time of flight ranging systems, since time of flight ranging errors are quite dependent on what the
excess delays are.

Our work attempts to address the weaknesses of this prior work to provide useful models for
the ranging error in both the LOS and NLOS scenarios.
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Chapter 3

Simulating a Time of Flight Ranging
System

In this chapter we discuss how we simulated a time of flight ranging system. We split our discussion
into three sections. In the first section we discuss how we simulated the wireless channel. We begin
from a physical picture of the wireless channel and move from that picture to a statistical model for
the wireless channel. In the second section we discuss how, from our wireless channel simulation, we
can simulate a time of flight ranging system. Finally, in the third section, we look at the parameter
choices and design decisions that went into our specific simulation.

3.1 Simulating a Wireless Channel

3.1.1 Looking at the Physical Picture

The easiest way to get some intuition on how to simulate the wireless channel is to first look at a
physical picture, in Figure 3.1. We have two units that we want to perform a ranging operation
between - a base station and a mobile unit. Suppose that both units are stationary and separated
by a distance of d meters. We will consider the case when the base station is sending a signal to
the mobile. One path that the signal traverses to get to the mobile is LOS path between the base
station and the mobile. The signal will reach the mobile after a delay τd = d

c , where c is the speed
of light, and with some attenuation (which we will denote by α). However, the signal can also arrive
at the mobile via other paths by bouncing off of different reflectors in the environment. These other
paths are what we call the multipath component. Our picture only depicts one-bounce paths, but
these multipaths may include reflections off of several reflectors between the base station and the
mobile. Consider the ith path. The signal that travels via this path will arrive at the mobile with
some delay larger than τd (since the shortest path between the base station and the mobile is the
direct path). We will denote the delay in excess of τd by ti. The signal that travels along this path
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MobileBase 
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Figure 3.1: The general physical setup.

also experiences some attenuation, which we will denote by βi. Suppose there are L such paths.
The signal that we are sending from the base station at time t is x(t). Then, from this picture, we
can express the received signal at the mobile, y(t), at time t as:

y(t) = αx(t− τd) +
L∑
i=1

βix(t− τd − ti) (3.1)

where
α, β1, . . . , βL ∈ C; τd, t1, . . . , tL > 0 (3.2)

From the way that we express y(t), we can see clearly that there is a contribution from the LOS
path and a separate contribution from the multipaths. However, in addition to the signal from the
LOS path and the multipaths, there will also be some contribution from noise at the mobile. So,
our model becomes:

y(t) = αx(t− τd) +
L∑
i=1

βix(t− τd − ti) + n(t) (3.3)

This is the general model, and similar models for the wireless channel are seen in [19] and [38].
We now move away from the physical picture and discuss reasonable statistical models for the
parameters in the model.
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3.1.2 Effect of Sampling

The number of multipaths, L, may be extremely large and highly dependent upon the environment.
For example, in an indoor environment there are many walls and other objects for the signal to
bounce off of. We would expect many multipaths and for them to all arrive within a short time
interval. However, since we are dealing with real-world systems, we will not have access to the
actual continuous time signal at the receiver; instead, we will have samples of the continuous time
signal. Because we are sampling the received signal y(t), we can actually use a simpler model for
the received signal:

y(t) = ax(t− τd) +
M∑
i=1

bix(t− τd − τi) + n(t) (3.4)

This model looks very similar to our original model; however, we are considering M paths in
this model, and we assert that M is much smaller than L. We have substituted a, bi and τi for α,
βi, and ti, but they still correspond to the attenuation of the LOS path, the attenuation of each
multipath, and the excess delay of each multipath respectively.

To understand why we only have to consider M paths instead of L paths, we first return to
the physical picture of our channel. There will be many copies of the signal that travel along
different paths but arrive at the receiver with approximately the same excess delay τi. For some
intuition behind this, we look at Figure 3.2; this is a zoomed in picture of what happens at one of
the reflectors. There are many reflections off of this one reflector; each of the reflected paths off
of this reflector will have a different attenuation, but they will have roughly the same arrival time
at the receiver. Now, if we were looking at the actual continuous time signal y(t) at the receiver,
then it would be best accurate to model y(t) by considering all of these paths with their individual
attenuations βi and individual excess delays ti. However, we are sampling our received signal y(t);
in general, the sampling interval is much larger than the inter-arrival times in these clusters of
paths, and we will not be able to tell that there are many different paths. Instead, the copies of the
signal traveling along these paths will all appear to arrive at the same time; since we are summing
them together at the receiver, we can treat the contribution of all the paths in the cluster as a
single copy of the transmitted signal with excess delay τi and attenuation bi, which is the sum of
all of the attenuations βi of paths in the cluster. In our picture we treated all of the paths that
bounced off of the same reflector as belonging to the same cluster, but in general we treat all paths
that have roughly the same delay as belonging to the same cluster.

So, because we are taking samples, and since the sampling interval is so much larger than the
inter-arrival times of the different paths, we can split all of the reflected paths into M different
clusters; we can treat the contribution of each of these clusters as a single copy of the transmitted
signal with attenuation bi and excess delay τi. In addition to that, we can combine all of the
reflected paths that arrive closely in time with the LOS path to the first term; thus, the first term
then corresponds to the cluster of paths that arrive with delay τd, and its attenuation a is the



14 Chapter 3.

Figure 3.2: Zooming in to see to get a better picture of what happens at the
reflectors. The rays are parallel because we are assuming that the source is in the far

field.

sum of α and all of the βi’s that correspond to the reflected paths. Modeling y(t) in this way will
have implications on how we model the attenuation coefficients a, b1, . . . , bM and the excess delays
τ1, . . . , τM .

3.1.3 Modeling the Channel Attenuation

We need to model the attenuation coefficients a, b1, . . . , bM . We will begin by considering the
coefficients that correspond to the multipaths, the bi’s. A common practice is to model these
coefficients as i.i.d circular symmetric Gaussian random variables; that is, bi ∼ CN(0, 1). This
notation means that bi = BR + iBI , where BR, BI ∼ N(0, 1/2) and are i.i.d. This model is known
as Rayleigh fading because in this model |bi| has a Rayleigh distribution.

In order to see why this model is reasonable, remember that each of the bi’s is the sum of many
random variables: the βi’s that belong to the ith cluster. By the central limit theorem, we know
that the attenuation coefficient bi should be Gaussian.

Now, we consider how to model the coefficient that corresponds to the LOS path, a. The
common practice is to model a as the sum of a dominant component and a circular symmetric
Gaussian random variable. That is, we have:

a =
√
κeiθ + CN(0, 1) (3.5)

The first term in this sum corresponds to attenuation of the actual LOS path and the second term
corresponds to the sum of the attenuations of the multipaths whose lengths are so close to the
length of the LOS path that they arrive at roughly the same time. The parameter κ is a fixed
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value called the Rician factor denoting how much power is in the direct path, and θ is a uniform
random variable on the range [0, 2π), and it denotes the phase of the direct path. We model the
contribution from the multipath as a circular symmetric Gaussian random variable for the same
reasons that we described above. This model is known as Rician fading because |a| has a Rician
distribution.

3.1.4 Modeling the Delays and the Number of Multipath Components

Before discussing how to model the excess delays, the τi’s, and the number of multipath components,
M , we first need to define some more characteristics of our wireless channels and our measurement
system.

The first thing we need to consider is the delay spread of the channel. The delay spread is the
difference between the arrival time of the longest path and the arrival time of the shortest path
that the signal takes from the transmitter to the receiver. It depends heavily upon the physical
configuration of the environment. A more useful characteristic is the RMS delay spread. The RMS
delay spread tells us how long the interval is in which most of the reflected signals that contain a
significant amount of energy arrive. We denote the RMS delay spread by τRMS . Thus, we assume
that all significant copies of the signal will arrive at our receiver between time τd and time τd+τRMS .

The second thing we need to consider is the bandwidth available for the ranging operation,
since in practice there is limited bandwidth allotted. The bandwidth affects the transmitted signal
x(t) and the sampling rate of our measurement system. As we saw above, the sampling rate has a
big effect on how many multipaths M we need to simulate. If our sampling rate is high, then even
if the time of arrival between two copies of the signal is small, we may be able to distinguish one
from the other. However, if the sampling rate is low, then we will not be able to tell that there
are two copies. The bandwidth of the transmitted signal also has an effect. Signals that have high
bandwidth tend to be more localized in time. Thus, if our signal has higher bandwidth then it
is easier to identify two separate copies of the signal that arrive close together in time. However,
if our signal has lower bandwidth, it is more likely that we will see two copies of the same signal
as just one copy. We denote the bandwidth of our signal by W and the sampling interval of our
measurement system by Tsample. We sample at the Nyquist frequency, and our bandwidth W is
the total bandwidth; thus Tsample = 1

W .
So, we see that if W is large, then we should be able to resolve more distinct paths. Thus,

the larger W is, the larger M should be. Also, if τRMS is larger, there is a larger interval where
reflections with significant energy can arrive, and we would expect to see more reflections. Thus,
the larger τRMS is, the larger M should be. So, from these parameters, we define M to be:

M =
⌈
τRMS

Tsample

⌉
(3.6)

This is similar to what is done in [35].
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We model the excess delays, the τi’s, as i.i.d. uniform random variables on the interval [0, τRMS ].
The excess delays of these clusters is uniform because we do not assume anything a priori about
the reflectors in the environment. Since we are clustering paths that have roughly the same delay,
we would not expect clusters to clump together in any part of the interval [0, τRMS ].

3.1.5 Modeling the Noise

The additive noise that we are modeling is thermal noise, and thus can be reasonably modeled as
Gaussian. Also, there is logically no predilection for a certain phase. So at any time t, the noise n(t)
is a circular symmetric Gaussian random variable, with power N0. We denote n(t) ∼ CN(0, N0).
For the purpose of our simulations, we will have N0 be a parameter that depends on the SNR.

3.1.6 Dealing with Movement

Up to this point we have only looked at the picture where both the base station and the mobile
are stationary and the environment is static. In general, this is not going to be the case - and thus
the different parameters of our model become time-varying. So, our model for y(t) becomes:

y(t) = a(t)x(t− τd(t)) +
M∑
i=1

bi(t)x(t− τd(t)− τi(t)) + n(t) (3.7)

However, we are considering things moving much slower than the speed of light, and so there
will not be significant short-term time variation in the length of the signal paths. Therefore, we
can treat τd(t) and the τi(t)’s as constants over the course of a single ranging operation. However,
we still need to consider how a(t) and the bi(t)’s vary over time.

Many models have been proposed to determine how a(t) and the bi(t)’s change and how they
are correlated over time. We assume that a(t) and bi(t) are uncorrelated with each other, that the
LOS component of a(t) is constant, and that the multipath component of a(t) and all of the bi(t)’s
are independently and identically distributed. We have independence since we assume that the
amplitudes and phases of each individual path are independent, as in [37]. A common model for
determining this correlation over time is Clarke’s model, which is described in [18] and [37]. The
situation described in Clarke’s model involves a stationary base station and moving mobile unit
surrounded by a ring of scatterers. The model also assumes an isotropic antenna gain pattern. We
need to know how bi(t) is correlated over time.

The base station is not moving but the mobile is moving at a velocity of v m/s. Let fc be the
carrier frequency of our signal. Then, the magnitude of the maximum Doppler shift we would see
is fd = vfc

c , where c is the speed of light. This quantity tells us how wide a frequency band our
signal gets spread out over as a result of the fact that our mobile is moving. Clarke’s model tells
us that if our maximum Doppler shift is fd, then the normalized autocorrelation function of bi(t)
is a zeroth-order Bessel function of the first kind:
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R(τ) = J0(2πfdτ) (3.8)

The corresponding power spectral density is:

S(f) =


1

πfd
√

1−(f/fd)2
|f | ≤ fd

0 otherwise
(3.9)

Plots of R(τ) and S(f) when fd = 100 Hz are shown in Figure 3.3
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Figure 3.3: Autocorrelation function and power spectral density of Rayleigh fading in Clarke’s model.

Given fd, there are several methods for generating instances of bi(t) that have the desired
autocorrelation properties. One well-known method is Jakes’ method, which uses a sum-of-sinusoids
approach and is described in [24]. Young and Beaulieu propose a method in [40] which takes the
IDFT of appropriately weighted Gaussian random variates to generate samples of bi(t). Baddour
and Beaulieu propose a different method in [1] which uses an autoregressive modeling approach to
generate an IIR filter for Gaussian random variates - the resulting output are samples of bi(t). We
have implemented the approach used in [40], and the resulting output for a one second long interval
of bi(t) with fd = 100 Hz is shown in Figure 3.4.

3.1.7 Summary

We end this section with a quick summary of our model and the relevant parameters before we
move on to discussing how we simulated a time of flight ranging system. We started with a physical
picture and ended up with the following relationship between our transmitted signal x(t) and our
received signal y(t):
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Figure 3.4: dB plot of the magnitude of a one second sample of bi(t) with fd = 100 Hz.

y(t) = a(t)x(t− τd) +
M∑
i=1

bi(t)x(t− τd − τi) + n(t) (3.10)

The relevant parameters that we need to know before simulating are the distance between the
mobile and base station (d), the RMS delay spread (τRMS), the sampling interval (Tsample), the
Rician factor (κ), the SNR, the speed of the mobile (v), and the carrier frequency (fc). The relation
between the parameters in our equation and these parameters is summarized in Table 3.1.

Dependent on

M
⌈
τRMS
Tsample

⌉
a(t) Depends on κ, v, and fc
bi(t) Depends on v and fc
τd

d
c

τi ∼ Unif [0, τRMS ]
n(t) ∼ CN(0, N0) where N0 = 1

SNR

Table 3.1: Dependency of equation parameters on environment parameters.
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3.2 Simulating a Time of Flight Ranging System

Now that we have a suitable model for the wireless channel we can move on to how we would simulate
a time of flight ranging system. First, we review the basic idea behind time of flight ranging systems.
We have two devices that we want to measure the range between - the base station and the mobile.
We assume the base station initiates the ranging operation. The base station will send some kind
of known signal to the mobile. Ideally, the mobile will receive the transmitted signal delayed by
the amount of time it took the signal to travel between the base station and the mobile. However,
in general the received signal will be corrupted by noise, contributions from multipath reflections,
and there may not be an LOS path. From this received signal, the mobile attempts to intelligently
determine the delay and deduce the time that it took the signal to travel from the base station to
itself, and thus deduce the distance between the base station and the mobile. This is the basic idea
behind time of flight ranging systems.

In general there are many different ways that real-world time of flight ranging systems are
realized - there are often differences in the architecture or infrastructure that are used for the
system. One type of system uses Wi-Fi packets to do ranging; this type of system is implemented
by Ciurana, et al. in [10], Golden and Bateman [19], and Hoene and William in [21]; it was also
simulated by Llombart, et al. in [26]. In these systems, the base station sends a packet to the mobile
and waits to receive an acknowledgment. It measures the time between when it transmitted its
packet to when it receives the acknowledgment - this time is equal two times the time of flight plus
the processing time at the base station and at the mobile. The processing time can be measured,
and thus an estimate of the time of flight can be obtained. Other systems are similar, but they
may send a custom signal, such as the motes implemented by Lanzisera in [25].

In simulating a time of flight ranging system, there are two main components. The first is the
simulation of the wireless channel. Given relevant parameters like the ones described in the previous
section and an input signal x(t), we need to program a simulator to accurately simulate the channel
and give us reasonable instances of y(t). Our simulator is simply an implementation of the wireless
channel model that we described in the previous section, and thus we will not discuss it further in
this section. The second component is the estimator, which estimates the time of flight τd from y(t).
We now describe how we implemented our estimator. Our goal is not to engineer the best possible
estimator given the model, but rather to simulate the most commonly used estimator so that we
can see how the error is distributed. Although many real-world systems are designed to measure
the round trip time instead of the one-way time of flight in order to get around time synchronization
issues between the base station and the mobile, we will make the simplifying assumption that the
base station and mobile are perfectly synchronized in time. Thus, we only have to simulate the
channel in one direction, from the base station to the mobile, and the estimator at the mobile.
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3.2.1 Overview of Estimator

In Figure 3.5, we see an overview of our estimator. We assume that the base station has transmitted
a single pulse at time 0. Our estimator takes in samples of the received signal, y(t). It then
upsamples these samples in order to improve the time resolution beyond Tsample, as is done in [25].
Since we know that our received signal y(t) is the superposition of copies of the transmitted signal
at different delays, we need some way to try and resolve the delays of the different copies. We do
this by passing these samples through a matched filter, correlating them with a template signal,
which is our transmitted signal x(t). The peaks in the correlated signal correspond to different
copies of the transmitted signal. We are only interested in the magnitude and location in time of
the peaks, so we take the magnitude of the correlated signal. We assume that the earliest copy of
the transmitted signal must be from the line of sight path, and thus we want to find the location
in time of the first peak and treat that as the estimate of the delay. However, since there is noise,
there may be earlier peaks as a result of the noise. Therefore, we instead want to find the location
in time of the first peak above a certain threshold, and use that as the time of flight estimate.

Upsample

Matched Filter

Find first peak 
above a noise 

threshold

TOF estimate

y(0), y(Tsample), y(2Tsample), ...

⎮⋅⎮

Figure 3.5: Overview of our estimator.
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3.2.2 The Matched Filter

We use a matched filter to determine the specific time of arrival - this same approach is used by
Golden and Bateman in [19] and Lanzisera in [25].

Let the samples of the output after upsampling be denoted by y(0), y(T ), y(2T ), . . . , y(nT ).
Define y(kT ) = 0 for k outside of the range 0 to n. Our transmitted signal, x(t) is a causal and
finite duration signal. Let x(0), x(T ), . . . , x(mT ) be the nonzero samples of x(t), with x(kT ) = 0
for k outside the range 0 to m. We can assume that m < n. Then we define the output of the
matched filter to be z(0), z(T ), . . ., where:

z(kT ) =
m∑
j=1

x(jT )y((k + j)T ) (3.11)

The matched filter is best understood through an example. Let x(t) be our transmitted signal;
suppose that in our received signal y(t) we see two copies of x(t) - one that traveled along the LOS
path and arrived in 100 ns and another copy that arrived 400 ns after the first, with half the energy.
A plot of x(t) and y(t) are shown in figure 3.6.
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Figure 3.6: Plot of x(t), our transmitted signal, and y(t), the received signal.

We then run the received signal y(t) through our matched filter. The output of the matched
filter, z(t), is shown in figure 3.7. We can see from this figure that there is a peak at 100 ns and a
peak at 500 ns, which correspond to the arrival times of the two copies of x(t).

3.2.3 Determining the Noise Threshold

The choice of a noise threshold is an important choice - if the noise threshold is too high, then we
run the risk of ignoring peaks that correspond to real copies of the transmitted signal. However,
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Figure 3.7: Plot of z(t), the output of the matched filter.

if the noise threshold is too low, then we run the risk of falsely identifying peaks that are due to
noise as ones that come from copies of the transmitted signal. The choice for the noise threshold is
determined by many things - the transmitted signal (which is in turn dependent on the bandwidth),
the sampling rate (which is also dependent on the bandwidth), the upsampling factor, and the
SNR. Instead of trying to come up with an analytical form for the optimal noise threshold, we
determined a threshold empirically through simulations; we chose our threshold to minimize the
chance of falsely identifying peaks that were the result of noise as from copies of the signal. Thus,
our noise thresholds are quite conservative. For a given bandwidth, upsampling factor, and SNR,
we would run one thousand simulations where no signal was transmitted - thus at the receiver you
would only see noise. We would get samples at the receiver, upsample them, and then run them
through the matched filter and identify the largest peak. We found the largest peak over all one
thousand simulations. In order to have better guarantee that we would not falsely identify peaks,
we multiplied the value of this peak by 1.1 and set that to be our noise threshold.

3.3 Parameter Choices and Design Decisions for our Simulator

In this section we want to summarize the specific parameter choices and design decisions we made
for our simulator.
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3.3.1 General Assumptions

As mentioned above, one assumption that we made was that our base station and mobile are
perfectly synchronized in time. This is generally not the case in real world systems, and it can be
a serious problem since even discrepancies on the order of nanoseconds can substantially affect the
accuracy of our estimates. Many real world systems get around this by measuring the round trip
time it takes for a signal to travel from the base station to the mobile and then back to the base
station instead of the one way time of flight. This gets around the problem of time synchronization
because all of the meaningful time measurements will happening on the same device.

A second assumption we made was that we would always sample exactly at the Nyquist fre-
quency, and we also assumed that all of our filters are ideal. One result of this is that for different
bandwidths the samples will have different resolutions in time. Thus, we always pick the upsam-
pling factor U such that the time between samples after upsampling is 5

9 ∗ 10−10 ≈ 0.556 ns. This
value was chosen because the bandwidth values that we were interested in were 3 MHz, 6 MHz,
and 18 MHz, and we wanted to have nice values for U .

A third assumption we made was that a ranging operation would take at most 10µs - that is, we
assumed that at the mobile we would receive the signal from the base station within 10µs. This is
a reasonable assumption since a delay of 10µs corresponds to a separation distance of 3 kilometers.

3.3.2 Bandwidth

Our choices for the bandwidth values to simulate were based on the spectrum that has been allocated
for location and monitoring services. We chose three different spectrums of bandwidth to look at:
3 MHz of spectrum in the 200 MHz frequency band, 6 MHz of spectrum in the 900 MHz band, and
18 MHz of spectrum in the 900 MHz band.

3.3.3 Effect of Movement

As we discussed previously, when we introduce movement it causes the gains for the different paths
to vary over time. How fast the gains vary is determined by the maximum Doppler shift fd = vfc

c .
However, since we are only looking at 10µs long time intervals, it turns out that the channel gains
remain roughly constant for the values of v and fc that we are interested in. Thus, mobility has no
effect on the simulating of the ranging operation. Therefore, we decide to model the channel gains
as constant over the 10µs interval that a ranging operation takes.

3.3.4 Transmitted Signal

We decided to make the transmitted signal x(t) a shifted and truncated raised cosine - it is a good
choice because the raised cosine is a bandlimited signal that also dies quickly in the time domain.
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The raised cosine g(t) is:

g(t) =
(

sin(πt/T )
πt/T

)(
cos(απt/T )

1− (2αt/T )2

)
(3.12)

It’s frequency response G(f) is:

G(f) =


T |f | ≤ 1−α

2T

T cos2
[
πT
2α

(
|f | − 1−α

2T

)]
1−α
2T ≤ |f | ≤

1+α
2T

0 1+α
2T < |f |

(3.13)

T and α are parameters of the raised cosine; α is called the excess bandwidth parameter and can
take values from 0 to 1. For higher values of α, g(t) dies faster in the time domain while becoming
more spread out in the frequency domain. We want g(t) to die quickly in the time domain so that
we can approximate it as a finite duration signal. Therefore, we choose α = 1, which means that
G(f) is zero outside the range ± 1

T . If we are limited to a bandwidth of W , this means that we
want 1

T = W
2 . So we set T = 2

W . We plot an example of g(t) and G(f) in Figure 3.8 for W = 18
MHz.
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Figure 3.8: Time domain and frequency domain representation of a raised cosine
function with W = 18 MHz.

In practice, we need x(t) to be both finite and causal. Therefore, we have:

x(t) =

{
g(t− T ) 0 ≤ t ≤ 2T
0 otherwise

(3.14)

We plot x(t) for W = 18 MHz in Figure 3.9.
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Figure 3.9: Plot of the transmitted signal, x(t), a shifted and truncated raised cosine
pulse with W = 18 MHz.

3.3.5 RMS Delay Spread

The values for the RMS delay spread are chosen based on some of the experimental results in the
literature. Our goal was to find suitable values for different environments that we were interested in
simulating. However, it turns out that there is a lot of disagreement between different measurement
campaigns for the RMS delay spread, even though they are operating in similar environments. We
have summarized these findings in Table 3.2.

It is clear that there each environment that these values vary over a huge range. Some factors
that contribute to this variance are the actual layout of the environment and the carrier frequency,
fc, because of different absorption properties at different frequencies. To simplify our simulations,
instead of allowing our RMS delay spreads to vary over such a huge range, we decided to pick a
representative value for each environment. For the outdoor urban environment, we decided to use
5µs; for the highway environment we decided to use 1µs; for the indoor environment we decided
to use 0.1µs.
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Environment RMS Delay Spread Notes Reference
Outdoor Urban < 1.4µs In ”big urban” environment [35]

< 1.3µs In ”small urban” environment [35]
> 2µs Happens in half the cases [32]
< 15µs Worst case scenario [32]
< 3µs In ”small urban” environment [39]

0.03− 0.06µs Research park environment [30]
0.1− 0.16µs Research park environment [27]
0.09− 0.38µs [33]

0.22− 6µs 90% of values fall in this range [9]
< 2.7µs Worst case scenario in Hamburg [34]
< 5.4µs Worst case scenario in Stuttgart [34]
< 4.0µs Worst case scenario in Dusseldorf [34]
< 8.3µs Worst case scenario in Frankfurt [34]
< 19.6µs Worst case scenario in Kronberg [34]

Highway < 0.45µs [8]
< 0.5µs [31]
< 1.8µs High traffic [35]
< 1.2µs Low traffic [35]

Indoor 0.01− 0.1µs [29]
0.02− 0.04µs [20]
0.03− 0.13µs [16]
< 0.05µs [2]
< 0.1µs [4]
< 0.1µs [5]
< 0.1µs [6]
< 0.05µs [17]

Table 3.2: Summary of RMS delay spread values reported in the literature.
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3.3.6 Rician κ-factor

We wanted to consider several different scenarios in our simulations - a scenario when the LOS
path is strong, a scenario when the LOS path is weak, and a scenario when there is no LOS path.
Davis and Linnartz did work on measuring the strength of the LOS path in [15] - they reported
that the Rician κ-factor typically fell in the range from 5 to 11. Thus, we set κ = 10 in our strong
LOS scenario and set κ = 5 in our weak LOS scenario.

3.3.7 SNR

We decide to look at several different values for the SNR, which we define as the ratio of the power
in the gain of one of the reflected paths to the noise. Recall that we are modeling the gain of each
reflected path as a CN(0, 1) random variable. Thus, we model the noise n(t) as a CN(0, 1/SNR)
random variable.

The values of SNR that we simulate are 0, 3, 5, 10, 15, and 20 dB. However, we are primarily
interested in the large SNR regime. Much of the literature on measuring RMS delay spread reports
high SNR values, and the power of thermal noise is assumed to be quite low. The typical practice
to distinguish between multipath and noise in the literature is to pick some threshold and then
consider everything below this threshold noise and everything above this threshold multipath.
These thresholds are usually in reference to the power of the strongest path. For example, Sen and
Matolak in [35] pick a threshold of 25 dB below the strongest path. Paier, et al. in [31] pick a
threshold of 60 dB below the strongest path. Cheng, et al. in [8] pick a threshold of 15 dB below
the strongest path. These are large thresholds, and thus we considered it appropriate to focus on
the large values of SNR in our analysis.

3.3.8 Summary

We end this chapter by summarizing our parameter choices as well as their effect on the other
parameters of our channel model. Recall that our model for the wireless channel is:

y(t) = ax(t− τd) +
M∑
i=1

bix(t− τd − τi) + n(t) (3.15)

Note that we no longer have the channel gains varying over time as per our discussion above.
Thus, we no longer need to worry about the effect of the mobile velocity v or the carrier frequency
fc on our model. Therefore, we simply model each of the reflected path gains as:

bi ∼ CN(0, 1) (3.16)

In the event that there is a LOS path, we model the gain as:

a =
√
κeiθ + CN(0, 1) (3.17)



28 Chapter 3.

The Rician factor κ is either 10 or 5, depending on whether we are considering a scenario where
the LOS path is strong or weak.

We look at 6 different values for the SNR: 0, 3, 5, 10, 15, and 20 dB. The effect of the SNR on
our simulation is that they determine the power of the noise. Our noise n(t) ∼ CN(0, 1/SNR).

We look at three different values for the bandwidth, W : 3, 6, and 18 MHz. We look at three
different values for the RMS delay spread, τRMS , that correspond to our three different environments
of interest: 5µs (outdoor), 1µs (highway), and 0.1µs (indoor). These two parameters together
determine the rest of our model parameters. Their effect is summarized in tables 3.3 and 3.4.

W Tsample U

3 MHz ≈ 0.056µs 600
6 MHz ≈ 0.167µs 300
18 MHz ≈ 0.333µs 100

Table 3.3: Values of sampling interval Tsample and upsampling factor U for our
possible choices of bandwidth W .

3 MHz 6 MHz 18 MHz
5µs (outdoor) 15 30 90
1µs (highway) 3 6 18
0.1µs (indoor) 1 1 2

Table 3.4: Number of reflected paths M for our possible choices of bandwidth W and
RMS delay spread τRMS .
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Simulation Results

In this chapter, we look at the results from our simulations. We begin by describing how we
collected data from our simulator. We then look at several tools that were useful for fitting the
collected data to different models. Next, we take a look at the actual data and we fit those different
sets of data to models and evaluate how good the fits are. Finally, we end with a discussion where
we summarize our findings on what models are actually useful models for the actual data.

4.1 Data Collection

We implemented all of our simulations in MATLAB. The model for the wireless channel and the
estimator were implemented as we described in chapter 3. We set the mobile and the base station
to be 500 meters apart. There were several parameters that we varied: the scenario (whether or not
we had a LOS path and the strength of that LOS path), the RMS delay spread (the environment),
the bandwidth, and the SNR. We considered three different scenarios (a strong LOS scenario, a
weak LOS scenario, and an NLOS scenario), three different values for the RMS delay spread (0.1,
1, and 5 µs), three different values for the bandwidth (3, 6, and 18 MHz), and six different values
for the SNR (0, 3, 5, 10, 15, and 20 dB). This amounts to 162 different possible combinations of
parameters. For each of these combinations of parameters, we first calculated the noise threshold.
Then, we simulated 1000 ranging operations and recorded the time of the first peak above the
noise threshold. In the event that there was no peak above the noise threshold, we recorded that
the ranging operation failed on that attempt. This happens more often at lower SNR - this result
makes sense because it is more likely for the actual signal to get lost in the noise at low SNR.

After recording all of the times, we multiplied them by the speed of light and subtracted off
the true distance between the mobile and base station (500 meters) to yield measurements of the
error between the measurements and the true distance. Recalling the language of chapter 2, d is
our true distance, d̂ is our distance estimate, and e is the estimation error. They have the following
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relationship:
e = d̂− d (4.1)

We want a model for the estimation error, e.

4.2 Tools for Model Fitting

There were two types of tools that we needed for model fitting - we needed tools to find the best
fits for the theoretical models to the data and we needed tools to evaluate how good these fits were.
For fitting the models, we used maximum likelihood estimation to estimate the parameters of the
different models. For evaluating the models, we used two tools: we used QQ-plots to give us a way
to visually evaluate how good the models were, and we used K-L divergence as a metric of how far
the theoretical model deviated from the data as a way to compare different models.

4.2.1 Different Models and MLE Fitting

We looked at nine different theoretical distributions to model the error measurements: normal,
exponential, Rayleigh, gamma, Cauchy, skewed normal, exponential power, Weibull, and the Stu-
dent’s t. Of these nine distributions, four of them cannot take on negative values - the exponential,
Rayleigh, gamma, and Weibull. However, some of our error measurements are negative, so in order
to accommodate for this we added an extra location parameter to each of these distributions to
indicate how much the distribution needed to be shifted.

Each of these distributions is a parametric distribution. We used maximum-likelihood estima-
tion to find the parameters that result in the best fit for the data. Suppose e is the vector of our
errors, and θ is some set of parameters for our theoretical distribution. Let p(e|θ) be the PDF
of our theoretical distribution with parameters θ. Then the maximum-likelihood estimate for the
parameters is:

θMLE = arg max
θ
p(e | θ) (4.2)

There are some built in functions in MATLAB that do maximum-likelihood estimation of param-
eters for certain distributions, like normfit. For the rest of the distributions, we use the built-in
function mle.
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Normal Distribution

The normal distribution has two parameters: a location parameter µ and a scale parameter σ > 0.
It’s PDF is:

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (4.3)

A plot of the PDF of the normal random variable for different parameters is in Figure 4.1
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Figure 4.1: Plot of the PDF of a normal random variable for various parameters.
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Exponential Distribution

The exponential distribution normally has one parameter, a scale parameter λ > 0. We add an
additional parameter, a location parameter x0 that indicates how far left along the x-axis we need
to shift it. It’s PDF is:

f(x) = λe−λ(x+x0) (4.4)

A plot of the PDF of the exponential random variable for different parameters is in Figure 4.2
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Figure 4.2: Plot of the PDF of a exponential random variable for various parameters.
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Rayleigh Distribution

The Rayleigh distribution normally has one parameter, a scale parameter σ > 0. We add an
additional parameter, a location parameter x0 that indicates how far left along the x-axis we need
to shift it. It’s PDF is:

f(x) =
x+ x0

σ2
e−

(x+x0)2

2σ2 (4.5)

A plot of the PDF of the Rayleigh random variable for different parameters is in Figure 4.3
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Figure 4.3: Plot of the PDF of a Rayleigh random variable for various parameters.
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Gamma Distribution

The gamma distribution normally has two parameters, a shape parameter k > 0 and a scale
parameter θ > 0. We add an additional parameter, a location parameter x0 that indicates how far
left along the x-axis we need to shift it. It’s PDF is:

f(x) = (x+ x0)k−1 e
−(x+x0)/θ

Γ(k)θk
(4.6)

where Γ(x) is the gamma function. If k is an integer, then it coincides with the distribution of a
sum of k i.i.d./ exponential random variables. A plot of the PDF of the gamma random variable
for different parameters is in Figure 4.4
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Figure 4.4: Plot of the PDF of a gamma random variable for various parameters.
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Cauchy Distribution

The Cauchy distribution has two parameters: a location parameter x0 and a scale parameter γ > 0.
It’s PDF is:

f(x) =
1

πγ

[
1 +

(
x−x0
γ

)2
] (4.7)

It has heavier tails than the normal distribution. A plot of the PDF of the Cauchy random variable
for different parameters is in Figure 4.5
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Figure 4.5: Plot of the PDF of a Cauchy random variable for various parameters.
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Skewed Normal Distribution

The skewed normal distribution has three parameters: a location parameter ε, a scale parameter
ω > 0, and a shape parameter α. It’s PDF is:

f(x) =
(

2
ω

)
φ

(
x− ε
ω

)
Φ
(
α

(
x− ε
ω

))
(4.8)

where φ(x) is the PDF of the standard normal random variable and Φ(x) is the CDF of the standard
normal random variable. The distribution is left skewed when α < 0 and right skewed when α > 0.
A plot of the PDF of the skewed normal random variable for different parameters is in Figure 4.6
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Figure 4.6: Plot of the PDF of a skewed normal random variable for various parameters.
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Exponential Power Distribution

The exponential power distribution has three parameters: a location parameter µ, a scale parameter
α > 0, and a shape parameter β > 0. It’s PDF is:

β

2αΓ(1/β)
e−(|x−µ|/α)β (4.9)

where Γ(x) is the gamma function. The exponential power distribution is a part of the generalized
family of normal distributions with its extra shape parameter. When β = 2 it coincides with a
normal distribution and when β = 1 it coincides with a Laplace distribution. As βapproaches∞, it
approaches the uniform distribution. A plot of the PDF of the exponential power random variable
for different parameters is in Figure 4.7
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Figure 4.7: Plot of the PDF of a exponential power random variable for various parameters.
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Weibull Distribution

The Weibull distribution normally has two parameters: a shape parameter k > 0 and a scale
parameter λ > 0. We add an additional parameter, a location parameter x0 that indicates how far
left along the x-axis we need to shift it. It’s PDF is:

f(x) =

{
k
λ

(
x+x0
λ

)k−1
e−((x+x0)/λ)k x+ x0 ≥ 0

0 x+ x0 < 0
(4.10)

When k = 1, it coincides with an exponential distribution, and when k = 2 it coincides with a
Rayleigh distribution. A plot of the PDF of the Weibull random variable for different parameters
is in Figure 4.8
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Figure 4.8: Plot of the PDF of a Weibull random variable for various parameters.
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Student’s t-distribution

The Student’s t-distribution has three parameters: a location parameter µ, a scale parameter σ > 0,
and a degree of freedoms parameter ν > 0. It’s PDF is:

f(x) =
Γ
(
ν+1
2

)
σ
√
νπΓ

(
ν
2

) [ν +
(x−µ

σ

)2
ν

]−( ν+1
2 )

(4.11)

where Γ(x) is the Gamma function. The Student’s t-distribution is often often used in statistics to
model data that is more prone to outliers as it has heavier tails than the normal distribution. When
ν = 1, it coincides with a Cauchy distribution. As ν approaches ∞, the Student’s t-distribution
approaches a normal distribution. A plot of the PDF of the Student’s t-random variable for different
parameters is in Figure 4.9
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Figure 4.9: Plot of the PDF of a Student’s t-random variable for various parameters.
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4.2.2 QQ-Plots

A QQ-plot is a graphical method for comparing two probability distributions with each other. It
plots the quantiles of one distribution versus the quantiles of the other distribution. If the points
of the QQ-plot lie on the line x = y, then it is likely that these two distributions are the same
distribution. If the points lie on a line, but not on the line x = y, then it is likely that the two
distributions are similar, but they differ by a scale or location factor.

We use the built in function qqplot(X,Y) in MATLAB. This function takes in two data sets,
X and Y , and plots the quantiles of X versus the quantiles of Y . Since we are interested in
comparing the actual data to some theoretical distribution, we set X to be a vector of our actual
error measurements, and we set Y to be a large number of samples from our theoretical distribution.

The usage of a QQ-plot is best illustrated through an example. Suppose that we have three
data sets. X and Y are both collections of 1000 samples of a standard normal random variable. Z
is a collection of 1000 samples of an exponential random variable with location parameter 0 and
scale parameter 2. To make the plots easy to read, we have chosen to plot every fifth percentile. In
Figure 4.10 we have the QQ-plot of X versus Y . Every blue point corresponds to a fifth percentile
of X and Y . The red line is the line that is the best fit for the blue points, and the black line is
the line y = x.
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Figure 4.10: QQ-plot of X versus Y.

We start our interpretation by looking at the blue points. We see that the leftmost blue point
has an x-value of −1.6 and a y-value of −1.7. This means that 5% of the values in X are in the
interval (−∞,−1.6], and 5% of the values in Y are in the interval (−∞,−1.7]. The second blue
point has an x-value of −1.2 and a y-value of −1.3. This means that 5% of the values in X are
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in the interval (−1.6,−1.2], and 5% of the values in Y are in the interval (−1.7,−1.3], and so on.
However, it is more useful to look at the red and black lines. We see that the blue points do appear
to follow the red line well, and that the red line is very close to the black line. This means that X
and Y were likely drawn from the same distribution, which is what we would expect.

In Figure 4.11 we have the QQ-plot of X versus Z. In this plot, we see that the blue points do
not follow the red line very well. On top of that the red line is not very close to the black line. This
means that X and Z were likely not drawn from the same distribution, which is what we would
expect.
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Figure 4.11: QQ-plot of X versus Z.

4.2.3 K-L Divergence

We used Kulback-Leibler divergence as a metric for determining which of our fitted distributions
are the better fits to the actual data. Given two probability mass functions, p(x) and q(x), the K-L
divergence is defined as:

D(p||q) =
∑
x

p(x) log
p(x)
q(x)

(4.12)

We use the convention that 0 log 0
q = 0, for all q, and that p log p

0 = ∞ for p 6= 0. The K-L
divergence is not a true distance because it is not symmetric. However, it is useful as a tool to
compare how similar two distributions are.
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Suppose that p(x) is the actual distribution that our data is drawn from, and let q1(x) and q2(x)
be two possible fits to the actual data. We say that if D(p||q1) < D(p||q2), then q1 is probably a
better fit to the actual data than q2.

There are several issues that we need to work through. The first issue is that we do not have
the actual distribution p(x) - although, we do have the data. The second issue is that this equation
for the K-L divergence is for discrete data, whereas in general we would expect the data to be
continuous. There is a form of the K-L divergence for continuous distributions that replaces the
summation with integrals. However, instead of choosing this route (which would require us to
estimation the density of p(x) from the observed data), we decided to stick to the formula for the
K-L divergence for discrete data. We do this through binning.

4.3 Looking at the Data

In Figures 4.12 - 4.20 we plotted the empirical CDF of the error for all successful ranging operations.
Each figure focuses on a single scenario (LOS, weak LOS, or NLOS) in a single environment
(outdoor, highway, or indoor) and compares the effect of SNR and bandwidth on the distribution
of the error. The accompanying tables in Tables 4.1 - 4.9 also focus on a single scenario in a single
environment and gives a summary of the number of failed ranging operations for different values
of SNR and bandwidth.

On the whole, the data behaves as we would expect it to behave. Lower SNR causes the
magnitude of the ranging error to increase, and it also results in a greater number of failed ranging
operations. The error gets worse from the LOS to the weak LOS scenario, and it gets worse
still when we go to the NLOS scenario. Decreased RMS delay spread also decreases the error,
which makes sense because the interval of time in which we can see strong reflections is decreased.
However, decreased RMS delay spread also increases the chances that we will miss the signal
entirely, and thus it also results in a greater number of failed ranging operations.

The only discrepancy between what we see and what we expect is with regards to bandwidth.
We would expect greater error as bandwidth decreases - however, the plots seem to say that the
the error gets worse as bandwidth increases, especially at low SNR and in the LOS and weak LOS
scenarios. However, this discrepancy can be explained by noting that at lower bandwidth there is a
better chance for ranging operations to fail. A large proportion of the failed ranging operations are
likely cases when the LOS path was weak and we would have likely characterized a reflection as the
LOS signal, thus resulting in a large error. When the bandwidth is large, we were able to detect
this reflection; however, when the bandwidth is small, we missed it and ended up characterizing
the ranging operation as a failure. Thus, it appears that decreased bandwidth results in less error,
when it is not actually the case.



4.3. Looking at the Data 43

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

meters

W = 3 MHz

 

 

0 dB
3 dB
5 dB
10 dB
15 dB
20 dB

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

meters

W = 6 MHz

 

 

0 dB
3 dB
5 dB
10 dB
15 dB
20 dB

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

meters

W = 18 MHz

 

 

0 dB
3 dB
5 dB
10 dB
15 dB
20 dB

Figure 4.12: Comparison of the empirical CDF of the error of all successful ranging
operations under the LOS scenario and in the outdoor environment for different values

of SNR and bandwidth.

3 MHz 6 MHz 18 MHz
0 dB 506 499 67
3 dB 99 83 1
5 dB 12 0 0
10 dB 0 0 0
15 dB 0 0 0
20 dB 0 0 0

Table 4.1: Number of failed ranging operations out of 1000 under the LOS scenario
and in the outdoor environment for different values of SNR and bandwidth.
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Figure 4.13: Comparison of the empirical CDF of the error of all successful ranging
operations under the weak LOS scenario and in the outdoor environment for different

values of SNR and bandwidth.

3 MHz 6 MHz 18 MHz
0 dB 737 668 88
3 dB 229 149 2
5 dB 43 0 0
10 dB 3 0 0
15 dB 0 0 0
20 dB 0 0 0

Table 4.2: Number of failed ranging operations out of 1000 under the weak LOS
scenario and in the outdoor environment for different values of SNR and bandwidth.
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Figure 4.14: Comparison of the empirical CDF of the error of all successful ranging
operations under the NLOS scenario and in the outdoor environment for different

values of SNR and bandwidth.

3 MHz 6 MHz 18 MHz
0 dB 833 806 158
3 dB 451 285 9
5 dB 171 7 0
10 dB 12 0 0
15 dB 0 0 0
20 dB 0 0 0

Table 4.3: Number of failed ranging operations out of 1000 under the NLOS scenario
and in the outdoor environment for different values of SNR and bandwidth.



46 Chapter 4.

−100 0 100 200 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

meters

W = 3 MHz

 

 

0 dB
3 dB
5 dB
10 dB
15 dB
20 dB

−100 0 100 200 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

meters

W = 6 MHz

 

 

0 dB
3 dB
5 dB
10 dB
15 dB
20 dB

−100 0 100 200 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

meters

W = 18 MHz

 

 

0 dB
3 dB
5 dB
10 dB
15 dB
20 dB

Figure 4.15: Comparison of the empirical CDF of the error of all successful ranging
operations under the LOS scenario and in the highway environment for different values

of SNR and bandwidth.

3 MHz 6 MHz 18 MHz
0 dB 380 673 528
3 dB 103 179 47
5 dB 129 24 30
10 dB 2 1 1
15 dB 0 0 0
20 dB 0 0 0

Table 4.4: Number of failed ranging operations out of 1000 under the LOS scenario
and in the highway environment for different values of SNR and bandwidth.
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Figure 4.16: Comparison of the empirical CDF of the error of all successful ranging
operations under the weak LOS scenario and in the highway environment for different

values of SNR and bandwidth.

3 MHz 6 MHz 18 MHz
0 dB 668 884 743
3 dB 366 480 96
5 dB 351 168 68
10 dB 29 11 0
15 dB 1 0 0
20 dB 1 0 0

Table 4.5: Number of failed ranging operations out of 1000 under the weak LOS
scenario and in the highway environment for different values of SNR and bandwidth.
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Figure 4.17: Comparison of the empirical CDF of the error of all successful ranging
operations under the NLOS scenario and in the highway environment for different

values of SNR and bandwidth.

3 MHz 6 MHz 18 MHz
0 dB 962 971 862
3 dB 835 827 242
5 dB 837 457 216
10 dB 284 90 1
15 dB 72 4 0
20 dB 14 0 0

Table 4.6: Number of failed ranging operations out of 1000 under the NLOS scenario
and in the highway environment for different values of SNR and bandwidth.
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Figure 4.18: Comparison of the empirical CDF of the error of all successful ranging
operations under the LOS scenario and in the indoor environment for different values of

SNR and bandwidth.

3 MHz 6 MHz 18 MHz
0 dB 674 546 526
3 dB 204 177 146
5 dB 66 99 62
10 dB 10 15 8
15 dB 2 3 0
20 dB 0 0 0

Table 4.7: Number of failed ranging operations out of 1000 under the LOS scenario
and in the indoor environment for different values of SNR and bandwidth.
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Figure 4.19: Comparison of the empirical CDF of the error of all successful ranging
operations under the weak LOS scenario and in the indoor environment for different

values of SNR and bandwidth.

3 MHz 6 MHz 18 MHz
0 dB 899 820 796
3 dB 509 444 387
5 dB 295 303 260
10 dB 68 78 39
15 dB 20 11 4
20 dB 8 2 1

Table 4.8: Number of failed ranging operations out of 1000 under the weak LOS
scenario and in the indoor environment for different values of SNR and bandwidth.
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Figure 4.20: Comparison of the empirical CDF of the error of all successful ranging
operations under the NLOS scenario and in the indoor environment for different values

of SNR and bandwidth.

3 MHz 6 MHz 18 MHz
0 dB 1000 1000 991
3 dB 985 989 899
5 dB 931 964 803
10 dB 688 754 476
15 dB 338 272 132
20 dB 115 132 60

Table 4.9: Number of failed ranging operations out of 1000 under the NLOS scenario
and in the indoor environment for different values of SNR and bandwidth.
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4.4 Model Fitting

In Figures 4.21 - 4.38 we have plotted nine different sets of data, the PDF of the fitted distributions,
and QQ-plots to help evaluate which distributions are the best fit. Each figure focuses on a single
scenario in a single environment, and we choose to look at the data that is associated with an
SNR of 20 dB and a bandwidth of 18 MHz. There PDF plots look at a histogram of the errors
and overlays a plot of the PDF of the best fit for each of our nine distributions. In the QQ-plots
we look at every five percentiles. So, for example, the x-value of the leftmost point on each QQ-
plot corresponds to the 5th percentile of the actual data while the y-value of the leftmost point
corresponds to the 5th percentile of the fitted distribution. The second point corresponds to the
10th percentile, and so on. We also plot the line that is the best fit to the points in red, and the
line y = x in black.

The accompanying tables in Tables 4.10 - 4.18 also focus on a single scenario in a single envi-
ronment. In these tables, we give the KL-divergence between the actual data and the fitted model
for all nine candidate distributions. For each distribution, we consider 9 sets of data: we have three
choices for the bandwidth and we decide to restrict ourselves to three choices for the SNR - 10, 15,
and 20 dB. We decided to restrict ourselves to the three highest values for the SNR in light of our
discussion in Chapter 3, and also because at lower SNR there are a lot fewer points to fit a model
to because there are more failed ranging operations. For each set of data, we fit the distribution to
it and record the KL-divergence between the data and the fitted distribution.

By looking at the QQ-plots, we get a good idea for what distributions would be good fits for
different scenarios and environments. In the QQ-plots, we look for points that follow the line y = x.
In many of the plots we see that the points follow a line, but it is not y = x, which tells us that the
theoretical distribution is either more spread out or less spread out than the actual data. It is the
distributions where the QQ-plots follow the line y = x that we can consider as good fit. We see that
in the LOS and weak LOS scenarios that the Cauchy, the exponential power, and the Student’s
t-distribution tend to provide good fits. In the NLOS scenario, we see that the normal, gamma,
skew normal, exponential power, Weibull, and the Student’s t-distribution tend to provide good
fits. In addition to these, we see that the Rayleigh distribution also provides a good fit in the NLOS
scenario in the outdoor and highway environments. However, when there are errors that are much
smaller than the bulk of errors, as in the NLOS scenario in the indoor environment, it provides a
much poorer fit since the bulk of the density in our shifted Rayleigh distribution is concentrated
around the smallest value.

We get a similar picture by looking at the table of KL-divergence values. For the LOS and weak
LOS scenarios, we see that the exponential power and Student’s t-distributions are good choices
in every environment. The Cauchy distribution is also a good choice in the outdoor and highway
environment, but we see that in the indoor environment it is actually worse than the normal,
gamma, skew normal, and Weibull distributions. For the NLOS scenario in the outdoor and
highway environments, we see that the Rayleigh, gamma, skew normal, and Weibull distributions
are good fits. For the NLOS scenario in the indoor environment, we see that the normal, gamma,
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skew normal, exponential power, Weibull, and Student’s t-distributions are good fits.
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Normal Exponential Rayleigh
3 MHz, 10 dB 0.8909 1.3249 0.7336
3 MHz, 15 dB 0.1924 1.2002 0.4438
3 MHz, 20 dB 0.4224 1.5552 0.7376
6 MHz, 10 dB 0.7464 0.5528 0.5682
6 MHz, 15 dB 0.3151 1.7145 0.8500
6 MHz, 20 dB 0.4950 1.4322 0.6703
18 MHz, 10 dB 1.2225 0.7981 0.9302
18 MHz, 15 dB 0.5271 1.4531 0.6851
18 MHz, 20 dB 0.4044 1.2923 0.5477
Mean 0.5796 1.2582 0.6852

Gamma Cauchy Skew Normal
3 MHz, 10 dB 0.3480 0.0876 0.5329
3 MHz, 15 dB 0.1375 0.1262 0.1337
3 MHz, 20 dB 0.2350 0.1193 0.2489
6 MHz, 10 dB 0.2438 0.0121 0.5113
6 MHz, 15 dB 0.1973 0.1294 0.1929
6 MHz, 20 dB 0.2865 0.0988 0.3212
18 MHz, 10 dB 0.4181 0.0289 0.7849
18 MHz, 15 dB 0.2736 0.0896 0.3141
18 MHz, 20 dB 0.2202 0.1083 0.2408
Mean 0.2622 0.0889 0.3645

Exponential Power Weibull Student’s t
3 MHz, 10 dB 0.0856 0.7334 0.0345
3 MHz, 15 dB 0.0399 0.2409 0.0280
3 MHz, 20 dB 0.0681 0.5157 0.0474
6 MHz, 10 dB 0.0408 0.3900 0.0173
6 MHz, 15 dB 0.0587 0.4639 0.0363
6 MHz, 20 dB 0.0596 0.5438 0.0343
18 MHz, 10 dB 0.0667 0.6323 0.0289
18 MHz, 15 dB 0.0551 0.5745 0.0312
18 MHz, 20 dB 0.0599 0.4263 0.0475
Mean 0.0594 0.5023 0.0339

Table 4.10: Table of KL-divergence values between the error of all successful ranging
operations under the LOS scenario and in the outdoor environment and the fitted

distributions for nine different types of distributions for different values of SNR and
bandwidth.
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Normal Exponential Rayleigh
3 MHz, 10 dB 1.5354 0.8404 1.2423
3 MHz, 15 dB 0.7773 1.0934 0.5756
3 MHz, 20 dB 0.5645 0.8141 0.3754
6 MHz, 10 dB 1.2631 0.6723 1.0140
6 MHz, 15 dB 0.7678 1.0532 0.5637
6 MHz, 20 dB 0.5115 1.2871 0.5777
18 MHz, 10 dB 0.6839 0.1521 0.7937
18 MHz, 15 dB 0.6819 1.1197 0.5473
18 MHz, 20 dB 0.6445 1.1225 0.5396
Mean 0.8255 0.9061 0.6921

Gamma Cauchy Skew Normal
3 MHz, 10 dB 0.7073 0.1421 0.9851
3 MHz, 15 dB 0.3170 0.1057 0.3824
3 MHz, 20 dB 0.2142 0.1027 0.2832
6 MHz, 10 dB 0.5432 0.1075 0.8191
6 MHz, 15 dB 0.3469 0.1144 0.3913
6 MHz, 20 dB 0.2687 0.1163 0.2788
18 MHz, 10 dB 0.3887 0.0550 0.9041
18 MHz, 15 dB 0.3180 0.1210 0.3493
18 MHz, 20 dB 0.3376 0.1169 0.3544
Mean 0.3824 0.1091 0.5275

Exponential Power Weibull Student’s t
3 MHz, 10 dB 0.2180 0.7979 0.1392
3 MHz, 15 dB 0.1137 0.5755 0.0879
3 MHz, 20 dB 0.0981 0.3715 0.0559
6 MHz, 10 dB 0.1273 0.6229 0.1125
6 MHz, 15 dB 0.1228 0.5631 0.0988
6 MHz, 20 dB 0.0952 0.4915 0.0694
18 MHz, 10 dB 0.0682 0.2712 0.0626
18 MHz, 15 dB 0.1164 0.5386 0.0896
18 MHz, 20 dB 0.1132 0.5290 0.0984
Mean 0.1192 0.5290 0.0905

Table 4.11: Table of KL-divergence values between the error of all successful ranging
operations under the weak LOS scenario and in the outdoor environment and the fitted

distributions for nine different types of distributions for different values of SNR and
bandwidth.
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Normal Exponential Rayleigh
3 MHz, 10 dB 0.2499 0.1509 0.1190
3 MHz, 15 dB 0.2755 0.2494 0.1272
3 MHz, 20 dB 0.1928 0.3742 0.0685
6 MHz, 10 dB 0.2484 0.0844 0.1370
6 MHz, 15 dB 0.2053 0.3621 0.0705
6 MHz, 20 dB 0.2461 0.3261 0.0954
18 MHz, 10 dB 0.2888 0.0614 0.1884
18 MHz, 15 dB 0.2810 0.2684 0.1165
18 MHz, 20 dB 0.2476 0.3898 0.0917
Mean 0.2484 0.2518 0.1127

Gamma Cauchy Skew Normal
3 MHz, 10 dB 0.0343 0.3929 0.0231
3 MHz, 15 dB 0.0414 0.3658 0.0416
3 MHz, 20 dB 0.0289 0.2931 0.0333
6 MHz, 10 dB 0.0151 0.2240 0.0491
6 MHz, 15 dB 0.0240 0.3304 0.0263
6 MHz, 20 dB 0.0343 0.3421 0.0352
18 MHz, 10 dB 0.0300 0.1946 0.0969
18 MHz, 15 dB 0.0259 0.3278 0.0331
18 MHz, 20 dB 0.0320 0.3437 0.0237
Mean 0.0295 0.3127 0.0402

Exponential Power Weibull Student’s t
3 MHz, 10 dB 0.2450 0.0389 0.2360
3 MHz, 15 dB 0.2439 0.0644 0.2202
3 MHz, 20 dB 0.1616 0.0569 0.1423
6 MHz, 10 dB 0.1647 0.0240 0.1547
6 MHz, 15 dB 0.1875 0.0539 0.1648
6 MHz, 20 dB 0.2132 0.0661 0.1895
18 MHz, 10 dB 0.1500 0.0366 0.1539
18 MHz, 15 dB 0.2252 0.0577 0.2023
18 MHz, 20 dB 0.2188 0.0743 0.1993
Mean 0.2011 0.0525 0.1848

Table 4.12: Table of KL-divergence values between the error of all successful ranging
operations under the NLOS scenario and in the outdoor environment and the fitted
distributions for nine different types of distributions for different values of SNR and

bandwidth.
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Normal Exponential Rayleigh
3 MHz, 10 dB 0.2797 1.2928 0.5122
3 MHz, 15 dB 0.3882 1.1134 0.4336
3 MHz, 20 dB 0.2379 1.1753 0.4224
6 MHz, 10 dB 0.5948 1.1771 0.5397
6 MHz, 15 dB 0.3481 1.4584 0.6523
6 MHz, 20 dB 0.3501 1.2372 0.5002
18 MHz, 10 dB 1.5821 1.1855 1.2044
18 MHz, 15 dB 0.4523 1.3453 0.6015
18 MHz, 20 dB 0.5910 1.7196 0.8979
Mean 0.5360 1.3005 0.6405

Gamma Cauchy Skew Normal
3 MHz, 10 dB 0.1285 0.1607 0.1474
3 MHz, 15 dB 0.1931 0.1262 0.2217
3 MHz, 20 dB 0.1055 0.1568 0.1174
6 MHz, 10 dB 0.2630 0.1092 0.3537
6 MHz, 15 dB 0.2073 0.1095 0.2092
6 MHz, 20 dB 0.1957 0.1076 0.2112
18 MHz, 10 dB 0.5890 0.0686 1.0154
18 MHz, 15 dB 0.2475 0.1038 0.2657
18 MHz, 20 dB 0.3329 0.0927 0.3597
Mean 0.2514 0.1150 0.3224

Exponential Power Weibull Student’s t
3 MHz, 10 dB 0.0664 0.3352 0.0365
3 MHz, 15 dB 0.0791 0.3706 0.0366
3 MHz, 20 dB 0.0618 0.2688 0.0371
6 MHz, 10 dB 0.0716 0.5229 0.0302
6 MHz, 15 dB 0.0518 0.4378 0.0388
6 MHz, 20 dB 0.0507 0.3766 0.0294
18 MHz, 10 dB 0.1194 0.9411 0.0488
18 MHz, 15 dB 0.0683 0.4765 0.0459
18 MHz, 20 dB 0.0609 0.7024 0.0339
Mean 0.0700 0.4924 0.0375

Table 4.13: Table of KL-divergence values between the error of all successful ranging
operations under the LOS scenario and in the highway environment and the fitted

distributions for nine different types of distributions for different values of SNR and
bandwidth.
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Normal Exponential Rayleigh
3 MHz, 10 dB 0.5422 0.6780 0.3394
3 MHz, 15 dB 0.3154 0.9349 0.3113
3 MHz, 20 dB 0.2520 1.1947 0.4421
6 MHz, 10 dB 0.7950 0.7080 0.5139
6 MHz, 15 dB 0.5209 0.8264 0.3535
6 MHz, 20 dB 0.4900 1.1924 0.5126
18 MHz, 10 dB 1.1166 0.5424 0.9379
18 MHz, 15 dB 0.9574 0.7260 0.6768
18 MHz, 20 dB 0.5902 1.3125 0.6181
Mean 0.6200 0.9017 0.5228

Gamma Cauchy Skew Normal
3 MHz, 10 dB 0.2002 0.1722 0.2432
3 MHz, 15 dB 0.1366 0.1601 0.1524
3 MHz, 20 dB 0.1398 0.1308 0.1352
6 MHz, 10 dB 0.2801 0.1376 0.3756
6 MHz, 15 dB 0.2144 0.1324 0.2545
6 MHz, 20 dB 0.2572 0.0938 0.4900
18 MHz, 10 dB 0.4791 0.0591 0.8188
18 MHz, 15 dB 0.3502 0.0642 0.5169
18 MHz, 20 dB 0.3148 0.1118 0.3234
Mean 0.2636 0.1180 0.3678

Exponential Power Weibull Student’s t
3 MHz, 10 dB 0.1659 0.3213 0.1309
3 MHz, 15 dB 0.1054 0.2678 0.0691
3 MHz, 20 dB 0.0599 0.2749 0.0493
6 MHz, 10 dB 0.1596 0.4313 0.1165
6 MHz, 15 dB 0.1234 0.3532 0.0864
6 MHz, 20 dB 0.0721 0.4562 0.0419
18 MHz, 10 dB 0.0952 0.5278 0.0729
18 MHz, 15 dB 0.1064 0.5152 0.0665
18 MHz, 20 dB 0.0961 0.5503 0.0809
Mean 0.1093 0.4109 0.0794

Table 4.14: Table of KL-divergence values between the error of all successful ranging
operations under the weak LOS scenario and in the highway environment and the fitted

distributions for nine different types of distributions for different values of SNR and
bandwidth.
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Normal Exponential Rayleigh
3 MHz, 10 dB 0.0865 0.5573 0.0831
3 MHz, 15 dB 0.0991 0.5904 0.0952
3 MHz, 20 dB 0.0779 0.6910 0.1128
6 MHz, 10 dB 0.1684 0.3610 0.0742
6 MHz, 15 dB 0.1629 0.3644 0.0458
6 MHz, 20 dB 0.1322 0.3722 0.0355
18 MHz, 10 dB 0.2736 0.1240 0.1461
18 MHz, 15 dB 0.2530 0.2068 0.1056
18 MHz, 20 dB 0.1749 0.3172 0.0513
Mean 0.1587 0.3983 0.0833

Gamma Cauchy Skew Normal
3 MHz, 10 dB 0.0826 0.4433 0.0859
3 MHz, 15 dB 0.0940 0.4498 0.0985
3 MHz, 20 dB 0.0764 0.4450 0.0779
6 MHz, 10 dB 0.0763 0.4562 0.0586
6 MHz, 15 dB 0.0294 0.3817 0.0171
6 MHz, 20 dB 0.0270 0.3251 0.0205
18 MHz, 10 dB 0.0284 0.2604 0.0546
18 MHz, 15 dB 0.0228 0.3208 0.0287
18 MHz, 20 dB 0.0191 0.3316 0.0126
Mean 0.0506 0.3793 0.0505

Exponential Power Weibull Student’s t
3 MHz, 10 dB 0.0197 0.0623 0.0882
3 MHz, 15 dB 0.0230 0.0725 0.1008
3 MHz, 20 dB 0.0134 0.0560 0.0798
6 MHz, 10 dB 0.0924 0.0665 0.1697
6 MHz, 15 dB 0.1623 0.0385 0.1628
6 MHz, 20 dB 0.1324 0.0319 0.1313
18 MHz, 10 dB 0.1907 0.0397 0.1777
18 MHz, 15 dB 0.2136 0.0398 0.1976
18 MHz, 20 dB 0.1675 0.0345 0.1549
Mean 0.1128 0.0491 0.1403

Table 4.15: Table of KL-divergence values between the error of all successful ranging
operations under the NLOS scenario and in the highway environment and the fitted
distributions for nine different types of distributions for different values of SNR and

bandwidth.
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Normal Exponential Rayleigh
3 MHz, 10 dB 0.0823 1.8792 0.9705
3 MHz, 15 dB 0.1183 2.1945 1.2580
3 MHz, 20 dB 0.3172 2.8481 1.8853
6 MHz, 10 dB 0.0333 1.6700 0.7787
6 MHz, 15 dB 0.1365 1.9527 1.0547
6 MHz, 20 dB 0.2113 2.4528 1.5058
18 MHz, 10 dB 0.0801 1.2285 0.4324
18 MHz, 15 dB 0.1063 1.2816 0.4741
18 MHz, 20 dB 0.1263 1.5394 0.6793
Mean 0.1346 1.8941 1.0043

Gamma Cauchy Skew Normal
3 MHz, 10 dB 0.0839 0.1819 0.0823
3 MHz, 15 dB 0.1204 0.1656 0.1183
3 MHz, 20 dB 0.3206 0.1263 0.3172
6 MHz, 10 dB 0.0344 0.2303 0.0333
6 MHz, 15 dB 0.1386 0.1606 0.1365
6 MHz, 20 dB 0.2141 0.1328 0.2113
18 MHz, 10 dB 0.0582 0.1935 0.0603
18 MHz, 15 dB 0.0770 0.1712 0.0741
18 MHz, 20 dB 0.0913 0.1618 0.0882
Mean 0.1265 0.1693 0.1246

Exponential Power Weibull Student’s t
3 MHz, 10 dB 0.0376 0.0819 0.0266
3 MHz, 15 dB 0.0408 0.0799 0.0253
3 MHz, 20 dB 0.0601 0.1693 0.0464
6 MHz, 10 dB 0.0246 0.0274 0.0213
6 MHz, 15 dB 0.0564 0.0839 0.0476
6 MHz, 20 dB 0.0457 0.1225 0.0354
18 MHz, 10 dB 0.0286 0.1370 0.0204
18 MHz, 15 dB 0.0351 0.1636 0.0232
18 MHz, 20 dB 0.0342 0.2309 0.0206
Mean 0.0404 0.1218 0.0297

Table 4.16: Table of KL-divergence values between the error of all successful ranging
operations under the LOS scenario and in the indoor environment and the fitted

distributions for nine different types of distributions for different values of SNR and
bandwidth.
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Normal Exponential Rayleigh
3 MHz, 10 dB 0.0336 1.4035 0.5538
3 MHz, 15 dB 0.1021 1.9865 1.0658
3 MHz, 20 dB 0.2654 2.2384 1.3181
6 MHz, 10 dB 0.0495 1.3797 0.5460
6 MHz, 15 dB 0.1751 2.0938 1.1761
6 MHz, 20 dB 0.1802 1.9660 1.0647
18 MHz, 10 dB 0.2438 1.0425 0.3404
18 MHz, 15 dB 0.2020 0.9972 0.2996
18 MHz, 20 dB 0.2105 1.1263 0.3951
Mean 0.1625 1.5816 0.7511

Gamma Cauchy Skew Normal
3 MHz, 10 dB 0.0337 0.2133 0.0336
3 MHz, 15 dB 0.1034 0.1619 0.1021
3 MHz, 20 dB 0.2668 0.1090 0.2654
6 MHz, 10 dB 0.0506 0.2083 0.0495
6 MHz, 15 dB 0.1756 0.1228 0.1751
6 MHz, 20 dB 0.1812 0.1143 0.1802
18 MHz, 10 dB 0.1131 0.1578 0.1162
18 MHz, 15 dB 0.1048 0.1860 0.1053
18 MHz, 20 dB 0.1441 0.1235 0.1403
Mean 0.1304 0.1552 0.1297

Exponential Power Weibull Student’s t
3 MHz, 10 dB 0.0199 0.0494 0.0182
3 MHz, 15 dB 0.0331 0.1179 0.0270
3 MHz, 20 dB 0.0506 0.4445 0.0281
6 MHz, 10 dB 0.0300 0.0432 0.0311
6 MHz, 15 dB 0.0320 0.3269 0.0276
6 MHz, 20 dB 0.0334 0.2778 0.0254
18 MHz, 10 dB 0.0817 0.2370 0.0670
18 MHz, 15 dB 0.0870 0.1917 0.0733
18 MHz, 20 dB 0.0463 0.2423 0.0409
Mean 0.0460 0.2145 0.0376

Table 4.17: Table of KL-divergence values between the error of all successful ranging
operations under the weak LOS scenario and in the indoor environment and the fitted

distributions for nine different types of distributions for different values of SNR and
bandwidth.
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Normal Exponential Rayleigh
3 MHz, 10 dB 0.0693 1.4029 0.5787
3 MHz, 15 dB 0.0235 1.1107 0.3418
3 MHz, 20 dB 0.0345 1.4979 0.6301
6 MHz, 10 dB 0.1222 0.9137 0.2524
6 MHz, 15 dB 0.0363 0.8636 0.1815
6 MHz, 20 dB 0.0574 0.9650 0.2499
18 MHz, 10 dB 0.0728 1.0821 0.3303
18 MHz, 15 dB 0.0457 1.0191 0.2862
18 MHz, 20 dB 0.0359 1.1106 0.3344
Mean 0.0553 1.1073 0.3539

Gamma Cauchy Skew Normal
3 MHz, 10 dB 0.0695 0.2174 0.0690
3 MHz, 15 dB 0.0238 0.2472 0.0235
3 MHz, 20 dB 0.0344 0.2992 0.0345
6 MHz, 10 dB 0.1178 0.4119 0.1188
6 MHz, 15 dB 0.0363 0.3425 0.0363
6 MHz, 20 dB 0.0574 0.3938 0.0574
18 MHz, 10 dB 0.0729 0.4103 0.0728
18 MHz, 15 dB 0.0462 0.3622 0.0457
18 MHz, 20 dB 0.0362 0.3703 0.0359
Mean 0.0549 0.3394 0.0549

Exponential Power Weibull Student’s t
3 MHz, 10 dB 0.0527 0.0948 0.0554
3 MHz, 15 dB 0.0208 0.0351 0.0188
3 MHz, 20 dB 0.0345 0.0554 0.0326
6 MHz, 10 dB 0.1080 0.1175 0.1231
6 MHz, 15 dB 0.0234 0.0275 0.0372
6 MHz, 20 dB 0.0317 0.0506 0.0586
18 MHz, 10 dB 0.0423 0.0663 0.0741
18 MHz, 15 dB 0.0297 0.0356 0.0466
18 MHz, 20 dB 0.0171 0.0291 0.0370
Mean 0.0400 0.0569 0.0537

Table 4.18: Table of KL-divergence values between the error of all successful ranging
operations under the NLOS scenario and in the indoor environment and the fitted

distributions for nine different types of distributions for different values of SNR and
bandwidth.
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4.5 Discussion

In the previous section, we saw that, in general, the Cauchy, exponential power, and Student’s
t-distributions provide good fits for the error in the LOS and weak LOS scenarios, with the expo-
nential power and Student’s t-distributions providing better fits than the Cauchy. This is something
that we would expect, given that the exponential power and Student’s t-distributions each have
three parameters to do the fitting over, whereas the Cauchy distribution only has two. We provide
a summary of the fitted parameter values for the LOS scenario in the outdoor environment in
Table 4.19.

Looking at Table 4.19, it becomes clear that, although the exponential power and Student’s
t-distributions provide better fits than the Cauchy distribution, the Cauchy distribution may in
practice be better at simulating errors for the LOS and weak LOS scenarios. For a simulation, the
parameter values for the Cauchy distribution would be easy to select. The location parameter x0

is around 0 while the scale parameter γ simply increases as the situation gets worse (i.e. as SNR
and bandwidth decrease). The same is true for the location parameter and scale parameters of the
exponential power and Student’s t-distributions as well - however, for these distributions the shape
parameter and the degrees of freedom parameters change erratically with changing conditions.
They would be hard to pick and select for a simulation. It is this extra parameter that makes
these distributions a better fit, but the flexibility of this parameter also makes it more difficult to
use these distributions for simulations. It is also important to not overfit our models to the data.
Therefore, for the LOS and weak LOS scenarios, we see that the Cauchy distribution is a good
choice for simulating the errors, especially in the outdoor and highway environments.

If we consider the physical situation, we can see an additional reason why the Cauchy distri-
bution is a good fit, at least in the outdoor and highway environments. The PDF of the Cauchy
distribution has a high center peak and heavy tails. The high peak makes sense because we are
thinking about the LOS and weak LOS scenarios - we expect the first peak identified the majority
of the time to correspond to the LOS path. Thus, we expect for much of the probability mass to
be concentrated around 0. At the same time, since the RMS delay spread is large in the outdoor
and highway environments, if we do miss the peak from the LOS path, the peak that we do detect
may have a large delay. The Cauchy distribution models this well because of its heavy tails. In the
indoor environment, however, the Cauchy distribution is not such a good fit. It still simulates the
high center peak well; however, since the RMS delay spread is much smaller, if we miss the peak
from the LOS path, the peak that we do detect will not have a large delay. Thus, the heavy tails
of the Cauchy distribution do not model the situation as well.

We run into a similar situation when we consider the NLOS scenarios. In Table 4.20, we
summarize the fitted parameter values for the NLOS scenario in the highway environment for the
normal, Rayleigh, gamma, and Weibull distributions.

Although the gamma and Weibull distributions provide better fits than the normal and Rayleigh
distributions, in practice it may be better to use the normal and Rayleigh distributions to simulate
errors in the NLOS scenario for the same reasons as in the LOS and weak LOS scenarios. Once
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again it is the extra shape parameters of the gamma and Weibull distributions that help to yield
better fits, but it is also the reason that makes them less desirable for simulation purposes. This is
especially clear for the gamma distribution.

Another issue in the NLOS scenario is the fact that the location parameter for the Rayleigh,
gamma, and Weibull distributions seems to change erratically. This is because, normally, these
three distributions cannot take on negative values. By adding the extra location parameter to
indicate how far to shift them left along the x-axis, we get around this problem. However, the
problem with doing so is that when there is an especially negative error value in our data set, it can
have a large effect on the the fitted distribution. The location parameter needs to be large enough
so that the negative error value can occur with nonzero probability in the fitted distribution, and
that can cause a distribution to be poorly fitted. This is why the Rayleigh distribution is a poor
fit for the NLOS scenario in the indoor environment, as shown in Figure ??. In this scenario, the
normal distribution may be a better choice for the NLOS scenario - although it does not typically
provide as good a fit to the data, it handles the situation when there is an especially negative
error value well. Therefore, we see that for the NLOS scenario, a good choice for simulating errors
would either be the Rayleigh distribution or the normal distribution. Both are two parameter
distributions, and thus are better choices than the three parameter distributions. The Rayleigh is
a good fit for the data, if we consider the chance of especially negative error values occurring small
enough to ignore - in this case, we could fix its location parameter x0 to be some acceptable value
and increase the scale parameter σ as conditions worsen. Otherwise, the normal distribution is a
good choice - in this case, we would increase both its location parameter µ and its scale parameter
σ as conditions worsen.
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Cauchy
x0 γ

3 MHz, 10 dB -0.6739 10.8009
3 MHz, 15 dB -0.5311 9.9777
3 MHz, 20 dB -1.1935 9.4250
6 MHz, 10 dB -0.9550 5.4703
6 MHz, 15 dB -0.9239 5.1367
6 MHz, 20 dB -0.8415 4.4953
18 MHz, 10 dB 0.5203 1.7973
18 MHz, 15 dB 0.4821 1.6128
18 MHz, 20 dB 0.5816 1.6124

Exponential Power
µ α β

3 MHz, 10 dB 0.1667 7.7549 0.6446
3 MHz, 15 dB -0.1667 13.9333 0.9323
3 MHz, 20 dB -1.5000 9.2390 0.7426
6 MHz, 10 dB -1.1667 3.4432 0.6054
6 MHz, 15 dB -0.8333 6.0978 0.8328
6 MHz, 20 dB -1.0000 4.2501 0.7208
18 MHz, 10 dB 0.5000 1.0379 0.5805
18 MHz, 15 dB 0.5000 1.4980 0.7153
18 MHz, 20 dB 0.5000 1.4962 0.7179

Student’s t
µ σ ν

3 MHz, 10 dB -0.3132 14.0999 2.1706
3 MHz, 15 dB -0.0923 14.1083 2.9465
3 MHz, 20 dB -0.6422 12.8782 2.3469
6 MHz, 10 dB -0.6799 6.9044 1.8878
6 MHz, 15 dB -0.6396 7.1764 2.7043
6 MHz, 20 dB -0.6332 6.0510 2.1547
18 MHz, 10 dB 0.5882 2.2558 1.8817
18 MHz, 15 dB 0.5408 2.1424 2.1227
18 MHz, 20 dB 0.6731 2.1570 2.1421

Table 4.19: Table of fitted parameter values for the Cauchy (top), exponential
power(middle), and Student’s t-distributions (bottom) to the data from the LOS
scenario in the outdoor environment for different values of SNR and bandwidth.
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Normal
µ σ

3 MHz, 10 dB 141.0880 83.8597
3 MHz, 15 dB 134.4610 84.8260
3 MHz, 20 dB 127.8426 86.2834
6 MHz, 10 dB 114.7762 78.3736
6 MHz, 15 dB 92.4429 71.9725
6 MHz, 20 dB 79.7302 63.4693
18 MHz, 10 dB 58.9226 50.0572
18 MHz, 15 dB 34.5445 29.4005
18 MHz, 20 dB 27.6532 23.5926

Rayleigh
σ x0

3 MHz, 10 dB 139.0840 36.8341
3 MHz, 15 dB 142.9242 49.0034
3 MHz, 20 dB 154.5571 72.9832
6 MHz, 10 dB 114.5949 27.0744
6 MHz, 15 dB 104.2194 36.1779
6 MHz, 20 dB 93.7506 36.6743
18 MHz, 10 dB 66.0687 19.9724
18 MHz, 15 dB 39.7132 13.3082
18 MHz, 20 dB 33.5354 13.4885

Gamma
k θ x0

3 MHz, 10 dB 25.9193 16.6235 289.7807
3 MHz, 15 dB 30.2579 15.5454 335.9094
3 MHz, 20 dB 77.7283 9.8156 635.1089
6 MHz, 10 dB 3.0372 47.3603 29.0652
6 MHz, 15 dB 3.1679 41.2453 38.2184
6 MHz, 20 dB 3.7928 33.0159 45.4941
18 MHz, 10 dB 1.7604 36.7692 5.8043
18 MHz, 15 dB 2.1942 19.5453 8.3416
18 MHz, 20 dB 3.1287 13.3052 13.9749

Weibull
λ k x0

3 MHz, 10 dB 220.9358 2.5396 54.7207
3 MHz, 15 dB 224.7998 2.5596 64.7928
3 MHz, 20 dB 246.6367 2.7969 91.3753
6 MHz, 10 dB 156.2791 1.8450 23.8181
6 MHz, 15 dB 143.6923 1.8621 34.7842
6 MHz, 20 dB 129.4907 1.8947 35.0192
18 MHz, 10 dB 70.6348 1.3564 5.5665
18 MHz, 15 dB 47.1428 1.5148 7.8117
18 MHz, 20 dB 44.7270 1.7677 12.0609

Table 4.20: Table of fitted parameter values for the normal (top left), Rayleigh (top
right), gamma (middle), and Weibull distributions (bottom) to the data from the

NLOS scenario in the highway environment for different values of SNR and bandwidth.



Chapter 5

Conclusion

In this report we have given motivation for the need for good models of the estimation error in
time of flight ranging systems in both the LOS and NLOS scenarios. We see that the models
used in prior literature oftentimes do not have robust justifications and that there is also a lack of
consistency in the kinds of models used. The work that has been done to develop models based on
simulations or real-world measurements also have various shortcomings.

We have provided good models for the estimation error through the simulation of the wireless
channel and a time of flight ranging system in software. We have done work on fitting the simulated
data to theoretical distributions and have shown that the Cauchy distribution is a good model for
the distribution of errors that we see in LOS scenarios. In the NLOS scenario, we have shown
that the normal distribution or a shifted version of the Rayleigh distribution are good models for
distribution of errors that we see.
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Appendix A

Fitted Model Parameter Values

In this appendix we give the parameter values for the fitted models to the estimation error data
for different scenarios, environments, bandwidths, and values of SNR. In each table we highlight
a particular scenario and environment and look at how the model parameter values change with
different values of bandwidth and SNR. We group the data in this way because our goal is to find
a good model for a particular scenario in a particular environment (i.e., we want a good model
for the LOS scenario in the indoor environment). By grouping the data in this way we can see
how the parameter values change with different conditions, and we can also use that information
to evaluate how
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Normal Exponential Rayleigh

µ σ λ x0 σ x0

3 MHz, 10 dB 5.8100 51.4251 108.3100 102.5000 84.9055 102.6950

3 MHz, 15 dB 1.7438 22.9537 70.0772 68.3333 52.2146 68.4406

3 MHz, 20 dB 2.4095 26.9571 91.4095 89.0000 67.4685 89.1182

6 MHz, 10 dB 3.3067 30.0269 37.4733 34.1667 34.7659 35.6255

6 MHz, 15 dB 0.6920 13.1845 53.0253 52.3333 38.6800 52.3972

6 MHz, 20 dB 0.6793 14.0371 41.0127 40.3333 30.6924 40.3938

18 MHz, 10 dB 2.1287 11.0712 11.4650 9.3333 12.2854 11.2612

18 MHz, 15 dB 1.1857 5.2118 15.0190 13.8333 11.2561 13.8555

18 MHz, 20 dB 1.3107 4.6860 13.1439 11.8333 9.8804 11.8532

Gamma Cauchy Skew Normal

k θ x0 x0 γ ε ω α

3 MHz, 10 dB 11.6607 9.7057 107.3650 -0.6739 10.8009 -33.9646 65.0120 4.8059

3 MHz, 15 dB 24.4796 4.4796 107.9143 -0.5311 9.9777 -20.1206 31.7005 1.9543

3 MHz, 20 dB 18.8160 5.5890 102.7532 -1.1935 9.4250 -23.6087 37.4651 2.5942

6 MHz, 10 dB 5.1712 7.5905 35.9456 -0.9550 5.4703 -18.6020 37.1700 5.8241

6 MHz, 15 dB 29.9788 2.2540 66.8810 -0.9239 5.1367 -11.9281 18.2509 2.2303

6 MHz, 20 dB 16.2656 3.0787 49.3970 -0.8415 4.4953 -12.4628 19.2291 2.4577

18 MHz, 10 dB 3.8501 3.0329 9.5481 0.5203 1.7973 -5.4588 13.4217 8.3140

18 MHz, 15 dB 15.1428 1.1408 16.0885 0.4821 1.6128 -3.7068 7.1484 2.9011

18 MHz, 20 dB 12.9657 1.1696 13.8543 0.5816 1.6124 -3.2753 6.5566 2.7441

Exponential Power Weibull Student’s T

µ α β λ k x0 µ σ ν

3 MHz, 10 dB 0.1667 7.7549 0.6446 120.6270 2.0273 102.7093 -0.3132 14.0999 2.1706

3 MHz, 15 dB -0.1667 13.9333 0.9323 78.7877 2.9971 69.3000 -0.0923 14.1083 2.9465

3 MHz, 20 dB -1.5000 9.2390 0.7426 101.3724 2.9946 89.6002 -0.6422 12.8782 2.3469

6 MHz, 10 dB -1.1667 3.4432 0.6054 41.9029 1.5816 34.2087 -0.6799 6.9044 1.8878

6 MHz, 15 dB -0.8333 6.0978 0.8328 58.4737 3.4919 52.8448 -0.6396 7.1764 2.7043

6 MHz, 20 dB -1.0000 4.2501 0.7208 45.7113 2.6523 40.5594 -0.6332 6.0510 2.1547

18 MHz, 10 dB 0.5000 1.0379 0.5805 12.7960 1.4415 9.3494 0.5882 2.2558 1.8817

18 MHz, 15 dB 0.5000 1.4980 0.7153 16.7161 2.5726 13.9044 0.5408 2.1424 2.1227

18 MHz, 20 dB 0.5000 1.4962 0.7179 14.7141 2.6502 11.9093 0.6731 2.1570 2.1421

Table A.1: Table of fitted parameter values to the data for the LOS scenario in the
outdoor environment for different values of bandwidth and SNR.
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Normal Exponential Rayleigh

µ σ λ x0 σ x0

3 MHz, 10 dB 2.9103 26.3781 81.5770 78.6667 60.7006 78.7801

3 MHz, 15 dB 3.4898 28.5958 71.6565 68.1667 54.6395 68.2962

3 MHz, 20 dB 2.8072 25.5830 74.6405 71.8333 55.8688 71.9468

6 MHz, 10 dB 1.6839 18.7862 43.0172 41.3333 33.2434 41.4128

6 MHz, 15 dB 0.6677 13.6312 45.1677 44.5000 33.4021 44.5606

6 MHz, 20 dB 1.3937 13.4813 37.8937 36.5000 28.4807 36.5610

18 MHz, 10 dB 1.9833 12.3877 13.6500 11.6667 13.5187 12.5787

18 MHz, 15 dB 1.1942 4.9415 13.8608 12.6667 10.4192 12.6875

18 MHz, 20 dB 0.9665 4.9253 16.6332 15.6667 12.2807 15.6880

Gamma Cauchy Skew Normal

k θ x0 x0 γ ε ω α

3 MHz, 10 dB 15.4680 6.1413 92.0823 -0.2887 11.3774 -23.6483 37.4321 2.6438

3 MHz, 15 dB 11.1416 7.6953 82.2488 -0.5774 11.1493 -24.8047 40.2281 2.7701

3 MHz, 20 dB 14.8436 6.1915 89.0974 -0.7020 11.4511 -23.1819 36.4681 2.5705

6 MHz, 10 dB 9.9019 4.7970 45.8150 -0.5241 5.9000 -15.6876 25.5869 3.2571

6 MHz, 15 dB 20.6267 2.7518 56.0922 -1.3272 5.1387 -12.5941 19.0180 2.4992

6 MHz, 20 dB 15.1498 3.1766 46.7319 -0.2526 5.0621 -11.7061 18.7975 2.4449

18 MHz, 10 dB 5.3257 2.6007 11.8673 0.5262 1.7096 -5.6415 14.5462 7.4282

18 MHz, 15 dB 13.0737 1.2103 14.6292 0.3634 1.6652 -3.5974 6.8832 2.8622

18 MHz, 20 dB 19.7443 0.9504 17.7978 0.3746 1.4814 -3.6144 6.7263 2.8178

Exponential Power Weibull Student’s T

µ α β λ k x0 µ σ ν

3 MHz, 10 dB 0.6667 16.0602 0.9583 90.9269 2.8514 79.2002 0.4006 16.0005 3.3689

3 MHz, 15 dB -1.5000 12.9539 0.8313 80.5652 2.4393 68.5666 0.2731 15.1641 2.7467

3 MHz, 20 dB -0.0000 16.9759 0.9950 83.6222 2.7915 72.4281 0.2536 16.2072 3.4717

6 MHz, 10 dB -0.5000 5.7379 0.7481 48.1817 2.1967 41.4652 -0.2684 7.9314 2.5226

6 MHz, 15 dB -0.8333 6.0010 0.8192 50.1521 2.9621 44.8235 -1.0917 6.9969 2.4650

6 MHz, 20 dB -0.1667 5.7597 0.8078 42.4655 2.6698 36.7813 -0.0359 6.8702 2.4545

18 MHz, 10 dB 0.3333 0.8773 0.5646 15.2742 1.5134 11.6776 0.6211 2.1817 2.1116

18 MHz, 15 dB 0.3333 1.5121 0.7125 15.5061 2.6287 12.7419 0.4692 2.2185 2.1632

18 MHz, 20 dB 0.3333 1.0434 0.6383 18.4040 2.8696 15.7558 0.4172 2.0021 2.1476

Table A.2: Table of fitted parameter values to the data for the LOS scenario in the
highway environment for different values of bandwidth and SNR.
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Normal Exponential Rayleigh

µ σ λ x0 σ x0

3 MHz, 10 dB -2.5830 8.7197 46.0837 48.6667 33.2014 48.7202

3 MHz, 15 dB -2.8185 6.4696 41.3483 44.1667 29.6249 44.2118

3 MHz, 20 dB -2.4672 5.7934 50.6995 53.1667 36.1205 53.2197

6 MHz, 10 dB -1.2959 4.9784 23.7041 25.0000 17.1464 25.0281

6 MHz, 15 dB -1.7711 4.5572 24.7289 26.5000 17.8008 26.5293

6 MHz, 20 dB -1.7173 4.5362 32.7827 34.5000 23.4264 34.5352

18 MHz, 10 dB 0.8506 3.6489 12.1840 11.3333 9.0051 11.3505

18 MHz, 15 dB 0.8758 3.4293 11.7092 10.8333 8.6382 10.8493

18 MHz, 20 dB 0.6218 3.4854 14.1218 13.5000 10.2972 13.5173

Gamma Cauchy Skew Normal

k θ x0 x0 γ ε ω α

3 MHz, 10 dB 7807.1441 0.0994 778.4696 -1.6601 4.5341 -2.5837 8.7197 0.0001

3 MHz, 15 dB 10403.3862 0.0638 666.5342 -2.0949 3.2101 -2.8187 6.4696 0.0000

3 MHz, 20 dB 16577.2185 0.0456 757.6603 -1.6503 2.2582 -2.4676 5.7934 0.0001

6 MHz, 10 dB 5953.4543 0.0649 387.4971 -1.0142 2.8917 -1.2962 4.9784 0.0001

6 MHz, 15 dB 10814.9708 0.0441 478.4246 -1.1713 2.1830 -1.7715 4.5572 0.0001

6 MHz, 20 dB 13258.9986 0.0397 528.5602 -1.2265 1.9588 -1.7177 4.5362 0.0001

18 MHz, 10 dB 54.7561 0.4870 25.8156 0.8495 1.9470 -2.2058 4.7599 1.4010

18 MHz, 15 dB 40.5213 0.5300 20.6021 0.6779 1.7278 -2.2194 4.6196 1.6358

18 MHz, 20 dB 56.7844 0.4539 25.1545 0.4137 1.6810 -2.4711 4.6599 1.6002

Exponential Power Weibull Student’s T

µ α β λ k x0 µ σ ν

3 MHz, 10 dB -2.0621 8.2878 1.2379 57.4815 6.7934 56.5625 -2.0709 6.7202 4.8121

3 MHz, 15 dB -2.3333 5.4733 1.1378 56.9181 9.5999 57.0818 -2.3070 4.6369 4.0050

3 MHz, 20 dB -1.6667 2.6145 0.8202 89.6711 18.4570 89.8329 -1.7966 3.1352 2.5878

6 MHz, 10 dB -1.2032 6.1738 1.6245 31.4393 6.7423 30.6949 -1.1840 4.5221 11.4911

6 MHz, 15 dB -1.3324 3.5862 1.0743 50.0086 12.7035 49.8619 -1.3385 3.2111 3.6824

6 MHz, 20 dB -1.3333 2.7365 0.9310 52.5044 13.1532 52.3663 -1.2899 2.7605 2.9148

18 MHz, 10 dB 0.8338 3.5785 1.2799 13.6682 3.3230 11.5431 0.7897 2.9243 6.0728

18 MHz, 15 dB 0.7175 2.9818 1.1620 13.1335 3.4091 11.0338 0.7278 2.5200 4.3564

18 MHz, 20 dB 0.4801 2.7560 1.0923 15.6513 3.8053 13.7230 0.4562 2.4221 3.8381

Table A.3: Table of fitted parameter values to the data for the LOS scenario in the
indoor environment for different values of bandwidth and SNR.
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Normal Exponential Rayleigh

µ σ λ x0 σ x0

3 MHz, 10 dB 52.1060 162.4864 142.0358 89.8333 185.2136 153.3359

3 MHz, 15 dB 17.1035 68.6002 131.9368 114.8333 105.3400 115.1352

3 MHz, 20 dB 12.0862 46.6839 82.9195 70.8333 67.6471 71.4176

6 MHz, 10 dB 19.1990 63.0467 56.6990 37.5000 72.1089 60.9540

6 MHz, 15 dB 8.1780 32.2680 59.6780 51.5000 48.0737 51.6629

6 MHz, 20 dB 4.8858 22.2407 57.8858 53.0000 43.9096 53.0923

18 MHz, 10 dB 7.5973 27.9730 21.2785 13.6667 31.0076 26.1733

18 MHz, 15 dB 2.5758 8.7565 18.0758 15.5000 14.2268 15.5384

18 MHz, 20 dB 2.9185 8.4437 17.7565 14.8333 13.9498 14.9112

Gamma Cauchy Skew Normal

k θ x0 x0 γ ε ω α

3 MHz, 10 dB 2.0445 69.5701 90.1316 2.2887 17.3639 -52.0851 193.0223 15.8294

3 MHz, 15 dB 6.9452 19.5156 118.4357 0.2432 15.5193 -42.7383 91.0331 5.2625

3 MHz, 20 dB 5.3543 16.6527 77.0774 1.9455 14.3851 -33.0944 64.9667 4.2445

6 MHz, 10 dB 2.0843 27.2682 37.6364 0.3988 8.2340 -23.8990 76.3697 13.8205

6 MHz, 15 dB 5.8575 10.4683 53.1401 -0.0461 7.4123 -20.8819 43.4247 4.9625

6 MHz, 20 dB 10.4268 6.0294 57.9818 0.0351 7.0014 -16.8041 31.0661 3.2771

18 MHz, 10 dB 2.1129 10.0867 13.7148 0.8428 2.7151 -8.4515 32.2499 16.3889

18 MHz, 15 dB 6.8712 2.7175 16.0965 0.6178 2.3847 -5.6862 12.0391 4.4239

18 MHz, 20 dB 7.2617 2.6439 16.2808 0.5865 2.1989 -5.1035 11.6468 4.0463

Exponential Power Weibull Student’s T

µ α β λ k x0 µ σ ν

3 MHz, 10 dB 1.1667 4.2799 0.4248 153.7975 1.2131 89.8747 2.2271 17.0606 0.9638

3 MHz, 15 dB -0.8333 7.1311 0.5354 148.8276 1.9938 115.1297 0.9107 18.5029 1.4699

3 MHz, 20 dB 0.6667 11.4621 0.6670 93.8889 1.8933 71.1872 2.9767 18.5031 1.9546

6 MHz, 10 dB 1.3333 1.4234 0.4077 61.6740 1.2344 37.5188 0.4499 8.4757 1.0663

6 MHz, 15 dB -0.6667 3.4614 0.5351 67.5824 1.9620 51.6435 0.1266 8.5799 1.3795

6 MHz, 20 dB -0.6667 5.4292 0.6550 65.0546 2.5231 53.2897 0.5279 8.9618 1.8538

18 MHz, 10 dB 0.8333 0.3139 0.3800 22.9276 1.1876 13.6719 0.8602 2.8129 1.0818

18 MHz, 15 dB 0.5000 1.5584 0.6071 20.4440 2.1224 15.5542 0.7146 2.9159 1.6556

18 MHz, 20 dB 0.3333 1.0916 0.5489 20.1415 2.1596 14.9566 0.6991 2.6052 1.4258

Table A.4: Table of fitted parameter values to the data for the weak LOS scenario in
the outdoor environment for different values of bandwidth and SNR.
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Normal Exponential Rayleigh

µ σ λ x0 σ x0

3 MHz, 10 dB 19.0067 54.9420 90.6974 71.6667 75.4978 72.5422

3 MHz, 15 dB 10.8780 39.6068 91.5447 80.6667 70.6477 80.8470

3 MHz, 20 dB 9.0385 39.2311 114.7052 105.6667 85.8353 105.8367

6 MHz, 10 dB 10.6004 34.5278 49.2802 38.6667 43.2021 39.8047

6 MHz, 15 dB 6.4852 25.6054 47.9852 41.5000 38.5593 41.6604

6 MHz, 20 dB 4.1755 21.2725 52.6755 48.5000 40.2310 48.5933

18 MHz, 10 dB 7.0203 22.1224 18.6997 11.6667 25.0497 20.6488

18 MHz, 15 dB 3.8340 12.4968 16.3383 12.5000 14.8357 13.0190

18 MHz, 20 dB 2.7085 8.4402 21.0418 18.3333 16.0539 18.3680

Gamma Cauchy Skew Normal

k θ x0 x0 γ ε ω α

3 MHz, 10 dB 4.0350 23.2629 74.8599 3.7651 17.8556 -36.2901 77.9510 5.4345

3 MHz, 15 dB 7.6778 12.9889 88.8480 2.3196 16.2099 -30.6348 57.3761 3.4613

3 MHz, 20 dB 13.5506 10.0434 127.0550 2.0404 16.0161 -31.1512 56.1631 2.6647

6 MHz, 10 dB 3.5941 13.9443 39.5169 0.9492 8.5489 -20.3805 46.3895 6.4255

6 MHz, 15 dB 5.3498 9.4532 44.0875 0.4604 8.2390 -18.9095 36.0628 4.1401

6 MHz, 20 dB 10.0899 5.8479 54.8287 0.2729 6.7334 4.1758 21.2725 -0.0000

18 MHz, 10 dB 2.0196 9.2757 11.7130 1.0112 2.8816 -7.5198 26.4729 13.0580

18 MHz, 15 dB 3.8003 4.3506 12.6995 1.0225 2.3856 -6.2623 16.0656 6.6487

18 MHz, 20 dB 9.5461 2.3409 19.6383 0.7389 2.3893 -5.4299 11.7248 3.6665

Exponential Power Weibull Student’s T

µ α β λ k x0 µ σ ν

3 MHz, 10 dB 4.6667 16.2476 0.6957 102.7943 1.7983 71.9266 4.7457 21.8576 1.7577

3 MHz, 15 dB 2.8333 20.6992 0.8718 103.5157 2.3506 81.1350 4.2135 21.9409 2.6311

3 MHz, 20 dB 2.8333 20.8533 0.8709 128.8727 2.8844 106.6715 3.1247 21.8933 2.4683

6 MHz, 10 dB 1.0000 5.0858 0.5805 55.6083 1.6335 38.7397 1.3673 10.0691 1.5073

6 MHz, 15 dB 0.8333 7.6461 0.7062 54.3629 1.9791 41.6478 0.9564 10.3012 1.8473

6 MHz, 20 dB 0.0000 5.4430 0.6709 59.2676 2.4180 48.7635 0.6397 8.6360 1.9289

18 MHz, 10 dB 0.8333 0.6443 0.4312 20.2012 1.2051 11.6720 1.0571 3.0709 1.1716

18 MHz, 15 dB 1.0000 1.1745 0.5389 18.3796 1.5757 12.5180 1.0683 2.7459 1.4015

18 MHz, 20 dB 0.6667 1.4881 0.5953 23.6839 2.4412 18.4271 0.8532 2.9472 1.6055

Table A.5: Table of fitted parameter values to the data for the weak LOS scenario in
the highway environment for different values of bandwidth and SNR.
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Normal Exponential Rayleigh

µ σ λ x0 σ x0

3 MHz, 10 dB -1.3700 10.7233 42.6300 44.0000 31.1222 44.0571

3 MHz, 15 dB -1.7406 8.2452 46.7593 48.5000 33.6110 48.5531

3 MHz, 20 dB -2.2534 8.2195 48.4133 50.6667 34.7669 50.7292

6 MHz, 10 dB -0.6448 6.7500 26.0219 26.6667 19.0347 26.7039

6 MHz, 15 dB -0.8059 7.1632 41.0275 41.8333 29.4826 41.8807

6 MHz, 20 dB -1.1261 6.2160 32.3739 33.5000 23.3371 33.5391

18 MHz, 10 dB 2.3763 5.8287 15.5471 13.1667 11.7552 13.1927

18 MHz, 15 dB 2.0062 5.8257 15.5062 13.5000 11.7302 13.5262

18 MHz, 20 dB 1.9034 5.8879 16.9034 15.0000 12.6748 15.0269

Gamma Cauchy Skew Normal

k θ x0 x0 γ ε ω α

3 MHz, 10 dB 2409.6538 0.2186 528.1277 -0.8448 6.0415 -1.3702 10.7233 0.0000

3 MHz, 15 dB 7891.7194 0.0934 738.7319 -1.0700 4.0233 -1.7410 8.2452 0.0001

3 MHz, 20 dB 9774.9341 0.0834 817.7503 -1.4697 3.2702 -2.2538 8.2195 0.0001

6 MHz, 10 dB 5816.6904 0.0889 517.6659 -0.0572 3.7089 -0.6452 6.7500 0.0001

6 MHz, 15 dB 6601.2279 0.0884 584.2357 -0.6011 3.0539 -0.8062 7.1632 0.0001

6 MHz, 20 dB 7506.6287 0.0719 540.9354 -0.5961 2.6557 -1.1264 6.2160 0.0001

18 MHz, 10 dB 10.0221 1.7308 14.9701 1.2278 2.4672 -3.7815 8.4790 2.9883

18 MHz, 15 dB 11.6399 1.6451 17.1421 1.2523 2.6731 -4.0577 8.4089 2.5251

18 MHz, 20 dB 17.4930 1.3579 21.8510 1.2373 2.5253 -3.9230 8.2834 2.1807

Exponential Power Weibull Student’s T

µ α β λ k x0 µ σ ν

3 MHz, 10 dB -1.2071 12.4832 1.5033 49.2336 4.4996 46.5003 -1.2884 9.3341 8.1690

3 MHz, 15 dB -1.3326 6.7405 1.1057 55.4946 6.7809 53.9198 -1.2109 5.8612 3.8007

3 MHz, 20 dB -1.6667 4.2128 0.8718 54.2534 5.3515 53.4344 -1.5283 4.4238 2.5388

6 MHz, 10 dB -0.3786 7.6464 1.4554 37.0463 5.7940 35.0084 -0.4119 5.7885 7.2568

6 MHz, 15 dB -0.5000 4.0578 0.8992 45.8421 5.4283 43.8439 -0.6105 4.4484 3.0770

6 MHz, 20 dB -0.6667 3.7135 0.9232 37.6844 5.4952 36.4210 -0.6837 3.7235 2.7488

18 MHz, 10 dB 1.3333 3.3339 0.8972 17.5423 2.6973 13.2891 1.4394 3.3805 2.5774

18 MHz, 15 dB 1.5000 4.1291 1.0107 17.5333 2.7308 13.6527 1.3166 3.7101 2.9696

18 MHz, 20 dB 1.3333 3.4892 0.9160 19.0683 2.8932 15.2095 1.2960 3.5079 2.6875

Table A.6: Table of fitted parameter values to the data for the weak LOS scenario in
the indoor environment for different values of bandwidth and SNR.
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Normal Exponential Rayleigh

µ σ λ x0 σ x0

3 MHz, 10 dB 364.4013 291.6165 398.3760 34.0000 393.9220 110.2658

3 MHz, 15 dB 214.9217 186.2321 271.2550 56.3333 250.3508 86.1906

3 MHz, 20 dB 165.3758 141.4209 240.7092 75.3333 200.9458 81.1167

6 MHz, 10 dB 186.2845 164.3231 201.9512 15.6667 214.8825 69.3458

6 MHz, 15 dB 97.8087 80.3428 138.1789 37.0000 112.5307 39.5645

6 MHz, 20 dB 88.5297 76.6488 121.1963 32.6667 104.8480 38.4002

18 MHz, 10 dB 65.9942 62.9073 71.3262 5.3333 80.5357 28.9515

18 MHz, 15 dB 36.4768 31.4436 46.4768 10.0000 42.1810 14.2161

18 MHz, 20 dB 31.0005 26.1241 43.5005 12.5000 36.2925 13.1789

Gamma Cauchy Skew Normal

k θ x0 x0 γ ε ω α

3 MHz, 10 dB 1.8293 218.5861 35.4635 255.1701 157.2312 7.8047 460.6531 22.0759

3 MHz, 15 dB 2.3059 118.9593 59.3924 149.6727 97.2323 -8.8049 291.0944 13.1034

3 MHz, 20 dB 3.3574 75.2901 87.4027 125.2199 75.4973 -7.8158 223.5961 6.6584

6 MHz, 10 dB 1.6262 124.6714 16.4503 123.1369 76.2961 -2.1984 250.0558 25.8121

6 MHz, 15 dB 3.1079 44.3621 40.0645 73.5079 43.1600 -2.7027 128.6759 9.2918

6 MHz, 20 dB 2.7789 44.3847 34.8117 62.8002 39.7893 -4.2258 120.3271 9.0871

18 MHz, 10 dB 1.5013 47.5735 5.4280 40.0033 25.9687 -0.3029 91.3928 30.7650

18 MHz, 15 dB 2.4336 19.2980 10.4868 25.8598 15.5834 -1.1515 49.0366 11.7313

18 MHz, 20 dB 3.1141 14.2101 13.2506 22.1928 13.4942 -0.6399 41.0315 8.9932

Exponential Power Weibull Student’s T

µ α β λ k x0 µ σ ν

3 MHz, 10 dB 344.6760 377.0263 1.7178 439.5895 1.4121 34.4769 335.9047 256.7938 8.6152

3 MHz, 15 dB 185.0292 194.7289 1.3414 303.6402 1.5494 56.9182 187.9757 147.0928 5.2994

3 MHz, 20 dB 146.2444 148.9072 1.3526 272.8196 1.8079 76.5007 147.7933 113.1546 5.5679

6 MHz, 10 dB 142.1667 127.6808 1.0552 219.4651 1.2950 15.8511 147.7807 110.1232 3.2112

6 MHz, 15 dB 87.6869 87.7433 1.4021 152.6556 1.7883 37.4470 87.7994 64.9495 5.7504

6 MHz, 20 dB 76.1656 78.7187 1.3206 136.7144 1.6877 32.9822 77.9916 60.5710 5.3949

18 MHz, 10 dB 43.0000 33.0533 0.8440 76.5640 1.2220 5.3620 47.6102 36.4628 2.4806

18 MHz, 15 dB 29.9997 28.3169 1.1774 52.1488 1.5819 10.0888 30.5762 22.6813 3.8725

18 MHz, 20 dB 26.8222 27.0094 1.3240 49.2760 1.7827 12.6273 26.9512 20.3434 4.8274

Table A.7: Table of fitted parameter values to the data for the NLOS scenario in the
outdoor environment for different values of bandwidth and SNR.
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Normal Exponential Rayleigh

µ σ λ x0 σ x0

3 MHz, 10 dB 141.0880 83.8597 179.9777 34.5000 139.0840 36.8341

3 MHz, 15 dB 134.4610 84.8260 182.4610 48.0000 142.9242 49.0034

3 MHz, 20 dB 127.8426 86.2834 205.1804 72.3333 154.5571 72.9832

6 MHz, 10 dB 114.7762 78.3736 137.6093 22.8333 114.5949 27.0744

6 MHz, 15 dB 92.4429 71.9725 126.5917 34.1667 104.2194 36.1779

6 MHz, 20 dB 79.7302 63.4693 116.2318 33.6667 93.7506 36.6743

18 MHz, 10 dB 58.9226 50.0572 64.4226 5.5000 66.0687 19.9724

18 MHz, 15 dB 34.5445 29.4005 42.2066 7.6667 39.7132 13.3082

18 MHz, 20 dB 27.6532 23.5926 39.3198 11.6667 33.5354 13.4885

Gamma Cauchy Skew Normal

k θ x0 x0 γ ε ω α

3 MHz, 10 dB 25.9192 16.6235 289.7806 135.8982 59.7508 87.4652 99.5382 0.9122

3 MHz, 15 dB 30.2580 15.5454 335.9099 128.9771 59.9544 91.0788 95.2758 0.6941

3 MHz, 20 dB 77.7283 9.8156 635.1089 124.1223 60.7809 96.6458 91.7500 0.4710

6 MHz, 10 dB 3.0372 47.3603 29.0652 93.2533 50.4060 7.3216 132.9996 8.7093

6 MHz, 15 dB 3.1679 41.2453 38.2184 71.9217 42.9682 -2.0551 118.7852 8.1914

6 MHz, 20 dB 3.7928 33.0159 45.4941 62.0974 35.9810 -0.6836 102.4437 5.4622

18 MHz, 10 dB 1.7604 36.7692 5.8043 41.0499 23.6873 -0.0942 77.3867 21.6094

18 MHz, 15 dB 2.1942 19.5453 8.3416 24.1173 14.7741 -1.3592 46.4054 12.2534

18 MHz, 20 dB 3.1287 13.3052 13.9749 20.3542 13.1873 -1.8668 37.7894 7.1208

Exponential Power Weibull Student’s T

µ α β λ k x0 µ σ ν

3 MHz, 10 dB 145.3232 147.6429 5.3846 220.9358 2.5396 54.7207 141.0232 83.6138 169.9999

3 MHz, 15 dB 138.0467 150.5644 6.1648 224.7998 2.5596 64.7928 134.4143 84.5751 170.0000

3 MHz, 20 dB 130.2293 150.6183 4.7859 246.6367 2.7969 91.3753 127.8091 86.0124 170.0000

6 MHz, 10 dB 136.3641 143.1938 9.2901 156.2791 1.8450 23.8181 114.5455 78.0941 170.0000

6 MHz, 15 dB 98.3171 112.5864 2.5320 143.6923 1.8621 34.7842 92.1283 71.5750 169.9999

6 MHz, 20 dB 80.4839 91.2674 2.0672 129.4907 1.8947 35.0192 78.7723 62.1754 49.2731

18 MHz, 10 dB 46.0000 39.3256 1.0623 70.6348 1.3564 5.5665 48.7013 35.0999 3.6403

18 MHz, 15 dB 28.8337 28.9102 1.2600 47.1428 1.5148 7.8117 29.6434 22.5953 4.5742

18 MHz, 20 dB 26.0331 29.7386 1.6586 44.7270 1.7677 12.0609 25.5682 20.6388 8.3930

Table A.8: Table of fitted parameter values to the data for the NLOS scenario in the
highway environment for different values of bandwidth and SNR.
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Normal Exponential Rayleigh

µ σ λ x0 σ x0

3 MHz, 10 dB 15.0614 17.5841 68.9130 53.8333 50.4662 54.1085

3 MHz, 15 dB 14.8301 14.9148 48.1762 33.3333 35.7304 33.4490

3 MHz, 20 dB 15.3218 12.4925 52.5024 37.1667 38.2010 37.2382

6 MHz, 10 dB 14.9851 11.6048 30.8184 15.8333 23.4379 16.0632

6 MHz, 15 dB 15.3690 10.9025 29.5357 14.1667 22.3118 14.2412

6 MHz, 20 dB 15.0311 9.9126 28.3644 13.3333 21.2855 13.3922

18 MHz, 10 dB 14.6546 7.9239 25.1001 9.8333 18.2461 9.9025

18 MHz, 15 dB 14.6575 8.7444 26.3241 11.6667 19.6474 11.7164

18 MHz, 20 dB 14.1168 9.1409 29.2835 15.1667 21.7228 15.2124

Gamma Cauchy Skew Normal

k θ x0 x0 γ ε ω α

3 MHz, 10 dB 3167.3856 0.3128 975.7411 14.4656 9.6970 24.5605 19.9858 -0.7424

3 MHz, 15 dB 3086.8748 0.2687 814.6292 15.0318 8.9119 14.8288 14.9148 0.0001

3 MHz, 20 dB 1900.2358 0.2867 529.3782 15.5504 7.8930 15.3203 12.4925 0.0002

6 MHz, 10 dB 99.9831 1.1619 101.1870 13.5266 7.5456 5.9591 14.7017 1.1968

6 MHz, 15 dB 1515.0677 0.2800 408.8910 15.9791 7.1436 15.3684 10.9025 0.0001

6 MHz, 20 dB 1400.1992 0.2651 356.1582 14.9178 6.8409 15.0257 9.9126 0.0007

18 MHz, 10 dB 1892.2512 0.1824 330.4976 14.0830 5.4535 14.6538 7.9239 0.0001

18 MHz, 15 dB 3184.5271 0.1553 479.9051 14.9793 5.9183 14.6567 8.7444 0.0001

18 MHz, 20 dB 2637.2951 0.1780 455.3920 14.0165 6.2028 14.1159 9.1409 0.0001

Exponential Power Weibull Student’s T

µ α β λ k x0 µ σ ν

3 MHz, 10 dB 14.8283 20.5946 1.5096 87.7371 5.0261 65.7481 15.0450 15.9981 11.5032

3 MHz, 15 dB 14.8755 19.6715 1.7735 64.0008 4.3311 43.5554 14.8921 14.0953 18.6285

3 MHz, 20 dB 15.3214 17.7040 2.0081 60.9127 4.8740 40.6748 15.3159 12.1320 35.6030

6 MHz, 10 dB 15.3836 18.9259 2.9577 39.1434 3.3299 20.1296 14.9768 11.5557 170.0000

6 MHz, 15 dB 15.2859 17.7525 2.9319 37.0236 3.3986 17.8599 15.3690 10.8571 169.9914

6 MHz, 20 dB 15.0475 16.3854 3.1845 35.8014 3.6416 17.2165 15.0311 9.8738 170.0000

18 MHz, 10 dB 14.6544 13.2303 3.3533 30.5774 3.9336 13.0024 14.6559 7.8949 170.0000

18 MHz, 15 dB 14.4174 14.3190 3.0190 37.0973 4.4252 19.1233 14.6662 8.7082 170.0000

18 MHz, 20 dB 14.0554 14.8174 2.9053 36.8201 4.1265 19.2919 14.1194 9.1000 169.9908

Table A.9: Table of fitted parameter values to the data for the NLOS scenario in the
indoor environment for different values of bandwidth and SNR.


