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Abstract

Replay debugging systems enable the reproduction and

debugging of non-deterministic failures in production

application runs. However, no existing replay system

is suitable for datacenter applications like Cassandra,

Hadoop, and Hypertable. For these large scale, dis-

tributed, and data intensive programs, existing meth-

ods either incur excessive production overheads or don’t

scale to multi-node, terabyte-scale processing.

In this position paper, we hypothesize and empirically

verify that control plane determinism is the key to record-

efficient and high-fidelity replay of datacenter applica-

tions. The key idea behind control plane determinism is

that debugging does not always require a precise replica

of the original datacenter run. Instead, it often suffices

to produce some run that exhibits the original behavior

of the control-plane–the application code responsible for

controlling and managing data flow through a datacenter

system.

1 Introduction

The past decade has seen the rise of large scale,

distributed, data-intensive applications such as HDF-

S/GFS [15], HBase/Bigtable [9], and Hadoop/MapRe-

duce [10]. These applications run on thousands of nodes,

spread across multiple datacenters, and process terabytes

of data per day. Companies like Facebook, Google, and

Yahoo! already use these systems to process their mas-

sive data-sets. But an ever-growing user population and

the ensuing need for new and more scalable services

means that novel applications will continue to be built.

Unfortunately, debugging is hard, and we believe that

this difficulty has impeded the development of exist-

ing and new large scale distributed applications. A key

obstacle is non-deterministic failures–hard-to-reproduce

program misbehaviors that are immune to traditional

cyclic-debugging techniques. These failures often man-

ifest only in production runs and may take weeks to

fully diagnose, hence draining the resources that could

otherwise be devoted to developing novel features and

services [21]. Thus effective tools for debugging non-

deterministic failures in production datacenter systems

are sorely needed.

Replay-debugging technology (a.k.a, deterministic

replay) is a promising method for debugging non-

deterministic failures in production datacenters. Briefly,

a replay-debugger works by first capturing data from

non-deterministic data sources such as the keyboard and

network, and then substituting the captured data into sub-

sequent re-executions of the same program. These replay

runs may then be analyzed using conventional tracing

tools (e.g., GDB and DTrace [8]) or more sophisticated

automated analyses (e.g., race and memory-leak detec-

tion [REF], global predicates [13,17], and causality trac-

ing [12]).

1.1 Requirements

Many replay debugging systems have been built

over the years and experience indicates that they

are invaluable in reasoning about non-deterministic

failures [4, 7, 11, 13, 14, 16, 17, 19, 20, 23]. However,

no existing system meets the unique demands of the

datacenter environment.

Always-On Operation. The system must be on at

all times during production so that arbitrary segments of

production runs may be replay-debugged at a later time.

Unfortunately, existing replay systems such as li-

blog [14], VMWare [4], PRES [20] and ReSpec [16]

require all program inputs to be logged, hence incurring

high throughput losses and storage costs on multicore,

terabyte-quantity processing.

Whole-System Replay. The system should be able

to replay-debug all nodes in the distributed system, if
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desired, after a failure is observed.

Providing whole-system replay-debugging is chal-

lenging because datacenter nodes are often inaccessible

at the time a user wants to initiate a replay session. Node

failures, network partitions, and unforeseen maintenance

are usually to blame, but without the recorded informa-

tion on those nodes, existing systems may not be able to

provide replay.

High Replay Fidelity. No replay debugging sys-

tem can be considered useful if it cannot reproduce the

underlying errors leading to program failures.

Unfortunately, existing replay systems such as

ODR [5] (our prior work), ESD [23], and SherLog [22]

support efficient datacenter recording, but they make no

guarantees of the fidelity of reproduced runs – they may

or may not exhibit the underlying error that was origi-

nally observed.

1.2 Contributions and Non-Contributions

The contributions of this work are two fold.

A Hypothesis. First, we put forth the hypothesis

that control plane determinism is sufficient and neces-

sary for debugging datacenter applications. The key

observation behind control-plane determinism is that, for

debugging, we don’t need a precise replica of the origi-

nal production run. Instead, it often suffices to produce

some run that exhibits the original run’s control-plane

behavior. The control-plane of a datacenter system is the

code responsible for managing or controlling the flow

of data through a distributed system. An example is the

code for locating and placing blocks in a distributed file

system.

Supporting Evidence. Second, we back up the

above hypothesis with experimental evidence. In

particular, we show that, for datacenter applications, (1)

the control plane is considerably more prone to bugs

that the data-plane and (2) the data plane rather than the

control plane is responsible for almost all I/O consumed

and generated. Taken together, these results suggest that

by relaxing the determinism guarantees to control-plane

determinism, a datacenter replay system can meet all of

the aforementioned requirements.

While our goal is to advocate control plane deter-

minism, we do not discuss the mechanism for achieving

and implementing it in a real replay system. We defer

these details to the DCR system [6].

2 Overview

We present the central hypothesis of this work and then

describe the criteria that must be met to verify it.

2.1 Hypothesis: The Control Plane is Key

We hypothesize that, for debugging datacenter applica-

tions, a replay system need not produce a precise replica

of the original run. Rather, it generally suffices for it to

produce some run that exhibits the original control-plane

behavior.

The control-plane of a datacenter application is the

code that manages or controls data-flow. Examples

of control-plane operations include locating a particu-

lar block in a distributed filesystem, maintaining replica

consistency in a meta-data server, or updating routing

table entries in a software router. The control plane is

widely thought to be the most error-prone component of

datacenter systems. But at the same time, it is thought to

consume only a tiny fraction of total application I/O.

A corollary hypothesis is that datacenter debugging

rarely requires reproducing the same data-plane behav-

ior. The data-plane of a datacenter application is the code

that processes the data. Examples include code that com-

putes the checksum of an HDFS filesystem block or code

that searches for a string as part of a MapReduce job. The

data plane is widely thought to be the least error-prone

component of a datacenter system. At the same time, ex-

perience indicates that it is responsible for a majority of

datacenter traffic.

2.2 Testing Criteria

To show that our hypothesis holds, we must empirically

demonstrate two widely held but previously unproven

assumptions about the control and data planes.

Error Rates. First, we must show that control

plane rather than the data plane is by far the most error

prone component of datacenter systems. If the control

plane is the most error prone, then a control-plane

deterministic replay system will be able to reproduce a

majority of bugs. If the control plane is not, then such

a replay system will not be able to meet the “reproduce

most bugs” requirement, and thus will be of limited use

in the datacenter.

Data Rates. Second, we must show that the data

plane rather than the control plane is by far the most

data intensive component of datacenter systems. If so,

then a control plane deterministic replay system is likely

to incur negligible record mode overheads – after all, a

control plane deterministic system makes no attempt to
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record and replay the data plane. If, however, this does

not hold, then even control plane determinism is likely

to be too strong for the datacenter, and our hypothesis

will be falsified.

3 Classification

To verify our hypothesis, we must first classify program

code as belonging to either the control or data planes.

Achieving a perfect classification, however, is challeng-

ing because the notions of control and data planes are

tied to program semantics, and hence call for consider-

able developer effort and insight to distinguish between

the two types of code. Consequently, any attempt to man-

ually classify every source line of large and complex sys-

tems is likely to provide unreliable and irreproducible re-

sults.

Rather than expend considerable manual effort, we

employ a more reliable, semi-automated classification

method. This method a operates in two phases. In the

first phase, we manually identify and annotate user data.

By user data we mean any data inputted to the datacenter

application with semantics clear to the user and opaque

to the system. In the second phase, we automatically

identify the static program instructions that operate on

(i.e., are tainted by) the annotated user data. Any in-

structions tainted by data are classified as belonging to

the data plane; other instructions are classified as part of

the control plane.

3.1 Annotating User Data

To annotate user data we employ two source code anno-

tation functions: MARK CHANNEL and MARK MEMORY.

MARK CHANNEL(fd) take as input a file descriptor

for a file or socket. It’s most useful when all data trans-

fered on a particular file or socket channel is known to be

user data. For example, suppose we want to denote that

all data a Hypertable client reads from a database input

file should be marked as user data. Then we may do so

as follows:

LoadDataSource::LoadDataSource(

std::string fname, ...) {

m_fin.open(fname.c_str());

MARK_CHANNEL(m_fin.get_fd());

}

In the above example, we mark the data file being loaded

after it is opened. The annotation tells our classification

runtime that data returned by all subsequent transactions

(i.e., reads and writes) on the file descriptor should be

treater as user data.

MARK MEMORY(addr, len) takes as input a

memory region. It’s most useful when channel trans-

actions may contain either control or data plane infor-

mation. For example, if updates received by Hypertable

Range server are to the global table directory (META-

DATA table), then those updates are part of the control

plane–they operate on an internal, non-user table. But if

updates are to a user-created table, then they are part of

the data plane. The MARK MEMORY annotation allows us

to make the distinction as follows:

void RangeServer::update(

TableIdentifierT *table,

BufferT &buffer) {

const bool is_root =

strcmp(table->name,

"METADATA") == 0;

/* Data plane only if not a METADATA

update. */

if (!is_root) {

MARK_MEMORY(buffer.buf,

buffer.len);

}

...

In the above code, we mark the incoming data as user

data only if the target table is not the root (i.e., META-

DATA) table.

3.2 Tracking User Data Flow

Approach. We employ a simple dynamic taint flow anal-

ysis to track user data. We chose a dynamic rather than

a static approach for two reasons. First, we wanted ac-

curate results. Unfortunately, a static approach is prone

to false positives and/or negatives due to pointer aliasing

issues. Second, we wanted to track user data though the

entire application, including dynamically linked libraries

and any dynamically generated code. Many applications

employ both for control and data plane processing, and

ignoring them would likely pollute our results. Unfortu-

nately, both techniques have traditionally been difficult

for static analysis.

Of course, the main drawback of a dynamic taint

flow analysis is that it only gives you results for one

execution. This is problematic because if an instruction

isn’t executed in one run, then we have no way to

classify it. Also, it’s possible that even if an instruction

operated on tainted data in one run, it may not in another

run. We deal with these issues by performing the taint

on multiple executions and on a varied set of inputs.

Furthermore, we consider the instruction as part of
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the data plane only if it is consistently tainted across

executions.

Implementation. Our taint flow mechanism oper-

ates at the instruction level with the aid of the Valgrind

binary translation framework, in a manner most similar

to that of the Catchconv project [18]. Briefly, Valgrind

translates x86 into a minimalistic, RISC-like inter-

mediate language. We perform our analysis on this

intermediate language. The analysis tracks data at byte

granularity. We use a simple hash-table to remember

which bytes are and are not tainted by user data.

4 Evaluation

Here we evaluate the testing criteria for our hypothe-

sis (see Section 2.2) on real datacenter applications. In

short, we found that both clauses of the testing criteria

held true. In particular, we found that control plane code

is the most error prone (with an average 98% of all bugs

belonging to it), and that data plane code is the most data

intensive (accounting for as much as 99% of all applica-

tion I/O).

4.1 Setup

Applications. We test our hypothesis on two real-

world datacenter applications: Cloudstore [1] and

Hyptertable [2].

Cloudstore is a distributed filesystem written in 40K

lines of multithreaded C/C++ code. It consists of 3

sub-programs: the master server, slave server, and the

client. The master program consists mostly of control-

plane code: it maintains a mapping from files to loca-

tions and responds to file lookup requests from clients.

The slaves and clients have some control-plane code, but

mostly engage in control plane activities: the slaves store

and serve the contents of the files to and from clients.

Hypertable is a distributed database written in 40K

lines of multithreaded C/C++ code. It consists of 4 key

sub-programs: the master server, metadata server, slave

server, and client. The master and metadata servers

are largely control-plane in nature–they coordinate the

placement and distribution of database tables. The

slaves store and serve the contents of tables placed there

by clients, often without the involvement of the master

or the metadata server. The slaves and clients are thus

largely data-plane entities.

Workloads and Testbed. We chose the workloads

to mimic datacenter operation. Specifically, for Hy-

pertable, 2 clients performed concurrent lookups and

deletions to a 10 GB table of web data. Hypertable was

configured to use 1 master server, 1 meta-data server,

Code Size (Instructions)

Application Control (%) Data (%) Total

CloudStore

Master 100 0 120K

Slave 99 1 160K

Client 99 1 120K

Hypertable

Master 100 0 110K

Metadata 100 0 150K

Slave 99 1 180K

Client 99 1 130K

Figure 1: Plane code size for each application compo-

nent. As expected, the control plane accounts for almost

all of the code in an application.

and 1 slave server. For Cloudstore, we made 2 clients

concurrently get and put 10 GB gigabyte files. We used

1 master server and 1 slave server.

All applications were run on a 10 node cluster con-

nected via Gigabit Ethernet. Each machine in our cluster

operates at 2.0GHz and has 4GB of RAM. The OS used

was Debian 5 with a 32-bit 2.6.29 Linux kernel. The ker-

nel was patched to support DCR’s interpositioning hooks.

Our experimental procedure consisted of a warmup run

followed by 6 trials, of which we report only the aver-

age. The standard deviation of the trials was within three

percent.

4.2 Error Rates

Metrics. We gauge errors rates with two metrics. The

first metric, plane code size, is the number of instruc-

tions in the control or data plane of an application. It

indirectly measures the complexity and hence potential

for developer mistakes of a plane’s code. The second

metric, termed plane bug count, is the number of bug

reports encountered in each component over the system

development lifetime.

Method. Measuring plane size is straightforward.

We simply looked at the results of our classification

analysis (see Section 3). Measuring plane bug count

was more challenge because it required inspecting and

understanding all defects in the application’s bug report

database. For each defect, we isolated the relevant code

and then used our understanding of the report and our

code classification to determine if it was a control or

data plane issue.
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Reported Bugs

Application Control (%) Data (%) Total

Hypertable

Master 100 0 18

Metadata 100 0 12

Slave 94 6 32

Client - - 0

Figure 2: Reported bug count for each application com-

ponent classified into control and data plane bins. As

predicted, the control plane has the most bugs. Cloud-

Store numbers are not given because it does not appear

to have a bug report database.

4.2.1 Plane Code Size

Figure 1 gives the size in static instructions–an indicator

of program complexity–for the control and data planes.

At the high level, it conveys two points.

First, some application components such as the Hy-

pertable Master and Metadata are entirely composed of

control plane code. No measurements were needed for

them as these components were entirely control plane by

design–no user visible data flows through them.

Second, components such as the Hypertable Slave and

Client have some data plane code, but are still largely

control plane in nature. On the Hypertable client, for ex-

ample, the small amount of data plane code is responsi-

ble for loading and parsing user data. On the Hypertable

slave, a small amount of data plane code is needed to

parse incoming updates and hash row-keys into an inter-

nal key-value store.

4.2.2 Plane Bug Count

Figure 2 classifies application bugs into control and data

planes. At the high level it shows that most datacenter

applications bugs originate in the control plane.

To determine why the control plane was so error-

prone, we inspected the code to identify trends that

would explain the high error rate. The inspection re-

vealed two reasons for the error-prone nature of the con-

trol plane.

First, the control plane bugs tends to be complex–an

artifact of the need to efficiently control the flow of large

amounts of data. For example, Hypertable migrates por-

tions of database from node to node in order to achieve

an even data distribution. But the need to do so intro-

duced Hypertable issue 63 [3] — data corruption error

that happens when clients concurrently access a migrat-

ing table.

By contrast, the data plane tends to be simple and

leverages previously developed code bases (e.g., li-

I/O Bytes Consumed/Generated

Application Control (%) Data (%) Total

CloudStore

Master 100 0 128 MB

Slave 1 99 20.6 GB

Client 1 99 10.6 GB

Hypertable

Master 100 0 96 MB

Metadata 100 0 128 MB

Slave 1 99 20.5 GB

Client 1 99 10.2 GB

Figure 3: Input/output (I/O) rates of all application com-

ponents, each broken down by control and data planes.

For components with high data rates, almost all I/O is

generated and consumed by the data plane.

braries). Most often, it performs a serial operation on

a bag of bytes without extensive coordination with other

components. For example, a large part of a Hypertable’s

data plane is devoted to compressing and decompressing

a Hypertable cell-store. But this is a relatively simple op-

eration in that it involves invoking a well-test compres-

sion library routine.

4.3 Data Rates

Metric. We present the control and data plane in-

put/output (I/O) rates of each system component. Data

is considered input if the plane reads the data from a

communication channel. Data is considered output if the

plane writes the data to a communication channel. By

communication channel, we mean reads and writes to

file descriptors (e.g., those connect to the tty, a file, a

socket, or to a device).

Method. To measure the I/O rates, we interposed

on common inter-node communication channels. To

do so, we intercepted read and write system calls. If

the data being read/written was influenced/tainted by

user data, then we considered it data plane I/O plane;

otherwise it was treated as control plane I/O.

Results. Figure 3 gives the data rates for the con-

trol and data planes. At the high level, the results shows

that the data plane is by far the most data intensive

component. More specifically, the control plane code

accounts for at most 1% of total application I/O in

components that have a mix of control and data plane

code (e.g., Hypertable Slave and Client). Moreover,

in components that are exclusively control plane (e.g.,

the Hypertable Master), the overall I/O rate is orders of

magnitude smaller than those that have data plane code.
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5 Conclusion

A replay debugger for datacenter applications must

reproduce distributed system errors and provide

lightweight recording. In this paper, we’ve argued that

a datacenter replay system can do both by shooting for

control plane determinism–the idea that is suffices to

produce some run that exhibits the original run’s control

plane behavior. To support our argument, we provide

experimental evidence showing that the control plane

is responsible for most errors and that it operates at

low data rates. Taken together, these results support

our belief that control plane determinism can enable

practical datacenter replay.
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