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ABSTRACT
The rise of multicore processors and cloud computing is putting
enormous pressure on the software community to find solutions to
the difficulty of parallel and distributed programming. At the same
time, there is more—and more varied—interest in data-centric pro-
gramming languages than at any time in computing history, in part
because these languages parallelize naturally. This juxtaposition
raises the possibility that the theory of declarative database query
languages can provide a foundation for the next generation of par-
allel and distributed programming languages.

In this paper I reflect on my group’s experience over seven years
using Datalog extensions to build networking protocols and dis-
tributed systems. Based on that experience, I present a number of
theoretical conjectures that may both interest the PODS commu-
nity, and clarify important practical issues in distributed comput-
ing. Most importantly, I make a case for PODS researchers to take
a leadership role in addressing the impending programming crisis.

This is an extended version of an invited lecture at the ACM
PODS 2010 conference entitled “Datalog Redux: Experience and
Conjecture.” [31].

1. INTRODUCTION
This year marks the forty-fifth anniversary of Gordon Moore’s

paper laying down the Law: exponential growth in the density of
transistors on a chip. Of course Moore’s Law has served more
loosely to predict the doubling of computing efficiency every eigh-
teen months. This year is a watershed: by the loose accounting,
computers should be 1 Billion times faster than they were when
Moore’s paper appeared in 1965.

Technology forecasters appear cautiously optimistic that Moore’s
Law will hold steady over the coming decade, in its strict interpreta-
tion. But they also predict a future in which continued exponentia-
tion in hardware performance will only be available via parallelism.
Given the difficulty of parallel programming, this prediction has led
to an unusually gloomy outlook for computing in the coming years.

At the same time that these storm clouds have been brewing,
there has been a budding resurgence of interest across the software
disciplines in data-centric computation, including declarative pro-
gramming and Datalog. There is more—and more varied—applied
activity in these areas than at any point in memory.

The juxtaposition of these trends presents stark alternatives. Will
the forecasts of doom and gloom materialize in a storm that drowns
out progress in computing? Or is this the long-delayed cathar-
sis that will wash away today’s thicket of imperative languages,
preparing the ground for a more fertile declarative future? And

what role might PODS play in shaping this future, having sowed
the seeds of Datalog over the last quarter century?

Before addressing these issues directly, a few more words about
both crisis and opportunity are in order.

1.1 Urgency: Parallelism
I would be panicked if I were in industry.
— John Hennessy, President, Stanford University [34]

The need for parallelism is visible at micro and macro scales. In
microprocessor development, the connection between the “strict”
and “loose” definitions of Moore’s Law has been severed: while
transistor density is continuing to grow exponentially, it is no longer
improving processor speeds. Instead, chip manufacturers are pack-
ing increasing numbers of processor cores onto each chip, in re-
action to challenges of power consumption and heat dissipation.
Hence Moore’s Law no longer predicts the clock speed of a chip,
but rather its offered degree of parallelism. And as a result, tra-
ditional sequential programs will get no faster over time. For the
first time since Moore’s paper was published, the hardware com-
munity is at the mercy of software: only programmers can deliver
the benefits of the Law to the people.

At the same time, Cloud Computing promises to commoditize
access to large compute clusters: it is now within the budget of in-
dividual developers to rent massive resources in the worlds’ largest
computing centers. But again, this computing potential will go un-
tapped unless those developers can write programs that harness par-
allelism, while managing the heterogeneity and component failures
endemic to very large clusters of distributed computers.

Unfortunately, parallel and distributed programming today is chal-
lenging even for the best programmers, and unworkable for the
majority. In his Turing lecture, Jim Gray pointed to discouraging
trends in the cost of software development, and presented Auto-
matic Programming as the twelfth of his dozen grand challenges
for computing [25]: develop methods to build software with or-
ders of magnitude less code and effort. As presented in the Turing
lecture, Gray’s challenge concerned sequential programming. The
urgency and difficulty of his twelfth challenge has grown markedly
with the technology trends toward parallelism. Hence the spreading
cloud of doom and gloom.

1.2 Resurgency: Springtime for Datalog
In the spring time, the only pretty ring time
When birds do sing, hey ding a ding, ding;
Sweet lovers love the spring.
— Shakespeare

With these storm clouds on the horizon, it should be a matter
of some cheer for database theoreticians that Datalog variants, like



crocuses in the snow, have recently been seen cropping up outside
the walled garden of PODS. Datalog and related languages have
been proposed for use in a wide range of practical settings includ-
ing security and privacy protocols [36, 19, 78], program analysis
[42, 72, 27], natural language processing [20, 69], probabilistic
inference [7, 70], modular robotics [6], multiplayer games [73],
networking [45] and distributed systems [2]. The renewed interest
appears not to be the result of a coordinated effort, but rather (to hy-
bridize metaphors) a grassroots phenomenon arising independently
in different communities within computer science.

Over the past few years, my group has nurtured a patch of this
activity in the unlikely ground of Berkeley’s systems projects, with
a focus on inherently parallel tasks in networking and distributed
systems. The effort has been quite fruitful: we have demonstrated
full-featured Datalog-style implementations of distributed systems
that are orders of magnitude more compact than popular imper-
atively implemented systems, with competitive performance and
significantly accelerated software evolution [45, 2]. Evidence is
mounting that Datalog can serve as the rootstock of a much sim-
pler family of languages for programming serious parallel and dis-
tributed software. Encouraged by these results, we are cultivating
a new language in this style for Cloud Computing, which we call
Bloom1.

1.3 Synergy: The Long-Awaited Question

It shall be:
when I becloud the earth with clouds,
and in the clouds my bow is seen,
I will call to mind my covenant
that is between me and you and all living beings—all
flesh: never again shall the waters become a Deluge,
to bring all flesh to ruin!
– Genesis, 8:14-15 [23]

Though Gray speaks only vaguely about “non-procedural” lan-
guages in his Turing lecture, it is hard to imagine he did not have in
mind the success of SQL over COBOL as one model for progress2.
And parallelism has proved quite tractable in the SQL context. Re-
cently, David Patterson wrote soberly of the “Dead Computer So-
ciety” of parallel hardware vendors in the 1980’s [34], but notably
omitted the survivor from that era: parallel database pioneer Ter-
adata. It happens that the relational algebra parallelizes very nat-
urally over large datasets, and SQL programmers benefit without
modifications to their code. This point has been rediscovered and
amplified via the recent enthusiasm for MapReduce programming
and “Big Data,” which have turned data-parallelism into common
culture across computing. It seems that we are all database people
nowadays.

The Parallel Computing literature traditionally pooh-poohs these
examples as “embarrassingly parallel.” But should we really be
embarrassed? Perhaps after a quarter century of fighting the “hard”
problems of parallelism, the rational way forward is to start with an
“easy” kernel to parallelize—something like the relational algebra—
and then extend that kernel to more general-purpose computation.
As PODS veterans well know, database languages have natural
Turing-complete extensions (e.g., [10, 67]).
1In tribute to Gray’s twelfth challenge, our research project is
called BOOM: the Berkeley Orders Of Magnitude project. Bloom
is the language of BOOM. We hope BOOM and Bloom can be an
antidote to doom and gloom.
2Butler Lampson filled this gap in his follow-up article in the 50th

anniversary issue of J. ACM, though he questioned the generality
of declarative approaches [39].

This direction for tackling parallelism and distribution raises ques-
tions that should warm the heart of a database theoretician. How
does the complexity hierarchy of logic languages relate to parallel
models of computation? What are appropriate complexity models
for the realities of modern distributed systems, where computation
is cheap and coordination is expensive? Can the lens of logic pro-
vide better focus on what is “hard” to parallelize, what is “embar-
rassingly easy,” and what falls in between? And finally, a question
close to the heart of the PODS conference: if Datalog has been
The Answer all these years, is the crisis in parallel and distributed
programming The Question it has been waiting for?

I explore some of these issues below, by way of both experience
and conjecture.

2. BACKGROUND: DEDALUS

We work on the other side of time.
— Sun Ra

It has been seven years since my group began exploring the use
of recursive queries to implement systems, based on languages in-
cluding NDlog [46], Overlog [16], and SNLog [14]. But only in
the last twelve months have we settled on a Datalog variant that
cleanly captures what we see as the salient semantic issues for par-
allel and distributed computing. We call the language Dedalus, and
its key contribution is the use of time as an organizing principle
for distributed systems, rather than distance in physical space3 [4].
The design of Dedalus captures the main semantic reality of distri-
bution: two computers are effectively “distributed” if they cannot
directly reason about each other’s perception of time. The time di-
mension in Dedalus succinctly captures two important aspects of
time in distributed systems: intra-node atomicity and sequencing
of state transitions, and inter-node temporal relations induced by
the receipt of networked data.

Dedalus clarifies many issues that were semantically ambiguous
in our early work, and I will use it throughout this paper, even for
examples that predate the language. Before proceeding, I pause for
a casual introduction to Dedalus targeted at PODS readers familiar
with Datalog.

Dedalus is a simple temporal extension to stratified Datalog in
which each relation schema has a “timestamp” attribute in its right-
most position. For intuition, this attribute can be considered to
contain sequence numbers from a logical clock. The use of this
attribute will always be clear from context, so we can omit it from
the syntax of Dedalus predicates as we will see shortly.

There are three kinds of rules in Dedalus:

• Deductive rules, in which all predicates share the same vari-
able in the timestamp attribute. For such rules, we omit the
timestamps completely, and the result looks like traditional
Datalog. The first two rules of Figure 1 are deductive; all
predicates in those rules should be considered to have a vari-
able T in their missing rightmost position. Intuitively, they
express deduction within each timestep.

• Inductive rules have the same timestamp variable in all body
predicates, but the head’s timestamp variable is equal to the

3My student Peter Alvaro explains the name as follows: “Dedalus
is intended as a precursor language for Bloom in the BOOM
project. As such, it is derived from the character Stephen Dedalus
in James Joyce’s Ulysses, whose dense and precise chapters pre-
cede those of the novel’s hero, Leopold Bloom. The character
Dedalus, in turn, was partly derived from Daedalus, the greatest
of the Greek engineers and father of Icarus. Unlike Overlog, which
flew too close to the sun, Dedalus remains firmly grounded.” [4]



toggle(1) :- state(0).
toggle(0) :- state(1).
state(X)@next :- toggle(X).
announce(X)@async :- toggle(X).

toggle(1, T) :- state(0, T).
toggle(0, T) :- state(1, T).
state(X, S) :- toggle(X, T), succ(T, S).
announce(X, S) :- toggle(X, T), choice({X,T}, {S}).

Figure 1: A simple Dedalus program, written with syntactic sugar (left), and with standard Datalog notation (right).

successor of the body predicates’ timestamp variable. In this
case we omit the body predicates’ timestamp variable, and
mark the head predicate with the suffix @next. The third
rule of Figure 1 is inductive; all the body predicates have
an omitted rightmost variable T, the head has an omitted
rightmost variable S, and there is an implicit body predi-
cate succ(T, S). Intuitively, this rule says that the state
predicate at timestep T + 1 will contain the contents of
toggle from timestep T.

• Asynchronous rules are like inductive rules, except that the
head’s timestamp variable is chosen non-deterministically for
each binding of the body variables in time, using Greco and
Zaniolo’s choice construct [26]. We notate asynchronous
rules with the head suffix @async. The final rule of Fig-
ure 1 is asynchronous. It can be read akin to the induc-
tive rule case, but with a different implicit body predicate:
choice({X, T}, {S}), which indicates that for each
pair of assignments to variables {X, T}, a value S is non-
deterministically chosen. Intuitively, this syntax says that
announce tuples are copies of toggle tuples, but the
announce tuples contain (or “appear at”) a non-determi-
nistic timestep. Positive infinity is included in the domain
of timestamps, corresponding to the possibility of failure in
computing or communicating an asynchronous result. Most
useful programs constrain the head timestamp to be larger
than the body timestamp, but this is not a requirement of the
language. In Section 4.2 I return to the topic of Dedalus pro-
grams that can send messages into their own past.

Dedalus includes timestamps for three reasons: to capture state
visibility via timestamp unification, to capture sequential atomic
update via inductive rules, and to account for the unpredictable net-
work delays, failures and machine-clock discrepancies that occur in
distributed systems via asynchronous rules. I return to these issues
below, in contexts where the predecessors to Dedalus ran into dif-
ficulties.

3. EXPERIENCE

No practical applications of recursive query theory ...
have been found to date.
—Michael Stonebraker, 1998
Readings in Database Systems, 3rd Edition
Stonebraker and Hellerstein, eds. [33]

Over the last seven years we have implemented and published a
wide range of algorithms, protocols and complete systems specified
declaratively in Datalog-like languages. These include distributed
crawlers [17, 48], network routing protocols [49], overlay networks
including Chord [47], distributed Bayesian inference via message
passing on junction trees [7], relational query optimization [16],
distributed consensus (Paxos) and two-phase commit [3], sensornet
protocols [14], network caching and proxying [13, 15], file systems
and job schedulers [2].

Many of these efforts were justified in terms of radical reductions
in code size, typically orders of magnitude smaller than competing

imperative implementations. In some cases [46, 13, 15], the results
also demonstrated the advantages of automatic optimizations for
declarative programs.

As a student I had little love for Datalog, and it is tempting to
make amends by documenting my growing appreciation of the lan-
guage and its literature. But my learning process has been slow
and disorderly, and remains far from complete; certainly not a use-
ful organizing structure for sharing the experiences from my group.
Instead, this section is organized thematically. I start by describing
some general behaviors and design patterns we encountered, some
deficiencies of the languages we have struggled with, and implica-
tions of these for parallelism and distribution.

3.1 Recursion (Rewriting The Classics)
Our work on declarative programming began in reaction to the

Web, with its emphasis on large graphs and networks. As we began
working directly on this idea, we found that Datalog-style recursion
had natural applications and advantages in many settings. There is
no question in our minds today that 1980’s-era arguments against
the relevance of general recursion were short-sighted. Unfortu-
nately, there has been too little success connecting the dots between
potential and reality in this domain. Critical Web infrastructure
for managing large graphs is still written in imperative languages.
Closer to home, traditional RDBMS internals such as dynamic pro-
gramming are also coded imperatively. Part of our agenda has been
to simultaneously highlight the importance of recursion to prac-
titioners in the database field, and to highlight the importance of
declarative programming to practitioners in the systems field.

3.1.1 Finding Closure Without the Ancs
Classic discussions of Datalog start with examples of transitive

closure on family trees: the dreaded anc and desc relations that
afflicted a generation of graduate students4. My group’s work with
Datalog began with the observation that more interesting exam-
ples were becoming hot topics: Web infrastructure such as we-
bcrawlers and PageRank computation were essentially transitive
closure computations, and recursive queries should simplify their
implementation. To back up this claim, we began by building a
Deep Web data crawler using recursive streaming SQL in the Tele-
graph project [17]. Subsequently we built a distributed crawler for
the Gnutella peer-to-peer network as a cyclic dataflow of relational
algebra in the PIER p2p query engine [48]. Both of these exam-
ples were simple monotonic programs that accumulated a list of the
nodes reached from one or more starting points. We later built more
sophisticated distributed programs with transitive closure at their
core, including network routing protocols for Internet and wireless
settings [49, 46, 14], and distributed versions of Bayesian belief
propagation algorithms that pass weights along the edges [7]. As
expected, Datalog was an excellent language for expressing tran-
sitive closures and graph traversals, and these tasks were almost

4The tedium of tiresome table-names (l’ennui de l’entité) goes back
to the founders of Datalog; the original victims can be identified
by a same-generation query. However, victims often grow into
abusers—a form of transitive closure—and I confess to occasional
pedagogical lapses myself. This phenomenon is of course not lim-
ited to Datalog; any student of SQL can empathize.



trivial to code.
Building upon previous experience implementing RDBMS inter-

nals, my group found it relatively easy to build single-node imple-
mentations of the recursive query engines supporting these ideas.
But to move to a distributed setting, two issues remained to be
worked out: specification of distributed joins, and modifications
to recursive query evaluation to allow asynchronous streaming of
derivations across networks. These issues are discussed in Sec-
tion 3.2.

3.1.2 DP and Optimization: Datalog in the Mirror
Another recursive design pattern we saw frequently was Dy-

namic Programming (DP). Our first work in this area was mo-
tivated by the Systems community imperative to “sip your own
champagne”5: we wanted to implement a major part of our Over-
log runtime in Overlog. To this end we built a cost-based query
optimizer for Overlog named Evita Raced, itself written in Overlog
as a “metacompiler” allowing for program reflection6 [16]. Evita
Raced is an Overlog program that runs in a centralized fashion
without parallelism, and its DP kernel is quite similar to Greco and
Zaniolo’s general presentation of greedy search in extended Dat-
alog [26]. Evita Raced makes the connection between the System
R optimizer—a warhorse of the SIGMOD canon—and the compact
implementation of DP in stratified Datalog. If this had been demon-
strated in the 1980’s during the era of extensible query optimizer ar-
chitectures, it might have alleviated doubts about the utility of gen-
eralized recursion7. In addition to cost-based search via DP, Evita
Raced also uses Overlog to implement classic Datalog optimiza-
tions and analyses, including magic sets and stratification, which
are themselves based on simple transitive closures. The fact that
traversals of Datalog rule/goal graphs are not described in terms of
Datalog is also something of a pity, both in terms of conceptual el-
egance and compactness of code. But as a student of Datalog I am
sypathetic to the pragmatics of exposition: it is asking a lot of one’s
readers to learn about recursive query optimization via metacircular
logic programming8!

More recently, we used recursive SQL to implement the Viterbi
DP algorithm for probabilistic inference on Conditional Random
Fields, a technique commonly used in statistical Information Ex-
traction [70, 69]. This connection may be more surprising to database
researchers than to the machine learning community: at roughly the
same time as our work on distributed systems, researchers in AI
have been using logic and forward chaining to do efficient dynamic
programming and search [20, 21].

Moving to a distributed setting, the main challenge that arises
from Dynamic Programming is the handling of stratified aggrega-
tion (minima and maxima, etc.) across machines. I revisit this issue
in Section 3.4.3.

3.2 Space, Communication and Synchrony

5This is a more palatable (and self-congratulatory) version of the
phenomenon sometimes called dogfooding [74].
6As Tyson Condie notes in his paper, the name “Evita Raced” is it-
self a reflection on our work: the imperfection in the name’s mirror-
ing captures the imperfect declarativity of Overlog, subsequently
addressed in Dedalus.
7In his influential work on this topic, Guy Lohman makes an in-
triguing reference to logic programming, but then steps away from
the idea, contrasting the deduction of “relations” from the deduc-
tion of “operators.” [43]
8The NAIL! implementers mention using CProlog to generate
rule/goal graphs for Datalog, but present imperative pseudocode
for their algorithms [55].

Much of our work has been focused on using Datalog-like lan-
guages for networking and distributed systems. This led us to a
series of designs to address spatial partitioning and network com-
munication in languages such as Overlog. Also inherent in these
languages was the notion of network delay and its relationship to
asynchronous evaluation.

3.2.1 Distributed State: Network Data Independence
One of our first extensions of Datalog was to model the partition-

ing of relations across machines in the style of parallel databases.
As a matter of syntax, we required each relation to have a distin-
guished location specifier attribute. This attribute (marked with the
prefix ‘@’) had to be from the domain of network addresses in the
system. Using this notation, a traditional set of network neighbor
tables at each node can be represented by a global relation:

link(@Src, Dest, Weight)}

The location specifier in this declaration states that each tuple is
stored at the network address of the source machine, leading to an
interestingly declarative approach to networking. Location speci-
fiers simply denote where data must be stored; communication is
induced automatically (and flexibly) to achieve this specification.
As one example, consider a simple version of a multicast protocol
that sends messages to designated groups of recipients:

received(@Node, Src, Content)@async
:- msg(@Src, GroupID, Content),

members(@Src, GroupID, Node).

The simplicity here comes from two features: representing mul-
ticast group lookup as a relational join, and the bulk specifica-
tion of message shipping to all recipients via a single head vari-
able @Node. Note also that this rule must be asynchronous due
to the communication: we cannot say when each message will be
received.

As a richer example, consider the inductive rule in path-finding:

path(@Src, Dest)@async
:- link(@Src, X), path(@X, Dest).

Here, the unification in the body involves a variable X that is not a
location specifier in the first predicate of the rule body; as a result,
communication of some sort is required to evaluate the body. That
communication can happen in at least two ways: (1) link tuples can
be passed to the locations in their X values, and resulting join tuples
shipped to the values in their Src attribute, or (2) the rule can be
rewritten to be “left-recursive”:

path(@Src, Dest)@async
:- path(@Src, X), link(@X, Dest).

In this case path tuples can be sent to the address in their X attribute,
joined with link tuples there, and the results returned to the address
in their Src attribute. As it happens, evaluating these two pro-
grams in the standard left-to-right order corresponds to executing
two different well-known routing protocols, one used in Internet in-
frastructure and another common in wireless communication [48].
Raising the abstraction of point-to-point communication to join
specification leads to a wide range of optimizations for rendezvous
and proxying [13, 15]. This thrust is reminiscent of the shift from
navigational data models to the relational model, but in the network
routing domain—an increasingly attractive idea as Internet devices
and subnets evolve quickly and heterogeneously [30].

We considered this notion of Network Data Independence to be
one of the key contributions we were able to bring to the Network-
ing research community. On the other hand, as I discuss in Sec-
tion 3.5.2, the global database abstraction inherent in this syntax
caused us difficulty in a more general setting of distributed systems.



q(V,R)@next :- q(V,R), !del_q(V,R).
qmin(V, min<R>) :- q(V,R).
p(V,R)@next :- q(V,R), qmin(V,R).
del_q(V,R) :- q(V,R), qmin(V,R).

Figure 2: A queue implementation in Dedalus. Predicate q rep-
resents the queue; items are being dequeued into a predicate p.
Throughout, the variable V is a value being enqueued, and the
variable R represents a position (or priority) in the queue.

3.2.2 Embracing Time, Evolving State
Prior to the development of Dedalus, we had significant prob-

lems modeling state updates in our languages. For example, Over-
log provided an operational model of persistent state with updates,
including SQL-like syntax for deletion, and tuple “overwrites” via
primary key specifications in head predicates. But, unlike SQL,
there was no notion of transactions, and issues of update visibility
were left ambiguous. The lack of clear update semantics caused us
ongoing frustration, and led to multiple third-party efforts at clar-
ifying our intended operational semantics by examining our inter-
preter, P2, more closely than perhaps it merited [57, 53].

An example of the difficulty of state update arose early in mod-
eling the Symphony distributed hash table [52]. In Symphony, the
asymptotic structure of small-world networks is simulated in prac-
tice by constraints: each new node tries to choose log n neighbors
at random, subject to the constraint that no node can have more
than 2 log n neighbors. A simple protocol ensures this constraint:
when a node wishes to join the network, it ships link establishment
requests to log n randomly chosen nodes. Each recipient responds
with either an agreement (establishing a bidirectional link), or a
message saying it has reached its maximum degree. The recipient
logic for a successful request requires a read-only check (counting
the size of its neighbor table), and two updates (adding a new edge
to the neighbor table, and adding a response tuple to the network
stream). The check and the updates must be done in one atomic
step: if two such requests are handled in an interleaved fashion at a
node with 2 log n− 1 neighbors, they can both pass the check and
lead to a violation of the maximum-degree constraint.

One solution to this “race condition” is to have the language run-
time implement a queue of request messages at each recipient, de-
queuing only one request at a time into the “database” considered
in a given Overlog fixpoint computation. We implemented this
approach in the P2 Overlog interpreter, and a similar approach is
taken in the recent Reactor programming language [22]. But the
use of an operational feature outside the logic is unsatisfying, and
forces any program-analysis techniques to rely on operational se-
mantics rather than model- or proof-theoretic arguments.

It is not immediately clear how to express a queue in Datalog,
and our search for a suitably declarative solution to such update
problems led to the design of Dedalus. The problem can be solved
via the Dedalus timestamp convention, as shown in Figure 2. The
first rule of Figure 2 is the Dedalus boilerplate for “persistence” via
induction rather than a storage model. It asserts persistence of the
head predicate q across consecutive timesteps, except in the pres-
ence of tuples in a designated “deletion” predicate del_q. The ex-
istence of a deletion tuple in timestep N breaks the induction, and
the tuple no longer appears in the predicate beginning in timestep
N + 1.

The second rule identifies the minimum item in the queue.
The third and fourth rules together atomically dequeue the mini-

mum item in a single timestep, placing it (ephemerally) in predicate

p. This pair of rules illustrates how multiple updates are specified
to occur atomically in Dedalus. Recall that in all Dedalus rules
there is an implicit but enforced unification of all body predicates
on the (omitted) timestamp attribute: this enforcement of simul-
taneity ensures that exactly one state of the database (one times-
tamp) is “visible” for deduction. Inductive rules ensure that all
modifications to the state at timestep N are visible atomically in
the unique successor timestep N +1. In Figure 2, the insertion into
the relation p via the third rule, and the breaking of the induction
in q via the last and first rules occur together atomically.

This queue example provides one declarative solution to opera-
tional concurrency problems in Overlog. But many other such solu-
tions can be expressed in Dedalus. The point is that by reifying time
into the language, Dedalus allows programmers to declare their de-
sires for concurrency and isolation in the same logic that they use
for other forms of deduction. Timestamp unification and the infi-
nite successor function serve as a monotonic, stratifying construct
for treating isolation at its core: as a constraint on data dependen-
cies. We were not the first to invent this idea (Starlog and Statelog
have related constructs for time and state modification [50, 41]).
But we may be the most enthusiastic proponents of its utility for
reasoning about parallel and distributed programming, and the role
of time in computation. I return to this topic in the Conjectures of
Section 4 below.

3.3 Events and Dispatch
The crux of our work has been to apply declarative database

metaphors and languages to more general-purpose programs. This
required us to wrestle with program features that have not tradition-
ally been modeled in databases, including communication and task
management. Both of these features fell out relatively cleanly as
we developed our systems.

3.3.1 Ephemera: Timeouts, Events, and Soft State
A central issue in distributed systems is the inability to establish

the state of a remote machine. To address this limitation, distributed
systems maintain evidence of the liveness of disparate nodes via
periodic “heartbeat” messages and “timeouts” on those messages.
This design pattern has been part of every distributed algorithm
and system we have built. To support it, we needed our languages
to capture the notion of physical clocks at each node.

Early on, we incorporated the notion of physical time as a re-
lation in our languages. In Overlog we provided a built-in predi-
cate periodic that could be declared to contain a set (possibly
infinite) of tuples with regularly-spaced wall-clock times; the P2
runtime for Overlog would cause these tuples to “appear” in the
dataflow of the query engine at the wall-clock times they contained.
We would use this predicate to drive subsequent tuple derivations,
for example the generation of scheduled heartbeat messages. Tu-
ples in Overlog’s periodic table were intended to be “ephemeral
events”, formed to kick off a computation once, and then be “for-
gotten.”

Ephemeral state is often desired in network protocols, where
messages are “handled” and then “consumed.” A related pattern
in networking is soft state maintenance, a loosely-coupled protocol
for maintaining caches or views across machines. Consider a situ-
ation where a receiver node is caching objects (e.g., routing table
entries) known at some sender node. The sender and receiver agree
upon a time-to-live (TTL) for this “soft” state. The sender must
try to send “refresh” messages—essentially, per-object heartbeat
messages—to the receiver before the TTL expires. Upon receipt,
the receiver resets the TTL of the relevant object to the agreed-upon
maximum; in the absence of a refresh within the TTL, the receiver



deletes the object.
While these are common patterns in networking, their inclusion

in Overlog complicated our language semantics. We included per-
sistence properties as an aspect of Overlog’s table declaration: ta-
bles could be marked as persistent, soft-state (with a fixed TTL) or
as event tables (data streams). This feature introduced various sub-
tleties for rules that mixed persistent predicates with soft state or
event predicates [44]. Consider an Overlog rule for logging events:
it has a persistent table in the head that represents the log, and an
ephemeral stream of events in the body. But for such an Over-
log rule, what does it mean when an ephemeral body tuple “disap-
pears”? We would like the logged tuple in the head to remain, but
it is no longer supported by an existing body fact.

Dedalus clears up the confusion by treating all tuples as ephemeral
“events.” Persistence of a table is ensured by the deduction of new
(ephemeral) tuples at each timestep from the same tuples at the pre-
ceding timestep, as in the first rule of Figure 2 above9. Ambiguous
“race conditions” are removed by enforcing the convention of unifi-
cation on timestamp attributes. Soft state can be achieved by mod-
ifying the persistence rules to capture a wall-clock time attribute of
tuples in soft-state tables (via join with a built-in wallclock-time re-
lation), and by including a TTL-checking clause in the persistence
rule as follows:

q(A, TTL, Birth)@next :-
q(A, TTL, Birth),!del_q(A),
now() - Birth < TTL.

In this example, now() returns the current wall-clock time at the
local node, and can be implement as a foreign function in the spirit
of LDL [12].

Having reified time into an attribute in Dedalus, any ambiguities
about persistence that were inherent in Overlog are required to be
explicit in a programmer’s Dedalus specification. There is no need
to resort to operational semantics to explain why a tuple “persists,”
“disappears,” or is “overwritten” at a given time: each Dedalus tu-
ple is grounded in its provenance. All issues of state mutation and
persistence are captured within that logical framework.

3.3.2 Dispatch as Join: A Third Way
At the heart of any long-running service or system is a dispatch-

ing model for the management of multiple tasks. There are two
foundational design patterns for task dispatch: concurrent processes
and event loops. In a classic paper, Lauer and Needham demon-
strate a duality between these patterns [40], but in applied settings
in the last decade there has been significant back-and-forth on the
performance superiority of one model or the other (e.g., [71, 68]).

We found ourselves handling this issue with a third design pat-
tern based on dataflow. Our crawlers specified dispatch via the
streaming join of an event table and a persistent system-state ta-
ble. To illustrate, consider the simple example of Figure 3, which
handles service request tuples with parameter P. At the timestep
when a particular request arrives, it is recorded in the pending re-
quests table, where it persists until it receives a matching response.
The invocation of service_in is specified to happen at the same
atomic timestep as the request arrival; it is evaluated by an asyn-
chronous external function call that will eventually place its re-
sults in the relation service_out. Because this computation is
asynchronous, the system need not “wait” for results before begin-
ning the next timestep. This approach follows the common model
of lightweight event handlers. As service_out results arrive
9An intelligent evaluation strategy for this logic should in most
cases use traditional storage technology rather than re-deriving tu-
ples each timestep.

pending(Id, Sender, P) :-
request(Id, Sender, P).

pending(Id, Sender, P)@next :-
pending(Id, Sender, P),
!response(Id, Sender, _).

service_out(P, Out)@async :-
request(Id, Sender, P),
service_in(P, Out).

response(Sender, Id, O) :-
pending(Id, Sender, P),
service_out(P, O).

Figure 3: An asynchronous service

(likely in a different order than their input), they need to be looked
up in the “rendezvous buffer” of pending requests to be routed
back to the caller.

Evaluating this logic requires nothing more than the execution of
a number of pipelined join algorithms such as that of Wilschut and
Apers [75]. The application of pipelining joins to asynchronous
dispatch was first explored in database literature for querying re-
mote services on the Web [24, 62]. But the implication is much
broader: any server dispatch loop can be coded as a few simple
joins in a high-level language. This data-centric approach paral-
lelizes beautifully (using a hash of Id as a location specifier), it
does not incur the context-switching overhead associated with the
process model, nor does it require the programmer to write ex-
plicit logic for state loops, event handling, and request-response
rendezvous.

Moreover, by writing even low-level tasks such as request dis-
patch in logic, more of the system can enjoy the benefits of higher
level reasoning, including simplicity of specification, and automatic
query optimization across multiple software layers. For example,
application logic that filters messages can be automatically merged
into the scheduler via “selection pushdown” or magic sets rewrites,
achieving something akin to kernel packet filters without any pro-
grammer intervention. Scheduling can be easily spread across mul-
tiple nodes, with task and data partitioning aligned for locality in a
straightforward manner. It has yet to be demonstrated that the inner
loop of a dispatcher built on a query engine can compete for perfor-
mance with the best implementations of threads or events. I believe
this is achievable. I also believe that optimization and paralleliza-
tion opportunities that fall out from the data-centric approach can
make it substantially out-perform the best thread and event pack-
ages.

3.4 Parallel and Distributed Implications
Having discussed our experience with these design patterns in

some detail, I would like to step back and evaluate the implications
for Datalog-like languages in parallel and distributed settings.

3.4.1 Monotonic? Embarrassing!
The Pipelined Semi-Naive (PSN) evaluation strategy [46] lies

at the heart of our experience running Datalog in parallel and dis-
tributed settings. The intuition for PSN comes from our crawler
experience. The basic idea in the crawlers was to act immediately
on the discovery a new edge in two ways: add its endpoints to the
table of nodes seen so far, and if either endpoint is new, send a re-
quest to probe that node for its neighbors in turn, producing more
new edges.

It should be clear that this approach produces a correct traversal
of the network graph regardless of the order of node visits. But



it is a departure from classical semi-naive evaluation, which pro-
ceeds in strict rounds corresponding to a breadth-first traversal of
the graph. The need to wait for each level of the traversal to com-
plete before moving on to the next requires undesirable (unaccept-
able!) coordination overhead in a distributed or parallel setting.
Moreover, it is unnecessary: in monotonic programs, deductions
can only “accumulate,” and need never be postponed. PSN makes
this idea work for general monotonic Datalog programs, avoid-
ing redundant work via a sequencing scheme borrowed from the
Urhan-Franklin Xjoin algorithm [64]. The result is that monotonic
(sub)programs can proceed without any synchronization between
individual deductions, and without any redundant derivations. Sim-
ply put, PSN makes monotonic logic embarrassingly parallel. This
statement is significant: a large class of recursive programs—all of
basic Datalog—can be parallelized without any need for coordina-
tion! This simple point is at the core of the Conjectures in Section 4
below.

As a side note, this insight appears to have eluded the MapRe-
duce community as well, where join is necessarily a blocking oper-
ator. The issue that arises in MapReduce results from an improper
conflation of a physical operation (repartitioning data) with a non-
monotonic functional operation (Reduce). In Google’s MapReduce
framework, the only way to achieve physical network repartitioning—
a key component to parallel joins—is to use a Reducer. The frame-
work assumes Reducers need to see all their inputs at once, so it in-
troduces a parallel barrier: no node in the system may begin Reduc-
ing until all the Map tasks are complete. This defeats the pipelining
approach of Wilschut and Apers, which would otherwise perform
the monotonic logic of join using physical network partitioning as
a primitive. A clean implementation should be able to choose be-
tween the efficiency of pipelining and the simple fault-tolerance
that comes from materialization, without tying the decision unnec-
essarily to the programming model.

3.4.2 Monotonic? Eventually Consistent!
A related feature we exploited in our crawlers was to accomodate

“insertions” to the database via simple ongoing execution of PSN
evaluation. The goal, formalized by Loo [46], was to have an even-
tually consistent semantics for the links and paths in the graph: in
a quiescent database without communication failure, the set of de-
rived data across all machines should eventually reach a consistent
state. It is easy to achieve this consistency for monotonic insertion
of edges into a crawler. When a new edge is added, paths in the
graph radiating out from the new edge can be crawled and added
to the transitive closure. When edges cease to arrive, this process
eventually leads to a consistent transitive closure. This approach
can be seen as a materialized view scheme for transitive closure,
but in effect it is no different than the de novo PSN query evalua-
tion scheme sketched above: updates simply play the role of edges
that “appear very late” in the evaluation strategy.

More generally, “monotonic updates” (i.e. “appends”) to a mono-
tonic program guarantee eventual consistency. And this result can
be achieved without any redundant work, by simply leaving the
standard pipelined query-processing algorithm running indefinitely.

Note that in Dedalus, non-monotonic updates (deletion, over-
writing) are expressed by non-monotonic programs: the negated
del clause in a persistence rule such as the one in Figure 2. A
monotonic Dedalus program can persist appends via a simpler rule:

p(X)@next :- p(X).

But modeling deletion or overwrite requires negation. Hence using
Dedalus we can simply speak of whether a program is monotonic
or not; this description includes the monotonicity of its state ma-

nipulation. This point informs much of the discussion in Section 4.

3.4.3 Counting Waits; Waiting Counts
If coordination is not required for monotonic programs, when is

it required? The answer should be clear: at non-monotonic stratifi-
cation boundaries. To establish the veracity of a negated predicate
in a distributed setting, an evaluation strategy has to start “counting
to 0” to determine emptiness, and wait until the distributed counting
process has definitely terminated. Aggregation is the generalization
of this idea.

It is tricky to compute aggregates in a distributed system that can
include network delays, reordering, and failures. This problem has
been the topic of significant attention in the last decade [51, 65,
35, 56], etc.) For recursive strata that span machines, the task is
even trickier: no node can establish in isolation that it has fully
“consumed” its input, since recursive deductions may be in flight
from elsewhere.

In order to compute the outcome of an aggregate, nodes must
wait and coordinate. And the logic of the next stratum of the pro-
gram must wait until the coordination is complete: in general, no
node may start stratum N + 1 until all nodes are known to have
completed stratum N . In parallel programming parlance, a strati-
fication boundary is a “global barrier.” More colloquially, we can
say that counting requires waiting.

This idea can be seen from the other direction as well. Coor-
dination protocols are themselves aggregations, since they entail
voting: Two-Phase Commit requires unanimous votes, Paxos con-
sensus requires majority votes, and Byzantine protocols require a
2/3 majority. Waiting requires counting.

Combining this discussion with the previous two observations,
it should be clear that there is a deep connection between non-
monotonic reasoning and parallel coordination. Monotonic rea-
soning can be done without any coordination among nodes; non-
monotonic reasoning in general requires global barriers. This line
of thought suggests that non-monotonicity—a property of logic
programs that can sometimes be easily identified statically—is key
to understanding the limits of parallelization. I return to this point
in the Conjectures section.

3.4.4 Unstratifiable? Spend Some Time.
The Dedalus state-update examples presented earlier show how

the sequentiality of time can be used to capture atomic updates and
persistence. Time can also be used to make sense of otherwise am-
biguous, unstratifiable programs. Consider the following program,
a variation on Figure 1 that toggles the emptiness of a predicate:

state(X)@next :- state(X), !del_state(X).
state(1) :- !state(X).
del_state(X) :- state(X)

The first rule is boilerplate Dedalus persistence. The last two rules
toggle the emptiness of state. The second rule is clearly not strati-
fiable. But if we make the second rule inductive, things change:

state(1)@next :- !state(X).

In this revised program, the state table only depends negatively on
itself across timesteps, never within a single timestep. The result-
ing program has a unique minimal model, which has 1 in the state
relation every other timestep.10

10Technically, the minimal model here is infinitely periodic, but
with a minimal number of distinguished states (two). Capturing
this point requires a slightly modified notion of safety and mini-
mality [41].



If we expand the syntax of this Dedalus program with all the
omitted attributes and clauses, we can see that it provides what
Ross defined as Universal Constraint Stratification [63] by virtue
of the semantics of the successor function used in time. Universal
Constraint Stratification is a technique to establish the acyclicity of
individual derivations by manipulating constraints on the semantics
of functions in a program. In this program, the successor function
ensures that all derivations of state produce monotonically increas-
ing timesteps, and hence no derivation can cycle through negation.

Many programs we have written—including the queue exam-
ple above—are meaningful only because time flies like an arrow:
monotonically forward11. Again, this temporal construct hints at a
deeper point that I will expand upon in Section 4.3: in some cases
the meaning of a program can only be established by “spending
time.”

3.5 Gripes and Problems
Datalog-based languages have enabled my students to be very

productive coders. That said, it is not the case that they have always
been happy with the languages at hand. Here I mention some of the
common complaints, with an eye toward improving them in Bloom.

3.5.1 Syntax and Encapsulation
The first frustration programmers have with Datalog is the diffi-

culty of unifying predicates “by eyeball,” especially for predicates
of high arity. Off-by-one errors in variable positions are easy to
make, hard to recognize, and harder to debug. Code becomes bur-
densome to read and understand because of the effort involved in
visually matching the index of multiple variables in multiple lists.

Datalog often requires redundant code. Disjunction, in our Dat-
alog variants, involves writing multiple rules with the same head
predicate. Conditional logic is worse. Consider the following ex-
ample comparing a view of the number of “yes” votes to a view of
the total number of votes:

outcome(’succeed’)
:- yes(X), total(Y), X > Y/2.

outcome(’fail’)
:- yes(X), total(Y), X < Y/2.

outcome(’tie’)
:- yes(X), total(Y), X = Y/2.

Not only is this code irritatingly chatty, but the different “branches”
of this conditional expression are independent, and need not appear
near each other in the program text. Only programmer discipline
can ensure that such branches are easy to read and maintain over
the lifetime of a piece of software.

Finally, Datalog offers none of the common constructs for modu-
larity: variable scoping, interface specification, encapsulation, etc.
The absence of these constructs often leads to disorganized, redun-
dant code that is hard to read and evolve.

Many of these gripes are addressable with syntactic sugar, and
some Datalog variants offer help [5]. One observation then is that
such sugar is very important in practice, and the academic syntax
of Datalog has not improved its odds of adoption.

3.5.2 The Myth of the Global Database
The routing examples discussed above illustrate how commu-

nication can be induced via a partitioned global database. The
metaphor of a global database becomes problematic when we con-
sider programs in which semantics under failure are important. In

11Groucho Marx’s corollary comes to mind: “Time flies like an ar-
row. Fruit flies like a banana.”

practice, individual participating machines may become discon-
nected from and reconnected to the network over time, taking their
partitions with them. Moreover time (and hence “state”) may evolve
at different rates on different nodes. Exposing a unified global
database abstraction to the programmer is therefore a lie. In the
context of routing it is a little white lie, because computation of
the true “best” paths in the network at any time is not practically
achievable in any language, and not considered important to the
task. But the lie can cause trouble in cases where assumptions about
global state affect correctness. False abstractions in distributed pro-
tocols have historically been quite problematic [76]. In our recent
Overlog code we have rarely written rules with distributed joins in
the body, in part because it seems like bad programming style, and
in part because we have been focused on distributed systems pro-
tocols where message failure handling needs to be explicit in the
logic. In Dedalus such rules are forbidden.

Note that the myth of the global database can be “made true”
via additional code. We have implemented distributed consensus
protocols such as Two-Phase Commit and Paxos that can ensure
consistent, network-global updates. These protocols slow down a
distributed system substantially, but in cases where it is important,
distributed joins can be made “real” by incorporating these proto-
cols [3]. On top of these protocols, an abstraction of a consistent
global database can be made true (though unavailable in the face of
network partitions, as pointed out in Brewer’s CAP theorem.)

Given that distributed state semantics are fundamental to par-
allel programming, it seems important for the language syntax to
require programmers to address it, and the language parser to pro-
vide built-in reasoning about the use of different storage types. For
example, the Dedalus boilerplate for persistence can be “sugared”
via a persistence modifier to a schema declaration, as in Overlog.
Similarly, the rules for a persistent distributed table protected via
two-phase commit updates could be sugared via a “globally consis-
tent” schema modifier. While these may seem like syntactic sugar,
from a programmer’s perspective these are critical metaphors: the
choice of the proper storage semantics can determine the meaning
and efficiency of a distributed system. Meanwhile, the fact that all
these options compile down to Dedalus suggests that program anal-
ysis can be done to capture the stated meaning of the program and
reflect it to the user. In the other direction, program analysis can in
some cases relax the user’s choice of consistency models without
changing program semantics.

4. CONJECTURES

In placid hours well-pleased we dream
Of many a brave unbodied scheme.
— Herman Melville

The experiences described above are offered as lessons of con-
struction. But a PODS audience may prefer the construction of
more questions. Are there larger theoretical issues that arise here,
and can they inform practice in a fundamental way?

I like to think the answer is “yes,” though I am sensitive to
both the hubris and irresponsibility of making up problems for
other people. As a start, I offer some conjectures that have arisen
from discussion in my group. Perhaps the wider PODS audience
will find aspects of them amenable to formalization, and worthy of
deeper investigation.

4.1 Parallelism, Distribution and Monotonicity
Earlier I asserted that basic Datalog programs—monotonic pro-

grams without negation or aggregation—can be implemented in



an embarrassingly parallel or eventually consistent manner with-
out need for any coordination. As a matter of conjecture, it seems
that the other direction should hold as well:

CONJECTURE 1. Consistency And Logical Monotonicity (CALM).
A program has an eventually consistent, coordination-free execu-
tion strategy if and only if it is expressible in (monotonic) Datalog.

The “coordination-free” property is key to the CALM conjec-
ture. Clearly one can achieve eventual consistency via a coordina-
tion mechanism such as two-phase commit or Paxos. But this “in-
stantaneous consistency” approach violates the spirit of eventual-
consistency methods, which typically proceed without coordination
and still produce consistent states in periods of quiescence.

I have yet to argue one direction of this conjecture: that a non-
monotonic program can have no eventually consistent implementa-
tion without coordination. Consider the case of a two-stratum non-
monotonic program and some eventually consistent implementa-
tion. Any node in the system can begin evaluating the second stra-
tum only when it can prove it has received “everything” in the first
stratum’s predicates. For global consistency, “everything” in this
context means any data that is interdependent with what any other
node has received. If any of that data resides on remote nodes,
distributed coordination is required.

A proper treatment of this conjecture requires crisp definitions of
eventual consistency, coordination, and relevant data dependencies.
In particular, trivially partitionable programs with no cross-node
interdependencies need to be treated as a special (easy) case. But I
suspect the conjecture holds for most practical cases of interest in
distributed and parallel computing.

It is worth recalling here Vardi’s well-known result that (mono-
tonic) Datalog can be evaluated in time polynomial in the size of
the database [66]. If the conjecture above is true, then the expres-
sive power of “eventually-consistent” implementations is similarly
bounded, where the “database” includes all data and messages in-
troduced up to the time of quiescence.

This conjecture, if true, would have both analytic and construc-
tive uses. On the analytic front, existing systems that offer eventual
consistency can be modeled in Datalog and checked for monotonic-
ity. In many cases the core logic will be trivially monotonic, but
with special-purpose escapes into non-monotonicity that should ei-
ther be “protected” by coordination, or managed via compensatory
exception handling (Helland and Campbell’s “apologies.” [29].) As
a classic example, general ledger entries (debits and credits) ac-
cumulate monotonically, but account balance computation is non-
monotonic; Amazon uses a (mostly) eventually-consistent imple-
mentation for this pattern in their shopping carts [18]. An interest-
ing direction here is to incorporate exception-handling logic into
the program analysis: ideally, a program with proper exception
handlers can be shown to be monotonic even though it would not
b monotonic in the absence of the handlers. Even more interesting
is the prospect of automatically generating (perhaps conservative)
exception handlers to enforce a provable notion of monotonicity.

On the constructive front, implementations in Datalog-style lan-
guages should be amenable to (semi-)automatic rewriting techniques
that expose further monotonicity, expanding the base of highly-
available, eventually-consistent functionality. As an example, a
predicate testing for non-negative account balances can be evalu-
ated without coordination for accounts that see only credit entries,
since the predicate will eventually transition to truth at each node
as information propagates, and will never fail thereafter. This ex-
ample is simplistic, but the idea can be used in a more fine-grained
manner to enable sets or time periods of safe operation (e.g., a cer-
tain number of “small” debits) to run in an eventually consistent

fashion, only enforcing barriers as special-case logic near mono-
tonicity thresholds on predicates (e.g., when an account balance is
too low to accomodate worst-case scenarios of in-flight debits). It
would be interesting to enable program annotations, in the spirit of
Universal Constraint Stratification [63], that would allow program
rewrites to relax initially non-monotonic kernels in this fashion.

Finally, confirmation of this conjecture would shed some much-
needed light on heated discussions of the day regarding the utility
or necessity of non-transactional but eventually consistent systems,
including the so-called “NoSQL” movement. It is sorely tempt-
ing to underscore this conjecture with the slogan “NoSQL is Data-
log.” But my student Neil Conway views this idea as pure mischief-
making, so I have refrained from including the slogan here.

4.2 Asynchrony, Traces, and Trace Equivalence
Expanding on the previous point, consider asynchronous rules,

which introduce non-determinism into Dedalus timestamps and hence
Dedalus semantics. It is natural to ask under what conditions this
explicit non-determinism affects program outcomes, and how.

We can say that the timestamps in asynchronous head predicates
capture possible traces of a program: each trace is an assignment
of timestamps that describes a non-deterministic “run” of an eval-
uation strategy. We can define trace equivalence with respect to a
given program: two traces can be considered equivalent if they lead
to the same “final” outcome of the database modulo timestamp at-
tributes. If all traces of a program can be shown to be equivalent
in this sense, we have demonstrated the Church-Rosser confluence
property. In cases where this property does not hold, other notions
of equivalence classes may be of interest. Serializability theory
provides a model: we might try to prove that every trace of a pro-
gram is in an equivalence class with some “good” trace.

The theory of distributed systems has developed various tech-
niques to discuss the possible traces of a program. The seminal
work is Lamport’s paper on “Time, Clocks and the Ordering of
Events” [38], which lays out the notion of causal ordering in time
that requires logical clocks to respect a happens-before relation.
Based on these observations, he shows that multiple independent
clocks (at different distributed nodes) can be made to respect the
happens-before relation of each individual node. Coordination pro-
tocols have been developed to enforce this kind of synchrony, and
related issues involving data consistency. We have coded some of
these protocols in Dedalus and its predecessor languages [3], and
they can be incorporated into programs to constrain the class of
traces that can be produced.

Classical PODC work on casuality tends to assume black-box
state machines at the communication endpoints. With Dedalus pro-
grams at the endpoints, we can extract logical data dependency and
provenance properties of the programs, including tests for various
forms of stratifiability. Can the combination of causality analy-
sis and logic-programming tests enrich our understanding of dis-
tributed systems, and perhaps admit new program-specific clever-
ness in coordination?

As an extreme example, suppose we ignore causality entirely,
and allow asynchronous Dedalus rules to send messages into the
past. Are temporal paradoxes—the absence of a unique minimal
model—an inevitable result? On this front, I have a simple conjec-
ture:

CONJECTURE 2. Causality Required Only for Non-monotonicity
(CRON). Program semantics require causal message ordering if
and only if the messages participate in non-monotonic derivations.

Said differently, temporal paradoxes arise from messages sent into
the past if and only if the messages have non-monotonic implica-



tions.
This conjecture follows the intuition of the CALM Conjecture.

Purely monotonic logic does not depend on message ordering, but
if the facts being “sent into the past” are part of a non-monotonic
cycle of deduction, the program lacks a unique minimal model: it
will either admit multiple possible worlds, or none.

The idea of sending messages into the past may seem esoteric,
but it arises in practical techniques like recovery. If a node fails and
is restarted at time T , it may reuse results from logs that recorded
the (partial) output of a run of the same logic from some earlier
time S < T . In effect the derived messages can “appear” at time
S, and be used in the redo execution beginning at T without causing
problems. Speculative execution strategies have a similar flavor, a
point I return to in Section 4.4.

Exploiting the monotonic case may be constructive. It should be
possible to relax the scheduling and spatial partitioning of programs—
allow for more asynchrony via a broader class of traces—by ex-
amining the program logic, and enforcing causal orderings only to
control non-monotonic reasoning. This marriage of PODS-style
program analysis and PODC-style causality analysis has many at-
tractions.

4.3 Coordination Complexity, Time and Fate
In recent years, the exponentiation of Moore’s Law has brought

the cost of computational units so low that to infrastructure ser-
vices they seem almost free. For example, O’Malley and Murthy
at Yahoo! reported sorting a petabyte of data with Hadoop using
a cluster of 3,800 machines each with 8 processor cores, 4 disks,
and 8GB of RAM each [58]. That means each core was responsible
for sorting only about 32 MB (just 1/64th of their available share
of RAM!), while 3799/3800 of the petabyte was passed through
the cluster interconnection network during repartitioning. In rough
terms, they maximized parallelism while ignoring resource utiliza-
tion. But if computation and communication are nearly free in
practice, what kind of complexity model captures the practical con-
straints of modern datacenters?

This anecdote involves an embarrassingly parallel, monotonic
binning algorithm, with a focus on bulk data throughput rather
than latency of individual interactions. By contrast, non-monotonic
stratified programs require latency-sensitive distributed coordina-
tion to proceed from one parallel monotonic stratum to the next.
Non-monotonic stratum boundaries are global barriers: in general,
no node can proceed until all tasks in the lower stratum are guaran-
teed to be finished. This restriction means that the slowest-performing
task in the cluster—the “weakest link”— slows all nodes down to
its speed. Dynamic load balancing and reassignment can mitigate
the worst-case performance of the weakest link, but even with those
techniques in place, coordination is the key remaining bottleneck in
a world of free computation [8].

In this worldview, the running time of a logic program might be
best measured by the number of strata it must proceed through se-
quentially; call this the Coordination Complexity of a program12.
This notion differs from other recent models of parallel complexity
for MapReduce proposed by Afrati and Ullman [1] and Karloff, et
al. [37], which still concern themselves in large part with measuring
communication and computation. It resembles a simplified (“em-
barrassingly” simplified?) form of Valiant’s Bulk Synchronous-
Parallel (BSP) model, with the weights for communication and
computation time set to zero. Results for BSP tend to involve com-

12In some algorithms it may be worth refining this further to capture
the fraction of nodes involved in each coordination step; this two-
dimensional “depth” and “breadth” might be called a coordination
surface or lattice.

plicated analyses of communication and computation metrics that
are treated as irrelevant here, with good reason. First, the core op-
erations for bottom-up Dedalus evaluation (join, aggregation) typ-
ically require all-to-all communication that only varies between
1
2

and 1 for any non-trivial degree of parallelism13. Second, at
scale, the practical running time of the slowest node in the clus-
ter is often governed less by computational complexity than by
non-deterministic effects of the environment (heterogeneous ma-
chines and workloads, machine failures, software misconfiguration
and bugs, etc.)

Conveniently, a narrow focus on Coordination Complexity fits
nicely with logic programming techniques, particularly if the pre-
vious conjectures hold: i.e., if coordination is required precisely
to manage non-monotonic boundaries. In that case, the Coordina-
tion Complexity of a stratified program is the maximum stratum
number in the program, which can be analyzed syntactically. In the
more general case of locally stratified [61] or universally constraint-
stratified programs [63], the program’s rule-goal graph may have
cycles through negation or aggregation, which in practice might be
traversed many times. The coordination complexity in these cases
depends not only on the rule syntax but also on the database in-
stance (in the case of local stratification) and on the semantics of
monotonic predicates and aggregations in the program (in universal
constraint stratification).

As noted above, many natural Dedalus programs are not strati-
fied, but are instead universally constraint-stratified by the mono-
tonicity of timestamps. In those cases, the number of times around
the non-monotonic loops corresponds to the number of Dedalus
timesteps needed to complete the computation. In essence, Dedalus
timesteps become units for measuring the complexity of a parallel
algorithm.

This idea is intuitively appealing in the following sense. Recall
that a Dedalus timestep results in an atomic batch of inductions,
corresponding to traditional “state changes.” To lower the number
of Dedalus timesteps for a program, one needs to find a way to
batch together more state modifications within a single timestep—
i.e., shift some rules from inductive to deductive (by removing the
@next suffix). If a program is expressed to use a minimal num-
ber of timesteps, it has reached its inherent limit on “batching up”
state changes—or conversely, the program accurately captures the
inherent need for sequentiality of its state modifications.

This argument leads to our next conjecture:

CONJECTURE 3. Dedalus Time ⇔ Coordination Complexity.
The minimum number of Dedalus timesteps required to evaluate a
program on a given input data set is equivalent to the program’s
Coordination Complexity.

The equivalence posited here is within a constant factor of the
minimum number of sequential coordination steps required, which
accounts for multiple deductive strata within a single timestep. The
stratification depth per timestep is bounded by the program’s length,
and hence is a constant with respect to data complexity (the appro-
priate measure for analyzing a specific program [66]).14

Clearly one can do a poor job writing an algorithm in Dedalus,
e.g., by overuse of the @next modifier. So when are timesteps

13The exception here is cases where communication can be “col-
ored away” entirely, due to repeated partitioning by functionally
dependent keys [28].

14David Maier notes that it should be possible convert a fixed
number of timestamps into data and account for these timestamps
within a single Dedalus timestep, in the manner of loop unrolling.
This conversion of time into space may require refining the com-
plexity measure proposed here.



truly required? We can distinguish two cases. The first is when the
removal of an @next suffix changes the meaning (i.e. the minimal
model) of the program. The second is when the removal causes a
form of non-monotonicity that leaves the program with no unique
minimal model: either a proliferation of minimal models, or no
models because a contradiction requires some variable to take on
multiple values “at once.” The examples we have seen for the first
of these cases seem trivial, in the spirit of Figure 1: a finite num-
ber of possible states are infinitely repeated. Such programs can
be rewritten without an infinite successor relation: the finite set
of possible states can be distinguished via data-oriented predicates
on finite domains, rather than contemporaneity in unbounded (but
cyclic) time15. This leads us to the following more aggressive con-
jecture:

CONJECTURE 4. Fateful Time. Any Dedalus program P can
be rewritten into an equivalent temporally-minimized program P ′

such that each inductive or asynchronous rule of P ′ is necessary:
converting that rule to a deductive rule would result in a program
with no unique minimal model.

I call this the “Fateful Time” conjecture because it argues that the
inherent purpose of time is to seal fate. If a program’s semantics
inherently rely upon time as an unbounded source of monotonicity,
then the requirement for simultaneity in unification resolves multi-
ple concurrent possible worlds into a series of irrevocable individ-
ual worlds, one at each timestep. If the conjecture holds, then any
other use of temporal induction is literally a waste of time.16.

This conjecture is an appealing counterpart to CRON. Time does
matter, exactly in those cases where ignoring it would result in log-
ically ambiguous fate17.

15This observation, by my student William Marczak, is eerily rem-
iniscent of the philosophy underlying Jorge Luis Borges’ stories
of circular ruins, weary immortals, infinite libraries and labyrinths.
In his “New Refutation of Time,” Borges presents a temporal ex-
tension of the idealism of Berkeley and Hume (which denies the
existence of matter) based on the following argument: “The de-
nial of time involves two negations: the negation of the succession
of the terms of a series, negation of the synchronism of the terms
in two different series.” The similarity to a rewriting of Dedalus’
successors and timestamp unification is striking. More allegori-
cally, Borges puts it this way: “I suspect, however, that the number
of circumstantial variants is not infinite: we can postulate, in the
mind of an individual (or of two individuals who do not know of
each other but in whom the same process works), two identical mo-
ments. Once this identity is postulated, one may ask: Are not these
identical moments the same? Is not one single repeated term suf-
ficient to break down and confuse the series of time? Do not the
fervent readers who surrender themselves to Shakespeare become,
literally, Shakespeare?” [9]

16Temporally-minimized Dedalus programs might be called
daidala, Homer’s term for finely crafted basic objects: “The
‘daidala’ in Homer seem to possess mysterious powers. They are
luminous—they reveal the reality that they represent.” [60]

17In his Refutation, Borges concludes with a very similar in-
escapable association of time and fate: “And yet, and yet... Deny-
ing temporal succession, denying the self, denying the astronomi-
cal universe are apparent desperations and secret consolations. Our
destiny ... is frightful because it is irreversible and iron-clad. Time
is the substance I am made of. Time is a river which sweeps me
along, but I am the river; it is a tiger which destroys me, but I am
the tiger; it is a fire which consumes me, but I am the fire. The
world, unfortunately, is real; I, unfortunately, am Borges.” [9] To
close the cycle here, note that Daedalus was the architect of the
Labyrinth of Crete; labyrinths are a signature metaphor in Borges’
writing.

4.4 Approximate and Randomized Algorithms
Given the cost of coordination at stratum boundaries, it is tempt-

ing to try and go further: let the evaluation of a Dedalus program
press ahead without waiting for the completion of a stratum or
timestep. In some cases this trick can be done safely: for example,
temporal aggregates such as count and min can provide “early
returns” in the spirit of online aggregation [32], and range predi-
cates on the results of those aggregates can sometimes be evalu-
ated correctly in parallel with the computation of the final aggre-
gate result [77]. These cases exploit monotonicity of predicates on
monotonic aggregates, and are in the spirit of the CALM conjecture
above.

But what about approximable but non-monotonic aggregates, such
as averages, which can produce early estimates that oscillate non-
monotonically, but provide probabilistic confidence intervals? If
predicates on the result of those aggregates are “acted upon” prob-
abilistically, in parallel with the completion of the lower stratum,
what happens to the program outcome?

Two execution strategies come to mind, based on “optimisti-
cally” allowing higher strata to proceed on the basis of tentative
results in lower strata. The first takes the tentative results and acts
upon them directly to compute a fixpoint, which may or may not be
the same as the minimal model of the program. The challenge then
is to characterize the distribution of possible worlds that can arise
from such evaluations, provide a meaningful probabilistic interpre-
tation on the outcomes of the computation, and perhaps provide
execution strategies to ensure that an individual outcome has high
likelihood. It would be interesting to understand how this relates
to more traditional approximation algorithms and complexity, es-
pecially with respect to parallel computation.

A second strategy is to ensure the correct minimal model by
“rolling back” any deductions based on false assumptions using
view maintenance techniques [11]. Here the challenge is not to
characterize the answer, but to produce it efficiently by making
good guesses. This requires characterizing the expected utility of a
given optimistic decision, both in terms of its likely benefit if per-
formance is correct, and its likely recomputation cost if incorrect.
This is in the spirit of speculation techniques that are common cur-
rency in the Architecture and Systems communities, but with the
benefit of program analyses provided by logic. It also seems feasi-
ble to synthesize logic here, including both speculative moves, and
compensating actions for incorrect speculations.

Practically, these approaches are important for getting around
fundamental latencies in communication. From a theoretical per-
spective, speculation on non-monotonic boundaries seems to be the
natural path to bring randomized algorithms into the evaluation of
logic: the previous conjectures suggest that there is no interesting
non-determinism in monotonic programs, so the power of random-
ized execution seems to reside at non-monotonic boundaries. It
would be interesting to understand how to bridge this idea to the
complexity structures known for randomized algorithms.

This line of thinking is not as well developed as the earlier dis-
cussion, so I close this discussion without stating a particular con-
jecture.

5. CARPE DIEM

Gather ye rosebuds while ye may
Old Time is still a-flying,
And this same flower that smiles to-day
To-morrow will be dying.
— Robert Herrick



Like most invited papers, I would have rejected this one had I
been asked to review it18. Its claims are imprecise and unsubstan-
tiated, relying on anecdotes and intuition. It contains an unseemly
number of references to the author’s prior work. It is too long, and
was submitted after the conference deadline. And as a paper that
treads outside the author’s area of expertise, it also undoubtedly
overlooks important earlier work by others. For this last flaw in
particular I extend sincere apologies, and an earnest request to be
schooled regarding my omissions and errors.

However, my chief ambition in writing this paper was not to
present a scholarly survey. It was instead to underscore—in as ur-
gent and ambitious terms as possible—the current opportunity for
database theory to have broad impact. Under most circumstances it
is very hard to change the way people program computers [54]. But
as noted by Hennessy and others, programming is entering an un-
usually dark period, with dire implications for computer science in
general. “Data folk” seem to have one of the best sources of light:
we have years of success parallelizing SQL, we have the common
culture of MapReduce as a bridge to colleagues, and we have the
well-tended garden of declarative logic languages to transplant into
practice.

Circumstance has presented a rare opportunity—call it an
imperative—for the PODS community to take its place in the sun,
and help create a new environment for parallel and distributed com-
putation to flourish. I hope that the discussion in this paper will
encourage more work in that direction.
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