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Abstract

Replay debugging systems enable the reproduction and

debugging of non-deterministic failures in production

application runs. However, no existing replay sys-

tem is suitable for datacenter applications like Cassan-

dra, Hadoop, and Hypertable. On these large scale,

distributed, and data intensive programs, existing re-

play methods either incur excessive production recording

overheads or are unable to provide high fidelity replay.

In this position paper, we hypothesize and empirically

verify that control plane determinism is the key to record-

efficient and high-fidelity replay of datacenter applica-

tions. The key idea behind control plane determinism is

that debugging does not always require a precise replica

of the original application run. Instead, it often suffices

to produce some run that exhibits the original behavior

of the control-plane–the application code responsible for

controlling and managing data flow through a datacenter

system.

1 Introduction

The past decade has seen the rise of large scale,

distributed, data-intensive applications such as HDF-

S/GFS [15], HBase/Bigtable [9], and Hadoop/MapRe-

duce [10]. These applications run on thousands of nodes,

spread across multiple datacenters, and process terabytes

of data per day. Companies like Facebook, Google, and

Yahoo! already use these systems to process their mas-

sive data-sets. But an ever-growing user population and

the ensuing need for new and more scalable services

means that novel applications will continue to be built.

Unfortunately, debugging is hard, and we believe that

this difficulty has impeded the development of exist-

ing and new large scale distributed applications. A key

obstacle is non-deterministic failures–hard-to-reproduce

program misbehaviors that are immune to traditional

cyclic-debugging techniques. These failures often man-

ifest only in production runs and may take weeks to

fully diagnose, hence draining the resources that could

otherwise be devoted to developing novel features and

services [22]. Thus effective tools for debugging non-

deterministic failures in production datacenter systems

are sorely needed.

Replay-debugging technology (a.k.a, deterministic

replay) is a promising method for debugging non-

deterministic failures in production datacenters. Briefly,

a replay-debugger works by first capturing data from

non-deterministic data sources such as the keyboard and

network, and then substituting the captured data into sub-

sequent re-executions of the same program. These re-

play runs may then be analyzed using conventional trac-

ing tools (e.g., GDB and DTrace [8]) or more sophis-

ticated automated analyses (e.g., race and memory-leak

detection, global predicates [13, 18], and causality trac-

ing [12]).

1.1 Requirements

Many replay systems have been built over the

years and experience indicates that they are in-

valuable in reasoning about non-deterministic fail-

ures [4, 7, 11, 13, 14, 17–19, 21, 24]. However, no

existing system meets the demands of the datacenter

environment.

Low Overhead Recording. A datacenter replay

system must be on at all times during production so

that arbitrary segments of production runs may be

replay-debugged at a later time.

Unfortunately, replay systems such as liblog [14],

VMWare [4], PRES [21] and ReSpec [17] require all

program inputs from across all nodes to be logged,

hence incurring high throughput losses and storage costs

on multicore, terabyte-quantity processing.

High Fidelity Replay. A datacenter replay system

should also be able to reproduce program execution

on all nodes in the distributed system, if needed, with

precision sufficient to isolate the root cause of the

execution failure.

Replay systems such as ODR [5] (our prior work),

ESD [24], and SherLog [23] support efficient datacen-

ter recording, but may take exponential time to gener-

ate a replay run (even for a single node), often preclud-

ing replay, let alone high-fidelity replay. Annotation-

based replay systems such as R2 [16] enable the devel-

oper to selectively trade off recording overhead and re-

play fidelity, but provide no assurance that the developer-

selected tradeoffs will enable isolation of the root cause.

1.2 Hypothesis: The Control Plane is Key

The contribution of this work is a hypothesis and its

experimental verification.
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The Hypothesis. We put forth the hypothesis that

control plane determinism is sufficient for debugging

datacenter applications. The key observation behind

control-plane determinism is that, for debugging, we do

not need a precise replica of the original production run.

Rather, it generally suffices to produce some run that

exhibits the original run’s control-plane behavior.

The control-plane of a datacenter application is the

code that manages or controls data-flow. Examples

of control-plane operations include locating a particu-

lar block in a distributed filesystem, maintaining replica

consistency in a meta-data server, or updating routing

table entries in a software router. The control plane is

widely thought to be the most error-prone component of

datacenter systems. But at the same time, it is thought to

consume only a tiny fraction of total application I/O.

A corollary hypothesis is that datacenter debugging

rarely requires reproducing the same data-plane behav-

ior. The data-plane of a datacenter application is the

code that processes the data. Examples include code that

computes the checksum of an HDFS filesystem block or

code that searches for a string as part of a MapReduce

job. The data plane is widely thought to be the least

error-prone component of a datacenter system. At the

same time, experience indicates that it is responsible for

a majority of datacenter traffic.

Supporting Evidence. We support the above hy-

pothesis with experimental evidence. In particular, we

show that, for datacenter applications, (1) the control

plane rather than the data plane is responsible for 99% of

all bugs in a datacenter application and (2) the data plane

rather than the control plane is responsible for 99% of all

I/O consumed and generated by a datacenter application.

Taken together, these results suggest that, by relaxing the

determinism guarantees control-plane determinism, a

replay system can provide both low-overhead recording

and high fidelity replay.

While our goal is to advocate control plane deter-

minism, we do not discuss the mechanism for achieving

it in a real replay system. We address these details in the

DCR datacenter replay system [6].

2 Testing the Hypothesis

We present the criteria for verifying our hypothesis and

then describe the central challenge in its verification.

2.1 Criteria and Implications

To show that our hypothesis holds, we must empirically

demonstrate two widely held but previously unproven

assumptions about the control and data planes.

Error Rates. First, we must show that the control

plane rather than the data plane is by far the most error

prone component of datacenter systems. If the control

plane is the most error prone, then a control-plane deter-

ministic replay system will have high replay fidelity–it

will be able to reproduce most application errors. If

not, then control plane determinism will have limited

use in the datacenter, and our hypothesis will be falsified.

Data Rates. Second, we must show that the con-

trol plane rather than the data plane is by far the least

data intensive component of datacenter systems. If so,

then a control plane deterministic replay system is likely

to incur negligible record mode overheads – after all,

such a system need not record data plane traffic [6]. If,

however, the control plane has high data rates, then it

is likely to be too expensive for the datacenter, and our

hypothesis will be falsified.

2.2 The Challenge: Classification

To verify our hypothesis, we must first classify program

instructions as control or data plane instructions. Achiev-

ing a perfect classification, however, is challenging be-

cause the notions of control and data planes are tied to

program semantics, and thus call for considerable de-

veloper effort and insight to distinguish between them.

Consequently, any attempt to manually classify every in-

struction in large and complex systems is likely to pro-

vide unreliable and irreproducible results.

To obtain a reliable classification with minimal man-

ual effort, we employ a semi-automated classification

method. This method operates in two phases. In the first

phase, we manually identify and annotate user data. By

user data we mean any data inputted to the datacenter ap-

plication with semantics clear to the user but opaque to

the system. In the second phase, we automatically iden-

tify the static program instructions that are tainted by the

annotated user data. Any instructions tainted by data are

classified as data plane instructions; the remaining are

classified as control plane instructions.

2.2.1 Annotating User Data

To annotate user data we employ two source code anno-

tation functions: MARK CHANNEL and MARK MEMORY.

MARK CHANNEL(fd) takes as input a file descriptor

for a file or socket. It’s most useful when all data trans-

fered on a particular file or socket channel is known to

be user data. For example, suppose we want to denote

that all data a Hypertable [2] client reads from a database

input file should be marked as user data. Then we may

do so as follows:

LoadDataSource::LoadDataSource(

std::string fname, ...) {

m_fin.open(fname.c_str());

MARK_CHANNEL(m_fin.get_fd());
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}

In the above example, the annotation tells our classifica-

tion runtime that data returned by all subsequent transac-

tions (i.e., reads and writes) on the recently opened file

descriptor should be treated as user data.

MARK MEMORY(addr, len) takes as input a

memory region. It’s most useful when channel trans-

actions may contain either control or data plane infor-

mation. For example, if updates received by Hypertable

Range server are to the global table directory (META-

DATA table), then those updates are part of the control

plane–they operate on an internal, non-user table. But if

updates are to a user-created table, then they are part of

the data plane. The MARK MEMORY annotation allows us

to make the distinction as follows:

void RangeServer::update(

TableIdentifierT *table,

BufferT &buffer) {

const bool is_root =

strcmp(table->name, "METADATA") == 0;

if (!is_root) {

MARK_MEMORY(buffer.buf, buffer.len);

}

...

}

In the above code, we mark the incoming data as user

data only if the target table is not the root (i.e., META-

DATA) table.

2.2.2 Tracking User Data Flow

We employ a simple instruction-level, dynamic taint flow

analysis [20] to track user data. We chose a dynamic

rather than a static approach for two reasons. First,

we wanted accurate results. Unfortunately, a static ap-

proach is prone to false positives and/or negatives due

to pointer aliasing issues. Second, we wanted to track

user data through the entire application, including dy-

namically linked libraries and any dynamically gener-

ated code. Many applications employ both for control

and data plane processing (e.g., Hadoop), and ignoring

them would likely pollute our results. Unfortunately,

both techniques have traditionally been difficult for static

analysis.

2.2.3 Classification Accuracy

Though we believe our method to be more reliable than

manual classification, it has two problems that may foil

its accuracy.

First, it is possible that we may fail to annotate some

user data entry points. As a result, some data plane

code will be erroneously classified as control plane code.

This means that if we observe a high control plane er-

ror rate, then all those errors may not stem from con-

trol plane code–some, perhaps a majority, may stem from

data plane code. We note that, in practice, there are only

a handful of user data entry points in a datacenter sys-

tem, and consequently, the possibility of such misclassi-

fication is low. We also note that results for control plane

data rates are sound even if there is misclassification, be-

cause data-plane misclassification can only increase the

control plane data rate.

The second limitation is that we perform a dynamic

rather than static analysis. This is problematic because,

if an instruction isn’t executed in one run, then we have

no way to classify it. We compensate for this problem by

performing the dynamic tainting on multiple executions

with a varied set of inputs, ultimately classifying only

those instructions executed in at least one of those runs.

Of course, it’s possible that an instruction’s classification

may vary from run to run. We workaround this issue by

considering the instruction as part of the control plane

only if it is consistently untainted across executions.

3 Evaluation

We evaluate our hypothesis on real datacenter applica-

tions per the criteria given in Section 2.1. In short, we

found that both clauses of the testing criteria held true.

That is, we found that control plane code is the most

complex and error prone (with a code coverage of 99%

and a 93% bug rate), and that data plane code is the

most data intensive (accounting for 99% of all applica-

tion I/O).

3.1 Setup

Applications. We test our hypothesis on two real-

world datacenter applications: Cloudstore [1] and

Hyptertable [2].

Cloudstore is a distributed filesystem written in 40K

lines of multithreaded C/C++ code. It consists of 3

sub-programs: the master server, slave server, and the

client. The master program maintains a mapping from

files to locations and responds to file lookup requests

from clients. The slaves and clients store and serve the

contents of the files to and from clients.

Hypertable is a distributed database written in 40K

lines of multithreaded C/C++ code. It consists of 4 key

sub-programs: the master server, metadata server, slave

server, and client. The master and metadata servers

coordinate the placement and distribution of database

tables. The slaves store and serve the contents of tables

placed there by clients.

Workloads and Testbed. We chose the workloads

to mimic datacenter operation. Specifically, for Hy-

pertable, 2 clients performed concurrent lookups and
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deletions to a 10 GB table of web data. Hypertable was

configured to use 1 master server, 1 meta-data server,

and 1 slave server. For Cloudstore, we made 2 clients

concurrently get and put 10 GB gigabyte files. We used

1 master server and 1 slave server.

3.2 Error Rates

Metrics. We gauge error rates with two metrics: plane

code size and plane bug count. Plane code size is the

number of static instructions in the control or data plane

of an application, as identified by our classifier (see Sec-

tion 2.2). Code size is an accurate approximation of code

error rate since it indirectly measures the code’s com-

plexity and thus its potential for defects. Plane bug count

is the number of bug reports encountered in each compo-

nent over the system’s development lifetime, and serves

as direct evidence of a plane’s error rate.

We measured plane code size by looking at the results

of our classification analysis (see Section 2.2) and

counting the number of static instructions executed by

each plane across all test inputs. We measured plane

bug count by inspecting and understanding all defects

in the application’s bug report database. For each

defect, we isolated the relevant code and then used our

understanding of the report and our code classification

to determine if it was a control or data plane issue.

Results. Figure 1(a) gives the measured size in

static instructions for the control and data planes, while

Figure 1(b) gives the number of bug reports for each

plane. At the high level, these figures convey two key

results.

First, almost all of an application’s code–99% on

average–is in the control plane. Components such as

the Hypertable Master and Metadata servers are entirely

control plane because they don’t access any user data;

their role is to mange the user data kept by the Range

server. More interestingly, those components that do deal

with user data (e.g., the Hypertable Range server) are

still largely control plane. This makes sense as, aside

from hashing row keys and compressing tables, most of

the Range server code is devoted to efficiently receiving,

maintaining, and serving table data.

The second result is that an average 93% of bug re-

ports stem from control plane errors. Our inspection of

the code revealed two reasons for this. First, the control

plane bugs tends to be complex–an artifact of the need to

efficiently control the flow of large amounts of data. For

example, Hypertable migrates portions of the database

from range server to range server in order to achieve an

even data distribution. But the need to do so introduced

Hypertable issue 63 [3] — a data corruption error that

happens when clients concurrently access a migrating ta-

ble.

I/O Bytes Consumed/Generated

Application Control (%) Data (%) Total

CloudStore

Master 100 0 252 MB

Slave 1 99 20.6 GB

Client 1 99 10.6 GB

Hypertable

Master 100 0 120 MB

Metadata 100 0 228 MB

Slave 1 99 20.5 GB

Client 1 99 10.3 GB

Figure 2: Input/output (I/O) traffic size in bytes broken

down by control and data planes. For application com-

ponents with high data rates, almost all I/O is generated

and consumed by the data plane.

The second reason is that much of the control plane

code tends to be new and written specifically for the

unique and novel needs of the application. Code for ta-

ble migration, for example, was not derived from an pre-

existing and well-tested code base or library. By contrast,

the data plane leverages previously developed code bases

(e.g., libraries). For example, a large part of a Hyper-

table’s data plane is devoted to compressing and decom-

pressing a Hypertable cell-store. But most of this effort

is undertaken by a well-tested library routine.

3.3 Data Rates

Metric. We measure the number of input/output (I/O)

bytes transferred by each plane. Data is considered

input if the plane reads the data from a communication

channel, and output if the plane writes the data to a

communication channel. By communication channel,

we mean reads and writes to file descriptors (e.g., those

connect to the tty, a file, a socket, or to a device). To

measure the amount of I/O, we interposed on common

inter-node communication channels via system call

interception. If the data being read/written was influ-

enced/tainted by user data, then we considered it data

plane I/O plane; otherwise it was treated as control plane

I/O.

Results. Figure 2 gives the data rates for the con-

trol and data planes. At the high level, the results shows

that the control plane is by far the least data intensive

component. More specifically, the control plane code

accounts for at most 1% of total application I/O in

components that have a mix of control and data plane

code (e.g., Hypertable Slave and Client). Moreover,

in components that are exclusively control plane (e.g.,

the Hypertable Master), the overall I/O rate is orders of

magnitude smaller than those that have data plane code.
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(a) Code Size (Instructions) (b) Reported Bugs

Application Control (%) Data (%) Total Control (%) Data (%) Total

CloudStore

Master 100 0 - - -

Slave 99 1 - - -

Client 99 1 - - -

Hypertable

Master 100 0 100 0 5

Metadata 100 0 100 0 4

Slave 99 1 94 6 46

Client 99 1 5 0 20

Figure 1: Plane (a) code size and (b) bug count. As expected, the control plane accounts for almost all of the code and

bugs in the datacenter application. CloudStore numbers are not given because it does not appear to have a bug report

database.

4 Conclusion

A replay debugger for datacenter applications must

reproduce distributed system errors and provide

lightweight recording. In this paper, we’ve argued that

a datacenter replay system can do both by shooting for

control plane determinism–the idea that is suffices to

produce some run that exhibits the original run’s control

plane behavior. To support our argument, we provided

experimental evidence suggesting that the control plane

is responsible for most errors and that it operates at

low data rates. Taken together, these results support

our position that control plane determinism can enable

practical datacenter replay.
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