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Abstract. One can use extra memory to parallelize matrix multiplication by storing p1/3 redundant
copies of the input matrices on p processors in order to do asymptotically less communication than
Cannon’s algorithm [2], and be faster in practice [1]. We call this algorithm “3D” because it arranges the
p processors in a 3D array, and Cannon’s algorithm “2D” because it stores a single copy of the matrices
on a 2D array of processors. We generalize these 2D and 3D algorithms by introducing a new class of
“2.5D algorithms”. For matrix multiplication, we can take advantage of any amount of extra memory
to store c copies of the data, for any c ∈ {1, 2, ..., bp1/3c}, to reduce the bandwidth cost of Cannon’s
algorithm by a factor of c1/2 and the latency cost by a factor c3/2. We also show that these costs reach
the lower bounds [13, 3], modulo polylog(p) factors. We similarly generalize LU decomposition to 2.5D
and 3D, including communication-avoiding pivoting, a stable alternative to partial-pivoting [7]. We
prove a novel lower bound on the latency cost of 2.5D and 3D LU factorization, showing that while
c copies of the data can also reduce the bandwidth by a factor of c1/2, the latency must increase by
a factor of c1/2, so that the 2D LU algorithm (c = 1) in fact minimizes latency. Preliminary results
of 2.5D matrix multiplication on a Cray XT4 machine also demonstrate a performance gain of up to
3X with respect to Cannon’s algorithm. Careful choice of c also yields up to a 2.4X speed-up over 3D
matrix multiplication, due to a better balance between communication costs.

1 Introduction

Goals of parallelization include minimizing communication, balancing the work load, and balancing the
memory per processor. In practice there are tradeoffs among these goals. For example, some problems can
be made embarrassingly parallel by replicating the entire input on each processor. However, this approach
may use much more memory than necessary, and require significant redundant computation. At the other
extreme, one stores exactly one copy of the data spread evenly across the processors, and tries to minimize
communication and balance the load subject to this constraint.

However, some parallel algorithms do successfully take advantage of limited extra memory to increase par-
allelism or decrease communication. In this paper, we examine the trade-off between memory usage and
communication cost in linear algebra algorithms. We introduce 2.5D algorithms (the name is explained be-
low), which have the property that they can use any available amount of extra memory beyond that needed
to store one distributed copy of the input and output, to provably reduce the amount of communication they
perform to a theoretical minimum.

We measure costs along the critical path to make sure our algorithms are well load balanced as well as
communication efficient. In particular, we measure the following quantities along the critical path of our
algorithms (which determines the running time):

– F , the computational cost, is the number of flops done along the critical path.
– W , the bandwidth cost, is the number of words sent/received along the critical path.
– S, the latency cost, is the number of messages sent/received along the critical path.
– M , memory size, is the maximum amount of memory, in words, utilized by a processor at any point

during algorithm execution.



Our communication model does not account for network topology. However, it does assume that all communi-
cation has to be synchronous. So, a processor cannot send multiple messages at the cost of a single message.
Under this model a reduction or broadcast among p processors costs O(log p) messages but a one-to-one
permutation requires only O(1) messages. This model aims to capture the behavior of low-dimensional mesh
or torus network topologies. Our LU communication lower-bound does is independent of the above collective
communication assumptions, however, it does leverage the idea of the critical path.

Our starting point is n-by-n dense matrix multiplication, for which there are known algorithms that minimize
both bandwidth and latency costs in two special cases:

1. When only enough memory, M , for one copy of the input/output matrices is available, evenly spread
across all p processors (so M ≈ 3n2/p), it is known that Cannon’s Algorithm [5] simultaneously balances
the load (so F = Θ(n3/p)), minimizes the bandwidth cost (so W = Θ(n2/p1/2)), and minimizes the
latency cost (so S = Θ(p1/2)) [13, 3]. We call this the “2D algorithm” because it is naturally expressed
by laying out the matrices across a p1/2-by-p1/2 grid of processors.

2. When enough memory, M , for p1/3 copies of the input/output matrices is available, evenly spread across
all p processors (so M ≈ 3n2/p2/3), it is known that algorithms presented in [6, 1, 2] simultaneously
balance the load (so F = Θ(n3/p)), minimize the bandwidth cost (so W = Θ(n2/p2/3)), and minimize
the latency cost (so S = Θ(log p)) [13, 3]. We call this the “3D algorithm” because it is naturally expressed
by laying out the matrices across a p1/3-by-p1/3-by-p1/3 grid of processors.

The contributions of this paper are as follows.

1. We generalize 2D and 3D matrix multiplication to use as much memory as available, in order to reduce
communication: If there is enough memory for c copies of the input and output matrices, for any c ∈
{1, 2, ..., bp1/3c}, then we present a new matrix multiplication algorithm that sends c1/2 times fewer words
than the 2D (Cannon’s) algorithm, and sends c3/2 times fewer messages. We call the new algorithm
2.5D matrix multiplication, because it has the 2D and 3D algorithms as special cases, and effectively
interpolates between them, by using a processor grid of shape (p/c)1/2-by-(p/c)1/2-by-c.

2. Our 2.5D matrix multiplication algorithm attains lower bounds (modulo polylog(p) factors) on the
number of words and messages communicated that hold for any matrix multiplication algorithm that (1)
performs the usual n3 multiplications, and (2) uses c times the minimum memory possible.

3. We present a 2.5D LU algorithm that also reduces the number of words moved by a factor of c1/2, attain-
ing the same lower bound. The algorithm does tournament pivoting as opposed to partial pivoting [7, 10].
Tournament pivoting is a stable alternative to partial pivoting that was used to minimize communication
(both number of words and messages) in the case of 2D LU. We will refer to tournament pivoting as
communication-avoiding pivoting (CA-pivoting) to emphasize the fact that this type of pivoting attains
the communication lower-bounds.

4. 2.5D LU does not, however, send fewer messages than 2D LU; instead it sends a factor of c1/2 more
messages. Under reasonable assumptions on the algorithm, we prove a new lower bound on the number
of messages for any LU algorithm that communicates as few words as 2.5D LU, and show that 2.5D
LU attains this new lower bound. Further, we show that using extra memory cannot reduce the latency
cost of LU below the 2D algorithm, which sends Ω(p1/2) messages. These results hold for LU with and
without pivoting.

2 Previous work

In this section, we detail the motivating work for our algorithms. First, we recall linear algebra communi-
cation lower bounds that are parameterized by memory size. We also detail the main motivating algorithm
for this work, 3D matrix multiplication, which uses extra memory but performs less communication. The
communication complexity of this algorithm serves as a matching upper-bound for our general lower bound.



2.1 Communication lower bounds for linear algebra

Recently, a generalized communication lower bound for linear algebra has been shown to apply for a large class
of matrix-multiplication-like problems [3]. The lower bound applies to either sequential or parallel distributed
memory, and either dense or sparse algorithms. The distributed memory lower bound is formulated under a
communication model identical to that which we use in this paper. This lower bound states that for a fast
memory of size M the lower bound on communication bandwidth is

W = Ω

(
#arithmetic operations√

M

)
words, and the lower bound on latency is

S = Ω

(
#arithmetic operations

M3/2

)
messages. On a parallel machine with p processors and a local processor memory of size M , this yields the
following lower bounds for communication costs of matrix multiplication of two dense n-by-n matrices as
well as LU factorization of a dense n-by-n matrix,

W = Ω

(
n3/p√
M

)
,

S = Ω

(
n3/p

M3/2

)
.

These lower bounds are valid for n2

p < M < n2

p2/3 and suggest that algorithms can reduce their communication

cost by utilizing more memory. If M < n2

p , the entire matrix won’t fit in memory.

2.2 3D linear algebra algorithms

Consider we have p processors arranged into a 3D grid as in Figure 1(a), with each individual processor
indexed as Pi,j,k. We replicate input matrices on 2D layers of this 3D grid so that each processor uses

M = Ω
(

n2

p2/3

)
words of memory. In this decomposition, the lower bound on bandwidth is

W3d = Ω

(
n2

p2/3

)
.

According to the general lower bound the lower bound on latency is trivial: Ω (1) messages. However, for
any blocked 2D or 3D layout,

S3d = Ω (log p)

messages are required since all entries of C depend on entries from a block row of A, and information from
a block row of A can only be propagated to one processor with Ω(log p) messages.

3D matrix multiplication For matrix multiplication, Algorithm 1 [6, 1, 2] achieves the 3D bandwidth and
latency lower bounds.

The amount of memory used in this 3D matrix multiplication algorithm is

M = Θ

(
n2

p2/3

)
so the 3D communication lower bounds apply. The only communication performed is the reduction of C and
possibly a broadcast to spread the input. So the bandwidth cost is

W = O

(
n2

p2/3

)
,



Algorithm 1: [C] = 3D-matrix-multiply(A,B,n,p)
Input: n-by-n matrix A distributed so that Pij0 owns n

p1/3 -by- n

p1/3 block Aij for each i, j

Input: n-by-n matrix B distributed so that P0jk owns n

p1/3 -by- n

p1/3 block Bjk for each j, k

Output: n-by-n matrix C = A ·B distributed so that Pi0k owns n

p1/3 -by- n

p1/3 block Cik for each i, k

// do in parallel with all processors

forall i, j, k ∈ {0, 1, ..., p1/3 − 1} do
Pij0 broadcasts Aij to all Pijk /* replicate A on each ij layer */

P0jk broadcasts Bjk to all Pijk /* replicate B on each jk layer */

Cijk := Aij ·Bjk

Pijk contributes Cijk to a sum-reduction to Pi0k

end

which is optimal, and the latency cost is
S = O (log p) ,

which is a optimal for a blocked layout.

Memory efficient matrix multiplication McColl and Tiskin [14] present a memory efficient variation
on the 3D matrix multiplication algorithm for a PRAM-style model. They partition the 3D computation
graph to pipeline the work and therefore reduce memory in a tunable fashion. However, their theoretical
model is not reflective of modern supercomputer architectures, and we see no clear way to reformulate their
algorithm to be communication optimal. Nevertheless, their research is in very similar spirit to and serves
as a motivating work for the new 2.5D algorithms we present in section 3.

Previous work on 3D LU factorization Irony and Toledo [12] introduced a 3D LU factorization algorithm
that minimizes total communication volume (sum of the number of words moved over all processors), but
does not minimize either bandwidth or latency along the critical path. This algorithm distributes A and B
cyclically on each processor layer and recursively calls 3D LU and 3D TRSM routines on sub-matrices.

Neither the 3D TRSM nor the 3D LU base-case algorithms given by Irony and Toledo minimize commu-
nication along the critical path which, in practice, is the bounding cost. We define a different 2.5D LU
factorization algorithm that does minimize communication along its critical path.

3 2.5D lower and upper bounds

The general communication lower bounds are valid for a range of M in which 2D and 3D algorithms hit the
extremes. 2.5D algorithms are parameterized to be able to achieve the communication lower bounds for any
valid M . Let c ∈ {1, 2, . . . , bp1/3c} be the number of replicated copies of the input matrix. 1 Consider the
processor grid in Figure 1(b) (indexed as Pi,j,k) where each processor has local memory size M = Ω

(
cn2

p

)
.

The lower bounds on communication are

W2.5d = Ω

(
n2

√
cp

)
,

S2.5d = Ω

(
p1/2

c3/2

)
.

From a performance-tuning perspective, by formulating 2.5D linear algebra algorithms, we are essentially
adding an extra tuning parameter to the algorithm. Also, as a sanity check for our 2.5D algorithms, we made
sure they reduced to practical 2D algorithms when c = 1 and to practical 3D algorithms when c = p1/3.
1 If c > p1/3, assuming the initial data layout has no redundant copies, replicating an input matrix would cost more

communication than the lower bound.
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3.1 2.5D matrix multiplication

For matrix multiplication, Algorithm 2 achieves the 2.5D bandwidth lower bound and gets within a factor of
O(log p) of the 2.5D latency lower bound (likely optimal). Algorithm 2 generalizes Cannon’s algorithm (set
c = 1). At a high level, our 2.5D algorithm does a portion of Cannon’s algorithm on with each set of copies
of matrices A and B, then combines the results. To make this possible, we adjust the initial shift done in
Cannon’s algorithm to be different for each set of copies.

Our 2.5D algorithm doesn’t quite generalize Algorithm 1 since C is reduced in a different dimension (shifting
compensates for the difference). However, in terms of complexity, only two extra matrix shift operations are
required by the 3D version of our 2.5D algorithm. Further, the 2.5D algorithm has the nice property that C
ends up spread over the same processor layer that both A and B started on. The algorithm moves

W = O

(
n2

√
cp

)

words and sends

S = O
(√

p/c3 + log c
)

messages. This cost is optimal according to the general communication lower bound. The derivations of
these communication costs are in Appendix A.

We also note that if the latency cost is dominated by the intra-layer communication S = O(
√
p/c3), our 2.5D

matrix multiplication algorithm can achieve perfect strong scaling in certain regimes. For matrix size n2 con-
sider the smallest number of processors that can actually fit the problem pmin = Θ(n2/M). For this number
of processors, a 2D algorithm must be used so the bandwidth cost is Wpmin = O( n2

√
pmin

) and the latency cost
is Spmin = O(

√
pmin). Note that if we scale this problem to p = c ·pmin processors, we have M = Θ(cn2/pmin)

and can therefore run 2.5D matrix multiplication with a bandwidth cost of O( n2√
c2pmin

) = Wpmin/c and a

latency cost of O(
√
pmin/c2) = Spmin/c. Thus by using a factor c more processors than necessary we can

reduce the entire complexity cost (computation and communication) of matrix multiplication by a factor of
c.



Algorithm 2: [C] = 2.5D-matrix-multiply(A,B,n,p,c)
Input: square n-by-n matrices A, B distributed so that Pij0 owns n√

p/c
-by- n√

p/c
blocks Aij and Bij for each i, j

Output: square n-by-n matrix C = A ·B distributed so that Pij0 owns n√
p/c

-by- n√
p/c

block Cij for each i, j

// do in parallel with all processors

forall i, j ∈ {0, 1, ...,
p
p/c− 1}, k ∈ {0, 1, ..., c− 1} do

Pij0 broadcasts Aij and Bij to all Pijk /* replicate input matrices */

r := mod (j + i− k
p
p/c3,

p
p/c)

// initial circular shift on A

s := mod (j − i+ k
p
p/c3,

p
p/c)

Pijk sends Aij to Pisk

Pijk receives block Air

// initial circular shift on B

s′ := mod (i− j + k
p
p/c3,

p
p/c)

Pijk sends Bij to Ps′jk

Pijk receives block Brj

Cijk := Air ·Brj

s := mod (j + 1,
p
p/c)

s′ := mod (i+ 1,
p
p/c)

// do steps of Cannon’s algorithm

for t = 1 to
p
p/c3 − 1 do

// rightwards circular shift on A
Pijk sends Air to Pisk

// downwards circular shift on B
Pijk sends Brj to Ps′jk

r := mod (r − 1,
p
p/c)

Pijk receives block Air

Pijk receives block Brj

Cijk := Cijk +Air ·Brj

end
Pijk contributes Cijk to a sum-reduction to Pij0

end
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4 2.5D LU communication lower bound

We argue that for Gaussian-elimination style LU algorithms that achieve the bandwidth lower bound, the
latency lower bound is actually much higher, namely

Slu = Ω (
√
cp)

Given a parallel LU factorization algorithm, we assume the algorithm must uphold the following properties

1. Consider the largest k-by-k matrix A00 factorized sequentially such that A =
[
A00 A01

A10 A11

]
(we can always

pick some A00 since at least the top left element of A is factorized sequentially), the following conditions
must hold,
(a) Ω(k3) flops must be done before A11 can be factorized (it can be updated but Gaussian elimination

cannot start).
(b) Ω(k2) words must be communication before A11 can be factorized.
(c) Ω(1) messages must be sent before A11 can be factorized.

2. The above condition holds recursively (for factorization of A11 in place of A).

We now lower bound the communication cost for any algorithm that follows the above restrictions. Any
such algorithm must compute a sequence of diagonal blocks {A00, A11, . . . , Ad−1,d−1}. Let the dimensions
of the blocks be {k0, k1, . . . , kd−1}. As done in Gaussian Elimination and as required by our conditions, the
factorizations of these blocks are on the critical path and must be done in strict sequence.

Given this dependency path (shown in Figure 2), we can lower bound the complexity of the algorithm
by counting the complexity along this path. The latency cost is Ω(d) messages, the bandwidth cost is∑d−1

i=0 Ω(k2
i ) words and the computational cost is

∑d−1
i=0 Ω(k3

i ) flops. Due to the constraint,
∑d−1

i=0 ki = n, it
is best to pick all ki = k, for some k, (we now get d = n/k) to minimize communication and flops. Now we
see that the algorithmic costs are

Flu = Ω(nk2)
Slu = Ω(n/k)
Wlu = Ω(nk).

Evidently, if we want to do O(n3/p) flops we need

k = O

(
n
√
p

)
,
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which would necessitate
S = Ω(

√
p).

Further, the cost of sacrificing flops for latency is large. Namely, if S = O
(√

p

r

)
, the computational cost is

F = Ω

(
r2n3

p

)
,

a factor of r2 worse than optimal. Since we are very unlikely to want to sacrifice so much computational
cost to lower the latency cost we will not attempt to design algorithms that achieve a latency smaller than
Ω(
√
p).

If we want to achieve the bandwidth lower bound we need,

Wlu = O

(
n2

√
cp

)
k = O

(
n
√
cp

)

Slu = Ω

 n

O
(

n√
cp

)


= Ω(
√
cp).

A latency cost of O(
√
cp/r), would necessitate a factor of r larger bandwidth cost. So, an LU algorithm can

do minimal flops, bandwidth, and latency as defined in the general lower bound, only when c = 1. For c > 1,
we can achieve optimal bandwidth and flops but not latency.

Its also worth noting that the larger c is, the higher the latency cost for LU will be (assuming bandwidth is
prioritized). This insight is the opposite of that of the general lower bound, which lower bounds the latency
as Ω(1) messages for 3D, while now we have a lower bound of Ω(p2/3) messages for 3D (assuming optimal
bandwidth). This tradeoff suggests that c should be tuned to balance the bandwidth cost and the latency
cost.

5 2.5D communication optimal LU

In order to write down a 2.5D LU algorithm, it is necessary to find a way to meaningfully exploit extra
memory. A 2D parallelization of LU typically factorizes a vertical and a top panel of the matrix and updates
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Fig. 4. 2.5D LU algorithm work-flow

the remainder (the Schur complement). The dominant cost in a typical parallel LU algorithm is the update
to the Schur complement. Our 2.5D algorithm exploits this by accumulating the update over layers. However,
in order to factorize each next panel we must reduce the contributions to the Schur complement. We note
that only the panel we are working on needs to be reduced and the remainder can be further accumulated.
Even so, to do the reductions efficiently, a block-cyclic layout is required. This layout allows more processors
to participate in the reductions and pushes the bandwidth cost down to the lower bound.

Algorithm 3 (work-flow diagram in Figure 4) is a communication optimal LU factorization algorithm for the
entire range of c ∈ {1, 2, . . . , bp1/3c}. The algorithm replicates the matrix A on each layer and partitions it
block cyclically across processors with block size (n/

√
pc)-by-(n/

√
pc) (see Figure 3). Note that this block

dimension corresponds to the lower bound derivations in the previous section. Every processor owns one such
block within each bigger block of size n/c-by-n/c. We will sometimes refer to big blocks (block dimension
n/c) and small blocks (block dimension n/

√
pc) for brevity.

Algorithm 3 has a bandwidth cost of

W = O

(
n2

√
cp

)
words and a latency cost of

S = O (
√
cp log(p))

messages. Therefore, it is asymptotically communication optimal for any choice of c (modulo a log(p) factor
for latency). Further, it is also always asymptotically computationally optimal (the redundant work is a low
order cost). These costs are derived in Appendix B.



Algorithm 3: [L,U ] = 2.5D-LU-factorization(A,n,p,c)
Let [Lij, Uij] = 2D-LUij(Aij,k) be a function that computes the LU factorization of A using a 2D parallel
algorithm with Pijk for each i, j on layer k.
Let [Xij] = 2D-TRSMij(Lij,Bij,k) be a function that given triangular L computes the X such that L ·X = B
using a 2D parallel algorithm with Pijk for each i, j on layer k.
Input: n-by-n matrix A distributed so that for each i, j, Pij0 owns n√

pc
-by- n√

pc
blocks Alimj for

li ∈ {i, i+
p
p/c, i+ 2

p
p/c, . . . , i+ (c− 1)

p
p/c} and mj ∈ {j, j +

p
p/c, j + 2

p
p/c, . . . , j + (c− 1)

p
p/c}.

Output: triangular n-by-n matrices L, U such that A = L · U and for each i, j, Pij0 owns n√
pc

-by- n√
pc

blocks Llimj

and Ulimj for each li and mj .

// do in parallel with all processors

forall i, j ∈ {0, 1, ...,
p
p/c− 1}, k ∈ {0, 1, ..., c− 1} do

S = 0
Pij0 broadcasts Alimj for each li, mj to all Pijk /* replicate A */

for t = 0 to c− 1 do
// redundantly factorize top right (n/c)-by-(n/c) block

[L
t
√

p/c+i,t
√

p/c+j
,U

t
√

p/c+i,t
√

p/c+j
] = 2D-LUij(At

√
p/c+i,t

√
p/c+j

,k)

if t+ k < c− 1 then /* perform (n/c)-by-(n/c) block TRSMs */

[LT

(t+k+1)
√

p/c+i,t
√

p/c+j
] = 2D-TRSMij(U

T

t
√

p/c+i,t
√

p/c+j
, AT

(t+k+1)
√

p/c+i,t
√

p/c+j
,k)

Pijk broadcasts L
(t+k+1)

√
p/c+i,t

√
p/c+j

to Pijk′ for k′ ∈ {0, 1, ..., c− 1}
[U

t
√

p/c+i,(t+k+1)
√

p/c+j
] = 2D-TRSMij(Lt

√
p/c+i,t

√
p/c+j

, A
t
√

p/c+i,(t+k+1)
√

p/c+j
,k)

Pijk broadcasts U
t
√

p/c+i,(t+k+1)
√

p/c+j
to Pijk′ for k′ ∈ {0, 1, ..., c− 1}

end
if t < c− 1 then /* perform trailing matrix update */

if bk
p
p/c3c ≤ j < b(k + 1)

p
p/c3c then

Pijk broadcasts L
m
√

p/c+i,t
√

p/c+j
for each m ∈ {t+ 1, t+ 2, ..., c− 1} to each Pij′k for

j′ ∈ {0, 1, ...,
p
p/c− 1}

end

if bk
p
p/c3c ≤ i < b(k + 1)

p
p/c3c then

Pijk broadcasts U
t
√

p/c+i,m
√

p/c+j
for each m ∈ {t+ 1, t+ 2, ..., c− 1} to each Pi′jk for

i′ ∈ {0, 1, ...,
p
p/c− 1}

end
for l = t+ 1 to c− 1 do

for m = t+ 1 to c− 1 do

for r = bk
p
p/c3c to b(k + 1)

p
p/c3c − 1 do

Slm := Slm + L
l
√

p/c+i,t
√

p/c+r
· U

t
√

p/c+r,m
√

p/c+j

end

end

end
// reduce panels of Schur complement updates and adjust A

Pijk contributes S
l
√

p/c+i,m
√

p/c+j
and for

(l,m) ∈ {(t+ 1, t+ 1), (t+ 2, t+ 1), ..., (c− 1, t+ 1)} ∪ {(t+ 1, t+ 2), (t+ 1, t+ 3), ..., (t+ 1, c− 1)} to a
sum all-reduction among all Pijk

A
l
√

p/c+i,m
√

p/c+j
:= A

l
√

p/c+i,m
√

p/c+j
− S

l
√

p/c+i,m
√

p/c+j

end

end

end



6 2.5D communication optimal LU with pivoting

Regular partial pivoting is not latency optimal because it requires O(n) messages if the matrix is in a
blocked layout. O(n) messages are required by partial pivoting since a pivot needs to be determined for each
matrix column which always requires communication unless the entire column is owned by one processor.
However, tournament pivoting (CA-pivoting) [7], is a new LU pivoting strategy that can satisfy the general
communication lower bound. We will incorporate this strategy into our 2.5D LU algorithm.

CA-pivoting simultaneously determines b pivots by forming a tree of factorizations as follows,

1. Factorize each 2b-by-b block [A0,2k, A0,2k+1]T = PT
k LkUk for k ∈ [0, n

2b − 1] using GEPP.
2. Write Bk = Pk[A0,2k, A0,2k+1]T , and Bk = [B′k, B

′′
k ]T . Each B′k represents the ’best rows’ of each sub-

panel of A.
3. Now recursively perform steps 1-3 on [B′0, B

′
1, ..., B

′
n/(2b)−1]T until the number of total best pivot rows

is b.

For a more detailed and precise description of the algorithm and stability analysis see [7, 10].

To incorporate CA-pivoting into our LU-algorithm, we would like to do pivoting with block size b = n/
√
pc.

The following modifications need to be made to accomplish this,

1. Previously, we did the big-block side panel Tall-Skinny LU (TSLU) via a redundant top block LU-
factorization and TRSMs on lower blocks. To do pivoting, the TSLU factorization needs to be done as a
whole rather than in blocks. We can still have each processor layer compute a different ’TRSM block’ but
we need to interleave this computation with the top block LU factorization and communicate between
layers to determine each set of pivots as follows (Algorithm 4 gives the full TSLU algorithm),
(a) For every small block column, we perform CA-pivoting over all layers to determine the best rows.
(b) We pivot the rows within the panel on each layer. Interlayer communication is required, since the

best rows are spread over the layers (each layer updates a subset of the rows).
(c) Each ij processor layer redundantly performs small TRSMs and the Schur complement updates in

the top big block.
(d) Each ij processor layer performs TRSMs and updates on a unique big-block of the panel.

2. After the TSLU, we need to pivot rows in the rest of the matrix. We do this redundantly on each layer,
since each layer will have to contribute to the update of the entire Schur complement.

3. We still reduce the side panel (the one we do TSLU on) at the beginning of each step but we postpone
the reduction of the top panel until pivoting is complete. Basically, we need to reduce the ’correct’ rows
which we know only after the TSLU.

Algorithm 5 details the entire 2.5D LU with CA-pivoting algorithm and Figure 5 demonstrates the work-
flow of the new TSLU with CA-pivoting. Asymptotically, 2.5D LU with CA-pivoting has almost the same
communication and computational cost as the original algorithm. Both the flops and bandwidth costs gain
an extra asymptotic log p factor (which can be remedied by using a smaller block size and sacrificing some
latency). Also, the bandwidth cost derivation requires a probabilistic argument about the locations of the
pivot rows, however, the argument should hold up very well in practice. For the full cost derivations of this
algorithm see Appendix C.

7 Performance results

We validate the practicality of 2.5D matrix multiplication via performance results on Franklin, a Cray XT4
machine at NERSC. Franklin has 9,572 compute nodes connected in a 3D torus network topology. Each
node is a 2.3 GHz single socket quad-core AMD Opteron processor (Budapest) with a theoretical peak
performance of 9.2 GFlop/sec per core. More details on the machine can be found on the NERSC website
(see http://www.nersc.gov/nusers/systems/franklin/about.php).



Algorithm 4: [V,L, U ] = 2.5D-LU-pivot-panel-factorization(A,n,m,p,c)
Let [V ] = CA-Pivotl(Al,n,b) be a function that performs CA-pivoting with block size b on A of size n-by-b and
outputs the pivot matrix V to all processors.
Input: n-by-m matrix A distributed so that for each i, j, Pijk owns m√

p/c
-by- m√

p/c
blocks Alij for

li ∈ {i, i+
p
p/c, i+ 2

p
p/c, . . . , i+ (n/m− 1)

p
p/c}.

Output: n-by-n permutation matrix V and triangular matrices L, U such that V ·A = L · U and for each i, j, Pijk

owns n√
pc

-by- n√
pc

blocks Llij and Uij for each i, li, and j.

V := I
// do in parallel with all processors

forall i, j ∈ {0, 1, ...,
p
p/c− 1}, k ∈ {0, 1, ..., c− 1} do

for s = 0 to
p
p/c− 1 do

if j = s and either k ∈ {1, 2, ..., n/m− 1} or k = 0 and i ≥ s then
[Vs] = CA-Pivot

k
√

p/c+i
(A

k
√

p/c+i,j
,k)

end

Psjk for j ∈ {s, s+ 1, ...
p
p/c− 1} swaps any rows as required by Vs between Asj and A

k
√

p/c+l,j
for

l ∈ {0, 1, ...,
p
p/c− 1} and k ∈ {1, 2, ..., n/m− 1}.

Psjk for j ∈ {s, s+ 1, ...,
p
p/c− 1} do an all-gather, for all k, of the rows they just swapped in.

Psjk for j ∈ {s, s+ 1, ...,
p
p/c− 1} swaps any rows as required by Vs between Asj and Alj for

l ∈ {s+ 1, s+ 2, ...,
p
p/c− 1}.

Pssk computes Ass := V ′Ts LssUss.
Pssk broadcasts V ′s , Lss to all Psjk and Uss to al Pisk.
Psjk for j ∈ {s+ 1, ...,

p
p/c− 1} solves Usj := L−1

ss V
′

sAsj .

Psjk for j ∈ {s+ 1, ...,
p
p/c− 1} broadcasts Usj to all Pijk.

Pisk for i ∈ {s+ 1, ...,
p
p/c− 1} solves LT

is := U−T
ss AT

is.

Pisk for i ∈ {s+ 1, ...,
p
p/c− 1} broadcasts Lis to all Pijk.

Pijk for i, j ∈ {s+ 1, ...,
p
p/c− 1} computes Aij := Aij − Lis · Usj .

Pisk for k ∈ {1, ..., n/m− 1} solves LT

k
√

p/c+i,s
:= U−T

ss AT

k
√

p/c+i,s
.

Pisk for k ∈ {1, ..., n/m− 1} broadcasts L
k
√

p/c+i,s
to all Pijk.

Pijk for j ∈ {s+ 1, ...,
p
p/c− 1} computes A

k
√

p/c+i,j
:= A

k
√

p/c+i,j
− L

k
√

p/c+i,s
· Usj .

V :=

»
I 0
0 V ′s

–
·
»
I 0
0 Vs

–
· V .

end
Pijk for k ∈ {1, ..., n/m− 1} broadcasts L

k
√

p/c+i,j
to Pijk′ for k′ ∈ {0, 1, ..., c− 1}.

end



Algorithm 5: [V,L, U ] = 2.5D-LU-pivot-factorization(A,n,p,c)
Let [Xij] = 2D-TRSMij(Lij,Bij,k) be defined as in Algorithm 3.
Input: n-by-n matrix A distributed so that for each i, j, Pij0 owns n√

pc
-by- n√

pc
blocks Alimj for

li ∈ {i, i+
p
p/c, i+ 2

p
p/c, . . . , i+ (c− 1)

p
p/c} and mj ∈ {j, j +

p
p/c, j + 2

p
p/c, . . . , j + (c− 1)

p
p/c}.

Output: n-by-n permutation matrix V and triangular matrices L, U such that V ·A = L · U and for each i, j, Pij0

owns n√
pc

-by- n√
pc

blocks Llimj and Ulimj for each li and mj .

forall i, j ∈ {0, 1, ...,
p
p/c− 1}, k ∈ {0, 1, ..., c− 1} do

S = 0, V = I
processor Pij0 broadcasts Alimj for each li, mj to all Pijk /* replicate A */

for t = 0 to c− 1 do
[Vt, Lt

√
p/c:
√

pc−1,t
√

p/c:(t+1)
√

p/c−1
, U

t
√

p/c:(t+1)
√

p/c−1,t
√

p/c:(t+1)
√

p/c−1
] =

2.5D-LU-pivot-panel-factorization(A
t
√

p/c:
√

pc−1,t
√

p/c:(t+1)
√

p/c−1
, n− tn/c, n/c, p, c)

V :=

»
I 0
0 Vt

–
· V .

Pijk swaps any rows as required by Vt between (A,S)
t
√

p/c+i,m
and (A,S)l,m for

l ∈ {t
p
p/c, t

p
p/c+ 1, ...,

√
pc− 1} and

m ∈ {j, j +
p
p/c, ..., j + (t− 1)

p
p/c, j + (t+ 1)

p
p/c, ..., j +

√
pc−

p
p/c}.

Pijk contributes S
t
√

p/c+i,m
√

p/c+j
for m ∈ {t+ 1, t+ 2, ..., c− 1} to a sum all-reduction among all Pijk

A
t
√

p/c+i,m
√

p/c+j
:= A

t
√

p/c+i,m
√

p/c+j
− S

t
√

p/c+i,m
√

p/c+j

if t+ k < c− 1 then /* perform (n/c)-by-(n/c) block TRSMs */
[U

t
√

p/c+i,(t+k+1)
√

p/c+j
] = 2D-TRSMij(Lt

√
p/c+i,t

√
p/c+j

, A
t
√

p/c+i,(t+k+1)
√

p/c+j
,k)

Pijk broadcasts U
t
√

p/c+i,(t+k+1)
√

p/c+j
to Pijk′ for k′ ∈ {0, 1, ..., c− 1}

end
if t < c− 1 then /* perform trailing matrix update */

if bk
p
p/c3c ≤ j < b(k + 1)

p
p/c3c then

Pijk broadcasts L
m
√

p/c+i,t
√

p/c+j
for each m ∈ {t+ 1, t+ 2, ..., c− 1} to each Pij′k for

j′ ∈ {0, 1, ...,
p
p/c− 1}

end

if bk
p
p/c3c ≤ i < b(k + 1)

p
p/c3c then

Pijk broadcasts U
t
√

p/c+i,m
√

p/c+j
for each m ∈ {t+ 1, t+ 2, ..., c− 1} to each Pi′jk for

i′ ∈ {0, 1, ...,
p
p/c− 1}

end
for l = t+ 1 to c− 1 do

for m = t+ 1 to c− 1 do

for r = bk
p
p/c3c to b(k + 1)

p
p/c3c − 1 do

Slm := Slm + L
l
√

p/c+i,t
√

p/c+r
· U

t
√

p/c+r,m
√

p/c+j

end

end

end
// reduce horizontal panel of Schur complement and adjust A

Pijk contributes S
l
√

p/c+i,t
√

p/c+j
for l ∈ {t+ 1, t+ 2, ..., c− 1} to a sum all-reduction among all Pijk

A
l
√

p/c+i,t
√

p/c+j
:= A

l
√

p/c+i,t
√

p/c+j
− S

l
√

p/c+i,t
√

p/c+j

end

end

end
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Fig. 5. 2.5D LU with pivoting panel factorization (step A in Figure 4).



We implemented 2.5D matrix multiplication using MPI [11] for inter-processor communication and calls to the
BLAS for the sequential sub-matrix multiplications. For simplicity, our implementation makes the assumption
that the matrices are square and processor counts as well as the matrix dimension are powers of two. We
benchmarked versions with blocking communication as well as overlapped (when possible) communication.
Both versions were competitive and we report results for the best performing version at any data-point.

We omit comparison with the ScaLAPACK (PBLAS) [4] as it is unfair to compare a general purpose imple-
mentation with a very limited one (for the problem sizes tested, the performance of our implementation was
strictly and significantly better).

Figure 6 shows weak scaling (static dataset size per processor) results with 32-by-32 sized matrix blocks of
64-bit elements per processor. We used a such a small problem size in order to expose the communication
bottlenecks at small processor counts and use less supercomputer resources. Larger problem sizes run at
high efficiency when using so few nodes, therefore, inter-processor communication avoidance does not yield
significant benefit to overall performance.
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Fig. 6. Performance of 2.5D square matrix multiplication with various c on Franklin (XT4).

The results in Figure 6 demonstrate that replicating memory improves the scalability and performance of
dense matrix multiplication when many processors are utilized. When using p = 4, 096 cores, picking c = 4
boosts performance by a factor of 2.5 over the 2D version and a factor of 2.4 over the 3D version (c = 16).
Further, when using p = 16, 384 cores, we get a factor of 3.0 speed-up over the 2D version, suggesting that even
larger speed-ups are possible if more cores/nodes are utilized. We are currently working on implementation of
2.5D LU and more in-depth performance analysis of 2.5D algorithms. However, we believe these preliminary
results serve as a strong early indicator of the validity and practicality of the theoretical analysis presented
in this paper.

8 Exascale performance predictions

We analyze the new 2.5D algorithms and compare them to their 2D counterparts via a performance model.
In particular, we look at their performance given an exascale interconnect architecture model.

8.1 Predicted architectural parameters

Table 1 details the parameters we use in the model. We avoid looking at intra-node performance because a
two-level algorithm would likely be used in practice and our 2.5D algorithms are designed for the highest
level (network level). This assumption is a bit flawed because the node-level operations performed are of
different size or function depending on the higher level algorithm.



Total flop rate (fr) 1E18 flops

Total memory 32 PB

Node count (p) 1,000,000

Node interconnect bandwidth (β) 100 GB/s

Network latency (α) 500 ns
Table 1. Estimated architecture characteristics of an exaflop machine

Fig. 7. Speed up for best choice of c in comparison to Cannon’s algorithm.

8.2 Performance estimation

We use the exact costs derived in Appendices A and B to model the performance of the new 2.5D matrix
multiplication and LU factorization algorithms. We estimate the bandwidth achieved as 1/3 of the predicted
total node interconnect bandwidth. The actual bandwidth achieved on a machine depends heavily on the
interconnect topology and implementation of communication collectives. The best current implementations
of collectives on 3D torus topologies can achieve the full node bandwidth, but if the broadcasts are single
dimensional as they are in our algorithms, at most 1/3 of the total node bandwidth can be achieved [9]. We
estimate the execution time by summing the computational, bandwidth, and latency costs

t = tf + tw + ts

= F/fr +
W

3 · 8 · β
+ S · α.

We calculate the performance of our algorithms according to this model for different node counts (partitions
of the exascale machine) and for different values of n2

p (weak scaling analysis). We will analyze the algorithm
performance in relation to other algorithms rather than as absolute performance since our model is only
analyzing inter-node communication.

8.3 2.5D matrix multiplication speed-ups

For each data point (choice of p and n2

p ) we compare the performance of Cannon’s algorithm with the
performance achieved using the optimal choice of c (sampled over valid values). Figure 7 displays the factor
of speed-up and the corresponding choice of c.



First, we notice that the 2.5D algorithm always outperforms Cannon’s algorithm since if c is picked to be 1
they are equivalent. When using the full machine on a small problem, we get as much as a factor of 12.18X
speed up and c gets up to 102 (101 redundant copies of the matrices are used). The speed-up is most ample
when Cannon’s algorithm is at low efficiency and is bound by bandwidth or latency.

8.4 2.5D LU factorization speed-ups

Fig. 8. Speed up for best choice of c in comparison to a 2D LU algorithm.

For each data point (choice of p and n2

p ) we compare the performance of a 2D LU algorithm with the perfor-
mance achieved using the optimal choice of c (sampled over valid values) of the new 2.5D LU-factorization
algorithm. Figure 8 displays the factor of speed-up and the corresponding choice of c.

In this case, we only get a speed-up up of to 1.37X on a mid-size, bandwidth-bound problem. For matrix
multiplication, we reduced both the bandwidth and latency costs but for LU we reduced only the bandwidth
cost. So the speed-up is not as significant for LU. However, in practice, LU factorization is likely to be more
bandwidth bound on a supercomputer and the bandwidth number we are using is quite optimistic. Further,
our algorithm can be better mapped to cuboid topologies and, therefore, might be able to operate with
significantly less network contention and efficient topology-aware collectives in practice.

9 Future work

Preliminary analysis suggests that a 2.5D algorithm for TRSM can be written using a very similar parallel
decomposition to what we present in this paper for LU. We will formalize this analysis.

Our 2.5D LU algorithm can also be modified to do Cholesky. Thus, using Cholesky-QR we plan to formulate
many other numerical linear algebra operations with minimal communication. As an alternative, we are also
looking into adjusting the algorithms for computing QR, eigenvalue decompositions, and the SVD which use
Strassen’s algorithm [8] to using our 2.5D matrix multiplication algorithm instead. Further, we plan to look for
the most efficient and stable 2.5D QR factorization algorithms. In particular, the 2D parallel Householder
algorithm for QR has a very similar structure to LU, however, we have not found a way to accumulate
Householder updates across layers. The Schur complement updates are subtractions and therefore commute,



however, each step of Householder QR orthogonalizes the remainder of the matrix with the newly computed
panel of Q. This orthogonalization is dependent on the matrix remainder and is a multiplication, which
means the updates do not commute and therefore seem to be difficult to accumulate.

Finally, we are working with preliminary implementations of 2.5D matrix multiplication and LU factorization.
We aim to analyze the performance these algorithms on modern supercomputers and determine how much
performance benefit our data replication techniques might yield. In addition to the benefits of communication
reduction, our 2.5D algorithms should be able to efficiently utilize topology-aware collective communication
operations [9] by matching the algorithmic processor layout to the actual physical network topology.

10 Appendix A

In this appendix we derive costs for the 2.5D Matrix multiplication algorithm. We break down the band-
width/latency/flops (W/S/F ) costs by the steps of the algorithm

1. We assume the matrices start on one layer of the 2D grid and the other c− 1 copies need to be created.
If c > 1 we require two broadcasts for each matrix (A, B). The costs are

W1 =
2n2

p/c

S1 = 2 log(c)

2. Shift A and B in each processor layer. All processors send and receive one message so this communication
can all be done simultaneously. The costs are

W2 =
2n2

p/c

S2 = 2

3. Perform
√

p/c

c − 1 =
√
p/c3 − 1 steps of Cannon’s algorithm on each layer. Each step requires a shift of

both A and B, so the costs over all iterations are

W3 =
2n2

p/c
· (
√
p/c3 − 1)

=
2n2

√
pc
− 2cn2

p

S3 = 2(
√
p/c3 − 1)

4. If c > 1, we reduce the contributions to C between processor layers. This single reduction costs

W4 =
n2

p/c

S4 = log(c)

No extra computation is done by this algorithm. We can calculate the total communication costs by summing
over all previously enumerated steps,



W2.5D MM = W1 +W2 +W3 +W4

=
2n2

p/c
+

2n2

p/c
+

2n2

√
pc
− 2cn2

p
+

n2

p/c

=
3n2

p/c
+

2n2

√
pc

≈ 2n2

√
pc

= O

(
n2

√
pc

)
S2.5D MM = S1 + S2 + S3 + S4

= 2 log(c) + 2 + 2(
√
p/c3 − 1) + log(c)

= 3 log(c) + 2
√
p/c3

= O
(√

p/c3 + log(c)
)
.

So, the number of words moved is optimal. The number of messages has an extra log(p) term but is oth-
erwise optimal (the log(p) term probably can’t be eliminated). If we pay attention to the fact that no
broadcast/reduction needs to be done in the case of c = 1, the costs are also the same as for Cannon’s
algorithm.

11 Appendix B

Here we derive precise bandwidth/latency/flop (W/S/F ) costs for the 2.5D LU algorithm. For generality,
the small block size will now be n

r
√

pc , where r is some small constant blocking parameter.

1. Factorize the top big block redundantly on each active layer. This is a 2D LU on a matrix of size n/c-
by-n/c on a

√
p/c-by-

√
p/c processor grid with a block-cyclic distribution defined by r. The costs over

c iterations are

F1 =
(2/3)(n/c)3

p/c
· c

=
(2/3)n3

cp

W1 =
3(n/c)2√

p/c
· c

=
3n2

√
pc

S1 = 4r
√
p/c log(

√
p/c) · c

= 2r
√
pc log(p/c)

2. Perform a different big block TRSM on different layers. This is a 2D TRSM of size n/c-by-n/c on a√
p/c-by-

√
p/c processor grid. We do not perform this TRSM at the last iteration. The costs over c

iterations are



F2 =
(n/c)3

p/c
· (c− 1)

=
n3

cp
− n3

pc2

W2 =
(n/c)2√
p/c
· (c− 1)

=
n2

√
pc
− n2

p1/2c3/2

S2 = 2r
√
p/c log(

√
p/c) · (c− 1)

= r
√
pc log(p/c)− r

√
p/c log(p/c)

3. Broadcast the big blocks of L and U we just computed via TRSMs so that each layer gets the entire
panels. All processors are involved in each big block broadcast so we can do them one by one efficiently.
We don’t need to do this at the last iteration. So, over c iterations the costs are

W3 =
c∑

i=1

(n/
√
pc)2 · 2(i− 1)

=
n2c

p
− n2

p

S3 =
c∑

i=1

log(
√
p/c) · 2(i− 1)

= (1/2)c2 log(p/c)− (1/2)c log(p/c)

Its worthy to note that these communication costs are slightly excessive for the required task. For one,
we can be smarter and interleave the big block broadcasts to reduce the latency cost. Also, we don’t
actually need the entire panels on each layer but rather different sub-panels. We use this approach for
brevity and because it has the nice property that all layers end up with the solution.

4. At iteration i for i ∈ {1, 2, . . . , c − 1}, broadcast a sub-panel of L of size (n/c2)-by-(n − in/c) and a
sub-panel of U of size (n − in/c)-by-(n/c2) along a single dimension of each 2D processor layer. So for
both L and U we are doing (c− i)r

√
p/c broadcasts of r

√
p/c3 small blocks. The blocks are distributed

cyclically among
√
p/c sets of

√
p/c3 processors and each of these processor sets communicates with

a disjoint set of processors. So each processor can combine the broadcasts and broadcasts can be done
simultaneously among rows for L and columns for U . Thus, since each disjoint broadcasts is of size
(c−i)n2

pc , the total communication costs is

W4 =
c−1∑
i=1

2(c− i)n2

cp
·
√
p/c3

=
n2

√
cp
− n2√

c3p

S4 = 2 log(
√
p/c) ·

√
p/c3 · (c− 1)

=
√
p/c log(p/c)−

√
p/c3 log(p/c)

5. Multiply the panels we just broadcasted in blocks to compute the Schur complement distributed over all
layers and processors. We already distributed the matrices and no more inter-processor communication
is required for this step. At iteration i, each processor needs to compute r

√
p/c3 · (r(c− i))2 small block

multiplications. The computational cost over all iterations is



F5 =
c−1∑
i=1

r
√
p/c3 · (r(c− i))2 · 2

(
n

r
√
pc

)3

=
2n3(c− 1)3

3c3p

=
2n3

3p
− 2n3

3cp

6. Reduce side and top panels of A. At iteration i, the panels we are reducing are of size (n − in/c)-by-
(n/c) and (n/c)-by-(n − (i + 1)n/c). All processors are involved in the panel reduction. Each processor
is responsible for reducing 2(c − i) small blocks but each of these reductions involves the same set of
processors and can be combined into one bigger one. Thus, the communication costs are

W6 =
c−1∑
i=1

2(c− i− 1) · (n/√pc)2

=
cn2

p
− n2

p

S6 = log(c) · (c− 1)
= c log(c)− log(c)

We can sum the above costs to derive the total cost of the algorithm.



F2.5D LU = F1 + F2 + F5

=
2n3

3p
− 2n3

3cp
+
n3

cp
− n3

pc2
+

(2/3)n3

cp

=
2n3

3p
+
n3

cp
− n3

pc2

≈ 2n3

3p

= O

(
n3

p

)
W2.5D LU = W1 +W2 +W3 +W4 +W6

=
3n2

√
pc

+
n2

√
pc
− n2

p1/2c3/2
+
n2c

p
− n2

p
+

n2

√
cp
− n2√

c3p
+
cn2

p
− n2

p

=
5n2

√
pc
− n2

p1/2c3/2
+

2cn2

p
− 2n2

p
− n2√

c3p

≈ 5n2

√
pc

+
2cn2

p

= O

(
n2

√
pc

)
S2.5D LU = S1 + S2 + S3 + S4 + S6

= 2r
√
pc log(p/c) + r

√
pc log(p/c)− r

√
p/c log(p/c) + (1/2)c2 log(p/c)

− (1/2)c log(p/c) +
√
p/c log(p/c)−

√
p/c3 log(p/c) + c log(c)− log(c)

= 3r
√
pc log(p/c) +

√
p/c log(p/c) + (1/2)c2 log(p/c) + c log(c)

− log(c)− r
√
p/c log(p/c)− (1/2)c log(p/c)−

√
p/c3 log(p/c)

≈ 3r
√
pc log(p/c) + (1/2)c2 log(p/c)

= O(r
√
pc log(p/c)).

All of these costs are asymptotically optimal according to our lower bounds (with the exception of the latency
cost which, if we set r = 1 is a factor of log(p/c) higher than the lower bound but still likely optimal). The
costs also reduce to the optimal 2D LU costs when c = 1.

12 Appendix C

Here we derive precise bandwidth/latency/flop (W/S/F ) costs for the 2.5D LU with CA-pivoting algorithm.
The algorithm does a superset of the operations of the no-pivoting 2.5D LU algorithm. We will not re-derive
all the steps but rather only the extra steps. For generality, the small block size will now be n

r
√

pc , where r
is some small constant blocking parameter.

1. Perform CA-pivoting to determine pivots for each small block column. Every processor layer finds the
best rows within a big block, then we reduce to find the best rows over the entire small block column.
If we do a binary reduction and perform each

(
2n

r
√

pc

)
-by-

(
n

r
√

pc

)
factorization sequentially on some

processor, there are log( r
√

pc

2 ) factorizations along the critical path. So the costs over all iterations are



F1 =
r
√

pc∑
i=1

(5/3)
(

n

r
√
pc

)3

log(i)

≤
(5/3)n3 log(r

√
pc)

r2pc

W1 =
r
√

pc∑
i=1

(
n

r
√
pc

)2

log(i/r)

≤ (1/2)n2 log(pc)
r
√
pc

S1 ≤ (1/2)r
√
pc log(pc)

If r is a constant, the flops cost is suboptimal by a factor of Θ(log(p)) when c = 1 and the bandwidth
cost is suboptimal by a factor of Θ(log(p)) for any c, however they can be brought down by raising
r = Ω(log(p)) at the expense of latency. In fact, 2D LU with CA-pivoting has to sacrifice a factor of
Θ(log(p)) in flops or in latency so this is to be expected. We actually get an advantage because the the
flops cost of this step has an extra factor of c in the denominator.

2. Once the correct pivot rows are determined we broadcast the pivots to all processors as they may all be
involved in the pivoting. Over all iterations this costs

W2 =
(

n

r
√
pc

)2

· r√pc

=
n2

r
√
pc

S2 = log(p) · r√pc
= r
√
pc log(p)

3. After calculating the pivots and broadcasting them for a single small-block column, we pivot within the
entire panel. This is really a many-to-many communication since the pivot rows are distributed over all
layers and every layer needs all the rows. The communication is disjoint among columns of processors
over all layers. However, we will write it as a gather within each layer and an all-reduce across layers.
So, we gather the pivot rows local to each layer and then we implement the all-gather as an all-reduction
(the reduction concatenates contributions). Over all iterations, the costs are

W3 ≤ 2
(

n

r
√
pc

)2

· r√pc

≤ 2n2

r
√
pc

S3 ≤ (log(
√
p/c) + log(c)) · r√pc

≤ (1/2)r
√
pc log(pc)

4. After we finish factorizing the entire big block panel we must pivot the rest of the rows redundantly on
each layer. In the worst case, we need to collect an entire panel. The communication is disjoint between
processor columns. The communication pattern is essentially a partial transpose among the processors
in each column.
We know that no processor will receive more row blocks than it partially owns within then panel. On
average, each processor will also send no more blocks than it owns within the panel. However, in the worst
case, a single processor may have to pivot all of the rows it owns to the panel. For any realistic matrix
the pivot rows should be distributed randomly among the processors (especially since the distribution



is block-cyclic). So, applying a simple probabilistic argument (balls in bins), we argue that no processor
should contribute more than a factor of log(

√
p/c) pivot rows than the average. Given this assumption,

the costs are

W4 ≤
c∑

i=1

(c− 1) · (n/√pc)2 log(
√
p/c)

≤
c∑

i=1

(c− 1) · n
2

pc
log(

√
p/c)

≤ cn2

2p
log(p/c)

S4 ≤ (c/2) log(p/c)

Further, we argue that the indices of pivot rows for most realistic matrices can be treated as independent
random events. In this case, we can apply a Chernoff bound to say that for large enough matrices, no
processor should contribute more than a small constant factor, ε, of pivot rows than the average, with

high probability (1− e−
ε2n2
pc ). Under these assumptions, the bandwidth cost goes down to

W4 ≤
c∑

i=1

(c− 1) · (n/√pc)2(1 + ε)

≈
c∑

i=1

c · n
2

pc

≤ cn2

p

However, in the worst case (which seems very impractical), the bandwidth cost here is

W ′4 ≤
c∑

i=1

(c− i) · c(n/√pc)2

≤ c2n2

2p
.

5. We also have to account for the fact that we need to postpone the reduction of the top panel. The amount
of bandwidth we need stays the same since we move the same amount of data, however, the latency cost
for this step doubles. So we must send double the messages for this step, for an extra latency cost of

S5 = c log(c)− log(c)

We can sum the above costs and add them to the 2D LU costs to derive the total cost of the algorithm.



F2.5D LU P = F2.5D LU + F1

≤ F2.5D LU +
(5/3)n3 log(r

√
pc)

r2pc

≈ 2n3

3p
+

(5/6)n3 log(pc)
r2pc

= O

(
n3

p
+
n3 log(p)
r2pc

)
W2.5D LU P = W2.5D LU +W1 +W2 +W3 +W4

≤W2.5D LU +
(1/2)n2 log(pc)

r
√
pc

+
n2

r
√
pc

+
2n2

r
√
pc

+
cn2

p

≤W2.5D LU +
(1/2)n2 log(pc)

r
√
pc

+
3n2

r
√
pc

+
cn2

p

≈ 5n2

√
pc

+
3cn2

p
+

(1/2)n2 log(pc)
r
√
pc

+
3n2

r
√
pc

= O

(
n2 log(p)
r
√
pc

+
n2

√
pc

)
S2.5D LU P = S2.5D LU + S1 + S2 + S3 + S4 + S5

= S2.5D LU + (1/2)r
√
pc log(pc) + r

√
pc log(p)

+ (1/2)r
√
pc log(pc) + (c/2) log(p/c) + c log(c)− log(c)

≈ S2.5D LU + 2r
√
pc log(pc)

≈ 3r
√
pc log(p/c) + (1/2)c2 log(p/c) + 2r

√
pc log(pc)

≈ 5r
√
pc log(p/c) + (1/2)c2 log(p/c)

= O (r
√
pc log(p))

All of these costs are within O(log(p)) of the lower bound if r is a constant. However, if we pick r = Ω(log(p))
the computational cost and the bandwidth costs become optimal, while the latency cost is suboptimal by a
factor of Θ(log2(p)). However, a probabilistic argument was required for the bandwidth cost to reach this
bound.
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