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Abstract

This report develops a framework for analyzing probabilistic reachability and safety problems for

discrete time hybrid systems in a stochastic game setting. In particular, we formulate these problems as

zero-sum stochastic games between the control, whose objective is to reach a desired target set or remain

within a given safe set, and a rational adversary, whose objective is opposed to that of the control. It

will be shown that the maximal probability of achieving the reachability and safety objectives subject to

the worst-case adversary behavior can be computed through a suitable dynamic programming algorithm.

Furthermore, there always exists an optimal control policy which achieves this worst-case probability,

regardless of the choice of disturbance strategy, and sufficient conditions for optimality of the policy can

be derived in terms of the dynamic programming recursion. We provide several application examples

from the domains of air traffic management and robust motion planning to demonstrate our modeling

framework and solution approach.

I. INTRODUCTION

In application scenarios ranging from air traffic management [1], [2], [3], automotive control

[4], systems biology [5], [6], to bipedal walking [7], the behavior of the system one would like to

control can be described in terms of a hybrid system abstraction in which the system state evolves

both in the discrete and continuous domain. While the discrete state can be used to capture

qualitative behavior of the system, for example the operating modes of a flight management

system or the foot impact of a bipedal walker, the continuous state can be used to capture

quantitative characteristics such as the velocity and heading of the aircraft or the joint angles of
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a biped. When the evolution of the discrete and continuous state can be modeled probabilistically,

for example through analysis of statistical data, then a natural modeling framework is that of a

stochastic hybrid system (SHS) [8], [9], [10].

For a controlled SHS, the performance of the closed-loop system can be measured in terms

of the probability that the system trajectory obeys certain desired specifications. Of interest to

safety-critical applications are probabilistic safety and reachability problems where the control

objective is to maximize the probability of remaining within a certain safe set or of reaching

a desired target set. Early contributions in this domain for continuous-time SHS include [11]

and [12]. A slight generalization of the safety and reachability problem is considered in [13],

called the reach-avoid, in which the control objective is to reach the desired target set, while

remaining within a safe set. The probability of achieving this objective is shown to be the

solution of an appropriate Hamiltion-Jacobi-Bellman equation. To address the computational

issues associated with probabilistic reachability analysis, the authors in [14], [15] propose a

Markov chain approximation of the SHS [16], and apply the results to air traffic control studies,

while in [17], the authors propose an efficient method for estimating an upper bound for the

safety probability for an autonomous SHS using barrier certificates. In the discrete time case,

a theoretical framework for the study of probabilistic safety problems is established in [18] for

discrete-time stochastic hybrid systems (DTSHS). These results are generalized in [19] to address

the reach-avoid problem in discrete time, with considerations for time-varying and stochastic

target sets and safe sets given in [20] and [21].

The main contribution of this work is the extension of results for probabilistic safety and

reachability of DTSHS, as studied in [18] and [19], to a zero-sum stochastic game setting. In

particular, we consider a scenario where the evolution of the system state is affected not only by

the actions of the control (as in previous work), but also by the actions of a rational adversary,

whose objectives are opposed to that of the control. This is motivated by practical applications

such as conflict resolution between pairs of aircraft in air traffic management [2] and control of

networked systems subject to external attacks [22], in which the decisions of the external agent

may not obey any a priori known probability distribution, but rather depend in a rational fashion

on the current state of the system and possibly also on the actions of the control. In such cases,

a robust control design must take into account the worst-case behavior of the external agent.

This technical report builds upon our recent work in [23], where a stochastic game for-



mulation of the reach-avoid problem was proposed and a theoretical result was given stating

that under certain standard continuity/compactness assumptions [24], [25] on the underlying

stochastic kernels and player action spaces, there exists: 1) a dynamic programming algorithm for

determining the maximal probability of satisfying the reach-avoid objective, subject to the worst-

case adversary behavior, called the max-min reach-avoid probability; 2) a max-min control policy

which achieves the max-min reach-avoid probability under the worst-case adversary strategy. Due

to space limitations, the proof was omitted from [23]. In this report, we provide a detailed proof

of this result and, in the process, derive sufficient conditions of optimality for both the control

and the adversary in terms of the dynamic programming recursion. Furthermore, we demonstrate

how the reach-avoid problem can be specialized to address the safety problem and provide two

equivalent dynamic programming algorithms for computing the maximal safety probability in a

stochastic game setting. Finally, we provide a detailed analysis of several application examples

in order to illustrate the value and implications of the proposed framework. This includes a

tutorial example in which both the max-min safety probability and max-min control policy can

be calculated in an analytic fashion, as well as a pairwise aircraft collision avoidance example

from air traffic management, in which a stochastic wind model is used to account for wind

effects on aircraft motion.

It is worth noting that although there is a large number of previous results in the field of

non-cooperative stochastic games [26], [24], [25], [27], [28], we found the direct application

of these results to our problem difficult, for several reasons. First, the pay-off functions for the

safety and reach-avoid problems are sum-multiplicative, which prevents the use of results from

the more common additive cost problems [24], [27]. Second, although there is previous work

on more general utility functions which depend on the entire history of the game [25], [28], the

results are primarily for the existence of randomized policies under a symmetric information

pattern. Due to practical implementation and also robustness concerns, we are more interested

in the existence of nonrandomized policies under a non-symmetric information pattern. Finally,

an important feature of hybrid systems is that the dynamics in the continuous state space can

change abruptly across certain switching boundaries. This requires a relaxation of the continuity

assumptions in the continuous state space such as those given in [26].

The report is organized as follows. In Section II, we describe the model for a discrete-time

stochastic hybrid game (DTSHG), along with some technical assumptions necessary for our



results. In Section III, we give a formal stochastic game formulation of the probabilistic reach-

avoid problem and discuss how the safety problem can be considered a special case of the

reach-avoid problem. In Section IV, we state and prove our main result from [23] for computing

the max-min reach-avoid probability, and give sufficient conditions of optimality for both the

control policy and the adversary strategy. This is followed by a discussion of some practical

implications, along with an analytic example to illustrate the dynamic programming algorithm.

The specialization of this result to the safety problem is given in Section IV-B. We demonstrate

the application of the proposed modeling and analysis framework in Section V through several

practical examples. Finally, some concluding remarks along with directions for future work are

given in Section VI.

II. DISCRETE-TIME STOCHASTIC HYBRID DYNAMIC GAME MODEL

In this section, we describe the model proposed in [23] for a Discrete-time Stochastic Hybrid

Dynamical Game (DTSHG), as an extension of the discrete-time stochastic hybrid systems

(DTSHS) model proposed in [18], [19] to a two-player stochastic game setting. Following

standard conventions, we will refer to the control as Player I and to the adversary as Player

II and denote by B(·) the Borel σ−algebra on a topological space.

Definition 1 (DTSHG). A discrete-time stochastic hybrid dynamical game between two players

is a tuple H = (Q, n,A,D, τv, τq, τr) as described below.

• Discrete state space Q := {q1, q2, ..., qm}, where m ∈ N;

• Dimension of continuous state space n : Q → N: a map which assigns to each discrete

state q ∈ Q the dimension of the continuous state space Rn(q). The hybrid state space is

given by X :=
⋃
q∈Q{q} × Rn(q);

• Player I control space A: a nonempty, compact Borel space;

• Player II control space D: a nonempty, compact Borel space;

• Continuous state transition kernel τv : B(Rn(·))×X ×A×D → [0, 1]: a Borel-measurable

stochastic kernel on Rn(·) given X ×A×D which assigns to each x = (q, v) ∈ X , a ∈ A

and d ∈ D a probability measure τv(·|x, a, d) on the Borel space (Rn(q),B(Rn(q)));

• Discrete state transition kernel τq : Q×X × A × D → [0, 1]: a discrete stochastic kernel

on Q given X × A × D which assigns to each x ∈ X and a ∈ A, d ∈ D a probability



distribution τq(·|x, a, d) over Q;

• Reset transition kernel τr : B(Rn(·))×X×A×D×Q → [0, 1]: a Borel-measurable stochastic

kernel on Rn(·) given X × A × D × Q which assigns to each x ∈ X , a ∈ A, d ∈ D and

q′ ∈ Q a probability measure τr(·|x, a, d, q′) on the Borel space (Rn(q′),B(Rn(q′))).

We note briefly that the measurability requirements given here are necessary for the formal

characterization of the probability that the system state remains within or reaches certain desired

subsets of the state space, under the semantics of a DTSHG. In the following, we will provide

a detailed discussion of this semantics.

Within a non-cooperative dynamical game setting, it is important to first define the information

pattern, namely the knowledge that each player has about the state of the system and the actions

of the other player. With different information patterns, one may arrive at different formulations

of the stochastic game, along with correspondingly different algorithms for computing the payoff

functions for each player [29]. Motivated by robust control applications, we consider here an

information pattern which gives an advantage to player II: at each time step, Player I is allowed

to select inputs based upon the current state of the system, while Player II is allowed to select

inputs based upon both the system state and the control input of Player I. A mathematical

description of this is given below.

Definition 2 (Markov Policy). A Markov policy for player I is a sequence µ = (µ0, µ1, ..., µN−1)

of Borel measurable maps µk : X → A, k = 0, 1, ..., N − 1. The set of all admissible Markov

policies for player I is denoted by Ma.

Definition 3 (Markov Strategy). A Markov strategy for player II is a sequence γ = (γ0, γ1, ..., γN−1)

of Borel measurable maps γk : X×A → D, k = 0, 1, ..., N−1. The set of all admissible Markov

strategies for player II is denoted by Γd.

For a given initial condition x0 = (q0, v0) ∈ X , player I policy µ ∈Ma, and player II strategy

γ ∈ Γd, the semantics of a DTSHG can be described as follows. At the beginning of each time

step k, each player obtains a measurement of the current system state xk = (qk, vk) ∈ X . Using

this information, player I selects his/her controls as ak = µk(xk), following which player II

selects his/her controls as dk = γk(xk, ak). The discrete state is then updated according to the

discrete transition kernel as qk+1 ∼ τq(·|xk, ak, dk). If the discrete state remains the same, namely



qk+1 = qk, then the continuous state is updated according to the continuous state transition kernel

as vk+1 ∼ τv(·|xk, ak, dk). On the other hand, if there is a discrete jump, the continuous state is

instead updated according to the reset transition kernel as vk+1 ∼ τr(·|xk, ak, dk, qk+1).

Following this description, we can use a similar approach as in [18] to compose the transition

kernels τv, τq, and τr to form a hybrid state transition kernel τ : B(X) ×X ×A × D → [0, 1]

which describes the evolution of the hybrid state under the influence of player I and player II

inputs. Specifically, let x = (q, v) ∈ X , then

τ((q′, dv′)|(q, v), a, d, q′) =

 τv(dv
′|(q, v), a, d)τq(q|(q, v), a, d), if q′ = q

τr(dv
′|(q, v), a, d, q′)τq(q

′|(q, v), a, d), if q′ 6= q.

Using the hybrid transition kernel τ , we can now give a formal definition for the executions

of a DTSHG.

Definition 4 (DTSHG Execution). Let H be a DTSHG and N ∈ N be a finite time horizon. A

stochastic process {xk, k = 0, ..., N} with values in X is an execution of H associated with

a Markov policy µ ∈ Ma, a Markov strategy γ ∈ Γd, and an initial condition x0 ∈ X if its

sample paths are obtained according to Algorithm II.1.

Algorithm II.1 DTSHG Execution

Input Initial hybrid state x0 ∈ X , Markov policy µ = (µ0, µ1, ..., µN−1) ∈Ma, Markov strategy

γ = (γ0, γ1, . . . , γN−1) ∈ Γd

Output Sample Path {xk, k = 0, ..., N}

Set k = 0;

while k < N do

Set ak = µk(xk);

Set dk = γk(xk, ak);

Extract from X a value xk+1 according to τ(·|xk, ak, dk);

Increment k;

end while

As the player I policy µ and player II strategy γ are in general time-varying, the execution

{xk, k = 0, . . . , N} of the DTSHG is a time inhomogeneous stochastic process on the sample



space Ω = XN+1, endowed with the canonical product topology B(Ω) :=
∏N+1

k=1 B(X). In

particular, the evolution of the closed-loop hybrid state trajectory can be described in terms of

the transition kernels τµk,γk(·|x) := τ(·|x, µk(x), γk(x, µk(x))), k = 0, . . . , N . By Proposition

7.28 of [30], for a given x0 ∈ X , µ ∈ Ma, γ ∈ Γd, these stochastic kernels induce a unique

probability measure P µ,γ
x0

on Ω as defined by

P µ,γ
x0

(X0 ×X1 × · · · ×XN) =

∫
X0

∫
X1

· · ·
∫
XN

τµN−1,γN−1(dxN |xN−1) (1)

× · · · × τµ0,γ0(dx1|x′0)δx0(dx
′
0),

where X0, ..., Xk ∈ B(X) are Borel sets and δx0 denotes the probability measure on X which

assigns mass one to the point x0 ∈ X .

A. Examples

In order to illustrate the definitions given so far, we provide two concrete examples for which

DTSHG models are constructed from the given problem descriptions.

1) 2-mode DTSHG: Consider a simple discrete-time stochastic hybrid system with two modes

of operation Q = {q1, q2}, as shown in Fig. 1a. The transitions between the discrete modes

are modeled probabilistically, with the probability of dwelling in mode qi given by pi, i = 1, 2.

While in mode qi, a continuous state v ∈ R evolves according to a stochastic difference equation

vk+1 = fi(vk, ak, dk, ηk), defined as follows

vk+1 =f1(vk, ak, dk, ηk) = 2vk + ak + dk + ηk,

vk+1 =f2(vk, ak, dk, ηk) =
1

2
vk + ak + dk + ηk, (2)

where ak and dk are the inputs of player I and player II, respectively, and ηk is a random

variable modeling the effect of noise upon the system dynamics. It is assumed that the players

have identical capabilities, with ak and dk taking values in [−1, 1]. The noise is modeled by a

uniform distribution ηk ∼ U(−1,+1). A sample execution of this system, with initial condition

x0 = (q0, v0) = (1, 1), µk = −sgn(vk) and γk = vkak
|2vkak|

is shown in Fig. 1b.

Under the formal modeling framework defined previously, the hybrid state space is X =

{q1, q2}×R, and the player input spaces are A = D = [−1, 1]. The discrete transition kernel τq is

derived from the mode transition diagram Fig. 1a as τq(q1|(q1, v), a, d) = p1, τq(q2|(q1, v), a, d) =



(a) Discrete modes and transitions (b) An execution of the DTSHG

Fig. 1: Example 1 - A discrete-time stochastic hybrid game (DTSHG) with two modes, linear

dynamics and uniformly distributed noise for each mode.

1− p1, τq(q1|(q2, v), a, d) = 1− p2, τq(q2|(q2, v), a, d) = p2. The continuous transition kernel τv

can be derived from the continuous state dynamics (2) as τv(dv′|(q1, v), a, d) ∼ U(2v+ a+ d−

1, 2v+ a+ d+ 1), τv(dv′|(q2, v), a, d) ∼ U(1
2
v+ a+ d− 1, 1

2
v+ a+ d+ 1). With the assumption

that the continuous state v is not reset during a discrete mode transition, the reset kernel is given

by τr(dv
′|(q, v), a, d, q′) = τv(dv

′|(q, v), a, d). We observe that the stochastic kernels τv and τr

are continuous in a and d, while τq is independent of the players’ inputs. Thus, the conditions

of Assumption 1 are satisfied.

2) Pairwise Aircraft Collision Avoidance: Now we consider a more practical application

scenario which arises in the context of air traffic management. Specifically, the scenario involves

two aircraft with possibly intersecting nominal trajectories. From the perspective of the first

aircraft, the task is to generate a conflict-free trajectory subject to the worst-case behavior of the

second aircraft. This problem has been studied with significant detail in [2] within a deterministic

setting. Motivated by practical concerns of accounting for wind effects on aircraft trajectories

[31], we consider here a stochastic formulation of the problem using a stochastic wind model.

Let (v1, v2, v3) ∈ R2 × [0, 2π] denote, respectively, the x-position, y-position, and heading

of aircraft 2 in the reference frame of aircraft 1. By performing an Euler discretization of the

kinematics model given in [2] and augmenting the resulting discrete time dynamics with process



noise, we obtain the following stochastic model for the relative motion between the two aircraft.

vk+1 =


v1
k+1

v2
k+1

v3
k+1

 =


v1
k + ∆t(−s1 + s2 cos(v3

k) + ω1
kv

2
k)

v2
k + ∆t(s2 sin(v3

k)− ω1
kv

1
k)

v3
k + ∆t(ω2

k − ω1
k)

+


η1
k

η2
k

η3
k

 (3)

= f(vk, ω
1
k, ω

2
k) + ηk,

where ∆t is the discretization step, si is the speed of aircraft i (assumed to be constant), ωi

is the angular turning rate of aircraft i (assumed to be time-varying), and ηk = (η1
k, η

2
k, η

3
k) is

a stochastic noise vector. The random variables (η1
k, η

2
k) account for the effect of wind. As per

previous work on stochastic wind models [32], they are modeled as normally distributed with a

position-dependent covariance matrix Σ1(v1, v2) ∈ R2×2. On the other hand, the random variable

η3
k captures the effect of actuator noise on the turning rate of either aircraft. It is assumed to

have a Gaussian distribution η3
k ∼ N (0,Σω). Taken together, ηk has the distribution N (0,Σ(v))

where Σ(v) = diag(Σ1(v1, v2),Σω) is a block diagonal covariance matrix.

Consider a scenario in which at any given time, each aircraft can be in one of three flight

maneuvers: straight, right turn, or left turn, corresponding to the angular turning rates ωi = 0,

ωi = −ω, and ωi = ω, respectively. Here, ω ∈ R is assumed to be a constant. The discrete states

are then given by the flight maneuvers of aircraft 1: Q = {qS, qR, qL}. We associate with this the

discrete command set A = {σ1
0, σ

1
−, σ

1
+}. On the other hand, the angular turning rate of aircraft

2 becomes the disturbance input set D = {0,−ω, ω} for aircraft 2. From this description, we

obtain the hybrid state update equations

qk+1 = δ(ak), vk+1 = f̃(qk+1, vk, dk, ηk) = f(vk, ω
1(qk+1), dk) + ηk, (4)

where the discrete transition function δ is specified as follows: δ(a) = qS , if a = σ0; δ(a) = qR,

if a = σ−; δ(a) = qL, if a = σ+.

Using (4), we can derive in a straightforward manner the corresponding stochastic kernels of a

DTSHG model. Specifically, the discrete state transition kernel τq is determined by the discrete

transition function δ, the continuous state transition kernel is given by τv(dv
′|(q, v), a, d) ∼

N (f(v, ω1(q), d),Σ(v)), and the reset transition kernel is specified as τr(dv′|(q, v), a, d, q′) =

τv(dv
′|(q′, v), a, d). It is clear that these stochastic kernels also satisfy Assumption 1.



target 
set 

unsafe set X
x0

Fig. 2: The reach-avoid problem is concerned with optimizing the probability that the trajectory

starting from initial condition x0 ∈ X will reach the target set while avoiding the unsafe set.

III. REACH-AVOID PROBLEM FORMULATION

In the setting of the DTSHG, the reach-avoid problem as considered in [19] becomes a

stochastic game in which the objective of player I (the control) is to steer the hybrid system

state into a desired target set, while avoiding a set of unsafe states, as shown in Fig. 2. On the

other hand, the objective of player II (the adversary) is to either steer the state into the unsafe

set or prevent it from reaching the target set.

Suppose that Borel sets K,K ′ ∈ B(X) are given as the desired target set and safe set,

respectively, with K ⊆ K ′. Then the probability that the state trajectory (x0, x1, ..., xN) reaches

K while staying inside K ′ under fixed choices of µ ∈Ma and γ ∈ Γd is given by

rµ,γx0 (K,K ′) := P µ,γ
x0

(
N⋃
j=0

(K ′ \K)j ×K ×XN−j

)

=
N∑
j=0

P µ,γ
x0

((K ′ \K)j ×K ×XN−j), (5)

where the second equality in (5) follows by the fact that the union is disjoint. By (1), this

probability can be computed as

rµ,γx0 (K,K ′) = Eµ,γ
x0

[
1K(x0) +

N∑
j=1

(
j−1∏
i=0

1K′\K(xi)

)
1K(xj)

]
, (6)

where Eµ,γ
x0

denotes the expectation with respect to the probability measure P µ,γ
x0

. Now define

the worst-case reach-avoid probability under a choice of Markov policy µ as

rµx0(K,K
′) = inf

γ∈Γd

rµ,γx0 (K,K ′). (7)

Our control objective is to maximize this worst-case probability over the set of Markov policies.

The precise problem statement is as follows:



Problem 1. Given a DTSHG H, target set K ∈ B(X), and safe set K ′ ∈ B(X) such that

K ⊆ K ′:

(I) Compute the max-min value function r∗x0(K,K
′) := supµ∈Ma

rµx0(K,K
′), ∀x0 ∈ X;

(II) Find a max-min policy µ∗ ∈Ma, whenever it exists, such that r∗x0(K,K
′) = rµ

∗
x0

(K,K ′),

∀x0 ∈ X .

Similarly as in the single player case, the above framework can be readily modified to account

for time-varying [20] and stochastic [21] safe sets. For simplicity in notation, here we focus

on static and deterministic target and safe sets. In the following, we describe stochastic game

formulations of the probabilistic safety and target hitting problems as special cases of the reach-

avoid problem given above.

First, consider the target hitting time problem [19], in which the objective of player I is to

drive the system state into a desired target set B ∈ B(X) within some finite time horizon [0, N ],

while the objective of player II is to prevent player I from doing so. Clearly, the problem of

computing the optimal target hitting probability under the worst-case player II behavior can be

formulated exactly as in Problem 1, by taking K = B, K ′ = X .

Second, consider the probabilistic safety problem [18], in which the objective of player I is

to keep the system state within a given safe set S ∈ B(X) over some finite time horizon [0, N ],

while the objective of player II is again opposed to that of player I. Similarly as before, the

probability that the hybrid state trajectory (x0, x1, ..., xN) remains in S under fixed choices of

µ ∈Ma and γ ∈ Γd is given by

pµ,γx0 (S) := P µ,γ
x0

(SN+1) = Eµ,γ
x0

[
N∏
k=0

1S(xk)

]
.

The connection between the safety problem and reach-avoid problem is established by the

observation that the hybrid state remains inside a set S for all k = 0, 1, ..., N if and only if it

does not reach X\S for any k = 0, 1, ..., N . Mathematically speaking, for any µ ∈ Ma and

γ ∈ Γd, we have

pµ,γx0 (S) = 1− rµ,γx0 (X\S,X). (8)

Thus, a safety problem where the objective of player I is to maximize pµ,γx0 (S) over µ ∈ Ma

and the objective of player II is to minimize pµ,γx0 (S) over γ ∈ Γd is equivalent to a reach-avoid



problem where the objective of player I is to minimize rµ,γx0 (X\S,X) over µ ∈ Ma and the

objective of player II is to maximize rµ,γx0 (X\S,X) over γ ∈ Γd.

IV. REACH-AVOID PROBABILITY COMPUTATION AND CONTROLLER SYNTHESIS

In this section, we provide a detailed proof of our main result from [23], as the solution to

Problem 1. In particular, it will be shown that under mild technical assumptions, the max-min

probability r∗x0(K,K
′) can be computed using an appropriate dynamic programming, and that

there exists a max-min Markov policy µ∗ ∈Ma for player I which achieves this probability under

the worst-case player II strategy. Following the proof, we will discuss some practical implications

of the theorem and specialize the results to a stochastic game formulation of the probabilistic

safety problem. Finally, a concrete example will be provided to illustrate the procedure for

computing r∗x0(K,K
′), as well as the max-min policy µ∗ ∈Ma for player I and the worst-case

strategy γ∗ ∈ Γd for player II.

For our theoretical derivations, we require the following assumptions on the stochastic kernels,

as inspired by [24], [25].

Assumption 1.

(a) For each x = (q, v) ∈ X and E1 ∈ B(Rn(q)), the function (a, d) → τv(E1|x, a, d) is

continuous on A×D;

(b) For each x = (q, v) ∈ X and q′ ∈ Q, the function (a, d) → τq(q
′|x, a, d) is continuous on

A×D;

(c) For each x = (q, v) ∈ X , q′ ∈ Q, and E2 ∈ B(Rn(q′)), the function (a, d)→ τr(E2|x, a, d, q′)

is continuous on A×D.

It should be noted that we only assume continuity of the stochastic kernels in the actions

of Player I and Player II, but not necessarily in the system state. Thus, our Borel-measurable

model still allows for stochastic hybrid systems where transition probabilities change abruptly

with changes in the system state. Furthermore, if the action spaces A and D are finite or

countable, then the above assumptions are clearly satisfied under the discrete topology on A and

D. Also, if τv(·|(q, v), a, d) has a density function fv(v′|(q, v), a, d), v′ ∈ Rn(q) for every q ∈ Q,

and fv(v
′|(q, v), a, d) is continuous in a and d, it can be checked that the assumption for τv is

satisfied. A similar condition can also be formulated for the reset kernel τr.



For the statement of the dynamic programming result, we define an operator T which takes

as its argument a Borel measurable function J : X → [0, 1]:

T (J)(x) = sup
a∈A

inf
d∈D

1K(x) + 1K′\K(x)H(x, a, d, J) x ∈ X, (9)

where H(x, a, d, J) :=
∫
X
J(y)τ(dy|x, a, d).

Our main result (Theorem 1 of [23]) is as follows.

Theorem 1. Let H be a DTSHG satisfying the Assumption 1. Let K,K ′ ∈ B(X) be Borel

sets such that K ⊆ K ′. Let the operator T be defined as in (9). Then the composition TN =

T ◦ T ◦ · · · ◦ T (N times) is well-defined and

(a) r∗x0(K,K
′) = TN(1K)(x0),∀x0 ∈ X;

(b) There exists a player I policy µ∗ ∈Ma and player II strategy γ∗ ∈ Γd satisfying

rµ,γ
∗

x0
(K,K ′) ≤ r∗x0(K,K

′) ≤ rµ
∗,γ
x0

(K,K ′), (10)

for every x0 ∈ X , µ ∈Ma, and γ ∈ Γd. In particular, µ∗ is a max-min policy for player I.

(c) If µ∗ ∈Ma is a Markov policy which satisfies

µ∗k(x) ∈ arg sup
a∈A

inf
d∈D

H(x, a, d, Jk+1), x ∈ K ′ \K, (11)

where Jk = TN−k(1K), k = 0, 1, ..., N , then µ∗ is a max-min policy for Player I. If γ∗ =

(γ∗0 , γ
∗
1 , ..., γ

∗
N−1) ∈ Γd is a Markov strategy which satisfies

γ∗k(x, a) ∈ arg inf
d∈D

H(x, a, d, Jk+1), x ∈ K ′ \K, a ∈ A, (12)

k = 0, 1, ..., N , then γ∗ is a worst-case strategy for Player II.

The proof of this theorem, omitted from [23] due to space limitations, proceeds through a

sequence of lemmas and propositions which generalize the dynamic programming algorithms

given in [18] and [19] for the single player case. First, it is shown that for fixed µ ∈ Ma and

γ ∈ Γd, the reach-avoid probability rµ,γx0 (K,K ′) can be computed using a recursive formula as

per statement (a). Second, the operator T is shown to preserve measurability properties, and so

the sequential composition of T is well-defined. Furthermore, using the continuity assumptions

given in Assumption 1, it is shown that there exist Borel measurable functions which achieve the

supremum and infimum in (9) at each step of the dynamic programming recursion. Finally, using

properties of the recursive formula for rµ,γx0 (K,K ′) and the operator T , the function TN(1K)



is shown to simultaneously upper bound and lower bound r∗x0(K,K
′) and hence is equal to

r∗x0(K,K
′). In the course of proving this last result, the existence of a max-min policy for

Player I and a worst-case strategy for Player II is also established, along with the sufficient

conditions for optimality (11) and (12).

As a first step in the proof, motivated by the expressions for rµ,γx0 (K,K ′) in (6), we define for

fixed µ ∈Ma and γ ∈ Γd the utility-to-go functions V µ,γ
k : X → [0, 1], k = 0, . . . , N

V µ,γ
N (x) =1K(x) ,

V µ,γ
k (x) =1K(x) + 1K′\K(x)

∫
XN−k

N∑
j=k+1

j−1∏
i=k+1

1K′\K(xi)1K(xj)

N−1∏
j=k+1

τµj ,γj(dxj+1|xj)τµk,γk(dxk+1|x). (13)

From this definition, it is clear that rµ,γx0 (K,K ′) = V µ,γ
0 (x0),∀x0 ∈ X . The task then becomes

formulating a recursive procedure for computing V µ,γ
k (x).

For this purpose, consider a recursion operator Tf,g, parameterized by Borel measurable

functions f : X → A and g : X × A → D, and operating on the set of Borel measurable

functions from X to [0, 1]:

Tf,g(J)(x) = 1K(x) + 1K′\K(x)H(x, f(x), g(x, f(x)), J), x ∈ X. (14)

where H is as given in the definition of T in (9).

The following result shows that the functions V µ,γ
k can be computed using backwards recursion

under the operator Tf,g.

Lemma 1. Let µ ∈Ma and γ ∈ Γd. Then for k = 0, 1, ..., N − 1, the following identity holds

V µ,γ
k = Tµk,γk(V µ,γ

k+1), (15)

where V µ,γ
N = 1K .

Proof: For the case of k = N − 1, the choice of the terminal cost V µ,γ
N implies that for any

x ∈ X ,

V µ,γ
N−1(x) = 1K(x) + 1K′\K(x)

∫
X

1K(xN)τµN−1,γN−1(dxN |x)

= TµN−1,γN−1
(V µ,γ

N ).



For the case of k < N − 1, we have by the expression for V µ,γ
k given in (13) that for any

x ∈ X ,

V µ,γ
k (x) =1K(x) + 1K′\K(x)

∫
X

1K(xk+1) + 1K′\K(xk+1)(∫
XN−k−1

N∑
j=k+2

j−1∏
i=k+2

1K′\K(xi)1K(xj)

)
N−1∏
j=k+1

τµj ,γj(dxj+1|xj)τµk,γk(dxk+1|x)

=1K(x) + 1K′\K(x)

∫
X

V µ,γ
k+1(xk+1)τµk,γk(dxk+1|x).

It follows from definition of Tf,g that the last expression above is Tµk,γk(V µ,γ
k+1) and this concludes

the proof.

Next, we will prove some properties of T that are required for the dynamic programming

results. First, we state a special case of Corollary 1 given in [33]. This result allows us to

show that the operator T preserves Borel measurability and that it is sufficient to consider Borel

measurable selectors.

Lemma 2. Let X , Y be complete separable metric spaces such that Y is compact, and f be a

real-valued Borel measurable function defined on X×Y such that f(x, ·) is lower semicontinuous

with respect to the topology on Y . Define f ∗ : X → R ∪ {±∞} by

f ∗(x) = inf
y∈Y

f(x, y).

(a) The set

I = {x ∈ X : for some y ∈ Y, f(x, y) = f ∗(x)} ,

is Borel measurable.

(b) For every ε > 0, there exists a Borel measurable function φ : X → Y , satisfying, for all

x ∈ X ,

f(x, φ(x)) = f ∗(x), if x ∈ I,

f(x, φ(x)) ≤

 f ∗(x) + ε, if x /∈ I, f ∗(x) > −∞,

−1/ε, if x /∈ I, f ∗(x) = −∞.

In order to prove that the supremum and infimum in the expression for T is achieved, we

will need the operator H to produce functions continuous in A and D. For this purpose, we

introduce the following technical result from [24] (stated as Fact 3.9).



Lemma 3. Let f be a bounded real-valued Borel measurable function on a Borel space Y , and

t be a Borel measurable transition probability from a Borel space X into Y such that t(B|·) is

continuous on X for each B ∈ B(Y ). Then the function x→
∫
f(y)t(dy|x) is continuous on X.

In the following proposition, we prove that the operator T preserves Borel measurability,

and that the infimum and supremum in (9) can be achieved by Borel measurable selectors. Let

F be the set of Borel measurable functions from X to [0, 1]. For notational convenience, we

introduce an operator G which takes a real-valued Borel measurable function on X and produces

a real-valued function on X ×A:

G(J)(x, a) = inf
d∈D

1K(x) + 1K′\K(x)H(x, a, d, J). (16)

Proposition 1.

(a) ∀J ∈ F , T (J) ∈ F .

(b) For any J ∈ F , there exists a Borel measurable function g∗ : X × A → D such that, for

all (x, a) ∈ X ×A,

g∗(x, a) ∈ arg inf
d∈D

1K(x) + 1K′\K(x)H(x, a, d, J). (17)

(c) For any J ∈ F , there exists a Borel measurable function f ∗ : X → A, such that for all

x ∈ X ,

f ∗(x) ∈ arg sup
a∈A

inf
d∈D

1K(x) + 1K′\K(x)H(x, a, d, J). (18)

Proof: For any J ∈ F , define a function FJ : X ×A×D → R as

FJ(x, a, d) = H(x, a, d, J).

From the definition of H , the range of FJ lies in [0, 1]. By the Borel measurability of J and

Q, Proposition 7.29 of [30] implies that FJ is Borel measurable. Furthermore, for each x ∈ X ,

Lemma 3 implies that FJ(x, a, d) is continuous in a and d. Now consider F̃J : X×A×D → R,

F̃J(x, a, d) = 1K(x) + 1K′\K(x)FJ(x, a, d).

Clearly, 0 ≤ F̃J ≤ 1. Furthermore, given that Borel measurability is preserved under summation

and multiplication (see for example Proposition 2.6 of [34]), F̃J is also Borel measurable. Finally,

it is clear that F̃J(x, a, d) is continuous in a and d for each x ∈ X . We observe that

G(J)(x, a) = inf
d∈D

F̃J(x, a, d). (19)



Since the range of F̃J lies in [0, 1], the range of G(J) also lies in [0, 1]. By assumption, A and

D are Borel spaces and hence metrizable. Thus, A can be endowed with a metric d1 consistent

with the topology on A, while D can be endowed with a metric d2 consistent with the topology

on D. Furthermore, as shown in [35], the hybrid state space X can be endowed with a metric

equivalent to the standard Euclidean metric when restricted to each continuous domain Rn(q),

q ∈ Q. Under the assumptions on the DTSHG model, the spaces X , A, and D are also complete

and separable.

Now for each (x, a) ∈ X×A, we have by the previous derivations that F̃J(x, a, ·) is continuous

on D. By the compactness of D, the infimum in (19) is achieved for each fixed (x, a) (see for

example Theorem 4.16 in [36]). Thus, applying Lemma 2, we have that there exists a Borel

measurable function g∗ : X × A → D for which (17) holds. Since the composition of Borel

measurable functions remains Borel measurable, G(J) is a Borel measurable function. From the

fact that the infimum is achieved and the fact that F̃J is continuous on A, it is not difficult to

see that G(J) is also continuous on A.

For the outer supremum, we observe that

T (J)(x) = − inf
a∈A
−G(J)(x, a), x ∈ X. (20)

By the compactness of A, the infimum in (20) is achieved for each x ∈ X . Thus, a repeated

application of Lemma 2 shows that there exists a Borel measurable function f ∗ : X → A such

that −T (J)(x) = −G(J)(x, f ∗(x)), ∀x ∈ X . By the composition of Borel measurable functions,

this implies that T (J) is Borel measurable. Finally, it is clear that the range of T (J) lies in

[0, 1], and so T (J) ∈ F .

For the proofs of the dynamic programming results, we make use of the fact that the operator

Tf,g satisfies a monotonicity property: for any Borel measurable functions J, J ′ from X to [0, 1]

such that J(x) ≤ J ′(x),∀x ∈ X , Tf,g(J)(x) ≤ Tf,g(J
′)(x),∀x ∈ X . This property can be

checked in a straightforward manner using the definition of H and the properties of integrals.

We are now ready for our first dynamic programming result, which provides a lower bound

for r∗x0(K,K
′), x0 ∈ X .

Proposition 2.

(a) ∀x0 ∈ X , TN(1K)(x0) ≤ r∗x0(K,K
′).

(b) There exists µ∗ ∈Ma such that, for any γ ∈ Γd, TN(1K)(x0) ≤ rµ
∗,γ
x0

(K,K ′),∀x0 ∈ X .



Proof: For notational convenience, we define JN−k := T k(1K), k = 0, 1, ..., N . First, we

prove the following claim by induction on k: there exists µ∗N−k→N = (µ∗N−k, µ
∗
N−k+1, ..., µ

∗
N−1) ∈

Ma such that, for any γ = (γN−k, γN−k+1, ..., γN−1) ∈ Γd, JN−k(x) ≤ V
µ∗N−k→N ,γ

N−k (x), ∀x ∈ X .

Let γ = (γ0, γ1, ..., γN−1) ∈ Γ be arbitrary. The case of k = 0 is trivial. For the in-

ductive step, assume that this holds for k = h. By the induction hypothesis, there exists a

policy µ∗N−h→N = (µ∗N−h, µ
∗
N−h+1, ..., µ

∗
N−1) ∈ Ma such that, for any γ ∈ Γd, JN−h(x) ≤

V
µ∗N−h→N ,γ

N−h (x), ∀x ∈ X . Furthermore, by Proposition 1(c), there exists a Borel measurable

function f ∗ : X → A such that G(JN−h)(x, f
∗(x)) = T (JN−h)(x),∀x ∈ X . Choose a policy

µ∗N−h−1→N = (f ∗, µ∗N−h, µ
∗
N−h+1, ..., µ

∗
N−1). Then by the monotonicity of the operator Tf,g and

Lemma 1, we have for each x ∈ X:

V
µ∗N−h−1→N ,γ

N−h−1 (x) =Tf∗,γN−h−1
(V

µ∗N−h→N ,γ

N−h )(x)

≥Tf∗,γN−h−1
(JN−h)(x)

=1K(x) + 1K′\K(x)H(x, f ∗(x), γN−h−1(x, f ∗(x)), JN−h)

≥ inf
d∈D

1K(x) + 1K′\K(x)H(x, f ∗(x), d, JN−h)

=G(JN−h)(x, f
∗(x))

=T (JN−h)(x) = JN−h−1(x),

which concludes the proof of the claim.

This result implies that there exists µ∗0→N = (µ∗0, µ
∗
1, ..., µ

∗
N−1) ∈ Ma such that, for any

γ = (γ0, γ1, ..., γN−1) ∈ Γd, TN(1K)(x0) = J0(x0) ≤ V
µ∗0→N ,γ

0 (x0) = r
µ∗0→N ,γ
x0 (K,K ′), ∀x0 ∈ X .

This shows that µ∗0→N is the Markov policy satisfying statement (b). Furthermore, since γ is

arbitrary, TN(1K)(x0) ≤ infγ∈Γd
r
µ∗0→N ,γ
x0 (K,K ′), ∀x0 ∈ X . Thus, TN(1K)(x0) ≤ r∗x0(K,K

′),

∀x0 ∈ X , proving statement (a).

We now turn to our second dynamic programming result, which provides an upper bound for

r∗x0(K,K
′), x0 ∈ X .

Proposition 3.

(a) ∀x0 ∈ X , r∗x0(K,K
′) ≤ TN(1K)(x0).

(b) There exists γ∗ ∈ Γd such that, for any µ ∈Ma, rµ,γ
∗

x0
(K,K ′) ≤ TN(1K)(x0),∀x0 ∈ X .



Proof: As in the proof of Proposition 2, we define JN−k := T k(1K), k = 0, 1, ..., N . First, we

prove the following claim by induction on k: there exists γ∗N−k→N = (γ∗N−k, γ
∗
N−k+1, ..., γ

∗
N−1) ∈

Γd such that, for any µ = (µN−k, µN−k+1, ..., µN−1) ∈Ma, V
µ,γ∗N−k→N

N−k (x) ≤ JN−k(x), ∀x ∈ X .

Let µ = (µ0, µ1, ..., µN−1) ∈ Ma be arbitrary. The case of k = 0 is trivial. For the inductive

step, assume that this holds for k = h. By the induction hypothesis, there exists a strategy

γ∗N−h→N = (γ∗N−h, γ
∗
N−h+1, ..., γ

∗
N−1) ∈ Γd such that, for any µ ∈ Ma, V

µ,γ∗N−h→N

N−h (x) ≤

JN−h(x), ∀x ∈ X . Furthermore, by Proposition 1(b), there exists a Borel measurable function

g∗ : X ×A → D such that for all (x, a) ∈ X ×A the following holds

1K(x) + 1K′\K(x)H(x, a, g∗(x, a), JN−h) = G(JN−h)(x, a).

Choose a Markov strategy

γ∗N−h−1→N = (g∗, γ∗N−h, γ
∗
N−h+1, ..., γ

∗
N−1).

Then by the monotonicity of the operator Tf,g and Lemma 1, we have for each x ∈ X:

V
µ,γ∗N−h−1→N

N−h−1 (x) = TµN−h−1,g∗(V
µ,γ∗N−h→N

N−h )(x)

≤ TµN−h−1,g∗(JN−h)(x)

= 1K(x) + 1K′\K(x)H(x, µN−h−1(x), g∗(x, µN−h−1(x)), JN−h)

= G(JN−h)(x, µN−h−1(x))

≤ sup
a∈A

G(JN−h)(x, a)

= T (JN−h)(x) = JN−h−1(x),

which concludes the proof of the claim.

This result implies that there exists γ∗0→N = (γ∗0 , γ
∗
1 , ..., γ

∗
N−1) ∈ Γd such that, for any

µ = (µ0, µ1, ..., µN−1) ∈ Ma, r
µ,γ∗0→N
x0 (K,K ′) = V

µ,γ∗0→N
0 (x0) ≤ J0(x0) = TN(1K)(x0),

∀x0 ∈ X . This shows that γ∗0→N is the Markov strategy satisfying statement (b) and that

rµx0(K,K
′) = infγ∈Γd

rµ,γx0 (K,K ′) ≤ TN(1K)(x0), for any µ ∈ Ma and x0 ∈ X . Since µ is

arbitrary, r∗x0(K,K
′) ≤ TN(1K)(x0), ∀x0 ∈ X , proving statement (a).

Combining the results of Proposition 2 and 3, we can now prove Theorem 1.

Proof: Statement (a) of Theorem 1 follows directly from the inequalities in Proposition 2(a)

and Proposition 3(a).



By Proposition 2(b) and statement (a), there exists a Markov policy µ∗ ∈Ma such that, for any

γ ∈ Γd, r∗x0(K,K
′) ≤ rµ

∗,γ
x0

(K,K ′), ∀x0 ∈ X . This implies that r∗x0(K,K
′) ≤ rµ

∗
x0

(K,K ′), ∀x0 ∈

X . On the other hand, the reverse inequality always holds: rµ∗x0 (K,K ′) ≤ r∗x0(K,K
′), ∀x0 ∈ X .

This shows that µ∗ is a max-min policy. Similarly, by Proposition 3(b) and statement (a), there

exists a Markov strategy γ∗ ∈ Γd such that, for any µ ∈Ma, rµ,γ
∗

x0
(K,K ′) ≤ r∗x0(K,K

′),∀x0 ∈

X . Thus, we have statement (b).

Finally, statement (c) follows directly from the proof of Proposition 2 and Proposition 3.

A. Implications of the Main Theorem

1) Robust optimal policy: By statement (b) of Theorem 1, if the control were to choose

µ∗ and the adversary were to deviate from the worst-case γ∗, then the reach-avoid probability

will be at least r∗x0(K,K
′). On the other hand, if the control were to deviate from the max-min

policy and the adversary were to choose the worst-case Markov strategy, then the reach-avoid

probability will be at most r∗x0(K,K
′). Thus, µ∗ can be interpreted as a robust control policy

which optimizes the worst-case probability for achieving the reach-avoid objective.

2) Controller synthesis: Equations (11) and (12) provides us with sufficient conditions for

optimality of the players’ policies and strategies. In particular, this can be used to synthesize

a maxmin control policy for player I from the value functions computed through the dynamic

programming recursion. To illustrate, suppose that the input ranges A and D along with the state

space X has been appropriately discretized, for example according to the method suggested in

[37], then for each system state x ∈ K ′ \K at the k-th iteration of the dynamic programming

algorithm, we can compute and store an optimal control input

a∗ ∈ arg sup
a∈A

inf
d∈D

H(x, a, d, Jk+1).

This provides us with a discretized representation of the one-step maxmin control policy µ∗N−k
on a grid of the continuous state space within each mode. Storing these values as lookup tables

then allows us to select control inputs in an optimal fashion as state measurements are received.

3) Probabilistic reach-avoid set: Consider the case in which it is required from the system

designer perspective to have a reach-avoid probability greater than some threshold (1 − ε), for

ε ∈ [0, 1). The set of initial conditions Xε for which this specification is feasible, under the



target 
set 

unsafe set X

X!

Fig. 3: Xε is the set of states which can reach the target set while avoiding the unsafe set with

probability of at least 1− ε, using the optimal policy.

worst-case adversary behavior, can be derived from the max-min reach-avoid probability as:

Xε = {x0 ∈ X : r∗x0(K,K
′) ≥ (1− ε)}.

In other words, Xε is the (1 − ε)-sublevel set of the reach-avoid probability map r∗x0(K,K
′),

x0 ∈ X . A conceptual illustration of such a set is shown in Fig. 3.

B. Specialization to Stochastic Game Formulation of Safety Problem

As discussed in section III, the solution to the probabilistic safety problem can be obtained

from a complementary reach-avoid problem. In particular, consider a reach-avoid problem with

the value function

r̄∗x0(X \ S,X) = inf
µ∈Ma

sup
γ∈Γd

rµ,γx0 (X\S,X), x0 ∈ X.

Then the max-min probability of safety is given by

p∗x0(S) = sup
µ∈Ma

inf
γ∈Γd

pµ,γx0 (S) = 1− r̄∗x0(X \ S,X), x0 ∈ X. (21)

By minor modifications of the proof for Theorem 1, it is not difficult to see that r̄∗x0(X \S,X)

can be computed by the dynamic programming recursion

r̄∗x0(X \ S,X) = TNS (1X\S)(x0), x0 ∈ X,

where the operator TS is defined as

TS(J)(x) = inf
a∈A

sup
d∈D

1X\S(x) + 1S(x)H(x, a, d, J), x ∈ X. (22)

The corresponding max-min probability of safety can be then obtained through (21).



For completeness, we note that there exists an equivalent dynamic programming recursion

to compute the safety probability, similar to the one given in [18] for the single player case.

Specifically, consider an operator T̃S defined as

T̃S(J)(x) = sup
a∈A

inf
d∈D

1S(x)H(x, a, d, J), x ∈ X. (23)

The relation between T̃S and TS is established through the following lemma.

Lemma 4. For every x ∈ X and k = 0, 1, ..., N ,

T̃ kS (1S)(x) = 1− T kS (1X\S)(x)

Proof: We prove this result by induction on k. The case of k = 0 is established by the fact

that 1S = 1− 1X\S . Now suppose the identity holds for k = h, then we have for every x ∈ X ,

T̃ h+1
S (1S)(x) = T̃S(T̃ hS (1S))(x) = T̃S(1− T hS (1X\S))(x)

= sup
a∈A

inf
d∈D

1S(x)H(x, a, d, 1− T hS (1X\S))

= sup
a∈A

inf
d∈D

1S(x)(1−H(x, a, d, T hS (1X\S)))

= 1S(x) + sup
a∈A

inf
d∈D
−1S(x)H(x, a, d, T hS (1X\S)).

It then follows that for every x ∈ X

1− T̃ h+1
S (1S)(x)

= 1− 1S(x)− sup
a∈A

inf
d∈D
−1A(x)H(x, a, d, T hS (1X\S))

= 1X\S(x) + inf
a∈A

sup
d∈D

1S(x)H(x, a, d, T hS (1X\S))

= TS(T hS (1X\S))(x) = T h+1
S (1X\S)(x),

which completes the proof.

Thus, an equivalent dynamic programming recursion for computing the max-min safety prob-

ability is given by

p∗x0(S) = T̃NS (1S)(x0), x0 ∈ X. (24)

Using either the operator TS or the operator T̃S , we can also derive sufficient conditions of

optimality for player I and II, similar to those given in (11) and (12).



C. Analytic Reach-avoid Problem Example

In order to illustrate the procedure for computing the reach-avoid probability and the optimal

player I policy and player II strategy, we descibe here a simple reach-avoid problem for which an

analytic solution can be obtained. Specifically, consider the system dynamics given in Example 1

of Section II, and a regulation problem where the objective of player I is to drive the continuous

state into a neighborhood of the origin, while staying within some safe operating region. In this

case, the target set and safe set are chosen to be K = {q1, q2} × [−1
4
, 1

4
] and K ′ = {q1, q2} ×

[−2, 2], respectively, and the time horizon is chosen to be N = 1.

First, we characterize the operator H for this particular example. Suppose we are given a

function J : X → R, then the value of H(x, a, d, J) for a hybrid state x = (q1, v) can be

computed as follows:

H((q1, v), a, d, J) =

∫
X

J(x′)τ(dx′|(q1, v), a, d) (25)

=τq(q
1|(q1, v), a, d)

∫
R
J(q1, v′)τv(dv

′|(q1, v), a, d)+

τq(q
2|(q1, v), a, d)

∫
R
J(q2, v′)τr(dv

′|(q1, v), a, d, q2)

=p1

∫ 1

−1

J(q1, 2v + a+ d+ η)dη + (1− p1)

∫ 1

−1

J(q2, 2v + a+ d+ η)dη.

Similarly, we can derive H(x, a, d, J) for x = (q2, v). Given the form of the target set K, the

dynamic programming recursion is initialized by the function

1K(q, v) =

1, |v| ≤ 1
4
, q = q1, q2

0, |v| > 1
4
, q = q1, q2

By Theorem 1, the reach-avoid probability r∗x0(K,K
′) for an initial condition x0 = (q0, v0) can

be computed as

T (1K)(q0, v0) =


1, |v0| ≤ 1

4
, q0 = q1, q2

0, |v0| > 2, q0 = q1, q2

supa∈A infd∈DH((q0, v0), a, d,1K), 1
4
< |v0| ≤ 2, q0 = q1, q2

(26)



It can be observed that the dynamic programming step only needs to be carried out on the set

K ′ \K = {q1, q2} × [−2,−1
4
) ∪ (1

4
, 2]. From equation (25), it can be verified that for q0 = q1,

H((q1, v0), a, d,1K) =


1
4
, 0 ≤ |2v0 + a+ d| ≤ 3

4

5
8
− 1

2
|2v0 + a+ d|, 3

4
< |2v0 + a+ d| ≤ 5

4

0, |2v0 + a+ d| > 5
4
.

(27)

Combining equations (26) and (27), the max-min reach-avoid probability for an initial condition

x0 = (q1, v0) can be derived as

r∗x0(K,K
′) = T (1K)(q1, v0) =



1, |v0| ≤ 1
4

1
8
, 1

4
< |v0| ≤ 1

2

5
8
− |v0|, 1

2
< |v0| ≤ 5

8

0, |v0| > 5
8
.

In the process of performing the dynamic programming step in (26), we also obtain a max-min

player I policy µ∗0 and a worst-case player II strategy γ∗0 in mode q1 satisfying the sufficient

conditions for optimality in (11) and (12):

µ∗0(q1, v0) =

1, |v0| > 1
2

−2v0, |v0| ≤ 1
2
,

γ∗0((q1, v0), a) =

−1, 2v0 + a < 0

1, 2v0 + a ≥ 0.

Using a similar procedure, we can compute the max-min reach-avoid probability for an initial

condition x0 = (q2, v0) as

r∗x0(K,K
′) = T (1K)(q2, v0) =


1, |v0| ≤ 1

4

1
8
, 1

4
≤ |v0| ≤ 2

0, |v0| > 2.

Furthermore, a max-min player I policy and a worst-case player II strategy satisfying the sufficient

conditions for optimality in mode q2 can be derived as follows:

µ∗0(q2, v0) =

1, |v0| > 2

−1
2
v0, |v0| ≤ 2,

γ∗0((q2, v0), a) =

−1, 1
2
v0 + a < 0

1, 1
2
v0 + a ≥ 0.



As we consider more complicated scenarios which arise in practical applications, there may

not be a closed-form expression for the operator T . In such problems, one would then have to

perform the dynamic programming recursion of Theorem 1 numerically through a discretization

of the continuous state space and player input spaces. In [38], it is shown that, for a single

player probabilistic safety problem, piecewise constant approximations of the value function on

a grid of the continuous state space converge uniformly to the optimal value function at a rate

that is linear in the grid size parameter. We anticipate that a similar result can be shown for the

recursion TN(1K) and that approximations of the optimal strategies can be constructed using

equations (11) and (12). However, it can be observed that the computational cost of such an

approach scales exponentially with the dimensions of the continuous state space and player input

spaces, which currently limits the application of our approach to problems with continuous state

dimensions of n ≤ 4. The reduction in computation time is a topic of ongoing research [39].

V. APPLICATIONS

In this section, we discuss applications of the DTSHG framework to two problems of practical

interest. The first is that of pairwise aircraft collision avoidance as described in Section II,

formulated as a probabilistic safety problem with two competing players. This is followed by

a probabilistic reach-avoid problem in the context of robust motion planning. In particular, we

consider a target tracking application where the control objective is to drive a quadrotor helicopter

to a hover position over a moving ground vehicle while satisfying certain velocity constraints.

A. Pairwise Aircraft Collision Avoidance

In the pairwise aircraft collision avoidance scenario described in Section II, the objective of

the controlled aircraft (aircraft 1) is to minimize the probability of collision, under the worst-case

assumption that the uncontrolled aircraft (aircraft 2) would try to maximize the probability of

collision. This then becomes a probabilistic safety problem involving two players (aircraft 1 and

2), with the safe set being the set of all relative aircraft states outside the collision zone. A more

precise formulation of the problem is given below.

First, recall that the relative motion of the two aircraft is given by the equation

vk+1 = f(vk, ω
1
k, ω

2
k) + ηk,



where f(vk, ω
1
k, ω

2
k) is the deterministic component of the model, specified as in (3), and ηk

is a stochastic noise vector modeling wind effects. In order to develop a realistic model of the

wind, we take into account correlation of aircraft motion due to presence of stochastic wind. Our

model is based on [32] in which the time integral of the stochastic wind component is modeled,

in continuous time, as a time-dependent random field over the 2D space. At each planar position

(v1, v2) ∈ R2, the stochastic wind component has the distribution σdB(v1, v2, t) in which B is

a position-dependent Brownian motion and σ is a positive constant. It is then shown that the

wind in relative coordinates has the distribution

η1(t) = σ
√

2(1− h(‖(v1, v2)‖))W 1(t)

η2(t) = σ
√

2(1− h(‖(v1, v2)‖))W 2(t)

where h : R→ R is a continuous decreasing function with h(0) = 1 and limc→∞ h(c) = 0 and

W (t) = (W 1(t),W 2(t)) is a standard Brownian motion. The function h is referred to as the

spatial correlation function and is chosen to be h(c) = exp(−βc), where β is a positive constant

(see [32] for details). As such, the wind model in discrete time has the distribution

(η1
k, η

2
k) ∼ N

(
0, 2(∆tσ)2(1− h(‖(v1, v2)‖))I2

)
η3
k ∼ N (0, (∆tσω)2)

where ∆t is the sampling time. For the aircraft conflict resolution scenario, a collision is defined

as the event where aircraft 2 enters a protected zone around aircraft 1. The protected zone in two

dimensions is a disk with radius Rc centered on aircraft 1. Hence, the safe set can be defined as

S = {(v1, v2) ∈ R2 s.t. ‖(v1, v2)‖2 ≥ Rc}.

The probabilistic safety problem is then to compute the max-min probability of safety p∗x0(S)

for aircraft 1, as well as an optimal control policy µ∗ ∈ Ma which achieves this probability

under the worst-case aircraft 2 behavior.

As discussed in Section IV-B, the solution to this problem can be obtained from a comple-

mentary reach-avoid problem where the objective of aircraft 1 is to minimize the probability of

entering the collision set X \ S, and the objective of player II is to maximize this probability.

This latter problem has the min-max value function r̄∗x0(X \ S,X).



For the numerical results, the parameters of the problem are chosen as follows: the sampling

time is set to ∆t = 0.1 minute, the time horizon to 2.5 minutes, Rc = 5 km, the aircraft speed

to s = 5 km per minute and the angular turning rate to ω = 1 radian per minute. The noise

covariance is set to σ = 0.73 and σw = 0.26. The constant β in function h is chosen as 0.1.

Computation is performed over a subset of R3 given by [−7, 20]× [−10, 10]× [0, 2π], on a grid

size of 90× 67× 65.

The set of initial conditions x0 ∈ X for which the worst-case probability of collision is at

most 2% (namely, where r̄∗x0(X \S,X) ≥ 0.02) is shown in Fig. 4a. The worst-case probability

of collision r̄∗x0(X \ S,X) for the set of initial conditions with initial relative heading of 2.05

radians is shown in Fig. 4b. The interpretation of this probability map is as follows. Consider

an initial condition of (10.55km,−6.85km, 2.05rad), then from the value function we obtain

r̄∗(q,v0)(X \S,X) ≈ 0.01, ∀q ∈ Q. This means that if aircraft 1 selects flight manuevers according

to the max-min policy µ∗ and aircraft 2 selects maneuvers according to the worst-case strategy

γ∗, then the probability of collision within a 2.5 minute time horizon is approximately 1%.

Furthermore, if aircraft 2 were to deviate from the worst-case strategy γ∗, while aircraft 1 selected

maneuvers according to µ∗, then by the results in Section IV, the probability of collision would

remain at most 1%. On the other hand, if aircraft 1 were to deviate from the max-min policy

µ∗, while aircraft 2 selected headings according to γ∗, then the probability of collision may be

greater than 1%. Thus, aircraft 1 has an incentive for choosing the max-min policy as a robust

control policy to counter the worst-case behavior by aircraft 2.

B. Target Tracking

Now consider a motion planning application where the task specification is to drive an

autonomous quadrotor helicopter into a neighborhood of planar positions over a moving ground

vehicle, without exceeding certain velocity limits. This problem was previously considered in

[40] within a continuous time robust control framework, with experimental tests carried out

on the Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control (STARMAC), an

unmanned aerial vehicle platform consisting of six quadrotor helicopters each equipped with

onboard computation, sensing, and control capabilities [41].

In this work, we consider a stochastic formulation of the problem where the uncertainties

within the system are characterized through a mixture of deterministic bounds and stochastic



(a) Set of initial conditions with at most 2% worst-

case probability of collision.

(b) Slice of r̄∗x0
(X \ S,X) at x3

0 = 2.05 radians

Fig. 4: Worst-case probability of collision for pairwise aircraft conflict resolution example.

noise. The motivation for this is that in an aerial robotics platform such as STARMAC, the

effects of higher order dynamics and actuator noise can often be difficult to characterize through

a deterministic model [42]. Under a robust control approach, one tends to put conservative bounds

on the effects of these disturbances, thus resulting in conservative control laws or sometimes

even the lack of a control law which satisfies the desired motion planning specifications. This

conservatism can be alleviated through a probabilistic model with a correspondingly modified

task specification of achieving the desired objective with a high level of confidence.

The model of the system dynamics is as follows. Let x1, x2, y1, y2 denote the position and

velocity of the quadrotor relative to the ground vehicle in the x−axis and y−axis, respectively.

Then from the point of view of a high-level controller, the position-velocity dynamics of the

quadrotor in the planar x and y directions can be modeled as decoupled double integrator,

controlled in the x-direction by the roll angle φ and in the y-direction by the pitch angle θ

angle. The corresponding equations of motion in discrete time is given by

x1
k+1 = x1

k + ∆tx2
k +

∆t2

2
(g sin(φk) + dxk) + η1

k

x2
k+1 = x2

k + ∆t(g sin(φk) + dxk) + η2
k

y1
k+1 = y1

k + ∆ty2
k +

∆t2

2
(g sin(−θk) + dyk) + η3

k

y2
k+1 = y2

k + ∆t(g sin(−θk) + dyk) + η4
k



In the above, ∆t is the discretization step, g is the gravitational acceleration constant, and dx

and dy are bounded uncertainty terms corresponding to the acceleration of the ground vehicle.

The variables ηik, for i = 1, . . . , 4 are stochastic uncertainty terms arising from unmodeled

dynamics and actuator noise. The noise variables are assumed to have a Gaussian distribution,

with ηi ∼ N (0, (σi∆t)2).

Based upon experimental trials, the bounds for the acceleration dx and dy of the ground

vehicle are chosen to be [−0.4, 0.4] m/s2 corresponding to about 30% of the maximum allowable

acceleration of the quadrotor. For this example the roll and pitch commands φ and θ are selected

from a quantized input range due to digital implementation. Specifically, they are selected from

the input range [−10◦, 10◦] at a 2.5◦ quantization step. These quantization levels can be viewed

as the discrete states of the system, similar to the discrete flight maneuvers of the previous

example. From this description, we can derive a DTSHG model for this model using a similar

procedure as given for the pairwise aircraft conflict resolution example in Section II.

For the specification of the reach-avoid problem, the target set is chosen to be a square-shaped

hover region centered on the ground vehicle, specified in (x1, x2) coordinates as

Kx = [−0.2, 0.2]m× [−0.2, 0.2]m/s.

The safe set in this case is chosen to be the set of all states within the domain of interest

for which the relative position remains within a desired bound and a desired velocity bound is

satisfied, specified in (x1, x2) coordinates as

K ′x = [−1.2, 1.2]m× [−1, 1]m/s.

The corresponding sets in Ky and K ′y in y1, y2 coordinates are chosen identically as above. The

target and safe sets in two dimensions are then defined as K = Kx ×Ky and K ′ = K ′x ×K ′y
respectively. Under a stochastic game formulation of the motion planning problem, the objective

of the quadrotor (player I) is to reach the hover region K within finite time, while staying within

the safe set K ′, subject to the worst-case acceleration inputs of the ground vehicle (player II).

Given that the dynamics, target set, and safe set in the x and y directions are decoupled and

identical, the problem reduces to a two dimensional probabilistic reach-avoid calculation in the

position-velocity space. For the numerical results to be shown here, we set the noise variance to

σi = 0.4, the sampling time to ∆t = 0.1s, and the time horizon to one second (N = 10). The



disturbance input was discretized at 0.1m/s2 intervals for numerical computation. The numerical

computation is performed over the safe set K ′x, on a grid size of 61× 41.

The max-min probability of satisfying the desired motion planning objectives is shown in

Fig. 5a over the safe set K ′x. The corresponding contours of this probability map are shown in

Fig. 5b, with the target set Kx in the center. As a comparison, we also plot in the same figure

the result of a deterministic reachability calculation from [40], characterizing the set of feasible

initial conditions under the assumption that the noise obeys certain deterministic bounds. The

advantages of the stochastic model then becomes apparent: although the uncertainties present

in the system may satisfy certain bounds with high probability, there may exist realizations of

the noise variables which violate the bounds, albeit at low probability. Accounting for all such

realizations through deterministic bounds could lead to conservative feasible sets, outside of

which a control law satisfying the motion planning objectives does not exist. On the other hand,

if one were to resort to a stochastic formulation of the problem, the behavior of the disturbances

can be characterized through Gaussian distributions, and the specification can be relaxed to one

where the desired objectives are satisfied with a high level of confidence, for example with 70%

or 80% probability, resulting in a larger set of feasible initial conditions. The desired control

laws can then be obtained for such initial conditons using the sufficient conditions of optimality

as given in Section IV.

VI. CONCLUSION

In this technical report, we discussed a framework for studying probabilistic safety and

reachability problems for discrete-time stochastic hybrid systems in a zero-sum stochastic game

setting. It was shown that, under certain assumptions on the underlying stochastic kernels and

action spaces, there exists a robust control policy which guarantees a worst-case probability of

satisfying the safety and reachability objectives, regardless of the adversary strategy. Furthermore,

this worst-case probability can be computed via an appropriate dynamic programming recursion,

from which sufficient conditions for optimality can be derived.

On the theoretical side, there are several possible directions for future work. First, we would

like to establish results, similar to those given in [38], on the approximation of the value function

and optimal strategies. Second, it would be interesting to explore whether the consideration of

randomized strategies and non-Markov policies confers an advantage to either player. Third,



(a) max-min reach-avoid probability function r∗x0
(K,K′)
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Fig. 5: Probability of reach-avoid for the relative position and velocity of the quadrotor with

respect to the ground vehicle.

we are working on extensions of the results given in this report for the finite horizon reach-

avoid problem to the infinite horizon case, as motivated by [19]. Finally, for applications beyond

robust control, it may be necessary to consider alternative stochastic game formulations with

less conservative assumptions on the information pattern.
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